
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2020-

2022

A Unified Tool For Adaptive Collocation Techniques Applied to A Unified Tool For Adaptive Collocation Techniques Applied to

Solving Optimal Control Problems Solving Optimal Control Problems

Bethany Kelly
University of Central Florida

 Part of the Multi-Vehicle Systems and Air Traffic Control Commons

Find similar works at: https://stars.library.ucf.edu/etd2020

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Electronic Theses and Dissertations, 2020- by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Kelly, Bethany, "A Unified Tool For Adaptive Collocation Techniques Applied to Solving Optimal Control
Problems" (2022). Electronic Theses and Dissertations, 2020-. 1588.
https://stars.library.ucf.edu/etd2020/1588

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd2020
https://network.bepress.com/hgg/discipline/227?utm_source=stars.library.ucf.edu%2Fetd2020%2F1588&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd2020
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd2020/1588?utm_source=stars.library.ucf.edu%2Fetd2020%2F1588&utm_medium=PDF&utm_campaign=PDFCoverPages

A UNIFIED TOOL FOR ADAPTIVE COLLOCATION TECHNIQUES APPLIED TO
SOLVING OPTIMAL CONTROL PROBLEMS

by

BETHANY KELLY
B.S. University of West Florida, 2020

A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science

in the Department of Mechanical and Aerospace Engineering
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Summer Term
2022

© 2022 Bethany Kelly

ii

ABSTRACT

In this work, a user-friendly MATLAB tool is introduced to solve nonlinear optimal control prob-

lems by applying collocation techniques using Coupled Radial Basis Functions (CRBFs). CRBFs

are a new class of Radial Basis Functions combined with a conical spline r5, which provides the

advantage of insensitivity to the shape parameter while maintaining accuracy and robustness. To

solve optimal control problems, software tools are often employed to implement numerical meth-

ods and apply advanced techniques to solving differential equations. Although several commercial

software tools exist for solving optimal control problems, such as ICLOCS2, GPOPS, and DIDO,

there are no options available that utilize adaptive collocation with CRBFs. A unified MATLAB

tool named Radial Optimal Control Software (ROCS) is introduced and not only implements the

CRBF method, but also enables any user, from professionals to students, to solve nonlinear opti-

mal control problems through a user-friendly interface. The tool accepts user input for boundary

conditions, necessary conditions, and the governing equations of motion. The two-point boundary

value problem (TPBVP) is approximated through collocation using CRBFs, and the resulting non-

linear algebraic equations (NAEs) are solved with a MATLAB solver. The tool’s usefulness and

application are demonstrated by solving classical nonlinear optimal control problems and compar-

ing the results with the solutions found in the literature. Compared to classical numerical method

techniques, the present tool is shown to solve optimal control problems more efficiently for the

same level of accuracy. By introducing this unified MATLAB tool to solving nonlinear optimal

control problems, the intent is to enable professionals and students to solve nonlinear optimal

control problems, e.g., in astrodynamics and space-flight mechanics, without the need for exten-

sive manipulation of code in existing software tools and without extensive knowledge of applying

numerical solvers.

iii

Dedicated to my Mom and Ne.

iv

ACKNOWLEDGMENTS

I would like to thank Dr. Tarek A. Elgohary and Dr. Ahmed E. Seleit for providing their guidance

and expertise during my research and Master’s Degree program. This work would not have been

possible without their continued support and mentorship.

v

TABLE OF CONTENTS

LIST OF FIGURES . viii

LIST OF TABLES . x

CHAPTER 1: BACKGROUND . 1

Classical Control Theory . 1

Optimal Control Theory . 1

Indirect Versus Direct Methods . 2

Direct Collocation Methods . 3

Pseudospectral Methods . 3

Radial Basis Functions . 4

Coupled Radial Basis Functions . 5

Optimal Control Software Tools . 6

ICLOCS2 . 6

GPOPS II . 8

DIDO . 9

Other Available Software Tools . 9

vi

CHAPTER 2: METHODOLOGY . 11

Optimal Control Problem Formulation . 11

Unified MATLAB Toolbox and Algorithm . 15

CHAPTER 3: FINDINGS . 19

Lambert’s Problem (Two-Body Orbital Transfer) . 19

Zermelo’s Problem . 25

Duffing Oscillator . 32

Fixed Final State . 35

CHAPTER 4: CONCLUSION . 40

APPENDIX : INSTRUCTIONS FOR DOWNLOADING ROCS TOOLBOX 42

LIST OF REFERENCES . 44

vii

LIST OF FIGURES

Figure 2.1: ROCS Interface . 17

Figure 3.1: Lambert’s Problem Geometry . 20

Figure 3.2: ROCS Interface for Lambert’s Problem . 23

Figure 3.3: Lambert’s Problem Solution for x1 and y1 : CRBF vs Closed-Form Solution . 24

Figure 3.4: Lambert’s Problem Solution for x2 and y2 : CRBF vs Closed-Form Solution . 24

Figure 3.5: Zermelo’s Navigation Problem . 25

Figure 3.6: ROCS Interface for Zermelo’s Problem . 30

Figure 3.7: Zermelo’s Problem Solution: CRBF vs Exact Solution 31

Figure 3.8: Error between ROCS Solution and Exact Solution 31

Figure 3.9: RMSE for States and Control, and Heading Angle 32

36

37

38

39

viii

Figure 3.10 : ROCS Interface for Duffing Oscillator- Fixed Final State

Figure 3.11 : Fixed Final State Duffing Oscillator - Optimal States and Control with Multi-
 quadric CRBF

Figure 3.13 : Fixed Final State Duffing Oscillator - Optimal States and Control with Gaus-
 sian CRBF

FigureFigure 3.3.1122 :: AAbbssoolluuttee EErrrroorr ffoorr SSttaatteess aanndd CCoossttaatteess wwiitthh MMuullttiiqquuaaddrriicc CCRRBBFF

Figure 3.14: Absolute Error for States and Costates with Gaussian CRBF 39

ix

LIST OF TABLES

Table 1.1: Optimal Control Software Tools . 10

Table 2.1: RBFs and CRBFs Definitions . 13

Table 3.1: Lambert’s Problem Initial Parameters . 22

Table 3.2: Zermelo’s Problem Initial Parameters . 29

Table 3.3: Duffing Oscillator Problem Initial Parameters 35

x

CHAPTER 1: BACKGROUND

Classical Control Theory

Control theory is concerned with governing a dynamic system in order to reach a desired goal.

Governing the behavior of a dynamic system is typically accomplished through the use of controls

[1, 2]. Desirable performance is achieved in terms of optimizing output parameters in the time

and frequency domains, such as rise time, overshoot, gain/phase margin, and settling time. When

dealing with more complex dynamic systems, such as nonlinear multiple-input multiple-output

(MIMO) systems, optimal control theory can be applied to achieve the desired system behavior

[3].

Optimal Control Theory

Optimal control theory seeks to find the control that minimizes or maximizes performance crite-

rion, while satisfying any constraints [3, 4]. Optimal control problems consist of algebraic and

differential equations that can be linear or nonlinear in nature. Due to the complexity in solving

these types of problems, numerical methods are often employed to transcribe the problem into a

nonlinear programming problem or a two-point boundary value problem that can be solved. There

are two categories of numerical methods that can be applied to solving optimal control problems:

indirect methods and direct methods [4, 5].

1

Indirect Versus Direct Methods

With indirect methods, the calculus of variations and Pontryagin’s Maximum Principle are utilized

to derive first-order necessary conditions. This results in a two-point boundary-value problem that

can be solved numerically to satisfy the boundary conditions [4, 5]. The optimal trajectories gener-

ated from indirect methods can be analyzed to determine the optimal solution from the minimum,

maximum, and/or saddle point(s) [4]. Advantages of using an indirect method include a high level

of confidence in the accuracy in the solution satisfies the first-order conditions for optimality [5].

