Experimental and Numerical Investigations of Microdroplet Evaporation with a Forced Pinned Contact Line

2014

Kevin Gleason

University of Central Florida

Find similar works at: https://stars.library.ucf.edu/honorstheses1990-2015

University of Central Florida Libraries http://library.ucf.edu

Part of the Aerospace Engineering Commons

Recommended Citation

https://stars.library.ucf.edu/honorstheses1990-2015/1569

This Open Access is brought to you for free and open access by STARS. It has been accepted for inclusion in HIM 1990-2015 by an authorized administrator of STARS. For more information, please contact lee.dotson@ucf.edu.
EXPERIMENTAL AND NUMERICAL INVESTIGATIONS OF MICRODROPLET EVAPORATION WITH A FORCED PINNED CONTACT LINE.

by

KEVIN GLEASON

A thesis submitted in partial fulfillment of the requirements for the Honors in the Major Program in Aerospace Engineering in the College of Engineering and Computer Science and in the Burnett Honors College at the University of Central Florida Orlando, Florida

Spring Term 2014

Thesis Chair: Shawn A. Putnam
ABSTRACT

Experimental and numerical investigations of water microdroplet evaporation on heated, laser patterned polymer substrates are reported. The study is focused on both (1) validating numerical models with experimental data, (2) identifying how changes in the contact line influences evaporative heat transfer and (3) determining methods of controlling contact line dynamics during evaporation. Droplets are formed using a bottom-up methodology, where a computer-controlled syringe pump supplies water to a ∼200µm in diameter fluid channel within the heated substrate. This methodology facilitates precise control of the droplets growth rate, size, and inlet temperature. In addition to this microchannel supply line, the substrate surfaces are laser patterned with a moat-like trench around the fluid-channel outlet, adding additional control of the droplets contact line motion, area, and contact angle. In comparison to evaporation on non-patterned substrate surfaces, this method increases the contact line pinning time by ∼60% of the droplets lifetime. The evaporation rates are compared to the predictions of a commonly reported model based on a solution of the Laplace equation, providing the local evaporation flux along the droplets liquid-vapor interface. The model consistently overpredicts the evaporation rate, which is presumable due to the models constant saturated vapor concentration along the droplets liquid-vapor interface. In result, a modified version of the model is implemented to account for variations in temperature along the liquid-vapor interface. A vapor concentration distribution is then imposed using this temperature distribution, increasing the accuracy of predicting the evaporation rate by ∼7.7% and ∼9.9% for heated polymer substrates at $T_s = 50^\circ C$ and $65^\circ C$, respectively.
ACKNOWLEDGMENTS

I cannot express my appreciation for all the support, encouragement, and knowledge my adviser, Dr. Shawn Putnam, has provided me. His confidence in my abilities far exceeded my own and helped me realize my own potential, all while ensuring I maintained my sanity. I am thankful for the excellent mentorship he has provided over the past semesters, and look forward to furthering my academic success with him. I would also like to thank my thesis committee members Dr. Weiwei Deng and Dr. Lei Zhai, for their time and support.

Special thanks to Alan Nehemy, whos astonishing creativity was more than amusing, but immensely helpful within the lab. His knowledge and generosity provided an excellent learning environment, which I am grateful for.

I would also like to acknowledge and thank Adam Phillips, who shared the misery and unexpected stress levels of writing a thesis. I appreciate the help in the occasional battles against \LaTeX{}, in addition to sharing the countless, long, and frigid all-nighters in the lab. While our constant ranting may have been counterproductive, I believe we both have completed successful theses and will do the same next year.

I wish Josh Murdock the best of luck in completing his HIM thesis, who has the potential to produce outstanding work. Additionally, I look forward to continuing my work with Harish Voota as we write our Masters theses.

Additional thanks to all my friends and classmates, all who unknowingly helped by forcing me to be socially active. I extend my thanks to the Burnett Honors College, Department of Mechanical and Aerospace Engineering, and the Office of Undergraduate Research for the opportunities, support, and guidance they provided me.
TABLE OF CONTENTS

LIST OF FIGURES .. vii

LIST OF TABLES ... ix

NOMENCLATURE .. x

CHAPTER 1: INTRODUCTION 1
 1.1 Background .. 2
 1.1.1 Droplet Statics and Dynamics 2
 1.1.2 Droplet Evaporation 4
 Modes of Droplet Evaporation 5
 Self-Cooling Effects 6
 1.2 Direction of Research 8

CHAPTER 2: LITERARY REVIEW 10
 2.1 Constant Substrate Temperature 10
 2.2 Modes of Evaporation 11
 2.2.1 Constant Contact Radius 11
 2.2.2 Constant Contact Angle 13
 2.2.3 Mixed Mode 14
 2.3 Pinning Forces .. 14
 2.4 Solutions for Evaporation Flux 15
 2.4.1 Uniform Local Evaporation Flux 15
 2.4.2 Non-Uniform Local Evaporation Flux 16

CHAPTER 3: METHODOLOGY 18
3.1 Numerical Methods .. 18
 3.1.1 Formulation of Laplace Equation 18
 3.1.2 Numerical Evaluation for Evaporation Flux 22
3.2 Experimental Setup 24
 3.2.1 Substrate Fabrication 24
 3.2.2 Microdroplet Evaporation Measurements 27

CHAPTER 4: EXPERIMENTAL RESULTS 30
 4.1 Evaporation with Pinned Contact Line 30
 4.1.1 Naturally Pinned Droplet Evaporation 32
 4.1.2 Forced Pinned Droplet Evaporation 33
 4.2 Contact Line Dependence on Evaporation Rate 34

CHAPTER 5: NUMERICAL SIMULATIONS 38
 5.1 Numerical Comparisons to Experimental Results 38
 5.2 Correction to Numerical Model 41
 5.2.1 Temperature Distributions 41
 5.2.2 Modified Model Improvements 46
 Deegans Model for Evaporation Flux 47
 Popovs Model for Evaporation Rate 51

CHAPTER 6: CONCLUSIONS 54

APPENDIX A: DEEGANS MODEL MATLAB CODE 57

APPENDIX B: POPOVS MODEL MATLAB CODE 64

REFERENCES .. 73
LIST OF FIGURES

Figure 1.1: Surface tension forces on a sessile microdroplet ... 3
Figure 1.2: A typical boiling curve demonstrating the ability of various boiling regimes to remove heat flux ... 5
Figure 1.3: Modes of microdroplet evaporation ... 7
Figure 3.1: Toroidal coordinate system within a droplet ... 20
Figure 3.2: Local evaporation flux of an evaporating droplet ... 22
Figure 3.3: Vector representation of the local evaporation flux along the liquid-vapor interface ... 25
Figure 3.4: Experimental setup for data collection of microdroplet evaporation on a heated substrate ... 26
Figure 3.5: A simplified schematic of experimental setup used for laser patterning substrates. ... 27
Figure 3.6: Microdroplet analyzed through custom image analysis 29
Figure 4.1: Patterned substrate imaging, effectiveness for contact line pinning, and droplet profile evolutions during evaporation on both laser patterned and non-patterned substrates ... 31
Figure 4.2: Time evolution of non-dimensional droplet parameters during evaporation on non-patterned heated substrate .. 33
Figure 4.3: Time evolution of non-dimensional droplet parameters during evaporation on a laser patterned heated substrate .. 35
Figure 4.4: Evaporation rate per unit contact line length during an observed CCR mode of evaporation ... 37
Figure 5.1: Comparison of the numerical solution of an evaporating droplet with a pinned and depinning contact line to the experimental data on a non-patterned substrate.

Figure 5.2: Comparison of the numerical solution of an evaporating droplet with a pinned contact line to the experimental data on patterned substrates.

Figure 5.3: Temperature distribution along the liquid-vapor interface of an evaporating droplet with a pinned contact line.

Figure 5.4: Vapor concentration polynomial curve fit.

Figure 5.5: Solutions of the local evaporation flux with constant and variable surface concentration.

Figure 5.6: Vector plot of the local evaporation flux for hydrophilic droplets with constant and variable surface concentration.

Figure 5.7: Vector plot of the local evaporation flux for hydrophobic droplets with constant and variable surface concentration.

Figure 5.8: Comprehensive comparison of the numerical solutions of droplet evaporation for each of the various interpolated models, and the associated error in predicting the evaporation rate.
LIST OF TABLES

Table 4.1: Time duration of observed modes of evaporation on a non-patterned substrate .. 34

Table 5.1: Data collected [7, 8] for interpolating a temperature distribution along the liquid-vapor interface ... 43

Table 5.2: Data collected [16] for interpolating a temperature distribution along the liquid-vapor interface ... 44

Table 5.3: Error in each of the interpolated numerical models for predicting the droplets lifetime .. 53
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Area</td>
</tr>
<tr>
<td>A_f</td>
<td>Area Fraction</td>
</tr>
<tr>
<td>Bo</td>
<td>Bond Number</td>
</tr>
<tr>
<td>c</td>
<td>Vapor Concentration</td>
</tr>
<tr>
<td>c_s</td>
<td>Vapor Concentration at Liquid-Vapor Interface</td>
</tr>
<tr>
<td>c_{∞}</td>
<td>Ambient Vapor Concentration</td>
</tr>
<tr>
<td>D</td>
<td>Vapor Diffusion Coefficient</td>
</tr>
<tr>
<td>d</td>
<td>Diameter</td>
</tr>
<tr>
<td>d_p</td>
<td>Ablation Diameter</td>
</tr>
<tr>
<td>f_{eye}</td>
<td>Lens Focal Length</td>
</tr>
<tr>
<td>g</td>
<td>Gravity</td>
</tr>
<tr>
<td>H</td>
<td>Humidity</td>
</tr>
<tr>
<td>h</td>
<td>Height</td>
</tr>
<tr>
<td>i</td>
<td>Imaginary Number, $\sqrt{-1}$</td>
</tr>
<tr>
<td>J</td>
<td>Local Evaporation Flux</td>
</tr>
<tr>
<td>J_T</td>
<td>Total Evaporation Flux</td>
</tr>
<tr>
<td>\mathfrak{M}</td>
<td>Molar Mass</td>
</tr>
<tr>
<td>\dot{m}_{tv}</td>
<td>Evaporation Rate</td>
</tr>
<tr>
<td>l_c</td>
<td>Capillary Length</td>
</tr>
<tr>
<td>\hat{n}</td>
<td>Normal Vector</td>
</tr>
<tr>
<td>\mathbb{P}</td>
<td>Pressure</td>
</tr>
<tr>
<td>R</td>
<td>Contact Radius</td>
</tr>
<tr>
<td>R_c</td>
<td>Radius of Curvature</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>R_p</td>
<td>Substrate Pattern Radius</td>
</tr>
<tr>
<td>\mathcal{R}</td>
<td>Universal Gas Constant</td>
</tr>
<tr>
<td>r</td>
<td>Radius Coordinate Definition</td>
</tr>
<tr>
<td>S</td>
<td>Surface Area</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
</tr>
<tr>
<td>T_{fit}</td>
<td>Surface Fitted Temperature</td>
</tr>
<tr>
<td>T_{iso}</td>
<td>Isotherm Temperature</td>
</tr>
<tr>
<td>T_s</td>
<td>Substrate Surface Temperature</td>
</tr>
<tr>
<td>\mathcal{V}</td>
<td>Volume</td>
</tr>
<tr>
<td>Y</td>
<td>Surface Chemical Pattern</td>
</tr>
<tr>
<td>z</td>
<td>Height Coordinate Definition</td>
</tr>
</tbody>
</table>

Greek

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Toroidal Coordinate</td>
</tr>
<tr>
<td>β</td>
<td>Toroidal Coordinate</td>
</tr>
<tr>
<td>γ</td>
<td>Surface Tension</td>
</tr>
<tr>
<td>γ_{lv}</td>
<td>Surface Tension at Liquid-Vapor Interface</td>
</tr>
<tr>
<td>γ_{sl}</td>
<td>Surface Tension at Solid-Liquid Interface</td>
</tr>
<tr>
<td>γ_{sv}</td>
<td>Surface Tension at Solid-Vapor Interface</td>
</tr>
<tr>
<td>δ_p</td>
<td>Ablation Depth</td>
</tr>
<tr>
<td>ϵ</td>
<td>Convergence Tolerance, 10^{-4}</td>
</tr>
<tr>
<td>η</td>
<td>Surface Roughness</td>
</tr>
<tr>
<td>θ</td>
<td>Contact Angle</td>
</tr>
<tr>
<td>θ_a</td>
<td>Advancing Contact Angle</td>
</tr>
<tr>
<td>θ_E</td>
<td>Effective Contact Angle</td>
</tr>
</tbody>
</table>
\(\theta_r \) Receding Contact Angle
\(\Lambda_{lv} \) Latent Heat of Vaporization
\(\lambda \) Wavelength
\(\xi \) Integral Transform Variable
\(\dot{\pi}_{lv} \) Evaporation Rate per Unit Contact Line Length
\(\rho \) Density
\(\tau \) Integral Transform Variable
\(\tau_D \) Contact Line Depinning Time
\(\tau_E \) Droplet Lifetime
\(\tau_P \) Contact Line Pinning Time
\(\phi \) Azimuthal Angle Coordinate Definition

Acronyms

CAH Contact Angle Hysteresis
CCA Constant Contact Angle
CCD Charge-Coupled Device
CCR Constant Contact Radius
CHF Critical Heat Flux
DAQ Data Acquisition Board
EOM Electro-Optic Modulator
PTFE Polytetrafluoroethylene
\(\mu \)TAS Micro-Total Analysis Systems
CHAPTER 1: INTRODUCTION

Droplet evaporation, a seemingly simple process, proves to be a rather complex multiphysical phenomenon with a wide range of technical applications including spray cooling [21], DNA/RNA microarray technology [22], inkjet printing [76], fuel injection and propulsion [62], and Micro-Total Analysis Systems (µTAS) [53]. DNA microarray production, for example, uses colloids drying along the droplets contact line for pattern production (commonly referred to as coffee-ring effect). However, the variability in droplet evaporation patterns poses concerns toward reliable implementation of this technology. Spray cooling, on the other hand, produces numerous microdroplets which impact a surface for cooling. This effective thermal management strategy must maintain high heat transfer rates, which are dictated by various droplet characteristics during impact and evaporation.

