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ABSTRACT 

 With artificial intelligence (AI) becoming ubiquitous in a broad range of application 

domains, the opacity of deep learning models remains an obstacle to adaptation within safety-

critical systems. Explainable AI (XAI) aims to build trust in AI systems by revealing important 

inner mechanisms of what has been treated as a black box by human users. This thesis 

specifically aims to improve the transparency and trustworthiness of deep learning algorithms by 

combining attribution methods with image segmentation methods. This thesis has the potential to 

improve the trust and acceptance of AI systems, leading to more responsible and ethical AI 

applications. An exploratory algorithm called ESAX is introduced and shows greater 

performance on PIC testing than other top attribution methods in some cases. These results lay a 

foundation for future work in segmentation attribution. 
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INTRODUCTION 

 

Among the many applications of machine learning, from medical diagnosis to 

autonomous cars and military systems, a problematic pattern has been emerging. The 

performance of neural networks and machine learning continues to skyrocket. Across the board 

industries seek to apply ML concepts to anything quantifiable, and researchers pour their efforts 

into propelling the field forward as quickly as possible. Neural networks get deeper and more 

accurate by the year and are able to outperform humans on a number of tasks. As they become 

more complex however, they are more and more opaque to even their designers. 

There are many different aspects of neural network performance. Some are quantifiable, 

such as accuracy and speed, while others remain more qualitative, like interpretability. Among 

even the quantifiable characteristics like accuracy, there are varying levels of completeness of 

data available. For example, Holzinger et al. stated that avid proponents of AI in the medical 

field stress the that attaining an artificial intelligence which would replace a doctor entirely is 

exceedingly difficult. This is because the number of factors which contribute to a diagnosis of a 

certain kind of cancer for example is very wide, and it is impossible with most traditional AI 

techniques to know whether the right variables are being considered in the diagnosis. As such, a 

doctor or medical professional would still need to be on site and engaged in the process of 

diagnosis. 

The incompleteness of the medical example above is crucial in understanding the need 

for explainable AI. For example, aircraft collision detection has been operating fine for decades 

without explainability. This because the problem is well understood and can be defined precisely 
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[Bukart and Huber 2011]. The limited number of variables associated with the problem of 

aircraft collision detection can be enumerated. Due to the extreme complexity of many real 

world systems and patterns which AI can be applied to, it is essential for human 

understandability of these AI to grow along with their capacities, and for trust of such AI to be 

not only built, but validated. 

This paper introduces ESAX, a technique that builds on existing AI attribution methods, 

incorporating additional heuristics to enhance segmentation accuracy. By comparing among the 

results generated by ESAX and with other existing algorithms, insights into attribution by 

segmentation were gathered and a path forward for future work was paved. 
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BACKGROUND 

 

The first neural network known as the single-layer perceptron dates to the 1950’s. The 

single-layer perceptron can recognize very basic shapes. An article from The New York Times 

cited the navy in 1958 as saying that the perceptron will lead to development which will 

eventually end in a computer which is capable of self-consciousness, which current day GPT-4 

appears closer to than ever. In the 1960’s the single-layer perceptron was proved to be incapable 

of learning other relatively simple fundamental patterns, such as the XOR function. In the 1980’s 

the multilayer perceptron was invented, but also quickly hit a wall in its capacity to learn more 

complex problems, The chief obstacle being that of the vanishing gradient problem. Rumelhart et 

al. (1986) showed how backpropagating errors can be used to learn patterns in neural networks. 

The vanishing gradient problem appears when using backpropagation to train a multi-level 

neural network. As the number of layers in a perceptron increases, the gradient rapidly 

approaches zero which makes training high level perceptrons infeasible. This problem caused a 

near 20-year gap in major improvements to neural networks between the 1980’s to 2006, when 

Hiton et al. (2006) showed that Restricted Boltzmann Machine initialization could be used to 

offset the vanishing gradient problem. Since then, deep learning has been used to great effect, 

with recent RNN (Recurrent Neural Network) architectures achieving over 100 layers while 

avoiding the vanishing gradient. 