However, with indirect methods, an initial guess is needed for the costate variables, there is a small

radii of convergence, and an a priori knowledge of the constrained arc-sequence is needed if there

are path constraints [5, 6].

With direct methods, the optimal control problem is transcribed into a nonlinear programming

problem (NLP) that can be solved using different well-known algorithms [4, 5]. Direct methods

involve minimizing an objective function, and do not require transversality conditions, control

equations, nor adjoint equations like indirect methods do [6]. Direct methods, however, can lack

information about the costates [5].

Different methods exist for transcribing an optimal control problem into an NLP, such as the direct

shooting method, which involves integrating a system of equations and computing the error in

the terminal conditions. However, one drawback of the shooting method is it requires a priori

knowledge of the system and a good initial guess for convergence [4, 7]. Therefore, for solving

optimal control problems, direct collocation methods are often more suitable.

2

Direct Collocation Methods

Direct collocation methods are considered to be state and control parameterization methods, where

an NLP is transcribed by approximating differential equations at collocation points using piece-

wise polynomials. This involves using a specified functional form for the state and control [4, 5].

The most common types of collocation used are local collocation and global collocation. When

employing local collocation, the time interval for the optimal control problem is first divided into

subintervals. Within each subinterval, a small amount of collocation points are used and continuity

conditions on the independent variable and the state are used to connect the subintervals [4, 8].

The subintervals may also be connected through a continuity condition on the control. Local

collocation has long been used to solve optimal control problems because it is simple, efficient,

and supports the dynamics’ local behavior [6, 8].

Pseudospectral Methods

Although local collocation has historically been used, global collocation methods, which collocate

across the time interval using a global polynomial, have risen in popularity. More specifically, a

class of direct transcription methods called pseudospectral methods, which utilize the global poly-

nomial for collocation at specified points, have become increasingly popular [4, 8]. Pseudospectral

methods and global collocation have proven successful in different applications, to include fluid

dynamics and optimal spacecraft formations [9, 10, 11].

The benefit of pseudospectral methods is they converge exponentially, or spectrally, by imple-

menting collocation orthogonally using the roots of a global orthogonal polynomial. Unlike local

collocation methods, the degree of the polynomial is varied for each subinterval while the number

of subintervals, or meshes, is fixed. Chebyshev or Lagrange polynomials typically serve as the

3

basis functions for pseudospectral methods [4, 5, 13, 14, 15], and the most popular types of col-

location points are Legendre-Gauss nodes, Legendre-Gauss-Lobatto nodes, and Legendre-Gauss-

Radau nodes [4, 8, 12]. For Legendre-Gauss-Lobatto nodes, collocation occurs on the derivative

at all M + 1 approximation points and a global polynomial with degree M is used to approximate

the state. This leads to a square and singular differentiation matrix [4, 12, 16]. On the other hand,

a non-square and full rank differentiation matrix results from collocation using Legendre-Gauss-

Radau nodes or Legendre-Gauss nodes and collocation does not occur at all approximation points.

When these nodes are used, collocation occurs at M points and a global polynomial of degree M is

used to approximate the state [4, 12].

Radial Basis Functions

Although pseudospectral methods are a popular choice for solving optimal control problems, one

major drawback is their dependency on a specific grid of nodes, which make this method less

efficient for interpolating nonsmooth functions [4, 17]. In recent years, researchers have been

exploring the use of Radial Basis Functions (RBFs) for solving optimal control problems. With

this method, global RBFs are interpolated on an arbitrary set of nodes as collocation points. The

arbitrary discretization points are more suitable for approximating nonsmooth functions than pseu-

dospectral methods because they offer flexibility in choosing the collocation points. In addition,

there is flexibility in choosing the type of RBF to interpolate and different types can be used for

each state and control. The classical RBFs used in solving optimal control problems include Gaus-

sian, multiquadric, inverse quadrics, inverse multiquadric, and polyharmonic splines [17].

RBFs were originally introduced in 1968 by Hardy [18], and first applied to solving partial dif-

ferential equations in 1990 by Kansa [19]. The applicability of RBFs in solving optimal control

problems has been demonstrated in work by Rad et al. [20] and Elgohary et al. [21, 22] with

4

Legendre-Gauss-Lobatto nodes [20] as well as in work by Mirinejad and Inanc with direct tran-

scription [17]. It is important to note that the convergence and behavior of RBFs in solving optimal

control problems is reliant on the shape parameter, which controls the flatness of the function [23].

Therefore, optimizing the shape parameter is desirable to achieve accurate approximations and

prevent latency. Research has been conducted by Cheng to investigate how the shape parameter in-

fluences the optimal solution [24]. In addition, work by Karageorghis and Tryfonos [25] explored

determining the optimal shape parameter by treating it as an unknown along with the RBF coef-

ficients. They determined that the most accurate way to determine the optimal shape parameter

was through brute force: determining the sequence of values for the shape parameter and assessing

which one provides the best approximation. This was an expensive iterative approach [25].

Coupled Radial Basis Functions

To address the challenges associated with the shape parameter, a new class of RBFs called Coupled

Radial Basis Functions (CRBFs) were recently introduced. In work by Zhang, numerical examples

are solved by using Kansa’s method paired CRBFS, which are classical RBFs that are combined

with an r5 conical spline. This method demonstrated accuracy and robustness while remaining

insensitive to the shape parameter [26]. The idea of CRBFs was extended to solving nonlinear

optimal control problems through work by Seleit and Elgohary, where Zermelo’s problem, the

nonlinear duffing oscillator, and the inverted cart-pole problem were solved using CRBFs [27].

This thesis will be focused on solving optimal control problems with a unified tool that utilizes

CRBFs to collocate in a manner that provides accurate results while not being reliant on a certain

nodal distribution nor interpolation. It builds off the research conducted by Seleit and Elgohary in

applying CRBFs to solving nonlinear optimal control problems. The goal is for the tool to provide

a user-friendly interface for solving optimal control problems with the CRBF method.

5

Optimal Control Software Tools

Software tools are often employed to implement numerical methods and solve optimal control

problems. Many different software tools have been developed to tackle more complex problems

and apply advanced techniques to numerically solve differential equations. These tools started

becoming available in the 1980s, and were often based in FORTRAN. However, they were revolu-

tionary in solving more realistic challenges, such as those in aerodynamic trajectory and chemical

engineering control [28]. More modern optimal control software tools are based in MATLAB due

to the wide availability of numerical solvers and engineering toolboxes. The MATLAB environ-

ment enables custom and automatic code generation that can be targeted at specific applications

[29, 30].

Most of the available commercial software tools solve optimal control problems via direct methods.

However, some softwares such as DIDO and OptimTraj pair indirect methods with NLP solvers

[28]. This section will focus on providing a general overview of the most common optimal control

software tools available on the market.

ICLOCS2

Imperial College London Optimal Control Software 2 (ICLOCS2) is a comprehensive toolbox

that utilizes direct transcription methods such as direct collocation and direct multiple shooting

methods to solve optimal control problems in MATLAB or Simulink environments. It succeeds

the previous ICLOCS version [31]. ICLOCS2 provides accurate results for classical problems

and real-time optimal control-based problems, such as model predictive control (MPC). The ben-

efit of ICLOCS2 is it provides flexibility when it comes to the trade-off between computational

power and solution accuracy [32]. In terms of discretization methods, ICLOCS2 offers several

6

options, such as Hermite-Simpson (h methods) and Pseudospectral Methods (p/hp methods) when

fast convergence and high accuracy are required. This version also offers additional tools such as

closed-loop simulations, automatic meshing, mesh refinement, and automatic scaling [32]. The

underlying NLP solvers used are IPOPT, fmincon, and WORHP [33, 34, 35]. IPOPT, or Interior

Point Optimizer, is an open-source library for solving NLPs, fmincon is a MATLAB function for

minimizing nonlinear multivariable functions, and WORHP is a software libary for solving contin-

uous large-scale NLPs. Applications for ICLOCS2 include robotics, automotive, aerospace, and

communications [32].

