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ABSTRACT 

Vitamin D, folate, and cobalamin (vitamin B12) are crucial micronutrients in human physiology 

that are necessary for healthy calcium, phosphorus, and single-carbon metabolism. Recent 

studies have indicated that these vitamins also affect the inflammatory response in ways 

unrelated to their well-characterized deficiencies. Accordingly, analysis of their effect on chronic 

inflammatory diseases like Crohn’s disease (CD) is warranted. This investigation examines the 

effects of vitamin deficiency on macrophages and intestinal epithelial cells upon exposure to 

Mycobacterium avium paratuberculosis (MAP,) a pathogen capable of triggering CD, to model 

the inflammatory response in clinical CD patients. ELISA analysis of CD patient plasma 

established that MAP-positive patients have lower folate, vitamin B12, and active vitamin D 

(calcitriol) than MAP-negative patients. Next, we investigated the effects of folate and vitamin 

B12 deprivation on macrophages to assess inflammatory cytokine expression, oxidative stress, 

and macrophage apoptosis.  We determined that folate and B12 deprivation exacerbates 

inflammation while preventing infected macrophages from successfully undergoing apoptosis, 

whereas supplementation reversed  these effects. Then, we examined the role of vitamin D in 

regulating cathelicidin expression during MAP infection. MAP infection blocked the conversion 

of inactive vitamin D (calcifediol) to calcitriol, thereby interrupting the expression of the 

antimicrobial peptide cathelicidin. Calcitriol treatment restored cathelicidin production, reduced 

inflammation and bacterial viability, and reduced oxidative stress in co-cultured macrophages, 

Furthermore, cathelicidin knockdown abolished calcitriol’s beneficent effects. These studies 

detail the importance of vitamin availability for healthy immune functionality. The attenuation of 

inflammation during MAP infection further indicates that CD patients, who are at elevated risk 



iv 
 

of vitamin deficiency, may benefit from supplementation or clinical screening for low vitamin 

levels.  
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CHAPTER 1: BACKGROUND 

Note: This chapter has been published in part. The citation link is as follows: Vaccaro, J.A.; 

Naser, S.A. The Role of Methyl Donors of the Methionine Cycle in Gastrointestinal Infection 

and Inflammation. Healthcare 2022, 10, 61. https://doi.org/10.3390/healthcare10010061 

Crohn’s Disease and Mycobacterium avium subsp. paratuberculosis 

Crohn’s disease (CD) is a form of inflammatory bowel disease (IBD) characterized by 

asymmetrical, segmental, transmural inflammation in the gastrointestinal tract [1]. Most CD 

affects the terminal ileum and colon, but inflammation has also been recorded in other segments 

ranging from the mouth to the anus [1,2]. Common symptoms include abdominal pain, diarrhea, 

weight loss, and fever [1]. CD is most prevalent in North America and Europe, but countries in 

the process of industrialization are experiencing rises in CD incidence yearly [3]. CD flareups 

are associated with gut dysbiosis and reduction of anti-inflammatory microbial pathways in gut 

flora [4,5]. While CD is multifactorial and involves genetic, environmental, and microbial 

involvement, some bacteria are capable of triggering CD inflammation in susceptible patients 

[1,6]. Among these bacteria is Mycobacterium avium paratuberculosis (MAP,) a slow-growing, 

obligate intracellular pathogen and relative of Mycobacterium tuberculosis (Mtb) [6]. In 

ruminants, MAP causes Johne’s disease, a chronic wasting disease transmitted through infected 

milk [7]. Assessing the mechanisms by which MAP induces CD, why some patients do not 

develop CD upon MAP exposure, and how MAP-induced CD differs from MAP-free CD is an 

ongoing research priority. 

https://doi.org/10.3390/healthcare10010061
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Prolonged or mismanaged CD flareups can result in complications that require surgical 

correction; these include strictures, fistulas, and abscesses [2]. During a stricture, fibrosis of the 

intestinal lining constricts the flow of fecal matter through the intestine, which leads to 

ballooning and pressure in the preceding intestinal segment [8]. Fistulas, by contrast, cause tissue 

remodeling in the gut that leads to the intestinal lining budding out from the intestine, sometimes 

causing an abscess [9]. Surgical resection of intestines afflicted with these complications is 

effective; however, patients who require surgery once frequently develop further complications 

necessitating additional surgeries [10]. Furthermore, CD patients are at elevated risk of 

gastrointestinal malignancies, anemia, and vitamin deficiency, particularly vitamin D, folate, and 

vitamin B12 deficiency [1,11-13]. Proactive management is, therefore, key to inducing and 

maintaining CD remission [2]. 

Current first-line treatment for moderate to severe CD utilizes biologic drugs, typically 

anti-TNF-α monoclonal antibodies to alleviate pro-inflammatory cytokine-mediated 

inflammation; however, this approach has serious shortcomings [14]. Approximately 50% of 

patients fail to respond to anti-TNF-α treatment, with more eventually losing responsiveness; 

furthermore, prolonged blockage of TNF-α function sensitizes patients to granulomatous 

diseases like tuberculosis [14,15]. Therefore, new treatment paradigms are necessary for CD 

maintenance. One possible therapeutic approach for CD treatment is nutritional support to 

compensate for malnutrition caused by malabsorption; small studies have shown that enteral 

nutrition can help maintain remission induced by anti-inflammatory pharmaceuticals [16].  The 

following review will discuss links between vitamins commonly deficient in CD patients and 

inflammation.  
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Vitamin D and Inflammation 

In contrast to most vitamins, vitamin D does not mediate physiological effects through 

cofactor activity [17]. Rather, vitamin D is an endogenously synthesized steroidal hormone with 

several provitamin forms [17]. 7-dehydrocholesterol is converted upon exposure to ultraviolet 

radiation to cholecalciferol (D3), the most common dietary form of vitamin D, which is 

subsequently hydroxylated at the 25’ position to yield calcifediol [18]. Calcifediol remains in the 

bloodstream as the primary circulating form of vitamin D until it is hydroxylated at the 1’ 

position by CYP27B1 to yield calcitriol, the active form of vitamin D [19]. Calcitriol binds to the 

vitamin D receptor (VDR,) which heterodimerizes with the retinoid X receptor (RXR) and 

translocates to the nucleus to function as a transcription factor [18]. While vitamin D-mediated 

transcription is best known for its central role in bone mineralization and calcium and 

phosphorus homeostasis, recent research has established a role for calcitriol signaling in the 

innate immune system and inflammation [20,21]. In macrophages, calcitriol is a necessary signal 

for Toll-like receptor (TLR)-mediated upregulation of cathelicidin production, thereby 

connecting nutrient intake with the anti-microbial immune response [22,23]. As CD patients are 

at elevated risk of vitamin D deficiency, patient macrophages may have impaired bacterial 

clearance capacity during periods of vitamin D deprivation, resulting in exacerbating disease 

pathology [24].  Vitamin D supplementation as a component of CD therapy, however, is a 

complex approach that requires further investigation [25].  
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Methyl Donors and Inflammation 

The methionine cycle plays a crucial role not merely in the regulation of the essential 

methionine but also in the generation of S-adenosyl methionine (SAM), a ubiquitous cofactor 

necessary for methyltransferase reactions. Folate (vitamin B9) and cobalamin (vitamin B12) are 

cofactors necessary for successful methionine regeneration from homocysteine, a vascular risk 

factor, and for maintaining an abundant level of intracellular SAM. Deficiency in SAM or its 

precursors leads to dysregulation of crucial methylation and cellular dysfunction. In this review, 

we discuss the metabolic pathways responsible for generating methionine and SAM, and the 

consequences of SAM deficiency in gastrointestinal tissue. We also discuss the effects of folate 

and B12 deficiency in correlation with SAM depletion in clinical studies, animal models, and cell 

culture systems. The observations collated in the following section highlight the complex role of 

methionine and SAM in human physiology and disease. 

