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ABSTRACT 

 

Over the past 100 years, epidemiological models have evolved to incorporate greater facets 

of the process.  With the advent of social networking, massive computational power, population 

sentiment analysis can now be added to the epidemiological modeling process.  Sentiment analysis 

is greater understanding of the fears, uncertainties, motivation, and trends of the public with respect 

to vaccination and associated events.  Lack of public confidence in the efficacy of models, safety of 

vaccines, and appropriateness of policies confounds vaccine inoculation prediction.  Sentiment 

analysis of social media is a seminal technique that accesses shared users' contents and tweets on 

the Twitter platform for daily fast and accurate modeling of public sentiment.  As an applied 

contribution to this science, we present sentiment-based models for predicting United States daily 

COVID-19 vaccine inoculations.  The research methodology encompasses predictive regression 

models spanning three phases of the U.S. pandemic including a baseline COVID-19 phase, a Delta 

variant phase, and Omicron variant phase that when combined span the period June 1, 2021, to 

March 31, 2022.  Additionally, the models incorporate U.S. population behavior responses during 

the CDC recommended first dose interval, second dose interval, and booster intervals.  Investigation 

of variables influencing daily inoculations identified CDC VOC phase, daily cases, daily deaths, 

and positive and negative Twitter Tweets as statistically significant for first dose and booster dose 

intervals exceeding a predictive R square of 77% and 84% respectively.  The best regression model 

for the second dose interval proved to be a three variable- phases, cases, and negative tweets - 

inoculation model that exceeded a predictive R square of 53%.    Limiting tweets collection to 

geolocated tweets does not encompass the entire U.S. Twitter population.  However, Kaiser Family 

Foundation (KFF) surveys results appear to generally support the regression factors common to the 

First Dose and Booster Dose regression models and their results. 
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STATEMENT OF CONTRIBUTION 

 

Investigating public opinions on Twitter platform toward taking COVID-19 

vaccination can be used to predict daily vaccine inoculation in the USA. Including other 

factors into the research was helpful step to generate a great modeling and analysis that show 

how the integrating different fears directions, different factors and different levels impacted 

intentions toward vaccination. Therefore, Twitter users’ tweets were classified sentimentally, 

then they were compared to CDC vaccines data in order to explore the nature and strength of 

association between opinions on Twitter and daily vaccination. Additional factors included 

adding phases factor to the Pandemic based on CDC Variant of Concern (VOC) 

announcements investigated the effects of each phase on the vaccine inoculation, where each 

phase has its own characteristics and different public response. Moreover, regression 

modeling has been built using virus cases, deaths, social media sentiment (vaccination 

positive and negative tweets), and the first, second, booster dose, which built a developed 

vaccine inoculation predictive model. Vaccination approvals events haven added as they on 

order to quantify their effects on the vaccines inoculation. Furthermore, lag times between 

VOCs, FDA vaccine approvals, and a considerable increase in vaccination inoculations in the 

USA have been measured to explores the times between events and the public response. As 

different events and factors generated different public response levels which explained the 

impact of public opinions and response during selected phases for unvaccinated and partially 

vaccinated population. In addition, predictive power of the regression models for predicting 

first, second, and booster dose daily vaccination inoculation in the USA have been assessed 

and analyzed. Results have been validated with KFF vaccination opinions surveys, then, 

limitations and future research goals were identified.     
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CHAPTER ONE: INRODUCTION 

Historically global pandemics strain public health services and leave millions if not 

tens of millions dead in their wake (He et al., 2020).  Pandemics negatively impact the social 

behavior of individuals, national economies, and the vitality of the global economy 

(Squazzoni et al., 2020). Pandemic spread predictions, public health protocols, and vaccine 

adoption models are critical for advising governments, non-government organizations, heads 

of households, and individuals on behaviors and policies that may reduce their risk and slow 

the spread of the disease (Correia, Luck, & Verner, 2020).  Since model error can lead to even 

more disaster, the re-occurring question is, what can be done to improve the efficacy of 

modeling? 

In response to COVID19 virus predictive modeling and public health protocol 

recommendations, governments imposed widespread lockdowns in Europe.  After appearing 

to have initially stopped the spread of the pandemic, the lockdowns proved to be ineffective 

in stopping emergence of the feared “second wave” (Cacciapaglia, Cot, & Sannino, 2020).  

When new lockdown measures were proposed, social media channels suddenly came alive 

eventually resulting in acts of civil disobedience across the continent (Hernandez, 2020).  

In the United States, model guidance for “fifteen days to slow the spread” locked the 

nation down (Fauci, 2020).  Health protocols such as social distancing, mask wearing, and 

hand sanitizing led to an initial drop in cases (Wang et al., 2020) (Cascini et al., 2020).  

Inconsistency in lockdown guidance and protocol implementation resulted in significant 

revisions to model predictions and a drop in public confidence in governing authorities and 

the protocols promoted.  More recently, with as many as one in five Americans expressing 

vaccine hesitancy, vaccine adoption rates in the U.S. peaked at around 50% of the population 

fully vaccinated  (Monmouth, 2021; Kukulka, 2021).   
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With the onset of the Delta variant and corresponding rise in infections, 

hospitalizations, and deaths, a new surge in vaccinations occurred though far less than hoped 

( Neel, 2021).  As a result of unfilled expectation, the Biden administration resorted to 

mandates which have been met with widespread resistance as to their scope and 

appropriateness (Rogers & Stolberg, 2021; Wadman, 2021: Erman & Manojna, 2021) While 

vaccine hesitancy isn’t a new phenomenon, vaccine hesitancy has the potential of prolonging 

the longevity of the pandemic and may even enable its re-emergence (Edwards, et al, 2016).   

Clearly government-imposed protocols and policies, no matter how well intended, 

degrade over time due to mounting social pressures and inevitable civil disobedience 

(“Protests, policing, and COVID-19,” 2021).  Given significant errors in original model 

predictions and policies (Magness, 2020; Zanin & Papo, 2020), the question arises, what is 

the state of incorporating social media and sentiment analysis into modeling analysis?  And 

finally, do we yet have evidence that incorporation of social media factors into models 

improve the quality of analysis and success of public health protocols and policies?   

Disease Spread and Health Behavior Modeling 

We a lay a foundation for discussion of these questions with a literature review of 

models listed and characterized in Table 23  For review purposes below, those models are 

classified into the following categories: Epidemiological State models, Epidemiological 

Statistical Prediction models, Traditional Systems Dynamics models, Agent-based models and 

Multiagent systems models, and Machine Learning and Hybrid models.  

Epidemiological State Models 

One of the simplest approaches to epidemiological modeling is based on a chain of 

disease states as observed within a population.  Epidemiological State models are among the 

earliest and longest lasting modeling technique.  At a minimum, State models report a 
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snapshot of selective states of a disease within a population.  Epidemiological state data 

observed over time may be used to generate mathematical relationships to produce patterns in 

disease behavior within the population (Brown & Ozanne, 2019).  Epidemiological State 

models considered in Table 1 may forecast future trend of disease spread among various 

populations but typically do so based solely on observations (Brauer, Driessche, & Wu, 

2008). 

Table 1: Epidemiological State Models 

 

Susceptible, Infected, Recovered (SIR) Model:  

Developed in the 1920’s, Kermack and McKendrick (1991) SIR model (Figure 1) represents 

the effect of the flow of the disease through the population from susceptible (S), infected (I), or 

recovered (R) states (Cooper, Mondal, & Antonopoulos, 2020).  Observed stochastic probabilities bIS 

and gI may be derived from the observed likelihood of disease movement from one state to the next 

state (Jiang, Yu, Ji, & Shi, 2011).  A primary outcome of the model is numerical (Figure 1) or 

graphical representation over time (Figure 2) of the level of the disease for each state within a 

population.  

 

 

Figure 1: SIR Model 

Susceptible, Infected, Recovered (SIR) 

Susceptible, Infected, Susceptible (SIS) 

Susceptible, Infected, Recovered, Deceased (SIRD) 

Maternally derived immunity, Susceptible, Infected, Recovered (MSIR) 

Susceptible, Exposed, Infected (SEI) 

Susceptible, Exposed, Infected, Recovered (SEIR) 

Susceptible, Exposed, Infected, Susceptible (SEIS) 

Maternally derived immunity, Susceptible, Exposed, Infected, Recovered (MSEIR)  

Maternally derived immunity, Susceptible, Exposed, Infected, Recovered, Susceptible (MSEIRS)  

Susceptible-Latent-Infected-Recovered-Dead-Susceptible (SLIRDS)  

Exposed, Infected, Hospitalized (EIH) 

Susceptible, Infected, Hospitalized, Recovered (SIHR) 

Susceptible Infected Recovered 
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Figure 2: SIR Model Curves (Macal, 2010) 

 

Susceptible-Infected-Susceptible (SIS) Model: 

SIS model (Figure 3) represents different disease states or flows (Vargas-De-León, 

2011) (Fernández-Villaverde & Jones, 2020) (Bin, Sun, & Chen, C. C. 2019).  In contrast 

with the SIR model, the SIS model describes diseases for which there is no immunity.  After 

a person has been infected and has healed, he or she is again susceptible to the disease 

(Vargas-De-León, 2011) (Qi, Liu, & Meng, 2017).  

 

 

Figure 3: SIS Model (adapted from Crossin, 2020) 

 

 

 

 

Susceptible Infected Susceptible 
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Susceptible-Infected-Recovered-Deceased (SIRD) Model: 

SIRD model (Figure 4) distinguishes between Recovered and Deceased. (Fernández-

Villaverde & Jones, 2020) (Caccavo, 2020). 

 

 

 

 

 

Figure 4: SIRD Model (adapted from Jamakayala, 2020) 

 

Maternally Derived Immunity, Susceptible, Infected, Recovered (MSIR) Model: 

MSIR model (Figure 5) adds to the SIR model a state M for derived immunity that 

includes babies with passive immunity (Seyoum Desta, 2019) (Fajar, 2019). 

 

 

        

Figure 5: MSIR Model (adapted from Ye, 2020) 

 

Susceptible, Exposed, Infected (SEI) Model 

SEI model (Figure 6) adds the state E, where this model assumes that susceptible 

person goes through a exposed period before becoming infected (Kim & Lin, 2008).  

 

        

Figure 6: SEI Model (adapted from Kim & Lin, 2008)  
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Susceptible, Exposed, Infected, Recovered (SEIR) Model: 

SEIR model (Figure 7) adds an exposure state to the SIR model where recovered 

includes a level of immunity (Lekone & Finkenstädt, 2006). 

 

 

        

Figure 7: SEIR Model (adapted from Gupta et al., 2020) 

 

Susceptible, Exposed, Infected, Susceptible (SEIS) Model: 

SEIS model (Figure 8) is identical to the SEIR model (above) except that there is no 

immunity obtained at the end. (Fan, Li, & Wang, 2001). 

 

        

Figure 8: SEIS Model (adapted from Fan, Li, & Wang, 2001) 

 

Maternally Derived Immunity, Susceptible, Exposed, Infected, Recovered (MSEIR) Model: 

MSEIR model (Figure 9) is like SEIR model, but it considers a passive immunity as 

an additional factor (Li & Zhang, 2012).  Passive immunity is obtained when an individual is 

given antibodies to a disease rather than created by his immune system (Qureshi & Yusuf, 

2019).   

 

 

 

Figure 9: MSEIR Model (adapted from Hethcote, 2000)  
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Maternally Derived Immunity, Susceptible, Exposed, Infected, Recovered, Susceptible 

(MSEIRS) Model: 

MSEIRS model (Figure 10) is similar to the MSEIR, except the R-class immunity 

would be temporary, meaning people would recover their susceptibility after their immunity 

expired (Mosavi, 2020).  

 

 

 

 

Figure 10: MSEIRS Model (adapted from Ajisafe, 2018)  

 

Susceptible-Latent-Infected-Recovered-Dead-Susceptible (SLIRDS) Model: 

SLIRDS model (Figure 11) (Bin, Sun, & Chen, C. C. 2019) incorporates population 

growth, sex ratio, and age structure to determine the model's evolutionary rules. The latent 

state in the model means that virus is found in the body but remains in a resting (latent) state 

without creating more viruses. Latent viral infection usually causes no visible symptoms and 

can last a long time before it becomes active and causes symptoms (Bin, Sun, & Chen, C. C. 

2019) ("Viral latency | ClinicalInfo," 2020).  

    

 

 

 

Figure 11: SLIRDS Model (adapted from Bin, Sun, & Chen, C. C. 2019)  
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Exposed, Infected, Hospitalized (EIH) Model: 

EIH model (Figure 12) adds the state H, where this model assumes that infected 

person goes through a hospitalized period after becoming infected (Sooknanan & 

Comissiong, 2020).  As discussed below, during the COVID19 pandemic, hospitalization 

state models proved their importance when linked to hospital capacity. 

 

    

   

Figure 12: EIH Model (adapted from Sooknanan & Comissiong, 2020) 

 

Susceptible, Infected, Hospitalized, Recovered (SIHR) Model: 

SIHR model (Figure 13) assumes that susceptible person goes through an infected, 

hospitalized, then to recovered status (Sooknanan & Comissiong, 2020). So, it is like SIR 

model except it involves hospitalized state. 

 

   

Figure 13: SIHR Model (adapted from Jiao, & Huang, 2020) 

Epidemiology Statistical Forecast Models  

Epidemiological Statistical Forecast models build on the fore mentioned State 

models to project trends into the future. In the current COVID19 pandemic, the John 

Hopkins Coronavirus Resource Center (https://coronavirus.jhu.edu/data) is well known 

for tracking Epidemiological State data and reports various statistical trends of interests 

to decision makers.  Table 2 identifies the Statistical Forecast models discussed herein. 

Hospitalized Exposed Infected  

Hospitalized Infected  Susceptible  Recovered 
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Table 2: Statistical Forecast Models  

 

 

Differential Equations Leads to Predictions of Hospitalizations and Infections (DELPHI) 

Model 

DELPHI Model (Figure 14) is known for its statistical forecast of future COVID-19 

infected cases, hospitalizations, and deaths rates during the pandemic. The model builds on 

the SEIR state model to project trends while incorporating government interventions 

("Coronavirus disease 2019 (COVID-19)," 2020), where there are four phases for that 

represent the governmental interventions.  

Phase I: This phase represents the immediate solution as the government is just 

beginning to implement measures to combat the outbreak. Some people will have changed 

their behavior in response to reports of an epidemic, but a large portion of the population will 

continue to live their lives normally.  

Phase II: This process is distinguished by a sharp reduction in infection rates as 

measures to regulate the spread are fully implemented (e.g., the closure of a portion of the 

economy) and the population as a whole suffers a shock case. 

Phase III: This process simulates the response's eventual flattening out as the 

measurements hit saturation. This is expressed by the decreasing marginal returns (i.e. 

convexity) in the infection rate decrease. 

Phase IV: This phase represents the revival of cases triggered by the premature 

removal of social distancing interventions and people returning to their normal behaviors. 

Differential Equations Leads to Predictions of Hospitalizations and Infections (DELPHI)  

Auto regressive integrated moving average (ARIMA)  

Los Alamos National Laboratory COVID-19 forecasting using Fast Evaluations and Estimation 

(LANL COFFEF)  

John Hopkins model COVID-19 prediction (JHU COVID-19 prediction)  
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Figure 14: DELPHI Model (adapted from "COVIDAnalytics,"2020) 
 

Auto Regressive Integrated Moving Average (ARIMA) Model 

The ARIMA model builds on the SIRD state model using time series regression 

model to provide a COVID-19 case forecast with an 95% expected range of the forecast that 

expands with time.  Figure 15 illustrates one projection of cases and its associated 95% 

expected range of the cases in the model forecast.  Additional forecasts with associated ranges 

may be derived from the “daily total confirmed cases, total confirmed new cases, total deaths, 

total new deaths, growth rate in confirmed cases, and growth rate in deaths ” (Tran, Pham, 

and Ngo, 2020).  
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Figure 15: Daily Total Confirmed Cases (adapted from Tran, Pham, and Ngo, 2020). 

Los Alamos National Laboratory COVID-19 Forecasting Using Fast Evaluations and 

Estimation (LANL COFFEF) Model 

LANL COFFEF model also produces a case/death forecast with more detailed 

prediction intervals for any state with at least one confirmed case/death of COVID-19 and 

every country with at least 100 confirmed cases of COVID-19 and 20 fatalities. Building on 

the SIRD state model, COFFEF model takes geographical structure, growth rate, reporting 

process, and case fatality rate into consideration while predicting infects and deaths (figure 

16). The model can generate short- and long-term forecasts to help decision-makers obtain 

useful insights about possible pandemic outcomes in the near future. The figures below show 

that “Recent observations (grey points) and forecasts for reported confirmed cases and deaths. 

Colored points are forecast medians and represent the model's best guess. The darker colored 

bar is the 50% prediction interval, while the lighter color bar is the 90% prediction interval”.    
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Figure 16: Cumulative Confirmed Cases and Deaths (adapted from LANL COFFEF Cases 

and Deaths Forecasts, 2020)  

 

John Hopkins COVID Inpatient Risk Calculator (CIRC) Model 

Adding a death state to the SIHR state model, the John Hopkins CIRC model 

“incorporates more than 20 demographic and clinical variables available at hospital 

admission to predict the likelihood of a patient progressing to severe disease or death within 7 

days of patient arrival” ("COVID-19: Risk calculator predicts progression, death among 

hospitalized patients," 2020). CIRC uses a set of patient risk factors associated with COVID-

19 disease ("Johns Hopkins researchers publish COVID-19 ‘Prediction model’," 2020) to 

forecast disease outcomes for Patient Type A to F may progress over time while in a 

healthcare unit or hospital (Figure 17a and 17b).  Patient Type risk factor considered include 

the patients’ age, body mass index (BMI), the health of the lung, chronic illnesses, vital signs, 

and the severity of infected case symptoms when it is admitted to the hospital.  Model 

estimates may aid hospital decision making about patient handling, allocation of resources, 

interventions, and patient safety.   
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Figure 17-A: John Hopkins COVID-19 Prediction Model (adapted from Garibaldi et al., 

2020) 

 

 

Figure 17-B: Projections for Patient Type A to F Over Time (adapted from Garibaldi et al., 

2020) 
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Traditional System Dynamics Models  

Disease transmission, population behavior and vulnerability, and government directed 

preventive interventions all theoretically change disease outcomes in different nations.  The 

radical differences in the number of infections between nations is highlighted by John 

Hopkins COVID-19 infection tracking data shown in Figure 18.  Theoretical intervention 

models attempt to explain these differences. 

 
Figure 18: John Hopkins Daily Confirmed New Cases for the Current 10 Most Affected 

Countries (https://coronavirus.jhu.edu/data/new-cases download Feb 28 2021) 

 

Modeling the dynamics of disease transmission, population behavior and 

vulnerability, and preventive interventions (Anderson et al., 2020) attempts to project disease 

outcomes beyond simple statistical trend extrapolation.  Modeling of the dynamics of systems 

is not new (Forrester, 1958).  System dynamics models are applied across a broad-spectrum 

of applications including pandemics, sexual behavior, smoking, exercising, and use of seat 

belts (DeJoy, 1996).  A fundamental objective of applying systems dynamics for pandemic 

application is to model, simulate, and quantify interventions and outcomes with the hope of 

limiting disease spread and impacts (Simpson, 2015; Samui, 2020).  During the COVID-19 

pandemic, objectives included identifying behavioral intervention measures to “slow the 

spread” (Fauci, 2020) and gain time to develop vaccines to counter the disease.   At least 

https://coronavirus.jhu.edu/data/new-cases%20download%20Feb%2028%202021
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three theoretical intervention models attempt to capture the dynamics of human behavior in 

light of life threating events have been put forth including the Health Belief Model (HBM), 

(Champion, Skinner, and others, 2008  ( , the Theory of Planned Behavior (TPB) (Ajzen, 

1991), and the Protection Motivation Theory (PMT) (Okuhara, Okada, & Kiuchi, 2020) 

(Table 3).  These approaches may be integrated together for deeper work, such as integrating 

TPB theory and PMT theory to gain insights into both behaviors and intentions of individuals 

(Wang et al., 2019).   

Table 3: Traditional System Dynamics Models  

   
 

 

Health Belief Model (HBM)  

In the 1950s, social scientists in the United States created the HBM Model 

(Figure 19) (Champion, Skinner, and others) to explain human behavioral response to 

outbreaks and associated health protocols.  Influences on human behavior included 

demographics and psychological variables acting through perceived susceptibility to the 

health threat, perceived severity of the health threat, health motivation, perceived 

benefits to taking the prescribed action, and perceived barriers to taking actions. This 

model helps categorize factors that motivate actions of people to act appropriately.  

Limitations of the model include the need to design data collection methods suited to 

various communities impacted by the disease.  