Recently, droplet evaporation studies have become attractive for evaluating the efficiency of heat removal. Small liquid drops are of special interest in relation to heat transfer due to their ability to remove large heat fluxes. During droplet evaporation, a majority of the heat transferred occurs within the vicinity of the solid-liquid interface (as opposed to the liquid-vapor interface). This is because the thermal resistance of the liquid-vapor interface is 10 to 50 times greater than at the solid-liquid interface [15, 58]. Wetted droplets have a large solid-liquid interface while maintaining a low thermal resistance, providing a high heat transfer coefficient. Non-wetted droplets (larger liquid-vapor interface) have a larger thermal resistance, giving a lower overall heat transfer coefficient and a corresponding smaller heat flux. Thus, a comprehensive understanding of both the dynamics of droplet formation and droplet evaporation are crucial for state-of-the-art advancements in new technologies.
1.1 Background

1.1.1 Droplet Statics and Dynamics

A liquid droplet resting on a solid horizontal surface, termed a sessile droplet, is characterized by its interaction with a solid and surrounding medium. Assuming the drop maintains a spherical shape (valid in the absence of gravity), the contact area between the drop and solid surface remains circular. Gravity effects can be neglected for droplets with a low Bond number \((\lesssim 0.1)\) [56, 67, 68], or measuring the characteristic length smaller than the fluids capillary length. The bond number, \(Bo = \Delta \rho g R h_0 / \gamma_{lv}\), represents the importance of gravitational forces to surface tension forces; where \(\Delta \rho\) is the difference in density between the liquid and surrounding vapor, \(R\) is the contact radius, \(h_0\) is the initial drop height measured from the surface, and \(\gamma_{lv}\) represents the liquid-vapor surface tension. A low bond number \((Bo \lesssim 0.1)\) indicates the surface tension forces are at least an order of magnitude larger than the gravitational forces. Similar conclusions are found when the capillary length, \(l_c = \sqrt{\gamma_{lv}/\rho g}\), is \(\lesssim 2.7\) mm for water at room temperature \((20^\circ C)\). With this, a spherical droplet approximation is accurate for micron-sized water droplets.

In addition to the contact area, the liquid drop is more commonly identified by one of two main states (wetting or non-wetting) according to the contact angle. A wetted droplet is identified as having an inner solid-liquid contact angle measuring less than \(90^\circ\), whereas a non-wetted droplet has an angle measuring greater than \(90^\circ\) [55]. Surface tension is present between each interface of this solid-liquid-vapor system which defines the droplets wetting state. Thomas Young [74] found a relation between the surface tension and wettability of a system by an equilibrium of forces at the contact point (represented in Fig. 1.1), resulting in Young’s equation

\[
\gamma_{sv} = \gamma_{sl} + \gamma_{lv} \cos(\theta),
\]

(1.1)
Figure 1.1: A representation of the direction of the surface tension forces, γ_{sv}, γ_{sl}, and γ_{lv} for sessile microdroplet with an equilibrium contact angle, θ. Image Details: Water droplet on acrylic polymer substrate with $T_s \approx 20^\circ C$, $R \approx 276\mu m$, $\theta \approx 122^\circ$, $V \approx 122$ nL)

where θ is the contact angle and γ_{sv}, γ_{sl}, and γ_{lv} represent the solid-vapor, solid-liquid, and liquid-vapor surface tensions respectively. As seen in Eq. (1.1), the wettability of the droplet is dependent on all three phases of the system. This restricts the wettability of a solid-liquid-vapor system to remain constant under identical conditions. Unfortunately, experimental studies show this is not the case [47, 70].

Contact angle hysteresis (CAH) might help explain this discrepancy, which is dependent on droplet volume size, surface roughness, chemical attributes, and surface imperfections which are present in all real surfaces [23, 26, 32, 39, 71]. CAH is defined as the difference between the contact angle of an advancing and receding contact line (θ_a and θ_r, respectively). There exist metastable states during the transition between an advancing-receding contact line, such that the contact line is fixed/pinned. This results in a range of intermediate contact angles, $\theta_r < \theta < \theta_a$, that the droplet will experience during a transition [18].

Substantial work toward identifying how the surface effects the droplet shape resulted in
two popular equations presented by Wenzel [73] and Cassie [11],

\[
\cos \theta_{\text{rough}} = \eta \cos \theta_{\text{smooth}},
\]

\[
\cos \theta_E = A_{f_1} \cos \theta_{Y_1} + A_{f_2} \cos \theta_{Y_2},
\]

which relate the wetting area to the wettability. Wenzel’s equation (Eq. (1.2)) is a relation between the contact angle expected on an ideal surface (\(\theta_{\text{smooth}}\)) and the observed angle (\(\theta_{\text{rough}}\)) by the roughness of the surface (\(\eta\)). Cassie’s equation (Eq. (1.3)) describes the effective contact angle, \(\theta_E\), for chemically patterned surfaces, \(Y_1\) and \(Y_2\), by the fraction of total surface area of each chemical, \(A_{f_1}\) and \(A_{f_2}\). Recently, the accuracy of these equations has come into question, especially in the field of superhydrophobicity and nano-structured surfaces. For example, it was recently determined that the wettability of a liquid drop on a surface is solely dependent on the contact line, versus the entire contact area [28]. It was determined that Wenzel and Cassie equations are highly circumstantial [25, 40, 51], rather than incorrect.

1.1.2 Droplet Evaporation

In the transition from liquid to vapor, a droplet may experience a variety of modes that are dependent on surface temperature (depicted in Fig. 1.2). These modes include evaporation (Region I), nucleate boiling (Region II), and film boiling (Region IV), with an unstable transition region (Region III). A maximum heat flux is achieved such that an increase in surface temperature decreases the heat flux. This point is termed the critical heat flux (CHF), and represented in Fig. 1.2. Although all boiling regimes (Regions II - IV) are beyond the scope of this thesis, evaporation (Region I) provides the fundamental theory needed for such studies.

Much like a temperature gradient acts as a driving potential for heat transfer, a concentra-
Figure 1.2: A typical boiling curve demonstrating the ability of various boiling regimes to remove heat flux.

tion gradient is a driving potential for mass transfer (evaporation) [3]. Droplet evaporation (mass transfer of vapor) will occur in the direction of high concentration (liquid droplet) to low concentration (surrounding environment) to achieve equilibrium. This vapor concentration surrounding the droplet is governed by Ficks law of diffusion, discussed in Section 3.1.1.

Modes of Droplet Evaporation

The rate of evaporation is strongly dependent on the contact line [15, 52, 65]. A larger contact area (i.e. longer contact line) has shown to give higher rates of evaporation. This explains the faster rates of evaporation experienced when the contact line remains fixed/pinned.
Therefore, accurately tracking the motion of the contact line is crucial for predicting the evaporation rate. In general, a droplet will experience one of three identified modes of evaporation, including (1) a constant contact radius mode (CCR), where the contact line is fixed or ‘pinned’ with a varying contact angle; (2) a constant contact angle mode (CCA), where the contact line is in motion with a decreasing contact radius while the contact angle remains constant; and (3) a mixed mode, where the drop experiences both a receding contact radius and contact angle [6]. Figure 1.3 demonstrates the change in volume of a droplet during CCA (Fig. 1.3a) and CCR (Fig. 1.3b) modes of evaporation. A fourth mode is occasionally used to describe contact line dynamics during an interchanging pinning (stick) and depinning (slip) contact line. This mode is termed ‘stick-slip’. The transition between each mode is best predicted through the theory of contact angle hysteresis (CAH). A droplet has a contact angle during the advancement (increasing) of the contact line, θ_a. This provides an upper bound for an observed contact angle. Similarly, a lower bound is provided by a receding contact line, θ_r. Therefore, it can be estimated that the contact line will remain pinned during the transition between an advancing contact line, and a receding one ($\theta_r < \theta < \theta_a$) [18]. Similarly, a droplet is expected to maintain a constant contact angle during the advancing (during droplet formation) and receding (latter stages of evaporation) contact line.

Self-Cooling Effects

The rate of evaporation is dependent on the concentration of vapor at (1) the liquid-vapor interface and (2) the ambient surroundings (i.e. Ficks law of diffusion). The vapor concentration of the ambient surroundings is commonly discussed as the relative humidity, H (the ratio of ambient concentration to the saturated vapor concentration at the ambient temperature). The molecules along the liquid-vapor interface are considered saturated. The saturated vapor concentration is related to pressure and temperature by the Clausius-
Figure 1.3: Volume evolution of a droplet experiencing (a) CCA mode of evaporation (b) CCR mode of evaporation. The CCR mode of evaporation (pinned contact line) will experience a net outward directed flow toward the contact line, whereas a net inward flow toward the center line for a de-pinned or a CCA mode of evaporation. [10]. This is due to the need for mass to be replenished at the contact line, which will otherwise be removed during evaporation with a receding contact line.

\[\ln \left(\frac{P}{P_{\text{ref}}} \right) = -\frac{M \Lambda_{lv}}{R} \left(\frac{1}{T} - \frac{1}{T_{\text{ref}}} \right), \]

(1.4)

coupled with the ideal gas law. \(M\) is the molar mass (in this case, of water), \(R\) is the universal gas constant, and \(\Lambda_{lv}\) is the latent heat of vaporization. The subscript ‘ref’ refers to a known reference state.

Droplet evaporation is coupled with a decrease in droplet temperature [7, 8, 16, 38, 69], known as ‘evaporative cooling.’ The thermal resistance of the droplet causes an influence on the heat flux through the droplet, forming a temperature distribution. This cooling effect is more influential for larger droplets (larger liquid-vapor surface area), causing a larger temperature gradient due to the increased thermal resistance [16, 58]. Additionally, reports of a decrease in substrate temperature and inner fluid circulation patterns are induced [31, 34, 35, 41].
1.2 Direction of Research

A few of the basic theories of microdroplet evaporation have been presented, as further discussion increases the complexity far beyond the scope of this thesis. Significant progress has been made throughout the years toward understanding and predicting this phenomenon, although the depth of understanding remains very limiting.

In the previous discussion, droplet evaporation can be described by the dynamics of the contact line. CCR and CCA modes of evaporation allow simple models to account for the contact radius and contact angle dependence on evaporation to be modeled. It is important to note that both CCA and CCR modes are simply approximations, which gives the mixed mode as the only true mode experienced by an evaporating drop. Most of the published literature only considers mixed mode of evaporation when absolutely necessary (i.e. deviation from the other modes are too great). These inaccuracies will lead to higher evaporation rates for the CCR mode of evaporation assumption, or lower evaporation rates for CCA mode of evaporation assumption. These overlooked errors between theoretical results and experimental data poses issues in attempts to further predict the dynamics of droplet evaporation.

Research throughout the field have studied the dynamics of evaporation and put forth attempts to validating numerical predictions under the naturally occurred modes. Methods of creating an evaporating drop experiencing true CCR are essential toward confirming the accuracy of the numerical solutions. Additionally, studies of a true CCR mode of evaporation allow accurate conclusions to be made on the theorized contact line dependence on evaporative heat transfer. This work focuses on two aspects of droplet evaporation; (1) experimentally controlling the contact line dynamics (a forced pinned contact line) during evaporation and (2) simulating numerical models to compare/validate with experimental data. To do this, a method of substrate fabrication is discussed, creating a circular “moat-
like” trench which refrains further advancement the contact line. This method of substrate fabrication (1) creates a pre-known surface area during droplet evaporation, (2) forces the contact line to remain pinned during evaporation, and (3) allows experimental studies of contact angle dependence on droplet evaporation. A new technique for droplet formation is introduced, using a fluid channel within the substrate to facilitate a ‘bottom-up’ method, which (1) allows a method for well controlled droplet formation and (2) introduces a setup for ‘first time’ steady state microdroplet evaporation studies. The experimental data is then compared to numerical models which assume a pinned contact line. A modification to the implemented numerical model is presented, to provide a better fit of the experimental data. This modification, which considers an imposed temperature/vapor concentration distribution along the liquid-vapor interface, provides a better fit for the experiential data. Thus, validation of the self cooling effects (termed ‘evaporative cooling’) during evaporation, and its contribution to microdroplet evaporation are made.
CHAPTER 2: LITERARY REVIEW

Droplet evaporation has been studied for over 100 years [24, 42]. Within this time, a wide range of experimental setups have been explored. As time progressed, theoretical models have become more sophisticated in attempts to understand/predict this process. This has led to hundreds of publications on droplet evaporation, comparing droplet size, liquid properties, substrate thermal conductivity, and substrate temperatures to name a few.

2.1 Constant Substrate Temperature

The most common model of droplet evaporation is a sessile droplet placed on a substrate maintained at a constant temperature. As previously mentioned, the self-cooling effect (evaporative cooling) during droplet evaporation causes a decrease in evaporation rate. The substrates ability to replenish this bulk temperature loss is dependent on the thermal properties of the substrate [17, 38]. Lopes et al. [38] compared numerical and experimental results of droplet evaporation on silicon (high thermal conductivity) and glass (low thermal conductivity). A 10% increase in total evaporation rate was reported for the silicon substrate. This result can be explained by the results from David et al. [17]. David et al. placed a thermocouple at various locations (both inside and outside) an evaporating sessile droplet. Low thermal conductivity surfaces (PTFE and Macor) showed \(\sim 1.5^\circ \text{C} \) decrease in the bulk droplet temperature. No temperature change in the droplet was observed for high thermal conductivity surfaces (Aluminum and Titanium). Therefore, it can be concluded that low thermal conductivity substrates are not able to distribute heat to the droplet as quickly as high thermal conductivity substrates, causing a local decrease in substrate temperature [17]. Thus, a constant substrate surface temperature is only possible (theoretically) when
the substrate has an infinite thermal conductivity [61, 69]. Although, a constant substrate
temperature remains a safe approximation in the case of (1) a substrate with relatively high
thermal conductivity (e.g., copper, silicone, and aluminum) and/or (2) the droplet size is
significantly smaller than the substrate ($R_{\text{drop}} \ll R_{\text{substrate}}$) [15, 17, 46].

2.2 Modes of Evaporation

For droplets/substrates at room temperature ($T_s \approx 20^\circ\text{C}$), microliter sized droplet life-
time is typically on the order of 10^3 seconds [5, 6, 16, 52]. The lifetime of nanoliter size
droplets are expected to be an order of magnitude less [15, 50, 60]. A microdroplets lifetime
is dependent on volume. Kelly-Zion et al. [36] found a volume dependence on evaporation
rate when convection effects are considered. Convection effects were concluded to be neg-
ligible for contact radii $R \lesssim 4$ mm (i.e. negligible within the entire microdroplet regime).
Additionally, contact radius near this scale will make the spherical cap approximation invalid
($R > l_c$ for water). The volume dependence on evaporation rate is therefore avoided within
the water microdroplet regime. It has been reported that the evaporation rate is dictated by
the contact line (solid-liquid-vapor interface) [15, 57, 58]. With this, tracking and predict-
ing the motion of the contact line will provide insight on key factors effecting microdroplet
evaporation.