Folate, B12, and the Methionine Cycle 

Folate and B12 

Folate, also known as vitamin B9, is a crucial vitamin in humans isolated from spinach in 

1941. The name folate was derived from the Latin word for leaf, folium [26]. Folate 

supplementation soon showed similar effects as yeast and liver extracts in the prevention of 

megalocytic anemia [27]. Leafy vegetables and citrus fruits are high in natural folates, and the 

synthetic form of folate, folic acid, has been mandated as a grain supplement by the US Food and 

Drug Administration since 1998 [26,28,29]. Probiotic intestinal bacteria also have been known to 

synthesize folate and secrete it into the environment [30]. In mouse models, this phenomenon has 
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been shown to alleviate colitis [31]. Deficiency of folate leads to impaired red blood cell 

generation, resulting in macrocytic anemia; during pregnancy, increased folate consumption is 

required to avoid neural tube defects in the fetus [32,33]. Polymorphisms in genes related to 

folate metabolism such as MTHFR and MTHFD (encoding methylenetetrahydrofolate reductase 

and dehydrogenase, respectively) have been correlated with complications and spontaneous 

abortion during pregnancy, though sometimes only when there are compound mutations [34,35]. 

For some patients, a varied diet is insufficient to avoid folate deficiency: chronic malabsorption 

or improper folate storage can be caused by alcoholism, inflammatory bowel disease, celiac 

disease, and tropical sprue [36-40]. Folate comprises a pteridine ring, para-aminobenzoic acid, 

and at least one glutamic acid (Glu) residue. Glu residue count is highly variable, and the 

synthetic vitamin folic acid contains only one [41,42]. In the case of polyglutamic folates, the 

additional Glu residues are removed by the intestinal mucosa prior to release into circulation 

[43].  

Both natural folates and synthetic folic acid undergo similar metabolic processing before 

their function as a coenzyme is realized: they are first absorbed by the upper small intestine by a 

carrier protein in the epithelium [44]. Absorbed folates are converted to dihydrofolate (DHF) and 

tetrahydrofolate (THF) by the enzyme dihydrofolate reductase (DHFR) [45]. Upon conversion to 

THF, folate can participate as a cofactor in single-carbon metabolism. THF serves as a transient 

carrier of methyl groups via a two-enzyme process. Serine hydroxymethyltrasferase (SHMT) 

catalyzes the conversion of THF and serine to glycine and 5,10-methylenetetrehydrofolate, using 

vitamin B6 as a cofactor [46]. Methylenetetrahydrofolate reductase (MTHFR) then converts the 

latter product into L-5-methyltetrahydrofolate [47]. However, this is not the only method of 
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processing folate: 5,10-methylenetetrahydrofolate can be used by thymidylate synthase (TS) to 

convert deoxyuridine monophosphate (dU) to deoxythymidine monophosphate (dT), yielding 

DHF in the process as reviewed by Wilson and Mertes [48]. In addition to this metabolic 

product, formyltetrahydrofolate synthetase (FTHFS) fuses a free formic acid with THF to 

generate 10-formyltetrahydrofolate, an essential precursor in purine biosynthesis [49,50]. 

Alternatively, 5,10-methylenetetrahydrofolate can be processed via methylenetetrahydrofolate 

dehydrogenase (MTHFD) to generate the same metabolite [51]. For this review, the term ‘folate’ 

will refer to folates before their metabolism into a coenzyme (as they exist both naturally and 

synthetically in the diet) and their coenzyme forms. A schematic representation of folate 

metabolism is shown in Figure 1. 

Vitamin B12 consists of a corrin ring with a central cobalt molecule: attached to the cobalt 

atom from above is a variable ligand distinguishing bioactive and dietary forms of the vitamin, 

while below is a ribose-3-phosphate-dimethylbenzimidazole ligand [52-54]. Some species in the 

human intestinal microbiota have been found to synthesize B12, though it is not believed that gut 

bacteria serve as a significant source of B12 in humans [55]. Like folate, it requires biochemical 

modification before it can participate in metabolism. Human biochemistry makes use of 

adenosylcobalamin and methylcobalamin, which are generated from dietary hydroxocobalamin 

and cyanocobalamin. Unlike folate, only two reactions in normal metabolism require vitamin B12 

as a cofactor: the conversion of methylmalonyl-CoA to succinyl-CoA in the mitochondrion and 

the conversion of homocysteine to methionine in the cytoplasm. A more thorough review has 

been conducted by Allen and colleagues [56]. Despite this limited biochemical utility, B12 is 

essential, and deficiency results in pernicious anemia due to impaired red blood cell development 
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[57]. This effect is sometimes masked by folate’s beneficial effect on erythropoiesis and can lead 

to misdiagnosis—a dangerous situation, as prolonged B12 deficiency also has deleterious effects 

on myelination and nervous system development [58-60]. Infants are particularly susceptible to 

neurological degeneration from B12 deficiency, and failure to restore normal levels can result in 

severe damage [61-63].  

The metabolism of cobalamin, known as vitamin B12, is thoroughly intertwined with 

folate. B12 intestinal uptake is mediated by intrinsic factor (IF), a protein secreted by parietal 

cells in the stomach [64]. The IF- B12 complex is then taken up by the cubam receptor in the 

terminal ileum and transported through circulation via haptocorrin or transcobalamin protein 

carriers [65,66]. The metabolism of cobalamin, known as vitamin B12, is thoroughly intertwined 

with folate. Intrinsic factor (IF), a protein secreted by parietal cells in the stomach, mediates B12 

intestinal uptake [64]. The IF- B12 complex is then taken up by the cubam receptor in the 

terminal ileum, released into serum by MRP1, and transported through circulation via 

haptocorrin or transcobalamin protein carriers [65-67]. Most cobalamin in serum is bound to 

haptocorrin; however, most cells cannot absorb the haptocorrin- B12 complex [68]. Instead, the 

ubiquitously expressed transcobalamin receptor (TCblR) mediates uptake of the transcobalamin- 

B12 complex into the cell via endocytosis [69,70]. Upon lysosomal degradation, the receptor is 

destroyed, and B12 is released: the proteins ABCD4 and LMBD1 are necessary for translocation 

across the lysosomal membrane [71,72]. MMACHC, also called CblC, receives the translocated 

B12 and catalyzes the removal of alkyl or cyanide ligands [73,74]. It coordinates with 

MMADHC, alternatively named CblD, an enzyme that facilitates cob(II)alamin oxidation to 

aquocobalamin [75]. The CblC/CblD complex interacts with methionine synthase (MS) and 
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methionine synthase reductase (MSR) to ensure efficient cofactor delivery to its associated 

enzyme [76]. In addition, the enzyme methylmalonyl-CoA mutase in mitochondria requires 

adenosylcobalamin to function; however, the mechanism by which mitochondria take up 

cytosolic B12 remains unclear. One study in C. elegans suggests that an ABCG family protein 

may mediate membrane transport, but no mitochondrial membrane proteins have been identified 

in humans so far [77]. 