Health Belief Model (HBM)  

Theory of Planned Behavior (TPB)  

Protection Motivation Theory (PMT) 
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Figure 19: HBM Model (adapted from Lipman & Burt, 2017) 

 

Theory of Planned Behavior (TPB theory) 

TPB theory (Figure 20) was introduced by Icek Ajzen in 1985.  Though not 

specifically developed for modeling proposed behavioral interventions during a 

pandemic, TPB theories of learning, expected value, and cohesiveness may still be 

applied (Ajzen, 1985). In its simplest form, individuals evaluate a proposed behavior.  If 

the individuals feel that their actions are important to others and wish to do so, then they 

are more likely to do the proposed behavior. A high association of behaviors and 

subjective norms with behavioral intent and behavior has been verified in several studies, 

such as COVID-19 pandemic studies (Bae & Chang, 2020) (Yastica et al., 2020). 

Limitations of the model include the need to design data collection methods suited to 

individuals and relate those actions to impacts of the disease. 
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Figure 20: Theory of Planned Behavior (adapted from Ajzen, 1985) 

 

 

Protection Motivation Theory (PMT) 

PMT (Figure 21) addresses how people cope with and makes decisions under 

stress (Rogers, 1975). PMT draws on factors similar to HBM including: perceived 

severity of a threatening event; perceived probability of the occurrence or vulnerability; 

efficacy of the recommended preventive behavior, and perceived self-efficacy (Okuhara, 

Okada, & Kiuchi, 2020). Moreover, these factors may be grouped more generally in 

terms of appraisal and the coping appraisal.  Threat appraisal involves perceived 

vulnerability, severity, and level of fear arousal while the coping appraisal involves 

response efficacy, self-efficacy, and perceived response-cost (Ling, Kothe, & Mullan, 

2019; Floyd, Prentice‐Dunn, & Rogers, 2000).  Complicating interventions such as 

controlling weight to prevent heart disease or stroke is the possibility that the intervention 

may have a side effect that causes another problem (Wang et al., 2019). Furthermore, 

interventions may involve a secondary intervention such as using a medicine to reduce 

Behavioral beliefs & 

attitudes 

Normative beliefs & 
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the risk of heart attack (Minnesota heart disease and stroke prevention connection, April 

2011).  

 

Figure 21: Protection Motivation Theory (adapted from Xiao et al., 2014) 

 

Chapter 1 Summary  

Chapter 1 provides the basic knowledge and background about the epidemiological 

models, where the traditional models as Epidemiological state models, statistical forecast 

models, and traditional system dynamics models have been discussed. Epidemiological state 

models focus on the possible states that public might go through during the virus spread, such 

as susceptible, exposed, infected, isolated, and recovered or dead. In addition, the statistical 

forecast models have been built based on the state models where the forecasting models aim 

to forecast the numbers of states based on the given data or recorded data by heath agencies, 

such as forecasting the number of infected cases, deaths cases, and recovered cases…. etc. 

Moreover, the traditional system dynamics models have been developed to explore how the 

causes and effects relationships can explore the change in the public behavior or opinions. 

For example, they are used to study and analyze the personal' benefits and barriers of 

following the healthy interventions which resulted in more understanding for the possible 
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public response and providing much accurate analysis. Lacking of individuals’ differences, 

human feelings, and opinions data caused limitations for the efficiency of these models. Thus, 

the concepts of these models have been developed to include additional human factors, 

advanced technologies, and more sufficient data resources to build new models with higher 

capabilities and less limitations. Chapter 2 explores how the traditional models’ concepts 

have been used as concrete for building the advanced modeling approaches.   
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CHAPTER TWO: A LITERATURE REVIEW 

Developing the Epidemiological Models and the Used Advanced Approaches: A 

Literature Review. 

Over the last several decades, human behavior, machine learning techniques, 

computer software, and data analytics approaches have been developed and included 

into in the epidemiological modeling in order to improve models’ efficiency and 

accuracy. Furthermore, the data sources have been increased significantly, which 

provides sufficient amount of data that could be extracted and analyzed with less cost 

and time. All of these developments cause a significant improvement in 

epidemiological modeling and simulation field. This chapter discusses these 

developments and techniques as well as related concepts, principles, and goals.  

Agent-based and Multiagent Systems Modeling 

Agent-based and Multiagent systems approaches approach modeling behavior from 

the bottom up rather than the top down.  Both techniques attempt to model entity autonomous 

behavior and go beyond latent factors associated with an entity to discretionary factors left to 

the entity.  In the case of behavior in the presence of an infectious disease includes 

interventions such as wearing a mask or separating six feet apart.  These agent responses are 

based on some individual entity considerations based on the fore mentioned theories and 

include such fears as getting infected, benefits of following intervention protocols, or social 

or organization responses with or against the agent.   

Agent-based and Multiagent systems share basic artificial intelligence techniques in 

an attempt to address forementioned theories by modeling “person(s), firm(s), machine(s), or 

software” that generate the actions or interactions (Agents in artificial intelligence," 2019) but 

they do differ.   
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“Agent-based modeling (ABM) is a technique that allows us to explore how the 

interactions of heterogeneous individuals impact on the wider behavior of social/spatial 

systems” (Crooks at el, 2018) with ”autonomous and pro-active actors, such as human-

centered systems” (Siebers & Aickelin, 2008) within the real world (Bonabeau, 2002).  One 

goal of agent-based modeling is to achieve a clearer understanding of the relation between 

micro-interaction and emergent macroscale behavior.  By modeling the entity level as an 

autonomous decision-maker, each agent individually assesses its situation and makes 

decisions based on a set of rules (Zohdi, 2020), and may execute various behaviors suited to 

itself (Bonabeau, 2002).  ABM aims to explore insights into the collective behavior of agents 

that follow simple rules which means there are limitations on the strength and capabilities of 

the ABM approach (Niazi at el, 2011).  In pandemics spread studies, an ABM approach “can 

capture the dynamics of disease spread combined with the heterogeneous mixing and social 

networks of agents” (Hunter et al., 2018). By characterizing the disease transmission rates, 

agents, and their environment, it is possible to create more real model that generate real 

scenarios for the pandemics trends (Hunter et al., 2017). 

Modeling a population as a family of individual agents within a multi-agent society 

notionally is more appealing for pandemic applications then basic ABM approach (Parsons & 

Wooldridge, 2002).  Advantages include recognition and implementation of levels of social 

or organizational control over entity self-regulation.  Other advantages include representation 

of availability and access to channels of communications by agents as well as the nature, 

content and level of trust of information disseminated on those channels (Parsons & 

Wooldridge, 2002).  Additionally, heterogeneous and various intelligent agents when interact 

with each other to decide upon and achieve a specific goal (Siebers & Aickelin, 2008).  

Furthermore, the level of interaction between intelligent agents may be represented with 

various levels of cooperation or competitiveness (Siebers & Aickelin, 2008).   
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MAS techniques can handle large complex systems (Seddari & Redjimi, 2013). More 

directly, MAS techniques are able to solve problems that are hard or impossible for an agent-

based models to solve (Alkhateeb et al., 2010).  For pandemics spread studies, MAS’s 

analytical power rests in representing social and organizational controls as well as aspects of 

communications between individuals and between individuals and organizations (Vyklyuk et al., 

2021).  Table 4 identifies the agent-based and Multi-agent models discussed herein. 

 

Table 4: Agent-based and Multiagent-based Models 

 

 

 

 

 

COVID-19 Agent-based Simulator (COVASIM) 

COVASIM model (Figure 22 and 23), was developed form SEIRD model to predict 

pandemic trends, the effects of interventions on the disease spread, and estimating the 

required resources (Kerr et al., 2020). To explain, COVASIM model takes into consideration 

multiple factors that makes the model more real, such as “country-specific demographic 

information on age structure and population size; realistic transmission networks in different 

social layers, including households, schools, workplaces, long-term care facilities, and 

communities; age-specific disease outcomes, and interhost viral dynamics, including viral-

load-based transmissibility” (Kerr et al., 2020). Moreover, based on Figure 22 shows the 

structure of the model, where the agents health status change based on their situation, while 

figure 23 shows the agents contact with each other in houses, schools, or workplaces.   

Furthermore, the model studies the effects of multiple non-pharmaceutical interventions on 

COVID-19 A gent-based Simulator ( COVASIM) 

Social Distancing (SD)  

Susceptible, Exposed, Infected, Recovered, agent- based (SEIR-ABM)  

Frias-Martinez (FM)  

University of Texas at Austin's COVID-19 (UT COVID-19)  

The developed Multi Agent Susceptible, Infected, Recovered (DMAS-SIR)  
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the pandemic trend as shown in the model coding lines (Figure 24), so the model able to show 

the susceptibility, severity, and the threats to get infect in case of ignoring the heath 

interventions, and also it shows the benefits of following the health interventions, which lead 

to decrease the cases numbers. Thus, these outputs would explain why agents follow or do not 

follow the interventions policies these policies as explained previously in the assumed 

behavioral perceptions of the HBM model. According to Figure 25 “Synthetic population 

networks for households (top), schools (middle), and workplaces (bottom). Age-specific 

contact matrices are shown on the l eft, while actual connectivity patterns f or a 127-person 

subsample of a population of 1 0,000 individuals are shown on the right. All individuals are 

present in the household network, including some with no household connections. A subset of 

these individuals, including teachers, are present in the school network (circles); another 

subset is present in workplace networks (squares); some individuals are in neither school nor 

work networks (triangles)” (Kerr et al., 2020). 

 

Figure 22: COVASIM Model Structure (adapted from Kerr et al., 2020).  

 



 

24 

 

Figure 23: Schematic Diagram of Contact Networks 

 

 

 

Figure 24: Codes of Intervention Part in the Model  
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Figure 25: Agents’ Contacts Networks 

 

Social Distancing (SD) Model 

A developed SD model (Figure 26) was created by Netlogo programming software 

based on SEIRD to quantify the effect of social distancing on the spread of COVID-19 

disease, where different levels of social distancing policies were tested (Daghriri and Ozmen, 

2021). So, it seeks to quantify the optimal level of social distancing that should be applied 
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and followed by citizens in the United States.  Model results show that the optimal level of 

applying social distancing strategies should be equal or higher than 80% to flat the curve. 

 

Figure 26: Social Distancing Model (adapted from Daghriri and Ozmen, 2021) 

 

Frias-Martinez (FM) Model 

According to a study that discussed integrating the agent-based models with social 

networks (Frias-Martinez et al., 2011), FM model (Figure 27) was proposed to capture the 

social interactions and the patterns of human mobility the derived from call detailed records. 

Moreover, the suggested method was used to study the 2009 H1N1 epidemic in Mexico and 

to evaluate the effect of government interventions on virus spread(Frias-Martinez et al., 

2011), and to predict people intentions to move.  Also, it involves a previous SIR model 

study results (Cruz-Pachecon et al, 2009).  To explain, the mobile phone networks are 

designed using a series of mobile towers called Base Transceiver Stations (BTS) which 
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connect our cell phones to the networks. Therefore, the call detail Records (CDR) databases 

are generated by making or receiving phone calls or using a service via the connected mobile 

phone. The simulations shown that applying limited mobility reduced the total number of 

persons infected by the virus by 10% and delays the pandemic peak by two days. Figure 27 

shows the difference with and without applying interventions so that there is a significant 

difference.   

 

 

Figure 27: “Fraction of Infected Agents Over Time. These Curves are an Average of All 

Simulation Runs”.  (adapted from Frias-Martinez et al., 2011) 

 

University of Texas at Austin's (UT COVID-19) Model 

UT COVID-19 model (Figure 28) has been proposed by researchers University of 

Texas at Austin's that predicts COVID-19 cases rates based on SEIR model (Tec et al. 2020), 

and it quantifies the effects of social distancing intervention on disease spread through 

mobility traces, and to forecast the first wave of COVID-19 deaths in the United States 
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(Woody et al., 2020).  It was incorporated with social networks to analyze the obtained data 

from mobile-phones GPS traces as same as FM model (Frias-Martinez et al., 2011), which 

allows predicting the effects of social distancing behavior on the disease spread curve. To 

explain, locations of mobile phones are inferred by SafeGraph company based on the daytime 

and overnight locations over time, where SafeGraph is a company that collects anonymized 

positions data from a variety of applications to gain information into physical locations. 

Furthermore, it was compared with the IHME model estimations, and it more accuracy in 

predicting the daily deaths per day. (Woody et al., 2020).   

 

Figure 28: University of Texas at Austin's Model (adapted from "US dashboard," 2020) 

Susceptible, Exposed, Infected, Recovered, Agent- based (SEIR-ABM) Model: 

SEIR-ABM model (Figure 29) uses social interactions and the patterns of human 

mobility derived from call information records as same as FM and UT COVID-19 model in 

order to model the spread of viruses accurately (Silva et al., 2020). The suggested method 
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was used to study the 2009 H1N1 epidemic in Mexico and to evaluate the effect of 

government interventions on virus spread. 

 

Figure 29: (SEIR-ABM) Model (adapted from Google Colaboratory, 2020) 

The Developed Multi Agent Susceptible, Infected, Recovered (DMAS-SIR) Model 

According to study (Vyklyuk et al., 2021), DMAS-SIR model (Figure 30) was 

developed through improving the classical SIR model, where new factors were added to the 

model , such as “incubation period, people’s keeping a safe distance when moving, simulated 

quarantine, isolation, visiting public places such as supermarkets, parks, churches, schools, 

gyms, model transport, construction sites, gyms, etc.” (Vyklyuk et al., 2021). So, it includes 

more parameters that could affect the accuracy of predictions of COVID-19 pandemic trends. 

Furthermore, the multiagent system approach was used to improve the model based on 

mobile cellular automata. In addition, the model proposed ways to improve the behavioral 

rules and interactions of agents, and it was carried out in countries including Slovakia, 
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Turkey and Serbia, where the results showed that the model is precisely aligned with real data 

(Vyklyuk et al., 2021).  

 

 

Figure 30: Functional Diagram of a Simulated Model of Virus Spread (adapted from Vyklyuk 

et al., 2021) 

 

According to Figure 28 (Vyklyuk et al., 2021), The input variables are divided into 

two categories: territory characteristics (area, shape, number of agents) and agent 

characteristics (a group of agents with distinct characteristics). During the simulation 

experiment, you can change the features of the agents in real time, add new ones, and delete 

old ones, as well as save and restore data. In addition, the modeling process involves 

modeling the isolation, quarantine, public places with close contact, public places with the 

gathering of people, safe distance maintenance, regions, and international transfer. 
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Figure 31: Coefficients of the Basic Model and their Change in Sensitivity Experiments 

(Vyklyuk et al., 2021). 

 

Also, from Figure 31, nine simulations experiments were run based of the level and 

strictness of the applied interventions and their levels. So, the results in Figure 32 have shown 

that how the interventions with different levels play significant role in the COVID-19 

pandemic trend and disease spread.  

 

Figure 32: Dynamics of the Active Cases, Patients’ Number for Different Nine Simulations 

(adapted from Vyklyuk et al., 2021). 
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Supervised Machine Learning Models 

Supervised Machine Learning model is defined as “techniques or algorithms that bind 

previous and current dataset with the help of labeled data to predict future events. The 

learning process begins with a dataset training process and develops targeted activity to 

predict output values” (Muhammad et al., 2020).  

Hybrid Models 

These models employ different types of models into one model in order to design a 

new model that is stronger and has more features.  For example, statistical techniques could 

be used to model disease parameters which are then used in epidemiological models to 

forecast cases rates. Majority of epidemiological state models are developing to become 

hybrid models, such as Youyang Gu [YYG] model (Giattino, 2020), (Gu, 2020), which uses a 

machine learning method based on the epidemiological state models, SEIR model.  

Table 5: Hybrid Models 

 

The Youyang Gu COVID-19 (YYG) Model 

YYG model (Figures 33 & 34 ) applies the strength of artificial intelligence to the 

traditional infectious disease model. A simulator based on the SEIR model was developed to 

simulate the COVID-19 epidemic in each area. The parameters of this simulator are then 

trained using machine learning methods that aim to minimize the difference between the 

predicted and actual outputs. Data of reported deaths by each region are used to estimate the 

potential confirmed deaths (CDC, 2020) (Giattino, 2020).   

Youyang Gu COVID-19 (YYG)  

Deep transfer learning (DTL) 

University of Virginia Biocomplexity Center PatchSim COVID-19 (UVA COVID-19)  

Institute for Health Metrics and Evaluation COVID-19 (IHME COVID-19)  

Massachusetts Institute of Technology COVID-19 (MIT University COVID-19) 
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Figure 33: Machine Learning and SEIR Simulator Part (adapted from "Model details," 2020) 

 

 

Figure 34: Youyang Gu's Model ("How epidemiological models of COVID-19 help us 

estimate the true number of infections," 2020) 
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The Deep Transfer Learning (DTL) Model 

DTL model (Figure 35) modelers aimed to identify those who do not wear masks to 

minimize COVID-19 transmission and spread (Loey, Manogaran, Taha, & Khalifa, 2020). 

Since the use of face masks has shown that the spread rate of COVID-19 is reduced, the 

authors have built a new method for recognizing the statuses of wearing face masks among 

people. They have been able to identify three types of face mask-wearing situations. The 

types are right face mask-wearing, improper face mask-wearing, and no face mask-wearing. 

The new hybrid model involved two parts: A- deep and classical machine learning for face 

mask detection. B- transferring learning (ResNet 50) as feature extractor. So, they were 

combined in a new model which is better and more accurate. 

 

 

Figure 35: The Deep Transfer Learning Model (adapted from Loey, Manogaran, Taha, & 

Khalifa, 2020) 
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University of Virginia Biocomplexity Center PatchSim COVID-19 (UVA COVID-19) Model 

UVA COVID-19 model (Figure 36) is an extension for SEIR model, and it is used to support 

both federal departments and the state of Virginia (Price & Propp, 2020). Based on modeling 

team previous experience, they had refrained from making longer-term predictions instead of 

relying on short-term estimates. The model is used in the Projection Selection method, where 

a series of counterfactual scenarios are created based on-the-ground response and surveillance 

data, and the best fits are chosen based on historical results. Also, they identify the future 

potential situations, and serve to establish a fair narrative of previous trajectories, and 

retrospective comparisons are used for measures such as 'cases avoided by doing X.' These 

forecasts are updated weekly based on stakeholder reviews and reporting updates. Moreover, 

we can say that [UVA] Biocomplexity Center PatchSim model is a hybrid model since it 

includes the mobility tracing as a factor in the model (Virginia Department of Health, 2020).

 

Figure 36: UVA Model (adapted from "Virginia-specific model puts coronavirus peak in late 

summer," 2020) 
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Institute for Health Metrics and Evaluation COVID-19 (IHME COVID-19) Model 

IHME COVID-19 model (Figure 37 & 38) has been established based on SEIR model 

in response to demands from the University of Washington School of Medicine and other US 

healthcare systems and state governments to assess whether COVID-19 cases rates would 

exceed their capacity to care for patients (Jewell, Lewnard, & Jewell, 2020). This model uses 

a hybrid modeling approach to produce its forecasts by cooperating both demographic 

forecasts intervention models and agent- based model.  where the intervention of social 

distancing policy is tested through individuals’ phone mobility traces, which is related to 

agent-based modeling approach. The model is updating frequently with new data and 

information, and it forecasts the demand for hospitals care, daily and cumulative cases and 

deaths due to COVID-19, rates of infection and testing, mobility and of social distancing, and 

using masks data on the disease spread, which are grouped by country and state for selected 

locations ("COVID-19 resources," 2020).  

                           

Figure 37: IHME Model ("IHME creates COVID-19 projection tool," 2020) 
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Figure 38: IHME Model – Social Distancing Part (adapted from "IHME creates COVID-19 projection tool," 2020) 
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Massachusetts Institute of Technology COVID-19 (MIT University COVID-19) Model 

MIT has developed a model (Figure 39) that uses data from the Covid-19 pandemic in 

combination with the neural network ("Model quantifies the impact of quarantine measures 

on COVID-19’s spread," 2020.) to assess the effectiveness of quarantine steps and to help 

forecast the distribution of the virus (Gallagher, 2020). Most models used to forecast disease 

transmission follow what is known as the SEIR model, which classes people into 

'susceptible,' 'exposed,' 'infectious,' and 'recovered.' (Dandekar and Barbastais, 2020) 

improved the SEIR model by training a neural network to detect the number of infectious 

individuals that are under quarantine and therefore no longer transmission the infection to 

others.  

 

Figure 39: MIT Model (adapted from Gallagher, 2020) 

Social Media and Pandemics 

Social media can be used to communicate infection diseases outbreak alerts 

efficiently, and are important for public medical knowledge, promote people to follow the 

health behavioral (Collinson & Heffernan, 2014), and provide a strong resource of valid data. 

Infection diseases pose unknown risks to the public who also obtain the information from 
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conventional media and the social media platforms (Freberg, Palenchar, & Veil, 2013). The 

question is how these Infection diseases are represented and conveyed in media format, and 

how that impact their decision making and risk management behavior (Slovic, 2001). Social 

media is considered as an influential factor that provides information for citizens rapidly and 

in a standard time. However, user-generated knowledge that is published on social media 

about infectious diseases is not always exact or useful and may involve rumors, 

misinformation, and theories on conspiracy (Obar & Wildman, 2015). Therefore, The World 

Health Organization calls social media to be more proactive to disseminate health messages 

to journalists, physicians, and the public, especially to counteract misinformation about 

infectious diseases (World Health Organization, 2012).        