In terms of using ICLOCS2, the user must first define the optimal control problem in a problem

definition file, with elements such as final time, unknown constant parameters, initial conditions

and guesses, state variables, and the number of control actions. Overall, there are 20 inputs required

to define the problem and the cost function. For users who are not well-versed in MATLAB arrays

nor optimal control problem set-up, the input of such parameters can become tedious.

Next, the user selects the solver settings in a separate file. This includes the transcription method,

the derivative generation option (analytical or numerical), the perturbation, the output settings, and

the type of NLP solver.

When the algorithm is run, the data from the problem definition and settings is passed to two

functions. The first function, transcribeOCP, processes the information by defining the bounds,

generates the initial guesses, constructs the Jacobian, generates the perturbation sets, formats the

matrices for direct transcription, and defines the equations of motion, path constraints, and bound-

ary constraints. The second function, solveNLP, solves the optimization problem using a solver

such as fmincon or IPOPT (as specified by the user) and outputs the solution [31].

7

GPOPS II

GPOPS-II is a popular general-purpose MATLAB software that utilizes Legendre-Gauss-Radau

quadrature orthogonal collocation to transcribe optimal control problems into large sparse NLPs.

After transcription, the optimal control problem can be solved using the included IPOPT NLP

solver or by interfacing GPOPS-II with the SNOPT NLP solver. GPOPS-II features an adap-

tive mesh refinement method that improves accuracy by increasing the flexibility in number and

placement of mesh intervals. It also computes all required derivatives from the optimal control

functions using sparse finite-differencing [28, 36]. The software allows the user to include integral

constraints and boundary conditions, and can be used ”out-of-the-box” with MATLAB. In [36],

the authors utilize GPOPS-II to solve several optimal control problems from open literature, to

include a reusable launch vehicle entry problem, a space station attitude problem, and a multiple-

stage launch vehicle ascent problem.

Similar to ICLOCS2, the user must define the optimal control problem, which requires knowledge

of how to program the problem parameters as MATLAB structures and arrays of structures [36].

For the input structure, the user defines the name of the problem, the name of the continuous

or endpoint function, the bounds structure, and a structure containing the initial guess. The user

also has the option to provide auxillary data, derivative approximations for the NLP solver, scales,

collocation method, mesh refinement method, type of NLP solver, and display level in the form of

structures. The user is responsible for creating each input structure. The gpops function is called

to obtain the solution via pseudospectral methods and either the SNOPT or IPOPT solver. The

output structure contains the solution, the objective, the setup structure, the setup structure that

would have been used with the next mesh refinement iteration, the error estimate for each mesh,

and the number of mesh refinement iterations [36].

8

DIDO

Developed by Elissar Global, DIDO is a MATLAB-based optimal control software package that

became more prominent in 2007 when NASA utilized it to execute the Zero Propellant Maneuver

(ZPM), a globally optimal maneuver used to change the orientation of the International Space Sta-

tion by 180 degrees without the need for propellant [37, 54]. Since 2001, DIDO has evolved from

the use of a simple nonlinear programming solver to a more complex algorithm that is extremely

robust, exhibits spectral acceleration based on discrete cotangent tunneling, and has verifiable ac-

curacy. DIDO is not only the first pseudospectral solver introduced to the market, but was also

the first guess-free, general-purpose optimal control problem software [37]. It is based on pseu-

dospectral methods and boasts of being the ”minimalist’s approach” to solving optimal control

problems. This is because the user only needs to provide the problem formulation and does not

need to have any prior knowledge of pseudospectral methods [28, 37]. It acts similarly to both

direct and indirect methods, in the sense that it provides costates and multipliers obtained from

Pontryagin’s Principle like an indirect method, but also does not require user-supplied necessary

conditions for optimality like a direct method. DIDO uses three main algorithms to obtain a solu-

tion, a stabilization component, an acceleration component, and an accuracy component, as well

as its Hamiltonian programming method, which treats the control variable differently than the state

variable [37].

Other Available Software Tools

In addition to ICLOCS2, GPOPS II, and DIDO, there are a vast number of other optimal control

software packages available on the market. However, to the best of my knowledge, none utilize the

CRBF approach to solving optimal control problems. The following table summarizes some of the

other common software tools as well as their features, collocation method, and underlying solvers

9

[28]:

Table 1.1: Optimal Control Software Tools

Software Tool
Name

Features Collocation Method Underlying
Solver

ACADO Automatic control, dy-
namic optimization, open
source, code extensibility

Direct shooting methods [38] Sequential
Quadratic Pro-
gramming (SQP)

DynOpt Dynamic, optimization,
user-defined constraints

Total discretization via or-
thogonal collocation [39]

SQP

OptimTraj Optimal trajectory solver,
user-defined constraints

Hermite-Simpson Direct Col-
location, Orthogonal Collo-
cation, 4th order Runge-Kutta
[40]

Unspecified NLP

POCP Polynomial problem
data-based optimal control
solver

Occupation mea-
sures/semidefinite pro-
gramming relaxations [41]

SeDuMi,
YALMIP’s
solvers

RIOTS Finite-time, free final time,
and variable initial condi-
tion problem solver

Sequential quadratic pro-
gramming, projected descent
method, augmented La-
grangian method [42]

Discrete-time
solver

TOMLAB/PROPT Global optimization, many
available solvers

Pseudospectral methods [43] SQP, MINOS,
SNOPT, many

10

CHAPTER 2: METHODOLOGY

Optimal Control Problem Formulation

A nonlinear dynamic system can be described by the following equation:

ẋ(t) = f(x(t),u(t), t), t0 ≤ t ≤ tf (2.1)

where the initial time t0 is given, the state x(t) ∈ Rn and the control input u(t) ∈ Rm.

Consider the case of a continuous-time optimal control problem with a fixed terminal time and no

terminal constraints. The optimal control problem can be written in the Bolza form with the goal

of finding the control action u(t) that derives the states x(t) to minimize the scalar performance

index:

J = Φ(x(tf), tf) +

∫ tf

t0

L (x(t),u(t), t)dt (2.2)

subject to the dynamics and the path and controls constraints

P (x(t), t) ≤ 0

C(u(t), t) ≤ 0

(2.3)

where, Φ(.) is the boundary terminal function and L (.) is the Lagrange term.

By defining the scalar Hamiltonian function as:

H = L (x(t),u(t), t) + λTf(x(t),u(t), t) (2.4)

11

the augmented performance index can be rewritten as follows:

J = Φ(x(tf), tf) +

∫ tf

t0

(H − λT ẋ)dt (2.5)

The necessary conditions for optimality, or Euler-Langrange equations, can then be derived from

the augmented performance index by applying the calculus of variations. [3, 22]

ẋ =
∂H

∂λ
= f(x,u, t)

−λ̇ =
∂H

∂x
=
∂L

∂x
+

[
∂f

∂x

]T
λ

0 =
∂H

∂u
=
∂L

∂u
+

[
∂f

∂u

]T
λ

(2.6)

where λ is the Lagrange multipliers vector [45]. The initial and final states for the optimal control

problem are then used to obtain the complementary boundary conditions [44].

