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ABSTARCT 
 

In H.264/AVC, DeBlocking Filter (DBF) achieves bit rate savings and it is used to improve 

visual quality by reducing the presence of blocking artifacts. However, these advantages come at 

the expense of increasing computational complexity of the DBF due to highly adaptive mode 

decision and small 4x4 block size. The DBF easily accounts for one third of the computational 

complexity of the decoder. The computational complexity required for various target 

applications from mobile to high definition video applications varies significantly. Therefore, it 

becomes apparent to design efficient architecture to adapt to different requirements. 

 In this work, we exploit the scalability on both the hardware level and the algorithmic 

level to synergize the performance and to reduce computational complexity. First, we propose a 

modular DBF architecture which can be scaled to adapt to the required computing capability for 

various bit-rates, resolutions, and frame rates of video sequences. The scalable architecture is 

based on FPGA using dynamic partial reconfiguration. This desirable feature of FPGAs makes it 

possible for different hardware configurations to be implemented during run-time. The proposed 

design can be scaled to filter up to four different edges simultaneously, resulting in significant 

reduction of total processing time. Secondly, our experiments show by lowering the bit rate of 

video sequences, significant reduction in computational complexity can be achieved by the 

increased presence of skipped macroblocks, thus, avoiding redundant filtering operations. The 

implemented architecture has been evaluated using Xilinx Virtex-4 ML410 FPGA board. The 

design can operate at a maximum frequency of 103 MHz. The reconfiguration is done through 

Internal Configuration Access Port (ICAP) to achieve maximum performance needed by real 

time applications. 
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CHAPTER ONE: INTRODUCTION 

1.1: H.264/AVC Overview 

 he H.264/AVC is the latest video coding standard developed by the cooperation between 

ITU-T and  ISO/IEC standardization organizations in 2003 [1], [2].  

Compared to its predecessors, such as H.261/3 and MPEG-1/2/4, it provides improved video 

compression efficiency. This is due to the combination of advanced video coding techniques, 

such as variable block-size motion estimation with quarter-pixel resolution, intra prediction in 

the spatial domain, integer 4x4 DCT transform, context adaptive variable length coding, and in-

loop adaptive DeBlocking Filter (DBF). 
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Figure 1: H.264 video encoder. 
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Figure 1 shows H.264 encoder. The input frame, which is divided into macroblocks, is encoded 

in either Inter or Intra prediction modes. In Intra mode the prediction is made from samples from 

the current frame that already have been encoded. In Inter mode, motion compensation 

prediction is used from reference frames. The current frame is subtracted from the predicted 

frame to produce a residual that is transformed, quantized, and entropy encoded. The encoder 

also decodes current frames, and DBF is applied for future prediction. 
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Figure 2: H.264 video decoder. 

 

Figure 2 shows H.264 video decoder. The decoder receives the compressed video frames, which 

are reverse quantized and transformed, and then added to predicted blocks which is the same as 

the encoder. Finally the decoded frame is filtered and stored for later processing. 

1.2: Inter Frame Prediction 

Consecutive video frames being transmitted have similar data between them. Motion Estimation 

(ME) is used to remove temporal redundancies to achieve better compression efficiency. In Inter 

mode macroblocks which consists of 16x16 pixels are predicted from previously encoded video 

frames. The prediction is made using Motion Vectors (MV) which is the offset between the 
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predicted block and the location from the already encoded reference frame. In Figure 3 

H.264/AVC supports various block sizes (from 16x16 to 4x4). This way better coding efficiency   

16x16 16x8 8x16 8x8

4x44x88x48x8

 

Figure 3: Macroblcoks partitioning 

could be achieved by finding the best matching block in previous referenced frames. Also in 

H.264/AVC multiple frames could be used for motion compensation prediction which is shown 

in Figure 4. 

Reference Frames

Current Frame

 

Figure 4: Multiple frames motion estimation 
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1.3: Intra Frame Prediction 

In Intra prediction reference frames are not used. The prediction is made from previously 

encoded blocks from the same frame. There are two prediction modes; the first is Intra 4x4 

prediction where there are nine prediction modes for each 4x4 subblock. The second one is intra 

16x16 prediction where four prediction modes are available. Figure 5 shows possible eight 

prediction directions supported for Intra 4x4, the ninth mode is DC prediction mode where the 

mean is taken of all neighboring blocks of the top and the left of the current block. 