In recent outbreaks of infectious diseases, social networking websites have become 

the direct source for people to learn about the disease and share knowledge in real time with 

their families, friends, and neighbors. While researchers are studying more and more the role 

of the social media during pandemics, it is important to study thoroughly how the use of the 

social media can influence affect, understand, and regulate the affective reactions of the 

public (Xue et al.,2020). In addition, theoretical study continues to constrain population 

responses to infectious disease outbreaks.  A study indicated that communicators and 

policymakers can take greater note of the role of emotions during outbreaks of infectious 

diseases (OFOGHI, MANN, & VERSPOOR, 2015). The results were reassuring people that 

they use social media not only to communicate accurate information but also to express their 

emotions on public health crises, and how these crises affect their view and response to a 

crisis (Alexander, 2013). To avoid outbreaks spread, the population should take necessary 

interventions through efficient communications (Guidry, Jin, Orr, Messner, & Meganck, 

2017).  Furthermore, decision-makers use social media to express either their voices and 

directions during a crisis or to interpret and assess people's thoughts on the event in the 
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opposite way. Indeed, recent studies have used social media to provide the views of people, to 

handle them, to examine them, and to gain some insights. For example, sentiment analysis is 

a common method of analysis of social media content to identify the feelings of the public 

regarding a particular subject or event. Moreover, social media and networks contents could 

be translated to useful data for studying and analyzing the disease spread and impacts rates. 

So, we concluded that the integration between social media and disease predictive models 

involves two sides. The first side is using media to provide us with useful data for analysis, 

while the second side is using media to change individual behaviors and increase their 

awareness regarding health issues.  

Social Media, Social Networks, and Models 

In this part, we would discuss studies that incorporated using social media and social 

networks into Epidemiological State models, Statistical Prediction models, Theoretical 

interventions models, Agent-based models, and Hybrid models.  

Epidemiology State Models and Social Media 

Some epidemiology state models were integrated with social media in order to 

improve the outcomes of these models, such as Exposed, Infected, Hospitalized (EIH) model 

which was integrated with social media to study the effects of social media on the model 

output, where social media could motivate public behavior to follow the preventive measures, 

resulting in reducing the infected, exposed, or hospitalized cases numbers (Tchuenche and 

Bauch 2012; Cui et al. 2008; Liu et al. 2007). To explain, population tend to not modify their 

actions as easily in the early stages of the outbreak if the number of infected cases is small, 

only when infected cases numbers are increased, the public behavior change to protect 

themselves (Lu et al. 2017).  According to Figure 40:  e−mI parameter reflects the media 

effects, formula (1 −
I

(m+I)
) represents the human behavior, letter I represents the infected 
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cases numbers, and m represents the media function. As shown in figure, there are two 

different values of media function (m=0.2 on top and m=2 at the bottom) are tested 

(Sooknanan & Comissiong, 2020). Figure 40 with its two parts shows that incorporating 

social media into the infection model impacts public behavior significantly, which leads to 

reduce the disease spread.    

 

 

Figure 40: Infectious Model, Values of Media Function (m=0.2 on top and m=2 at the 

bottom) 

 

Furthermore, the SEI model (Figure 41) was incorporated with different three levels 

of social media coverage (a= media coverage level), where the results have proven that 

increasing media influence can reduce the rates of suspectable and infected cases 

significantly (Lu, Wang, Liu, & Li, 2017) 
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Figure 41: SEI Model: "Effects of Media Impact a on the Value of S(t), I(t) under Different 

Media Impacts” (adapted from Lu, Wang, Liu, & Li, 2017). 

 

In another study by Tchuenche and Bauch (Tchuenche & Bauch, 2012), they have 

developed a SIHR model which incorporates a signal process that catches the media coverage 

effect. They state that the outbreak cannot be stopped by media attention, but It may control 

the spread of the virus. Their results regarding infected and hospitalized cases numbers under 

media coverage are shown in Figure 42, where the model was tested with two conditions: 

without media coverage and with media coverage. Moreover, the results show that media 

coverage can reduce the infected and hospitalized individuals dramatically, which   supports 

what has been shown in figure 38 previously. 
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Figure 42: Numbers of Infected and Hospitalized Individuals under: (a) without Media 

Coverage, and (b) with Media Coverage, there is a Substantial Reduction in the Amount of. 

(adapted from Tchuenche & Bauch, 2012) 

 

 

Statistical Prediction Models and Social Media 

ARIMA model was incorporated with Twitter and google to use their data in 

forecasting process into a recent study (Samaras, García-Barriocanal, & Sicilia, 2020).  The 

aim of this study was specifically to collect evidence as to which data source type leads to 

better results Twitter or Google?  Data was acquired from the Internet on a computer that 

gathers data in real time for 23 weeks.  Influenza data from Google and Twitter have been 

collected in Greece and compared with influenza data from the European Center for Disease 

Prevention and Control.  Data was analyzed with the ARIMA model, which calculated 

estimates on a weekly basis. The results of this study show that outcomes from Twitter are 

significantly better than Google as shown in Figures 43 and 44, where Figure 43 shows that 

Twitter and the Europe Center for Disease Prevention and Control curves are close to each 

other. On the other hand, epidemiological models are not recommended to study the virus 

spread. 
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Figure 43:  Integrating ARIMA Model with Twitter and Validating Outcomes with ECDC 

 

 

Figure 44:  Integrating ARIMA Model with Google and Validating Outcomes with ECDC 
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Table 6: It Shows the Statistical Calculations and Compares them with ECDC Data, 

we can see that there are Differences Between Results of ARIMA Google and ARIMA 

Twitter   

Table 6: Results of ARIMA Google and ARIMA Twitter 

 
 

Theoretical Interventions Models, and Social Media  

In a published study (Raamkumar, Tan, & Wee, 2020) about integrating social 

media into a common health promotion model, which is called Health beliefs model 

(HBM), where data was collected by analyzing the public comments on Facebook 

COVID-19 posts that published from three agencies: the Singapore Health Ministry, the 

Public Health in England (PHE), and Centers for the Prevention of Diseases, 

respectively, then classify them according to the Health beliefs model (HBM). Comments 

made on social distancing were labeled manually by a yes / no flag in all four HBM 

constructs. As we mentioned previously, these four constructs are perceived 

susceptibility, perceived severity, perceived benefits, and perceived barriers (Champion, 

Skinner, and others}. A recurrent unit-based recurring neural network models with a 

selected data set of 16,752 responses are trained and validated for text classification 
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(Figure 45). The model was evaluated with precision and binary cross-entropy losses. For 

checking the results of the MOH case study classification, specificity, sensitivity, and 

balance precision were employed.  

 

Figure 45: A Recurrent Unit-based Recurring Neural Network Model (adapted from 

Raamkumar, Tan, & Wee, 2020) 

 

“Classification of Ministry of Health comments with Health Belief Model 

constructs. The primary x-axis is for the classified comments count for the Health Belief 

Model constructs, while the secondary x-axis is for the total comments count. Sus refers 

to perceived susceptibility, Sev refers to perceived severity, Ben refers to perceived 

benefit, and Bar refers to perceived barrier. Suffixes GT and TC refer to ground truth and 

text classification, respectively”. (Raamkumar, Tan, & Wee, 2020) 

Agent-based Models and Social Networks 

Integrating agent-based models with social networks is commonly used in 

epidemiology field to overcome unrealistic expectations of homogenous blending that is used 

in conventional disease-depletion models on a differential basis (Rahmandad & Sterman, 
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2008). To explain, the transmission of a disease is influenced directly by people's behaviors 

and their social interaction (El-Sayed, Scarborough, Seemann, & Galea, 2012). Therefore, 

focusing on considering different behaviors among individual plays a significant role in 

exploring the disease transmission. Moreover, social networks are not only included in 

models that can spread epidemics, but also allow social factors such as their tendency to 

vaccine and compliance with hygiene, which can influence health outcomes (Will, 

Groeneveld, Frank, & Müller, 2020).  

As we discussed previously, both FM and UT COVID-19 models are agent-based 

models, where they were designed based on the same idea and concept (using phone network 

to trace individuals’ mobility). Therefore, we can say that the integration of the agent-based 

modeling approach and the social networking into these two models was done in the 

beginning when designing these models, and not as happened with other types of models that 

were previously designed and then the features of social media platforms or social networks 

were added to them. In general, these two models are an excellent source for obtaining some 

data that will benefit decision-makers in increasing or decreasing the percentage of 

preventive interventions. 

 

Hybrid Models and Social Media 

Twitter and Vaccination Prediction Model 

In recent years, social media platforms became a significant resource of data and 

analysis. Content within tweets posts provide data to predict public behavior, beliefs, or 

opinions regarding specific events, personalities, or subjects.  In terms of epidemiology, 

Sattar & Arifuzzaman, 2021 used Twitter and machine learning algorithms to capture and 

identify public sentiment toward vaccines based on around 1.2 million tweets collected across 

five weeks of April–May 2021 (Figure 44), They used their data and analysis of trends in 
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population sentiment (Figure 45) to project that around 62.44% and 48% of the US 

population will get at least one dose of vaccine and be fully vaccinated, respectively, by the 

end of July 2021.  The percentage of people with one dose and people fully vaccinated are 

57.53% (164.45 million) and 49.53% (190.98 million) respectively as of July 31 2021 

("United States: Coronavirus pandemic country profile," 2021) indicating that their sentiment 

indicators for one dose were too optimistic while their two dose sentiment was pessimistic.  

These errors may indicate a limitation of Twitter-based sentiment analysis.  Specifically, if 

Twitter usage is related to the ebb and flow of fears and the willingness of individuals to 

socially engage or adopt technology (discussed below) or some combination, then Twitter 

usage data of those fearful or more technology prone today will NOT be consistent with 

population behavior in the future who have different about vaccines vs the virus or do not 

express their fears on Twitter.  Thus in the case of a first dose in a two dose sequence, where 

Sattar & Arifuzzaman over shot first vaccine administration by 5% (62.5 predicted vs 57.5 

outcome), one could theorize the overshoot was due to either vaccination reaching a 

demographic of the population that (a) shunned social engagement and therefore is NOT 

represented on Twitter or (b) feared the vaccination more than the virus or (c) some 

combination.  If social engagement on Twitter is viewed as use of a technology, Twitter 

would become a marginal predictor of population behavior due to large portions of 

population not using Twitter as discussed by Rogers with respect to any technology.  If all 

demographics of people are equally engaged in Twitter, then better search terms would need 

to be designed to accurately identify levels of resistance for the first dose vaccination.   If 

vaccination is itself viewed as a technology, then willingness of people to accept a 

technology is well established by Rogers as shown below in Figure 46.  A similar logic may 

be applied to therapeutics for the vaccine.  Broad availability of effective therapeutics lessens 

the fatality rate and hence lessens fear of the virus among the population. 
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Figure 46: Rogers Technology Adoption Curve (adapted from Rogers, Everett M., Diffusion 

of Innovations, 5th edition, 2003) 

In general, the logical extension of Rogers Curve is the behavior of the first 50% of 

the population will not likely correspond to the behavior of the last 50% with the last 16% 

being quite resistant.  For vaccination vs virus, the logical consequence of applying the 

behavior of the first 50% to the last 50% would be the over shoot in predicted first dose 

vaccination rates, which is what happened (62.5 predicted vs 57.5 outcome).  At the same 

time, if administration of the first dose reduces fears in individuals about the vaccine, then 

behavior would change more positively toward accepting the second dose.  The drop in fear 

would explain the under shoot of second dose vaccinations predictions by Sattar & 

Arifuzzaman (48% predicted vs 49.5% actual).   
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To explain Sattar & Arifuzzaman approach, the extraction step focused on tweets that 

includes vaccination keywords, such as, Pfizer, Johnson and Johnson, Moderna, Sonic, Etc... 

Analysis classifies public opinions about COVID-19 vaccine sentiment as positive, negative, 

or neutral providing sufficient insights to provide projections of vaccination intentions for the 

users in specific location and specific timeframe. These search terms may need to be 

expanded to include additional scales to measure strength of sentiment. In additions, the 

following forecasting models were used to predict the numbers of partially and fully 

vaccinated people, (a) SVM (b) KNN (c) Linear Regression (d) Random Forest (e) M5 model 

tree (f) Gaussian (g) Multilayer Perceptron. Regarding validating the forecasting results to the 

real-world data, the prediction of fully vaccinated models were closed to the real recorded 

data according to two of used machine learning models (SVM & Multilayer Perceptron 

model) as shown in Figures 47 & 48. Moreover, the predictions of partially vaccinated 

numbers were closed to real-world data for three machine learning models (SVM, Linear 

regression, & Multilayer Perceptron model) as shown in Figures 48, 49, and 50.  

 

Figure 47: Sentiment Analysis of Users’ Opinions  

 

Figure 48: Sentiment Analysis Curve of Users’ Opinions during April 2021- May 

2021 
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Figure 49: The Predicted Fully Vaccinated Numbers in US by SVM Model  

 

 

Figure 50: The Predicted Fully Vaccinated Numbers in US by Multilayer Perceptron 

Model 

 

 

Figure 51: The Predicted Partially Vaccinated Numbers in US by SVM Model 
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Figure 52: The Predicted Partially Vaccinated Numbers in US by Linear Regression 

Model 

 

 

Figure 53: The Predicted Partially Vaccinated Numbers in US by Multilayer 

Perceptron Model 

 

Past successful integration of social media into Epidemiological models promises 

future improvements to their efficacy but the field is still in the Innovators stage of the 

Roger’s Technology Adoption Curve Lifecycle (Rogers, 1995) and clearly less defined than 

the science of epidemiology itself (Matthews & Proctor, 2019; Matthews & Proctor, 2021). 

Based on Rogers research, it will take considerable research successes for 

epidemiological models to diffuse from the Innovators stage, where researchers who are 

enthusiastic about new AI and Hybrid Model technologies, to the Early Adopter stage as 



 

53 

Rogers indicates users will want to form a solid opinion of the technology before they vocally 

support it.  Working in favor of further diffusion, social media offers rich real-time data and 

data mining of social media may uncover changes in human behavior more quickly than 

traditional data collection methods.  An obvious challenge will be data validation, though 

even hoaxes promoted on the Internet can result in adverse social behavior in the short term 

(Bond, 2021).  Early identification of behavior -whether based on fact or fiction - will help 

models rapidly adapted to reflect that change and provide information to responsible 

authorities to counter falsehoods and inappropriate behavior.  Similarly early identification of 

behavioral changes may contribution to improved communications, protocols, and programs 

promoted by governments, organizations, societies, or individuals.  In the longer term, 

improved model efficacy can speed the implementation of appropriate and timely 

interventions and reduce the disease spread or delay it. As for the models themselves, the 

extent of validation of epidemiological models using social media may be estimated using 

official sources.   

This review indicates social media may help researchers and modelers increase the 

level of efficacy of Epidemiological State Models, Statistical Predictions Models, Theoretical 

Intervention Models, Agent-Based Models, and Artificial Intelligence And Hybrid Models but 

further work is needed.  Increasing efficacy infers increasing public confidence in 

epidemiological model outputs and related protocols and policies.  Increasing public 

confidence in the models, protocols, and policies infers more stable and compliant behavior 

pattern that if scientifically based will decrease the pandemic spread, promote public health 

protocols, and support vaccine implementation plans.  Gleaning rationale for behavioral 

choices, such as vaccine hesitancy, from public commentary expressed through social media 

channels has yet to be reported in the literature.  This research gap results in a failure to avail 

modelers of quantifiable and articulated social media sources of feedback useful for rapidly 
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modifying or refining pandemic vaccination plans. Based on our review, with the exception 

of vaccination modeling, we conclude that social media platforms have proven their ability 

improve epidemiological state models, statistical predictions models, and theoretical 

intervention models. For the COVID19 complex situation with divergent infection rates, 

inconsistent national and state health practices, and compounding international and 

intranational demographical divergent beliefs and behaviors, we conclude that various forms 

of agent modeling combined with social and traditional media data sourcing may produce the 

most efficacious models and contribute to study vaccination acceptance. Regarding 

vaccination hesitancy, Prediction modeling may be used to analyze Twitter users’ opinions 

and quantify their hesitancy, which provides significant insights to aid decision-makers in 

making policies. 

Given research limitations, we plan to study and analyze Twitter users’ opinions 

about vaccinations after Delta variant came to the world, and other events such as booster 

shot and children vaccination approval.  Outcomes of the research are expected to further add 

insights and hopefully contribute to benchmarks on model efficacy for COVID-19 

vaccination prediction models.  While limited in scope, the opportunity to gather data during 

this crisis cannot be missed as the pandemic will pass.  Once passed and if insights are not 

gathered and documented, then the world will be less prepared when the next pandemic 

strikes.   
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CHAPTER THREE: RESEARCH DESIGN AND METHODOLOGY 

Introduction 

Lack of public confidence in the efficacy of models, effectiveness of protocols, safety of 

vaccines or therapeutics, and appropriateness of policies confounds pandemic spread predictions, 

undermines public health protocols, and frustrates vaccine implementation.  Gleaning rationale for 

behavioral choices, such as vaccine hesitancy, from public commentary expressed through social 

media channels may provide quantifiable and articulated sources of feedback useful for rapidly 

modifying or refining pandemic spread predictions, health protocols, vaccination offerings, and 

policy approaches.  Based on the prior literature review, machine learning and sentiment analysis of 

Twitter-based commentary may  not only provide a snapshot of   vaccine hesitancy among a target 

population but provide trends supporting rationale for those trends greater than that obtainable 

through statistical extrapolation of past vaccination data (Sattar & Arifuzzaman, 2021). In addition, 

sentiment analysis combined with machine learning techniques extracts and analyzes large amounts 

of data in a shorter time with less cost than competing manual surveys or interviews.   

This research proposes to utilize these powerful and novel methodologies within the field of 

epidemiology  with the limited scope of investigating the research questions and hypotheses listed 

below in the body of this chapter.  In general, this research investigates public sentiment related to 

individual: risk toward the virus and vaccines, vaccination state, acquired immunity state, broadly 

available outpatient therapeutics (e.g. Pfizer Novel COVID-19 pill) that are effective against the 

virus, and governmental and corporate policies and vaccine mandates during the current COVID-19 

pandemic in the United States for the period June 1, 2021 to March 31, 2022.  Search terms include 

categorical response factors on sentiment for: risk, variant type, vaccine type, vaccine booster 

availability, acquired and natural immunity, individual vaccine state, pill-form therapeutics, FDA 
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emergency use authorizations, full FDA approvals, and government and corporate policies and 

mandates.  Beyond the scope of this research are the impacts on population behavior arising from 

therapeutics associated with hospital or clinic admissions. Analysis includes descriptive, parametric 

and non-parametric statistical assessment of relationships between factors and possible trends.  

Sentiment outcomes will be qualitatively compared to published polling on public sentiment to 

understand the degree of confidence decision makers may have in this technical approach to 

sentiment analysis. 

Our pre-test of the methodology involved the Delta variant.  As the Delta variant began in 

June 2021 to spread across the United States with higher transmission rates and more severe 

symptoms than earlier COVID-19 virus variants, the numbers of infected and deaths cases increased 

dramatically peaking in Aug 2021.  Our preliminary research investigated effects of fear of the 

Delta variant on population vaccination rates in the United States by analyzing Twitter sentiments 

data and the relationship between the two. Research questions include, have vaccination and virus 

sentiments changed due to the Delta CV19 virus variant spread and its increased risk profile? Tweet 

analysis results discussed below show sufficient insights into users’ attitudes and opinions regarding 

COVID-19 vaccines during Delta cases peak in Aug 2021. In addition, the vaccination rates have 

been increased at the same time compared to June and July 2021 according to CDC data, which 

confirmed that fear of Delta variants has played a significant role in increasing vaccinations.  Thus, 

we concluded that the methodology was effective to explore the relationship between public fears of 

Delta variant spread and the target populations’ intentions towards taking COVID-19 vaccines.  

Moreover, in Oct 2021, Twitter activity regarding vaccinations  increased significantly due 

to the FDA booster shot approval and children vaccination approval. Public opinions expressed on 

Twitter about these approvals appeared to be more neutral than positive or negative.  Greater 
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neutrality or ambivalence, implies less urgency among the population to get booster shots or 

vaccinate their children than seen to get vaccinated during the Delta wave. 