In order to solve optimal control problems via collocation with CRBFs as the trial functions, it

should first be expressed in the Bolza form as in Equation (2.2) with the defined dynamics, path

and controls constraints expressed according to Equations (2.1) and (2.3). Next, the necessary con-

ditions for optimality are obtained as in Equation (2.6). The resulting TPBVP is then transcribed

into a system of nonlinear algebraic equations (NAEs) by using CRBFs, and the states, costates,

control, and boundary conditions are approximated. A solver or numerical methods can then be

used to solve the system of NAEs.

There are different types of RBFs and CRBFs that can be used as trial functions for collocation

of optimal control problems. CRBFs are a new class of real-valued functions called Radial Basis

Functions (RBFs) that are combined with a conical spline r5. Along with a simple nodal distribu-

tion, this combination of RBFs with the conical spline provides the advantage of insensitivity to

the shape parameter while maintaining accuracy and robustness. The shape parameter scales the

12

flatness of an RBF by a value c > 0. The value of the RBF also depends on a set of approximation

nodes t and the center node ti, as well as the distance r between the approximation nodes. The

table below provides the definitions for four classical RBFs, along with their associated CRBF

when combined with a conical spline r5.

Table 2.1: RBFs and CRBFs Definitions

Type ϕ(r, c) RBFs ϕ(r, c)CRBFs
Multiquadric

√
1 + (cr)2 F + r5

Inverse multiquadric 1/
√

1 + (cr)2 1/F + r5

Gaussian e−(cr2) e−h2
+ r5

Inverse Quadratic 1/(1 + (cr)2) 1/F 2 + r5

where r = ||t(i)− ti||, h = r
c

and F =
√
h2 + 1.

After the appropriate CRBF is selected and the optimal control problem is expressed in the forms

of Equations (2.2), (2.3), and (2.1), the states, control and costates can be approximated as:

x(t) ' x̄(r) =
N∑
i=1

αiϕi(r)

u(t) ' ū(r) =
N∑
i=1

βiϕi(r)

λ(t) ' λ̄(r) =
N∑
i=1

γiϕi(r)

(2.7)

where, i = 1, 2, . . . , N , (̄.) denotes an approximated function using CRBFs. The unknown coeffi-

cients are captured by vectors α, β and γ.

13

The time-derivatives of the approximated states and costates, equation (2.7), are defined as:

˙̄x(r) =
N∑
i=1

αiϕ̇i(r)

˙̄λ(r) =
N∑
i=1

γiϕ̇i(r)

(2.8)

For a univariate function with a single independent variable, in this case time, the first time-

derivative of the CRBF function is

∂ϕ

∂t
=

∂ϕ(r)
∂r

∂r
∂t
, r 6= 0

0, r = 0

(2.9)

and the second time-derivative of ϕ is

∂2ϕ

∂t2
=

∂2ϕ(r)
∂r2

(
∂r
∂t

)2
+ ∂ϕ(r)

∂r
∂2r
∂t2
, r 6= 0

1
3
c2, r = 0

(2.10)

Next, an approximation matrix ϕ is defined based on the CRBF selected from 2.1 and the number

of collocation points N . Each element of the approximation matrix ϕ is computed and the final

matrix is expressed as:

ϕ =

ϕ(||t1 − t1||) ϕ(||t2 − t1||) ϕ(||t3 − t1||) . . . ϕ(||tN − t1||)

ϕ(||t1 − t2||) ϕ(||t2 − t2||) ϕ(||t3 − t2||) . . . ϕ(||tN − t2||)
...

...
...

...
...

ϕ(||t1 − tN ||) ϕ(||t2 − tN ||) ϕ(||t3 − tN ||) . . . ϕ(||tN − tN ||)

(2.11)

After approximating the states, costates, and control, the necessary conditions in a compact form

14

can be approximated. Recall equation (2.7)

α = ϕ−1x̄ (2.12)

taking the time-derivative

˙̄x = ϕ̇α (2.13)

Therefore

˙̄x = Dx̄ (2.14)

where, D = ϕ̇ϕ−1. Similarly, the costates time-derivatives are expressed as ˙̄λ = Dλ̄. Substi-

tuting equations (2.9) and (2.14) in equation (2.6) leads to an approximate form of the necessary

conditions of optimality

ẋ ' ˙̄x = Dx̄ = f(x̄, ū, r)

−λ̇ ' − ˙̄λ = Dλ̄ =
∂L (x̄, ū, r)

∂x̄
+
∂f(x̄, ū, r)

∂x̄

0 ' ∂L (x̄, ū, r)

∂ū
+
∂f(x̄, ū, r)

∂ū

(2.15)

By utilizing a standard solver for nonlinear equations, the system of nonlinear equations (2.15) can

be solved directly for the states, costates and controls.

Unified MATLAB Toolbox and Algorithm

For this research, a MATLAB software toolbox named Radial Optimal Control Software (ROCS) is

introduced. ROCS not only implements the CRBF method, but also enables any user, from profes-

15

sionals to students, to solve nonlinear optimal control problems through a user-friendly interface.

The tool accepts user input for boundary conditions, necessary conditions, and the governing equa-

tions of motion. In addition, the user can choose the number of collocation nodes and segments

to satisfy the error tolerance defined by the user. The main feature of ROCS is utilizing adaptive

local collocation methods using CRBFs to provide accurate and fast solutions to nonlinear optimal

control problems.

ROCS’s method for solving optimal control problems is based on that described in the previous

section. First, the optimal control problem is expressed in the Bolza form as in Equation (2.2) with

the defined dynamics, path and controls constraints according to Equations (2.1) and (2.3). Next,

the necessary conditions for optimality are obtained, as in Equation (2.6), and the user specifies

the boundary condition values. CRBF approximation is used to obtain a system of NAEs that are

written in the form of a residual vector. The residual vector, necessary conditions, and boundary

conditions are inputted into ROCS. From here, the user can specify the number of nodes, elements,

CRBF type, and the nodal distribution. When the toolbox is run after inputting the initial parame-

ters, ROCS evaluates the residual vector, derives the analytical Jacobian, and solves the system of

NAEs using the built-in MATLAB solver fsolve. One major benefit of ROCS is the user can tailor

the initial parameters, such as the number of nodes, the final time, and the boundary conditions, to

obtain the best solution to the optimal control problem at hand. This gives the user the power to

quickly change and update problem parameters without extensive manipulation or knowledge of

code.

The user interface for ROCS is shown in Figure 2.1.

16

Figure 2.1: ROCS Interface

The ROCS toolbox was built using MATLAB Apps, which allows for graphical user interface

(GUI) design with underlying code to perform algorithms, collect data, and output results. Through

MATLAB Apps, the ROCS toolbox is packaged with all the files and code necessary to operate

it. This allows it to be shared easily with other users through a public repository or any other file

exchange website.

The toolbox is made available to MATLAB users via GitHub, a website for distribution of open

source code. GitHub is a popular online software development and code sharing platform that al-

lows developers to to share projects to an open source community. From the GitHub website, users

can download the ROCS toolbox and associated documentation. Instructions for downloading

ROCS through GitHub are included in APPENDIX: INSTRUCTIONS FOR DOWNLOADING

17

ROCS TOOLBOX.

In the next section, the ROCS toolbox’s CRBF-collocation method is illustrated in detail by apply-

ing it to three nonlinear optimal control problems.

18

CHAPTER 3: FINDINGS

To demonstrate the usefulness and application of ROCS, three nonlinear optimal control problems

are solved using the CRBF-collocation method and the results are compared to the solution found

in literature. For this research, the three problems examined are Lambert’s problem (two-body

orbital transfer), Zermelo’s problem, and the fixed state duffing oscillator problem.

