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ABSTRACT

One focus of research in cosmology regards the growth of structure in the universe: how we end

up with stars, galaxies, galaxy clusters, and large scale structure in a universe that appears ho-

mogeneous and isotropic on large scales. Using cosmological perturbation theory, we investigate

the evolution of density and velocity perturbations corresponding to a universe that is slowly con-

tracting as proposed in [1], testing with and comparing different values for the equation-of-state

parameter. This allows for the comparison of the growth of large scale structure in scenarios in-

cluding a matter-dominated expanding universe, a dark energy-dominated expanding universe, and

now, an ekpyrotic scalar field-dominated contracting universe. These predictions become observa-

tionally useful in the context of two point correlation functions to describe clustering. It is valuable

to discriminate between various cosmological models to understand both the distant past and the

ultimate fate of our universe.
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CHAPTER 1: INTRODUCTION

Cosmology is grounded in the idea that the universe is homogeneous and isotropic on large scales,

known as the cosmological principle. This evidently breaks down on smaller scales: we observe

inhomogeneities including stars, galaxies, galaxy clusters, and large-scale structure. Here we will

focus on the large-scale structure of the universe, which is believed to be significantly influenced

by two factors: gravitation and the expansion of the universe.

Nearly a century ago, astronomer Edwin Hubble announced the finding that we know as Hub-

ble’s Law. The recessional velocity of galaxies was found to be proportional to their distance

from us, indicating the expansion of the universe [3]. It is intuitive that the expansion of space

affects the way its contents interact, making the formation of structure a more formidable task.

However, this effect is countered by gravity, allowing for density perturbations to grow despite the

expansion of the universe. A Newtonian view of gravity is enough to understand how this could

happen. As more mass accumulates somewhere in space and density increases, gravitational at-

traction increases proportionally. Though more complex physics is always at play, it is essentially

the compounding of this effect that creates structure.

The formation of structure in the universe is commonly examined as the evolution of mass den-

sity for a universe in a matter-dominated phase. It is also assumed that gravitational interactions

alone develop inhomogeneities from primordial fluctuations to the present state of the universe.

These assumptions are widely regarded as valid, but there is considerable uncertainty surrounding

the circumstances that dictate the evolution of both the early universe and the fate of the future

universe.

The leading model to describe the very early universe and explain the homogeneity and isotropy

noted in the cosmological principle is cosmic inflation. Many alternatives to inflation involve an

1



Figure 1.1: Evolution of structure in a 43 Mpc box. The leftmost box corresponds to z = 9.83 and
the rightmost box corresponds to z = 0.

ekpyrotic or contracting phase governed by a scalar field with an equation-of-state parameter which

varies significantly from that of matter. Therefore, matter density (and thus structure) in a universe

dominated by such a scalar field is expected to differ in its evolution than structure developing in a

matter or cosmological constant-dominated state.

Employing cosmological perturbation theory, we investigate the evolution of density and velocity

perturbations corresponding to an ekpyrotic contracting phase, comparing different values for the

equation-of-state parameter. This allows for the comparison of the growth of large scale structure

in scenarios including a matter-dominated expanding universe, a dark energy-dominated expanding

universe, and now, a scalar field-dominated contracting universe. We then continue by considering

the timescales on which one could discriminate between the leading cosmological model, ΛCDM,

and the cyclic universe examined in this work.
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CHAPTER 2: MOTIVATION FOR INFLATION

Inflation was first posited in the 1980s to provide a solution to a handful of cosmological “prob-

lems”: observed features of the universe that remained unexplained by the existing theoretical

framework. Three key cosmological problems that inflation was designed to address are the hori-

zon problem, the flatness problem, and the monopole problem. In essence, these problems point

out features of the universe that are, but not need be—to the point of astounding and scientifically

suspicious coincidence.

The horizon problem focuses on the troublingly homogeneity and isotropy of the universe on

exceedingly large scales. Upon examination of the temperature spectrum of the CMB [4], points

farther apart than the horizon distance—too distant for light-speed communication given the age

of the universe—appear not just causally connected, but also in thermal equilibrium. Inflation

solves the horizon problem with a brief period of rapid expansion causing the horizon size to grow

exponentially, perhaps by 30 orders of magnitude. This happens before photon decoupling, so it

leaves no electromagnetic signature.