Based on the success of the preliminary research, the methodology may be applied to other 

epidemiological incremental or stretch topics.  Incremental analysis includes sentiment change due 

to changes in CDC vaccination and population state categories, FDA approval status (e.g. 

emergency use vs full approval) of the vaccine, FDA approvals status for booster shots and FDA 

approval status of different age groups among children.   Another significant area of sentiment 

analysis of public commentary that arose in October is the nature and scope of vaccine mandates by 

the Federal government.  Analysis proposed on this topic relates vaccination hesitancy to the Rogers 

Adoption Curve.  As the Rogers Adoption Curve identifies 16% of the overall U.S. population will 

resist adoption of a new technology, given that a new vaccine is a new technology, then one may 

infer 16% of the United States population will resist vaccination without mandates.  This novel 

hypothesis relates to the vaccinated proportion of the FDA emergency use eligible population to the 

long standing 16% resistance level associated with the Rogers curve.  Testing the hypotheses of 

equality of proportionality would entail binomial tests and confidence intervals.  A likely alternative 

hypothesis of inequality between proportions is that vaccine hesitancy arises due to: (1) latent 

laggard tendency identified by Rogers; (2) plus proportion of the population that perceives they 

have derived or natural immunity acquired by surviving the virus; and (3) plus fears about severe 

and long-lasting side effects of vaccines on certain demographics segments of the population.  That 

infers that the proportion of the vaccine eligible U.S. population categorized as a vaccine hesitancy 

segment will exceed the laggard segment sizes observed by Rogers.  Thus we expect to reject the 

null hypothesis of equality.  Lastly, on November 5, 2021, Pfizer announced a Novel COVID-19 

Oral Antiviral Treatment Candidate Reduced Risk of Hospitalization or Death by 89% in Interim 
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Analysis of Phase 2/3 EPIC-HR Study (https://investors.pfizer.com/investor-news/press-release-

details/2021/Pfizers-Novel-COVID-19-Oral-Antiviral-Treatment-Candidate-Reduced-Risk-of-

Hospitalization-or-Death-by-89-in-Interim-Analysis-of-Phase-23-EPIC-HR-Study/default.aspx).  

“Today’s news is a real game-changer in the global efforts to halt the devastation of this pandemic. 

These data suggest that our oral antiviral candidate, if approved or authorized by regulatory 

authorities, has the potential to save patients’ lives, reduce the severity of COVID-19 infections, and 

eliminate up to nine out of ten hospitalizations,” said Albert Bourla, Chairman and Chief Executive 

Officer, Pfizer. A 90% reduction in hospitalization will greatly reduce the fear of the virus and 

hence motivation to get a vaccine. Since Pfizer plans to submit the data as part of its ongoing rolling 

submission to the U.S. FDA for Emergency Use Authorization (EUA) as soon as possible, the likely 

availability of a Pfizer anti-viral pill during the course of this research is likely to result in 

considerable Twitter discussion, changed attitudes about vaccines, changed population behavior, 

and changed policies.  Particular impacts of anti-viral therapeutics associated with hospitalizations 

are not tracked by available CDC data is beyond the scope of this research. 

Fear Impacts and Vaccine Hesitancy 

Essential to understanding incremental research hypotheses is understanding fear factors 

among the target population.  Fear factor can impact the public opinions regarding talking the 

vaccine significantly, where it could increase or decrease the desire to be vaccinated based on 

type of fear.  Thus, we classified fear levels into two types or directions as shown below:  

A- Fear of a Covid-19 variant (A motivation to take the vaccine). 

B- Fear of side effects of a vaccine (A motivation to reject the vaccine). 



 

58 

Hypothesized fear of disease and its effects on accepting Covid 19 vaccine or rejecting it 

are shown below as direct and inverse relationships. Figure 54 shows how the acceptance level 

of the vaccine increases directly with the increase in the fear of transmission of infection or the 

frightening effects of the disease. However, Figure 55 shows how the fear of the side effects of 

taking the vaccine will lead to an increase in the fear of the vaccine and thus increase the 

resistance to it in a direct relationship and inverse relationship with the acceptance of 

vaccination. Fear rules:  

A- As fear of disease increases, vaccine acceptance increases. 

C- As fear of vaccine side effects increase, vaccine acceptance decreases 

 

Figure 54: Fears and Vaccinations Relationships  

 

 

During the period June  1 to Oct 31 2021, virus fear and vaccine acceptance were 

inversely related to one another with acceptance being based on decisions of an individual.  

Complicating vaccination status is the expiration of the vaccine effectiveness and the need for 

booster shots to maintain vaccine effectiveness.  On September 22, 2021, the FDA approved 

boosters in the United States (https://www.fda.gov/news-events/press-announcements/fda-

authorizes-booster-dose-pfizer-biontech-covid-19-vaccine-certain-populations). 

https://www.fda.gov/news-events/press-announcements/fda-authorizes-booster-dose-pfizer-biontech-covid-19-vaccine-certain-populations
https://www.fda.gov/news-events/press-announcements/fda-authorizes-booster-dose-pfizer-biontech-covid-19-vaccine-certain-populations


 

59 

On November 4, 2021 the Biden administration announced vaccination mandate policies.  

(https://www.whitehouse.gov/briefing-room/statements-releases/2021/11/04/fact-sheet-

biden-administration-announces-details-of-two-major-vaccination-policies/). This obviously 

disrupts prior relationship and trends between vaccine fear and vaccine acceptance.  Further, on 

November 5, 2021, Pfizer announced their “game changing” oral antiviral (pill) that reduces the 

threat of hospitalization or death by 89%.  Over the course of this research and should the 

emergency use be approved by the FDA, the likelihood of a drop in fear of the virus may result 

in a significant change toward vaccinations and boosters.  

 

 

https://www.whitehouse.gov/briefing-room/statements-releases/2021/11/04/fact-sheet-biden-administration-announces-details-of-two-major-vaccination-policies/
https://www.whitehouse.gov/briefing-room/statements-releases/2021/11/04/fact-sheet-biden-administration-announces-details-of-two-major-vaccination-policies/
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Vaccination Topics, Extraction, and Validation 

To extract the users tweets from Twitter regarding the vaccination topics during the selected timeframe, preliminary research 

went through the steps shown in Figure 57.  Thus, the basic events and topics that happened during the timeframe were investigated 

sentimentally by analyzing Twitter users’ opinions. Then, the Twitter outcomes were compared to our vaccination model and CDC 

vaccination datasets to associate and confirm the effectiveness and efficiency of the selected methodology. 

 

  

 

 

 

 

 

 

Figure 55: Vaccination Topics, Extraction, and Validation 
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Preliminary Research findings 

In order to measure the vaccine hesitancy and if the Delta variant emergent affect the vaccination 

intentions in the USA, the tweets about Pfizer, Moderna, and Johnson and Johnson were 

extracted, preprocessed, and analyzed. So, we aimed to find out if the sentiment about these 

vaccines have been changed during the timeframe (June 1st, 2021 – Oct 31 2021) due to Delta 

variant emergent, increasing in cases and deaths rates, in addition COVID-19 vaccines and 

booster doses approvals. Thus, the preliminary results were able to answer to the following 

research question: 

RQ: Is vaccine sentiment data extracted from Twitter data sensitive to change in Vaccine 

fear level among the public? 

HA0: Positive vaccine sentiment data extracted from Twitter data is not sensitive to 

change in vaccine hesitancy level among the public for the time period snapshots June, August, 

October 2021 

HA1: Positive vaccine sentiment data extracted from Twitter data is sensitive to change 

in vaccine hesitancy level among the public For the time period snapshots June, August, October 

2021 

HB0: Negative vaccine sentiment data extracted from Twitter data is not sensitive to 

change in vaccine hesitancy level among the public for the time period snapshots June, August, 

October 2021 

HB1: Negative vaccine sentiment data extracted from Twitter data is sensitive to change in 

vaccine hesitancy level among the public for the time period snapshots June, August, October, 

October 2021



 

62 

Methodology Selected 

 

Posted tweets on Twitter reflect people' opinions, ideas, and attitudes towards a particular 

event by exploring the degrees of acceptance, rejection, or neutrality. In addition, some 

techniques are used to analyze comments on social media platforms such as Twitter in order to 

get some insights into public behaviors. Moreover, a previous proposed study (Sattar & 

Arifuzzaman, 2021) was able to measure vaccination hesitancy, so it shown the public intentions 

to be vaccinated in different countries during April- May 2021. The study was conducted by 

extracting Twitter users’ tweets and analyzing them by using sentiment analysis approach. In 

addition, it aimed to forecasting vaccinations future trends in the United Sates for June -July 

2021 by supervised machine learning forecasting model.  However, it was conducted before 

Delta variants has spread widely in the States and the last events regarding booster shots and 

children vaccination approvals. Thus, in our study, we aimed to study effects of Delta variants on 

the vaccination rates, where Delta Variants has increased the fears levels which affect the public 

opinions about importance of vaccination. In addition, the booster shot, and children vaccination 

have been approved recently which resulted in higher public attentions on Twitter platform.  

Therefore, the quantitative research methodology was selected to do our study and find the 

answers for the research questions.  
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Figure 56: Preliminary experiment methodology 
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Data Collection  

In our study, we used two sources for data collection process: where we used Twitter 

platform to extract users’ tweets and analyze them to measure the public opinions regarding the 

selected topics. In addition, we used CDC vaccination database and included into our work to 

confirm the outcomes of Twitter.  

 

Twitter Data 

 Users’ tweets were extracted through Tweepy library tool which is a useful tool that 

extracted a large number of tweets in short time. Also, the extraction techniques focus on the 

tweets that include the queries keywords that we are interested in. Furthermore, the location of 

Twitter users and time frame were included into extraction process. In this work, we focused on 

the United States users and extracted their tweets about the selected vaccination topics and 

keywords.  To explain, we aimed to study and analyze the vaccine hesitancy levels for three 

COVID-19 vaccines in the United States (Pfizer, Johnson & Johnson, and Moderna), and 

selected time frame from June 2021 to Oct 2021. Furthermore, the selected timeframe includes 

some events, such as Delta variant spread, booster shots approvals, and children vaccination 

approvals. Thus, the extracted data was useful to study and analyze the public opinions about the 

vaccination during the events.  

 

CDC Data 

To compare and confirm our results, we used CDC vaccination dataset. Thus, the Twitter 

users’ attentions and positive sentiments changes have shown significant raise in Aug and Oct 
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2021, where CDC dataset has shown significant increase in vaccination numbers in Aug 2021 

too. In addition, following the booster shots approval in Oct 2021, the booster vaccinations 

numbers have shown significant numbers. Also, the children vaccination approval has pulled a 

lot of public attentions, and the coming period will show the vaccination data. 

 

To build extract and analyze our own Twitter dataset, we used the extraction, 

preprocessing and classifying steps based on (Rustam et al., 2021) work, which is shown in 

Table 7 and Figure 55, where the dataset was built by using Tweepy library, Vader library, 

Jupyter Notebook and Python programming language.  

  

Table 7: Twitter Data Extraction Steps 

 

Twitter Data Extraction Step 

Since Twitter platform is considered as the most common social media community 

among other platforms (Ruz et al., 2020), we used it to build our own dataset. Moreover, we also 

Step Description 
Vaccination tweets 

extraction 

Use of the technique and the Tweepy library to extract tweets from the 

Twitter API relevant to vaccinations ( Mushtaq et al., 2022;  Morshed 

et al., 2021) 

Tweets preprocessing Use of the technique to reduce tweet content into sentiment components 

(Ramachandran & Parvathi, 2019; Aljedaani et al., 2020;Monkey, 

2020; Rsutam et al, 2021) 

 Sentiment analysis Use of the   (Devika et al., 2016; Yadav & Vishwakarma, 2019; Dang 

et al., 2020;  Pipis 2022) technique and the Vader library to assign a  

sentiment score to each relevant tweet. 
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aspired to use specific time scales of notable events that occurred from the releasing the vaccines 

to the present day in order to study how these events affected people's desire to be vaccinated. 

Moreover, we planned to use root tweets for our analysis, so no retweets included.  In order to 

extract the tweets regarding our subject, we worked on the word queries which lead machine 

learning model to extract tweets that include these words. For our work, some words were used, 

such as COVID-19, vaccination, vaccines, fear, vaccine acceptance, hesitancy, side effects, and 

interventions. We used Tweepy library to extract the tweets that includes the words and queries 

(Morshed et al., 2021), where “Tweepy is an open-source Python package that gives you a very 

convenient way to access the Twitter API with Python” (Python, 2019). To give a clear idea 

about Twitter API, where API stands for Application Programming Interface. Twitter API “lets 

you read and write Twitter data. Thus, you can use it to compose tweets, read profiles, and 

access your followers' data and a high volume of tweets on particular subjects in specific 

locations” (Fontanella, 2021).  

 

Timeframe and Queries Keywords of Preliminary Research 

 We specified a timeframe (1st June 2021 – 31st Oct 2021) to extract tweets that include 

the queries keywords from the United States in order to study and analyze effects of fears of 

Delta variants spread on vaccination rates. In addition, we aimed to investigate opinions about 

the booster shots and children vaccina approvals events. Thus, we focused on extracting sample 

of tweets that includes the keywords that are shown in Table 8.  
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Table 8: Timeframe and Queries Keywords 

Vaccine Keywords Timeframe 

Pfizer-BioNTech vaccine Pfizer, Pfizer-BioNTech, 

BioNTechpfizer 

June 2021 – 31Oct 2021  

Johnson & Johnson's 

COVID-19 Vaccine 

Johnson & Johnson, Johnson 

and Johnson, 

Janssen, Janssen 

June 2021 – 31 Oct 2021  

 

Moderna vaccine Moderna, Moderna_tx, 

Moderna-NIAID, NIAID, 

NIAID-Moderna 

June 2021 – 31 Oct 2021  

 

Twitter Data Preprocessing Step 

In this step, the tweets were preprocessed since is an important step, which affect the 

learning models accuracy significantly. Thus, the stopwords, usernames, link punctuations and 

numeric values from tweets had been removed. (Rsutam et al, 2021) 

 

Twitter Data Analysis Process Step 

For our dataset analysis process, sentiment analysis was used in order to find out the 

sentiment scores for the users’ opinions, where the scores are classified into positives, negatives, 

and neutral. Sentiment Analysis is used to measure and analyze people’s opinions, beliefs, 

emotions and classify them into positives or negatives, or neutrals. To give a clear idea about the 

sentiment analysis, it is “also referred to as opinion mining, is an approach to natural language 
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processing (NLP) that identifies the emotional tone behind a body of text. This is a popular way 

for organizations to determine and categorize opinions about a product, service, or idea. To 

execute the sentiment analysis and quantify the sentiment scores, the text-blob library tool 

(toolkit) was used, where Vader library is “a Python (2 and 3) library for processing textual data. 

It provides a simple API for diving into common natural language processing (NLP) tasks such 

as part-of-speech tagging, noun phrase extraction, sentiment analysis, classification, translation, 

and more” ("TextBlob: Simplified text processing — TextBlob 0.16.0 documentation," 2021).   

 For extraction experiment, we extracted the tweets that are related to the keywords and 

three vaccines, where table 9 shows the no of tweets for each vaccine. 

Table 9: No of extracted tweets 

 

 

  

 

  

 

 

 Second experiment was run to do the sentiment analysis by Vader tool, where Vader uses 

the lexicon-based approach to execute the sentiment analysis. The sentiment analysis results are 

shown in the following Figures 59, 60, & 61.  

 

 

 

Vaccine No of extracted Tweets 

Pfizer-BioNTech vaccine 29017 

Johnson & Johnson’s COVID-19 Vaccine 12885 

Moderna vaccine 17632 
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Vaccine Vader sentiments 
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Moderna 

 

 

 

Figure 57: Sentiments Classifications Numbers 
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Vaccine Vader sentiments percentages 
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Figure 58: Sentiments Classifications Percentage 
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Vader sentiments analysis curve 
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Figure 59: Sentiment Analysis Curves 
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The Figures above show the results for sentiment experiments of three vaccines, where 

the tweets classified by Vader library tool, so the tweets were classified into positives, negatives, 

or neutrals, where the figures show the numbers and percentages of classified tweets form June 

2021 to Oct 2021. Based on the extracted tweets, the numbers of tweets show that Pfizer and 

Moderna have higher attentions among Twitter users, while Johnson and Johnson had the lowest 

attention due to the accidents events and hold in April 2021 which resulted in lack of confidence 

among public.  According to Figures 59 and 60, the total counted tweets have shown that more 

neutrals opinions than positives and negatives during the whole timeframe, but Figure 61 shows 

that the sentiment change curve has been changed to positive significantly for both Pfizer and 

Moderna vaccine in Aug 2021 which confirm the effectiveness of delta variant fears on reducing 

vaccine hesitancy.   Even though Johnson and Johnson vaccine got the lowest attention by 

Twitter users, the highest opinions are positives, where the experts indicated that the vaccine is 

acceptable among a segment of population because it is only one dose “One and done “(Weiland, 

2021). In addition, the most public opinions about Pfizer and Moderna were turned to neutrals in 

Oct 2021 because the topics were different from Aug 2021. To explain, the discussed topics in 

Aug 2021 were about Delta variants and vaccinations, while the recent topics in Oct 2021 were 

about booster shots and children vaccination. Moreover, Johnson and Johnson vaccine got a high 

public attention too in Oct 2021, where the majority opinions are neutrals. Comparing between 

Johnson and Johnson topics in Aug 2021 and Oct 2021, there is a huge difference that explains 

people had not focused on this vaccine in Aug 2021, where they had focused on it in Oct 2021. 

To explain, lack of confidence in Johnson and Johnson caused people to not be focused on the 

vaccine topics during the Delta variant spread peak, while they have shown some interest 

recently regarding it due to the booster shot approval.  
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Discussion 

 

The preliminary research studied effects of Delta variant spread on vaccination hesitancy 

levels in the United States. Fear is considered the most factor that affect the vaccine hesitancy, 

where significant segments of population are afraid of side effects of vaccines. However, the fear 

and concerns directions were changed after Delta variants has started spreading in the United 

States with a high transmission rates and cases (Figures 62). So, the fear levels of Delta variants 

infection and its harsh symptoms became higher than the fear levels of vaccines side effects.  

According to CDC vaccination dataset, the vaccination rates have been increased significantly in 

Aug 2021 compared to June and July 2021 as shown in Figures 63 and 64. In addition, the rates 

of taking the second dose have been increased too in parallel at the same time as shown in Figure 

65, which indicates to the effectiveness of Delta variant fears on increasing the vaccination 

intentions of taking the vaccine among the public in US.  

In order to associate Delta variant fears with affect public opinions about vaccination, we 

used the sentiment analysis approach to A) Find out if the public attentions and fears of Delta 

variant have been shown significantly on Twitter or not? B) Study the public opinions about 

booster and children vaccination topics.  Thus, we built our datasets about the three vaccines in 

the United States (Pfizer, Johnson and Johnson, Moderna), where the users’ tweets extracted and 

analyzed. The datasets were preprocessed and classified sentimentally, where Vader library tool 

was selected to do the sentiment analysis. 

To investigate the vaccination hesitancy levels, we analyzed the public sentiments change 

over the selected time frame.  Thus, we have shown how the variants has increased levels of 

fears of infections, which resulted in reducing the vaccine hesitancy among population around 

USA.  Figure 63 shows the results of sentiments analysis curves (June to Oct 2021) which more 
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public attentions regarding vaccinations in Aug 2021. Furthermore, Delta variant spread was 

started by June 2021 and caused higher rates of cases during Aug 2021 (Figure 61) which 

motivated public to be vaccinated better than getting infected of Delta variants with harsher 

symptoms than COVID-19. So, the sentiment analysis experiments show that there was a raise in 

public attention about the vaccines in Aug 2021 and more positives opinions than previous 

months.  

In addition, there was increasing in the real vaccination rates at same period based on 

CDC data (Figure62,  63, and 64). Moreover, there was a huge increase again in the number of 

posted tweets during Oct 2021, where some events have been discussing recently as boosters 

shot and children vaccination approval news.  Figure 65 shows a significant increasing in 

boosters doses vaccination rates after the FDA approval according to CDC data. So, these two 

topics got a lot of public attentions with high levels of neutral opinions, so the hesitancy levels 

regarding the booster shot and vaccinating the children still high and need to be reduced through 

providing the right interventions and promotion policies.   
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Figure 60: Number of Infected Cases in USA (adapted from CDC, Oct 2021) 

 

 

Figure 61: Cumulative Account of Partially Vaccinated People (adapted from CDC, Oct 2021) 
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Figure 62: Partially Vaccinated Numbers (adapted from CDC, Oct 2021) 

 

Figure 63: Fully Vaccinated Numbers (adapted from CDC, Oct 2021) 
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Figure 64: Number of People who Took Booster Shot (adapted from CDC, Oct 2021) 

 

Preliminary results contributions and limitations 

During the first experiment, we prove that vaccination tweets and sentiment analysis is useful 

approach to measure the vaccine hesitancy in the USA. In addition, CDC dataset and KFF survey 

indicated that changes in the vaccination inoculation has been increased dramatically due to the 

fears of virus, in addition to COVID-19 vaccine approvals in Aug 2021, Pfizer booster dose 

approvals in Sep 2021, and Moderna booster approvals in Oct 2021. However, no statistical 

analysis had been conducted to test the correlations or regressions between tweets and CDC 

vaccination inoculation dataset. In a word, preliminary results measured the vaccination 

hesitancy and public opinions about the vaccines in the USA, but it didn’t test the level of 

statistical association between CDC vaccination datasets and Twitter datasets. Thus, we could 

not build any predictive models that can be used to predict daily vaccination inoculation in the 

USA.     
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Proposed Research: 

 

Fears of vaccine side effects prevented a significant segment from taking the COVID-19 

vaccines, but once the delta variant spread among the population with a high-risk level, the fears 

direction has been started to change. Thus, we extracted a dataset that includes tweets about the 

three vaccines with focusing on the United States users and conducted the sentiment analysis to 

measure vaccine hesitancy among the nation.  