Any malfunction in this multi-factorial and complex process could lead to interruption in 

B12 uptake, causing deficiencies and ultimately an increased risk of developing disease. For 

example, autoantibodies against parietal cells or IF mutation may result in reduced IF secretion, 

which leads to B12 malabsorption and deficiency [78,79]. Similarly, damage to the ileum due to 

surgery or chronic inflammation, as seen in Crohn’s disease, causes impairment in B12 uptake 

and increases the risk of developing additional symptoms and complications [11,80]. Metformin 

use in type 2 diabetes mellitus has also been correlated with decreased serum B12; however, the 

mechanism underlying this phenomenon is unclear [81,82]. Impaired intracellular B12 

metabolism may likewise lead to metabolic dysfunction [83]. Accumulation of unabsorbed B12 

causes bacterial overgrowth and inflammation [84]. Vegetarians, mainly vegans, are also 

susceptible to vitamin B12 deficiency due to a different cause: vitamin B12 is primarily found in 

animal products and is poorly represented in plants [85-87]. As such, nutritional supplements are 

sometimes indicated in this patient group; a more comprehensive review of B12 deficiencies in 

differing vegetarian diets has been performed by Pawlak and colleagues [88].  

Folate and B12 belong to a class of vitamins known as methyl donors, a descriptor they 

share with choline and betaine, as summarized by Zeisel [89]. Methyl donors are so named 
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because of their importance in single carbon metabolism, by which methyl groups are transferred 

from sources such as serine, glycine, and choline to a variety of other compounds, including 

proteins, RNA, DNA, and intermediate metabolites. The targets for methylation been extensively 

reviewed elsewhere [90,91]. This process is accomplished via the folate and methionine cycles. 

L-5-methyltetrahydrofolate donates the methyl group attached to its 5’ carbon to B12 and 

subsequently homocysteine, converting it into methionine in a reaction catalyzed by methionine 

synthase (MS). This reaction yields tetrahydrofolate, which can participate in formyl and methyl 

group metabolism as described previously. Folate and B12 insufficiency leads to impeded 

methionine regeneration [92]. Methionine synthase’s continued function depends on the 

availability of methionine synthase reductase, an associated protein that reduces the 

nonfunctional Cb(II) ion of B12 to Cb (I), ensuring continuous cofactor function [93]. The 

importance of folate in fetal neural tube development has already been mentioned, but general 

methyl donor depletion in early life has been found to alter both long-term neurological changes 

in mice and intestinal development in rats [94-96]. When these findings are combined with 

research on the necessity of methyl donors for developing B cells, a picture of cell growth and 

differentiation emerges, highly dependent on methyl donor availability and methionine 

metabolism [97]. 

S-Adenosyl Methionine 

S-adenosyl methionine is a modified form of the essential amino acid methionine, where 

an adenosyl group is covalently connected to the sulfur to generate a sulfonium ion. It serves as a 

universal methyl donor for a class of enzymes known as methyltransferases (MTases,) which 
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catalyze the transfer of methyl groups to biomolecules like DNA, RNA, protein, and other 

metabolites requiring, as reviewed previously [90,91]. SAM is synthesized from methionine and 

ATP via the enzyme methionine adenosyltransferase (MAT), also called S-adenosyl methionine 

synthase [98]. SAM is a crucial precursor to the anti-inflammatory polyamines spermidine and 

spermine [99]. Removal of the methyl group by MTases converts SAM to S-adenosyl 

homocysteine (SAH), subsequently degraded into adenosine and homocysteine by SAH 

hydrolase. This reaction can be inhibited by adenosine dialdehyde and similar compounds, small-

molecule SAH analogs. These compounds have been used as indirect methyltransferase 

inhibitors by halting the cycle at this point, consequently impeding methionine regeneration and 

causing SAH buildup, as SAH is a methyltransferase inhibitor [100].  

Following hydrolysis, homocysteine remains in the body as an intermediate metabolite 

and nonessential amino acid with several potential fates. It can be converted to homocysteine 

thiolactone with Met-tRNA synthetase and joined to proteins via oxidation with thiol groups 

[101]. Homocysteine can also be processed by cystathionine-β synthase to yield cystathionine, 

which is subsequently converted to cysteine via cystathionine-γ lyase using vitamin B6 as a 

cofactor. The process is referred to as the trans-sulfuration pathway, and it is crucial to the 

successful removal of SAH, a potent MTase inhibitor [102]. Alternatively, it can be remethylated 

to methionine via one of two pathways. Previously we mentioned vitamin B12’s cofactor activity 

in coordinating the removal of a methyl group from 5-methyltetrahydrofolate in converting 

homocysteine to methionine. In addition to this mechanism, betaine homocysteine 

methyltransferase (BHMT) can regenerate methionine from homocysteine by removing a methyl 

group from betaine, a derivative of the methyl donor and neurotransmitter choline [103]. This 
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process has been summarized in Figure 2. Interestingly, the enzymes in the pathway are also 

used for the metabolism of selenocysteine and selenomethionine, which are structurally similar 

to their sulfur-containing counterparts but far less common in the body [104,105]. 

Defects in methionine and SAM metabolism, either genetic or resulting from low levels 

of folate or B12, result in the buildup of one or more metabolites, associated with deleterious 

effects in the body. Of these, hyperhomocysteinemia, defined as excessively high serum 

homocysteine levels, has been associated with both global and tissue-specific inflammation, as 

well as deleterious effects on the vasculature and bone [106-111]. At another stage of the 

methionine cycle, hypermethionemia, or excessive levels of methionine, is also observed to alter 

cell proliferation: when artificially induced in culture, activated T cells divide more rapidly 

[112]. SAM can also serve as a precursor to purine nucleotides; as such, it can be administered as 

part of a combination therapy to patients with congenital abnormalities in purine biosynthesis to 

alleviate disease progression and symptoms [113].  

Folate, B12, and SAM: Links to Tissue-Specific Inflammation 

The Gastrointestinal Tract 

Folate deficiency in IBS patients is neither surprising nor unprecedented. Studies as early 

as 1968 describe low serum folate in groups of Crohn’s patients, and a recent study found folate-

associated metabolic pathways perturbed in CD and ulcerative colitis (UC) [114,115]. As such, 

folate metabolism has not gone unnoticed as a therapeutic target. In a pediatric IBD cohort dosed 

for one month with folate supplements, researchers found changes in micronuclei, nucleoplasmic 

bridge formation, and apoptosis in enterocytes and peripheral blood lymphocytes. These results 
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were segregated by IBD typing: CD patients showed decreased signs of chromosomal damage 

with folate supplementation, while UC patients showed increased signs of it [116]. Folic acid 

supplementation reduced the incidence of side effects of methotrexate, an immunosuppressive 

drug and folate analog used to treat CD and rheumatoid arthritis [117,118]. A review of meta-

analyses regarding environmental risk factors identified high folate levels as protective against 

the development of IBD—this suggests that the action of folate in the gut is not necessarily a 

reaction against the symptoms of IBD but may have a prophylactic effect [119]. Genetic factors 

controlling folate metabolism have been correlated with increased risk of IBD: the substitution of 

A2756 to G MTR, the gene encoding methionine synthase, is particularly notable for 

corresponding with IBD in a 2009 meta-analysis [120]. Examination of a mechanistic basis for 

this phenomenon is still not clearly understood. 