The flatness problem notes that the density of the universe is incredibly close to the critical density,

producing practically no curvature. Specifically, we now observe flatness such that

|1−Ω0| ≤ 0.005 (2.1)

[5], where Ω0 = 1 indicates a perfectly flat universe. Physics does not demand this flatness: Ω

could assume any value greater than 0, and its value plays a significant role in the ultimate fate

of the universe. That Ω0 is so nearly one is exceedingly unlikely and demands explanation. The

flatness problem becomes more astonishing at times nearing the Big Bang. With a value of Ω0 so

3



Figure 2.1: Visual representation of the inflation solution to the flatness problem [2].

close to unity at present time, Ω must have been significantly closer to one in the past. At Planck

time, Ω0 is further constrained such that

|1−Ωp| ≤ 2×10−62 (2.2)

[5]. Cosmologists generally agree that a value so close to one is not coincidence. Inflation ad-

dresses the flatness problem with the exponential expansion responsible for flattening curved geo-

metric elements.

The monopole problem straddles the bounds of cosmology and particle physics. Grand Uni-
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fied Theories and our understanding of the Big Bang suggest the plentiful existence of magnetic

monopoles, yet we detect none. If magnetic monopoles were created before inflation, their number

density would become so small that we could not expect to encounter any now.
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CHAPTER 3: ALTERNATIVES TO INFLATION

Inflation is well-justified and remains the consensus view of cosmologists. However, it contains

many free parameters that can be chosen somewhat arbitrarily. Inflation has passed a few obser-

vational tests, but confirmation remains incomplete. As such, inflation is not the only proposed

solution to the aforementioned cosmological problems. Alternate resolutions have arisen in the

twenty-first century cyclic and ekpyrotic models [1] [6], which would also meet observational

constraints. Motivated by M-Theory, the ekpyrotic universe theory proposes that the Big Bang

was the result of the collision of two three-dimensional branes in a fourth dimension, such that the

kinetic energy of the colliding branes was converted to elementary particles. This collision process

eliminates concerns surrounding the Big Bang’s initial singularity, as the temperature is finite. In

turn, a finite temperature solves the monopole problem since the massive monopoles cannot be

produced in these lower-temperature conditions. The horizon problem is solved because the colli-

sion of the two branes is nearly simultaneous everywhere, and the Hubble radius is infinitesimal in

comparison to the collision region. The flatness problem is solved by requiring the bulk brane to

be flat, initially at rest, and parallel to the boundary branes [6].

More recent cyclic models invoke ekpyrotic elements, but produce an observationally alternative

outcome. As the name suggests, the universe evolves in cycles, particularly of expanding and con-

tracting phases. In the cyclic model proposed by Ijjas and Steinhardt [1], the universe undergoes

slow contraction, followed by a bounce before it can reach a singularity, then a phase of familiar

expansion. This cycle repeats indefinitely. The horizon problem is quickly addressed by institut-

ing a period of contraction and subsequent bounce, allowing for causal connection. The flatness

problem is addressed if the period of contraction endures long enough for the Hubble parameter

to be reduced by 60 e-folds. Finally, the monopole problem is addressed similarly to the ekpy-

rotic scenario: monopoles would be too massive to be abundantly created provided sufficiently

6



low reheating temperatures. Initially this cyclic model was believed to allow for a universe with

no marked beginning, but this was recently disproved [7].
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CHAPTER 4: GRAVITATIONAL INSTABILITY

As previously mentioned, the approximate homogeneity of the universe is only valid on very

large scales. Gravity causes instability in the mass distribution in expanding Friedmann-Lemaitre-

Robertson-Walker models. This instability naturally extends to contracting universes, where the

effects of gravitation and contraction compound to form large scale structures.

Regardless, the large scale homogeneity of our universe indicates that far in the past, the universe

was most likely even more homogeneous. This is a similar idea to the quantifiable level of flatness

given in 2.2. Understanding the gravitational instability of the universe is key to understanding

the formation and evolution of large scale structure, which form from small perturbations in mass

density.