To investigate the effects of Delta variant spread on the vaccination rates in the  

United States, and the public opinions about the booster shots children vaccination approvals, we 

proposed this research methodology that involves measuring the twitter users’ sentiments about 

these events and compare it with CDC vaccinations datasets.  Thus, the proposed research seeks 

to utilize Twitter data and CDC datasets to study and analyze the fear effects due to Delta variant 

spread on the vaccination rates in the United States, in addition, it seeks to measure and 

understand the public opinions about the recent events, such as taking booster shot and children 

vaccination.  We used the supervised machine learning and sentiment analysis approach to 

conduct our experiments, where these techniques can extract and analyze large amount of data at 

less time. Therefore, we were able to collect tweets that includes public opinions about three 

available vaccines for COVID-19 in order to measure the vaccine hesitancy for each vaccine 

separately. Thus, the results can be used by decision makers to take the right action.   Our 

experiments result show that the vaccine hesitancy decreased correlated with Delta variant 

spread and cases peak in Aug 2021, which provided significant evidence about public fear 

impacts on opinions and intentions. Also, CDC vaccination data for Aug – Sep 2021 confirmed 

that the vaccination rates have been increased significantly.  Then, the users’ attentions about 
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vaccine and tweets numbers went down again in Sep 2021, where they have been increased again 

in Oct 2021 as a result of the boosters shot and children vaccine approvals topics, where the 

majority still neutrals.    The initial results for the time frame (June 2021- Oct 2021) prove that 

the extracted sentiments data from Twitter has shown significant positives correlations between 

the CDC vaccination rates datasets and the numbers of tweets, public attentions toward vaccines 

topics, and approval news. 

 

Based on the motivating preliminary results and addition to Emerging Omicron variant 

after the experiments, we aimed to go deeper and investigate vaccine hesitancy and fears of virus 

during three deferent phases (Baseline stage, Delta variant stage, and Omicron stage), where 

each stage had different factors, such as virus severity risk, new vaccination approvals over time, 

or governmental intervention, which can affect the intentions toward vaccination inoculation in 

the USA. In addition, taking into consideration the vaccination status (Partially, fully, or fully 

vaccinated with the first booster). In addition, quantifying the correlations and regressions 

between selected variables can provide sufficient understanding for the nature and strength of 

relationships, and building a regression predictive model for the daily inoculations in the USA. 

Linking between public sentiments about the vaccination and fears of virus infection can 

be used to build regression sentiment-based vaccination prediction model to predict daily 

inoculation in the USA. As we aimed the first, second, and the booster dose into our research, 

three predictive models will be proposed.  
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The developed Methodology  

 

The preliminary methodology was useful to measure the vaccine hesitancy of three 

vaccines in the United States of America during the selected timeframe June 1st, 2021 - Oct 31, 

2021. Also, it was useful to explain the significant raise into the CDC datasets (Cases, deaths, 

and vaccination inoculations) during Delta variant phase which was a strong indicator for a 

positive correlation between CDC datasets or on CDC datasets versus Twitter data.  However, no 

statical analysis were performed at that time to show the level of correlations and regression 

between them. In addition, the CDC VOC’s (variant of concern) announcements were not 

included during the preliminary experiment as we focused only on the timeframe that covers 

June 1st 2021 to Oct 31st 2021, so we didn’t include the exact dates for CDC announcements 

about Delta variant emergent in the USA as variant of concern, and also the study performed 

before Omicron variant came to the world.  Therefore, we aimed to improve the preliminary 

methodology in order to include additional factors, such as ( CDC VOC’s and virus different 

stages:- Baseline stage, Delta variant stage, and Omicron stage), also, to conduct  the required 

statistical analysis for both Twitter and CDC datasets to quantify associations levels between 

different stages of virus spread, virus severity, virus case level, virus death level, positive and 

negative sentiments about vaccines, and the first, second, and booster dose inoculation in the 

USA.   Moreover, the improved methodology has been utilized to design and build sentiment-

based daily vaccination prediction models in the USA.  
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Figure 65: The Developed Research Methodology 
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To illustrate, this research used these three resources of datasets to investigate hypothesized 

relationships between health threats of virus variants, vaccination hesitancy and public opinions 

during the five selected phases. CDC datasets and KFF survey results are published online. This 

research created the Twitter dataset by extracted data from Tweets using by a crawler and each 

Tweet analyzed for sentiment  as discussed below. 

The data and analysis methodology involves determining the level and nature of association of 

Twitter sentiment data with CDC COVID-19 data from June 1, 2022, to March 31, 2022.  Within 

that time frame, data collection focuses on five phases – Baseline, Delta variant emergence, 

Adult Booster shot approval, Children Booster shot approval, and Omicron variant emergence 

(Figure 2).  Analysis focuses on determining the level and nature of association of Twitter 

sentiment about the change in virus variants dominance, availability of vaccinations, change in 

government mandates on vaccinations, and responses in CDC data.  Vaccination types - Pfizer, 

Moderna, Johnson and Johnson – complicate the analysis.    

 
Figure 66: Research timeframe and phases 

 

Figure 3 shows the relationships between the datasets used to conduct the research and 

analysis. CDC datasets provide the number of infection cases, deaths, and vaccinated. Twitter 

datasets provide positive, negative, and neutral tweets about the vaccines. In addition, KFF 

vaccinations survey outputs provided 3rd party analysis of the public opinions about the 

vaccination and how the selected phases affected their opinions and intentions.   
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The proposed research able to:  

1- Quantify the nature of association and regressions between COVID-19 cases, deaths, 

vaccination positive and negative tweets, and the first, second, booster dose. 

2-  Understanding the effects of vaccine hesitancy, fears of Delta variant, and fears of 

Omicron variant infection on the vaccination inoculations in the USA.  

3- Exploring the effects of vaccination approvals on the vaccination inoculations 

4- Quantifying lag times between VOC’s, FDA vaccines approvals, and significant raise 

in vaccinations inoculation. 

 

5-  Building a sentiment-based regression predictive model to predict first, second, and 

booster dose daily vaccination inoculation in the USA  

In order to meet the research goals, we the following hypotheses have been 

investigated:  

 

H1: Virus Daily Change Rate Level Correlated directly to Daily Change Rate Level of 

Vaccine Inoculations?  

H2: Virus Daily Case Level (numbers) Correlated directly to Daily Vaccine Inoculation 

Level   ? 

H3: Virus Daily Death RATE Level Correlated directly to Daily Vaccine Inoculation 

RATE Level   ? 

H4: Virus Daily Death Level (numbers) Correlated directly to Daily Vaccine Inoculation 

Level   ? 

H5a: Positive Sentiment tweets extracted from Twitter are correlated directly to Vaccine 

Inoculation Level    
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H5b: Negative Sentiment tweets extracted from Twitter are correlated inversely to 

Vaccine Inoculation Level    

H6a: Positive Sentiment tweets extracted from Twitter are sensitive change to COVID-

19 vaccines approvals in the USA    

H6b: Negative Sentiment tweets extracted from Twitter are sensitive to change COVID-

19 vaccines approvals in the USA   

H7a: Positive Sentiment tweets extracted from Twitter are sensitive change FDA VOC in 

the USA    

H7b: Positive Sentiment tweets extracted from Twitter are sensitive change FDA VOC in 

the USA    

 

H8a: Proportion of the population vaccinated relate to the laggard proportion identified 

in Rogers’ Technology Adoption curve  

H8b: Proportion of the population vaccinated does not relate to the laggard proportion 

identified in Rogers’ Technology Adoption curve 

 

H9: The proposed methodology and analyzed datasets are useful to predict daily 

vaccination inoculation in the USA?  
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CHAPTER FOUR: DATA, RESULTS, AND ANALYSIS 

Analyzing public sentiments towards COVID-19 vaccines and actual vaccinations in the 

USA 

 

Abstract:  

This chapter addresses data and analysis of hypotheses listed in chapter 3, and findings 

include Delta and Omicron variants' effects on the vaccination inoculations in the USA and how 

both variants affected public opinions toward vaccinations. Research uses extracted Twitter 

datasets, CDC datasets, and Kaiser Family Foundation (KFF) Vaccination Monitor surveys to 

investigate levels of effect of selected factors. Delta and Omicron variants exhibit higher 

infection numbers compared to the SARS-CoV-2 infection numbers, but the symptoms of the 

Delta variant are harsher than both SARS-CoV-2 and Omicron variant. Thus, vaccine hesitancy 

became lower than fears of Delta variant infection which motivated high numbers of people to 

get vaccinated.     In addition, government interventions and vaccination mandates were strong 

factors that led to increased vaccination inoculation.  Previously, (Daghriri, Proctor, & 

Matthews, 2022) found that the delta variant affected people’s opinions regarding vaccination. 

Therefore, this research aimed to study the effects of FDA booster and kids’ vaccination 

approvals and Omicron variant spread on the vaccination numbers.    Chapter four is broken into 

four major subsections: (1) Overview of Improved Methodology; (2) CDC Datasets; (3) Twitter 

Datasets; (4) Statistical Analysis of Datasets. (5) Building predictive vaccination models. 
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Prior and Related Research Findings  

Previous review and public sentiment analysis on vaccination hesitancy discussed in 

Chapters 1 and 2 indicates that significant segments of the U.S. population are hesitant to 

vaccinate due to their fears of the side effects of the vaccine or because they don’t trust the 

vaccine’s effectiveness. However, once the Delta variant emerged with higher infection rates and 

higher health risks than prior variants, fear of the infection rose above the fear of the vaccine.  

Additionally, the probability of suffering severe vaccine side effects was lower than probability 

of the severe health risks associated with of the Delta variant. During the Delta variant phase, 

Kaiser Family Foundation (KFF) Vaccination Monitor surveys focused on public opinions about 

the Delta variant and the publics intent to get vaccinated.  KFF surveys indicated  39% of the 

survey participants took their the first dose due to their fear of Delta variant infection. Instead of 

conducting timely, costly, and often backward-looking surveys, this research aims to extract in 

real-time sentiment from Twitter Tweets and build on and expand prior Twitter sentiment 

research.  Advantage of the Twitter Tweet extraction methodology is not only its real-time nature 

but also the ability to obtain large amounts of data in a short time about the topic of interest. This 

research also investigates hypotheses about the relationships between the health threat associated 

with a variant and vaccine uptake by the US population.  Relationships investigated include 

correlations between cases, deaths, and vaccination numbers and vaccination uptake rate changes 

and lags during the Delta and initial Omicron period.  Since the level of fear is the dominate 

factor that increases or decreases vaccination hesitancy, this research classified the impact of fear 

on vaccine acceptance in two directions: 
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A- Fear of vaccine side effects, which results in increasing vaccine hesitancy. 

B- Fear of Virus infection, which results in decreasing vaccine hesitancy and increasing 

vaccine acceptance or uptake.   

The Figure 1 below shows the fear directions and their impact on vaccine acceptance or uptake. 

 

Figure 67: Fears and Vaccinations Relationships  

As fear of disease increases, vaccine acceptance or uptake increases, however, as fear of 

vaccine side effects increase, vaccine acceptance or uptake decreases. 

 

Overview of Data and Analysis Methodology 

The research methodology used three primary datasets for the US population. 

A- CDC datasets. 

B- Twitter users’ opinions sentiment analysis. 

C- Published national surveys that measure vaccination hesitancy and effective factors on 

personal vaccination intentions 
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CDC Datasets 

CDC total vaccination status, numbers, and vaccine coverage of the US population are shown in 

Table 10 below. 

                                                                Table 10 (Sep 5, 2022) 

 

 

  

 

 

 

 

CDC data in Figures 4 (https://www.washingtonpost.com/nation/2022/02/23/covid-

omicron-variant-live-updates/) and 5 

(https://www.cdc.gov/mmwr/volumes/71/wr/mm7112e2.htm) below indicates that no 

vaccination level can stop a virus infection, but vaccination level does impact the level of cases 

and the level of hospitalizations.  Additionally, the figures indicate that vaccination levels were 

significantly less effective against the Omicron variant than the Delta variant In preventing 

catching the virus or preventing hospitalization.    

 

CDC data in Figure 6 overlays the number of people in the US from June 1, 2021 to 

March 31, 2022 that each day contracted the virus (cases) onto the number of people becoming 

for the first time partially vaccinated (single dose), becoming for the first time fully vaccinated 

(second dose), and becoming for the first time fully vaccinated with the first booster. First does 

includes all Pfizer, Moderna, and J&J vaccinations.  Second dose includes just Pfizer and 

Vaccinated status Numbers Vaccine Coverage 

At least one dose 262,908,216 79.2% 

Fully vaccinated 224,113,439 67.5% 

First booster dose 108,806,974 48.5% 

https://www.washingtonpost.com/nation/2022/02/23/covid-omicron-variant-live-updates/
https://www.washingtonpost.com/nation/2022/02/23/covid-omicron-variant-live-updates/
https://www.cdc.gov/mmwr/volumes/71/wr/mm7112e2.htm
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Moderna vaccinations.  The case rate rise in July is in response to the proliferation of the Delta 

virus among the population.  The large peak in case numbers beginning in December 

corresponds to the emergence of the Omicron variant. 

CDC data in Figure 7 overlays daily deaths over the same vaccination data for the same 

time period. The first peak in death rate corresponds to the Delta variant.  The second and larger 

peak corresponds to the Omicron variant. 

 

 

Figure 68: Cases Versus Vaccination Numbers  
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Figure 69: Deaths Versus Vaccination Numbers 
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Table 11 : Total Monthly Numbers from CDC Datasets 

 
  Cases Deaths First dose  Second dose Booster 

Jun-2021 401271.00 9875.00 10063257.00 16835054.00 1756.00 

Jul-2021 1144425.00 8772.00 9097556.00 7671358.00 1063.00 

Aug-2021 4072822.00 30517.00 13849793.00 9356855.00 1324863.00 

Sep-2021 4235747.00 53642.00 8891718.00 10210194.00 3407604.00 

Oct-2021 2606552.00 45790.00 6853697.00 6695895.00 15736220.00 

Nov-2021 2475824.00 30442.00 11610852.00 4674034.00 25443906.00 

Dec-2021 5196793.00 36672.00 10305507.00 7966150.00 28094517.00 

Jan-2022 20522153.00 62474.00 7934445.00 4947161.00 17537769.00 

Feb-2022 4790507.00 64589.00 3021887.00 3279393.00 5456703.00 

Mar-2022 1009461.00 33249.00 1625723.00 1608513.00 2657155.00 

 

 

 

Table 12: Monthly Change of Rate in CDC Datasets 

 Month Cases Deaths First dose  Second dose Booster 

Jun-2021 - - - - - 

Jul-2021 185% -11% -10% -54% -39% 

Aug-2021 256% 248% 52% 22% 124534% 

Sep-2021 4% 76% -36% 9% 157% 

Oct-2021 -38% -15% -23% -34% 362% 

Nov-2021 -5% -34% 69% -30% 62% 

Dec-2021 110% 20% -11% 70% 10% 

Jan-2022 295% 70% -23% -38% -38% 

Feb-2022 -77% 3% -62% -34% -69% 

Mar-2022 -79% -49% -46% -51% -51% 
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Twitter Datasets 

 

The research methodology extracted US population tweets to understand public opinions 

about common three vaccines in the US and during the three selected phases. Users’ tweets were 

extracted through Tweepy library tool which is a useful tool that extracted a large number of 

tweets in short time. Also, the extraction techniques focus on the tweets that include the queries 

keywords that this research are interested in, also, the extracted tweets with their classifications 

are attached in the appendixes section. Furthermore, the location of Twitter users and time frame 

were included into extraction process. The methodology analyzes the vaccine hesitancy levels 

for three COVID-19 vaccines in the United States (Pfizer, Johnson & Johnson, and Moderna), 

and selected time frame from June 2021 to 31st March 2022 as proposed in chapter 3. 

Furthermore, the selected timeframe includes some events, such as Delta variant spread, booster 

shots approvals, kids’ vaccination approvals, and Omicron variant emergence. Furthermore, 

sentiment analysis analyzes the content and direction of each tweet (Positive, neutral, or negative 

text). As stated previously, the research builds on prior research by investigating effects of Delta 

variant spread on people intentions towards COVID-19 vaccination, and does Delta variant with 

its harsh symptoms increased public fears or not? As seen in the timeline above, June 2021 

constitutes a baseline with Delta variant cases spreading highly at the beginning of July and 

caused high numbers of infection and deaths numbers. To elaborate, sufficient segments of 

population preferred to keep following social distancing and health interventions rather than 

taking the vaccines that could cause side effects, or be unsafe, or ineffective. However, fears of 

Delta variant became higher than fears of vaccine so that selecting the lower level of fears was 

the only available option for the those who hesitated to get vaccinated.  
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This research extracted three datasets that include the tweets for the selected vaccines, topics, 

keywords, and timeframe that this research proposed in chapter 3. Tweets are distributed below 

in Table 2 below: 

Pfizer, followed by Moderna then Johnson & Johnson, has the most extracted tweets, 

which is more evidence of Pfizer popularity in the USA, and also as demonstrated by the CDC 

datasets. 

For analyzing the tweets and finding out the opinions’ direction and polarity, sentiment 

analysis was used in order to find out the sentiment scores of the users’ opinions, where the 

scores are classified into positives, negatives, and neutrals. Therefore, quantifying the sentiments 

over the timeframe was a useful tool to show if there was a significant response to the four 

events or not. The following Figures 8,9, & 10 show the sentiment analysis results of the three 

datasets respectively over the whole timeframe (June 1st, 2021 – March 31st, 2022).  

 

Twitter Data Extraction, Preprocessing, and Sentiment Analysis: 

Data extraction from Twitter focused on United States users and their tweets about 

inoculation and vaccine hesitancy for the three COVID-19 vaccine types available (Pfizer, 

Johnson & Johnson, and Moderna) from June 2021 to March 2022. Users’ tweets were extracted 

from the Twitter feed using technique demonstrated by (Pokharel, 2020; Morshed, et al. 2021) 

and the Tweepy library tool.  “Tweepy is an open-source Python package that gives you a very 

convenient way to access the Twitter Application Programming Interface (API) with Python” 

(Python, 2019) in order to compose tweets, read profiles, and access your followers' data and a 

high volume of tweets on particular subjects in specific locations” (Fontanella, 2021).  
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Table 13: Twitter Data Extraction, Processing, and Sentiment analyzing Steps 

 

 

Step Description 
Vaccination tweets 

extraction 

Use of the technique and the Tweepy library to extract tweets from the Twitter API 

relevant to vaccinations (Mushtaq et al., 2022;  Morshed et al., 2021). Using the 

vaccines keywords to extract the tweets that include then by using Tweepy library. 

In addition, using the geolocation features to extract tweets that were posted by the 

USA users. Public tweets extracted from Tweeter via its Application Programming 

Interface (API) was used for the experiment. 

Tweets preprocessing the Retweets and URLs were removed in the preprocessing step, emojis were 

converted into words, and the dataset was cleaned. We also removed stop words 

and performed tokenization. Stemming and lemmatization were done as well. 

(Ramachandran & Parvathi, 2019; Aljedaani et al., 2020;Monkey, 2020; Rsutam et 

al, 2021) 

 Sentiment analysis Using Vader library to classify tweets into positive, neutral, and negatives. (Devika 

et al., 2016; Yadav & Vishwakarma, 2019; Dang et al., 2020;  Pipis 2022) where 

tweets classifications are defined as following: 

- Positive tweets represent the opinions that are favor and support accepting the 

vaccines. 

- Negative tweets represent the opinions that are against and hesitating and 

rejecting the vaccines. 

- Neutral tweets represent the opinions that are not favor or against the vaccines, 

where tweets can’t represent positive neither negative opinions. 



 

101 

Table 14: Timeframe and Queries Keywords (Extended study)  

Vaccine Keywords Timeframe 

Pfizer-BioNTech vaccine Pfizer, Pfizer-BioNTech, BioNTechpfizer 

COVID-19 vaccine, vaccination, dose 

June 2021 – 31March 2022  

Johnson & Johnson's 

COVID-19 Vaccine 

Johnson & Johnson, Johnson and 

Johnson, Janssen, Janssen, COVID-19 

vaccine, vaccination, dose 

June 2021 – 31March 2022  

Moderna vaccine Moderna, Moderna_tx, Moderna-NIAID, 

NIAID, NIAID-Moderna COVID-19 

vaccine, vaccination, dose 

June 2021 – 31March 2022  

 

Tweet Sentiment Analysis identified 326,124 tweets that indicated a positive viewpoint 

of vaccines and 163,716 tweets that indicated a negative viewpoint toward vaccines over the 

time frame identified in the Figure, where: 

Positive tweets represent the opinions that are favor and support accepting the vaccines. 

Negative tweets represent the opinions that are against and hesitating and rejecting the vaccines. 

 

Figure 70: Total Positive and Negative Tweets of the three Vaccines 
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Statistical Analysis of Datasets 

In this part, this research have analyzed both recorded datasets from CDC and extracted 

tweets from Twitter. Figures compare tweets to both cases, deaths, and vaccinated numbers 

separately.  