Folate bioavailability has shown distinct effects on host-microflora interactions. Folate 

biosynthetic pathways are downregulated in intestinal bacteria during a CD relapse, an 

observation which pairs with the finding that folate-producing probiotic bacteria alleviate the 

inflammatory effects of chemically induced colitis in mice [31,121]. These phenomena are 

observed in other animal models as well: methyl donor-enriched diets in a mouse model of CD 

alter the expression of genes involved with colonization by adherent-invasive E. coli: the surface 

marker used by the pathogen to adhere to the epithelial lining was downregulated, as was 

calprotectin, an inflammatory marker, and IgA secretion. By contrast, antibacterial genes such as 

Lyz1 and Lyz2 were upregulated [122]. This study builds upon earlier findings in guinea pigs 

indicating that folate-deficient diets in early life sensitize animals to Shigella infection [123]. The 

connection between folate, B12, and the gut microbiome has been shown to work in both 
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directions: H. pylori infection decreases gut uptake of folate and B12, leading to deficiency and 

pathogenic hyperhomocysteinemia [124].  

These observations are not limited to folate: metabolic studies have shown perturbations 

in methionine metabolism and branched-chain amino acid oxidation in IBD, both pathways in 

which B12 is a crucial cofactor [115]. Furthermore, mutations in transcobalamin II, a protein 

responsible for B12 transport in serum, are associated with UC [125]. In a Swiss cohort of IBD 

that included CD, UC, and indeterminate colitis, B12 deficiency was associated with higher CD 

activity, stenosis, nephrolithiasis, and other complications [126]. Mouse models of colitis offer a 

complex picture: B12 deficiency leads to increased microbial dysbiosis in the gut flora and 

decreased enteric tissue damage. This effect may be caused by depletion of B12-dependent CD8+ 

T cells and NK cells in the gut, resulting in a minimized short-term inflammatory response to 

dysbiosis [127,128]. These results, however, have not been replicated in humans. Notably, B12 

ligands were shown to have drastically different effects on inflammation in chemically induced 

murine colitis: cyanocobalamin appeared to worsen pathogenesis and inflammation, while 

methylcobalamin ameliorated them [129]. Conversely, methyl donor depletion in rats was shown 

to aggravate chemically induced colitis and lead to ER stress; it is uncertain precisely which 

compound’s absence was responsible for the effects observed [130].  

Several studies have noted that perturbations in SAM availability and homocysteine 

recycling correlate or cause worsening IBD symptoms or complications. Independent of methyl 

donor levels, hyperhomocysteinemia has been correlated with osteoporosis in CD patients in 

both univariate and multivariate analyses. By contrast, folate deficiency was only correlated in 

univariate analysis [131]. In one study, vitamin B12 and SAM restriction independently led to 
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endoplasmic reticulum stress mediated by SIRT1 reduction, which exacerbated colitis in rats 

[130]. In this species, induced colitis in conjunction with methyl donor deficiency correlates with 

hepatic inflammation and macrovesicular steatosis, where decreases in folate, B12, and the 

SAM/SAH ratio are closely correlated with inflammatory markers [132]. A murine model of 

colitis included SAM in a study of antioxidants as colitis treatment; SAM reduced serum 

amyloid A and TNF-α, improved reduced glutathione in circulation, and restored colonic length 

[133]. Unfortunately, there is a dearth of information assessing SAM’s effect on clinical IBD 

patients. While one study has noted an inverse relationship between SAM levels and IBD 

diagnosis or activity, clinical data is necessary to determine whether SAM supplementation 

ameliorates symptomatic disease and reduces complications [134]. Should clinical data confirm 

the prior findings, then mechanistic studies determining SAM’s effect will be warranted. 

It is important not to overstate the significance of these findings; data is still mixed on the 

clinical effects of methyl donor deficiency, particularly in the long term. In the same Swiss study 

which found associations between B12 deficiency and CD complications, folate-normal patients 

had an increased occurrence of osteoporosis and fistula formation. Differences in treatment may 

explain this trend: patients treated with steroids, anti-TNF agents, or antibiotics had lower rates 

of folate deficiency but may have had more severe symptoms that necessitated such interventions 

[126]. A recent meta-analysis found no statistical decrease of serum folate levels in CD patients 

compared with healthy controls, though there was statistical significance in with IBD overall. 

The same analysis found that B12 concentrations were only significantly reduced in studies on 

Asian populations [38]. This finding is particularly noteworthy given a contradictory study 

which found folate and B12 deficiency specifically prevalent in CD patients compared with UC 
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controls (22.2% and 15.6% prevalence compared with 4.3% and 2.8% prevalence, respectively) 

though indeterminate IBD was not studied [12]. Not all studies have correlated low serum folate 

or B12 with elevated homocysteine levels in CD, questioning the link between these nutrients and 

metabolic imbalance in IBD [135-137]. 

The above findings are indicative of a pathogenic role for folate and B12 deficiency in 

IBD. The precise interaction between these nutrients and IBD appears to segregate by IBD 

subtype, with some conditions worsening in UC but not CD or vice versa. Overall, worsening 

inflammation appears to be correlated with low folate and B12; however, future studies are 

warned to be wary of the applicability of animal models to human conditions. Furthermore, 

researchers investigating a mechanistic link between folate, B12, homocysteine, and SAM are 

strongly recommended to confirm the link between low methyl donors, high homocysteine, and 

low SAM in their patient sets. 

Systemic Inflammation 

 Methyl donor availability, particularly folate and B12, alters various body-wide 

inflammatory conditions in chronic and acute disease models. In some models, a mechanism has 

been established; in others, only the characterization of the effect in specific tissues has been 

confirmed. Besides its metabolic role as a cofactor, vitamin B12 protects against septic shock by 

scavenging nitrous oxide reactive oxygen species, which modulates both their inflammatory 

signaling effect and the damage incurred by the cell producing them. This antioxidative role is 

substantiated by the observation that supraphysiological doses of B12 have differential effects on 

NOS expression based on the organ in question in a model of toxic shock [138]. Furthermore, in 
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a study analyzing the effects of vegetarian and omnivorous diets on B12 level and inflammatory 

status in diabetic patients, Lee et al. found that higher B12 levels in both dietary groupings were 

associated with lower IL-6 levels and increased catalase activity. However, the vegetarian group 

was more prone to deficiency [139].  

Folate and B12 exert a significant effect on systemic inflammation via their canonical 

control of plasma homocysteine levels. Elevated homocysteine levels in serum have been found 

to mediate vascular inflammation by inducing cathepsin V expression and consequently the 

nuclear translocation of ERK1/2 [107]. This effect may be partially mediated by oxidative stress; 

treatment with selenium reverses the deleterious effects of homocysteine on endothelial cells and 

neuronal cells [140,141]. Sodium selenite has also been shown to reduce pathogenic clotting 

[142]. In addition, homocysteine stimulation results in NLRP3 inflammasome activation and 

resulting cellular stress via TXNIP—this mechanism contributes to homocysteine’s role as a risk 

factor in renal failure [143]. The failure to maintain low homocysteine results in increased 

oxidative stress, particularly in patients with chronic infection, sometimes with dangerous long-

term effects; for example, sustained hyperhomocysteinemia can lead to pregnancy complications 

in hepatitis E patients [110]. 