A Convolutional Neural Network uses several hidden layers in order to ascertain deeper 

and more complex relationships between features in the input than that which a simple 

perceptron or a fully connected multi-layer perceptron is capable of. CNNs have a broad range of 
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use cases, but they are particularly common and powerful when used for object 

recognition/classification. 

There are several insights which motivate the use of CNNs for classification and object 

recognition tasks. On the input image, there are patterns which can be used to identify the image. 

These patterns are smaller than the entire image, therefore some kind of smaller window view of 

the image can be used to detect patterns. These patterns can appear anywhere on the image, so 

the subsampling method will need to be applied to every area on the image to find the patterns. 

The main patterns of an image are also generally such that the image can be subsampled or 

degraded in resolution in a particular way while the patterns remain intact. These factors 

contribute to the architecture of CNNs. 

CNNs use a kernel to convolve over the image in the convolution layer. The kernel can 

be thought of as the “window” which a CNN uses to view only a small part of an image at a 

time, in order to extract the patterns smaller than the whole image as discussed previously. The 

convolution of the kernel with the input is fed into an activation function, in the case of Figure 1 

this is the Rectified Linear Unit (ReLU) function. The output of the activation function is then 

fed into a pooling function which is the down-sampling of resolution as discussed previously, 

and various functions are used in this step depending on the application, sometimes it is omitted 

entirely as in the notable case of AlphaGo. 

The hidden layers of a CNN are called hidden for a reason, and after a relatively small 

amount of complexity has been reached by a network, its decisions and inner workings are 

completely opaque even to the designer of the network. This is where the field of Explainable 

Artificial Intelligence (XAI) enters the scene. XAI aims to shed light on what exactly the hidden 



5 

 

layers of a CNN are doing. Attribution is the act of determining the effect that something has on 

the output of a network. Attribution is commonly applied on at least 3 different levels of 

analysis: the feature level, the layer level, and the neuron level. Performing attribution at these 

different levels would correspond to explaining how a specific feature of the input, an individual 

layer of the network, or a single neuron of the network, respectively, affect the output or the 

“decision” of the network. 

Attribution is the process of assigning a score to an element of the input according to the 

element’s effect on the output relative to a baseline. The use of a baseline is crucial because an 

element’s effect on the NN output cannot be determined relative to nothing. Any explanation 

presupposes a counterfactual situation which the true explanation is relative to. 

Neural networks are often used to aid in the task of classification, or the separation of 

things into categories based on the similarities of their attributes. CNNs seem particularly well 

suited to this task, because of their capacity to differentiate objects on a feature-by-feature basis, 

due to their multi-level construction.  

During the training process of CNNs, a technique called gradient descent is used with 

backpropagation to optimize the weight parameters of the network. The gradients of the weights 

with respect to the loss function are essentially indicative of the importance of those weights in 

the accuracy of the network’s inference. Using methods to tap into these gradients is one of the 

primary ways of obtaining information about the inner workings of an AI. Model explainability 

is the extent to which the parameters of a network can justify the results given by the network. 

Model interpretability is the ability of a network to correctly draw a relationship between a cause 

and an effect [1]. 
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PREVIOUS WORK 

 

Using various gradient based techniques, a variety of different XAI methods have been 

developed over the years. Being a field still in its infancy, XAI has experienced multiple 

revolutions, including several paradigm shifts in the approaches used to generate saliency maps, 

from gradient based, to perturbation based and post processing techniques.  

Saliency maps in general are tool used in computer vision consisting of an image with 

different elements highlighted to show where attention is drawn. These are used in applications 

of image compression and quality, and studies of human attention. These maps are crucial in 

XAI, not for understanding human attention but for understanding the “attention” of a 

classification model. For our purposes, a saliency map is a vector generally in the same shape as 

a given input, which contains information about the relevance of each feature in the input vector 

to the classifying model.  

