
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations

2010

Bit-rate Aware Reconfigurable Architecture For H.264/avc Bit-rate Aware Reconfigurable Architecture For H.264/avc

Deblocking Filter Deblocking Filter

Rakan Khraisha
University of Central Florida

 Part of the Electrical and Electronics Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Electronic Theses and Dissertations by an authorized administrator of STARS. For more information,

please contact STARS@ucf.edu.

STARS Citation STARS Citation
Khraisha, Rakan, "Bit-rate Aware Reconfigurable Architecture For H.264/avc Deblocking Filter" (2010).
Electronic Theses and Dissertations. 1571.
https://stars.library.ucf.edu/etd/1571

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
https://network.bepress.com/hgg/discipline/270?utm_source=stars.library.ucf.edu%2Fetd%2F1571&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/1571?utm_source=stars.library.ucf.edu%2Fetd%2F1571&utm_medium=PDF&utm_campaign=PDFCoverPages

BIT-RATE AWARE RECONFIGURABLE ARCHITECTURE

FOR H.264/AVC DEBLOCKING FILTER

by

RAKAN KHRAISHA

B.S. University of Jordan, 2007

A thesis submitted in partial fulfillment of the requirements

for the degree of Master of Science

in the School of Electrical Engineering and Computer Science

in the College of Engineering and Computer Science

at the University of Central Florida

Orlando, Florida

Summer Term

2010

ii

©2010 Rakan Khraisha

iii

ABSTARCT

In H.264/AVC, DeBlocking Filter (DBF) achieves bit rate savings and it is used to improve

visual quality by reducing the presence of blocking artifacts. However, these advantages come at

the expense of increasing computational complexity of the DBF due to highly adaptive mode

decision and small 4x4 block size. The DBF easily accounts for one third of the computational

complexity of the decoder. The computational complexity required for various target

applications from mobile to high definition video applications varies significantly. Therefore, it

becomes apparent to design efficient architecture to adapt to different requirements.

 In this work, we exploit the scalability on both the hardware level and the algorithmic

level to synergize the performance and to reduce computational complexity. First, we propose a

modular DBF architecture which can be scaled to adapt to the required computing capability for

various bit-rates, resolutions, and frame rates of video sequences. The scalable architecture is

based on FPGA using dynamic partial reconfiguration. This desirable feature of FPGAs makes it

possible for different hardware configurations to be implemented during run-time. The proposed

design can be scaled to filter up to four different edges simultaneously, resulting in significant

reduction of total processing time. Secondly, our experiments show by lowering the bit rate of

video sequences, significant reduction in computational complexity can be achieved by the

increased presence of skipped macroblocks, thus, avoiding redundant filtering operations. The

implemented architecture has been evaluated using Xilinx Virtex-4 ML410 FPGA board. The

design can operate at a maximum frequency of 103 MHz. The reconfiguration is done through

Internal Configuration Access Port (ICAP) to achieve maximum performance needed by real

time applications.

iv

To my parents

v

ACKNOWLEDGMENTS

The author wishes to thank the following for their tremendous contribution to this work:

Dr. Jooheung lee as a mentor and advisor, for which this work would not have been possible

without him.

Dr. Ronald Demara and Dr. Jun Wang for their encouragement as professors and committee

members.

Dr. Issa Batarseh for his advising and support throughout this journey.

Muneer Masad for his friendship and expertise.

vi

TABLE OF CONTENTS

LIST OF FIGURES ... viii

LIST OF TABLES .. x

CHAPTER ONE: INTRODUCTION ... 1

1.1: H.264/AVC Overview ... 1

1.2: Inter Frame Prediction ... 2

1.3: Intra Frame Prediction ... 4

1.4: Transform and quantization ... 5

1.5: Deblocking Filter ... 6

1.5.1: Deblocking Filter Algorithm .. 7

1.6: Dynamic Partial Reconfiguration .. 11

1.7: Motivation .. 13

1.8: Thesis Organization ... 14

CHATPTER TWO: SUPPORTING WORK .. 15

2.1: Filter Order .. 15

2.2: Filter Complexity ... 17

2.3: Summary .. 17

CHAPTER THREE: SCALBALE H.264/AVC DEBLOCKING FILTER 19

3.1 Filter Order.. 19

vii

3.2 Top Level Architecture ... 20

3.2 Partial Reconfigurable Module ... 22

3.3 Experimental Results .. 23

3.4 Summary ... 28

CHAPTER FOUR: BIT-RATE AWARE DEBLOCKING FILTER ... 29

4.1 Complexity Reduction for Deblocking Filter ... 29

4.2 Simulation Results and Evaluation ... 29

4.3 Scalable Architecture Adaptability to Compression Ratio and Motion Activity 34

4.4 Summary ... 36

REFERENCES ... 37

viii

LIST OF FIGURES

Figure 1: H.264 video encoder.. 1

Figure 2: H.264 video decoder.. 2

Figure 3: Macroblcoks partitioning .. 3

Figure 4: Multiple frames motion estimation ... 3

Figure 5: Prediction directions for Intra 4x4. .. 4

Figure 6 : Scanning order of blocks in H.264 ... 5

Figure 7 : Frame decoded without and with deblocking filter .. 7

Figure 8: H.264/AVC filtering order of edges over a macroblock ... 8

Figure 9: FPGA design layout with two PRRs ... 12

Figure 10: Filtering order in [7] .. 16

Figure 11: Filtering order in [8]-[10] .. 16

Figure 12: Filtering order in [11] .. 17

Figure 13: Filter Order .. 19

Figure 14: Top Level Architecture of Partially reconfigurable DBF ... 20

Figure 15: Basic Building Block of the Input Buffer ... 21

Figure 16: Degree of parallelism, depending on the number of active PRRs............................... 22