Altogether, there is evidence that maintaining appropriate folate and B12 levels modulates 

systemic inflammation via an antioxidant effect and reduction of homocysteine, which is a risk 

factor in vascular disease. 
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Immune Cells 

A substantial body of evidence discussing the role of methyl donors in inflammation 

continues to be gathered. Folate deficiency in RAW264.7 macrophages correlates with increased 

pro-inflammatory cytokine secretion in vitro [144]. Correlating with this observation is the 

finding that folate supplementation in cultured macrophages mitigates inflammation upon 

stimulation with LPS [145]. Notably, B12 deficiency has been shown to reduce phagocytosis and 

bactericidal activity in neutrophils collected from human peripheral blood, suggesting a role for 

B12 in leukocyte function [146]. Homocysteine has also been shown to augment inflammatory 

cytokine expression in vivo by affecting histone methylation in macrophages [147]. Aberrant B 

cell development has been observed in murine models of methyl donor depletion, with fewer B 

cells emerging from the pre-pro stage compared with controls [97]. 

Prior studies have noted relationships between SAM metabolism changes and differential 

function in various immune cell types, particularly T cells. CD8+ T cells have shown aberrant 

functionality in methionine-deficient cancer microenvironments, primarily manifesting as 

reduced cytokine production and increased apoptosis [148]. In CD4+ T cells, methionine 

adenosyltransferase is found to be inhibited by ethanol, sensitizing them to apoptosis and 

potentially explaining one factor of alcohol’s immunosuppressive properties. Survival after 

methionine adenosyltransferase inhibition is rescued by SAM supplementation [149]. This 

finding is of particular interest to patients with congenital hypermethionemia, typically due to 

mutations in methionine adenosyltransferase [150]. However, there are caveats with these 

observations, as other investigations have found that excessive methionine and methionine 

sulfoxide dosing has been correlated with M1 macrophage polarization and increased production 
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of pro-inflammatory cytokines such as IL-6 and TNF-α [151,152]. This suggests that the effects 

of methionine and methionine sulfoxide excess may be a confounding factor in the investigation 

of SAM deficiency and hyperhomocysteinemia. On this point, mechanistic studies like those 

undertaken with hyperhomocysteinemia are warranted. Exploring in vivo effects based on 

observations in vitro requires substantial care; systemic inflammation can increase if T cell 

survival is biased towards pro-inflammatory subsets, and high methionine diets have been shown 

to predispose rats to Th17 cell polarization [112,153]. 

The findings cited above suggest an essential role for methyl donors and SAM in immune 

cell survival and function, modulating inflammation when there is an adequate amount of methyl 

donors. When this improves pathogen removal, the overall effect might be termed beneficial. 

However, in conditions involving an excessive immune response, increased survival of immune 

cells may lead to persistence of inflammation. Further study may clarify the utility of these 

ambiguous findings. 

The Nervous System 

While folate is well known for its importance in preventing neural tube defects in utero, 

its effects on the nervous system do not end after birth. For example, folic acid supplementation 

has been shown to mitigate inflammation in Alzheimer’s disease, decreasing serum TNF-α levels 

and slightly improving mental state in patients [154]. Folate’s importance to the nervous system 

is further implied by the association of MTHFR polymorphisms with a predisposition to 

migraine, which disappeared upon folate supplementation in a clinical trial by Di Rosa et al. 
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[155]. Echoing these findings are associations between MTHFR, MTR, MTHFD1, and oxidative 

stress in patients with some types of neurodegenerative disease [156]. 

B12 has been implicated in neuroprotection in various models of disease. Postmortem 

sampling of prefrontal human cortexes indicated that B12 status was decreased with age. The 

same study simultaneously found decreased methylcobalamin levels and methionine synthase 

activity in the brains of autistic patients [157]. A clinical trial of methylcobalamin 

supplementation showed moderate effects against diabetic neuropathy [158]. Neuroprotective 

effects of B12 were also found in rat models of both epilepsy and bacterial meningitis, where B12 

levels reduced oxidative stress, inflammatory cytokine expression, and hippocampal damage 

[159,160]. In mice with methionine-high and B6, folate, and B12-low diets, microhemorrhages 

and amyloid- plaque buildup was observed in neural tissue, corresponding with increased 

inflammatory cytokine expression, emphasizing the protective effect of methyl donors and the 

dangerous impact of homocysteine [161,162]. B complex supplementation was shown to have a 

beneficial effect on peripheral nerve repair: B vitamin injections reduced inflammatory cytokine 

expression, polarized macrophages towards an M2 phenotype, and induced an anti-inflammatory 

phenotype in Schwann cells following injury [163]. The fact that B12 is implicated in 

neuroprotection in both the central and peripheral aspects of the nervous system suggests that 

neural tissue has a particular dependence on vitamin B12 that is still being elucidated, with a 

specific interest in a putative role for injury prevention and repair. 

Independent of folate and B12, SAM supplementation has shown striking effects on 

neuroinflammation and pathogenesis. Conversely, high levels of homocysteine are a risk factor 

for neurological disease [106]. SAM was reduced in the cerebrospinal fluid of Alzheimer’s 
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disease (AD) patients, while homocysteine is notably elevated in AD patient plasma [108]. This 

reduction correlates with observations in 1995 of hypomethylation in the amyloid-β gene of an 

AD patient, in addition to observations of global methylation changes in the prefrontal cortexes 

of 12 AD patients compared with controls [164,165]. Notably, amyloid-β plaque buildup is 

reduced by SAM dosage in mouse models of AD [166]. Following ischemic stroke, a correlation 

between hyperhomocysteinemia and exaggerated STAT3 activation has been found in microglia; 

it also exacerbated long-term tissue damage [106,167]. At times, the distinction between methyl 

donor treatment and SAM treatment is not a well-defined one: vitamin B12 injection has shown 

efficacy at reducing hippocampal inflammation in a rat model of bacterial meningitis, and one of 

the mechanisms the authors identified as protective was increased availability of SAM, leading 

to increased methylation of CpG islands in the promotor of Ccl3 [159]. Interestingly, methionine 

restriction in helper T cells has been found to reduce neuroinflammation by preventing T-cell 

proliferation and differentiation into pro-inflammatory subsets in autoimmune diseases like 

multiple sclerosis [112]. This observation highlights the continuing need for further study on 

global SAM effects in disease models, not merely tissue or cell-specific studies. 

From these findings, we conclude there is strong evidence for a beneficial role for folate, 

B12, and SAM in modulating neuroinflammation. These findings have been corroborated by 

investigators examining various types of neuroinflammation; the beneficent effects are promising 

for clinicians who are interested in prophylactic treatments for at-risk patients. We encourage 

further mechanistic studies on this topic to elucidate why the nervous system, in particular, has 

shown responsiveness to this approach, and which compound or treatment is most consistently 

beneficial. 
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The Liver 

Liver disease has been correlated with decreased methyl donor availability in vivo and in 

vitro. The trend especially evident in chronic hepatitis C infection. Egyptian hepatitis C and liver 

cirrhosis patients have been found to possess low serum folate and elevated plasma 

homocysteine; furthermore, folate levels positively corresponded with platelet count, indicating 

low thrombocytopenia [168]. In chronic hepatitis C patients, SAM treatment improved response 

to pegylated interferon and ribavirin therapy by altering the methylation status of STAT1 in 

cultured cells. This modification led to an enhanced downstream signaling effect which 

enhanced the antiviral state of the treated cells [169]. Improved interferon and ribavirin therapy 

responses were also found with vitamin B12 supplementation, though the authors ascribe this 

finding to B12-mediated IRES inhibition independent of B12’s methyl donor activity [170]. The 

liver has been shown to have a particular sensitivity to methyl donor deficiency during induced 

colitis in one rat model, suggesting that these nutrients may have a protective role against 

hepatotoxic inflammation in other tissues [132]. 