Mass density can be expressed as in equation 5.80 in [8], as

ρ(x, t) = ρb(t)[1+δ (x, t)] (4.1)

where ρb(t) is the mean background mass density, which varies as ρb ∝ a(t)−3 . The value of

δ (x, t) then describes the fractional departure of the localized mass density from the mean. For the

remaining discussion, δ is referred to as the density perturbation, and |δ | ≪ 1. Finally, x denotes

the comoving spatial coordinate.

For the following discussion, we will need a few relations that come from these concepts. First,

note that ∇ indicates operations with respect to x at a fixed time. Then ∇ = a∇r .

Conservation of mass can be written generally, where u is a velocity field, as

(
∂ρ

∂ t
)+∇r · (ρu) = 0 (4.2)
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and rewritten in comoving coordinates as

(
∂

∂ t
− ȧ

a
x ·∇)[ρb(t)(1+δ )]+

ρb

a
∇ · [(1+δ )(ȧx+v)] = 0 (4.3)

Where dot denotes differentiation with respect to time. Using ρb ∝ a(t)−3, we can say ρ̇b =−3ρb
ȧ
a

. Then after expanding the derivatives, we get

∂δ

∂ t
+

1
a

∇ · [(1+δ )v] = 0 (4.4)

We will also need the perturbed Poisson equation. The original Poisson equation for the gravita-

tional potential is

∇
2
r Φ = 4πGρ. (4.5)

This can then be rewritten as

−1
a

∇ ·g =
1
a2 ∇

2
Φ = 4πGρb(1+δ )−Λ (4.6)

The unperturbed part of the equation can be removed by writing

Φ = φ(x, t)+
2
3

πGρba2x2 − 1
6

Λa2x2 (4.7)

Which brings the Poisson equation to

∇
2
φ = 4πGρba2

δ (4.8)

We then combine these equations with the Euler equation:

(
∂u
∂ t

)r +(u ·∇r)u =−∇rΦ (4.9)

9



the velocity equation:

u = ȧx+v(x, t) (4.10)

and 4.7, to get
∂v
∂ t

+
ȧ
a

v+
1
a
(v ·∇)v =−1

a
∇φ . (4.11)

This equation, along with 4.8 and 4.4 describe how mass fluctuations evolve for the approximate

case of a pressureless ideal fluid. All of this assumes that the peculiar velocities and gravitational

potential given by φ are much less than one, i.e. the Newtonian limit. However, density and

velocity fluctuations can be nonlinear. Now, the evolution of δ and v can be calculated using

perturbation theory. We will start with first-order, where terms of order δ 2,δv,v2, or higher are

dropped. In this limit, 4.4 becomes
∂δ

∂ t
+

1
a

∇ · v = 0 (4.12)

and 4.11 becomes
∂v
∂ t

+
ȧ
a

v+
1
a

∇φ = 0 (4.13)

We will then move on second-order, where δ 2,δv, and v2 terms are considered, but no higher.

10



CHAPTER 5: PERTURBATIVE ANALYSIS

First-order Density Perturbations

The following analysis is motivated by [1] and inspired by [9]. We begin with equations not specific

to the contracting scenario.

∂v
∂ t

+
ȧ
a

v+
1
a
(v ·∇)v =−1

a
∇φ (5.1)

Where dot denotes differentiation with respect to time. Dividing by a and using

1
a

∂v
∂ t

=
∂

∂ t
(

v
a
)+ v

ȧ
a2 (5.2)

Yields

∂

∂ t
(

v
a
)+

2ȧv
a2 +(

v
a
·∇)

v
a
=− 1

a2 ∇φ (5.3)

We now use a ∝ t1/ε , and therefore ȧ
a ∝

1
εt , where ε is an equation of state parameter given by

ε ≡ 3
2(1+

p
ρ
). Here ρ is energy density and p is pressure.

The right side of the previous equation is manipulated using the Poisson equation, ∇2φ = 4πGρ0a2δ .

New notation is introduced such that

11



φ = ∇
−24πGρ0a2

δ (5.4)

The notation ∇−2 will appear regularly in our discussion. After substituting 5.4 into 5.22, we

proceed to write the RHS in terms of t. The Friedmann equation for a flat universe states

(
ȧ
a
)2 =

8
3

πGρ0 (5.5)

The above equations are combined in detail in [10] (equation 10.3). This yields

∂ 2δ

∂ t2 +2
ȧ
a

∂δ

∂ t
= 4πGρ0δ (5.6)

With the help of the time dependence of a and 5.5, the right hand side of the above can be rewritten:

4πGρ0 =
3
2
(
ȧ
a
)2

∝
3
2

1
ε2t2 (5.7)

Which can then be restated as.