Figure 17: PAR map of reconfigurable architecture ... 24

Figure 18: BS Distribution for Football .. 30

Figure 19: BS Distribution for Highway .. 30

Figure 20: BS Distribution for Soccer .. 31

Figure 21: BS Distribution for Foreman ... 31

ix

Figure 22: Block Size Mode Distribution for Football ... 32

Figure 23: Block Size Mode Distribution for Highway.. 32

Figure 24: Block Size Mode Distribution for Soccer ... 33

Figure 25: Block Size Mode Distribution for Foreman .. 33

Figure 26: PEs adaptability to changing bit-rate and motion activity .. 35

x

LIST OF TABLES

Table 1: Determining of BS value .. 8

Table 2: Filter implementation when 0< BS < 4 .. 9

Table 3: Filter implementation when BS=4 .. 10

Table 4: ICAP Interface Ports ... 23

Table 5: Design Comparisons, N=1,2 OR 4 ... 26

Table 6: Various Reconfigurable Modes to Support Different Resolutions of Video Sequences 26

Table 7: Hardware Resources ... 27

Table 8: Bitstream Information ... 27

Table 9: Skipped MacroBlocks at Different Quantization Parameters ... 34

Table 10: Motion Vector Sum for Various Video Sequences (10 FRAMES USED AT QP=30) 35

1

CHAPTER ONE: INTRODUCTION

1.1: H.264/AVC Overview

 he H.264/AVC is the latest video coding standard developed by the cooperation between

ITU-T and ISO/IEC standardization organizations in 2003 [1], [2].

Compared to its predecessors, such as H.261/3 and MPEG-1/2/4, it provides improved video

compression efficiency. This is due to the combination of advanced video coding techniques,

such as variable block-size motion estimation with quarter-pixel resolution, intra prediction in

the spatial domain, integer 4x4 DCT transform, context adaptive variable length coding, and in-

loop adaptive DeBlocking Filter (DBF).

Current Frame

Reference

Frame
Inter Prediction

Intra

Predicition

- Trasform/

Quant.

Entropy

Decoder

Inv. Transform/

Inv. Quant.+Deblocking

Filter

Reconstructed

Frame

Output

Bitstream

Figure 1: H.264 video encoder.

T

2

Figure 1 shows H.264 encoder. The input frame, which is divided into macroblocks, is encoded

in either Inter or Intra prediction modes. In Intra mode the prediction is made from samples from

the current frame that already have been encoded. In Inter mode, motion compensation

prediction is used from reference frames. The current frame is subtracted from the predicted

frame to produce a residual that is transformed, quantized, and entropy encoded. The encoder

also decodes current frames, and DBF is applied for future prediction.

Reference

Frame
Inter Prediction

Intra

Predicition

Inv. Trasform/

Inv. Quant.

Entropy

Decoder+Deblocking

Filter

Frame

Buffer
Compressed

Video

Figure 2: H.264 video decoder.

Figure 2 shows H.264 video decoder. The decoder receives the compressed video frames, which

are reverse quantized and transformed, and then added to predicted blocks which is the same as

the encoder. Finally the decoded frame is filtered and stored for later processing.

1.2: Inter Frame Prediction

Consecutive video frames being transmitted have similar data between them. Motion Estimation

(ME) is used to remove temporal redundancies to achieve better compression efficiency. In Inter

mode macroblocks which consists of 16x16 pixels are predicted from previously encoded video

frames. The prediction is made using Motion Vectors (MV) which is the offset between the

3

predicted block and the location from the already encoded reference frame. In Figure 3

H.264/AVC supports various block sizes (from 16x16 to 4x4). This way better coding efficiency

16x16 16x8 8x16 8x8

4x44x88x48x8

Figure 3: Macroblcoks partitioning

could be achieved by finding the best matching block in previous referenced frames. Also in

H.264/AVC multiple frames could be used for motion compensation prediction which is shown

in Figure 4.

Reference Frames

Current Frame

Figure 4: Multiple frames motion estimation

4

1.3: Intra Frame Prediction

In Intra prediction reference frames are not used. The prediction is made from previously

encoded blocks from the same frame. There are two prediction modes; the first is Intra 4x4

prediction where there are nine prediction modes for each 4x4 subblock. The second one is intra

16x16 prediction where four prediction modes are available. Figure 5 shows possible eight

prediction directions supported for Intra 4x4, the ninth mode is DC prediction mode where the

mean is taken of all neighboring blocks of the top and the left of the current block.

Figure 5: Prediction directions for Intra 4x4.

5

1.4: Transform and quantization

The transform stage is used to convert data from the image domain to the frequency domain.

Macroblocks are transmitted according to the order shown in Figure 6. Depending on the data

sent, one of three transforms is applied. A Hadamard transform is applied to macroblocks

predicted in intra 16x16 mode and for 2x2 blocks of chroma DC coefficients. For all other 4x4

blocks a DCT based transform is applied.

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

Y

Figure 6 : Scanning order of blocks in H.264

6

The DCT applied is an integer transform which has the advantage of not losing coding accuracy,

and it can be applied with shifts and additions which provides easier hardware implementation.

The transform [3] is defined as:

The quantization stage is used to provide compression by removing the high frequency

components (which tends to be zero) created by the DCT transform. There are 52 quantization

steps in the standard which provides more flexibility in the tradeoff between bit-rate and image

quality. After the quantization stage data are reordered from low to high frequencies.

1.5: Deblocking Filter

The DBF is applied on edges of each 4x4 block in a Macroblock (MB), after inverse quantization

and inverse transform. It improves the visual quality by reducing the presence of blocking

artifacts in decoded video frames, which is caused by block-based transform, motion estimation,

and quantization operations. Figure 7 shows the presence of blocky artifacts when encoded in

H.264, and the improvement of visual quality when applying the deblocking filter.