2.2.1 Constant Contact Radius

As mentioned, the evaporation rate is dependent on the contact line (solid-liquid inter-
face). Therefore, it should be intuitive that a droplet evaporating with a CCR (constant
contact line length) will have a shorter lifetime than a droplet experiencing CCA mode of
evaporation (a decreasing contact line length) [1, 5, 13, 15, 17, 46, 48, 52, 57, 61, 65, 69, 75].

T. Nguyen and A. Nguyen [49] studied droplet evaporation containing nanoparticles. An
increase in evaporation rate was reported with increasing nanoparticle concentration, while
the initial equilibrium contact angle remained unaffected. A similar study using surfactants
was done by Chandra et al. [13]. Chandra et al. came to the same conclusion, an increase
in surfactant concentration causes an increase in (1) evaporation rate and (2) longer CCR
mode of evaporation. Unlike T. Nguyen and A. Nguyen, Chandra et al. reported a decrease
in initial contact angle (increase in initial contact radius) with increasing surfactant concen-
tration. With recent findings on (1) contact line dependence on evaporation [15, 52, 57, 65]
and (2) relations between pinning time and wettability [46, 57], the same conclusions can
be made if no surfactants were present. Although, the presence of surfactants/nanoparticles
are known to induce a CCR due to formation of the coffee ring effect [19, 20, 54].

The CCR mode of evaporation allows a method for studying the contact angle dependence
on evaporation. Similar conclusions have been reported discussing the evolution of contact
angle and droplet volume during evaporation with a CCR [1, 16, 29, 33, 44, 45, 63, 66],
although contact line depinning mechanisms remain unclear. Sobac and Burtin [66] reported
a linear volume evolution during CCR mode of evaporation for contact angles \(\theta \lesssim 40^\circ \). As
a transition from non-linear to linear evaporation rate is difficult to depict, there is some
discrepancy at this defining transition point (i.e. \(\theta \lesssim 70^\circ \) in Ref. [29]). Linear approximation
models are available [33, 63], predicting the volume evolution and droplet lifetime with
initial contact angles of \(\theta < 90^\circ \). Schönfeld et al. [63] provided a non-linear model showing
the volume evolution follows \(t \propto L^{2/3} \). Deegan et al. [20] reported the evaporation rate
proportional to the surface area (\(\dot{m}_{lv} \propto R^2 \)), provided the evaporation flux is uniform along
the liquid-vapor interface. The lack of a well-controlled pinned contact line causes conflicting
conclusions.
2.2.2 Constant Contact Angle

Correlations between pinning forces and substrate wettability have been reported [4, 57, 65]. While methods for increasing the pinning forces have been discussed [5, 46, 50], progress toward inducing CCA mode of evaporation has shown little success. Pittoni et al. [52] reported droplets experiencing CCA modes of evaporation on smooth, low surface energy substrates once the contact line depinned. The initial pinning time is due to the surface imperfections (exhibiting CAH). Local peaks denoting metastable contact angles are observed during the “freely” moving contact line during CCA mode of evaporation. These local peaks are also found in similar studies [44, 45], although were not discussed. McHale et al. [45] found pinning forces (i.e. the transition from CCR to CCA) to be significantly altered for hydrophobic substrates. Wetted droplets ($\theta < 90^\circ$) were reported to experience CCR mode of evaporation, whereas non-wetted droplets ($\theta > 90^\circ$) experienced a CCA mode of evaporation. Similarly, a pinned contact line was observed during the initial stage of evaporation regardless of initial contact angle. Pittoni et al. and McHale et al. both reported nearly linear decrease in contact radius and apex height during the stages of evaporation experiencing a CCA.

Dash and Garimella [16] discovered minimal pinning forces for a structured superhydrophobic substrate ($\theta \sim 160^\circ$). Slight pinning times are present in smooth hydrophobic substrates ($\theta \sim 120^\circ$), supporting the previous discussion on surface imperfections and wettability pinning forces [45, 52]. Dash and Garimella [16] provided a derivation of the volume and radius time evolution for a droplet evaporating with a CCA. The squared radius was found to be proportional to time ($R^2 \propto t$), supporting the discussion by McHale et al. [45]. With the non-uniform evaporation flux solution provided by Popov [54], the time evolution of volume was found to be $V^{2/3} \propto t$. This verifies the results provided by Pittoni et al. [52], and the discussion of the ‘nearly linear’ profile evolutions by McHale et al. [45].
2.2.3 Mixed Mode

Both CCR and CCA modes of evaporation are approximations. Therefore, the mixed mode of evaporation (involving a decreasing contact radius and contact angle) provides the best physical model of droplet evaporation. Early reports by Bourgés-Monnier and Shanahan [6] reported a common final stage of droplet evaporation, where height, radius, and contact angle decrease (i.e. mixed mode). This stage typically occurs at \(t \gtrsim 90\% \) of the droplets lifetime [1, 6, 45, 48, 52], regardless of the initial evaporation modes experienced (i.e. CCR or CCA modes of evaporation). With a time dependence on both contact radius and contact angle, conclusions are not always presenting. It is believed, for this reason, that droplets experiencing mixed mode of evaporation is typically avoided and/or not discussed in detail [1, 6, 15, 38, 45, 48, 52]. To the authors’ knowledge, methods for maintaining control of the contact line during a droplets entire lifetime have not been reported. Thus, mixed mode evaporation is inevitable.

2.3 Pinning Forces

Maintaining precise control on the motion of the triple line is not an easy task. Therefore, many have worked toward understanding the cause of the motion of the triple line in attempts to predict the depinning transition. Bormashenko et al. [5] compared the droplet evaporation rate effects on high energy substrates (stainless steel, and aluminum) to low energy substrates (various polymers). The high energy surfaces showed longer CCR mode of evaporation than the low energy surfaces, while having a lower average surface roughness. The high surface roughness of the polymer substrates was determined to cause a stick-slip mode which occupied a majority of the droplets lifetime. As also reported by Pittoni et al. [52], when the surface roughness becomes large enough, the capillary forces cannot overcome the frictional forces. The result is a CCR mode of evaporation for a majority of the droplets.
lifetime. Anantharaju et al. [1] reported a relation between the observed stick-slip mode of evaporation (pinning/depinning contact line) and the spacing of pillar topology patterned on a substrate surface. Mollaret et al. [46] found high energy surfaces (aluminum) pinning forces increase with increasing temperatures. Low energy surfaces (PTFE) showed little temperature dependence on pinning force. Crafton et al. [15] reported the CCR mode of evaporation being volume dependent. This was claimed to be due to larger capillary forces in smaller droplets, therefore being more susceptible toward a retracting contact line. Blake and Coninck [4] discussed the correlation between pinning forces and wettability of the substrate. This is supported by work of Putnam et al. [57] and Mollaret et al. [46]. Hydrophilic surfaces require the greatest depinning force, which decreases as the surface becomes more hydrophobic [4, 57]. This explains why superhydrophobic surfaces typically experience CCA mode of evaporation [1, 16, 65], although not exclusively [29, 44].

2.4 Solutions for Evaporation Flux

The process of droplet evaporation is limited by (1) the diffusion transfer across the liquid-vapor interface or (2) the diffusion relaxation of the immediate surroundings. Diffusion relaxation results in a solution of a uniform evaporation flux, whereas the diffusion transfer across the liquid-vapor interface gives a non-uniform solution [20]. The uniform flux provides a simple analytical solution [45, 60], although recent studies found this, is most cases, to be incorrect [20, 33, 54, 64].

2.4.1 Uniform Local Evaporation Flux

Early studies on droplet evaporation were presented with having a uniform evaporation flux [45, 60, 75]. This assumption lead to a simple analytical solution for the total evaporation rate. McHale et al. [45] has found this model to be semiempirical with $dR/dt \ll \theta/dt$, giving
an overprediction for the surface area at which diffusion occurs. Yu et al. [75] provided an experimental study with comparisons to a fitted solution provided by McHale et al. [44]. The results showed an increasing error up to 7% as time increases, which confirms the overapproximation initially reported by McHale et al [45]. It was found, however, that the evaporation flux is uniform for a contact angle $\theta = 90^\circ$, regardless of the evaporation flux model (uniform or non-uniform evaporation flux) used [19, 20].

2.4.2 Non-Uniform Local Evaporation Flux

Recent studies worked on finding the evaporation flux valid for all contact angles. Deegan et al. [19, 20] discovered the evaporation flux of a sessile droplet is equivalent to the electrostatic field produced by a charged conductor, presented by Lebedev [37]. The resulting equation is given in Eq. (3.9) with the derivation detailed in Section 3.1.1. The solution gives a non-uniform evaporation flux along the droplets surface area for contact angles $\theta \neq 90^\circ$ [20, 33, 41, 54]. The evaporation flux, J, was found to diverge at the contact line for contact angles $\theta < 90^\circ$, yet converge to $J = 0$ for contact angles $\theta > 90^\circ$ (refer to Fig. 3.2). With the solution of the local evaporation flux provided by Deegan et al. [19, 20], Popov [54] provided an exact solution for the total mass loss of an evaporating droplet. Although these solutions are widely discussed, many have resorted to applying simplified models to obtain analytical expressions.

Hu and Larson [33] reported a model for the evaporation flux acceptable for all contact angles between $0^\circ < \theta < 90^\circ$. Exact solutions were found when $\theta = 0^\circ$ and $\theta = 90^\circ$. This solution was later analyzed by T. Nguyen and A. Nguyen [50]. While proposing a corrected model, T. Nguyen and A. Nguyen further explaining the error associated with predicting a droplets lifetime when contact angles are larger than 90°. Other models were formulated with the assumption of either (1) a pinned contact line [30, 33, 41], or (2) free contact line motion with constant contact angle [41, 54] (i.e. CCR and CCA modes of evaporation respectively.)
However, the most common numerical solution (and in *most* cases, more meaningful) is the integration of the evaporation flux to provide the rate of mass lost due to evaporation [16, 20, 29, 41, 54]. These models stem from the solution provided by Popov [54].
CHAPTER 3: METHODOLOGY

3.1 Numerical Methods

3.1.1 Formulation of Laplace Equation

In the presented numerical model, the limiting rate of mass transfer is by diffusion at the liquid-vapor interface. With this, the evaporation of a microdroplet is governed by Fick’s law of diffusion,

\[\frac{\partial c}{\partial t} = D \nabla^2 c, \quad (3.1) \]

where the diffusion constant, \(D \), is assumed to be a constant. A quasi-steady state assumption is applied when the droplet lifetime, \(\tau_E \), is much larger than \(D/R_c^2 \) (i.e. \(\tau_E \gg D/R_c^2 \)), where \(D/R_c^2 \) is known as the mass transfer Fourier number). In this case, the transient term in Eq. (3.1) is zero, resulting in the Laplace equation,

\[\nabla^2 c = 0. \quad (3.2) \]

The boundary conditions to satisfy the Laplace equation for an evaporating droplet are (1) the surface concentration (\(c_s \) - the vapor concentration at the liquid-vapor interface) is equal to the saturated vapor concentration, (2) the vapor concentration far from the droplet approaches ambient conditions (\(c_\infty \)), and (3) all vapor flux occurs at the liquid-vapor interface. The local diffusion flux along the liquid-vapor interface is given by integrating over the entire liquid-vapor surface/interface

\[J(r) = -D \nabla c. \quad (3.3) \]
The flux is negative during evaporation due to the net mass flux out of the droplet. The total evaporation flux can therefore be calculated by

\[J_T = \int_{S_{lv}} J(r, t) \cdot \hat{n} dS, \]

(3.4)

where \(S \) the surface area where diffusion occurs (i.e., the surface area of the liquid-vapor interface) and \(\hat{n} \) is the normal to the surface area.

This formulated Laplace equation with appropriate boundary conditions is identical to the solution of an electrostatic field due to a spherical cap conductor derived by Lebedev [37]. It is necessary to transform the droplet profile from cylindrical coordinates \((r, z, \phi)\) to toroidal coordinates \((\alpha, \beta, \phi)\) for this case. The relation between the two coordinate systems are

\[r = \frac{R \sinh \alpha}{\cosh \alpha - \cos \beta}, \]

(3.5)

\[z = \frac{R \sin \beta}{\cosh \alpha - \cos \beta}, \]

(3.6)

where the azimuthal angle \((\phi)\) has the same meaning in both coordinate systems. Figure 3.1 provides a visual aid demonstrating the toroidal coordinate system \((\alpha, \beta, \phi)\) for a sessile droplet in relation to the commonly implemented cylindrical coordinate \((r, z, \phi)\) system.

The solution of the Laplace equation given by Lebedev [37], in terms of vapor concentration is

\[\frac{c(\alpha, \beta) - c_\infty}{c_s - c_\infty} = \sqrt{2 \cosh \alpha - 2 \cos \beta} \times \int_0^\infty \frac{\cosh(\theta \tau) \cosh(2\pi - \beta)\tau}{\cosh(\pi \tau) \cosh(\pi - \beta)\tau} P_{1/2+i\tau}(\cosh \alpha) d\tau, \]

(3.7)

where \(P_{1/2+i\tau}(\cosh \alpha) \) is the Legendre function of complex fractional degree given by

\[P_{-1/2+i\tau}(\cosh \alpha) = \frac{2}{\pi} \coth(\pi \tau) \times \int_{\alpha}^{\infty} \frac{\sin(\tau \xi)}{\sqrt{2 \cosh \xi - 2 \cosh \alpha}} d\xi. \]

(3.8)
Figure 3.1: A 2D plot demonstrating the toroidal coordinate system \((\alpha, \beta)\) in a sessile droplet of contact radius \(R\) and its relation to the commonly known cylindrical coordinate system \((r,z)\). The blue lines represent lines of constant \(\alpha\) with a step size of 0.5 units. The red lines represent lines of constant \(\beta\) (step size of \(\pi/4\)). The contact angle is related to \(\beta\) by \(\beta = 3\pi - \theta\), which correspond the liquid-vapor interface of a sessile droplet with contact angles of \(\theta = 45^\circ\), \(90^\circ\), \(135^\circ\), and \(180^\circ\).