∂ 2δ

∂ t2 +
2
εt

∂δ

∂ t
− 3

2ε2t2 δ = 0 (5.8)

We can use the assertive equal to rather than proportional to using well-known results. The value

of ε for matter is 3
2 . When this is substituted in and the partial differential equation is solved, the

known result is indeed obtained.

12



Our second-order partial differential equation for δ can be solved by assuming a solution of the

form δ ∝ tλ . Solving gives

λ =±
√

5
2ε2 −

1
ε
+

1
4
− 1

ε
+

1
2

(5.9)

As a sanity check, we confirm with a known result. For matter, ε = 3
2 . Plugging into 5.9 gives

δ = c1t
2
3 + c2t−1, which is the accepted result.

Alas, we are not interested in a matter dominated universe. In [1] the authors state that for ekpyrotic

contraction, ε ≫ 1. For ε → ∞,

δ1,∞ = At +B (5.10)

For ε = 100, we have

δ1,100 = At0.980 +Bt0.000153 (5.11)

And, for ε = 10, we have

δ1,10 = At0.818 +Bt−0.0183 (5.12)

In each of the above, A and B are arbitrary functions of position describing density conditions at

some initial time. They are generally taken to be random, Gaussian variables.

13



Figure 5.1: Time evolution of first-order density perturbations for the slowly contracting universe
proposed by [1].

First-order Velocity Perturbations

Having solved for the first-order density perturbations, obtaining the first-order velocity modes

becomes simple. Generally,

v1

a
=−∇∇

−2(δ̇1)+Ct−2/ε (5.13)

Where C is initial rotational velocity. All that is left to be done is take the time derivatives of 5.10,

5.11, and 5.12. Doing so yields

14



Figure 5.2: Time evolution of first-order velocity perturbations for the slowly contracting universe
proposed by [1].

v1,∞

a
=−∇∇

−2A+C (5.14)

v1,100

a
=−∇∇

−2(0.98At−0.02 −0.000153Bt−1.000153)+Ct−1/50 (5.15)

v1,10

a
=−∇∇

−2(0.818At−0.182 −0.0183Bt−1.0183)+Ct−1/5 (5.16)

15



Second-order Density Perturbations

For the following analysis, we let B= 0 as it is the decaying mode for all ε <∞. Two key equations

for this section are:

δ̇2 +
1
a

∇ · v2 =−1
a

∇ · (v1δ1) (5.17)

∂

∂ t
(
v2

a
)+

v2

a
2
εt

+
3
2

1
ε2t2 ∇∇

−2
δ2 =−(

v1

a
·∇)

v1

a
(5.18)

Case Where ε → ∞

Substituting the last sections’ findings into 5.17 gives

δ̇2,∞ +
1
a

∇ · v2,∞ =−∇ · [At(−∇∇
−2A+C)] (5.19)

We now define some constants that will be used for the rest of our discussion:

E1 = ∇ · (A∇∇
−2A) (5.20)

and

E2 =−∇ · (CA) (5.21)

We use these to rewrite 5.19 as

16



δ̇2,∞ +
1
a

∇ · v2,∞ = (E1 +E2)t ≡ Et (5.22)

In 5.18, all terms with ε in the denominator vanish, leaving

∂

∂ t
(
v2

a
) =−(

v1

a
·∇)

v1

a
(5.23)

=−[(−∇∇
−2A+C) ·∇](−∇∇

−2A+C) (5.24)

=−(∇∇
−2A) ·∇(∇∇

−2A)+(∇∇
−2A ·∇)C+C ·∇(∇∇

−2A)− (C ·∇)C (5.25)

We once again define some constants to be used for the rest of our discussion:

F1 =−(∇∇
−2A) ·∇(∇∇

−2A) =−1
2

∇(∇∇
−2A ·∇∇

−2A) (5.26)

F2 = (∇∇
−2A ·∇)C+C ·∇(∇∇

−2A) (5.27)

and

F3 =−(C ·∇)C (5.28)

so that

∂

∂ t
(
v2

a
) = F1 +F2 +F3 ≡ F (5.29)

17



We now take the divergence of 5.29 and the time derivative of 5.22, combining them to produce a

second-order differential equation for δ2,∞.