7

Figure 7 : Frame decoded without and with deblocking filter

1.5.1: Deblocking Filter Algorithm

H.264/AVC adaptive DBF algorithm reduces blocking artifacts created mainly by block-based

transform and quantization operations. The filtering process consists of horizontal filtering across

vertical edges and vertical filtering across horizontal edges. The restriction imposed by

H.264/AVC on the filtering order is that horizontal filtering should precede vertical filtering, so

all vertical edges are filtered before the horizontal ones. Figure 8 shows the filtering process,

where an H.264/AVC filtering order is applied over edges in a macroblock. The DBF is highly

adaptive 3~5 tap filter, it works on three different levels [4]: slice level, block level, and sample

level. On the block level each edge is assigned a Boundary Strength (BS) value. The purpose of

the BS value is to check if a blocking artifact may be present over an edge, and determine the

strength of the filtering operation to be used on the edge. Table 1 shows the condition parameters

for deciding the BS value depending on coded information.

8

A

B

C

D

E F G H

Y Data

Cb Data

Cr Data

I

J

K L

M

N

O P

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

25

29

33

37

26

30

34

38

27

31

35

39

28

32

36

40

17 19

18 20

21 23

22 24

41

43

42

44

45

47

46

48

p3

p2

p1

p0

q0

q1

q2

q3

Horizontal

Edgep
3

p
2

p
1

p
0

q
0

q
1

q
2

q
3

Vertical

Edge

Figure 8: H.264/AVC filtering order of edges over a macroblock

Table 1: Determining of BS value

Conditions BS value

Either of the blocks is intra coded and the edge is macro block boundary BS=4

Either of the blocks is intra coded BS=3

Either of the blocks contain coded coefficients BS=2

The motion vector difference is >1 BS=1

else BS=0

These parameters include the intra/inter mode prediction, the presence of non-zero residual

coded coefficients, and the difference of motion vectors across the boundary. BS takes the value

from 0 to 4. 0 stands for no filtering and 4 indicates maximum filtering. When BS is 4 a 3~5 tap

9

filter is applied depending on certain conditions, on the other hand when BS is between 1 and 3 a

4 tap filter is applied. On the sample level in addition to BS>0, three other conditions must hold

so an actual edge should be filtered or not: .

The variables α and β are defined in the standard and increase with the increasing of the

quantization parameter. Table 2 and Table 3 shows filter implementation according to BS value.

Table 2: Filter implementation when 0< BS < 4

Equations Output

TRUE

TRUE

FALSE

FALSE

TRUE

FALSE

10

Table 3: Filter implementation when BS=4

On the slice level, the amount of filtering can be changed through encoder offset values. These

values changes α and β, and thereby increase or decrease the level of filtering that takes place.

Equations Result

 TRUE

 TRUE

TRUE

FALSE

 FALSE

TRUE

FALSE

 FALSE

 TRUE

TRUE

FALSE

 FALSE

11

1.6: Dynamic Partial Reconfiguration

Field Programmable Gate Arrays (FPGA) are digital integrated circuits comprised of

configurable logic blocks, which are connected through programmable interconnects. Nowadays

FPGA contains million of gates and it is used in myriad of applications like embedded

processing, DSPs, communication, and Reconfigurable Computing (RC). This due to the fact

that FPGA have low nonrecurring engineering costs, easy design modification, and faster time to

market.

Most FPGAs today are SRAM based, which provides the flexibility for the designer of being

able to program it multiple times. On the other side, anti-fuse based FPGAs are one time

programmable, which make it useful in design protection against theft. To implement a design on

the FPGA, a configuration file is uploaded to program logic blocks, routing switches, and I/O

interface. Partial Reconfiguration (PR) [5] of an FPGA is done when a partial bit stream is

loaded to the FPGA to configure some parts with new functionality. Xilinx provides this

attractive feature of FPGAs. There are two ways to generate partial bitstreams: difference based

and modular based [6]. Difference based partial reconfiguration [7] is useful in making small

changes to the design. The changes can be made by using Xilinx FPGA_EDITOR, and then a

partial bit stream is generated (using Xilinx BitGen) which contains the difference between the

new design and the old one. This method only works if the original configuration bitstream is

available.

In Modular based partial reconfiguration, certain regions in the hardware fabric which are called

Partial Reconfigurable Regions (PRRs) can be time multiplexed with multiple functions. Figure

9 show a layout design with two PRRs. The PRRs can be reconfigured to do different

functionalities while the static region remains unchanged.

12

FPGA

PRR 1

 PRR 2

S
ta

tic
 R

e
g

io
n

Bus

Macro

Bus

Macro

Figure 9: FPGA design layout with two PRRs

Bus Macros (BM) are used to communicate between the PRRs and static region. The main

benefit of partial reconfiguration is that some parts of the design can be changed while the other

parts remain unaffected. This implies faster reconfiguration time is achieved by not having to

load the full bitstream into the FPGA, Less hardware area is used since different functions are

time multiplexed, and reduced power consumption is achieved by loading blank bitstreams for

regions that are not needed. Partial reconfiguration gives the designer the flexibility to make

design changes during run-time without having to reconfigure the whole FPGA.

13

1.7: Motivation

First the DBF is the most computationally complex part of the H.264/AVC decoder. This due to

highly adaptive mode decision and small 4x4 block size. The DBF can easily account for one

third of the overall complexity of H.264 video decoder [4]. Secondly, the computational

complexity required for various target applications from mobile to high definition video

applications varies significantly. Therefore, it becomes important to design efficient architecture

to adapt to different requirements, such as computing capability and power consumption in order

to better utilize reconfigurable hardware resources.