 

 

Figure 5: Prediction directions for Intra 4x4. 
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1.4: Transform and quantization 

The transform stage is used to convert data from the image domain to the frequency domain. 

Macroblocks are transmitted according to the order shown in Figure 6. Depending on the data 

sent, one of three transforms is applied.  A Hadamard transform is applied to macroblocks 

predicted in intra 16x16 mode and for 2x2 blocks of chroma DC coefficients. For all other 4x4 

blocks a DCT based transform is applied. 
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Figure 6 : Scanning order of blocks in H.264 
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The DCT applied is an integer transform which has the advantage of not losing coding accuracy, 

and it can be applied with shifts and additions which provides easier hardware implementation. 

The transform [3] is defined as: 

  
 

 
                 

 

 
 

 

 

The quantization stage is used to provide compression by removing the high frequency 

components (which tends to be zero) created by the DCT transform. There are 52 quantization 

steps in the standard which provides more flexibility in the tradeoff between bit-rate and image 

quality. After the quantization stage data are reordered from low to high frequencies. 

 

1.5: Deblocking Filter 

The DBF is applied on edges of each 4x4 block in a Macroblock (MB), after inverse quantization 

and inverse transform. It improves the visual quality by reducing the presence of blocking 

artifacts in decoded video frames, which is caused by block-based transform, motion estimation, 

and quantization operations. Figure 7 shows the presence of blocky artifacts when encoded in 

H.264, and the improvement of visual quality when applying the deblocking filter.  
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Figure 7 : Frame decoded without and with deblocking filter 

 

1.5.1: Deblocking Filter Algorithm 

H.264/AVC adaptive DBF algorithm reduces blocking artifacts created mainly by block-based 

transform and quantization operations. The filtering process consists of horizontal filtering across 

vertical edges and vertical filtering across horizontal edges. The restriction imposed by 

H.264/AVC on the filtering order is that horizontal filtering should precede vertical filtering, so 

all vertical edges are filtered before the horizontal ones.  Figure 8 shows the filtering process, 

where an H.264/AVC filtering order is applied over edges in a macroblock. The DBF is highly 

adaptive 3~5 tap filter, it works on three different levels [4]: slice level, block level, and sample 

level.  On the block level each edge is assigned a Boundary Strength (BS) value. The purpose of 

the BS value is to check if a blocking artifact may be present over an edge, and determine the 

strength of the filtering operation to be used on the edge. Table 1 shows the condition parameters 

for deciding the BS value depending on coded information.  
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Figure 8: H.264/AVC filtering order of edges over a macroblock 

 

Table 1: Determining of BS value 

Conditions BS value 

Either of the blocks  is intra coded and the edge is macro block boundary BS=4 

Either of the blocks is intra coded  BS=3 

Either of the blocks contain coded coefficients BS=2 

The motion vector difference is >1 BS=1 

else BS=0 

 

These parameters include the intra/inter mode prediction, the presence of non-zero residual 

coded coefficients, and the difference of motion vectors across the boundary.  BS takes the value 

from 0 to 4. 0 stands for no filtering and 4 indicates maximum filtering. When BS is 4 a 3~5 tap 
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filter is applied depending on certain conditions, on the other hand when BS is between 1 and 3 a 

4 tap filter is applied. On the sample level in addition to BS>0, three other conditions must hold 

so an actual edge should be filtered or not:                                   . 

The variables α and β are defined in the standard and increase with the increasing of the 

quantization parameter. Table 2 and Table 3 shows filter implementation according to BS value. 

Table 2: Filter implementation when 0< BS < 4 

Equations Output 
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Table 3: Filter implementation when BS=4 

 

On the slice level, the amount of filtering can be changed through encoder offset values. These 

values changes α and β, and thereby increase or decrease the level of filtering that takes place.  

Equations Result 
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           TRUE 

                  

TRUE   

                            

                      

                           

                            

                      

                           

 

 

 

 

 

                  

FALSE 

                    

                    

 

 

 
           FALSE 

                  

TRUE   

                            

                      

                           

                            

 

 

                  

FALSE 

                    

                    

           FALSE  

 

 
           TRUE 

                  

TRUE   

                    

                            

                      

                           

 

 

                  

FALSE 

                    

                            

 

           FALSE 

                    

                            

  

 



11 

 

1.6: Dynamic Partial Reconfiguration  

Field Programmable Gate Arrays (FPGA) are digital integrated circuits comprised of 

configurable logic blocks, which are connected through programmable interconnects. Nowadays 

FPGA contains million of gates and it is used in myriad of applications like embedded 

processing, DSPs, communication, and Reconfigurable Computing (RC). This due to the fact 

that FPGA have low nonrecurring engineering costs, easy design modification, and faster time to 

market.  