Among the first attempts to visualize the innerworkings of a deep network advanced 

enough to be considered a black box is from Erhan et al. in 2009. The authors show how deep 

architectures had advanced in the context of vision datasets, but that there was a dearth of 

qualitative analysis of the models used, which was necessary to motivate and inform further 

development in the field of XAI. To address this emerging need, the idea of maximizing the 

activation of a hidden unit within the model. The thought process behind this is that if, for 

example, an image was found that maximized the activation of a single neuron, then that image 
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would be a meaningful and human understandable representation of what said neuron is doing. 

An interesting insight gained while testing the activation maximization technique in this paper is  

In Simoyan et al. a technique for class model visualization was developed. In the 

technique, an input image was found that maximized the neuron activation using gradient 

descent to reveal the most salient input. This technique was extended in the same paper to image-

specific class saliency visualization, which is a clear precursor to more current methods of 

attribution, producing results which are similar in appearance to Integrated Gradients. 

Integrated gradients (IG) is a state-of-the art method used by researchers. The 

fundamental process that IG uses is to multiply the difference between the input and a baseline 

by the gradient of the weights with respect to the loss function. The IG function is shown below.  

 

 

Figure 1: Integrated Gradients Formula 

 

The original equation cannot be implemented due to the integral, so a summation is used 

instead in practice to receive an approximate solution. The importance of a baseline as discussed 

earlier is apparent in this equation, where the xi’ in the equation is the given baseline. In IG, 

multiple baselines are used, and their results are combined in order to see the best explanation of 

the network’s decision. In the standard implementation of IG, a black baseline is used, and the 

input image is interpolated over the black baseline over a series of dozens of steps, with the IG 
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algorithm being run at each step, see Figure 2. 

 

Figure 2: IG Black Baseline Interpolation 

 

As shown on the left timber wolf example of figure X, IG can 

produce a very noisy output. Certain parts of the image are being 

given good attribution, but exactly what the AI is looking at is 

difficult to ascertain from this map. Other researchers have tried to 

create new ways of using IG to get a more understandable explanation 

of the AI’s “thought process”; enter XRAI. 

XRAI’s main addition to the scene of explainable AI is using a 

segmentation algorithm to divide up an image into many segments, 

and then calculate the weight of each segment instead of every 

individual pixel. This is thought to create a much more human 

understandable map of the attribution. When compared to the vanilla IG results, the XRAI 

heatmap is generally better understood and can be used to create a mask of the original image 

which reveals highly salient regions of the image, see Figure 4. For example, in the case of a 

timber wolf image, the XRAI heatmap can be used to identify the upper and middle parts of the 

wolf’s face as highly salient regions that contribute to the network’s prediction, and it is 

subjectively very easy to see what regions are relevant. 

Figure 3 IG Attribution 
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Figure 4: XRAI Heatmap 

 

Evaluation of XAI Methods 

There are qualitative and quantitative methods for evaluating XAI techniques. Qualitative 

methods generally require some human input, where opinions are gathered on outputs for 

different XAI methods. According to the PyTorch Captum website, explanation infidelity is a 

measure of the mean-squared error between the explanation multiplied by a perturbation 

function, and the difference between the prediction of the original input and the perturbed input. 

Captum describes Sensitivity-n, on the other hand, as a function which correlates the attribution 

to differences of the predictor between an input and a baseline. 

Sensitivity is a direct measure of the change in the XAI output due to a perturbation 

added to the input. In this case, the perturbations are intentionally very small. Sensitivity-n is a 

property proposed in the paper “Towards better understanding of gradient-based attribution 

methods for deep neural networks” by Ancona et al. 

Two methods for evaluation are proposed by the creators of XRAI in their original paper: 

Accuracy Information Curve (AIC) and SoftMax Information Curve, SIC. The authors state that 



10 

 

these approaches are similar to receiver operating characteristic (ROC). “A receiver operating 

characteristics (ROC) graph is a technique for visualizing, organizing and selecting classifiers 

based on their performance.” [1] The graphs are a plot of the true positive rate over the false 

positive rate. ROC is commonly used for evaluating the performance of classifiers, as opposed to 

a simple measure of classification accuracy, which can be misleading in the case of unbalances 

classes. 