Thirdly, previous works presented in the literature to build Intellectual Property (IP) cores in

hardware have inherent limitations due to their fixed architectures with pre-determined

computing capability, power consumption, and hardware area. Therefore, traditional IP cores

targeting both ASIC and FPGA markets cannot change their architectures efficiently to adapt to

changing environments. Our goal is to develop an IP core that is easily customizable to match

the computing capability of the users’ application and able to adapt itself to meet the varying

workloads during run-time through dynamic partial reconfiguration. In this work, we combine

the algorithmic and hardware scalability to design reconfigurable architecture of DBF engine by

utilizing multiple reconfiguration regions which can be selectively used to support various bit-

rates, resolutions, and frame rates of video sequences.

14

1.8: Thesis Organization

Chapter 2 investigates software and hardware implementations of DBF algorithm. Usually

hardware implementations are preferred due to the computational complexity of the algorithm

and also hardware implementations are more feasible to consumer products. Chapter 3 presents a

modular reconfigurable DBF architecture, which supports various bit-rates, frame rates, and

video resolutions. The chapter also discusses the implementation of the architecture using

dynamic partial reconfiguration on FPGA. Chapter 4, is an extension to the previous chapter,

where taking into the fact that by increasing compression the computational complexity can be

reduced by the increased presence of skipped MBs, thus reducing the processing cycles needed

for filtering operation. The chapter also discusses an algorithm where the number of processing

elements can be changed dynamically with the value of quantization parameter.

15

CHATPTER TWO: SUPPORTING WORK

There have been some previous works related to the DBF algorithm, targeting for software and

hardware implementations. In [8], parallel processing through SIMD (Single Instruction Multiple

Data) is used to improve performance. In [9], they increase the degree of the instruction level

parallelism of the dedicated processors to improve performance. Because of the high complexity

of the deblocking filter, hardware solutions have been preferred.

2.1: Filter Order

In DBF algorithm, pixel values in a macroblock are read many times and intermediate pixel

results are stored in temporary buffers for use in later stages. Changing filtering order improves

data reuse and decrease memory bandwidth. In [10]-[17], one dimensional or two dimensional

filtering orders are proposed to improve data reuse and reduce memory cycles required.

In [10] one dimensional filtering order is proposed to improve data reuse and reduce memory

cycles. In [11] a semi two dimensional filtering order is employed where horizontal filtering is

applied on the row and then vertical filtering is applied before moving to the next row in the

macroblock. This way better data reuse is provided than one dimensional filtering and pixels can

be written earlier to the main memory. In [12]-[14] better use of two dimensional filtering order

is applied where horizontal filtering and vertical filtering alternate on the block, this way data

reused is more efficient and local buffer size is reduced. In [15], two edge filters are applied and

horizontal and vertical filtering occur simultaneously which greatly reduces filtering cycles for a

macroblock.

16

A

B

C

D

E F G H

Y Data

Cb Data

Cr Data

I

J

K L

M

N

O P

1 2 3 4

9 10 11 12

17 18 19 20

25 26 27 28

5

13

21

29

6

14

22

30

7

15

23

31

8

16

24

32

33 34

35 36

41 42

43 44

37

39

38

40

45

47

46

48

Figure 10: Filtering order in [7]

A

B

C

D

E F G H

Y Data

Cb Data

Cr Data

I

J

K L

M

N

O P

1 2 4 6

9 10 12 14

17 18 20 22

25 26 28 30

3

11

19

27

5

13

21

29

7

15

23

31

8

16

24

32

33 34

37 38

41 42

45 46

35

39

36

40

43

47

44

48

Figure 11: Filtering order in [8]-[10]

17

A

B

C

D

E F G H

Y Data

Cb Data

Cr Data

I

J

K L

M

N

O P

1 2 3 4

6 7 8 9

11 12 13 14

16 17 18 19

3

8

13

18

4

9

14

19

5

10

15

20

6

11

16

21

22 23

25 26

29 30

32 33

24

27

25

28

31

34

32

35

Figure 12: Filtering order in [11]

2.2: Filter Complexity

The DBF in H.264/AVC is the most complex part in the decoder [4]. Most works cited try to

reduce DBF computational complexity. In [11], [15], and [17] the filter design is pipelined, this

offer some advantages like reducing the critical path of the design, thereby increasing the clock

speed of the design and reducing latency. However the filtering order is restricted to avoid data

hazard. Other techniques have been used, in [18] multiple methods are used such as clock gating,

glitch reduction techniques, and simplification of the datapath to reduce power consumption at

the expense of performance. In [19], architecture is proposed to make use of spatial correlation

of the pixels to reduce computational complexity.

2.3: Summary

DBF is the most computationally demanding module in H.264/AVC decoder. Software solutions

have been suggested, but hardware solutions are usually preferred because they are more feasible

18

in consumer products. In this chapter a lot of works have been cited trying to reduce the

complexity of the DBF. Some work tried to change filtering order to reuse data efficiently and to

reduce memory bandwidth. Other works try to pipeline the design to reduce critical path and

increase operating frequency. In others, simplification of the datapath and making use of spatial

correlation of the pixels are used to reduce the computational complexity. However, previous

works have inherent limitations due to their fixed architectures with pre-determined computing

capability, power consumption, and hardware area. Therefore, traditional IP cores targeting both

ASIC and FPGA markets cannot change their architectures efficiently to adapt to changing

environments. Our goal is to develop an IP core that is easily customizable to match the

computing capability of the users’ application and able to adapt itself to meet the varying

workloads during run-time through dynamic partial reconfiguration. In our work, we combine

the algorithmic and hardware scalability to design reconfigurable architecture of DBF engine by

utilizing multiple reconfiguration regions which can be selectively used to support various bit-

rates, resolutions, and frame rates of video sequences.