Most FPGAs today are SRAM based, which provides the flexibility for the designer of being 

able to program it multiple times. On the other side, anti-fuse based FPGAs are one time 

programmable, which make it useful in design protection against theft. To implement a design on 

the FPGA, a configuration file is uploaded to program logic blocks, routing switches, and I/O 

interface.  Partial Reconfiguration (PR) [5] of an FPGA is done when a partial bit stream is 

loaded to the FPGA to configure some parts with new functionality. Xilinx provides this 

attractive feature of FPGAs.  There are two ways to generate partial bitstreams: difference based 

and modular based [6]. Difference based partial reconfiguration [7] is useful in making small 

changes to the design. The changes can be made by using Xilinx FPGA_EDITOR, and then a 

partial bit stream is generated (using Xilinx BitGen) which contains the difference between the 

new design and the old one. This method only works if the original configuration bitstream is 

available. 

In Modular based partial reconfiguration, certain regions in the hardware fabric which are called 

Partial Reconfigurable Regions (PRRs) can be time multiplexed with multiple functions. Figure 

9 show a layout design with two PRRs. The PRRs can be reconfigured to do different 

functionalities while the static region remains unchanged.  
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Figure 9: FPGA design layout with two PRRs  

 

Bus Macros (BM) are used to communicate between the PRRs and static region.  The main 

benefit of partial reconfiguration is that some parts of the design can be changed while the other 

parts remain unaffected. This implies faster reconfiguration time is achieved by not having to 

load the full bitstream into the FPGA, Less hardware area is used since different functions are 

time multiplexed, and reduced power consumption is achieved by loading blank bitstreams for 

regions that are not needed. Partial reconfiguration gives the designer the flexibility to make 

design changes during run-time without having to reconfigure the whole FPGA. 
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1.7: Motivation 

First the DBF is the most computationally complex part of the H.264/AVC decoder. This due to 

highly adaptive mode decision and small 4x4 block size. The DBF can easily account for one 

third of the overall complexity of H.264 video decoder [4]. Secondly, the computational 

complexity required for various target applications from mobile to high definition video 

applications varies significantly. Therefore, it becomes important to design efficient architecture 

to adapt to different requirements, such as computing capability and power consumption in order 

to better utilize reconfigurable hardware resources. 

Thirdly, previous works presented in the literature to build Intellectual Property (IP) cores in 

hardware have inherent limitations due to their fixed architectures with pre-determined 

computing capability, power consumption, and hardware area. Therefore, traditional IP cores 

targeting both ASIC and FPGA markets cannot change their architectures efficiently to adapt to 

changing environments. Our goal is to develop an IP core that is easily customizable to match 

the computing capability of the users’ application and able to adapt itself to meet the varying 

workloads during run-time through dynamic partial reconfiguration.  In this work, we combine 

the algorithmic and hardware scalability to design reconfigurable architecture of DBF engine by 

utilizing multiple reconfiguration regions which can be selectively used to support various bit-

rates, resolutions, and frame rates of video sequences. 
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1.8: Thesis Organization 

Chapter 2 investigates software and hardware implementations of DBF algorithm. Usually 

hardware implementations are preferred due to the computational complexity of the algorithm 

and also hardware implementations are more feasible to consumer products. Chapter 3 presents a 

modular reconfigurable DBF architecture, which supports various bit-rates, frame rates, and 

video resolutions. The chapter also discusses the implementation of the architecture using 

dynamic partial reconfiguration on FPGA. Chapter 4, is an extension to the previous chapter, 

where taking into the fact that by increasing compression the computational complexity can be 

reduced by the increased presence of skipped MBs, thus reducing the processing cycles needed 

for filtering operation. The chapter also discusses an algorithm where the number of processing 

elements can be changed dynamically with the value of quantization parameter.  
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CHATPTER TWO: SUPPORTING WORK 

There have been some previous works related to the DBF algorithm, targeting for software and 

hardware implementations. In [8], parallel processing through SIMD (Single Instruction Multiple 

Data) is used to improve performance. In [9], they increase the degree of the instruction level 

parallelism of the dedicated processors to improve performance. Because of the high complexity 

of the deblocking filter, hardware solutions have been preferred. 