In this part, this research conducted our statical analysis and hypotheses testing in order 

to find out the answers to our research questions. Thus, this research selected separated segments 

of datasets that represent the different four events. In order to quantify the correlations between 

the selected variables for each research question, this research used PEARSON test. Also, this 

research conducted the regression analysis on the chosen segments to investigate the 

relationships and find out if the regressions statistically significant or not? 

 

CDC vaccination datasets visualization and analysis  

 

 The following three Figures below show the First, Second, and Booster dose inoculations in 

the USA, in addition to virus cases spread and daily change rates in vaccination.  

 

: Red points indicate to the inflection points when the data starts to change dramatically from low 

levels to high levels. 

 

: Green points indicate to top points and when the data starts to change dramatically from high 

levels to the low levels.
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First, second, and booster dose Figures 

 

Figure 71: Virus cases numbers Vs Vaccine First dose 

 

 
                          

Figure 72: Virus cases numbers Vs Vaccine Second dose 
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Figure 73: Virus cases numbers Vs Vaccine Booster dose 

 

7-day moving average have been taken for the positive and negative tweets in order to smooth 

them and to be consistent with CDC datasets that we used into our research (7-day moving 

average). Also, the positive and negative tweets were collected together (Pfizer, Moderna, and 

Johnson & Johnson) as same as CDC vaccination inoculation datasets that represent the total 

daily number of COVID-19 vaccines together. So, the correlations and analysis have been 

performed on datasets with the same structure and features. 
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Figure 74: Positive and Negative Tweets toward First dose vaccines and vaccinations over time 

 

Visual analysis of Figures 8 also appears to show and analysis confirms a large positive 

correlation (0.870) between positive tweets and Second Dose inoculations during the Omicron 

phase.  Paradoxically, a large correlation of 0.892 was observed between negative tweets and 

Second Dose inoculations during the Omicron phase.  
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Figure 75: Positive and Negative Tweets toward Second dose vaccines and vaccinations over 

time 

Visual analysis of Figures 9 also appears to show and analysis confirms a large positive 

correlation between positive tweets and booster dose inoculations during a portion of the Delta 

phase (0.768) and across the entire Omicron phase (0.868).  Paradoxically, a large correlation of 

0.845 was observed between negative tweets and Booster inoculations during the Omicron 

phase.  
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Figure 76: Positive and Negative Tweets toward Booster dose vaccines and vaccinations over 

time 
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Motivating factors included 

into the timeframe 

 

Concerns factors (CF) 

- Vaccines side effects and holds.  

- June 2021: Delta variant emergence. 

- Increasing in Virus and Deaths cases.  

- Dec 2021: Omicron variant emergence. 

 

Approvals factors (AF) 

- Aug 2021: FDA Approves First COVID-19 Vaccine 

- Sep 2021: Pfizer Booster approval  

- Sep 2021: Moderna Booster approval  

- Oct 2021: Children dose approval 

 

Interventions factors (IF) 

- Nov 2021: Biden mandate plan 

- Dec 2021: Reducing Incubation period 

 

Figure 77: Motivating factors that affect vaccination levels 
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109 

Results Analysis 

 

 

Figure 78: Correlations Analysis diagram 
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A. Cases Vs Vaccinations inoculations correlations analysis 

 

Hypothesis: Virus Daily Case Level (numbers) Correlated to Daily Vaccine Inoculation Level    

 

Table 15: Virus Daily Case Level Versus Daily Vaccine Inoculation Level    
 

First Dose Second Dose Booster 

Baseline Phase Accept: Large Correlation (0.766) Reject: Small Inverse Correlation 

(-0.42) 

N/A5 

Delta Phase Accept: Medium Correlation 

(0.375) 

Reject: Negligible Correlation 

(0.082) 

Reject: Large Inverse Correlation 

(-0.7069) 

Omicron Phase Accept: Medium Correlation 

(0.465) 

Accept: Small Correlation (0.19) Accept: Medium Correlation 

(0.323) 

Overall Reject: Negligible Correlation 

(0.010)1 

Reject: Small Inverse Correlation 

(-0.221)3 

Accept: Small Correlation (0.154) 

Notable 

exceptions: 

Delta First Period: Reject: Large 

Inverse Correlation (-0.872)2 

Delta Second Period: Accept: 

Large Correlation (0.943)4 

Delta Phase had several periods 

of either large inverse or direct 

correlations 6 

 

Conclusion: Case Level is NOT by itself a RELIABLE indicator of Inoculations. 
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Factors and Correlations interpretations:  

 

1: The overall correlation (0.010) negligible as there are huge inverse and direct correlations 

between virus case and first dose inoculations over the timeframe. 

2: A huge negative correlation during Delta first period (-0.872) since the virus cases increased 

and vaccine inculcation decreased due to the fears of vaccine side effects. 

3: The overall correlation is small inverse (-0.22) as the whole-time frame includes direct and 

inverse correlations, but more inverse.  

4: A large direct correlation (0.943) as the large raised in the virus cases motivated people to get 

the second dose, in addition to COVID-19 vaccine approval which was additional motivation 

factor that increased trust in vaccine safety and effectiveness. 

5: Booster wasn’t approved at that time.  

6: Large Inverse and direct correlations due to Pfizer booster dose approval in Sep 2021 and 

Moderna booster dose in Oct 2021, which results in huge increase periods and declining periods 

for both types of doses.  
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Hypothesis: Virus Daily Change Rate Level Correlated to Daily Change Rate Level of Vaccine Inoculations  

 
Table 16: Virus Daily Change Rate Level Versus Daily Change Rate Level of Vaccine Inoculations 

 
 

First Dose Second Dose Booster 

Baseline Phase Accept: Small Correlation (0.241) Accept: Medium Inverse Correlation 

(0.316) 
N/A

2

 

Delta Phase Accept: Medium Correlation 

(0.427) 

Accept: Small Correlation (0.129) Reject: Negligible Correlation 

(0.0556)
 3

 

Omicron Phase Accept: Medium Correlation 

(0.438) 

Accept: Small Correlation (0.28) Accept: Medium Correlation 

(0.396) 

Overall Accept: Medium Correlation 

(0.436) 

Accept: Small Correlation (0.221) Accept: Small Correlation (0.205) 

Notable 

exceptions: 

None Delta Second Period: Reject: Medium 

Inverse Correlation (-0.454)
1

 

 

 

Conclusion: With two exceptions, Virus Daily Change Rate is by itself a Small to Medium indicator of Inoculation Daily Change 

Rate 
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Factors and Correlations interpretations:  

 

1:  The inverse correlation (-0.454) due to the overall declining in the virus cases daily change 

rate and overall raising in second dose vaccine inoculation daily change rate. 

2: Booster dose wasn’t approved at that time. 

3: Negligible correlation (0.0556) as the multiple raising and declining in the same and inverse 

directions, which results in weak correlations.   
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B. Deaths Vs Vaccinations inoculations correlations analysis 

 

Hypothesis: Virus Daily Death Level (numbers) Correlated to Daily Vaccine Inoculation Level    

 

Table 17 : Virus Daily Death Level (numbers) Versus Daily Vaccine Inoculation Level 

Phase First Dose Second Dose Booster 

Baseline Phase Accept: Large Correlation 

(0.886) 

Reject: Small Inverse Correlation 

(-0.167) 
N/A

3

 

Delta Phase Reject: Small Inverse 

Correlation (-0.151) 

Reject: Negligible Correlation 

(0.011) 

Reject: Large Inverse Correlation  

(-0.866) 

Omicron Phase Reject: Negligible Correlation 

(-0.067) 

Reject: Negligible Correlation 

(0.190) 

Reject: Small Inverse Correlation  

(-0.165) 

Overall Reject: Medium Inverse 

Correlation (-0.360) 

Reject: Medium Inverse 

Correlation (-0.369) 

Reject: Medium Inverse Correlation 

(-0.351) 

Notable 

exceptions: 

Delta First & Second Period: 

Accept: Large Correlation 

(0.781 & 0.928)
1

 

Delta Second & Third Period: 

Accept: Large Correlation (0.992 

& 0.883)
2

 

Delta Phase Second, Fourth, & Sixth 

periods had large correlations 

(0.978, 0.662, 0.868)
3

 

 

Conclusion: With several Period and three Phase exceptions, Virus Daily Deaths are a Small, Medium, and Large INVERSE 

indicator of Inoculations. The notion that HIGHER LEVELS of DEATHS would infer LOWER LEVELS of inoculation is counter 

intuitive UNLESS one considers the demographics of the population available for vaccination.  That is to say, where are we on the 

Johnson Technology Adoption Curve?
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Factors and Correlations interpretations:  

 

1:  The large direct correlation (0.781 & 0.928) due to the declining in virus deaths and the first 

dose vaccine inoculation during the Delta first period, and the raising in the virus deaths and first 

dose vaccine inoculation during the Delta second period respectively. 

 2- The large direct correlation (0.781 & 0.928) due to the raising in virus deaths and the second 

dose vaccine inoculation during the Delta second period, then the declining in the virus deaths 

and second dose vaccine inoculation during the Delta third period respectively. 

3- The declining in virus deaths and booster dose inoculation during these notable three periods 

results in large direct correlations (0.978, 0.662, 0.868). 
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Hypothesis: Virus Daily Death RATE Level Correlated to Daily Vaccine Inoculation RATE Level   

 

Table 18: Virus Daily Death RATE Level Versus Daily Vaccine Inoculation RATE Level 
 

First Dose Second Dose Booster 

Baseline Phase Accept: Medium Correlation 

(0.382) 

Accept: Large Correlation (0.551) 
N/A

3

 

Delta Phase Accept: Small Correlation 

(0.271) 

Accept: Medium Correlation 

(0.355) 

Accept: Small Correlation (0.188) 

Omicron Phase Accept: Medium Correlation 

(0.388) 

Accept: Medium Correlation 

(0.473) 

Accept: Medium Correlation (0.421) 

Overall Accept: Medium Correlation 

(0.346) 

Accept: Medium Correlation 

(0.404) 

Accept: Small Correlation (0.217) 

Notable 

exceptions: 

Delta Second Period: Reject: 

Negligible Correlation (-0.058)
1

 

Delta Second Period: Reject: 

Negligible Correlation (0.097)
2

 

Delta Phase Fourth periods had 

NEGLIGIBLE correlations (-0.014)
3 

 

 

Conclusion: With three exceptions, Virus Daily Death Change Rate is by itself a Small, Medium, &Large indicator of Inoculation 

Daily Death Change Rate 
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C. Tweets Vs Vaccination inoculations correlations analysis 

  

Hypothesis: Daily Vaccine Tweets Level (numbers) Correlated to Daily Vaccine Inoculation Level    

 

 Table 19: Daily Vaccine Tweets Level (numbers) Versus Daily Vaccine Inoculation Level

 

First Dose Second Dose Booster 

Phase Positive tweets Negative tweets Positive tweets Negative tweets Positive tweets Negative tweets 

Baseline Phase Accept: Medium 

Correlation 0.3472 

Reject: Negligible 

Correlation -0.1838 

Accept: Medium 

Correlation 0.4407 

Accept: Large 

Correlation 0.5359 

N/A N/A 

Delta Phase Accept: Large 

Correlation 0.6071 

Accept: Medium 

Correlation 0.3582 

Reject: Negligible 

Correlation -0.0375 

Reject: Negligible 

Correlation 0.0226 

Accept: Large 

Correlation 0.7681 

Accept: Medium 

Correlation 0.4413 

Omicron Phase Accept: Large 

Correlation 0.8043 

Accept: Large 

Correlation 0.7936 

Accept: Large 

Correlation 0.8696 

Accept: Large 

Correlation 0.8918 

Accept: Large 

Correlation 0.8684 

Accept: Large 

Correlation 0.8452 

Overall Accept: Large 

Correlation 0.6738 

Accept: Large 

Correlation 0.6181 

Accept: small 

Correlation 0.25430 

Accept: Medium 

Correlation 0.4615 

Accept: Large 

Correlation 0.8416 

Accept: Large 

Correlation 0.7384 
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Conclusion: Overall positive and negative tweets have a large direct correlation with 

vaccination. To explain, the positive and negative tweets increase around VOC's and vaccine 

approvals events as a public reaction and opinions with taking into consideration the possible the 

difference between proportions of positive and negatives that could increase or decrease based 

on the event. Moreover, tweets declining during next periods after that event, where Twitter 

users’ reaction attentions decline toward that recent event. On the other hand, CDC vaccination 

data show that vaccination inoculation increased significantly after approvals or VOC’s except 

the Delta variant announcement (VOC’s) that took time to do impact, where people started 

taking that VOC seriously after the dramatic raising in the virus cases which became larger times 

than baseline cases. So, fears of virus infection motivated a lot of people to get their first dose.    
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Hypothesis: Daily Vaccine Tweets Level Correlated to Daily Vaccine Inoculation Level 

 
Table 20: Daily Vaccine Tweets Level Versus Daily Vaccine Inoculation Level 

 
Conclusion: Overall daily change rate in positive and negative tweets have a medium direct correlation with daily change in booster 

dose vaccination as booster approval events and large booster dose inoculation that recorded during the timeframe, while the first and 

dose inoculation rates have medium correlation with positive tweets, but weak correlation with daily change rate in negative tweets.    

 

 

 

First Dose Second Dose Booster 

Phase Positive tweets Negative tweets Positive tweets Negative tweets Positive tweets Negative tweets 

Baseline 

Phase 

Accept: Large 

Correlation 0.5114 

Reject: Large Inverse 

Correlation -0.8221 

Reject: Small Inverse 

Correlation -0.1082 

Accept: Large 

Correlation 0.7380 

N/A N/A 

Delta Phase Accept: Medium 

Correlation 0.3887 

Reject: Small Inverse 

Correlation -0.1253 

Accept: Small 

Correlation 0.1751 

Accept: Small 

Correlation 0.1216 

Accept: Medium 

Correlation 0.4068 

Reject: Negligible 

Correlation 0.0219 

Omicron 

Phase 

Accept: Medium 

Correlation 0.4291 

Accept: Small 

Correlation 0.2167 

Accept: Medium 

Correlation 0.4808 

Accept: Medium 

Correlation 0.3183 

Accept: Large 

Correlation 0.5043 

Accept: Small 

Correlation 0.2831 

Overall Accept: Medium 

Correlation 0.4033 

Reject: Negligible 

Correlation 0.0111 

Accept: Medium 

Correlation 0.3068 

Accept: Small 

Correlation 0.2236 

Accept: Medium 

Correlation 0.9989 

Accept: Medium 

Correlation 0.5027 
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Johnson Technology Adoption Curve Numbers 

 
Figure 79: Johnson Technology Adoption Curve 

 

Innovators (2.5% of employees) - These employees are innovators, the first individuals 

to adopt new technologies in the workplace, they are not afraid to take risks and usually test out 

different technologies in their personal lives as well.  

 

Early Adopters (13.5% of employees) - These employees are not as risk averse as the 

innovators; however they care about progressing their career, building a reputation in the 

company and making an impact. Usually on higher end in the company hierarchy and want to 

invest in whatever it takes to help the company succeed. 

 

Early Majority (34% of employees) - Typically middle and line managers these 

employees tend to be slower in the adoption process, they will usually wait and see how a new 

technology is faring and if the higher ups are adopting it before committing to using it 

themselves. 
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Late Majority (34% of employees) - These individuals are usually very skeptical about 

innovations and new technologies, and will only adopt it after they see a large percentage of the 

company  using it. They are usually older in age and have been at the company for a long period 

of time. 

 

Laggards (16% of Employees) - These individuals tend to be advanced in age, typically 

focused on traditions vs. innovations. These Individuals tend to use new technology in one of 

two scenarios: 

There is no other alternative for them to get the job done without using technology 

They are being forced to use the technology and would be penalized for not using it.  
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Table 21: Total vaccinated population 

 

 

 

 

 

Table 22: Vaccination Coverage 

Vaccinated status May 31, 2021 Nov 30, 2021 March 31, 2022 To reach late 

majority 

To reach 

laggards 

At least one dose 52.30% 70.50% 77.10% 6.9% 22.9% 

Fully vaccinated 44.20% 61% 66.10% 17.10% 33.9% 

First booster dose 0% 18.50% 45.70% 38.3% 54.3% 

 

Table 22 shows the vaccination coverage during the baseline, delta variant, and Omicron variant phase. Also, it shows the difference 

between three vaccination doses coverages and criteria of Johnson Technology Adoption. 

 

 

Vaccinated status May 31, 2021 Nov 30, 2021 March 31, 2022 

At least one dose 173,531,874 227,829,618 256,144,043 

Fully vaccinated 146,813,131 199,245,522 219,319,838 

First booster dose 9,318 34,920,883 100,230,127 
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Figure 80:  Vaccination Coverage (Delta variant Versus Omicron variant phase) 

 

Three Figures compare the vaccination coverage during Delta phase and Omicron phase, where 

the first and second dose inoculation were higher during Delta phase, However, booster dose 

vaccination achieved higher vaccination coverage during Omicron phase. In another word, 

beside intentions to take the booster dose, a huge segment of partially and fully who got 

vaccinated during Delta phase, they got their booster dose during Omicron phase. 
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Modeling and Predicting Daily vaccination inoculation   

 

 The Modeling and Analysis involved the fore mentioned linear regressions to predict first 

dose, second dose, and booster vaccination inoculation.  Independent values included a constant 

associated with dose and variables associated with phase, daily virus cases, daily deaths, daily 

positive tweets, and daily negative tweets on day x.  Respective regression equations produced 

first dose vaccination inoculation for day x+1, second dose vaccination inoculation for day x + 1, 

or Booster dose vaccination inoculation for day x + 1.  Figure below explains the model structure 

(Predictive sentiment-based model).  
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Figure 81: Predictive sentiment-based model

First dose Interval  

Second dose Interval 
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Virus fears levels 
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Regression analysis  

 

 

Figure 82: First dose prediction model. P values are significant for all five x variables 
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Figure 83: Second dose prediction model. 

 

P values are significant for all three variables except the positive tweets and deaths variables 

which have been removed as their P. values were not significant.  
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Figure 84: Booster dose prediction model. 

 

P values are significant for all five variables 

 

 

Note: The dissertation and its findings are summarized in Appendix B, which is formatted as a 

journal paper and is being considered for publication. 
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Research Methodology and Public Health Field 

 

The research methodology can be used by heath care professional and decision maker to 

explore the public behavior and their attentions towards vaccinations or interventions during 

infectious disease pandemics.  Understanding the relationship between the public behavior 

response levels and the different waves or different virus risky level during pandemics can be 

used to predict public attentions towards healthy practices, such as vaccination, wearing masks, 

and following social distancing interventions. Into this research, social media factors were 

integrated with CDC datasets to perform strong analysis and behavior modeling that predict 

public response to multiple events. According to the conducted analysis, there is a relationship 

between CDC announcements and public response to them. As these announcements spread 

through social media in short time, they can motivate population to react quick to them. 

However, announcements are not enough factor to motivate people to take vaccine, where these 

announcements should involve other factors, such as nature of virus risk, infection rates, and 

deaths rates. In other word, announcement can make a significant impact if the virus is risky, so 

people are going to take the vaccine. Otherwise, people don’t response significantly to the 

announcement. Announcements are more effective based on the virus risk level, where fears of 

infections or deaths are the most effective factors that push people to take the vaccines. Even 

though the Omicron variant wasn’t danger as much as Delta variant, people reacted immediately 

to the Omicron VOC announcement on Nov 30, 2022, because of their past experience with 

Delta variant wave in the past. For Delta VOC announcement on June 15, 2022, they reacted 

lately to the announcement after the variant caused a lot of deaths so their experience with Delta 

variant wave pushed them to react immediately to Omicron VOC and take the vaccine.  



 

130 

In another word, for the pandemics and vaccination modeling, many factors need to be involved 

as CDC VOC, virus risk level, vaccine acceptance and hesitancy levels, vaccine approvals, and 

governmental interventions. As all these factors generate a great modeling for the human 

behavioral and intentions toward vaccination under different waves of pandemic.
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APPENDIX A: MODELS AND SOCIAL MEDIA  
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MODELS AND SOCIAL MEDIA   

  

Table 23 shows a summary of models that we reviewed, and it demonstrates their details 

with clarifying which modes were integrated with social media and social networks.  

 

1.Model: model name. 

 

2.Type: What is the model type? 

 

3.Goal: What are the model outcomes?  

 

4.Integrating with social media or social networks: Was model Calibrated with social 

media (SM) or social networks (NW).  

 

5.Platform/application? (The involved platform or application in the model, Facebook, 

Twitter, Google, …. etc.    

 

6.How social media and social networks was used? Was it added to model to study its 

effect on the public behaviors, or as a data source (Data Mining)?    

 

Therefore, all these questions and details would be explained in table 23, so that 

comparison and understanding the differences among the discussed models becomes 

easier and clearer.  
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The below table summarizes the presented models in the literature review:  

*Social media: SM 

*Social Network: SN 

Table 23: Models Summary 

 

Reference 

 

 

 

How was SM 

or SN used? 

 

 

Platform/ 

Application

? 

 

Calibrated 

with SM or 

SN? 