Lambert’s Problem (Two-Body Orbital Transfer)

The classical Lambert’s problem, or two-body orbital transfer problem, arose as a celestial me-

chanics problem in the 18th century. Named after Johann Heinrich Lambert (1728-1777) who

made significant contributions to the problem’s solution, Lambert’s problem objective is to deter-

mine the Keplerian orbit associated with two positions in space at a given time t. This problem is

a popular celestial mechanics topic due to its applications in trajectory design, navigation, inter-

planetary transfer design, and missile and spacecraft targeting [46]. According to Lambert, ”The

transfer time ∆t of a body moving between two points r1 and r2 on a conic trajectory is a function

only of the sum r1 + r2 of the distances of the two points from the origin of the force, the linear

distance c between the points, and the semi-major axis a of the conic section” [46]. The geometry

for Lambert’s problem is shown in Figure 3.1.

For this work, the unperturbed relative two-body problem is solved. The dynamics can be obtained

from Newton’s universal gravitational law, where the position vector is r = [x y z]T and µ ≈

3.986 · 1014 m3s−2:

r̈ =
−µ
r3

r (3.1)

19

Figure 3.1: Lambert’s Problem Geometry

Lambert’s problem can be solved analytically [47] or through numerical iterative methods [48].

The problem can be cast into a system of first-order differential equations:

ẋ1 = x2

ẋ2 =
−µ
r3
x1

ẏ1 = y2

ẏ2 =
−µ
r3
y1

ż1 = z2

ż2 =
−µ
r3
z1

(3.2)

20

Furthermore, the system of NAEs for Lambert’s problem can be rewritten as a system of 6N equa-

tions in a residual form [22]:

Ri
1 = Dxi1 − xi2

Ri
2 = Dyi1 − yi2

R1
3 = Dzi1 − zi2

R1
4 = x11 − x10

Rj
4 = Dxj2 +

µ

rj
xj1

RN
4 = xN1 − x1F

R1
5 = y11 − y10

Rj
5 = Dyj2 +

µ

rj
yj1

RN
5 = yN1 − y1F

R1
6 = z11 − z10

Rj
6 = Dzj2 +

µ

rj
zj1

RN
6 = zN1 − z1F

(3.3)

where, i = 1, ..., N and j = 2, ..., N-1.

To solve the two-body orbital transfer problem, the initial parameters displayed in Table 3.1 were

used. The initial conditions selected for this problem are r0 = [2.87 5.19 2.85]T x 106 m and the

final conditions are rf = [2.09 7.82 0]T x 106 m. In terms of nodes, the number chosen was 40 and

a multiquadric CRBF ϕ(r, c) is selected, where r = ||t(i) − ti||, F =
√
h2 + 1, and h = r

c
. The

transfer time, or final time, was selected to be tf = 4.32 x 103 seconds, or tf = 0.05 days.

21

Table 3.1: Lambert’s Problem Initial Parameters

Initial Conditions Value
N (nodes) 40
ε (shape parameter) 0.9
r0 [2.87 5.19 2.85]T x 106 m
rf [2.09 7.82 0]T x 106 m
tf 4.32 x 103 sec
ϕ(r, c) (CRBF) Multiquadric (F + r5)

Once the optimal conditions have been derived and Lambert’s problem has been rewritten in resid-

ual form, as shown in Equation 3.3, they are inputted into ROCS along with the boundary con-

ditions. The user interface for ROCS after inputting the problem parameters is shown in Figure

3.2.

22

Figure 3.2: ROCS Interface for Lambert’s Problem

ROCS solves the set of NAEs shown in Equation 3.3 using the CRBF-collocation method. To

determine the accuracy of ROCS’s solution, the closed form of the Lagrange/Gibbs (FG) solution

to Lambert’s problem is obtained using the same initial parameters. The comparison between the

CRBF-collocation method and the closed-form solution is shown in Figure 3.3 for x1 and y1, and

Figure 3.4 for x2 and y2.

23

Figure 3.3: Lambert’s Problem Solution for x1 and y1 : CRBF vs Closed-Form Solution

Figure 3.4: Lambert’s Problem Solution for x2 and y2 : CRBF vs Closed-Form Solution

24

Zermelo’s Problem

First proposed by Ernst Zermelo in 1931, Zermelo’s problem is a classical optimal control problem

where the goal is to find the minimum time for a vessel to navigate between two points in a flow

[49, 50]. In this case, we consider a vessel navigating between an initial and final point through

water with a linear distribution. The vessel shown in Figure 3.5 depicts Zermelo’s problem, where

V is the linearly applied wind velocity as the vessel travels from point A to point B at a constant

velocity v.

In order to find the time and required bearing θ(t) it takes for the vessel to travel from point A to

Figure 3.5: Zermelo’s Navigation Problem

25

point B at a constant velocity v, we must minimize:

J =

∫ tf

t0

dt (3.4)

subject to

ẋ = V cos θ +
V y

h

ẏ = V sin θ

(3.5)

Equation 3.4 represents the total time it takes for the vessel to travel from its initial position to its

final position. The total time is subject to (x, y) and (ẋ, ẏ), which are the vessel’s position and

velocity, respectively.

For comparison with solving the optimal control problem using CRBFs, there are two equations

that provide the exact solution of Zermelo’s problem. The required bearing and final bearing to

minimize the total time can be determined based on the vessel’s current position (x, y), as shown

by the position equations (3.6). [45].

x(t) =
1

2
(sec θ(tf)(tan θ(tf)− tan θ)− tan θ(sec θ(tf)− sec θ)

+ ln
sec θ(tf) + tan θ(tf)

sec θ + tan θ

)
y(t)

h
= sec θ(tf)− sec θ(t)

(3.6)

26

From the problem statement, the Hamiltonian can be written as:

H = 1 + λx

(
V cos θ +

V y

h

)
+ λyV sin θ (3.7)

where the necessary conditions for optimality can be derived as:

−λ̇x =
∂H

∂x
= 0

−λ̇y =
∂H

∂y
=
λxV

h

0 =
∂H

∂θ
= −λxV sin θ + λyV cos θ

(3.8)

From here, we can obtain the differential equations for Zermelo’s problem:

ẋ = V cos

(
λy
λx

)
+
V y

h
, x0 = 4.9, xf = 0

ẏ = V sin

(
λy
λx

)
, y0 = 1.6 yf = 0

λ̇x = 0

λ̇y = −V
h
λx

(3.9)

To approximate the differential equations (3.9) for Zermelo’s problem, Equations (2.7), (2.9) and

(2.10) are used. After approximating, the set of differential equations (3.9) can be rewritten in a

27

residual vector formR:

R1
1 = x1 − x0

Ri
1 = Dxi − V cos

(
λiy
λx

)
− V

h
yi

R1
2 = y1 − y0

Ri
2 = Dyi − V sin

(
λiy
λx

)
Rj

3 = Dλjy +
V

h
λx

RN
3 = yN − yf

R4 = xN − xf

R5 = 1 + V λx cos

(
λNy
λx

)
+
V

h
λxy

N + V λNy sin

(
λNy
λx

)

(3.10)

where i = 2, . . . , N and j = 1, . . . , N − 1. Since λx and tf are constants, the residual vector R is

of length 3N + 2.

From the costates represented in Equation 3.8, the control input θ(t) is:

θ = tan−1

(
λy
λx

)
(3.11)

To solve Zermelo’s problem using the CRBF-collocation implemented by the ROCS toolbox, a set

of initial parameters are selected. Table 3.2 displays the initial parameters used.

28

Table 3.2: Zermelo’s Problem Initial Parameters

Initial Conditions Value
N (nodes) 25
ε (shape parameter) 1
tf 5.693 sec
initial guess 7
initial position (4.9, 1.66)
final position (0,0)
ϕ(r, c) (CRBF) Multiquadric (F + r5)

As displayed in Table 3.2, 25 equidistant nodes are used and an initial guess of 7 is selected for all

the unknowns. The initial position is (4.9, 1.66) and the goal is to find the optimal trajectory to the

position (0,0) in tf = 5.693 seconds. A multiquadric CRBF ϕ(r, c) from Table 2.1 is used for this

problem, where r = ||t(i)− ti||, F =
√
h2 + 1, and h = r

c
.