2.1: Filter Order 

In DBF algorithm, pixel values in a macroblock are read many times and intermediate pixel 

results are stored in temporary buffers for use in later stages. Changing filtering order improves 

data reuse and decrease memory bandwidth. In [10]-[17], one dimensional or two dimensional 

filtering orders are proposed to improve data reuse and reduce memory cycles required.  

In [10] one dimensional filtering order is proposed to improve data reuse and reduce memory 

cycles. In [11] a semi two dimensional filtering order is employed where horizontal filtering is 

applied on the row and then vertical filtering is applied before moving to the next row in the 

macroblock. This way better data reuse is provided than one dimensional filtering and pixels can 

be written earlier to the main memory. In [12]-[14] better use of two dimensional filtering order 

is applied where horizontal filtering and vertical filtering alternate on the block, this way data 

reused is more efficient and local buffer size is reduced. In [15], two edge filters are applied and 

horizontal and vertical filtering occur simultaneously which greatly reduces filtering cycles for a 

macroblock.   
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Figure 10: Filtering order in [7] 
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Figure 11: Filtering order in [8]-[10] 
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Figure 12: Filtering order in [11] 

 

2.2: Filter Complexity 

The DBF in H.264/AVC is the most complex part in the decoder [4]. Most works cited try to 

reduce DBF computational complexity. In [11], [15], and [17] the filter design is pipelined, this 

offer some advantages like reducing the critical path of the design, thereby increasing the clock 

speed of the design and reducing latency. However the filtering order is restricted to avoid data 

hazard. Other techniques have been used, in [18] multiple methods are used such as clock gating, 

glitch reduction techniques, and simplification of the datapath to reduce power consumption at 

the expense of performance. In [19], architecture is proposed to make use of spatial correlation 

of the pixels to reduce computational complexity. 

2.3: Summary 

DBF is the most computationally demanding module in H.264/AVC decoder. Software solutions 

have been suggested, but hardware solutions are usually preferred because they are more feasible 
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in consumer products. In this chapter a lot of works have been cited trying to reduce the 

complexity of the DBF. Some work tried to change filtering order to reuse data efficiently and to 

reduce memory bandwidth. Other works try to pipeline the design to reduce critical path and 

increase operating frequency. In others, simplification of the datapath and making use of spatial 

correlation of the pixels are used to reduce the computational complexity. However, previous 

works have inherent limitations due to their fixed architectures with pre-determined computing 

capability, power consumption, and hardware area. Therefore, traditional IP cores targeting both 

ASIC and FPGA markets cannot change their architectures efficiently to adapt to changing 

environments. Our goal is to develop an IP core that is easily customizable to match the 

computing capability of the users’ application and able to adapt itself to meet the varying 

workloads during run-time through dynamic partial reconfiguration. In our work, we combine 

the algorithmic and hardware scalability to design reconfigurable architecture of DBF engine by 

utilizing multiple reconfiguration regions which can be selectively used to support various bit-

rates, resolutions, and frame rates of video sequences. 
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CHAPTER THREE: SCALBALE H.264/AVC DEBLOCKING FILTER 

3.1 Filter Order 
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Figure 13: Filter Order 

 

The restriction imposed by H.264 standard is that horizontal filtering should precede vertical 

filtering. The filtering order in Figure 13 complies with the previous restriction and it was chosen 

to serve the need of our scalable architecture and to provide better data reuse. 
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3.2 Top Level Architecture 

 

Input Buffer Controller

Bus Macro

PE Filter PE Filter PE Filter PE Filter

PRR1 PRR2 PRR3 PRR4

R
e

a
d

D
a

ta

P.R Initiation

Parameters

PE Filter

Edge Filter

Input Buffer

(current MB)

Input Buffer

(Neighboring MBs)

Buffer0 Buffer1

PLB BUS

Reconfiguration 

Controller
ICAP

CE

Write

Data[31:0]

Busy
System

ACE

Compact Flash

Full

Configuration

PRR1

Con.

PRR2

Con.

PRR3

Con.

PRR4

Con.