Substituting Eq. (3.7) into Eq. (3.3) gives the local evaporation flux

\[
J(\alpha) = \frac{D(c_s - c_\infty)}{R} \left[\frac{1}{2} \sin \theta + \sqrt{2} (\cosh \alpha + \cos \theta)^{3/2} \right] \\
\times \int_0^\infty \frac{\cosh(\theta \tau)}{\cosh(\pi \tau)} \tanh \left[(\pi - \theta) \tau \right] P_{-1/2+i\tau}(\cosh \alpha) \tau d\tau \right].
\]

(3.9)

Equation (3.9) is termed ‘Deegans model’ and is frequently referenced throughout this thesis (as well as reported in many recent publications [16, 20, 33, 41, 48, 54]). While many report the evaporation flux as \(J(r)\), the solutions are related by the coordinate transform provided.
by Eq. (3.5). It can be seen that Eq. (3.9) is not a function of ϕ (azimuthal angle). This is expected because evaporation is an axisymmetric phenomenon with axisymmetric boundary conditions.

An integration of Eq. (3.9) over the liquid-vapor interface will result in the total rate of evaporation for a particular contact radius (R) and contact angle (θ).

$$\dot{m}_{lv} = -\int_{S_{lv}} J(\alpha) \sqrt{1 + \left(\nabla h(r)\right)^2} r dr d\phi$$

(3.10)

An integral transform \[54\] simplifies the total mass loss to

$$\dot{m}_{lv} = -\pi RD(c_s - c_\infty) \left[\frac{\sin \theta}{1 + \cos \theta} + 4 \int_0^\infty \frac{1 + \cosh 2\theta \tau}{\sinh 2\pi \tau} \tanh \left[\pi - \theta \right] d\tau \right].$$

(3.11)

Equation (3.11) is termed ‘Popov’s model’ and is frequently referenced throughout this thesis.

The droplet profile during evaporation requires droplet parameters to be a function of time ($R = R(t)$ and $\theta = \theta(t)$), resulting in a differential equation with respect to time. For a pinned droplet, the contact radius remains constant (i.e. $R(t) = R_0$). Therefore, the rate of mass loss can be represented through the rate of change of the contact angle. By geometric relations of a spherical cap (see Eq. (3.15)), the evolution of the contact angle during evaporation of a pinned droplet can be represented as

$$\frac{d\theta}{dt} = -\frac{D(c_s - c_\infty)}{\rho R^2} (1 + \cos \theta)^2 \left[\frac{\sin \theta}{1 + \cos \theta} + 4 \int_0^\infty \frac{1 + \cosh 2\theta \tau}{\sinh 2\pi \tau} \tanh \left[\pi - \theta \right] d\tau \right].$$

(3.12)

Similarly, $\theta(t) = \theta_0$ during a CCA mode of evaporation. The evaporation rate is modeled by the change in contact radius as

$$\frac{dR}{dt} = \frac{D(c_\infty - c_s)}{\rho R} \frac{(1 + \cos \theta)^2}{2 + \cos \theta} \left[\frac{1}{1 + \cos \theta} + 4 \int_0^\infty \frac{1 + \cosh(2\theta \tau)}{\sin \theta \sinh(2\pi \tau)} \tanh \left[\pi - \theta \right] d\tau \right].$$

(3.13)
Figure 3.2: Plot representing the local evaporation flux, J, along the droplet surface area for various contact angles. The dashed lines are the solution for wetted droplets ($\theta < 90^\circ$), which diverge toward the contact line. The solid lines are the solution of non-wetted droplets ($\theta > 90^\circ$), and the dot-dashed line represents a uniform evaporation flux ($\theta = 90^\circ$). Numerical data: $D = 26.1 \text{ mm}^2, c_s = 1.83529\times10^{-8} \text{ g/mm}^3, c_\infty = 7.34116\times10^{-9} \text{ g/mm}^3$.

3.1.2 Numerical Evaluation for Evaporation Flux

The evaluation of the double integral in Eq. (3.9) (or the triple integral in Eq. (3.10)) is not trivial. While many provide a plot (similar to Fig. 3.2) demonstrating the numerical evaluation of Eq. (3.9) [16, 33, 41, 64], no information to the authors knowledge, is published explaining the numerical procedure for reproducing these plots. Therefore, this section is devoted to describing the numerical approach that was taken toward evaluating Eq. (3.9) for the local evaporation flux along the droplets liquid-vapor interface.
The toroidal coordinate α specifies a single point on the liquid-vapor interface. If α were to remain constant, an evaluation of Eq. (3.9) will provide the evaporation flux at this point (i.e. local evaporation flux). The evaluation of a multiple integral must be performed “inside-out” meaning, τ is constant as the Legendre function is integrated with respect to ξ. With this, integration can be performed on Eq. (3.8) by implementation of the trapezoidal rule [59] (more sophisticated numerical methods are not needed because the errors in the integration methods are far less than the errors in the theory itself).

The lower bounds are $\alpha = 0$ and $\tau = 0$ (i.e. the apex of the droplet, also see Fig. 3.1). Due to the hyperbolic cotangent term in Eq. (3.9), a singularity is presented when $\tau = 0$. Therefore, the first constraint is set such that $\tau > \epsilon$, where ϵ is some tolerance which is defined as $\epsilon = 10^{-4}$. Performing the trapezoidal rule to Eq. (3.8), a second constraint is found. A singularity is present when $\xi = \alpha$. Therefore, (as done with the lower bound for τ) the lower bound for ξ is set to $\xi - \alpha > \epsilon$. The evaluation of the Legendre function converged for $\alpha - \xi \approx 10$ (with step size of $\Delta \xi = 0.01$). The result is the modified Legendre function for integration.

$$P_{-1/2+i\tau}(\cosh \alpha) = \frac{2}{\pi} \coth(\pi \tau) \times \int_{\alpha+\epsilon}^{10-(\alpha+\epsilon)} \frac{\sin(\tau \xi)}{\sqrt{2 \cosh \xi - 2 \cosh \alpha}} d\xi, \quad \text{for } \tau > \epsilon \quad (3.14)$$

The Legendre function in Eq. (3.9) is now single valued during implementation of the trapezoidal rule with respect to τ, and the only singularity present during the evaluation of Eq. (3.9) is the Legendre function at $\tau = 0$. The absolute maximum value of τ was found to be $\tau \approx 225$. This value of τ causes $\cosh(\pi \tau) \to 10^{308}$, which nears the maximum floating point. Although, the solution converges for $\tau \approx 10$ with sufficient accuracy when $\Delta \tau = 0.01$.

The solution of Eq. (3.9) is now set up to provide the evaporation flux at a single point along the droplets liquid-vapor interface/surface (α is single valued). The final step is to evaluate Eq. (3.9) across the entire liquid vapor interface ($0 \leq \alpha < \infty$). Convergence is
achieved for $\alpha \approx 5$ using $\Delta \alpha = 0.1$. A summary of the ranges of $\alpha, \tau,$ and ξ for evaluating Eq. (3.9) are

\[
J(\alpha) \begin{cases}
0 < \alpha \lesssim 5 & \Delta \alpha = 0.1, \\
\epsilon < \tau \lesssim 10 & \Delta \tau = 0.01, \\
\alpha + \epsilon < \xi \lesssim 10 - (\alpha + \epsilon) & \Delta \xi = 0.01.
\end{cases}
\]

The MATLAB code used to evaluate Eq. (3.9) is provided in Appendix A. The step by step evaluation helps identify acceptable lower and upper bounds to avoid long computation time and an ill-behaved function. The evaluation of Eq. (3.9) providing the evaporation flux along the droplets liquid vapor interface for various contact angles ($30^\circ < \theta < 135^\circ$) is represented in Fig. 3.2. This plot is similar to ones provided in a number of publications [16, 33, 41, 48, 64], confirming there are no errors in the code. It has been noticed that the provided results may lack clarity, diminishing its importance. Therefore, the evaporation flux is plotted in a vector notation (blue arrows, see Fig. 3.3) along the liquid-vapor interface (red curves, see Fig. 3.3) for a wetted droplet ($\theta = 45^\circ$) and non-wetted droplet ($\theta = 135^\circ$). Symbols in the plot are to act as guides for relating the evaporation flux plots (Figs. 3.3a and 3.3b) to the vector plots (Figs. 3.3c and 3.3d). For contact angles $\theta < 90^\circ$, the evaporation flux diverges at the contact line. Contrary, for $\theta > 90^\circ$, the evaporation flux converges to $J = 0$ at the contact line. Moreover, the evaporation flux is uniform along the entire liquid-vapor interface for $\theta = 90^\circ$.

3.2 Experimental Setup

3.2.1 Substrate Fabrication

The substrates used in the experiments are clear acrylic polymer disks (1 in. diameter, 0.25 in. thickness). The method of droplet formation is by an inner fluid channel. Figure 3.4a shows a circular fluid channel drilled within the substrate ($d \approx 1.6mm$). A micro drillbit
Figure 3.3: Plots representing the local evaporation flux, J, along the droplet surface area for contact angles of (a) $\theta = 45^\circ$ (hydrophilic) and (b) $\theta = 135^\circ$ (hydrophobic). The vector plot representation of the evaporation flux on a droplet surface are represented in (c) and (d), respectively. The vector plot provides a clear demonstration of the distinct difference in the evaporation flux solutions between wetting and non-wetting droplets. The symbols are included to provide a visual guide for relating the evaporation flux plots to vector plots. Numerical data: See Fig. 3.2.
Figure 3.4: (a) Sample substrate with laser pattern and inner fluid channel supply. (b) Schematic of experimental setup for a ‘force-fed’ microdroplet evaporation.

(d = 200µm) is used to drill a hole normal to the surface, intersecting the inner substrate channel near the center of the substrate. Prior to experiments, the substrate is cleaned with ethanol and dried with pressurized air to remove all debris.

A femtosecond laser (3 Watt Coherent Chameleon Ultra I) is used to create a circular pattern centered around the micro-drilled hole. This laser patterning process is based on ultra-short pulses acting as an intense heat source [72], allowing a direct solid-vapor transition (ablation) [14]. Prior to laser patterning, the substrate surface is colored with a black Sharpie® permanent marker. Once dried, a second layer of black Expo® dry erase marker is colored over the permanent marker layer. This combination of layer preparation facilitates heat absorption (using the dry erase marker) via the laser for the subsequent polymer sur-
face ablation, while refraining from affecting the surrounding non-targeted zone (using the permanent marker). The prepared substrate is placed on a six degree of freedom patterning stage (y, z, θ_x, X, Y, Z as shown in Fig. 3.5). For patterning the polymer substrates, the laser output parameters are a pulse width of 140 fs at 80MHz with a wavelength of $\lambda = 795$nm and a steady state base power of ~ 2 Watts. An Electro-Optic Modulator (EOM) is used to control of the pulse duration, where a user-defined voltage function output to a DAQ board controls the EOM. The sample is rotated manually at $\dot{\omega} \approx 12$rpm during the ablation procedure. This procedure produces a pattern spot size of $d_p \approx 100 \mu$m, with a penetration/ablation depth of $\delta_p \approx 50 \mu$m.

3.2.2 Microdroplet Evaporation Measurements

For all experiments, 0.2μm filtered water is used as the working fluid. Prior to measurements, one end of the substrate channel is connected to a syringe pump (for supplying the water) and the other end of the fluid channel extends to a fluid dump. Water is continuously...
pumped through the channel system into the fluid dump to remove any possible air bubbles trapped within the system during the initial setup. Once the air bubbles are removed, the syringe pump is stopped and a luer lock is used to seal the channel extending to the fluid dump (thus, directing the water to the substrate surface through the microchannel for forming droplets). A flow rate of \(2 \, \mu\text{L/min} \) (\(\approx 33 \, \text{nL/s} \)) is used for forming droplets within the patterned structure.

The substrate is placed on a custom electric \(\sim 75\Omega \) heater/sample stage. The substrate temperature is regulated with a temperature controller coupled to a K-type thermocouple. The sample stage temperature was calibrated with comparison to boiling water at 100°C, additional T-type thermocouple/multimeter measurements and standard thermometer measurements. The measurement error in temperature from the temperature controller and electric heater device is \(T_s \pm 1.5^\circ\text{C} \).

For video recordings, a CCD camera (Point Grey Flea3) is coupled with a visible achromatic eyepiece lens (\(f_{\text{eye}} = 200\text{mm} \)) and line-replaceable Mitutoyo long working distance microscope objectives (5\(\times \) and 20\(\times \)). Video streaming is acquired at 20 fps with a CCD region-of-interest of 960\(\times \)540 pixels. The magnification of the 5\(\times \) and 20\(\times \) objectives provided image resolutions of \(\sim 2.74 \, \mu\text{m/pixel} \) and \(\sim 0.685 \, \mu\text{m/pixel} \), respectively. A schematic of the experimental setup for data collection is shown in Fig. 3.4b.

A custom image analysis LabVIEW program facilitates data collection [57, 58]. The image analysis program continuously captures images from the CCD camera and analyzes the droplet through a greyscale edge-detection technique. The image analysis/acquisition program measures the contact radius \(R \), contact angle \(\theta \), and apex height \(h \) by incorporating a spherical cap fit to the edge contour (see Fig. 3.6). The volume of the droplet is then calculated through a spherical cap relation.

\[
V = \frac{\pi R^3}{3 \sin^3\theta} \left(2 - 3 \cos\theta + \cos^3\theta\right) \quad (3.15)
\]
Figure 3.6: A sample of a trimmed image analyzed through a custom LabVIEW code. The red lines provide the edge contour, and the yellow line provides a best circular fit for the droplet. The droplet profiles are then found by measuring the radius, contact angle, and height of the circular fit line.