Goal / Predict No of: 

 

Type Model 

 

(Cooper, Mondal, & 

Antonopoulos, 2020) 

----- ----- No Susceptible cases 

Infected cases 

Recovered cases 

Epidemiological 

State models 

SIR 

(Vargas-De-León, 2011) ----- ----- No Susceptible cases 

infected cases 

Epidemiological 

State models 

SIS 

(Fernández-Villaverde & Jones, 

2020) 

----- ----- No Susceptible cases 

infected cases 

Recovered cases 

Deaths cases 

Epidemiological 

State models 

SIRD 

(Seyoum Desta, 2019) ----- ----- No Susceptible cases 

infected cases 

Recovered cases 

Epidemiological 

State models 

MSIR 

(Lu, Wang, Liu, & Li, 2017) Use media to 

modify public 

behavior 

Media 

awareness 

programs 

Yes/ SM Exposed cases 

Infected cases 

Recovered cases 

Epidemiological 

State models 

SEI 

(Lekone & Finkenstädt, 2006) ----- ----- No Susceptible cases 

Exposed cases 

infected cases 

Recovered cases 

Epidemiological 

State models 

SEIR 

(Fan, Li, & Wang, 2001) ----- ----- No Susceptible cases 

Exposed cases 

infected cases 

Epidemiological 

State models 

SEIS 
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(Zhou & Li) ----- ----- No Susceptible cases 

Exposed cases 

infected cases 

Recovered cases 

Epidemiological 

State models 

MSEIR 

 

 

 

(Mosavi, 2020) ----- ----- No Susceptible cases 

Exposed cases 

infected cases 

Recovered cases 

Epidemiological 

State models 

MSEIRS 

(Bin, Sun, & Chen, C. C. 2019) ----- ----- No Susceptible cases 

Latent cases 

Infected cases 

Recovered cases 

Deaths cases 

Epidemiological 

State models 

SLIRDS 

(Greenhalgh et al., 2015) Use media to 

modify public 

behavior 

Media 

awareness 

programs 

Yes/ SM Exposed cases 

Infected cases 

Hospitalized cases 

Epidemiological 

State models 

EIH 

(Tchuenche & Bauch, 2012) Use media to 

modify public 

behavior 

Media 

awareness 

programs 

Yes/ SM Susceptible cases 

Infected cases 

Hospitalized cases 

Recovered cases 

Epidemiological 

State models 

SIHR 

(Ghostine et al., 2021) ----- ----- No 

 

Susceptible cases 

Exposed cases 

Infected cases 

Quarantined cases 

Recovered cases 

Vaccinated cases 

Statistical 

prediction model 

SEIQRDV.F 

. (COVIDAnalytics, 2020) ----- ----- No Infected cases 

Hospitalized cases 

Deaths cases 

Statistical 

prediction model 

DELPHI 

(Samaras, García-Barriocanal, & 

Sicilia, 2020) 

Data source Google & 

Twitter 

Yes/ SM Infected cases 

 

Statistical 

prediction model 

ARIMA 

(Loey, Manogaran, Taha, & 

Khalifa, 2020) 

----- ----- No Infected cases 

Death cases 

Predicting time of pandemic peak 

Statistical 

prediction model 

LANL 

COFFEF 
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(Garibaldi et al., 2020) ----- ----- No “Forecast how likely a patient’s 

disease is to worsen while being 

treated in a hospital and at what 

point in their care that might 

happen” 

Statistical 

prediction model 

JHU COVID-

19 

(Champion, Skinner, and others, 

2008) 

Data source 

 

Facebook Yes/ SM Analyzing and predicting 

population intentions to follow 

healthy interventions 

 

Theoretical 

Interventions 

model 

HBM 

(Ajzen, 1991) ----- ----- No Predicting the human behavior 

and intentions toward the healthy 

interventions  

Theoretical 

Interventions 

model 

TPB 

(Okuhara, Okada, & Kiuchi, 2020) ----- ----- No Explaining how individuals are 

motivated to act to protect 

themselves. 

Theoretical 

Interventions 

model 

PMT 

(Epstein et al., 2008) ----- ----- No Modeling disease dynamics and 

fear as two interacting contagion 

processes. 

Agent-based 

model 

CCDFD 

(Daghriri & Ozmen, 2021) ----- ----- No Testing effects of different levels 

of social distancing policies on 

the diseases spread. 

Agent-based 

model 

SD 

(Kerr et al., 2020 .) ----- ----- No Projecting epidemic trends. 

Exploring the intervention 

scenarios. 

Estimating the resources needs. 

Agent-based 

model 

COVASIM 

Li & Giabbanelli Giabbanelli, 

2021) 

----- ----- No “Effectiveness of a nationwide 

vaccine campaign in response to 

different vaccine efficacies, the 

willingness of the population to 

be vaccinated, and the daily 

vaccine capacity under two 

different federal plans. 

Studying the interactions between 

nonpharmaceutical interventions 

and vaccines. 

Agent-based 

model 

COVASIM & 

Vaccination 
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(Frias-Martinez, Williamson, & 

Frias-Martinez, 2011) , 

Data source Mobile 

phones-Calls 

Yes/ SN Tracing users' phones and their 

mobility through network to study 

effects of government’ 

interventions on virus spread 

Agent-based 

model 

FM 

(Silva et al., 2020). ----- ----- No Simulating the epidemiological 

and economic impacts of social 

distancing policies 

Agent-based 

model 

COVID-19 

agent-based 

simulation 

(COVID-

ABS) 

(Woody et al., 2020) Data source 

 

Mobile 

phones-GPS 

traces 

Yes/ SN Tracing users' phones and their 

mobility through GPS to study 

effects of government’ 

interventions on virus spread 

Agent-based 

model 

UT COVID-19 

-SD 

(Vyklyuk et al., 2021) ----- ----- No Susceptible cases 

Infected cases 

Recovered cases 

Quarantine impact 

Transport restrictions impact 

Effectiveness of the interventions 

on the disease spread 

Multiagent-based 

model 

DMAS-SIR 

model 

(Giattino, 2020) ----- ----- No Infected cases 

Deaths cases 

Hybrid model YYG 

(Loey, Manogaran, Taha, & 

Khalifa, 2020) 

----- ----- No Processing population’ images to 

detect who wear mask or who not 

Hybrid model DTL 

(Price & Propp, 2020) 

 

UVA COVID-19 model, 2021)) 

 

Data source Mobile 

GPS-phones 

Yes/ SN Effectiveness of the interventions 

on the disease spread. 

No of required beds and at 

hospitals and care units. 

Trace users' phones and their 

mobility through GPS. 

Hybrid model UVA COVID-

19 

(Institute for Health Metrics and 

Evaluation, 2020) 

Data source Mobile 

phones-GPS 

Yes/ SN Effectiveness of the interventions 

on the disease spread. 

Tracing users' phones and their 

mobility through GPS 

Hybrid model IHME 

COVID-19 
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(Gallagher, 2020) ----- ----- No Infected cases 

Deaths cases 

No of required beds and at 

hospitals and care units 

Hybrid model MIT 

University 

COVID-19 

Sattar & Arifuzzaman, 2021 Data source Twitter/User

s’ tweets 

Yes/ SM Studying and analyzing twitter 

users’ emotions, beliefs, and 

opinions about vaccination    

Hybrid model  Model TWV 
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APPENDIX B: MANUSCRIPT 
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Abstract: Sentiment analysis of social media for predicting behavior during a 

pandemic is seminal in nature. As an applied contribution, we present sentiment-

based regression models for predicting United States COVID19 first dose, second 

dose, and booster daily inoculations from June 1 2021 to March 31, 2022. Models 

merge independent variables representing fear of the virus and vaccine hesitancy.  

Large correlations exceeding 77% and 84% for first dose and booster dose models 

inspire confidence in the merger of the independent variables.  Death count as a 

traditional measure of fear is a lagging indicator of inoculations while Twitter 

positive and negative tweets are strong predictors of inoculations.  Thus the use of 

sentiment analysis for predicting inoculations is strongly supported with 

administrative events being catalysts for tweets. Non-inclusion in the second dose 

regression model of data occurring before the June 1, 2021 timeframe appear to limit 

second dose model results to only achieving moderate correlation exceeding 53%.  

Limiting tweet collection to geolocated tweets does not encompass the entire U.S. 

Twitter population.  None the less, results from Kaiser Family Foundation (KFF) 

surveys appear to generally support the regression factors common to the First Dose 

and Booster Dose regression models and their results.  

 

 

                                    Introduction 

In the early stages of the COVID19 pandemic, online contributors put 

forth predictions through various social media channels with one of the 

more infamous declarations of an “eradication” phase ending the pandemic 

Citation: Daghriri, T.; Proctor, M.; 

Matthews, S.; Bashiri, A.H. 

Modeling Behavior and VACCINE 

HESITANCY using TWITTER-

derived US population SENTIMENT 

during the COVID19 Pandemic to 

Predict daily VACCINATION 

INOCULATIONs. Vaccines 2023, 9, x. 

https://doi.org/10.3390/xxxxx 

Academic Editor(s):  

Received: date 

Accepted: date 

Published: date 

Publisher’s Note: MDPI stays 

neutral with regard to jurisdictional 

claims in published maps and 

institutional affiliations. 

 

Copyright: © 2023 by the authors. 

Submitted for possible open access 

publication under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 

mailto:tdaghriri@knights.ucf.edu


 

140 

in June 2021 (Forrester, 2020).  Like so many other commentaries through 

social media during the pandemic, the prediction proved wrong despite its 

widespread distribution and possible influence on the public. 

From June 2011 to April 2019 researchers including Piedrahita-Valdés 

et al. 2021 studied the controversial influence on public sentiment and 

behavior generated through global social media channels with the 

particular focus on vaccine hesitancy.  Other researchers in Korea (Shim et 

al., 2021), Turkey (Küçükali et al., 2022), India (SV et al., 2022), and United 

States of America (Ruz et al., 2020,; Daghriri, Proctor, and Matthews, 2022) 

expanded social media sentiment analysis, in particular using Twitter 

tweets, as a significant resource of data and analysis to rapidly track and 

quantified  public opinions, beliefs, or behavior regarding pandemic related 

events, personalities, or subjects including quickly and effectively 

measuring vaccine hesitancy.  Staying abreast of rapidly changing 

COVID19 events during the first half of 2021, Sattar and Arifuzzaman, 2021; 

Mushtaq et al., 2022 inferred that similar levels of social media positive and 

negative sentiment toward vaccines indicated proportionally equal 

segments of the population were either inclined or not inclined toward 

getting vaccinated.   Declining cases and deaths from January 14th, 2021 

until June 23 supported the “eradication” prediction leading to decreasing 

fear of the virus (CDC, 2021). The US situation changed rapidly with the 

emergence of Delta variant. The sudden increase in the number of cases, the 

severity of symptoms as evidenced by increasing deaths, and changing 

social sentiment appeared to change behavior toward vaccine acceptance 

and inoculation.  Researchers similarly extended vaccine social media 

sentiment analysis (Satter and Arifuzzaman, 2021; Daghriri, Proctor, and 

Matthews, 2022).  

 

 

                                           Statement of contribution 

This research starts with two premises, the first being that the level of 

vaccine acceptance or inoculation is driven by the level of fear of the virus 

with higher fear of virus threats (e.g. illness, death) theoretically resulting in 

increasing vaccine acceptance or increasing inoculation (Figure 1a).  The 

second premise is that the level of vaccine acceptance or inoculation is also 

driven by the level of fear of vaccine side effects resulting in vaccine 

hesitancy with higher vaccine hesitancy theoretically resulting in decreasing 

vaccine acceptance and decreasing inoculations (Figure 1b) (Sekizawa et al., 

2022).   
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Figure 1. a: Fear of Virus and Vaccinations Acceptance.  Figure 1b: Vaccine hesitancy 

and Vaccine Acceptance. 

This research merges these two inconsistent drivers of inoculation 

behavior into data driven models.  The resulting models extend social 

media sentiment analysis-by applying regression to predicting United 

States daily vaccine inoculations during the research timeframe of June 1 

2021 to March 31, 2022.  Spanning this timeframe, this research creates 

predictive regression models for each of the three vaccine inoculation types 

- first dose, second dose (fully vaccinated), and booster. The models 

encompass the three phases of the COVID-19 pandemic in the United States 

during this timeframe including a portion of the errant COVID 19 

“eradication phase” as the Baseline phase, the Delta variant phase, and the 

Omicron variant phase.   The regression research approach uniquely 

incorporates positive and negative sentiment analysis of virus fear and 

vaccine hesitancy from Twitter tweets supplemented by CDC data to 

predict future CDC first dose, second dose, and booster inoculations.   
Further, the research indicates the degree to which different fears, 

factors and levels impact daily vaccine inoculation count by segmenting the 

pandemic timeframe into phases based on CDC VOC announcements. The 

research revealed each phase impacted the vaccine inoculation models 

based on phase characteristics and events and public response to those 

characteristics and events. Inconsistent correlations between traditional 

indicators of fear of the virus and traditional indicators of fear of the vaccine 

were also accompanied by rapid changes in vaccine inoculation trend. 

Likewise first, second, and booster dose inoculations perceived value vs 

risks during a phase impacted vaccine inoculation models. In order to more 

accurately quantify and predict inoculation trends, the research extends 

Twitter sentiment analysis by classification and quantification of the nature 

and strength of association between opinions on Twitter and daily 

vaccination and inoculation spikes.  Overall, the regression models provide 

the means for predicting first, second, and booster dose daily vaccination 

inoculation in the USA. Regression results are consistent with KFF 

vaccination opinions surveys and with the Technology Acceptance Curve 

(Rogers, 1995).  Comments on limitations and future research goals are 

provided.    
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Materials and Methods 

To predict vaccine inoculations in light of fear of the virus and vaccine 

hesitancy, this research methodology used three primary US population 

datasets. First, the Center of Disease Control (CDC) identifies virus and 

variant threats relevant to the U.S. population through virus alerts and 

subsequent Variant of Concern (VOC) alerts ("Coronavirus disease 2019 

(COVID-19)," 2022).  The FDA in coordination with the CDC approves 

vaccines and associate vaccine inoculation guidelines for state and local 

health agencies.  (Disease Prevention & Control - San Francisco Department 

of Public Health, 2021.). The CDC reports daily virus cases (a traditional 

measure of the level of threat of becoming sick from the virus), virus deaths 

(a traditional measure of the level of threat of dying from the virus), and 

inoculations (a traditional measure of dose acceptance) (CDC, 2020).  The 

CDC also identifies COVID-19 Treatments and Medications used to mitigate 

virus effects but do not report daily outcomes (CDC, 2023).  In terms of 

vaccine side effects, the CDC also reports “Selected Adverse Events 

Reported after COVID-19 Vaccinations” but the reports are not a daily 

occurrence, have significant latency between events and reports, and do not 

claim to represent a collection of all adverse events (CDC, 2023).  As a 

supplemental measure to account for CDC virus mitigation and vaccine 

side effect reporting limitations and as demonstrated previously by 

(Daghriri, Proctor, and Matthews, 2022), Sentiment analysis of Twitter 

users’ geolocated tweets  , while limited (Stechemesser et al., 2022; Sattar & 

Arifuzzaman, 2021),may be used to identify levels of fear of the virus and 

levels of vaccine hesitancy in a given population during a pandemic.   

Within the June 1, 2022 to March 31, 2022 time frame, data collection 

focuses on three pandemic phases determined by CDC virus and VOC 

alerts ("SARS-Cov-2 B.1.617.2 (Delta) variant COVID-19 outbreak ..," 2021; 

"Coronavirus disease 2019 (COVID-19)," 2022) (Figure 2).  The Baseline 

phase encompasses June 1-15 2021 and represents the state of fear caused by 

the COVID-19 virus and as mitigated by existing vaccines just prior to the 

CDC alerting the public on June 15 2022 of the Delta VOC.  The Delta 

variant phase follows the Delta VOC alert and spans the period from June 

16th to CDC Omicron VOC issued on November 30, 2022.  The Omicron 

variant phase follows the Omicron VOC alert on December 1, 2021 until the 

end of the research study on March 31, 2022.    

 
Figure 2. Pandemic Phases within the Research timeframe. 

Figure 3 shows the relationships between the datasets used to conduct 

the research and analysis. Shown on the left side of the figure, the CDC 

issued virus and VOC alerts while the FDA approved three vaccine doses 

with the first dose and the second dose available for inoculation throughout 

the entire research window.  The booster dose became available for general 

inoculations on Sep 22, 2021. Also shown in the center of the figure, the 



 

143 

CDC reported daily and a running total of vaccine inoculations, virus cases, 

and deaths. To complete the right side of Figure 3, Twitter datasets provide 

positive, negative, and neutral tweets about the virus and the vaccine. 

Twitter data extraction is discussed in more detail below.  Finally, the 

bottom of the figure shows that KFF vaccinations survey outputs and 

Rogers Technology Acceptance Curve population segment descriptions 

provided 3rd party analysis and benchmarks of public opinions and 

traditional behaviors that may relate to the research.  

 
Figure 3: Research Methodology 

 

  

 

 

 
• CDC Variant of Concern announcement establish phases (Baseline, Delta, Omicron) 
• CDC Vaccine approvals establish Dose Intervals (First Dose, Second Dose, Booster Dose) 
• CDC Case, Deaths, & Inoculation Data Collection and Segmentation 

 
• Twitter Data Collection and Sentiment Analysis 

 
• Linear Regression models 
• Correlation Analysis 
• Lag Time Analysis 
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                                   Twitter Data Extraction: 

Twitter data may be extracted based on user location and 

demographics that exists on their profiles.  Data extraction from Twitter 

focused on United States users and their tweets about inoculation and 

vaccine hesitancy for the three COVID-19 vaccine types available (Pfizer, 

Johnson & Johnson, and Moderna). Users’ tweets were extracted from the 

Twitter feed using the technique described in Table 1 below and 

demonstrated by (Pokharel, 2020; Morshed, et al. 2021). We built and coded 

our Tweepy library crawler following (Morshed et al., 2021) approach to 

extract tweets containing words identified in Table 2.  “Tweepy is an open-

source Python package that gives one a very convenient way to access the 

Twitter Application Programming Interface (API) with Python” (Python, 

2019) “in order to compose tweets, read profiles, and access your followers' 

data and a high volume of tweets on particular subjects in specific 

locations” (Fontanella, 2021). 

 

Step Description 

Vaccination tweets extraction 

Use of the technique and the Tweepy library to extract tweets from the Twitter API 
relevant to vaccinations (Mushtaq et al., 2022;  Morshed et al., 2021). Using the 

vaccines keywords to extract the tweets that include then by using Tweepy library. 
In addition, using the geolocation features to extract tweets that were posted by 

the USA users. Public tweets extracted from Tweeter via its Application 
Programming Interface (API) was used for the experiment. 

Tweets preprocessing 

the Retweets and URLs were removed in the preprocessing step, emojis were 
converted into words, and the dataset was cleaned. We also removed stop words 

and performed tokenization. Stemming and lemmatization were done as well. 
(Ramachandran & Parvathi, 2019; Aljedaani et al., 2020;Monkey, 2020; Rsutam et 

al, 2021) 

 Sentiment analysis 

Using Vader library to classify tweets into positive, neutral, and negatives. (Devika 
et al., 2016; Yadav & Vishwakarma, 2019; Dang et al., 2020;  Pipis 2022) where 

tweets classifications are defined as following: 

- Positive tweets represent the opinions that are favor and support accepting the 
vaccines. 

- Negative tweets represent the opinions that are against and hesitating and 
rejecting the vaccines. 

- Neutral tweets represent the opinions that are not favor or against the vaccines, 
where tweets can’t represent positive neither negative opinions. 
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Table 1. Twitter Data Extraction, Processing, and Sentiment analyzing Steps. 

Vaccine Keywords Timeframe 

Pfizer-BioNTech vaccine 
Pfizer, Pfizer-BioNTech, BioNTechpfizer, vaccine, 

vaccination, dose 
June 1st, 2021 – 31 March 2022  

Johnson & Johnson's COVID-
19 Vaccine 

Johnson & Johnson, Johnson and Johnson, Janssen, 
Janssen, vaccine, vaccination, dose 

June 1st, 2021 – 31 March 2022  

Moderna vaccine 
Moderna, Moderna_tx, Moderna-NIAID, NIAID, 

NIAID-Moderna, vaccine, vaccination, dose 
June 1st, 2021 – 31 March, 2022 

Table 2. Vaccination keywords used to extract the Twitter datasets. 

                                     Modeling construction : 

Modeling involved correlations and linear regressions to predict daily 

first dose, second dose, and booster vaccination inoculations.  Regression 

independent terms included a constant associated with each dose type and 

variables associated with phase, daily virus cases, daily deaths, daily 

positive tweets, and daily negative tweets on day x.  Respective regression 

equation outputs included first dose vaccination inoculation for day x+1, 

second dose vaccination inoculation for day x + 1, or Booster dose 

vaccination inoculation for day x + 1.   

 

                              Results 

 
                                      CDC Results and Analysis: 

As context to the research, on May 31, 2021, the day prior to the start of 

this research, the CDC reported that 173,531,874 (52.3% of a 331,800,000 

population) had received first dose inoculations.  146,813,131 (44.2%) had 

received a second dose inoculation, making them “fully vaccinated” at the 

time.  Since the Booster shot had NOT been authorized for the general 

public on May 31, 2021, only 9,318 people had received the Booster 

representing 0% of the population.   