19

CHAPTER THREE: SCALBALE H.264/AVC DEBLOCKING FILTER

3.1 Filter Order

A

B

C

D

E F G H

Y Data

Cb Data

Cr Data

I

J

K L

M

N

O P

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33 34

35 36

37 38

39 40

41

42

43

44

45

46

47

48

Figure 13: Filter Order

The restriction imposed by H.264 standard is that horizontal filtering should precede vertical

filtering. The filtering order in Figure 13 complies with the previous restriction and it was chosen

to serve the need of our scalable architecture and to provide better data reuse.

20

3.2 Top Level Architecture

Input Buffer Controller

Bus Macro

PE Filter PE Filter PE Filter PE Filter

PRR1 PRR2 PRR3 PRR4

R
e

a
d

D
a

ta

P.R Initiation

Parameters

PE Filter

Edge Filter

Input Buffer

(current MB)

Input Buffer

(Neighboring MBs)

Buffer0 Buffer1

PLB BUS

Reconfiguration

Controller
ICAP

CE

Write

Data[31:0]

Busy
System

ACE

Compact Flash

Full

Configuration

PRR1

Con.

PRR2

Con.

PRR3

Con.

PRR4

Con.

UART

Terminal

Program

Figure 14: Top Level Architecture of Partially reconfigurable DBF

The top level architecture of scalable DBF is shown in Figure 14. All the datapaths are 32-bit

wide. The architecture consists of static region and reconfigurable regions. The static region

includes the input buffer, controller, and reconfiguration controller. The 80x32 bit input buffer is

21

8-bit Reg.

we0

D
e

c
o

d
e

r

We [15:0]

8-bit Reg.

we1

8-bit Reg.

we2

8-bit Reg.

we3

R
e

a
d

 R
o

w
/C

o
lu

m
n

 W
is

e

8-bit Reg.

we8

8-bit Reg.

we9

8-bit Reg.

we10

8-bit Reg.

we11

8-bit Reg.

we12

8-bit Reg.

we13

8-bit Reg.

we14

8-bit Reg.

we15

Input [31:0]

8-bit Reg.

we4

8-bit Reg.

we5

8-bit Reg.

we6

8-bit Reg.

we7

Figure 15: Basic Building Block of the Input Buffer

used to store the pixels in a 16x16 MB until all the edges in the MB are fully filtered. The buffer

is four dual port memory that is made from registers. As shown in Figure 15, the basic building

block of the input buffer has a 4x4 pixel array structure, where each pixel is stored in 8-bit

register. The controller assigns the write enable signal to select the specific row/column for data

writing, and generates address signals for data fetching. The proposed DBF architecture can

include up to four Partial Reconfiguration Regions (PRRs), i.e., from PRR1 to PRR4. Each of

PRRs holds the modular DBF engine. Each PRR can perform filtering of each edge in a 4x4

block. For example, if 4 PRRs are used, then four blocks can be filtered concurrently on four

distinct rows (columns) in the case of horizontal (vertical) filtering, respectively, as shown in

Figure 16. The reconfiguration is done using Internal Configuration Access Port (ICAP) which

allows for internal device reconfiguration during run-time. In this paper, Microblaze processor is

used as reconfiguration controller to provide management for reconfiguration and also allow the

22

16

16

1PRR

1

16

16

2PRRs

1

2

16

4PRRs

1

2

3

4

16

1

2

1

1

1

Figure 16: Degree of parallelism, depending on the number of active PRRs

user to trigger reconfiguration through UART. The controller also provides the necessary signals

for reconfiguration to be done using ICAP. “CE” signal is the chip enable for ICAP interface and

“Write” is write enable signal. “Data” is the handshaking signal to indicate that ICAP is busy and

cannot take new data for reconfiguration. System ACE is used as an interface for compact flash

card. UART is used as a user interface through HyperTerminal. The Bus Macro (BM) is used as

an interface for the signals connecting the static and the reconfigurable regions.

3.2 Partial Reconfigurable Module

Figure 14 shows the internal structure of a PE filter. This module consists of two 4x4 pixel

buffers and an edge filter. There is an initial latency of 3 clock cycles to fetch the data from the

input buffer. The data after first filtering operation are sent to buffer0 for filtering the next edge

while new data from the neighboring 4x4 block are stored at buffer1. After the data are filtered

second time, they are stored back to the input buffer as they are needed later for vertical filtering

which uses the same flow as horizontal filtering. Because of the versatile structure of the input

buffer, we can read and write data column-wise or row-wise on the fly. It takes 4 clock cycles to

filter one edge. If two or four PRRs become active, then, two or four distinct 4x4 blocks can be

concurrently filtered, respectively.

23

3.3 Experimental Results

The scalable architecture is implemented using Xilinx Virtex-4 (XC4VFX60-FF1152) ML410

board. Synthesis is done using Xilinx ISE Foundation 9.2i. Figure 17 shows the PAR map of the

reconfigurable architecture. The full and partial bitstreams are generated through Xilinx

PlanAhead 10.1 Tool [20]. From partial reconfiguration point of view, the Virtex-4 architecture

has finer reconfiguration granularity as the configuration frame resolution is 16 CLBs in height.

In Virtex-II and Virtex-II pro, the configuration frame was for the whole CLB column [5].

Therefore, we can have multiple reconfiguration regions at any given column and the

reconfiguration can be performed faster compared to previous family of Xilinx FPGA devices.

Among different configuration modes supported in Xilinx FPGAs, ICAP [21] is used for

dynamic partial reconfiguration in our modular design. The partial bitstreams are stored on

Compact Flash card and the reconfiguration is triggered by the software running on Microblaze

processor which provides the necessary handshaking signals to the ICAP interface (see Table 4).