The proposed method for droplet formation does influence the evaporation rate slightly. For example, once the syringe pump is stopped, there is still fluid flow into the droplet due to the pressure buildup within the fluid channel leading to the droplet. This causes the measured evaporation rate to be slower than other reported values (see Fig. 8 in Ref. [57]). This error is minimized by evaluating numerical predictions using the measured step evolution of the droplets profile (i.e. R and θ), thus simulating an equivalent evaporation rate. Further confirmation of the error associated with the implemented fluid channel is through comparisons of droplet evaporation on (1) non patterned substrates and (2) manually placed onto the substrate (i.e. not implementing the inner substrate fluid channel, discussed in Section 4.2). It is concluded that the decreased evaporation rate due to the excess flow once the syringe pump has stopped is minimal, and remains within the error of measurements.
CHAPTER 4: EXPERIMENTAL RESULTS

4.1 Evaporation with Pinned Contact Line

The droplet profile is measured during evaporation on both (1) a laser patterned acrylic polymer substrate (Fig. 4.1c) and (2) a non-patterned acrylic polymer substrate (Fig. 4.1b). The laser patterned substrate classifies a forced pinned contact line due to the step edge pattern, whereas droplet evaporation remains unaffected (i.e. naturally pinned) on the non-patterned substrate. The droplet contact angle on the non-patterned substrate is predicted by Youngs’ Equation. The equilibrium contact angle for the polymer substrate is $\theta \approx 72.8^\circ \pm 3^\circ$. Therefore, the contact radius is dependent on the infused volume for the non-patterned substrates. Due to forcing the contact line to be within the patterned section (for the patterned substrates), a contact angle can be achieved on patterned substrates such that $\theta > \theta_a$. The droplet remains within the laser patterned moat-like trench for $\theta \lesssim 120^\circ$. For $\theta > 120^\circ$, pinning forces are not enough to keep the droplet within the patterned region. Thus, for $\theta > 120^\circ$, the droplet contact line depins from the patterned section and is no longer effective at pinning the contact line. The maximum observed contact angle before depinning is $\theta_{max} \approx 1.5\theta_E$, allowing the formation of both wetted and non-wetted droplets under identical conditions.

For initial measurements, each substrate is heated to elevated temperatures of 50°C and 65°C. An infuse rate of 2 μL/min (\approx 33 nL/s) is used during the droplet formation. Data recordings are started automatically once the syringe pump has been stopped (through a custom LabVIEW program). Images are captured and analyzed every 0.25s (4 fps). The droplet parameters ($R, \theta, V, \text{ and } h$) are non-dimensionalized with respect to the initial
Figure 4.1: (a) A surface view and (d) a zoomed cut view of a laser patterned polymer substrate with a pattern radius $R_p \approx 500 \mu m$ is shown (fluid-flow channel $d \approx 200 \mu m$, $d_p \approx 100 \mu m$, $\delta_p \approx 50 \mu m$). The effectiveness of the pattern to pin the contact line can be seen when comparing droplets (b) and (c) of similar volumes ($V = 122 \pm 1 \text{nL}$). An non-patterned polymer substrate is represented in (b), which demonstrates a naturally formed droplet with the equilibrium contact angle according to Young’s equation ($R \approx 450 \mu m$, $\theta \approx 72.6^\circ$). A patterned substrate is represented in (c), which provides a method for forcing the contact line to be fixed and a contact angle $\theta > \theta_E$ ($R \approx 276 \mu m$, $\theta \approx 122^\circ$). The droplet profile during evaporation of (b) a naturally pinned droplet (dashed lines) and (c) a force pinned droplet (solid lines) with surface temperatures of $T_s = 50^\circ C$ and $T_s = 65^\circ C$ are shown in (e) and (f) respectively. It is important to note the dramatic increase in the contact line pinning time between the two substrates ($\sim 0.2 \tau_E$ to $\sim 0.8 \tau_E$) under otherwise identical conditions.
conditions \((R_0, \theta_0, V_0, \text{ and } h_0)\). Figures 4.1e and 4.1f provide plots of the dimensionless droplet-profile for both substrates (patterned and non-patterned) as a function of the droplet lifetime \((t/\tau_E)\) at \(T_s = 50^\circ\text{C}\) and \(T_s = 65^\circ\text{C}\), respectively. The image analysis software is terminated when the droplet becomes significantly small (due to increased error in the edge-finding software for droplet dimensions (i.e. \(R\) and \(h\)) comparable to five times the imaging resolution (e.g. \(R \lesssim 5\mu\text{m}\) and/or \(h \lesssim 5\mu\text{m}\) with the 20× objective)). As shown in Fig. 4.1, the patterned substrate is effective in controlling the contact line, where there are distinct differences between the plotted microdroplet parameters during evaporation on the non-patterned substrate (naturally pinned, represented by dashed lines) and the patterned substrate (forced pinned, represented by solid lines).

4.1.1 Naturally Pinned Droplet Evaporation

Droplet evaporation on a non-patterned substrate is shown in Fig. 4.2. The observed CCR mode of evaporation is represented by \(\tau_P\). Regardless of the surface temperature, the time at which the contact line naturally depins is \(\tau_D \approx 0.2\tau_E\). This is supported by results by Mollaret et al. [46]. Once the contact line has depinned, the deviation between the two non-patterned cases increases significantly. For \(T_s = 50^\circ\text{C}\), the droplet has no distinct characteristics of evaporation for \(0.2\tau_E \lesssim t \lesssim 0.75\tau_E\). This mode of evaporation is best classified as mixed mode. The contact line depinning in a stick-slip mode of evaporation can be seen at \(\sim 0.75\tau_E\) and \(\sim 0.95\tau_E\), where the contact angle experiences a spike increase. The minimum contact angle before the depinning for both data sets is \(\theta_r \approx 44^\circ\). Droplet evaporation at \(T_s = 65^\circ\text{C}\) experiences different characteristics. Once the contact line has depinned \((t \sim 0.2\tau_E)\), the contact angle stays relatively constant until \(t \sim 0.6\tau_E\). This region of evaporation can be estimated as CCA mode of evaporation. Preceding this second region of evaporation, no distinct characteristics are observed for \(0.6\tau_E \lesssim t \lesssim 0.98\tau_E\). Near the end of the droplets lifetime, a large spike in the contact angle is seen at \(\sim 0.98\tau_E\). This
Figure 4.2: Droplet evaporation on an non-patterned polymer acrylic substrate at elevated surface temperatures of (a) $T_s = 50^\circ\text{C}$ and (b) $T_s = 65^\circ\text{C}$. The arrow represents the pinning time (τ_p, the duration of the CCR mode of evaporation), and a dashed line marks the receding contact angle (θ_r). The effect of surface temperature on droplet evaporation characteristics is evident once the contact line has depinned ($t \gtrsim 0.2\tau_E$). The depinning angle ($\theta_r \approx 44^\circ$) is found to be consistent between the two cases. Experimental Data: (a) $T_s = 50^\circ\text{C}$, $R_0 \approx 460.9\mu\text{m}$, $\theta_0 \approx 62.9^\circ$, $V_0 \approx 104.4\text{ nL}$, $h_0 \approx 278.8\mu\text{m}$, $\tau_E \approx 38.25\text{s}$; (b) $T_s = 65^\circ\text{C}$, $R_0 \approx 576.8\mu\text{m}$, $\theta_0 \approx 68.1^\circ$, $V_0 \approx 232.2\text{ nL}$, $h_0 \approx 380.9\mu\text{m}$, $\tau_E \approx 42.0\text{s}$.

is due to the contact angle $\theta = \theta_r$. Overall, there is an observable difference between droplet evaporation on a non-patterned substrate at different elevated surface temperatures. This is caused by the different time duration of each mode of evaporation (CCR, CCA, mixed mode, then stick-slip). Table 4.1 summarizes the transition time period between each mode of evaporation.

4.1.2 Forced Pinned Droplet Evaporation

Droplet profile data during evaporation on a patterned substrate of $R_p \approx 600\mu\text{m}$ is shown in Fig. 4.3. The CCR mode of evaporation dominates the droplets lifetime ($\tau_P \approx 0.8\tau_E$) on the laser patterned substrate. As reported for the non-patterned substrate, the pinning time is not found to be dependent on surface temperature. Depinning occurs once the con-
Table 4.1: Summary of the time period associated with each observed mode of evaporation on a non-patterned substrate with respect to the droplets lifetime, τ_E.

<table>
<thead>
<tr>
<th>Mode</th>
<th>$T_s = 50^\circ$C</th>
<th>$T_s = 65^\circ$C</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCR</td>
<td>$t \lesssim 0.2\tau_E$</td>
<td>$t \lesssim 0.15\tau_E$</td>
</tr>
<tr>
<td>CCA</td>
<td>$0.15\tau_E \lesssim t \lesssim 0.6\tau_E$</td>
<td></td>
</tr>
<tr>
<td>Mixed</td>
<td>$0.2\tau_E \lesssim t \lesssim 0.75\tau_E$</td>
<td>$0.6\tau_E \lesssim t \lesssim 0.98\tau_E$</td>
</tr>
<tr>
<td>Stick-Slip</td>
<td>$t \gtrsim 0.75\tau_E$</td>
<td>$t \gtrsim 0.98\tau_E$</td>
</tr>
</tbody>
</table>

tact angle reaches $\theta \sim 35^\circ$, which is considerably less than the receding contact angle on the non-patterned substrate ($\theta \sim 44^\circ$). Once the contact line has depinned, the contact angle continues to decrease along with a decreasing radius. Therefore, the end of a forced pinned droplets lifetime ($t \gtrsim 0.8\tau_E$) is best classified as mixed mode of evaporation. Only two modes of evaporation are observed on the patterned substrate, compared to three or four which occurred on the naturally pinned substrate (depending on the substrate temperature). Moreover, the CCR mode of evaporation dominated $\sim 80\%$ of the droplets lifetime. Thus, a forced pinned contact line on the laser patterned substrate simplifies the contact line dynamics during microdroplet evaporation. Unlike the non-patterned substrate, the droplet evaporation characteristics with a forced pinned contact line are consistent at both surface temperatures; thus facilitating improved experimental methods for predicting droplet evaporation with higher accuracy.

4.2 Contact Line Dependence on Evaporation Rate

While there are a substantial amount of reports demonstrating contact line dependence on evaporation rate [8, 46, 57], Dash and Garimella [16] found a contact angle dependence on hydrophobic surfaces ($\theta \gtrsim 110^\circ$). The solution of Deegans model supports this conclusion (see Fig. 3.3d). To test this contact angle dependence, a series of experiments are performed.
These experiments include measuring the evaporation rate of droplets on (1) non-patterned substrates (both manually placed from above, and using the described inner fluid channel), and (2) five patterned substrates (R\textsubscript{I} \approx 260\,\mu m, R\textsubscript{II} \approx 380\,\mu m, R\textsubscript{III} \approx 450\,\mu m, R\textsubscript{IV} \approx 480\,\mu m, and R\textsubscript{V} \approx 600\,\mu m). Both patterned and non-patterned substrates are used to facilitate experiments of hydrophilic (non-patterned) and hydrophobic (patterned) substrates. Specifically, the patterned substrates allow contact angles above 110° to compare with Dash and Garimella [16]. Additionally, the manually placed droplet methodology introduces a comparative study on microdroplet evaporation implementing the inner substrate fluid channel. These results are used to determine the magnitude at which the inner fluid channel effects a droplets evaporation rate. For all experiments conducted (at various substrate temperatures of T\textsubscript{s} = 21°C, T\textsubscript{s} = 35°C, T\textsubscript{s} = 50°C, T\textsubscript{s} = 65°C, and T\textsubscript{s} = 75°C), the large range of initial
contact angles measured is $57^\circ < \theta_0 < 127^\circ$.

The evaporation rate (\dot{m}_{lv}) is measured through a linear fit of the measured change in volume over the droplets lifetime (i.e. $d\mathcal{V}/dt$ and normalized with respect to the contact line length before depinning (see Eq. (4.1)) [57]. Thus, the evaporation rates of droplets with dissimilar contact angles are compared directly by relating the contact line length (i.e. testing the contact line dependence).

$$\dot{\pi}_{lv} = \frac{\dot{m}_{lv}}{2\pi R_0} \tag{4.1}$$

At least four experiments are conducted per setup (e.g. patterned substrate $R_p^I \approx 380\mu\text{m}$, $T_s = 50^\circ\text{C}$, formed using inner fluid channel), totaling 342 data sets. This cumulative data set allows the evaluation of the error in image analysis (e.g., linear fitted evaporation rate, observed depinning time) and evaluation for the possible effects on excess flow into the droplet once the syringe pump has stopped. Figure 4.4 plots the measured evaporation rate per unit contact line length ($\dot{\pi}_{lv}$) for each substrate/temperature/droplet formation setup. As shown, $\dot{\pi}_{lv}$ follows the same trend as the substrate temperature is increased (regardless of the substrate, initial contact angle, and droplet formation method). Therefore, a single trend line can be introduced for $\dot{\pi}_{lv}(T_s)$ (independent of θ_0), contradicting Deegans model [19, 20] and reports by Dash and Garimella [16]. The largest error is observed with the non-patterned substrates implementing the channel formation (purple stars in Fig. 4.4) at high substrate temperatures. This is best explained by the error in determining the depinning time (τ_D) and the previously mentioned excess flow into the droplet causing a suppression in the evaporation rate. Overall, the averaged evaporation rate per unit contact line length ($\dot{\pi}_{lv}$) remains within the error of measurement for the entire data set.

Two conclusions are made from the results in Fig. 4.4; (1) the method of droplet formation does not affect the evaporation rate significantly enough to provide misleading results,
Figure 4.4: Plot of the evaporation rate per unit contact line length during an observed CCR mode of evaporation (prior to a depinned contact line, $\dot{\pi}_{t<\tau_D}$) for various experiments on both patterned and non-patterned acrylic polymer substrates at elevated temperatures. ‘Channel formation’ refers to drops formed using the presented inner substrate fluid channel. ‘Drop Formation’ refers to droplets manually placed onto the substrate from above, using a needle/syringe. Each data point is comprised of at least four experiments.

and (2) the evaporation rate (\dot{m}_{lm}) has no distinct dependence on a droplets initial contact angle (for $\theta_0 \lesssim 127^\circ$). While Dash and Garimella [16] focused on superhydrophobic surfaces ($\theta \gtrsim 160^\circ$) which cannot be produced with the patterned substrates, the results in Fig. 4.4 contradicts the solution provided by Deegans model (see Fig. 3.3d). Regardless, with no noticeable effect on the evaporation rate, the discussed method of droplet formation (using the ‘bottom-up’ methodology with the inner substrate fluid channel), not only allows for steady-state microdroplet evaporation studies, but has direct implementation toward micro-cooling systems.
CHAPTER 5: NUMERICAL SIMULATIONS

5.1 Numerical Comparisons to Experimental Results

Figures 5.1 and 5.2 show comparisons between Popov’s model (Eq. (3.11)) and the measured droplet volume. The experimental data is used to provide the time evolution of the contact angle for evaluating Popov’s model. Numerical solutions are evaluated for both cases (1) a pinned contact line (dashed lines, termed ‘Pinned Numerical Model’) and (2) a depinning contact line (dotted lines, termed ‘Depinned Numerical Model’). For a laser patterned substrate (Fig. 5.2), the two solutions coincide because the contact radius is constant (i.e. the contact line is pinned by the laser pattern trench). Therefore, only the pinned numerical solutions are reported for the laser patterned substrates.