Outside the strict paradigm of infection, SAM dosing has been found to reduce ethanol-

induced apoptosis in primary hepatocytes. Interestingly, the authors found no indication that it 

altered JNK activity in the proapoptotic signaling cascade and have postulated that an 

antioxidant effect is responsible for the phenomenon [171]. The importance of SAM in 

hepatocyte survival in response to inflammatory oxidative stress was highlighted in a murine 

model of hepatitis, where SAM depletion led to liver failure and death [172].  
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In total, the literature evidence suggests a beneficial role for SAM in the resolution of 

infection and the modulation of apoptosis in the liver. However, the findings are far from 

conclusive and only examine liver health from the paradigm of infection. 

Other Tissues 

Psoriasis, a chronic inflammatory condition primarily mediated by T cells, has been 

shown to correlate with hyperhomocysteinemia, and folic acid derivatives or topical B12 

treatment provided mild attenuation of inflammation in initial trials. Clinical trial patients found 

a B12 containing cream superior to a standard hydrating cream for alleviating symptoms [173-

175]. Atopic dermatitis patients also found improved relief of symptoms using B12 emollient 

cream compared to the unmodified control [176,177]. However, these effects are nutrient-

specific; we could not find studies demonstrating folate as an effective intervention alone, though 

some utility has been noted for folate supplementation in conjunction with methotrexate 

treatment for psoriasis [178]. By contrast, vitiligo, a skin condition characterized by loss of 

melanocytes and skin pigmentation, was reduced or halted in a Swedish clinical trial that 

administered folic acid and intramuscular B12 [179].  

Some studies have suggested a beneficial role for methyl donor supplementation in 

respiratory disease. Supplementation of cystic fibrosis patients with 5-methyltetrahydrofolate and 

vitamin B12 reduced red blood cell oxidative stress, even in patients who were folate and B12-

normal [180]. Beneficent effects of methyl donors on oxidative stress were echoed in a murine 

model of chronic asthma, where oxidative stress, tissue remodeling, and Th2 cytokine production 

were all ameliorated by SAM treatment [181]. Methyl donating nutrients have also been found to 



23 
 

have beneficial effects on the lungs. A Greek cohort of asthmatic girls was found to have an 

association between low serum folate and impeded lung function [182]. The observed 

antioxidative effects of betaine in the lungs in response to paraquat toxicity have been proposed 

to be mediated through liver-generated SAM [183]. Despite the beneficent effects previously 

described, SAM’s role in the airways remains complex: SAM abundance can be scavenged by 

opportunistic pathogens like Pneumocystis species, leading to pathogenesis [184].  

These results highlight the beneficial effects of methyl donors at epithelial tissues, which 

are consistently exposed to a broad category of microbes, some pathogenic. While more studies 

are indicated, the current results suggest a positive impact on immune regulation at these sites. It 

is too soon to conclude at this point that folate, B12, and SAM have an exclusively or even 

generally positive impact on these conditions, but there is more than enough justification to 

examine the effects in more detail. Figure 3 highlights the beneficent effects of SAM 

supplementation in humans. Figur 4 notes the summed effects of methyl donor depletion or 

supplementation in human and rodent models. 

Concluding Remarks 

When one examines the effect of methyl donors on distinct tissue types, a distinct 

breakdown in effect by nutrient can be observed. In the gastrointestinal tract, folate, B12, and 

SAM show marked anti-inflammatory effects on IBD, though SAM lacks support from clinical 

patients. Folate and B12 further exert beneficent effects on systemic inflammatory markers by 

reducing serum homocysteine, with an additional antioxidative effect in vitamin B12. There is 

strong evidence that these vitamins also reduce neuroinflammation and promote neural tissue 
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survival, though further mechanistic studies are warranted to determine how this effect is 

mediated. While present, direct evidence for SAM’s effect on systemic inflammation and 

neuroinflammation is comparatively lacking. Studies on immune cells also show anti-

inflammatory effects upon folate and B12 dosage, with SAM enhancing cell survival. However, 

the pro-inflammatory effects of methionine excess make it challenging to determine whether 

SAM’s antiapoptotic effect will translate to reduced inflammation in vivo. Vitamin B12 and SAM 

bioavailability have been shown to affect hepatic cell survival and infection response, though 

folate data is comparatively lacking in this tissue. In epithelial cells and airways, aberrant 

immune responses are ameliorated by folate and B12, with SAM indicated as a likely mediator of 

their effects.  

The findings collated in this review are striking not merely due to their variety, but the 

potency of their effects as well. Methionine metabolism and changes in S-adenosyl methionine 

levels are demonstrated to have wide-reaching and distinct effects on the same tissue type; 

similar phenomena are demonstrated for the methyl donating metabolites that control them. The 

complexity of the responses observed is a warning to those who might attempt therapies centered 

on methionine metabolism: when dealing with a metabolite crucial to many biological processes, 

it is necessary to tread carefully.  

Despite these challenges, the state of the literature indicates that in some circumstances, 

folate, B12, and S-adenosyl methionine are capable of pleiotropic and powerful effects on 

inflammation. Given their ubiquity in the body and the continuing problem of chronic 

inflammatory disease, any dietary factor capable of complementing or replacing an anti-

inflammatory pharmaceutical is especially advantageous. Naturally, the contradictory and 
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complex findings necessitate further investigations to ensure SAM and methyl donor-based 

interventions are protective and do not exacerbate infection or inflammation. Building upon this 

work in the future may enhance the capacity of physicians to engage the health of their patients 

in ways that correct nutritional imbalances, mitigate chronic conditions, and improve quality of 

life. 
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Figure 1: Outline of folate metabolism 
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Figure 2: The methionine cycle. 
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Figure 3: S-adenosyl methionine and inflammation. 
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Figure 4: Overview of the effects of folate and B12 supplementation or depletion in humans 
and rodent models. 
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CHAPTER 2: FOLATE AND VITAMIN B12 DEFICIENCY EXACERBATE 
INFLAMMATION DURING MYCOBACTERIUM AVIUM 

PARATUBERCULOSIS (MAP) INFECTION 

Note: this chapter has been published in part. The citation link is as follows: Vaccaro, 

J.A.; Qasem, A.; Naser, S.A. Folate and Vitamin B12 Deficiency Exacerbate Inflammation 

during Mycobacterium avium paratuberculosis (MAP) Infection. Nutrients 2023, 15, 261. 

https://doi.org/10.3390/nu15020261 

Introduction 

Folate (vitamin B9) and cobalamin (vitamin B12) are essential cofactors in eukaryotic 

single-carbon metabolism [1,2]. Folate is naturally found in citrus fruits and leafy green 

vegetables; it is also supplemented in particular grains and synthesized by intestinal commensal 

bacteria such as Bifidobacterium strains [3-5]. In contrast, vitamin B12 is primarily found in 

animal products [6,7]. These two cofactors serve distinct roles in normal cellular metabolism, 

since folate transfer of methyl groups is necessary for the biosynthesis of purines, 

formyltransferase reactions, and the conversion of uridine to thymidylate [8-10]. Similarly, 

vitamin B12 is a cofactor for converting methylmalonyl-CoA to succinyl-CoA, thus proving a 

necessity for odd-chain fatty acid and amino acid metabolism [2]. Furthermore, the central cobalt 

moiety in the vitamin B12 corrin ring scavenges cyanide ions and reactive oxygen species (ROS) 

[11-14]. Folate and vitamin B12 overlap in function during the regeneration of methionine from 

homocysteine in a reaction catalyzed by methionine synthase [15]. During this reaction, L-

methyltetrahydrofolate donates a methyl group to homocysteine using B12 as a cofactor [15]. The 

methionine generated this way can subsequently be incorporated into protein or adenosylated to 
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generate S-adenosyl methionine (SAM), which is the universal methyl donor and precursor to 

polyamine biosynthesis [16,17]. 