Table 4: ICAP Interface Ports

Port Name

Direction

Description

CLK INPUT ICAP INTERFACE CLOCK

CE INPUT CONFIGURATION ENABLE

WRITE INPUT WRITE/READ SIGNAL

I[31:0] INPUT ICAP WRITE DATA BUS

O[31:0] OUTPUT ICAP READ DATA BUS

BUSY OUTPUT BUSY(BUFFER IS FULL)

24

STATIC

PRR1 PRR2

PRR3 PRR4

Figure 17: PAR map of reconfigurable architecture

25

Table 5 shows the performance comparison with previous work and the scalability factor when

using multiple configuration regions to enhance performance and parallelism. It is shown that the

filtering cycles are reduced significantly when more number of PEs are used to achieve speed-

up.

Table 6 shows the time required for filtering operation for each frame at a clock frequency of 50

MHz. It shows that different reconfiguration modes can be selected to increase its throughput,

depending on the input resolution of video sequences. In addition, the proposed architecture can

be self-reconfigured during run-time through dynamic partial reconfiguration to adapt to the

changing frame rate. Therefore, reduction of power consumption and hardware resources can be

achieved while the proposed reconfigurable architecture for DBF algorithm maintains its

required performance.

Table 7 shows the synthesis results of the static and reconfigurable regions, and their device

utilization. Static region is always active after initial reconfiguration, and used for self-

reconfiguration control, data buffering, and prediction of required computational complexity.

Reconfigurable regions are used to support scalable DBF architecture so that varying

computational loads during run-time can be met with higher flexibility.

Table 8 shows the partial bitstream size and the configuration time. There is a difference between

Virtex-II ICAP and Virtex-4 ICAP. The former has 8-bit data port operating at 50 MHz, while

the later has 32-bit data port operating at 100 MHz. This implies a reconfiguration rate of 3.2

Gbps for the Virtex 4 device family [22].

26

Table 5: Design Comparisons, N=1,2 OR 4

Table 6: Various Reconfigurable Modes to Support Different Resolutions of Video Sequences

Architecture

Filtering Cycles/MB

Memory Size

Filters

[23] 250 160x32 1

[24] 300 16x32 1

[25] 204 2x96x32 1

[15] 192 160x32 1

Proposed work

(80+Nx8)x32 N

Display Type

Type of Reconfigurable architecture

Estimated Filter Processing time

for each frame @ 50MHz

 VGA (640×480)
1PRR 4.68ms

2PRR 2.37ms

720×480
1PRR 5.26ms

2PRR 2.67ms

4PRR 1.37ms

1920×1080

1PRR 32ms

2PRR 15.85ms

4PRR 8.2ms

2560×1920

1PRR 75ms

2PRR 38ms

4PRR 20ms

27

Table 7: Hardware Resources

Table 8: Bitstream Information

Bitstreams Size per bitstream (Bytes)

Configuration time per

bitstream (µs)

PRR1,2,3, and 4 39032
97.58

Module LUTs

(Device Utilization)

Slice Flip Flops

(Device Utilization)

BRAMs

(Device Utilization)

Reconfigurable

(4 PRRs)

2784(5.5%)

0(0%)

8(3.4%)

Static Region

(Controller, Input Buffer,

ICAP Controller)

14738(29.1%)

5871(11.61%)

32(13.79%)

28

3.4 Summary

We propose self-reconfigurable architecture for a scalable H.264/AVC DBF using FPGA

dynamic partial reconfiguration. The scalable architecture can perform filtering up to four

distinct blocks at the same time, reducing filtering clock cycles significantly and improving its

throughput. Our DBF engine has the ability to adapt itself to diverse application needs which can

be used to support different resolutions and frame rates dynamically. The number of processing

elements can be changed during run-time using dynamic partial reconfiguration through ICAP

controller.

29

CHAPTER FOUR: BIT-RATE AWARE DEBLOCKING FILTER

4.1 Complexity Reduction for Deblocking Filter

What determines an edge needs to be filtered or not is the BS value. BS=0 means no filtering is

done across the edge, this is due to edges of blocks have zero residual data or they are copied

directly from a previous frame without a difference in motion vectors. The complexity of the

filtering process varies with video characteristics and bit-rate [26]. This variation comes into

effect by the percentage of edges that may not be filtered due to BS=0. Our experiments show

that when lowering the bit-rate of video sequences, the percentage of edges that need not to be

filtered increase. This is because of more residual data are quantized to zero, and larger block

sizes are used for motion compensation, so BS=0. Therefore, the computational complexity can

be reduced by the increased presence of skipped MBs, thus reducing the processing cycles

needed for filtering operation.

4.2 Simulation Results and Evaluation

Figure 18-Figure 25 shows four QCIF video sequences with a video format of IPPPPPP..., and

using the JM15.0 software [27] (with coding parameters set as follows: one reference frames,

motion estimation search range of ±16, 100 frames), we can see the distribution of BS values and

block size mode for different bit-rates. And while the bit-rate decreases the number of edges that

need not to be filtered (BS=0) increases. In our experiments we found out that those edges are

gathered in some MBs, and thus those MBs could be skipped. Thereby decreasing the

computational time needed for filtering operation.