Droplet evaporation on a non-patterned substrate (naturally pinned) is shown in Fig. 5.1. Comparisons of the pinned and depinned model are made for (1) a smaller droplet ($V_0 \approx 100$ nL, $\theta_0 \approx 63^\circ$, see Fig. 5.1a) and (b) a larger droplet ($V_0 \approx 400$ nL, $\theta_0 \approx 69^\circ$, see Fig. 5.1b). As shown in Fig. 5.1, the pinned model deviates near the end of the droplets lifetime. The subplot for the radius evolution during evaporation shows a pinned contact line is not an accurate model for the non-patterned substrates. When evaluating the pinned model, the model assumes the contact line (where a majority of the evaporation takes place, see Fig. 4.4) is larger than that observed experimentally. This result verifies our expectation of the increased role of contact line evaporation. The depinned model predicts a longer droplet lifetime and is a better representation of the evaporation on a non-patterned substrate.

Droplet evaporation on a patterned substrate $R_p \approx 475\mu$m and $R_p \approx 600\mu$m are shown in Fig. 5.2a and Fig. 5.2b respectively. The pinned numerical solutions also provide reasonable
predictions for evaporation on the patterned substrates (see Fig. 5.2). Subplots of the contact radius are included for representing the accuracy in assuming a pinned contact line during evaporation. The error in the numerical model for predicting the droplets lifetime for both cases ($T_s = 50^\circ C$ and $T_s = 65^\circ C$) are comparable.

In all cases, the Popovs model overpredicts the evaporation rate. Because the fluid channel is located within the heated substrate, the water is preheated prior to droplet formation. Therefore, it is assumed that the initial bulk fluid temperature is equal to the substrate temperature. Once the infuse rate is terminated, it is expected that bulk temperature will decrease during evaporation [17]. This results in a temperature distribution along the liquid-vapor interface [7, 8, 16]. The numerical results in Fig. 5.1 and Fig. 5.2 are evaluated with constant surface vapor concentration (i.e. constant temperature) along the entire liquid-
Figure 5.2: Comparison between the measured volume change (solid red lines) to the numerical solution of Eq. (3.11) for droplets on a patterned substrate of (a) $R_p \approx 475 \mu m$ and (b) $R_p \approx 600 \mu m$. Numerical solutions were evaluated by assuming a pinned contact line. A subplot is provided of the normalized radius profile. All numerical predictions assume constant vapor surface concentration, c_s, at the substrate surface temperature. Experimental Data: (a) $T_s = 50^\circ C$, $c_s = 8.3153E-8 g/mm^3$, $R_0 \approx 469.2 \mu m$, $\theta_0 \approx 121.0^\circ$, $\Delta h_0 \approx 583.6 \text{ nL}$, $h_0 \approx 828.0 \mu m$; (b) $T_s = 65^\circ C$, $c_s = 1.6096E-7 g/mm^3$, $R_0 \approx 610.0 \mu m$, $\theta_0 \approx 77.4^\circ$, $\Delta h_0 \approx 343.9 \text{ nL}$, $h_0 \approx 485.8 \mu m$.

vapor interface. Recent publications by Briones et al. [7, 8] show that the temperature at the apex of wetted droplets is $\sim 5\%$ lower than the at the contact line. Dash and Garimella [16] show a temperature nearing 30% lower at the apex for large contact angles ($\theta \sim 160^\circ$). This supports the consistent overprediction by Popovs model. When the surface temperature distribution is considered, the vapor concentration decreases from the contact line to the apex. The evaporation flux will therefore follow the same trend, increasing the predicted droplet lifetime. The increased degree of overprediction for the higher substrate temperatures (Fig. 5.2b) also supports this hypothesis because larger temperature gradients are expected (thus causing a larger suppression of the evaporation flux).
5.2 Correction to Numerical Model

Proposed is a correction to Deegans model and Popovs model based on the temperature distribution along the liquid-vapor interface. A temperature distribution will change the vapor concentration along the liquid-vapor interface (a boundary condition used while deriving Deegans model). This will impose a concentration gradient along the interface (i.e. variable \(c_s\)), thereby changing the evaporation flux (governed by diffusion). The modification is to change the constant surface concentration \((c_s)\) to a variable surface concentration along the liquid-vapor interface \((c_s(\alpha, \theta))\) dependent on the temperature distribution within the droplet. Equations (5.1) and (5.2) represent the modified versions of Deegans model and Popovs model, respectively.

\[
J(\alpha) = \frac{D(c_s(\alpha, \theta) - c_\infty)}{R} \left[\frac{1}{2} \sin \theta + \sqrt{2}(\cosh \alpha + \cos \theta)^{3/2} \right. \\
\times \left. \int_0^\infty \frac{\cosh(\theta \tau)}{\cosh(\pi \tau)} \tanh \left[\frac{(\pi - \theta)\tau}{\tau}\right] P_{-1/2 + i\tau}(\cosh \alpha) \tau d\tau \right] \tag{5.1}
\]

\[
\dot{m}_{lv} = -\pi RD(c_s(\alpha, \theta) - c_\infty) \left[\frac{\sin \theta}{1 + \cos \theta} + 4 \int_0^\infty \frac{1 + \cosh 2\theta \tau}{\sinh 2\pi \tau} \tanh \left[\frac{(\pi - \theta)\tau}{\tau}\right] d\tau \right] \tag{5.2}
\]

5.2.1 Temperature Distributions

Six cases are shown in Fig. 5.3 to represent the effect of (1) contact angle and (2) substrate surface temperature on the interfacial temperature distribution during droplet evaporation. The temperature gradient (contact line to apex) increases with increasing contact angle. As a result, the numerical solutions of Deegans model (Eq. (3.9)) and Popovs model (Eq. (3.11)) are less accurate for larger contact angles. Introducing a variable surface concentration along the liquid-vapor interface to Deegans model and Popovs model (Eqs. (5.1) and (5.2), respectively) will not only provide a better physical model, but they also provide higher
accuracy when predicting droplet evaporation with large initial contact angles.

Measurements of the temperature at the liquid-vapor interface have been reported [2, 27, 43, 77], although it is not practical in this study. Therefore, numerical simulations will provide a feasible method of estimating the temperature distribution as a result of the self-cooling effects during droplet evaporation. References (1) Briones et al., Fig. 8 [7] and Fig. 4 [8]; and (2) the supporting information accompanying Dash and Garimella [16] are interpolated for estimating a temperature distribution along the liquid-vapor interface. Both figures by Briones et al. [7, 8] provide isotherm contour lines at various time evolutions during
Table 5.1: Values of α and θ corresponding to an intersection between an isotherm line and liquid-vapor interface from [7, 8]. Dashed lines (−) denotes no intersection for a given isotherm line. The substrate temperature in all cases is $T_s = 373$ K (100‰).

<table>
<thead>
<tr>
<th>Image 1 ($t = t_1$)</th>
<th>Fig. 8 - Reference [7]</th>
<th>Fig. 4 - Reference [8]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>α</td>
<td>θ</td>
</tr>
<tr>
<td>360 K</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>365 K</td>
<td>0.3</td>
<td>78.5°</td>
</tr>
<tr>
<td>370 K</td>
<td>2.2</td>
<td>78.5°</td>
</tr>
<tr>
<td>373 K</td>
<td>5.0</td>
<td>78.5°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Image 2 ($t = t_2$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
</tr>
<tr>
<td>365 K</td>
</tr>
<tr>
<td>370 K</td>
</tr>
<tr>
<td>373 K</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Image 3 ($t = t_3$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
</tr>
<tr>
<td>370 K</td>
</tr>
<tr>
<td>373 K</td>
</tr>
</tbody>
</table>

droplet evaporation. An approximate value of α (representing a point along the liquid-vapor interface) is found at the intersection of the liquid-vapor interface and each isotherm line. Each intersection point of α and T_{iso} (the isotherm temperature) are documented with the calculated contact angle (based on the apex height and contact radius using Eq. (5.3)).

$$\theta = \frac{\pi}{2} - \sin^{-1}\left(\frac{R - h}{R}\right)$$ \hspace{1cm} (5.3)

Table 5.1 provides a summary of the values for α, θ, and corresponding isotherm (interface) temperature.

Dash and Garimella [16] provided temperature contours within a droplet evaporating at room temperature ($T_s = 21$°C) on hydrophobic ($\theta = 110$°) and a superhydrophobic ($\theta = 160$°) substrates. The α values intersecting the liquid-vapor interface at the center of the contour.
Table 5.2: Interpreted temperature values and the corresponding α value along the liquid-vapor interface from the plots provided by the supporting information from [16]. Substrate temperature is at $T_s = 20.5^\circ C$.

<table>
<thead>
<tr>
<th>$\theta = 110^\circ$</th>
<th>T (°C)</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>18.3</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>18.4</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>18.5</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>18.8</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>19.4</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>19.7</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>20.5</td>
<td>5.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\theta = 160^\circ$</th>
<th>T (°C)</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.9</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>14.0</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>14.1</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>14.2</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>14.5</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>14.8</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>15.2</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td>15.5</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>16.8</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>18.3</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>20.5</td>
<td>5.0</td>
<td></td>
</tr>
</tbody>
</table>

lines are documented for finding the temperature distribution along the liquid-vapor interface for each provided contact angle, similar to the previous discussion. A summary of the documented values are shown in Table 5.2.

Three separate matrices are generated from the compiled data in Tables 5.1 and 5.2, and a surface fit is performed for each matrix to provide $T_{fit} = T(\alpha, \theta)$, where T_{fit} is a surface
fitted solution. The three surface fits include (1) using the data collected from the solutions provided by Briones et al. [7, 8] (Table 5.1); (2) using the data collected from the solutions provided by Dash and Garimella [16] (Table 5.2); and (3) combining the interpolations found for each reference for a cumulative data set. All isotherm temperature values are normalized with respect to the substrate surface temperature (i.e. \(T_{fit} = T_{iso}(\alpha, \theta)/T_s \)). Separate interpolation matrices are generated for comparing the increase in prediction from the data collected from each reference, thus evaluating the accuracy of each numerical simulation.

A lowess smoothing fit is implemented to correlate \(T_{iso}(\alpha, \theta) \) and \(T_s \) with the data gathered in Table 5.1 and 5.2, where \(T_{iso} \) is the temperature corresponding to the isotherm lines intersecting the liquid-vapor interface (i.e. various temperatures along the interface) and \(T_s \) is the substrate surface temperature. This fitted temperature distribution (\(T_{fit} \)) provides a temperature along the interface (\(\alpha \)) for a given contact angle (\(\theta \)). This relation is used to predict a temperature distribution for experimental data at each elevated substrate temperature. For relating the evaporation rate to the temperature distribution, the vapor concentration distribution along the interface is needed. By the Clausius-Clapeyron equation (Eq. (1.4)), the temperature is directly related to the vapor concentration. All experiments performed remain within \(T \in [20, 100] \) °C (e.g. not cooling below room temperature nor approaching nucleate boiling (see Fig. 1.2)). For simplicity, a polynomial curve is generated within this temperature range that relates temperature to the vapor concentration. While this polynomial curve may not be well representative over the entire liquid water regime, it provides a sufficient fit over the experimental range (21°C – 75°C) A plot of known vapor concentrations at various temperatures [12] along with the fitted polynomial curve is shown in Fig. 5.4.

With the resulting temperature surface fit \(T_{fit} = T(\alpha, \theta) \) interpolated from the listed references [7, 8, 16], and polynomial fit of vapor concentration \(c = c(T) \) (or \(c_s = c_s(T) \) when considering the droplets surface vapor concentration, Fig. 5.4), the vapor concentration
along a droplets entire liquid-vapor interface can be found based on the substrate surface temperature. These corresponding distributions of temperature and surface concentration during droplet evaporation on heated substrates of $T_s = 50\degree C$ and $T_s = 65\degree C$ are provided in Fig. 5.3, previously shown.

5.2.2 Modified Model Improvements

The fitted temperature distribution provides a variable surface concentration along the liquid-vapor interface. Evaluation of the modified numerical models (Eqs. (5.1) and (5.2)) are presented in the following sections. A numerical comparison between Deegans model is discussed, as well as experimental comparisons to Poppovs model for (1) validating the improvements of the presented modifications and (2) determining any dominating effects of a droplets self-cooling induced temperature distributions.
Deegans Model for Evaporation Flux

To demonstrate the difference between the two models of the local evaporation flux (Deegans model with constant surface concentration and the modified model with variable surface concentration), the solution of the evaporation flux for both models are compared at various contact angles (see Fig. 5.5). The dashed lines represent the evaporation flux solution evaluated using Deegans model (Eq. (3.9)), and the solid lines are the solution of the modified model (Eq. (5.1)). To maintain clarity, the solutions of the dotted lines in Fig. 5.5 (Deegans model, assuming constant \(c_s \)) are identical to the solutions in Figs. 3.2 and 3.3. Additionally, Figs. 5.6 and 5.7 exploit the difference between the two numerical solutions for each contact angle with a representative vector plot of the evaporation flux (\(J \)) along the interface.

The temperature distribution induced from the self-cooling effects (‘evaporative cooling’) during evaporation significantly alters the evaporation flux. The increased thermal resistance for larger droplets (larger contact angles) creates larger temperature gradients (contact line to apex, Fig. 5.3). Figure 5.5 best represents the increase in deviation between the two models due to this increase in thermal resistance. An implicit boundary condition for the temperature distribution along the interface (based on the numerical solutions interpreted [7, 8, 16]) is the temperature at the contact line is equal to the substrate surface temperature \(T_{\alpha \rightarrow \infty} = T_s \), whereas Deegans model assumes the temperature across the entire interface is at the substrate surface temperature. As shown, the results of both models converge to the same magnitude of evaporation flux as \(r \rightarrow R \) (the contact line). Thus, the solution of the modified model agrees with the implicit boundary condition.