Several studies have shown that folate and B12 deficiencies are associated with 

exacerbated inflammation and damage in the brain, vasculature, immune system, liver, and 

gastrointestinal tract [18-27]. This phenomenon is partly due to their metabolic roles in 

regenerating methionine from homocysteine; homocysteine mediates inflammation via cathepsin 

V activation and TXNIP-induced NLRP3 inflammasome activation [28,29]. However, 

macrophages supplemented with folate in excess of standard cell culture concentrations display 

reduced pro-inflammatory gene expression [30]. These effects are also observed in vivo during 

macrophage-mediated neuroinflammation [31]. Therefore, folate and vitamin B12 may link 

hypovitaminosis and chronic inflammatory disease, particularly when the disease progression 

impedes vitamin uptake [21,32]. 

Crohn’s disease (CD) is a chronic inflammatory bowel disease characterized by a pattern 

of relapse and remission and asymmetrical, segmental, and transmural inflammation [33]. CD 

patients are at elevated risk of malabsorptive vitamin deficiency due to chronic damage to the 

gastrointestinal wall [21,32,34,35]. Recently, a murine model of CD has indicated that a diet 

enriched in folate and cobalamin enhances the antibacterial response to pathogenic E. coli 

infection [36]. However, the clinical effect of folate and vitamin B12 supplementation on 

pathogens associated with CD needs further investigation. 

Mycobacterium avium subspecies paratuberculosis (MAP) is an obligate intracellular 

pathogen that is known as a causative agent in Johne’s disease (JD), which is a chronic 

inflammatory disorder affecting the intestines of ruminants [37]. In genetically susceptible 
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patients, MAP infection induces CD, leading to chronic gastrointestinal inflammation that 

requires the use of immunosuppressive agents to manage disease symptoms [38-40]. Since 

standard CD therapy involves anti-TNF-α biologic drugs that fail to alleviate symptoms in 

roughly half of CD patients and exacerbate MAP infection in tissue culture, exploring alternative 

immunomodulatory interventions for this patient subset is an ongoing priority [41,42]. In this 

context, our present study analyzes the effects of folate and B12 supplementation or deprivation 

on MAP infection and the resultant inflammatory response. 

Materials and Methods 

 Measurement of Plasma Folate and Vitamin B12 

Plasma samples from peripheral blood (4.0 mL K2-EDTA tube) were collected from 100 

CD patients (CDAI ≥ 220 and ≤ 450). The presence of MAP was subsequently evaluated via 

IS900 PCR as described earlier [43]. We randomly selected 35 MAP-positive and 35 MAP-

negative CD patients for this study. Within the selected samples, we used the Human Folic Acid 

ELISA Kit (Competitive EIA) (LifeSpan BioSciences, Seattle, WA, USA), the 5-

Methyltetrahydrofolate ELISA Kit (LifeSpan BioSciences, Seattle, WA, USA), and the Human 

vitamin B12 (VB12) ELISA Kit (Aviva Systems Biology, San Diego, CA, USA) to determine 

levels of folate and vitamin B12, respectively. This study was approved by the University of 

Central Florida Institutional Review Board # STUDY00003468. All samples were de-identified 

before handling. 
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Culture and Infection of Monocyte-Derived Macrophages 

THP-1 immortalized monocyte-like cells (ATCC TIB-202) were cultured in custom 

formulated folate and B12-free RPMI-1640 medium (ThermoFisher, Waltham, MA, USA) with 

10% fetal bovine serum (FBS; Sigma Life Science, St. Louis, MO, USA). Pure folic acid and 1 

mg/mL vitamin B12 solution in methanol (Sigma Life Science, St. Louis, MO) were then added 

to the medium to generate media with differential B-vitamin status (Table 1). The cells were 

grown to confluency in treated cell culture flasks in a humidified 5% CO2 incubator at 37 °C. A 

total of 2.0 mL of cell suspension was transferred to 12-well tissue culture plates with 1 × 105 

cells per well. We then differentiated the cells into monocyte-derived macrophages using 50 

ng/mL phorbol 12-myristate 13-acetate (PMA; Sigma Life Science, St. Louis, MO, USA), 

followed by 48 h of incubation at 37 °C. In MAP-positive treatment groups, monocyte-derived 

macrophages were infected with clinical MAP UCF4 (1 × 107 CFU/mL), followed by 24 h of 

incubation under the same conditions. 

Measurement of IL-1β and TNF-α Expression in Cultured THP-1 Macrophages 

RNA was isolated from each 2.0 mL sample of monocyte-derived macrophages following 

24 h of infection with clinical MAP strain (UCF4). RNA was extracted using the RNeasy® Mini 

Kit (Qiagen, Hilden, Germany) according to manufacturer protocols. RNA concentrations were 

measured using NanoDrop (OD at 260 nm). RNA was then reverse-transcribed to cDNA cDNA 

was synthesized from 1000 ng of each RNA sample using 5.8 µL master mix made from the 

High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Waltham, MA, USA) and 

then topped up to a total volume of 20 µL with RNase-free water, according to manufacturer 
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protocols. A thermal cycler (MyGene Series Peltier Thermal Cycler) was used to perform the 

reactions for 5 min at 25 °C, 20 min at 46 °C, and 1 min at 95 °C. The cDNA samples were 

analyzed immediately by RT-qPCR analysis or stored at −20 °C. Gene expression was measured 

using specific primers for GAPDH, TNF-α, and IL1β, obtained from Bio-rad (Hercules, CA, 

USA), followed by quantitative reverse transcription PCR (RT-qPCR) analysis. For each sample, 

5 µL of cDNA was mixed with 10 µL of PowerUp SYBR Green Master Mix (ThermoFisher 

Scientific, Waltham, MA, USA), 1 µL primer mix, and 4 µL of DEPC-treated water. Samples 

were added in triplicate to a 96-well microamp RT-PCR reaction plate, and the experiment was 

run using the 7500 Fast Real-Time PCR System (Applied Biosystems, Waltham, MA, USA). 

GAPDH was the control used to obtain baseline CT readings. Relative mRNA expression levels 

were calculated using the equation (2^(− ∆∆CT.)) 

Quantification of THP-1 Macrophage Viability and Apoptosis during MAP Infection 

THP-1 macrophages were cultured in 100 µL media on a 96 well opaque-sided plate. All 

cultured cells used the specialty RPMI 1640 formulations described previously. Macrophages 

were administered 50 ng/mL PMA and kept in a humidified incubator at 37° C and 5% CO2 for 

48 h. Macrophages were infected following this incubation with clinical MAP at 1 × 107 

CFU/mL and maintained for 24 h. We then conducted one of two assays on the plated cells. 