30

Figure 18: BS Distribution for Football

Figure 19: BS Distribution for Highway

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

20 25 30 35 40

Qp

Football

BS=4

BS=3

BS=2

BS=1

BS=0

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

20 25 30 35 40

Qp

Highway

BS=4

BS=3

BS=2

BS=1

BS=0

31

Figure 20: BS Distribution for Soccer

Figure 21: BS Distribution for Foreman

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

20 25 30 35 40

Qp

Soccer

BS=4

BS=3

BS=2

BS=1

BS=0

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

20 25 30 35 40

Qp

Foreman

BS=4

BS=3

BS=2

BS=1

Bs=0

32

Figure 22: Block Size Mode Distribution for Football

Figure 23: Block Size Mode Distribution for Highway

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

20 25 30 35 40

Qp

Football

Others

8x16

16x8

16x16

Skip Mode

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

20 25 30 35 40

Qp

Highway

Others

8x16

16x8

16x16

Skip Mode

33

Figure 24: Block Size Mode Distribution for Soccer

Figure 25: Block Size Mode Distribution for Foreman

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

20 25 30 35 40

Qp

Soccer

Others

8x16

16x8

16x16

Skip Mode

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

20 25 30 35 40

Qp

Foreman

Others

8x16

16x8

16x16

Skip Mode

34

4.3 Scalable Architecture Adaptability to Compression Ratio and Motion Activity

Table 9: Skipped MacroBlocks at Different Quantization Parameters

Table 9 clearly shows at different Quantization parameters (Qp) considerable reduction in

computational complexity. For low/moderate motion video sequences, the PRRs can be reduced

to half while maintaining the performance at Qp=25. For high motion video sequences, e.g.,

Soccer and Football, the PRRs can be reduced by half at Qp=35. In this paper, the absolute sum

of Motion Vectors (MVs) is used to differentiate between low/moderate and high motion video

sequences. Table 10 shows the absolute sum of motion vectors for different video sequences. We

use a threshold, i.e., THMV=55000, obtained from our various simulation results. If the MV sum

is greater than the threshold, then the video sequence is considered to have high motion activity.

Figure 26 gives more details on the adaptability of the number of PEs depending on motion

activity and various bit-rates.

Sequence Foreman Container Football Highway Soccer

Qp=20 30.8% 69.51% 8.88% 51.2% 26.22%

25 55.87% 87.21% 17.33% 73.63% 44.22%

30 78.05% 96.38% 33.10% 92.32% 59.79%

35 89.76% 98.49% 48.41% 97.58% 71.64%

40 95.53% 98.91% 61.3% 98.38% 81.08%

35

Table 10: Motion Vector Sum for Various Video Sequences (10 FRAMES USED AT QP=30)

Is Qp<35

Yes Yes

No
Is N==1

No

Yes

High Motion
Low/Moderate

Motion

Is

Qp<25

Is Qp<30

Is N==1

No

Yes No

NoYes

Is sum of

MV>=55000
NoYes

Set # of

PEs=N

Set # of

PEs=1

Set # of

PEs=N/2

Set # of

PEs=N

Set # of

PEs=1

Set # of

PEs=N/2

Set # of

PEs=N

Is DBF

On

Start

Yes

Calculate # of PEs, using video

resolution and frame rate and set #

of PEs=N

Set # of

PEs=0
No

Figure 26: PEs adaptability to changing bit-rate and motion activity

QCIF Sequence MV sum

football 190583

soccer 125983

foreman 53935

Highway 31446

news 7753

clair 5144

contrainer 574

36

4.4 Summary

We propose self-reconfigurable architecture for a scalable H.264/AVC DBF using FPGA

dynamic partial reconfiguration. We combine the algorithmic and hardware scalability to

synergize the performance. The scalable architecture can perform filtering up to four distinct

blocks at the same time, reducing filtering clock cycles significantly and improving its

throughput. Moreover, at lower bit-rates, computational cost is reduced greatly by the presence

of skipped MBs, which in turn improves throughput and less hardware needed for filtering

operations. Our DBF engine has the ability to adapt itself to diverse application needs which can

be used to support various resolutions, frame rates, and bit-rates dynamically by reconfiguring

processing elements during run-time.

37

REFERENCES

[1] Joint Video Team (JVT) of ITU-T VCEG and ISO/IEC MPEG, Draft ITU-T Recommendation and

 Final Draft International Standard of JointVideo Specification, ITU-T Rec. H.264 and ISO/IEC 14496-

 10 AVC, May 2003.

[2] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra, “Overview of the H.264/AVC Video Coding

 Standard”, IEEE Tranactions. on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 560–

 576, July 2003.

[3] I. E. G. Richardson. H.264 and MPEG-4 Video Compression – Video Coding for Next-generation

 Multimedia. John Wiley & Sons Ltd, 2003.

[4] Peter List, Anthony Joch, Jani Lainema, Gisle Bjøntegaard, and Marta Karczewicz, “Adaptive Deblocking

 Filter”, IEEE Transactions on Circuits and Systems for Video Technology, pp. 614-619, July 2003.

[5] LYSAGHT, P., BLODGET, B., MASON, J., YOUNG, J.A.Y.J. and BRIDGFORD, B.A.B.B. 2006. Invited

 Paper: Enhanced Architectures, Design Methodologies and CAD Tools for Dynamic Reconfiguration of

 Xilinx FPGAs. In Proceedings of the International Conference on Field Programmable Logic and

 Applications, 2006, 1-6.

[6] XILINX 2006. Early Access Partial Reconfiguration. User Guide 208.

[7] XILINX 2007a. Difference-Based Partial Reconfiguration. Application Note 290.

[8] C. Arbelo, A. Kanstein, S. Lopez, J.F. Lopez, M. Berekovic, R. Sarmiento, and J.-Y. Mignolet, “Mapping

 Control-Intensive Video Kernels onto a Coarse-Grain Reconfigurable Architecture: the H.264/AVC

 Deblocking Filter”, Design, Automation & Test in Europe Conference & Exhibition, pp.1-6, 2007.

[9] Warrington, S., Shojania, H., and Sudharsanan, S., “Performance Improvement of the H.264/AVC

 Deblocking Filter Using SIMD Instructions”, IEEE Proc. ISCAS, pp.2697-2700, 2006.