The boundary conditions are collocated in the residual vector at the following residual vector in-

dices:

R1
1 = x1 − x0

R1
2 = y1 − y0

RN
3 = xN − xf

RN
4 = yN − yf

(3.12)

Collocating at these residual vector indices ensures the boundary conditions are enforced. In addi-

tion, since the Hamiltonian is a constant, the residual vectorR5 includes the Hamiltonian function.

By including the Hamiltonian in the vector of unknowns, ROCS can solve the problem with the

final time being unknown.

After putting the Zermelo’s problem in residual form and deriving the optimal conditions, they are

29

Figure 3.6: ROCS Interface for Zermelo’s Problem

inputted into ROCS along with the boundary conditions as shown in Figure 3.6.

The set of residual vectors shown in Equations (3.10) are solved using fsolve within the ROCS

code. Similarly, the fsolve function is used along with the built-in ode45 solver to obtain the

exact solution from Equation (3.6). The relative and absolute tolerances of 10−20 are used. The

comparison between the exact solution and the solution obtained via the CRBF-collocation method

are shown in Figure 3.7.

30

Figure 3.7: Zermelo’s Problem Solution: CRBF vs Exact Solution

Figure 3.8: Error between ROCS Solution and Exact Solution

31

The absolute error between the states and control are shown in Figure 3.8. From the figure, the

error is on the magnitude of 10−3, which demonstrates the accuracy of ROCS when compared to

the exact solution.

To demonstrate the CRBF-collocation method’s insensitivity to the shape parameter, Zermelo’s

problem was solved with the same initial parameters as before, but with a shape parameters over a

range of values: c = [1 10 100 1000]. The RMSE for the states and control as well as the heading

angle are on the order of 10−4 shown in Figure 3.9.

Figure 3.9: RMSE for States and Control, and Heading Angle

Duffing Oscillator

The duffing oscillator is a popular problem in engineering, mathematics, and physics because it can

be used to approximate the behavior of different physical systems. Named after Georg Duffing,

who published a book on the topic in 1918, the duffing equation is a second-order differential

equation with a cubic nonlinearity [51]. The equation became more popular in the 1970s when

researchers began using it to model chaotic system behavior [52]. The dynamics for the duffing

32

oscillator are shown in Equation 3.13.

ẍ+ a2x+ bx3 = u, 0 ≤ t ≤ tf (3.13)

where a is the natural frequency, b is the nonlinearity coefficient, u is the unknown forcing function.

For the duffing oscillator problem, the cost functional to minimize is:

J =
1

2
(x− xf)S(x− xf) +

1

2

∫ tf

t0

u2dt (3.14)

where S =

s11 s12

s21 s22

 is the terminal function weight matrix.

The system dynamics described by the duffing equation 3.13 can be rewritten as a system of first-

order ordinary differential equations (ODEs):

ẋ1 = x2

ẋ2 = −a2x1 − bx31 + u

(3.15)

where x1 and x2 denote the position and velocity, respectively.

To derive the nonlinear algebraic equations required to solve the problem using CRBFs, we first

write the Hamiltonian as:

H =
1

2
u2 + λ1x2 + λ2(−a2x1 − bx31 + u) (3.16)

33

Next, the necessary conditions for optimality can be written as:

λ̇1 = λ2(a
2 + 3bx21)

λ̇2 = −λ1

u = −λ2

(3.17)

The system of differential equations that describe the duffing oscillator can be found by combining

equations (3.15) and (3.17) to reach a TPBVP:

ẋ1 = x2

ẋ2 = −a2x1 − bx31 − λ2

λ̇3 = λ2(a
2 + 3bx21)

λ̇4 = −λ1

(3.18)

Using, Equations (2.7), (2.9) and (2.10), the set of differential equations (3.18) can be rewritten as

nonlinear algebraic equations in a residual vector formR:

Rk
1 = Dxk1 − xk2

Rk
2 = Dxk2 − (a2xk1 + b(xk1)3 + λk2)

Rk
3 = Dλk3 − λk2(a2 + 3b(xk1)2)

Rk
4 = Dλk4 + λk1

(3.19)

where, k = 1 . . . N andR is the residual vector to be minimized.

To demonstrate the capabilities of ROCS, the duffing oscillator problem is solved for the fixed final

state case.

34

Fixed Final State

For the fixed final state duffing oscillator problem, the initial parameters used are shown in Table

3.3.

Table 3.3: Duffing Oscillator Problem Initial Parameters

Initial Conditions Value
a (natural freq.) 1 rad/sec
b (nonlinearity coeff.) 0.9
N (nodes) 40
ε (shape parameter) 0.9
x10 (initial) 0
x20 (initial) 0
x1f (final) 2
x2f (final) 3
tf 2 sec
ϕ(r, c) (CRBF) Multiquadric (F + r5)

As displayed in Table 3.3, the natural frequency a is set to 1 rad/sec, while the nonlinearity

coefficient b is set to 0.9. For this problem, 40 equidistant nodes are used and a multiquadric

CRBF ϕ(r, c) is selected, where r = ||t(i)− ti||, F =
√
h2 + 1, and h = r

c
. The initial conditions

selected for this problem are x10 = 0 and x20 = 0 and the final conditions are x1f = 2 and x2f = 3.

To ensure that the boundary condition values are enforced, they are collocated at the following

residual vector indices:

R1
1 = x11 − x10

R1
2 = x12 − x20

RN
3 = xN1 − x1f

RN
4 = xN2 − x2f

(3.20)

35

Figure 3.10: ROCS Interface for Duffing Oscillator - Fixed Final State

After deriving the optimal conditions and formulating the duffing oscillator problem into a residual

vector form, as shown by Equations 3.17 and 3.19, respectively, they are inputted into ROCS along

with the boundary conditions as shown in Figure 3.10. It is important to note that when entering the

residual equations, the natural frequency and nonlinearity coefficient are substituted accordingly.

The final time is set to 2 seconds.

To demonstrate the accuracy of ROCS’s calculations, the exact solution for the duffing oscillator

is solved using the same conditions from the CRBF solution. The built-in MATLAB single-step

solver ode23 is utilized. The ode23 solver implements a Runge-Kutta (2,3) pair of Bogacki and

Shampine [53]. The trajectories of the optimal states and control are plotted and shown in Figure

3.11. The absolute error between the states is 0.25 or less, whereas for the costates it remains below

36

1.4, as shown in Figure 3.12. Overall, the solution provided from the CRBF-collocation method

implemented by ROCS displays little error compared to the exact solution generated by the ode23

solver.

Figure 3.11: Fixed Final State Duffing Oscillator - Optimal States and Control with Multiquadric
CRBF

37

Figure 3.12: Absolute Error for States and Costates with Multiquadric CRBF

To demonstrate the performance of another CRBFs, the fixed final state duffing oscillator problem

is solved using the Gaussian CRBF type, as shown in Table 2.1. The same initial parameters

used with the Multiquadric CRBF solution are utilized for this solution. Figure 3.13 displays the

trajectories of the optimal states and control, while Figure 3.14 displays the absolute error between

the states and the costates when compared to the exact solution. Overall, like the Multiquadric

CRBF, the Gaussian CRBF showed good accuracy compared to the exact solution generated by

the ode23 solver.