AIC and SIC, collectively known as Performance Information Curves (PIC) are inspired 

by the “bokeh” effect in photography, where the subject of the image is shown in focus, but the 

rest of the image is blurred. Likewise, PIC applies a blur to the input image, decreasing the 

information content of the image, and then a selective focusing occurs to the image according to 

the output of the saliency model. In other words, the highly salient sections of the original input 

are shown in focus, while the rest of the image remains out of focus. This focusing occurs in 

steps. After the information content of the image was brought down to a low level by the 

blurring, the step-wise re-focusing once again increases the information content. At each step of 

increased focus, the entropy of the image is approximated as the compressed image size, and 

recorded along with both the softmax output and the model accuracy. The accuracy (AIC) and 

softmax output (SIC) are then averaged at every step of re-focusing across many images and are 

plotted over the level of focus. The area under this curve is taken as the performance of the 

saliency method. 
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Methodology 

 

The Exploratory Segmentation for Attribution based on XRAI (ESAX) methodology was 

to closely follow the algorithm of XRAI and change certain variables associated with 

segmentation. The XRAI authors stated that they aimed to avoid reliance on any specific 

hyperparameter opting to over sample the image to the point that any scale or sampling 

hyperparameter’s effect on the attribution would be lost. ESAX aims to explore the effect of the 

segmentation size parameters on the attribution, as well as the method of assigning value to each 

segment. Whether or not dilation of the segments makes a significant difference is tested as well. 

Additionally, Felzenszwalb segmentation as well as multiple other segmentation techniques are 

explored to determine the effect that the shape and nature of the segments truly has on the 

attribution of the algorithm. 

The main idea of ESAX is to investigate how combining contours and attributions can 

lead to better understandability of the attributions, and to improve objective measures of 

attribution quality. The algorithm follows XRAI in most of its high level steps but adds a 

variation of segmentation techniques instead of over-segmenting using the Felzenszwalb 

technique. Segmentation techniques have multiple parameters which determine the number, 

shape, and size of segments. The authors of XRAI state that they do not want the attribution 

results to depend on a particular set of such parameters, so to remove the dependance on these 

parameters they use Felzenszwalb’s method which generally creates segments appealing to the 

human eye. They then over segment the image by a factor of 6, only later selecting the segments 
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with the highest attribution method to be added to the final segmentation to achieve a total area 

covering 100% of the original attribution shape. 

This approach is called into question, and different methods of segmentation are explored 

with ESAX to determine the validity of XRAI’s approach. To test this, four different 

segmentation methods are used with no over-segmentation to remove the potential effects that 

this may have. In future work over-segmentation should be explored as well to see how different 

segmentation methods interact with this effect. The four segmentation methods explored in this 

paper are Quickshift, Watershed, Slic, and the original Felzenszwalb. These are all implemented 

in the Skimage Python package. 

ESAX begins by taking an input image and processing it to fit the size of the 

classification model. The processed image is classified and checked against the groundtruth to 

ensure proper classification. This step is taken to ensure that there is no biasing introduced by 

using incorrectly classified images, as the attribution given will not accurately reflect the 

relevance of features. Next, a segmentation algorithm is applied to the processed images that 

returns an array in the same shape as the image containing numbered segments. The image is fed 

into an attribution method, and the attributions are returned in the same shape as the original 

image. Then the attribution within each segment is averaged across the segment, and each 

element in the segment is set to the average attribution value of said segment. This is the final 

ESAX attribution. 
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Figure 5: Flowchart for ESAX algorithm 

Quickshift was created by Andrea Vedaldi and Stefano Soatto in 2008. It is a local mode-

seeking algorithm which is based on mean-shift. They designed the algorithm to address 

apparent weaknesses in the medioid-shift segmentation method. It uses a Gaussian kernel which 

is controlled systematically by ESAX to give greater or fewer numbers of segments. 