A major improvement with the modified model is based on the change of curvature of the solution from the apex \((\alpha = 0, r/R = 0) \) to the contact line \((\alpha \rightarrow \infty, r/R = 1) \) for contact angles \(\theta \geq 90^\circ \) (solid red, pink, and green lines in Fig. 5.5). The solution of Deegans
Figure 5.5: Comparison of evaporation flux solutions calculated from the numerical model assuming constant vapor concentration (dashed lines) and the modified model with variable vapor concentration (solid lines). Numerical Data: See Fig. 3.2. Solutions with variable c_s distribution are evaluated from $T_{fit}(\alpha, \theta)$ with a substrate surface temperature of $T_s = 20^\circ C$.

model shows the largest evaporation flux for hydrophobic droplets ($\theta > 90^\circ$) is at the apex, and suppresses near the contact line. This disagrees with the data presented in Section 4.2 (Fig. 4.4) and the results/conclusions provided by many authors on contact line dependence on evaporation rate [1, 5, 7–9, 13, 15, 17, 46, 48, 52, 57, 58, 61, 65, 69, 75]. The modified model maintains a high evaporation flux near the contact line and a minimum at the apex regardless of contact angle, hence a contact line dependence. Thus, the modified model provides theoretical solutions (Figs. 5.6 and 5.7) of droplet evaporation in good agreement with previous publications [1, 5, 7–9, 13, 15, 17, 46, 48, 52, 57, 58, 61, 65, 69, 75] and the data presented in Section 4.2 (Fig. 4.4).
Figure 5.6: Magnitude and vector plot comparisons of the evaporation flux, J, of (left) Deegans model before modifications and (right) the modified model (i.e. c_s distribution) for wetted droplets. The top figures are partially represented in Fig. 5.5
Figure 5.7: Magnitude and vector plot comparisons of the evaporation flux, J, of (left) Deegans model before modifications and (right) the modified model (i.e. c_s distribution) for hydrophobic droplets. The top figures are partially represented in Fig. 5.5.
To further evaluate the corrected model, Popovs model (derived from Deegans model) is compared to experimental data. The numerical solution assuming constant vapor concentration (Eq. (3.11)) and the proposed modification of surface vapor concentration (Eq. (5.2)) are compared to experimental data in Fig. 5.8. Because the temperature gradient is decreasing from the contact line to the apex, the evaporation rate is expected to be lower in comparison to the numerical models that assumed a constant vapor concentration – Eqs. (3.9) and (3.11). This hypothesis has been confirmed theoretically from the previous analysis on evaluating the improvements of Deegans model (Figs. 5.5, 5.6, and 5.7). The vapor surface/interface concentration distribution, \(c_s(\alpha, \theta) \), is introduced from the data gathered in Fig. 5.3 and Tables 5.1 (termed ‘Briones et al. interpolated model’) and 5.2 (‘Dash and Garimella interpolated model’). A combined model includes a superposition of Briones et al. and Dash and Garimella interpolated matrix models.

Comparisons of the predicted evaporation rate are shown for both \(T_s = 50^\circ C \) (Fig. 5.8a) and \(T_s = 65^\circ C \) (Fig. 5.8b). All the models for both heated substrates (\(T_s = 50^\circ C \) and \(T_s = 65^\circ C \)) show very similar error accumulation over the droplets lifetime. The modified models provide a higher accuracy in estimating the droplets lifetime. The combined model provides the most accurate model, presumable to the range of contact angles, substrate temperatures, and largest number of interpolated data points. Table 5.3 provides the error analysis for all four models.

All three models showed an increase is accuracy when predicting the droplets lifetime. The Briones et al.[7, 8] model shows the least improvement. This can be explained by (1) lack of known temperature points along the interface to provide a sufficient temperature distribution and (2) the numerical results are for a substrate surface temperature of \(T_s = 100^\circ C \) (much larger than experimental data). This can lead to false temperature gradients.
Figure 5.8: Plots comparing experimental data (solid red lines), numerical solutions obtained from Eq. (3.11) assuming constant temperature along interface (dashed black lines), and the solution from the proposed modification in Eq. (5.2) with variable vapor surface concentration (dot-dashed lines). Experiments were performed on patterned substrate at (a) $T_s = 50^\circ\text{C}$ and (b) $T_s = 65^\circ\text{C}$. The relative errors are shown in (c) and (d) Experimental Data: (a) $R_0 \cong 455.4 \, \mu\text{m}$, $\theta_0 \cong 117.4^\circ$, $V_0 \cong 459.4 \, \text{nL}$, $h_0 \cong 745.2 \, \mu\text{m}$, $\tau_E \cong 133.0 \, \text{s}$; (b) $R_0 \cong 394.7 \, \mu\text{m}$, $\theta_0 \cong 106.6^\circ$, $V_0 \cong 205.7 \, \text{nL}$, $h_0 \cong 527.2 \, \mu\text{m}$, $\tau_E \cong 24.5 \, \text{s}$
Table 5.3: Error for each of the four models analyzed for predicting the droplets lifetime. The linearized error is the error in slope of the linear fitted curve of each curve provided in Fig. 5.8.

<table>
<thead>
<tr>
<th>Interpolated Model</th>
<th>Linearized error</th>
<th>Max error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$T_s = 50^\circ\text{C}$</td>
<td>$T_s = 65^\circ\text{C}$</td>
</tr>
<tr>
<td>Popovs model (Constant c_s)</td>
<td>9.70%</td>
<td>13.72%</td>
</tr>
<tr>
<td>Briones et al. [7, 8]</td>
<td>7.44%</td>
<td>10.58%</td>
</tr>
<tr>
<td>Dash and Garimella [16]</td>
<td>2.40%</td>
<td>5.16%</td>
</tr>
<tr>
<td>Superimposed/Combined model</td>
<td>1.84%</td>
<td>3.78%</td>
</tr>
</tbody>
</table>

along the liquid-vapor interface due to the substrate temperature of the experimental data being considerably lower. The interpolation gathered from the results provided by Dash and Garimella [16] provided higher accuracy. A larger data set for the temperature distribution is gathered, which provides a better surface fit. Although, inaccurate predictions still exist due temperature distribution may be due to the lack of data with respect to the contact angle evolution during evaporation (assuming a pinned contact line). The interpolation is expected to decrease in accuracy for smaller contact angles ($\theta < 110^\circ$). The combined model shows the greatest prediction for both substrate temperatures. The interpolation from Briones et al. [7, 8] provides sufficient data for contact angle evolutions during evaporation as well as for temperature distribution for low contact angles, while the Dash and Garimella [16] interpolation provides a better temperature distribution along the interface and increases the range of contact angles.

This combined model for estimating the surface vapor concentration increases the accuracy in predicting the droplets lifetime by $\sim 10\%$. Compared to Popovs model (with a constant surface concentration), the combined interpolated model increased the accuracy in predicting the droplets lifetime by $\sim 7.7\%$ and $\sim 9.9\%$ for $T_s = 50^\circ\text{C}$ and $T_s = 65^\circ\text{C}$, respectively. As a result, the predicted droplet evaporation remains within 2% – 4% of the experimentally measured evaporation rate.
CHAPTER 6: CONCLUSIONS

Experimental and numerical investigations of water microdroplet evaporation are presented. A laser patterned substrate is fabricated for controlling the dynamics of the contact line during droplet evaporation, where a moat-like trench pins the contact line and forces the droplet to undergo a time-extended constant contact radius (CCR) mode of evaporation. This methodology also facilitates (1) precise control of droplet formation, size, and wetting dynamics, (2) droplet heating prior to formation, and (3) future steady-state evaporation studies on heated surfaces with a variety of different non-equilibrium contact angles (including $\theta > \theta_a$) for a given solid-liquid-vapor system (e.g., steady-state studies of both wetted and non-wetted droplets on a single substrate).

Numerical solutions provided by Deegan et al. [19, 20] and Popov [54] are used for comparisons to experimental data, which consistently overpredicts the droplets lifetime. The implementation of constant vapor concentration in both models is assumed to be a key source of error because the droplets surface/interface temperature is not constant (i.e., the apex temperature of the droplet should be less than the substrate temperature during evaporation [7, 8, 16, 38, 69]). In result, both Deegans model and Popovs model are modified by considering the temperature distribution along the liquid-vapor interface (interpolated using results reported by Briones et al. [7, 8] and Dash and Garimella [16]). Evaluation of Deegans modified model results in a model that better represents a widely accepted concept of contact line dependence on droplet evaporation. In comparison to Popovs model, the modified Popov model shows an increase in droplet lifetime and yields a better prediction of τ_E in comparison to experimental data. This combined model for estimating the surface vapor concentration increases the accuracy in predicting the droplets lifetime by $\sim 10\%$.

54
Compared to Popovs model (with a constant surface concentration), the combined interpolated model increased the accuracy in predicting the droplets lifetime by $\sim 7.7\%$ and $\sim 9.9\%$ for $T_s = 50^\circ C$ and $T_s = 65^\circ C$, respectively. As a result, the predicted droplet evaporation remains within $2\% - 4\%$ of the experimentally measured evaporation rate. The reduced error in predicting the droplets lifetime provides encouragement toward understanding the dynamics of microdroplet evaporation.
APPENDIX A: MATLAB CODE FOR EVALUATING DEEGANS MODEL
%Evaluation of evaporation flux
clc
clear all

% Input Plot type
y_n = 0;
% 0 - Evap Flux plot
% 1 - vector plot

% Input Method of solution
cs_yn = 1;
% 0 - Constant surface concentration
% 1 - Variable surface concentration
T = 20; %C - Substrate temperature of simulation

double = 1; %type of plot
% 0 - plot 0 to R
% 1 - plot -R to R

% Input Contact Angle
% theta_imp = degtorad(135);
% theta_imp = 3*pi/4;
theta_imp = [pi/3, pi/2, 2*pi/3, 3*pi/4];

% Input Experimental Conditions
R = 0.6; %mm
D = 26.1; %mm^2/s
c_inf = 7.34116E-9; %g/mm^3 40% humidity, T = 20C

%Calling vapor concentration surface fit
if cs_yn == 0 %constant
c_s = Temp_to_Cs_Func(T,[]); %g/mm^3
elseif cs_yn == 1 %variable
theta_save = theta_imp;%avoiding overwrite
run('Briones_Data')
alpha_B = alpha; %avoid overwriting alpha
theta_B = theta; %avoid overwriting theta
run('Dash_Data')
alpha = [alpha_B, alpha]; %compiling both data sets
theta = [theta_B, theta]; %compiling both data sets
Temp_Dist = [Normed_Temp_Briones, Normed_Temp_Dash];
cs_func = Temp_to_Cs_Func(T*Temp_Dist);
cs_fit = fit([alpha’, theta’], cs_func, ’lowess’, ...
’Span’, .50, ’Robust’, ’Bisquare’);
clear (’alpha’)
clear(’theta’)
theta_imp = theta_save;

%% Numerical code
%defining ‘tau’ [t] limits and step size
for ii = 1:length(theta_imp)
 theta = theta_imp(ii);
 t_del = 1e-2;
 t_max = 10;
 t_iter = t_max/t_del;
 %defining ‘xi’ [x] limits and step size
 % (legendre function integration)
 x_del = 1e-2;
 x_max = 10;
 x_iter = x_max/x_del;
 %defining limit and step size of alpha [a]
 a_max = 5;
 if y_n == 0 %Flux evaluation
 a_del = 1e-1;
 a_iter = a_max/a_del;
 else %vector plot evaluation
 a_del = 1e-1;
 if theta > pi/2
 a_del = a_del/2;
 end
 a_iter = (1 + sqrt(8*(a_max)/(a_del)))/(2);
 end
%begin evaluation
for k = 1:a_iter %along droplet liquid-vapor interface
 %analysis type for plot generation
 if y_n == 0
 a = (k-1) * a_del; %evap flux
 else
a = (k * (k-1))/2 * a_del; %vector
end

%avoid singularities
if a == 0
 a = 10^-4;
end

%Constant vs. Variable surface concentration initiation
if cs_yn == 1;
 c_s = cs_fit(a, theta);
end

for i = 1:t_iter %tau integration
 t1 = (i-1)*t_del;
 t2 = (i)*t_del;

 if t1 ~= 0;
 for j = 1:x_iter %Legendre integration
 x1 = (j-1)*x_del;
 x2 = (j)*x_del;

 if x1 > a
 Pn_1(j) = (x_del)/2 * ((sin(t1 * x2) / ...
 sqrt(2*cosh(x2) - 2*cosh(a))) + ...
 (sin(t1 * x1) / sqrt(2*cosh(x1) - ...
 2*cosh(a))));
 Pn_2(j) = (x_del)/2 * ((sin(t2 * x2) / ...
 sqrt(2*cosh(x2) - 2*cosh(a))) + ...
 ((sin(t2 * x1) / sqrt(2*cosh(x1) - ...
 2*cosh(a))));
 else
 Pn_1(j) = 0;
 Pn_2(j) = 0;
 end
 end
 end

 %Sum of all sections for integral evaluation of %Legendre Function
 Int_Pn_1 = sum(Pn_1);
 Int_Pn_2 = sum(Pn_2);
%Integral within J(r)

%hydrophilic
if theta < \pi/2 && t_1 > a
 E(i) = t_{del}/2 * (((cosh(theta*t_1) / \cosh(pi*t_1)) * tanh((pi - theta)*t_1)) * \\
 t_1 * (2/pi * coth(pi*t_1) * Int_Pn_1)) + ... \\
 ((cosh(theta*t_2) / \cosh(pi*t_2)) * ... \\
 tanh((pi - theta)*t_2)) * t_2 * ... \\
 (2/pi * coth(pi*t_2) * ... \\
 Int_Pn_2)));

%hydrophobic
else
 E(i) = t_{del}/2 * (((cosh(theta*t_1) / \cosh(pi*t_1)) * tanh((pi - theta)*t_1)) * \\
 t_1 * (2/pi * coth(pi*t_1) * Int_Pn_1)) + ... \\
 ((cosh(theta*t_2) / \cosh(pi*t_2)) * ... \\
 tanh((pi - theta)*t_2)) * t_2 * ... \\
 (2/pi * coth(pi*t_2) * Int_Pn_2));
end
end

%Sum of all sections for integral evaluation
Int_E = sum(E);

%Final evaluation of local evaporation flux
J_Flux(ii,k) = (D*(c_s - c_inf))/ R * (sin(theta) / 2 + ... \\
 sqrt(2) * (cosh(a) + cos(theta))^(3/2) * ... \\
 Int_E);