∇ · ∂

∂ t
(
v2,∞

a
) = ∇ ·F (5.30)

δ̈2,∞ +
∂

∂ t
∇ ·

v2,∞

a
= E (5.31)

δ̈2,∞ +(∇ ·F)−E = 0 (5.32)

which has a solution of the form δ2,∞ =H(x)t2, where H(x) some function of position. This implies

δ̇2,∞ = 2H(x)t and δ̈2,∞ = 2H(x). Plugging into 5.32 to solve for H(x) yields our second-order

solution:

δ2,∞ =
1
2

t2(E −∇ ·F) (5.33)

Case Where ε = 100

We follow the same approach used in the last section to find the time evolution of second-order

density perturbations. Using 5.17, we have

δ̇2,100 +
1
a

∇ · v2,100 =−1
a

∇ · (v1,100δ1,100) (5.34)

=−∇ · (At0.98[∇∇
−2(−0.98At−0.02)+Ct−0.02] (5.35)

18



= t0.96(0.98E1 +E2) (5.36)

where E1 and E2 are the same constants defined in 5.20 and 5.21. For algebraic ease, we redefine

E for this section as E ≡ 0.98E1 +E2. This allows us to rewrite 5.17 as

δ̇2,100 +
1
a

∇ · v2 = Et0.96 (5.37)

We now turn to 5.18 and make the appropriate substitutions.

∂

∂ t
(
v2,100

a
)+

v2,100

a
1

50t
+

3
2

1
10000t2 ∇∇

−2
δ2,100 =−(

v1,100

a
·∇)

v1,100

a
(5.38)

=−[(−∇∇
−20.98At−0.02 +Ct−0.02) ·∇](−∇∇

−20.98At−0.02 +Ct−0.02) (5.39)

= t−0.04(0.9604F1 +0.98F2 +F3) (5.40)

where F1, F2, and F3 are the same as defined in 5.26, 5.27, and 5.28. For algebraic ease, we

redefine F ≡ 0.9604F1 +0.98F2 +F3, giving a more digestible result:

∂

∂ t
(
v2,100

a
)+

v2,100

a
1

50t
+

3
2

1
10000t2 ∇∇

−2
δ2,100 = Ft−0.04 (5.41)

We once again proceed by taking the divergence and a time derivative, now of 5.41 and 5.37,

respectively.

∇ · ∂

∂ t
(
v2,100

a
)+∇ ·

v2,100

a
1

50t
+∇ · 3

2
1

10000t2 ∇∇
−2

δ2,100 = ∇ ·Ft−0.04 (5.42)
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δ̈2,100 +∇ · ∂

∂ t
(
v2,100

a
) = 0.96Et−0.04 (5.43)

Note that the first term of 5.42 is equal to the second term in 5.43, allowing us to combine them.

0.96Et−0.04 − δ̈2,100 +
1

50t
∇ ·

v2,100

a
+

3
20000t2 ∇∇

−2
δ2,100 = ∇ ·Ft−0.04 (5.44)

The third term of the above equation is a multiple of the second term of 5.37, so we can say

1
50t

∇ ·
v2,100

a
=

1
50t

(Et0.96 − δ̇2,100) (5.45)

Rearranging and combining like terms gives our second-order differential equation:

δ̈2,100 +
1

50t
δ̇2,100 −

3
20000t2 δ2,100 − t−0.04(0.98E −∇ ·F) = 0 (5.46)

which has a solution of the from δ2,100 = J(x)t1.96, implying δ̇2,100 = 1.96J(x)t1.96 and δ̈2,100 =

1.881J(x)t−0.04, which we plug in to 5.46.

t−0.04(1.92065J(x)−0.98E +∇ ·F) = 0 (5.47)

The above can be solved for J(x), which completes the second-order solution for density perturba-

tions,

δ2,100 = 0.521(0.98E −∇ ·F)t1.96 (5.48)
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Case Where ε = 10

Once again, we follow the same general procedure. Using 5.17, we have

δ̇2,10 +
1
a

∇ · v2,10 =−1
a

∇ · (v1,10δ1,10) (5.49)

=−∇ · (At0.818[∇∇
−2(−0.818At−0.182)+Ct−0.2] (5.50)

δ̇2,10 +
1
a

∇ · v2,10 = 0.818E1t0.636 +E2t0.618 (5.51)

where E1 and E2 are the same constants defined in 5.20 and 5.21. We now turn to 5.18 and make

the appropriate substitutions.