Interestingly, there is a built-in scale factor which is assessed during the computation of the 

algorithm, inherently breaking free from some of the hyper-parameter constraints that XRAI 

aimed to avoid with over-segmentation. Quickshift tends to be useful for object tracking because 

it can keep segments consistent in the face of changes in object appearance. 

The Watershed algorithm is inspired by natural watersheds, where all water in a region 

tends to run to a certain local geographical minimum, i.e., a basin. The algorithm takes a 

grayscale gradient version of the input image, which uses bright pixels to show boundaries 

between regions. This grayscale image is thought of as a landscape with the brightness of pixel 
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representing elevation. The landscape is then flooded from specified markers to create segments. 

This is often applied in medical imaging among other problems due to its ability to segment 

connected regions well. 

The Slic segmentation algorithm is a K-means clustering based method, where K-means 

is performed on color and image location information. The algorithm groups pixels with similar 

color and texture characteristics into what are called superpixels which are the results of 

perceptual grouping of pixels that tend to retain a generally boxy shape. This algorithm is very 

fast and as such is useful in robotics and computer vision for real time applications. 

The Felzenszwalb segmentation algorithm uses a graph to represent images, and then 

performs segmentation using texture and color to group regions together. The authors of this 

technique state that it can preserve detail in low-variability regions, while ignoring detail in high-

variability regions. Because of its capacity to create highly irregular shapes in its graph-based 

approach, the Felzenszwalb algorithm is very popular in object detection and recognition. 
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EXPERIMENTAL EVALUATION 

 

Setup 

The attribution method used as the foundation of ESAX is the PyTorch Captum 

implementation of Integrated Gradients, which uses a black baseline. All data was collected on 

the PyTorch ResNet101 with ImageNet-1K_V2 weights. To accomplish the goal of exploring 

different segmentation method’s effects of the attribution, a parameter was chosen from each of 

these algorithms to be modified systematically to alter the size of the segments provided by the 

algorithms. The parameters for different number of segments within a segmentation algorithm 

was chosen with the aim of producing three qualitatively different segmentations for every 

method, one with the most segments, one with fewer segments, and one with the least segments. 

See Table 1. 

 

 Quickshift 

kernel size 

Watershed 

markers 

Slic 

segments 

Felzenszwalb 

scale 

most segments 1 500 500 50 

fewer segments 5 200 200 250 

least segments 10 20 20 500 

Table 1: Segmentation Parameters 

 

Skimage’s dilation function was then applied to the segments, yielding a dilated and un-

dilated segmentation map. This is a morphological dilation method which grows bright regions 

and shrinks dark regions, meaning that higher attribution segments will be grown and lower 

attribution segments will be shrunk. The footprint used in this case is a disk with a radius of 2, 
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yielding a relatively small dilation. In total, this yields 24 different segmentation maps, a dilated 

and un-dilate most, fewer, and least segments view of each method. See the appendix for an 

example of each. 

The attributed segments produced by ESAX are fed into the Performance Information 

Curve algorithm, and the area under the curve for SIC and AIC is aggregated and averaged 

across the number of images used in the test set. In this experiment, 200 images were used from 

the ImageNet LSVRC 2012 Validation Images (all tasks) dataset. Approximately the same 200 

images were used in every test, but in some cases the segmentation yields bad PIC results, and 

the image may be discarded. The area was limited to the top attributed 20% of the total area 

before calculating PIC curves. This is done to focus on the most informative regions. By giving 

an area threshold with the highest attribution segments being selected first, the PIC scores reflect 

the capacity of a segmentation method to segment the most relevant parts of an image together. 
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Results 

 

Figure 6: Quickshift PIC 

 

Figure 7: Felzenszwalb PIC 

 

Figure 8: Slic PIC 
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Figure 9: Watershed PIC 

 