UART

Terminal 

Program

 

 

Figure 14: Top Level Architecture of Partially reconfigurable DBF 

The top level architecture of scalable DBF is shown in Figure 14. All the datapaths are 32-bit 

wide. The architecture consists of static region and reconfigurable regions. The static region 

includes the input buffer, controller, and reconfiguration controller. The 80x32 bit input buffer is  
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Figure 15: Basic Building Block of the Input Buffer 

 

used to store the pixels in a 16x16 MB until all the edges in the MB are fully filtered. The buffer 

is four dual port memory that is made from registers. As shown in Figure 15, the basic building 

block of the input buffer has a 4x4 pixel array structure, where each pixel is stored in 8-bit 

register. The controller assigns the write enable signal to select the specific row/column for data 

writing, and generates address signals for data fetching. The proposed DBF architecture can 

include up to four Partial Reconfiguration Regions (PRRs), i.e., from PRR1 to PRR4. Each of 

PRRs holds the modular DBF engine. Each PRR can perform filtering of each edge in a 4x4 

block. For example, if 4 PRRs are used, then four blocks can be filtered concurrently on four 

distinct rows (columns) in the case of horizontal (vertical) filtering, respectively, as shown in 

Figure 16.  The reconfiguration is done using Internal Configuration Access Port (ICAP) which 

allows for internal device reconfiguration during run-time. In this paper, Microblaze processor is 

used as reconfiguration controller to provide management for reconfiguration and also allow the  
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Figure 16: Degree of parallelism, depending on the number of active PRRs 

 

user to trigger reconfiguration through UART. The controller also provides the necessary signals 

for reconfiguration to be done using ICAP. “CE” signal is the chip enable for ICAP interface and 

“Write” is write enable signal. “Data” is the handshaking signal to indicate that ICAP is busy and 

cannot take new data for reconfiguration. System ACE is used as an interface for compact flash 

card. UART is used as a user interface through HyperTerminal. The Bus Macro (BM) is used as 

an interface for the signals connecting the static and the reconfigurable regions.  

3.2 Partial Reconfigurable Module 

Figure 14 shows the internal structure of a PE filter. This module consists of two 4x4 pixel 

buffers and an edge filter.  There is an initial latency of 3 clock cycles to fetch the data from the 

input buffer. The data after first filtering operation are sent to buffer0 for filtering the next edge 

while new data from the neighboring 4x4 block are stored at buffer1. After the data are filtered 

second time, they are stored back to the input buffer as they are needed later for vertical filtering 

which uses the same flow as horizontal filtering. Because of the versatile structure of the input 

buffer, we can read and write data column-wise or row-wise on the fly. It takes 4 clock cycles to 

filter one edge. If two or four PRRs become active, then, two or four distinct 4x4 blocks can be 

concurrently filtered, respectively. 
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3.3 Experimental Results 

The scalable architecture is implemented using Xilinx Virtex-4 (XC4VFX60-FF1152) ML410 

board. Synthesis is done using Xilinx ISE Foundation 9.2i. Figure 17 shows the PAR map of the 

reconfigurable architecture. The full and partial bitstreams are generated through Xilinx 

PlanAhead 10.1 Tool [20]. From partial reconfiguration point of view, the Virtex-4 architecture 

has finer reconfiguration granularity as the configuration frame resolution is 16 CLBs in height. 

In Virtex-II and Virtex-II pro, the configuration frame was for the whole CLB column [5]. 

Therefore, we can have multiple reconfiguration regions at any given column and the 

reconfiguration can be performed faster compared to previous family of Xilinx FPGA devices. 

Among different configuration modes supported in Xilinx FPGAs, ICAP [21] is used for 

dynamic partial reconfiguration in our modular design. The partial bitstreams are stored on 

Compact Flash card and the reconfiguration is triggered by the software running on Microblaze 

processor which provides the necessary handshaking signals to the ICAP interface (see Table 4).  

Table 4: ICAP Interface Ports 

 

 

Port Name 

 

Direction 

 

Description 

CLK INPUT ICAP INTERFACE CLOCK 

CE INPUT CONFIGURATION ENABLE 

WRITE INPUT WRITE/READ SIGNAL 

I[31:0] INPUT ICAP WRITE DATA BUS 

O[31:0] OUTPUT ICAP READ DATA BUS 

BUSY OUTPUT BUSY(BUFFER IS FULL) 
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Figure 17: PAR map of reconfigurable architecture   
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Table 5 shows the performance comparison with previous work and the scalability factor when 

using multiple configuration regions to enhance performance and parallelism. It is shown that the 

filtering cycles are reduced significantly when more number of PEs are used to achieve speed-

up.  