38

Figure 3.13: Fixed Final State Duffing Oscillator - Optimal States and Control with Gaussian
CRBF

Figure 3.14: Absolute Error for States and Costates with Gaussian CRBF

39

CHAPTER 4: CONCLUSION

For this research, a user-friendly MATLAB toolbox named Radial Optimal Control Software

(ROCS) is introduced to solve nonlinear optimal control problems by applying collocation tech-

niques using Coupled Radial Basis Functions (CRBFs). The primary advantage provided by

CRBFs is the combination of traditional Radial Basis Functions with a r5 conical spline, which

maintains the accuracy and robustness of the solution without significant influence from the shape

parameter nor a certain nodal distribution. Unlike other commercial software tools that require

code manipulation to operate, the ROCS toolbox enables both professionals and students to solve

nonlinear optimal control problems using CRBF-collocation via a user-friendly interface.

The accuracy of the ROCS toolbox’s method was tested using three nonlinear optimal control

problems, Lambert’s problem (two-body orbital transfer), Zermelo’s problem, and the fixed final

state duffing oscillator problem, and the results were compared to the solutions found in literature.

The tool accepted user input for boundary conditions, necessary conditions, and the governing

equations of motion and obtained the solution. Upon comparison to solutions found in the litera-

ture, ROCS demonstrated efficiency for the same level of accuracy. In addition, the insensitivity to

the shape parameter was demonstrated with Zermelo’s Problem, while different CRBF types were

demonstrated with the duffing oscillator problem.

By introducing this unified MATLAB tool to solving nonlinear optimal control problems, users

are able to utilize CRBFs to solve nonlinear optimal control problems, e.g., in astrodynamics and

space-flight mechanics, without the need for extensive manipulation of code in existing software

tools and without extensive knowledge of applying collocation and numerical solvers.

There are several areas for future work that can be explored. First, the features for ROCS toolbox

can be expanded to include different types of boundary conditions. For example, with the duffing

40

oscillator problem, additional code can be added to handle harmonic steady state, prescribed initial

and final states, and fixed final state cases. Another area for future work would be to test the ROCS

toolbox with additional optimal control problems. For this research, only Lambert’s problem,

Zermelo’s problem, and the duffing oscillator problems were explored. Finally, the ROCS tool-

box could be implemented through a different coding language, such as C, to explore additional

functionality.

41

APPENDIX : INSTRUCTIONS FOR DOWNLOADING ROCS TOOLBOX

42

The MATLAB version of the ROCS toolbox can be dowloaded from the following GitHub reposi-

tory: https://github.com/beth112760/Radial-Optimal-Control-Software-ROCS-

43

LIST OF REFERENCES

[1] J. Macki and A. Strauss, Introduction to Optimal Control Theory. Verlag, NY: Springer, 1982.

[2] L.D. Berkovitz and N.G. Medhin, Nonlinear Optimal Control Theory. Boca Raton, FL: CRC

Press, 2013.

[3] D.E. Kirk, Optimal Control Theory: An Introduction. Englewood Cliffs, NJ: Prentice-Hall,

1970.

[4] A.V. Rao, ”A Survey of Numerical Methods for Optimal Control,” A Survey of Numerical

Methods for Optimal Control, 1st ed., vol. 135, pp. 497-528

[5] D. Benson, G. Huntington, T. Thorvaldsen, and A. Rao, ”Direct Trajectory Optimization and

Costate Estimation via an Orthogonal Collocation Method,” AIAA Guidance, Navigation, and

Control Conference and Exhibit, vol. 29, no. 6, 2006.

[6] J.T. Betts, Practical Methods for Optimal Control and Estimation Using Nonlinear Program-

ming. Philadelphia, PA: SIAM, 2010.

[7] O. von Stryk, R. Bulirisch, Direct and indirect methods for trajectory optimization. Annals of

Operation Research. vol 37, no. 1, pp. 357-373, 1992.

[8] G. Huntington, A. Rao, ”Comparison of Global and Local Collocation Methods for Optimal

Control”, Journal of Guidance, Control, and Dynamics. vol 37, no. 2, pp. 432-436, 2008.

[9] B. Fornberg, Practical Guide to Pseudospectral Methods. Cambridge Univ. Press, Cam-

bridge, England, U.K., 1998.

44

[10] G. Huntington, A. Rao, ”Optimal Spacecraft Formation Configuration Using a Gauss Pseu-

dospectral Method”, Proceedings of the 2005 AAS/AIAA Spaceflight Mechanics Meeting.

American Astronautical Society Paper 05-103, 2005

[11] G. Huntington, A. Rao, ”Optimal Reconfiguration of a Spacecraft Formation via a Gauss

Pseudospectral Method”, Proceedings of the 2005 AAS/AIAA Astrodynamics Specialist Con-

ference. American Astronautical Society Paper 05-338, 2005.

[12] D, Garg, M. Patterson, W. Hager, A. Rao, D. Benson, G. Huntington, A unified framework

for the numerical solution of optimal control problems using pseudospectral methods, Auto-

matica. vol 46, no. 11, pp. 1843-1851, 2010.

[13] G,. Elnagar, M. Kazemi, M. Razzaghi, The pseudospectral legendre method for discretizing

optimal control problems, Automatic Control, IEEE Transactions on. vol 40, no. 10, pp.

1793-1796, 1995.

[14] F. Fahroo, I.M. Ross, Costate estimation by a legendre pseudospectral method, Journal of

Guidance, Control, and Dynamics. vol 24, no. 2, pp. 270-277, 2001.

[15] G. Elnager, M. Kazemi, Pseudospectral chebyshev optimal control of constrained nonlinear

dynamical systems, Computational Optimization and Applications. vol 11, no. 2, pp. 195-

217, 1998.

[16] F. Fahroo, I.M. Ross, Convergence of the costates does not imply convergence of the control.

Journal of guidance, control, and dynamics. vol 31, no. 5, pp. 1492-1497, 2008.

[17] H. Mirinejad, T. Inanc, An RBF Collocation Method for Solving Optimal Control Problems,

Robotics and Autonomous Systems. vol 87, pp. 219-225, 2017.

[18] R. Hardy, Multiquadric equations of topography and other irregular surfaces, J. Geophys.

Res. vol 76, no. 8, pp. 1905-1915, 1971.

45

[19] E.J. Kansa, Multiquadrics- a scattered data approximation scheme with applications to com-

putational fluid dynamics- 1 Surface approximations and partial derivative estimates, Com-

put. Math. Appl. vol 19, pp. 127-145, 1990.

[20] J.A. Rad, S. Kazem, K. Parand, Radial basis functions approach on optimal control problems:

a numerical investigation. Journal of Vibration and Control. vol 20, no. 9, pp. 1394-1416,

2014.

[21] T. Elgohary, L. Dong, J. Junkins, S. Atluri, A simple, fast, and accurate time-integrator for

strongly nonlinear dynamical systems, CMES: Computer Modeling in Engineering and Sci-

ences. vol 100, no. 3, pp. 249-275, 2014.

[22] T. Elgohary, L. Dong, J. Junkins, S. Atluri, Time domain inverse problems in nonlinear sys-

tems using collocation and radial basis functions, CMES: Computer Modeling in Engineer-

ing and Sciences. vol 100, no. 1, pp. 59-84, 2014.

[23] M. Mongillo, Choosing basis functions and shape parameters for radial basis function meth-

ods. SIAM undergraduate research online. vol 4, no. 190-209, pp. 2-6, 2011.

[24] A.D. Cheng, Multiquadric and its shape parameter—a numerical investigation of error esti-

mate, condition number, and round-off error by arbitrary precision computation. Engineering

analysis with boundary elements. vol 36, no. 2, pp. 220-239, 2012.

[25] A. Karageorghis, P. Tryfonos, Shape parameter estimation in rbf function approximation.

International Journal of Computational Methods and Experimental Measurements. vol 7, no.

3, pp. 246-259, 2019.

[26] Y. Zhang, An accurate and stable rbf method for solving partial differential equations, Ap-

plied Mathematics Letters. vol 97, pp. 93-98, 2019.