[10] C. C. Cheng and T. S. Chang, “An Hardware Efficient Deblocking Filter for H.264/AVC”, IEEE

 International Conference on Consumer Electronics, pp.235- 236, Jan. 2005.

38

[11] G. Khurana, A. A. Kassim, T. P. Chua, and M. B. Mi., “ A pipelined hardware implementation of In-loop

 Deblocking Filter in H.264/AVC.” IEEE Transactions on Consumer Electronics, pp.536 – 540, 2006.

[12] B. Sheng, W. Gao, and D. Wu. “An Implemented Architecture of Deblocking Filter for H.264/AVC.”

 Proceedings - International Conference on Image Processing, ICIP, pp.665 – 668, 2004.

[13] Hao, W.N. and Radetzki, M., “A Data Traffic Efficient H.264 Deblocking IP”, IEEE Int. Symp. on Circuits

 and Systems, pp.3430-3433, 2008.

[14] Min, K.Y. and Chong, J.W., “ A Memory and Performance Optimized Architecture of Deblocking Filter in

 H.264/AVC”, IEEE Conf. on Multimedia and Ubiquitous Engineering, pp.220-225, 2007.

[15] Lingfeng Li, Satoshi Goto, and Takeshi Ikenaga, “ A Highly Parallel Architecture for Deblocking Filter in

 H.264/AVC”, IEICE Transactions on Information and Systems, Vol.E88-D, no.7, pp.1623-1629, July 2005.

[16] L. Li, S. Goto, and T. Ikenaga. An efficient deblocking filter architecture with 2-dimensional parallel

 memory for H.264/AVC. In ASP-DAC ’05: Proceedings of the 2005 conference on Asia South Pacific

 design automation, pages 623–626, 2005.

[17] S. Shih, C. Chang, and Y. Lin. A near optimal deblocking filter for H.264 advanced video coding.

 Proceedings of the Asia and South Pacific Design Automation Conference, pp.170 – 175, 2006.

[18] Mustafa Parlak and Ilker Hamzaoglu, “Low Power H.264 Deblocking Filter Hardware Implementations”,

 IEEE Transactions on Consumer Electronics, vol. 54, no. 2, May 2008.

[19] Yoshinori Hayashi, Tian Song, Eiji Koeta, and Takashi Shimamoto, “Fast Deblocking Filter

 Implementation Method and It's Architecture for H.264/AVC”, International Conference in Electrical

 Engineering/Electronics, Computer, Telecommunications, and Information Technology (ECTI-CON2008),

 pp.I-465-468, May 2008.

[20] Xilinx Inc., PlanAhead 10.1 User guide,

 http://www.xilinx.com/support/documentation/sw_manuals/PlanAhead_UserGuide.pdf.

[21] XILINX, Virtx-4 FPGA Configuration User Guide, June 2009.

[22] XILINX, Virtex-4 FPGA User Guide, August 2007.

http://people.sabanciuniv.edu/~hamzaoglu/papers/tce_may08.pdf
http://www.xilinx.com/support/documentation/sw_manuals/PlanAhead_UserGuide.pdf

39

[23] T. M. Liu, W. P. Lee, T. A. Lin, and Chen-Yi Lee, “A memory efficient deblocking filter for H.264/AVC

 video coding”, in Proceedings of IEEE International Conference Symposium on Circuit and Systems, vol.

 3, pp. 2140-2143, May 2005.

[24] C.-C. Cheng, T.-S. Chang, and K.-B. Lee, “An in-place architecture for deblocking filter in H.264/AVC”,

 IEEE Transactions on Circuits and Systems II, vol. 53, no. 7, pp. 530-534, July 2006.

[25] Ke Xu and Chiu-Sing Choy , “A Five-Stage Pipeline, 204 Cycles/MB, Single-Port SRAM-Based

 Deblocking Filter for H.264/AVC”, IEEE Transactions on Circuits and Systems for Video Technology, vol.

 18, no. 3, pp. 363-374, March 2008.

[26] Ke Xu, T. M. Liu, J. I. Guo, and C. S. Choy, “Methods for Power/throughput/area Optimization of

 H.264/AVC Decoding”, Journal of Signal Processing Systems” DOI 10.1007/s11265-009-0408-6, October

 2009.

[27] H.264/AVC Reference Software Version JM15. Available from http://iphome.hhi.de/suehring/tml/.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Ke%20Xu.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.%20Chiu-Sing%20Choy.QT.&newsearch=partialPref

	Bit-rate Aware Reconfigurable Architecture For H.264/avc Deblocking Filter
	STARS Citation

	ABSTARCT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER ONE: INTRODUCTION
	1.1: H.264/AVC Overview
	1.2: Inter Frame Prediction
	1.3: Intra Frame Prediction
	1.4: Transform and quantization
	1.5: Deblocking Filter
	1.5.1: Deblocking Filter Algorithm

	1.6: Dynamic Partial Reconfiguration
	1.7: Motivation
	1.8: Thesis Organization

	CHATPTER TWO: SUPPORTING WORK
	2.1: Filter Order
	2.2: Filter Complexity
	2.3: Summary

	CHAPTER THREE: SCALBALE H.264/AVC DEBLOCKING FILTER
	3.1 Filter Order
	3.2 Top Level Architecture
	3.2 Partial Reconfigurable Module
	3.3 Experimental Results
	3.4 Summary

	CHAPTER FOUR: BIT-RATE AWARE DEBLOCKING FILTER
	4.1 Complexity Reduction for Deblocking Filter
	4.2 Simulation Results and Evaluation
	4.3 Scalable Architecture Adaptability to Compression Ratio and Motion Activity
	4.4 Summary

	REFERENCES