Table 6 shows the time required for filtering operation for each frame at a clock frequency of 50 

MHz. It shows that different reconfiguration modes can be selected to increase its throughput, 

depending on the input resolution of video sequences. In addition, the proposed architecture can 

be self-reconfigured during run-time through dynamic partial reconfiguration to adapt to the 

changing frame rate. Therefore, reduction of power consumption and hardware resources can be 

achieved while the proposed reconfigurable architecture for DBF algorithm maintains its 

required performance.  

Table 7 shows the synthesis results of the static and reconfigurable regions, and their device 

utilization. Static region is always active after initial reconfiguration, and used for self-

reconfiguration control, data buffering, and prediction of required computational complexity. 

Reconfigurable regions are used to support scalable DBF architecture so that varying 

computational loads during run-time can be met with higher flexibility. 

Table 8 shows the partial bitstream size and the configuration time. There is a difference between 

Virtex-II ICAP and Virtex-4 ICAP. The former has 8-bit data port operating at 50 MHz, while 

the later has 32-bit data port operating at 100 MHz. This implies a reconfiguration rate of 3.2 

Gbps for the Virtex 4 device family [22].  
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Table 5: Design Comparisons, N=1,2 OR 4 

 

 

 

Table 6: Various Reconfigurable Modes to Support Different Resolutions of Video Sequences 

 

 

 

Architecture 

 

 

Filtering Cycles/MB 

 

 

Memory Size 

 

 

Filters 

[23]               250 160x32 1 

[24]               300 16x32 1 

[25]               204 2x96x32 1 

[15]               192 160x32 1 

Proposed work    

 
 

(80+Nx8)x32 N 

 

Display Type 

 

Type of Reconfigurable architecture 

 

Estimated Filter Processing time  

for each frame @ 50MHz 

 

 VGA (640×480) 
1PRR 4.68ms 

2PRR 2.37ms 

 

720×480 
1PRR 5.26ms 

2PRR 2.67ms 

4PRR 1.37ms 

 

1920×1080 

1PRR 32ms 

2PRR 15.85ms 

4PRR 8.2ms 

 

2560×1920 

1PRR 75ms 

2PRR 38ms 

4PRR 20ms 
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Table 7: Hardware Resources 

 

 

 

 

Table 8: Bitstream Information 

Bitstreams Size per bitstream (Bytes) 

 

 

Configuration time per 

bitstream (µs) 

PRR1,2,3, and 4 39032 
97.58 

 

 

 

 

 

 

Module LUTs 

(Device Utilization) 

Slice Flip Flops 

(Device Utilization) 

BRAMs 

(Device Utilization) 

Reconfigurable  

(4 PRRs) 

2784(5.5%) 

 

0(0%) 

 

8(3.4%) 

 

Static Region 

(Controller, Input Buffer, 

ICAP Controller) 

14738(29.1%) 

 

5871(11.61%) 

 

32(13.79%) 

 



28 

 

3.4 Summary 

We propose self-reconfigurable architecture for a scalable H.264/AVC DBF using FPGA 

dynamic partial reconfiguration. The scalable architecture can perform filtering up to four 

distinct blocks at the same time, reducing filtering clock cycles significantly and improving its 

throughput. Our DBF engine has the ability to adapt itself to diverse application needs which can 

be used to support different resolutions and frame rates dynamically. The number of processing 

elements can be changed during run-time using dynamic partial reconfiguration through ICAP 

controller. 

 

 

 



29 

 

CHAPTER FOUR: BIT-RATE AWARE DEBLOCKING FILTER 

 

4.1 Complexity Reduction for Deblocking Filter 

What determines an edge needs to be filtered or not is the BS value. BS=0 means no filtering is 

done across the edge, this is due to edges of blocks have zero residual data or they are copied 

directly from a previous frame without a difference in motion vectors. The complexity of the 

filtering process varies with video characteristics and bit-rate [26]. This variation comes into 

effect by the percentage of edges that may not be filtered due to BS=0. Our experiments show 

that when lowering the bit-rate of video sequences, the percentage of edges that need not to be 

filtered increase. This is because of more residual data are quantized to zero, and larger block 

sizes are used for motion compensation, so BS=0. Therefore, the computational complexity can 

be reduced by the increased presence of skipped MBs, thus reducing the processing cycles 

needed for filtering operation.  