∂

∂ t
(
v2,10

a
)+

v2,10

a
1
5t

+
3
2

1
100t2 ∇∇

−2
δ2,10 =−(

v1,10

a
·∇)

v1,10

a
(5.52)

=−[(−∇∇
−20.818At−0.182 +Ct−0.2) ·∇](−∇∇

−20.818At−0.182 +Ct−0.2) (5.53)

= 0.669t−0.364F1 +0.818t−0.382F2 + t−0.4F3 (5.54)

where F1, F2, and F3 are the same as defined in 5.26, 5.27, and 5.28.

We once again proceed by taking the divergence and a time derivative, now of 5.54 and 5.51,

respectively.
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∇ · ∂

∂ t
(
v2,10

a
)+∇ ·

v2,10

a
1
5t

+∇ · 3
2

1
100t2 ∇∇

−2
δ2,10 = ∇ ·R.H.S. (5.55)

δ̈2,10 +∇ · ∂

∂ t
(
v2,10

a
) = 0.52E1t−0.364 +0.618E2t−0.382 (5.56)

Note that the first term of 5.55 is equal to the second term in 5.56, allowing us to combine them.

0.52E1t−0.364+0.618E2t−0.382− δ̈2,10+
1
5t
(0.818E1t0.636+E2t0.618− δ̇2,10)+

3
200t2 δ2,10 =∇·R.H.S

(5.57)

Continuing, we find

δ̈2,10+
1
5t

δ̇2,10−
3

200t2 δ2,10 = t−0.364(0.6836E1−0.669∇ ·F1+t−0.382(0.818E2−0.828∇·F2)−t−0.4(∇ ·F3)

(5.58)

A second-order differential equation with a solution of the from δ2,10 = H(x)t1.636 + I(x)t1.618 +

J(x)t1.6. We now find δ̇2,10 and δ̈2,10 and plug the results back into 5.58 to solve for H(x), I(x),

and J(x). We find

H(x) = 0.5055E1 −0.4947∇ ·F1 (5.59)

I(x) = 0.625(E2 −∇ ·F2) (5.60)
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Figure 5.3: Time evolution of second-order density perturbations for the slowly contracting uni-
verse proposed by [1].

and

J(x) =−0.7905∇ ·F3 (5.61)

Plugging these back in completes the second-order solution for density perturbations.

δ2,10 = t1.636(0.5055E1−0.4947∇ ·F1)+ t1.618[0.625(E2−∇ ·F2)]+ t1.6(−0.7905∇ ·F3) (5.62)
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Second-order Velocity Perturbations

Case Where ε → ∞

To solve for the second-order velocity modes, we start by taking the time derivative of 5.33 and

plug it into 5.22.

δ̇2,∞ = t(E −∇ ·F) (5.63)

v2,∞

a
= ∇∇

−2[Et − t(E −∇ ·F)] = ∇∇
−2(∇ ·F)t +D.F. (5.64)

D. F. is the divergence-free part and is found by taking the curl of 5.29:

∂

∂ t
(
vt

2,∞

a
) = Ft

2 +Ft
3 (5.65)

Note that ∇×F1 = 0. The superscript t indicates the transverse component. Clearly,

vt
2,∞

a
= (Ft

2 +Ft
3)t (5.66)

Which gives the following solution for the second-order velocity modes:

v2,∞

a
= ∇∇

−2(∇ ·F)t +(Ft
2 +Ft

3)t (5.67)
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Case Where ε = 100

For ε = 100, we follow the same procedure as ε → ∞. We begin by taking the time derivative of

the second-order density solution, and plugging it into 5.37.