%Tracking progress of solution
printf('%s %g %s %g %s %g %s %g \n', ... \\
 'Local Iteration', k, '/', floor(a_iter), ... \\
 'of Global Iteration', ii, '/', length(theta_imp))
end

% Plotting Evaporation Flux
if y_n == 0
 k = 1:a_iter;
 a = (k-1) * a_del;
 r_plot = sinh(a)/(cosh(a) - cos(pi - theta));
z_plot = sin(pi-theta)./(cosh(a) - cos(pi - theta));

%Plot solution of evap flux
figure(1)
hold all
set(gca,'FontSize',20)
plot(r_plot,J_Flux(ii,:));figure(gcf)
plot(-r_plot,J_Flux(ii,:));figure(gcf)
if double == 0
 axis([0, 1.7, 0, 15e-7])
elseif double == 1
 axis([-1.7, 1.7, 0, 15e-7])
else
 disp('Error in double plot - Line 16')
end
axis square
box on
xlabel('r/R')
ylabel('Evaporation Flux, J (g/mm^2)')
set(gca,'XMinorTick','on')
set(gca,'YMinorTick','on')
else
 % Vector Flux Plot
 for k = 1:a_iter;
 a(k) = (k * (k-1))/2 * a_del;
 end

 %r/R and z/R plot values
 r_plot = sinh(a)./(cosh(a) - cos(pi - theta));
 z_plot = sin(pi-theta)./(cosh(a) - cos(pi - theta));

 b2 = pi-theta;
 a2 = -a_max:a_del:a_max;
 for j = 1:length(a2);
 r_vec(j,:) = sinh(a2(j)) ./ (cosh(a2(j)) - cos(b2));
 z_vec(j,:) = sin(b2) ./ (cosh(a2(j)) - cos(b2));
 end

 %calculating normal to surface for vector plot
 r_norm = 2*(r_plot)./ ...
 sqrt((2*r_plot).^2+(2*(z_plot - cot(pi-theta))).^2 + 1);
 z_norm = 2*(z_plot - cot(pi-theta))./ ...
\[\sqrt{(2\cdot r_{\text{plot}})^2 + (2\cdot \left(z_{\text{plot}} - \cot(\pi - \theta))\right)^2 + 1}; \]

figure(2)
hold all
set(gca,'FontSize',20)
set(gca,'XMinorTick','on')
set(gca,'YMinorTick','on')

plot(r_vec,z_vec,'red',
 'LineWidth',2);figure(gcf)
axis equal
box on
xlabel('r/R')
ylabel('z/R')
axis([-1.7, 1.7, 0, 3])

% Vector plot, with modified scaling.
if theta < \pi/2 % hydrophilic
 quiver(r_plot,z_plot,J_Flux.*r_norm,J_Flux.*z_norm,...
 25,'blue','LineWidth',2);
quiver(-r_plot,z_plot,-J_Flux.*r_norm,J_Flux.*z_norm,...
 25,'blue','LineWidth',2);
figure(gcf)
elseif theta == \pi/2 % uniform flux
 quiver(r_plot,z_plot,J_Flux.*r_norm,J_Flux.*z_norm,...
 0.5,'blue','LineWidth',2);
quiver(-r_plot,z_plot,-J_Flux.*r_norm,J_Flux.*z_norm,...
 0.5,'blue','LineWidth',2);
figure(gcf)
else % hydrophobic
 quiver(r_plot,z_plot,J_Flux.*r_norm,J_Flux.*z_norm,...
 0.3,'blue','LineWidth',2);
quiver(-r_plot,z_plot,-J_Flux.*r_norm,J_Flux.*z_norm,...
 0.3,'blue','LineWidth',2);
figure(gcf)
end
end
APPENDIX B: MATLAB CODE FOR EVALUATING POPOVS MODEL
Calculate dM/dt from the integral transformed Laplace solution

clear all
clc
close all

%% Variable C_s
yn_cs = 0;
% 0 - Superimposed plot of all results
% 1 - Constant surface concentration
% 2 - Briones Interpolation of temperature distribution
% 3 - Dash
% 4 - Briones and Dash

%% Plot Types
plot_type = 1;
% 1 - Normalized Volume
% 2 - Normalized Volume and Time

% pinned or unpinned predictions
yn_pin = 1;
% 1 - Pinned
% 2 - Unpinned -> $R(t)$

%% Error Analysis
er = 2;
% 1 - No error analysis
% 2 - Error analysis

%% Oct26 Data Input
load(fullfile('Data','Oct26DataSet', ...
 '50C','RoomDrop','Test1.dat'));
 %50C, 65C
 %380um, 600um, RoomDrop, HeatDrop, MP
 %(folder1,folder2,...,file) raw data import
Test_Data = Test1; %Renaming data for general use
Ts = 50; %C

%% Jan3 Data Input
% load(fullfile('Data','Jan3DataSet', ...
% 'Channel','600um','35C','Test1.dat'));
% %21C, 35C, 50C, 65C, 75C
% %250um, 380um, 600um, Channel, Old450
% (folder1, folder2, ..., file) raw data import
% Test_Data = Test1; % Renaming data for general use
% Ts = 35; % C

%% Data Formating
if yn_cs == 0;
 iter = 4;
else
 iter = 1;
end

for k = 1:iter % Performing all methods
 if iter == 4
 yn_cs = k;

 if k ~= 1 % clearing files to avoid superimposed sol.
 clear('M_int')
 clear('M')
 clear('dV')
 yn_cs = k;
 end
 else
 % keep yn_cs the same
 end

%% Vector Inputs for Variable Surface Concentration

if yn_cs == 1;
c_s = Temp_to_Cs_Func(Ts); %Cs(T) polyfit
else
 if yn_cs == 2
 run('Briones_Data')
 Temp_Dist = NormT_Briones;
 %alpha called
 %theta called
 elseif yn_cs == 3
 run('Dash_Data')
 Temp_Dist = NormT_Dash;
 %alpha called
 %theta called
 elseif yn_cs == 4
 run('Briones_Data')
 alpha_B = alpha; %avoid overwriting alpha
 theta_B = theta; %avoid overwriting theta
 run('Dash_Data')
 alpha = [alpha_B, alpha]; %compiling data sets
 theta = [theta_B, theta]; %compiling data sets
 Temp_Dist = [NormT_Briones, NormT_Dash];
 else
 disp('Reason for error:')
 disp('Invalid yn_cs Value')
 end
end

%Finding vapor concentration distribution
C_s = Temp_to_Cs_Func(Ts*Temp_Dist);
if yn_cs == 3 %cannot fit 2nd order with 2 theta values
 cs_fit = fit([alpha’, theta’], c_s, ‘poly21’);
else
 cs_fit = fit([alpha’, theta’], c_s, ‘poly22’);
end
% Data Calling
% These are called from the raw data input variables
%'Experiement Specific' Conditions
R_dat = Test_Data(:,3) * 10^(-3); %mm
Test_Data(:,1) = Test_Data(:,1) - Test_Data(1,1); %start at t=0
Vi = Test_Data(1,5); %nL or ug
time_step = mean(diff(Test_Data(:,1))); %sec
theta_dat = Test_Data(:,4);

% Defining the number of theta interations (length of data vector)
tq_max = length(theta_dat);

% Other parameters
D = 26.1; %mm^2/s
c_inf = 0.4*Temp_to_Cs_Func(20); %40% humidity

%%%%% Integration Parameters %%%%%
% defining 'tau' [t] limits and step size
t_del = 1e-2;
t_max = 10;
t_iter = t_max/t_del;
% defining 'xi' [x] limits and step size
% (legendre function integration)
x_del = 1e-2;
x_max = 10;
x_iter = x_max/x_del;
% defining limit and step size of alpha [a]
alpha_vec = 10^(-3:5/(length(theta_dat))); 5;

%% Begin Evaluation %%%%
for tq = 1:tq_max; % contact angle
theta = degtorad(theta_dat(tq)); % converting to radians
if yn_pin == 1; % Pinned
R = mean(R_dat(1:5));
elseif yn_pin == 2; % R(t)
R = R_dat(tq);
else
disp('Reason for error: ')
 disp('Invalid yn_pin Value')
end

```matlab
% Calculating time(tq)
for ii = 1:t_iter
    t1 = (ii-1)*t_del;
    t2 = (ii)*t_del;
    if t1 == 0 % singularity at 1/sinh(0)
        t1 = 10^-4;
    end
    M_int(ii) = t_del/2 * (((1 + cosh(2*theta*t1)) / sinh(2*pi*t1)) * tanh((pi - theta) * t1)) ...  
        + (((1 + cosh(2*theta*t2)) / sinh(2*pi*t2)) * tanh((pi - theta) * t2));
end
M(tq) = (-pi * R * D * (c_s - c_inf) * (sin(theta) / (1 + cos(theta)) + 4 * sum(M_int))) * (10^6)*time_step; % converting to ug, multiply by dt

% Rate of Volume loss
dV(tq) = Vi + sum(M);

%% Plots
% Generalizing data to plot
Exp_Vol_plot = Test_Data(:,5)/Vi;
Num_Vol_plot = dV/dV(1);
if plot_type == 1 % Normalized Volume Plots
    Exp_time_plot = Test_Data(:,1);
    Num_time_plot = time;
    error_time = time;
    x_label = 'Time, t (s)';
elseif plot_type == 2 % Normalized Volume/Time Plots
    Exp_time_plot = Test_Data(:,1)/max(Test_Data(:,1));
    Num_time_plot = time/max(time);
    error_time = time/max(time);
    x_label = 'Normalized Time (t/\tau_E)';
end
```

68
else
 disp('Reason for error: ')
 disp('Invalid plot_type Value')
end

figure(1)
set(gca, 'FontSize', 20)
xlabel(x_label)
ylabel('Normalized Volume (\forall/\forall_0)')
set(gca, 'XMinorTick', 'on')
set(gca, 'YMinorTick', 'on')
axis([0, 1.1*max(Exp_time_plot), 0, 1.1])
axis square
box on
hold all

%Plot styles for numerical data
if yn_cs == 1;
 if yn_pin == 1
 plot_style = '--';
 else
 plot_style = ':';
 end
 plot_color = 'black';
 plot_legend = 'Constant C_s Model';
 error_marker = 'o';
 error_legend = '-o';
 error_edge = 'white';
 if yn_pin == 1 && yn_cs == 1
 plot_legend = 'Pinned Numerical Model';
 elseif yn_pin == 2
 plot_legend = 'Depinned Numerical Model';
 error_edge = 'black';
 error_facemarker = 'white';
 end
elseif yn_cs == 2;
 plot_style = '-.';
 plot_color = 'blue';
 plot_legend = 'Briones et al. Interpolated C_s';
 error_marker = 's';
 error_legend = '-s';
 error_edge = 'black';
elseif yn_cs == 3;
 plot_style = '-.';
 plot_color = 'magenta';
 plot_legend = 'Dash and Garimella Interpolated C_s';
 error_marker = 'd';
 error_legend = '-d';
 error_edge = 'black';
elseif yn_cs == 4;
 plot_style = ':';
 plot_color = [0, 0.5, 0];
 plot_legend = 'Combined C_s Distribution';
 error_marker = '^';
 error_legend = '-^';
 error_edge = 'black';
end

p(k*k) = plot(Exp_time_plot, Exp_Vol_plot, ...
 'Color','red','LineWidth',3);
p(k*k+1) = plot(Num_time_plot, Num_Vol_plot, ...
 'LineStyle', plot_style, 'Color', plot_color, ...
 'LineWidth',3);
if iter == 4
 if k == 4
 legend(p([1, 2, 5, 10, 17]),'Experimental Data', ...
 'Constant C_s Model', ...
 'Briones et al. Interpolated C_s', ...
 'Dash and Garimella Interpolated C_s', ...
 'Combined C_s Distribution', ...
 'Location','NorthEast')
 end
else
 legend(p([k, k+1]),'Experimental Data', plot_legend, ...
 'Location','NorthEast')
end

% Error Analysis Plots
if er == 2;
 Error = (Test_Data(:,5) - dV') / Vi;
 fprintf('%s %g %s
','Max Error =', ...
 100*max(abs(Warning.Error)),')
 fprintf('%s %g %s
','Average Error =', ...
 100*mean(abs(Error)),')
end
figure(2)
set(gca,'FontSize',20)
xlabel(x_label)
ylabel('Error %')
set(gca,'XMinorTick','on')
set(gca,'YMinorTick','on')
box on
axis square
axis([0, max(error_time), 0, 20])
hold all

for i = 1:length(time)/7-1
 time_markers(i) = Exp_time_plot(7*i);
 Error_markers(i) = 100*abs(Error(7*i));
end

%special plot for creating legend
pe(k*(k+1)) = plot(-1, -1, error_legend, ...
 'LineWidth',2, ...
 'Color',plot_color, ...
 'Marker',error_marker,'MarkerSize',11, ...
 'MarkerFaceColor',plot_color, ...
 'MarkerEdgeColor',error_edge);
if yn_pin == 2
 pe(k*(k+1)) = plot(-1, -1, error_legend, ...
 'LineWidth',2, ...
 'Color',plot_color, ...
 'Marker',error_marker,'MarkerSize',11, ...
 'MarkerFaceColor',error_facemarker, ...
 'MarkerEdgeColor',error_edge);
end

%Error plot
pe(k*(k+1)+1) = plot(Exp_time_plot,100*abs(Error), ...
 'Linewidth', 2, 'Color', plot_color);
pe(k*(k+1)+2) = plot(time_markers,Error_markers, ...
 'LineStyle','none', ...
 'LineWidth',2, ...
 'Marker',error_marker,'MarkerSize',11, ...
 'MarkerFaceColor',plot_color, ...
 'MarkerEdgeColor',error_edge);
if yn_pin == 2;
pe(k*(k+1)+2) = plot(time_markers,Error_markers, ...
 'LineStyle','none', ...
 'LineWidth',2, ...
 'Marker',error_marker,'MarkerSize',11, ...
 'MarkerFaceColor',error_facemarker, ...
 'MarkerEdgeColor',error_edge);
end

if iter == 4
 if k == 4
 legend(pe([2, 6, 12 , 20]), ...
 'Constant C_s Model', ...
 'Briones et al. Interpolated C_s', ...
 'Dash and Garimella Interpolated C_s', ...
 'Combined C_s Distribution', ...
 'Location','NorthWest')
 end
else
 legend(pe(k*(k+1)), plot_legend, ...
 'Location','NorthEast')
end
end
REFERENCES