The graphic displays in Figures 4, 5, and 6 summarize daily virus cases 

and death counts and respectively first, second, and booster doses reported 

by the CDC during the duration of the research.  Beneath the graphic 

display of daily CDC data reported, the colored bar indicates the three 

phases of the pandemic identified by the CDC through their initial COVID 

19 virus alert and subsequent Delta VOC and Omicron VOC alerts as 

discussed in Methods and Material section above.   

Within each figure, a red dot indicates a trough inflection point and a 

green dot indicated a peak inflection point for a given curve.  Common to 

all three figures, are two virus case peaks that precede lagging death count 

peaks, corresponding respectively to the Delta and Omicron phases.  

Inoculations ups and downs for a given dose infers, respectively, rising 
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level of virus fear or rising level of vaccine hesitancy among the remaining 

populations for each dose type.   

Common to all three inoculation curves is an overall decline toward 

zero for new inoculations at the end of the research timeframe.  At the 

conclusion of the research, the CDC reported 256,144,043 (77.1%) first dose, 

219,319,838 (66.1%) second dose, and 100,230,127 (45.7%) booster 

inoculations. The declining inoculation percentages with each dose type as 

well as the failure of any of the dose types to exceed 78% coverage raises the 

notion of population segments with different levels of acceptance of new 

technology (e.g. different vaccine doses) as identified in the Technology 

Acceptance Curve (Rogers, 1995), where acceptance would be expressed as 

a sentiment.  The variability in virus fear and vaccine hesitancy for each 

inoculation type (first, second, booster) varies significantly and is discussed 

in the next section in terms of correlations with objective virus case and 

death count measures.  The nature and degree of change in inoculation 

behavior attributed to changing social sentiments are deferred to the Twitter 

Sentiment Results and Analysis section below. 

 

 

                                                  Correlations between Inoculations and Virus Cases and Death Counts: 

A visual inspection of Figure 4 indicates a rapid drop in First Dose 

inoculations, virus cases, and virus deaths during the Baseline phase, at that 

time supporting the “eradication” theory.  For the Baseline phase, 

correlation analysis confirmed large correlations between declining First 

Dose inoculations and declining death counts (0.886) and declining virus 

cases (0.766).  In terms of the two theoretical premises, the correlations 

support the notion that the overall declining fear of sickness from the virus 

and declining fear of death from the virus resulted in declining inoculations 

among the remaining undosed population.   

Despite the June 15, 2021 CDC Delta VOC alert and contrary to the 

theoretical expectation of an increase in the fear of the virus a VOC might 

cause, the public appeared to ignore the VOC as inoculations continued to 

drop even after the VOC.  Inoculations also continued to drop inversely to 

rising virus cases (-0.872), until the inoculation trend reversed at an 

inflection point 23 days (July 8) into the Delta phase coincident with, not 

preceded by, an increase in the death count.  As the VOC alert, the long 

increasing virus cases, and the existence of a preceding increase in death 

count do not appear causal to the change in inoculation trend, trend change 

is discussed below in Twitter Sentiment Results and Analysis section.  

Between the inoculation trough and subsequent July 8, 2022 peak, large 

correlations were observed between rising first dose inoculations and rising 

virus cases (0.987) as well as rising death counts (0.928).   After the first peak 

and as also discussed in the Twitter Sentiment section below, inoculation 

behavior, inconsistently correlated with virus cases and death count, 

peaked before the Thanksgiving Holiday and again before the Christmas 

Holidays.   
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Figure 4. First Dose vaccine inoculations versus Virus Daily Cases. 

A visual inspection of Figure 5 reveals a Second Dose peak of 758,476 

on June 9, 2021 in the midst of the Baseline phase when virus cases and 

death count were both going down.  This inverse correlation during the first 

part of this phase infers that a large segment of the population sought to be 

“fully vaccinated” despite dropping virus cases and death counts.  After the 

initial inoculation peak, Second Dose inoculations fell until July 29, 2021, 

even though this was well past the June 18, 2021 virus trough and 

subsequent increase in virus cases.  The inversely correlated precipitous 

drop in inoculations with rising virus cases potentially manifests higher 

levels of vaccine hesitancy among the remaining unvaccinated population 

segments.  From July 29, 2021 to the August 31, 2021 inoculation peak, 

rising Second Dose inoculations were highly correlated (0.943) with rising 

virus cases.  After the August 31, 2021 peak, Second Dose inoculations 

varied due to sentiment factors discussed below. 
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Figure 5. Second Dose vaccine inoculations versus Virus Daily Cases. 

A visual inspection of Figure 6 reveals the vast majority of the Booster 

Dose inoculations occurred entirely within the research timeframe and 

experienced multiple peaks with the highest daily peak of 1,078,908 Booster 

Dose inoculations occuring on December 7, 2021 alone.  Factors driving 

Booster Dose inoculations are discussed in the Sentiment section below. 
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Figure 6. Booster Dose vaccine inoculations versus Virus Daily Cases. 

 

                                     Twitter Sentiment Results and Analysis: 
 

over the entire research time frame, 949,529 tweets have been classified 

sentimentally.  Sentiment analysis identified 326,124 tweets that indicated a 

positive viewpoint toward vaccines and 163,716 tweets that indicated a 

negative viewpoint toward vaccines, while 459,689 tweets indicted neutral 

sentiments toward vaccines.  

Visual analysis of Figure 7 appears to show, and analysis confirms 

large positive correlations between Twitter positive tweets and First Dose 

inoculations across the entire Delta variant phase (0.607) and across the 

entire Omicron variant phase (0.804).   Catalysts for tweet activity include 

CDC, FDA, and other Biden administration announcement events.  

Beginning in July 2021 positive tweets increased slowly until the end of 

August 2021 when there was a significant jump in positive tweets. Positives 

tweet levels spiked again at Sep 2021 with approval events for the Pfizer 

booster dose for regular use, and again in Oct 2021 coincident with approval 

events associated with the Moderna booster and Children first dose 

vaccination approval.  Negative tweets cited recent press reports on 

vaccines side effects, which likely increased the level of vaccine hesitancy 

sentiment.  None the less, paradoxically, a large correlation of 0.794 was 

observed between negative tweets and First Dose inoculations during the 

Omicron phase. 
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Figure 7. Positive and Negative Tweets toward First dose vaccines and vaccinations 

over time. 

Visual analysis of Figures 8 also appears to show and analysis confirms 

a large positive correlation (0.870) between positive tweets and Second Dose 

inoculations during the Omicron phase.  Paradoxically, a large correlation 

of 0.892 was observed between negative tweets and Second Dose 

inoculations during the Omicron phase. 

 

 

Figure 8. Positive and Negative Tweets toward Second dose vaccines and vaccinations over time. 
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Visual analysis of Figures 9 also appears to show and analysis confirms 

a large positive correlation between positive tweets and booster dose 

inoculations during a portion of the Delta phase (0.768) and across the entire 

Omicron phase (0.868).  Paradoxically, a large correlation of 0.845 was 

observed between negative tweets and Booster inoculations during the 

Omicron phase.  

 

Figure 9. Positive and Negative Tweets toward Booster dose vaccines and vaccinations over time. 

 

Regression models outcomes 

As indicated in the Methods section, regression models for predicting 

daily first dose, second dose, and booster vaccination inoculations quantify 

independent terms and their coefficients.  Terms include a constant 

associated with each dose type and variables associated with phase, daily 

virus cases, daily deaths, daily positive tweets, and daily negative tweets on 

day x.  The respective regression equation output first dose vaccination 

inoculation for day x+1 (Figure 10), second dose vaccination inoculation for 

day x + 1 (Figure 11), or Booster dose vaccination inoculation for day x + 1 

(Figure 12).  

First (Figure 10) and Booster Dose (Figure 12) inoculation models both 

had large predictive R-squares of 77.47% and 84.45% respectively.  First 

Dose and Booster Dose inoculation models had in common: all factors of 

interest, each factor was statistically significant in predicting daily 

inoculations in both models, and each corresponding factor was 

directionally the same in each model.  Death counts for both inoculation 

models actually had a negative impact on inoculation counts, inferring 

death counts were a lagging indicator.  Differences between the First and 
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Booster inoculation models emerge with sentiment variable coefficients.  

Combined sentiment variables (Positive and Negative Tweets) impact 

Booster Dose inoculation model 3.23 times as great as the same variable 

impacts the First Dose model.  Of note, during the research timeframe, CDC 

and Biden administration announcement events occurred more often in 

association with the First and Booster Doses, with only one event associated 

with the Second Dose (Figure 11).  Tweets increase around such events with 

positive tweet spikes observed in association with First and Booster Dose 

events.  Negative tweets increased with smaller spikes than positive tweets 

during events except during the Baseline phase, where the negative tweets 

were at the same level of positive tweets. 

 
                Figure 10. First dose prediction model. P values are significant for all five x variables. 

The Second Dose inoculation regression model (Figure 11) had a 

moderate predictive R-square of 53.82%.  Of immediate note between the 

three regression equations is the 31.4% and 44.8% respective differences 

between the 396,886 First and 360,234 Booster Dose equation constants and 

the 521,548 Second Dose constant.  The significantly higher Second Dose 

constant highlights the fore mentioned importance of being “fully 

vaccinated” for significant segments of the population.  Being “fully 

vaccinated” drives behavior for this segment of the population even to the 

point of getting the Second Dose in the Baseline phase despite numerous, 

although later proven false, indications of a waning pandemic.  Similarly, 

the much larger negative coefficient of the “phase” variable in the Second 
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dose equation infers a rapid drop off in inoculations across phases 

highlighting this population segment’s urgency during the Baseline phase 

in completing the series.  Interestingly, neither death count nor positive 

Tweets had a significant impact of Second Dose inoculations.  Cases made a 

modest contribution toward inoculations.  Negative Tweets paradoxically 

made a significant contribution to inoculation, inferring resoluteness of or 

perhaps even indifference or even defiance toward negative social media by 

this population segment for getting the Second Dose and becoming “fully 

vaccinated”.   

 

 
Figure 11. Second dose prediction model. P values are significant for all three variables except the positive tweets and 

deaths variables which have been removed as their P. values were not significant. 

 

For the booster dose model, the positive tweets are three times negative 

tweets. Drivers of the differences were: Pfizer booster approval in Sep 2021 

and Moderna & J.J booster dose approvals in Oct 2021. In addition, the 

booster dose interval constant was lower in part due to the booster never 

being authorized for children but also indicates a lower inclination on the 

part of subjects to get the booster than observed with either the first dose or 

second dose. 
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Figure 12. Booster dose prediction model. P values are significant for all five variables. 

 

                                   

Discussion 

 

 
 Kaiser Family Foundation Surveys & CDC Self-Assessment Report 

Results from Kaiser Family Foundation (KFF) surveys indicate major 

reasons for getting the COVID-19 vaccine during our research timeframe 

were: increase in cases due to the Delta variant (39%), concern about 

hospitals filling up (38%), and knowing someone that got seriously ill or 

died from COVID-19 (36%).  These findings appear to generally support the 

regression factors common to the First Dose and Booster Dose regression 

models and contribute to their large predictive R-square ("Surging delta 

variant cases, hospitalizations, and deaths are biggest drivers of recent 

Uptick in U.S. COVID-19 vaccination rates," 2021).  For this research, 

inconsistencies are most notable between KFF and the moderately 

predictive, Second Dose regression model.  Specifically and most notable is 

the absence of the death factor from the list of Second Dose regression 



 

155 

factors.  The moderate, rather than large, predictive R-square of the Second 

Dose regression model is likely an artificiality of the limitations of the 

research timeframe.  Specifically, for the large predictive R-squares for the 

First Dose and Booster Dose regression models, the vast majority or the 

entire total of inoculations taken within our timeframe, occurred outside the 

Baseline phase.  For the Second Dose regression model a much larger 

percentage of Second Dose inoculations taken during our timeframe 

occurred during the Baseline phase.  Thus motivation before the Baseline 

Phase are more likely to have driven Second Dose inoculation behavior than 

driven either First Dose or Booster Dose inoculations.   

The CDC has done numerous self-assessment reports of their role in 

the COVID-19 pandemic.  (Meng, et al 2022) studied the Second Dose 

phenomenon and in part found behavior differed by population segments 

driven largely by age.  Specifically, “Compared with first-dose recipients 

18–39 years of age, recipients 40–64 and >65 years of age were less likely to 

have missed a second dose. Persons in older age groups had more time to 

complete their primary series, given the prioritization when COVID-19 

vaccine first became available. Older adults also are at higher risk for severe 

COVID-19 illness and may have been more motivated to become fully 

vaccinated (14,15).” If Meng, et al findings are accurate, his findings support 

the notion that the most likely factor adversely impacting the Second Dose 

regression model resulting in a moderate rather than large predictive R-

square was older segments of the populations disproportionately getting 

inoculations during the Baseline phase.  As Meng et al also further indicate, 

older population segments may have been driven to become “fully 

vaccinated” with the Second Dose by fear of “severe illness” or death.  Since 

the pandemic began in the United States in March 2020 and without 

knowledge of the Delta and Omicron VOCs , this fear would have been 

accumulated well before the Baseline phase and before our research 

timeframe.  Future research that included data reaching back to March 2020 

would likely significantly change Second Dose regression model factors and 

weights to be more in line with First Dose and Booster Dose regression 

models. Additionally, future research may improve the predictive R-square 

of the regression equations by including a variable for population segments, 

possibly identified by age and other demographics that may impact vaccine 

acceptance. 

A KFF survey also solicited feedback on sentiment about vaccine side 

effect concerns and the resulting vaccine hesitancy (Personal Concerns 

About COVID-19 Vaccination) https://www.kff.org/coronavirus-covid-

19/poll-finding/kff-covid-19-vaccine-monitor-february-2021/.  For the 

Booster dose, KFF identified significantly different sentiments among 

vaccinated and unvaccinated population segments.  Specifically, 78% of the 

vaccinated respondents indicated that the Booster dose “shows that scientist 

are continuing to find ways to make vaccines more effective” 

https://www.kff.org/coronavirus-covid-19/poll-finding/kff-

covid-19-vaccine-monitor-september-2021/ .  In contrast, 71% of the 

unvaccinated respondents indicated that the Booster dose, “shows that the 

vaccines are not working as well as promised.” KFF also indicated that the 

Omicron variant only motivated about 12% of the unvaccinated to get their 

first dose while 87% remained unconvinced. ("KFF COVID-19 vaccine 

https://www.kff.org/coronavirus-covid-19/poll-finding/kff-covid-19-vaccine-monitor-september-2021/
https://www.kff.org/coronavirus-covid-19/poll-finding/kff-covid-19-vaccine-monitor-september-2021/
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monitor: Early omicron update," 2021).  In contrast, among vaccinated 

adults who had not gotten a booster, 54% indicated the Omicron variant 

made it “more likely” to “get a booster shot” while 46% disagreed. 

 

Considering Vaccine Acceptance rates in light of Rogers Technology Acceptance Curve 

Given the fore mentioned segmentation of the population, this research 

would be remiss not to acknowledge similarities between population 

acceptance of and hesitancy toward vaccines and Rogers Technology 

Acceptance Curve.  Specifically, the Rogers Technology Acceptance Curve 

identifies five segments the US population and characterizes 2.5% as 

Innovators in accepting technology, 13.5% as the Early Adopters, 34% as the 

Early Majority, 34% as the late Majority, and 16% as Laggards.  Laggard 

traits include skeptical, resistance to change, and wary of accepting new 

technology.  Assuming each inoculation is a new technology experiencing 

the Rogers estimates of acceptance, laggards would represent that segment 

of the population predisposed toward vaccine hesitancy.  This assumption 

infers that approximately 84% of the population might voluntarily accept a 

First Dose inoculation within the timeframe of the pandemic.  As of Feb 7, 

2023 and remarkably consistent with the Rogers estimate of 84% acceptance, 

the CDC reports 85.5% of the U.S. population 5 years of age or greater are 

inoculated with one dose (CDC, 2023).  If a Second Dose inoculations is 

viewed as another voluntary acceptance challenge, then Rogers estimation 

of 84% of the First Dose recipients would yield an estimate of 70.6% of the 

total population will receive a Second Dose inoculation.  As of Feb 7, 2023 

and remarkably consistent with the Rogers estimate of 70.6% acceptance, 

the CDC reports 73.2% of the U.S. population 5 years of age or greater are 

inoculated with one dose (CDC, 2023).  The respective 1.5% and 2.6% higher 

observed inoculation rates over that estimated by Rogers Curve may be due 

to vaccination mandates imposed by government and/or employers. 

Unfortunately Rogers statistical booster dose estimation is confounded by 

replacement of the original booster with the updated (bivalent) booster 

dose.  Further, as of Feb 7, 2023, the CDC only reports updated (Bivalent) 

Booster data, not the original booster data discussed herein.  Using the 

March 31, 2022 CDC reported 100,230,127 (45.7%) original booster 

inoculations and applying Rogers 84% acceptance rate to the 70.5% who 

actually accepted the Second Dose inoculations yields an expected 59.3% 

acceptance rate for Booster inoculations among the total population.  

Clearly the observed 45.7% acceptance rate is well below the 59.3% 

estimated rate.  Future research may reveal the reasons for the  inoculation 

shortfall but the shortfall is likely due to the timeframe limitations of the 

experiment or timeframe limitations due to replacement of the booster with 

the updated booster but may also be due to rising vaccine hesitancy or 

fewer mandates.    
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Social Media manipulation, Sentiment analysis, Twitter Files and United Nations assessment reports 

While we believe our sentiment analysis approach is sound and the 

results accurate to the degree cited above, manipulation by government 

agencies or large corporations may have an impact on social media content 

and may therefore limit sentiment analysis where such manipulation 

occurs.  Social media content impacts sentiment.  Revelation of content 

manipulation will likely undermine confidence in content found on social 

media and thereby undermine the value of social media sentiment analysis.  

As an example, with the acquisition of Twitter by Elon Musk a number of 

independent journalists investigated governmental and industrial 

manipulation of social media and released reports termed the “Twitter 

Files”.  Among those investigations, David Zweig released the 40-tweet 

Twitter Files report titled, “How Twitter Rigged the Covid Debate” (Mills, 

2022).  Zweig identified in that report “that both the Biden and Trump 

administrations pressured Twitter and other social-media platforms to 

elevate content that fit their narratives and to suppress information that 

didn’t”.  One of the more important and concerning finding was actual 

interference in free speech by silencing of Alex Berenson, a critic of the 

Biden administration COVID policies.  Specifically, “Berenson’s Twitter 

account was suspended hours after Biden alleged that social-media 

companies were “killing people” for allowing vaccine misinformation. 

Berenson later sued and eventually settled with Twitter.”  Further, Lee Fang 

revealed how "the pharmaceutical industry lobbied social media to shape 

content" related to the COVID vaccine (Flood, 2023).  Even Pfizer board 

member Dr. Scott Gottlieb flagged tweets questioning COVID vaccines 

(Wulsohn, 2023).   An August 2021 email Gottlieb sent to Twitter's senior 

public policy manager Todd O’Boyle flagging a tweet written by former 

Trump administration official Dr. Brett Giroir is but one example.  Giroir 

had written "It's now clear #COVID19 natural immunity is superior to 

#vaccine immunity, by ALOT. There's no scientific justification for #vax 

proof if a person had prior infection." "This is the kind of stuff that's 

corrosive," Gottlieb told O'Boyle. "Here he draws a sweeping conclusion off 

a single retrospective study in Israel that hasn't been peer reviewed. But this 

tweet will end up going viral and driving news coverage." According to 

Berenson, O'Boyle forwarded Gottlieb's email to Twitter's "Strategist 

Response" team, writing "Please see this report from the former FDA 

commissioner." Giroir's tweet was later slapped with a "misleading" label 

and blocked any ability to like or share the tweet, telling Twitter users 

"Learn why health officials recommend a vaccine for most people."   

Besides directed manipulation of social media content by governments 

and industry, this research revealed that CDC and Biden administration 

announcements and events precipitated considerable Twitter tweets.  The 

nature of the tweet response directly impacted the regression equations.  

Thus two recent United Nations reports stating “scientist in China, the US 

and the UK have been accused of deliberately covering up the origins of the 

coronavirus outbreak” (King, 2023) may also undermine social media 

sentiment analysis in the future by creating further distrust.  

Epidemiologists Colin Butler, from the National Centre for Epidemiology 
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and Population Health in Canberra, Australia, and Delia Randolph, from 

the University of Greenwich in London were responsible for the reports.  

Both concluded that high-risk experiments being carried out in the Chinese 

city of Wuhan were shrouded in a cloak of suspicious secrecy, deception, 

and conflicts of interest. They argued that this was ‘implemented not only 

by China but also by Western funding agencies and influential Western 

scientists’. 

While the sentiment analysis in this research did not consider the 

undermining of the confidence of the fair, accurate, and equitable 

publishing of social media content, future research must consider how 

potential social media content manipulation impacts behavior.   
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