δ̇2,100 = 1.02(0.98E −∇ ·F)t0.96 (5.68)

v2,100

a
= ∇∇

−2[Et0.96 −1.02(0.98E −∇ ·F)t0.96] (5.69)

= ∇∇
−2t0.96(0.0004E +1.02∇ ·F)+D.F. (5.70)

where D. F. is once again the divergence-free part, found by taking the curl of 5.41.

∂

∂ t
(
vt

2,100

a
)+

vt
2,100

a
1

50t
= (Ft

2 +Ft
3)t

−0.04 (5.71)

As before, ∇×F1 = 0 and the superscript t indicates the transverse component. It is straightforward

to conclude the divergence-free part is

vt
2,100

a
= 1.02(Ft

2 +Ft
3)t

0.96 (5.72)

plugging this in for D.F. in 5.70 gives the full second-order solution.
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v2,100

a
= ∇∇

−2t0.96(0.0004E +1.02∇ ·F)+1.02(Ft
2 +Ft

3)t
0.96 (5.73)

Case Where ε = 10

We once again follow the same general procedure. We start by taking the time derivative of 5.62

and plugging it into 5.51. H(x), I(x), and J(x) are given in 5.59, 5.60, and 5.61.

δ̇2,10 = 1.636t0.636H(x)+1.618t0.618I(x)+1.6t0.6J(x) (5.74)

v2,10

a
=∇∇

−2[(−0.008998E1+0.809∇·F1)t0.636+(−0.01125E2+1.01125∇·F2)t0.618+1.2648t0.6
∇·F3]+D.F.

(5.75)

where D. F. is once again the divergence-free part, which we solve for by taking the curl of 5.54.

∂

∂ t
(
vt

2,10

a
)+

1
5t

vt
2,10

a
= 0.818t−0.382Ft

2 + t−0.4Ft
3 (5.76)

∇×F1 is still 0, and the superscript t indicates the transverse component. It is straightforward to

conclude the divergence-free part is

vt
2,10

a
= Ft

2t0.618 +1.25Ft
3t0.6 (5.77)

Plugging this back into 5.75 gives our final solution:
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Figure 5.4: Time evolution of second-order velocity perturbations for the slowly contracting uni-
verse proposed by [1].

v2,10

a
= ∇∇

−2[(−0.008998E1 +0.809∇ ·F1)t0.636 +(−0.01125E2 +1.01125∇ ·F2)t0.618

+ 1.2648t0.6∇ ·F3]+Ft
2t0.618 +1.25Ft

3t0.6 (5.78)
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CHAPTER 6: TWO-POINT CORRELATION FUNCTIONS

The two-point correlation function gives the probability that two galaxies will be within a fixed

distance of each other. It thus gives the evolution of clustering, which is observable. However, this

evolution varies for different regimes: linear, quasilinear, and nonlinear. These different evolutions

are given in equations 16.72 of [11]. Linear is given by

ξ (t) ∝ [δ (t)]2 (6.1)

Quasilinear is described by

ξ (t) ∝ [δ (t)](6−2γ)(1+α)/3 (6.2)

And nonlinear is

ξ (t) ∝ [a(t)]3−γ . (6.3)

Of course, δ gives the growth law for density perturbations. γ is accepted to be about 1.7, and α is

taken to be approximately 4.

The linear regime corresponds to the largest scales, so that is the equation we wish to use. By

plugging in our results for the density perturbations, we can predict how the values of the cor-

relation function will evolve with time. This is an observable, and in the future, could be used

to discriminate between these various models of early universe cosmology. Squaring the results
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from the perturbative analysis section is trivial, but through the passage of enough time, could be

a useful way to distinguish between different models of the early universe.
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CHAPTER 7: CONCLUSIONS

Qualitatively, our results are unsurprising. However, the precise quantitative results may prove

useful. At an unknown time, they could be used to discriminate between cosmological models of

the early universe, which also determine the ultimate fate of the universe.

Next steps include accounting for statistical properties. A, B, and C from the Perturbative Analysis

section are Gaussian random variables, but were treated as unity for the purpose of generating

plots. Once statistical properties are accounted for, we could estimate timescales on which the

two-point correlation functions will differ significantly enough from the ΛCDM model, providing

a more comprehensive result.
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