Figure 10: XRAI PIC 
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The segmentation methods give a mean AIC AUC of 0.568 with a standard deviation of 

0.053, and a mean SIC AUC of 0.504 with a standard deviation of 0.050. The highest scoring 

method in both metrics, Dilated Watershed Least Segments (DWLS) is 2.7 standard deviations 

above the AIC mean, and 2.6 standard deviations above the SIC mean. DWLS is followed 

closely XRAI, and then by Watershed Least Segments (WLS), which in turn is over a standard 

Method AIC AUC 

Dilated Watershed Least Segments 0.711 

XRAI 0.702 

Watershed Least Segments 0.692 

Dilated Slic Least Segments 0.622 

Dilated Felzenszwalb Least 

Segments 0.614 

Slic Least Segments 0.597 

Slic Fewer Segments 0.585 

Dilated Slic Fewer Segments 0.583 

Slic Most Segments 0.580 

Dilated Quickshift Least Segments 0.572 

Dilated Watershed Fewer Segments 0.571 

Dilated Felzenszwalb Fewer 

Segments 0.568 

Dilated Quickshift Fewer Segments 0.559 

Felzenszwalb Fewer Segments 0.559 

Watershed Fewer Segments 0.549 

Dilated Slic Most Segments 0.548 

Quickshift Fewer Segments 0.545 

Dilated Felzenszwalb Most 

Segments 0.545 

Felzenszwalb Most Segments 0.544 

Quickshift Least Segments 0.537 

Dilated Watershed Most Segments 0.536 

Felzenszwalb Least Segments 0.534 

Dilated Quickshift Most Segments 0.503 

Watershed Most Segments 0.495 

Quickshift Most Segments 0.488 

Method SIC AUC 

Dilated Watershed Least Segments 0.632 

Watershed Least Segments 0.625 

XRAI 0.624 

Dilated Slic Least Segments 0.562 

Slic Least Segments 0.544 

Dilated Felzenszwalb Least 

Segments 0.533 

Slic Fewer Segments 0.527 

Dilated Slic Fewer Segments 0.525 

Slic Most Segments 0.514 

Dilated Watershed Fewer Segments 0.509 

Dilated Quickshift Least Segments 0.504 

Dilated Felzenszwalb Fewer 

Segments 0.500 

Dilated Quickshift Fewer Segments 0.493 

Felzenszwalb Fewer Segments 0.489 

Dilated Felzenszwalb Most 

Segments 0.488 

Watershed Fewer Segments 0.484 

Dilated Slic Most Segments 0.482 

Felzenszwalb Most Segments 0.479 

Quickshift Fewer Segments 0.479 

Quickshift Least Segments 0.478 

Felzenszwalb Least Segments 0.468 

Dilated Watershed Most Segments 0.461 

Dilated Quickshift Most Segments 0.445 

Watershed Most Segments 0.442 

Quickshift Most Segments 0.423 

Table 2: AIC and SIC area under the curve for each method 
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deviation away from the next highest scoring. Some segmentations score significantly higher 

when dilated, with Dilated Felzenszwalb Least Segments (DFLS) scoring nearly 2 standard 

deviations higher than Felzenszwalb Least Segments (DLS). Notably, DWLS outperformed 

XRAI, showing that fixed hyper-parameters can perform better than oversampling on PIC 

testing. 

Discussion 

In most cases the dilated segmentations score higher than the non-dilated, and the highest 

scoring segmentation is dilated. This suggests that edge data is important for attribution. Because 

the segmentation methods generally groups regions with similar characteristics in a segment, the 

resulting segment boundaries are likely to be along the edges of objects. This is potentially 

undesirable if the goal is to create segments which fully capture the most salient regions, 

however, as edges may be crucial for the recognition of objects. It is generally easier to tell what 

something is from its outline or sketch, as opposed to a zoomed in feature of something which is 

often difficult to interpret. This is true for humans, and this data supports its validity for AI as 

well. 