46

[27] A. Seleit, T. Elgohary, A Shape Parameter Insensitive CRBFs-Collocation for Solving Non-

linear Optimal Control Problems. [Unpublished Manuscript]. Department of Mechanical and

Aerospace Engineering, University of Central Florida. 2022.

[28] S. Ozana, T. Docekal, J. Nemcik, F. Krupa, J. Mozaryn, A Comparative Survey of Software

Computational Tools in the Field of Optimal Control, 2021 23rd International Conference on

Process Control (PC). 2021.

[29] J.C. Butcher, Numerical Methods for Ordinary Differential Equations. New York: John Wiley

and Sons, 2008.

[30] L.F. Shampine, J. Jierzenka, M.W. Reichelt Solving Boundary Value Problems

for Ordinary Differential Equations in MATLAB with bvp4c. [Online]. Available:

https://classes.engineering.wustl.edu/che512/bvp paper.pdf. [Accessed: 2-July-2022]. 2000.

[31] P. Falugi, E. Kerrigan, E. van Wyk Imperial College London Optimal Control Software

User Guide (ICLOCS). [Online]. Available: http://www.ee.ic.ac.uk/iclocs/user guide.pdf.

[Accessed: 2-July-2022]. 2010.

[32] Y. Nie, O. Faqir, E.C. Kerrigan, ICLOCS2: Try this optimal control problem solver before

you try the rest, 2018 UKACC 12th International Conference on Control. [Online]. Avail-

able: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=arnumber=8516795. [Accessed: 2-July-

2022]. Sheffield, UK. 2018.

[33] A. Wachter, L.T. Biegler, On the implementation of an ¨ interior-point filter line-search al-

gorithm for large scale nonlinear programming, Mathematical Programming. vol 106, no. 1,

pp. 2557, 2006.

47

[34] MathWorks, Find minimum of constrained nonlinear multivariable function - MATLAB fmin-

con. [Online]. Available: https://www.mathworks.com/help/optim/ug/fmincon.html. [Ac-

cessed: 2-July-2022]. 2017.

[35] C. Buskens, D. Wassel, The ESA NLP Solver WORHP. In Modeling and Optimization in

Space Engineering, G. Fasano and J.D. Pinter (Eds.). vol. 3. Springer, New York. 2013.

[36] M. Patterson, A. Rao, GPOPS-II: A MATLAB Software for Solving Multiple-Phase Optimal

Control Problems Using hp-Adaptive Gaussian Quadrature Collocation Methods and Sparse

Nonlinear Programming, ACM Transactions on Mathmatical Software. vol 41, no. 1, pp.

1-37, 2014.

[37] I.M. Ross, Enhancements to the DIDO Optimal Control Toolbox, ArXiv [Online]. Available:

https://arxiv.org/abs/2004.13112. [Accessed: 2-July-2022]. 2020.

[38] D. Ariens, M. Diehl, H. Ferreau, F. Logist, R. Quirynen, M. Vukov, ACADO Toolkit User’s

Manual [Online]. Available: http://acado.sourceforge.net/doc/pdf/acado manual.pdf. [Ac-

cessed: 2-July-2022]. 2014.

[39] M. Cizniar, M. Fikar, M.A. Latifi, Dynamic Optimisation CodeDYNOPT. User’s Guide.

[Online]. Available: https://usermanual.wiki/Document/dynoptguide.491293101/view. [Ac-

cessed: 2-July-2022]. Technical Report, KIRP FCHPT STU Bratislava, Slovak Republic.

2006.

[40] M. Kelly, OptimTraj Users Guide. [Online]. Available:

https://usermanual.wiki/Pdf/OptimTrajUsersGuide.958170878.pdf. [Accessed: 2-July-

2022]. 2016.

48

[41] D. Henrion, J. Lasserre, C. Savorgnan, POCP: a Package for Polynomial Optimal Control

Problems. [Online]. Available: https://arxiv.org/pdf/0809.4623.pdf. [Accessed: 2-July-2022].

2009.

[42] A. Schwartz, Y. Chen, RIOTS95-a MATLAB Toolbox for Solving General Optimal

Control Problems and Its Applications to Chemical Processes. [Online]. Available:

http://www.optimization-online.org/DB FILE/2002/11/567.pdf. [Accessed: 2-July-2022].

2002.

[43] K. Holmstrom, A. Goran, M. Edvall, User’s Guide for TOMLAB. [Online]. Available:

https://tomopt.com/docs/TOMLAB.pdf. [Accessed: 2-July-2022]. 2010.

[44] A.E. Bryson and Y. Ho, Applied Optimal Control: Optimization, Estimation, and Control.

New York, NY: Taylor Francis Group, 1975.

[45] F.L. Lewis, D.L. Vrabie, V.L. Syrmos, Optimal Control. Hoboken, NJ: Wiley, 2012.

[46] D.L. Torre, R. Flores, E. Fantino, On the solution of Lambert’s problem by regularization.

Acta Astronautica 2018.

[47] R.H. Battin, An Introduction to the Mathematics and Methods of Astrodynamics, Revised

Edition. Reston, VA: American Institute of Aeronautics and Astronautics, Inc, 1999.

[48] H. Schaub and J.L. Junkins, Analystical Mechanics of Space Systems. Reston, VA: American

Institute of Aeronautics and Astronautics, Inc, 2003.

[49] E. Zermelo, Über das Navigationsproblem bei ruhender oder veränderlicher Windverteilung.

Zeitschrift für Angewandte Mathematik und Mechanik., 1931.

[50] L. Biferale, F. Bonasccorso, M. Buzzicotti, P.C. Di Leoni, and K. Gustavsson, Zermelo’s

problem: Optimal point-to-point navigation in 2D turbulent flows using Reinforcement

Learning. An Interdisciplinary Journal of Nonlinear Science, 2019.

49

[51] Kovacic and M. J. Brennan, The Duffing Equation: Nonlinear Oscillators and Their Behav-

ior. Hoboken, NJ: Wiley, 2011.

[52] A. H. Salas Salas, J. E. Castillo Hernández, L. J. Martı́nez Hernández, The Duffing Oscillator

Equation and Its Applications in Physics. Mathematical Problems in Engineering, 2021.

[53] MathWorks, ODE23, Solve nonstiff differential equations - low order method - MATLAB.

[Online]. Available: https://www.mathworks.com/help/matlab/ref/ode23.html. [Accessed:

12-June-2022].

[54] N. Bedrossian, S. Bhatt, M. Lammers and L. Nguyen, Zero Propellant Maneuver: Flight Re-

sults for 180 ◦ ISS Rotation. NASA CP Report 2007-214158; 20th International Symposium

on Space Flight Dynamics, September 24-28, 2007, Annapolis, MD.

50

	A Unified Tool For Adaptive Collocation Techniques Applied to Solving Optimal Control Problems
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: BACKGROUND
	Classical Control Theory
	Optimal Control Theory
	Indirect Versus Direct Methods
	Direct Collocation Methods
	Pseudospectral Methods
	Radial Basis Functions
	Coupled Radial Basis Functions

	Optimal Control Software Tools
	ICLOCS2
	GPOPS II
	DIDO
	Other Available Software Tools

	CHAPTER 2: METHODOLOGY
	Optimal Control Problem Formulation
	Unified MATLAB Toolbox and Algorithm

	CHAPTER 3: FINDINGS
	Lambert's Problem (Two-Body Orbital Transfer)
	Zermelo's Problem
	Duffing Oscillator
	Fixed Final State

	CHAPTER 4: CONCLUSION
	APPENDIX : INSTRUCTIONS FOR DOWNLOADING ROCS TOOLBOX
	LIST OF REFERENCES