4.2 Simulation Results and Evaluation 

Figure 18-Figure 25 shows four QCIF video sequences with a video format of IPPPPPP..., and 

using the JM15.0 software [27] (with coding parameters set as follows: one reference frames, 

motion estimation search range of ±16, 100 frames), we can see the distribution of BS values and 

block size mode for different bit-rates. And while the bit-rate decreases the number of edges that 

need not to be filtered (BS=0) increases. In our experiments we found out that those edges are 

gathered in some MBs, and thus those MBs could be skipped. Thereby decreasing the 

computational time needed for filtering operation. 
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Figure 18: BS Distribution for Football 

 

 

 

 

 

 

 

 

Figure 19: BS Distribution for Highway 
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Figure 20: BS Distribution for Soccer 

 

 

 

 

 

 

 

 

Figure 21: BS Distribution for Foreman 
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Figure 22: Block Size Mode Distribution for Football 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23: Block Size Mode Distribution for Highway 
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Figure 24: Block Size Mode Distribution for Soccer 

 

 

 

 

 

 

 

 

 

 

 

Figure 25: Block Size Mode Distribution for Foreman 
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4.3 Scalable Architecture Adaptability to Compression Ratio and Motion Activity 

 

 

Table 9: Skipped MacroBlocks at Different Quantization Parameters 

 

Table 9 clearly shows at different Quantization parameters (Qp) considerable reduction in 

computational complexity. For low/moderate motion video sequences, the PRRs can be reduced 

to half while maintaining the performance at Qp=25. For high motion video sequences, e.g., 

Soccer and Football, the PRRs can be reduced by half at Qp=35. In this paper, the absolute sum 

of Motion Vectors (MVs) is used to differentiate between low/moderate and high motion video 

sequences. Table 10 shows the absolute sum of motion vectors for different video sequences. We 

use a threshold, i.e., THMV=55000, obtained from our various simulation results. If the MV sum 

is greater than the threshold, then the video sequence is considered to have high motion activity.    

Figure 26 gives more details on the adaptability of the number of PEs depending on motion 

activity and various bit-rates. 

 

Sequence Foreman Container Football Highway Soccer 

Qp=20 30.8% 69.51% 8.88% 51.2% 26.22% 

25 55.87% 87.21% 17.33% 73.63% 44.22% 

30 78.05% 96.38% 33.10% 92.32% 59.79% 

35 89.76% 98.49% 48.41% 97.58% 71.64% 

40 95.53% 98.91% 61.3% 98.38% 81.08% 
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Table 10: Motion Vector Sum for Various Video Sequences (10 FRAMES USED AT QP=30) 

 

Is Qp<35

Yes Yes

No
Is N==1

No

Yes

High Motion
Low/Moderate  

Motion

Is 

Qp<25

Is Qp<30

Is N==1

No

Yes No

NoYes

Is sum of 

MV>=55000
NoYes

Set # of 

PEs=N

Set # of 

PEs=1

Set # of 

PEs=N/2

Set # of 

PEs=N

Set # of 

PEs=1

Set # of 

PEs=N/2

Set # of 

PEs=N

Is DBF

On

Start

Yes

Calculate # of PEs, using video 

resolution and frame rate and set # 

of PEs=N

Set # of 

PEs=0
No

Figure 26: PEs adaptability to changing bit-rate and motion activity  

QCIF Sequence  MV sum 

football 190583 

soccer 125983 

foreman 53935 

Highway 31446 

news 7753 

clair 5144 

contrainer 574 
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4.4 Summary 

We propose self-reconfigurable architecture for a scalable H.264/AVC DBF using FPGA 

dynamic partial reconfiguration. We combine the algorithmic and hardware scalability to 

synergize the performance. The scalable architecture can perform filtering up to four distinct 

blocks at the same time, reducing filtering clock cycles significantly and improving its 

throughput. Moreover, at lower bit-rates, computational cost is reduced greatly by the presence 

of skipped MBs, which in turn improves throughput and less hardware needed for filtering 

operations.  Our DBF engine has the ability to adapt itself to diverse application needs which can 

be used to support various resolutions, frame rates, and bit-rates dynamically by reconfiguring 

processing elements during run-time. 
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