The segmentations with the least segments generally outperform their more subdivided 

counterparts. This may be because the image set used generally contains one main object, and 

this object generally takes up a large part of the area of the image. This would naturally lead to 

larger segments being more able to capture the important parts of the object and make the noise 

outside of the object less likely to impact the attribution after it is averaged across a very large 

segment. Conversely, smaller segments may be more vulnerable to noise because there is less 
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area for the high attribution noise to be averaged over. It is possible that for an image set where 

objects take up a smaller portion of the image would lead to higher scores for the segmentations 

with a greater number of smaller segments. 

The analysis uncovered a small group of outliers, DWLS and WLS, with distinct features 

that significantly deviate from the general trends observed in the data. This could be interpreted 

as an exception, due to the fact that the large segments produced by these images tend to 

resemble superpixels more than segments, though watershed seems to have an ability to highlight 

very distinct features (see the elephant’s ear and tusk in the appendix). Although DLSW 

performed better than Felzenszwalb (used in XRAI) in PIC measurement, Felzenszwalb tends to 

create segments which are subjectively more visually appealing, at least in the grayscale shown 

in the appendix. 
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FUTURE WORK 

A direction for future work in the field of segmenting is laid out by ESAX. 

Experimentation with different segmentation techniques on image sets where the size and 

prominence of objects of interest is more variable would yield understanding for specific 

applications like surveillance or warfare. An exploration of the application of segmented 

attributions to video feeds where the capacity of segmentation methods to resolve objects over 

translations and rotations would expand the scope of XAI as well. Application of deep learning 

in the segmentation methods themselves, perhaps in the choosing of hyper-parameters, could 

yield significantly more interesting and understandable results, where the dependance on any 

specific hyper-parameter could be removed entirely by outsourcing to a DNN. Utilization of 

oversampling on different techniques than Felzenszwalb is a logical next step as well, with 

Watershed showing promise. It is likely that choosing the optimal method is a domain specific 

decision. 

A combination of segmentation methods like what is known as an ensemble method 

would be appropriate for maximizing the intersection of performance and understandability of 

attribution methods. By representing segmentation as a tree problem, bootstrapping and bagging 

[9] could be applied to find more optimal segmentations. Training a deep network on subjective 

experimental data on explainability as well as PIC metrics could yield a model which selects 

features to group together based on their maximization of these scores. Some combination of 

these techniques and others will help XAI to adapt to ever increasing complexity of models, 

making total explainability a moving goalpost. 
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 Because the objective measurements used in this study are inconclusive for actual utility 

in human understanding, subjective testing of different attributions methods is necessary for the 

goal of trust to be reached. Future work specifically identifying the effectiveness of current 

methods of attribution on the trustworthiness of AI is necessary to determine further direction for 

the field. With more complex language processing  

CONCLUSION 

In a world of rapidly evolving AI being incorporated into sensitive and safety-critical 

systems, the need for a basis of trust of AI is more evident than ever. XAI aims to address this by 

revealing the inner workings of black box algorithms. Attribution methods highlight features 

based on their relevancy to neural network decision making. Segmentation attribution methods 

aim to align attribution with our perceptions by showing relevant regions of interest. This thesis 

furthers the precedence for the use of segmentation in AI. It outlines a direction for future work 

and provides the basis for deeper research into the understanding of visual AI via segmentation.  

The results find two high performing outliers among the 24 segmentation methods tests, 

which outperform XRAI on the image set. This study’s results emphasize the importance of 

domain-specific approaches, and the need to reconcile the tradeoff between interpretability and 

objective measurements. By setting the stage for deeper research into the understanding of visual 

AI via segmentation, this thesis not only addresses immediate challenges in the field of XAI but 

also encourages future work that can help bridge the gap between human perceptions and AI 

decision-making. A roadmap is defined for future work in XAI, and the need is established for 

further research into the subjective effectiveness of segmentation for understanding AI decisions. 
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APPENDIX 

Example of each attributed segmentation. Brighter segments have a higher attribution. 
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