First, we used the RealTime-Glo™ MT Cell Viability Assay (Promega, Madison, WI, USA), an 

ATP-based luminescence assay according to manufacturer protocols. Briefly, we mixed MT Cell 

Viability Substrate and NanoLuc® Enzyme to 2X concentrations in folate and B12-free RPMI 

1640 media and added 100 µL to each well. Cells were incubated with the reagent for 1 h, and 
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then luminescence was measured using the GloMax Navigator system GM-2000 (Promega, 

Madison, WI., USA) Next, we used the RealTime-Glo™ Apoptosis Assay (Promega, Madison, 

WI, USA) an annexin-V-based luminescence assay. Briefly, we combined 2X concentrations of 

Annexin NanoBiT® Substrate, CaCl2, Annexin V-SmBiT®, and Annexin V-LgBiT in prewarmed 

folate and B12-free RPMI 1640. 100 µL of the assay mixture were administered to each well and 

incubated for 20 min, and then the same instrument was used to measure luminescence. Both 

luminescence readings were analyzed to determine cell viability and apoptosis. 

Culture and Treatment of Caco-2 Monolayers with Infected THP-1 Supernatant  

The impact of vitamin concentration on cell death and oxidative stress was examined in an 

immortalized enterocyte-like cell line (Caco-2 ATCC HTB-37.) Cells were cultured in ATCC-

formulated Eagle’s Minimum Essential Medium (EMEM) supplemented with 20% FBS (ATCC, 

Manassas, VA, USA) and maintained at 37 °C in a humidified 5% CO2 incubator. 3 × 105 cells 

were seeded in the base of clear-bottomed, opaque-sided 96-well plates with 200 μL media. The 

cells were allowed to differentiate for 14 days before the media was changed to the RPMI 1640 

media with variable levels of folic acid and vitamin B12 (Table 1). On day 18, THP-1 

macrophages were plated and differentiated for 48 h in RPMI 1640 media matching the vitamin 

concentrations of their paired Caco-2 monolayers. On day 20, the macrophages were infected 

with MAP as previously described. On day 21, supernatants were collected from each 

macrophage culture and centrifuged for 1 min at 8000 rcf to pellet debris and intact bacteria. 

Media was then removed from the Caco-2 wells and replaced with supernatant from infected 

macrophages with the same vitamin concentrations. 
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Quantification of Cytotoxicity and Oxidative Stress in Caco-2 Monolayers  

After preparation of the Caco-2 monolayers and administration of the infected THP-1 

macrophage supernatant, we used the LDH-Glo™ Cytotoxicity Assay and the NADP/NADPH-

Glo™ Assay (Promega, Madison, WI, USA) to quantify plasma membrane damage and 

oxidative stress, respectively. Briefly, for the former assay, all components were combined in 

warm media and administered to intact, adherent cells inside their respective wells. The cells 

were incubated for 30 min, and luminescence was measured with the GloMax Navigator™ 

(Promega, Madison, WI, USA) For the latter assay, cells were lysed with 0.2 N NaOH solution 

with 1% DTAB, and the lysate was separated to be subjected to heat under acidic or basic 

conditions to decompose NADPH or NADP+, respectively, according to manufacturer protocols. 

The heated lysate was then cooled to room temperature and administered the assay components. 

After a 30 min incubation, luminescence was again quantified with the GloMax™ Navigator. 

Cells were not reused between assays. All experimental groups were plated and assayed in 

triplicate. 

Statistical Analysis 

GraphPad Prism V.9.4.0 (GraphPad, La Jolla, CA, USA) was used for statistical analysis. 

First, the Kolmogorov–Smirnov normality test was used to assess normal distribution for all 

values. Following this analysis, we used Student’s t-test was to assess significance between two 

groups of values. One-way ANOVA was used to assess significance in studies with multiple 

experimental groups, followed by Sidak’s multiple comparisons test. All data are expressed as 

average ± SD of the mean, and the difference between treated samples vs. controls was 
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considered statistically significant at p-value < 0.05 and 95% confidence interval. All 

experiments save ELISAs of plasma samples were performed in triplicates unless noted 

otherwise. 

Results 

Folate and Vitamin B12 Are Reduced in MAP-Positive CD Patients 

While previous studies have established that CD patients are at an elevated risk of folate 

and B12 deficiency, there is a lack of data on how MAP-positive and MAP-negative CD patient 

subsets compare. As such, we took plasma samples from patients previously confirmed to be 

MAP-negative or MAP-positive via IS900 PCR and compared their folate and B12 levels via 

ELISA. We found that average MAP-positive plasma folate levels were significantly reduced to 

14.48 ± 13.88 ng/mL from MAP-positive 24.15 ± 25.74 ng/mL [Figure 5A] In addition, there 

was a significant decrease in average vitamin B12 to 414.48 ± 94.60 pg/mL from 512.86 ± 129.12 

pg/mL in MAP-positive versus MAP-negative patients [Figure 5B]. Since the plasma samples 

were collected from two subsets of CD patients, these results indicate that the risk of 

malabsorptive folate and B12 deficiency may be correlated particularly with MAP infection in CD 

patients. 

THP-1 Macrophages Cultured in Folate and B12 Supplemented and Deficient Media Show 
Altered Cytokine Expression 

Next, we considered how differing vitamin levels in cell culture media alter macrophage 

cytokine expression. To examine this phenomenon, we took folate and B12-free RPMI 1640 and 

manually supplemented it with folate and B12 to yield folate-low media, folate-high media, B12-
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low media, B12-high media, folate/B12-low media, folate/B12-high media, and ordinary RPMI 

1640. After 48 h of PMA stimulation and differentiation in the depleted media, we infected them 

with clinical MAP for 24 h and examined relative cytokine mRNA. folate, B12, and folate/B12 

deficiency increased TNF-α expression in uninfected macrophages by 1.63 ± 0.08-fold, 1.91 ± 

0.17-fold, and 1.79 ± 0.19-fold, respectively; however, these effects were not statistically 

significant [Figure 6]. In infected macrophages, B12-deficiency increased TNF-α expression from 

20.37 ± 0.54-fold to 25.52 ± 1.17-fold [Figure 6]. However, no other vitamin deficiency, even 

concurrent folate/B12, significantly altered TNF-α expression. By contrast, folate, B12, and 

folate/B12 deficiency all had inhibitory effects on IL-1β expression in uninfected (2.31 ± 0.13, 

2.38 ± 0.03, and 2.32 ± 0.07-fold, respectively) and infected macrophages (16.49 ± 0.16, 20.93 ± 

0.17, and 17.26 ± 0.30-fold, respectively, compared with untreated 7.41 ± 0.38) [Figure 7]. 

We followed these experiments with another analysis to examine supplementation with 

folate and B12. Tenfold elevation of B12 in culture medium for infected macrophages reduced 

TNF-α expression from 12.49 ± 0.33 to 10.66 ± 0.39-fold, while folate had no significant effect 

(13.14 ± 0.50) [Figure 8]. Folate and B12 supplementation alone had no significant effect on 

TNF-α expression in uninfected macrophages (with a 0.89 ± 0.09 and a 1.06 ± 0.07-fold change, 

respectively) [Figure 8]. Interestingly, concurrent folate/B12 supplementation increased TNF-α 

expression by 1.34 ± 0.04-fold in uninfected macrophages but reduced it from 12.49 ± 0.33 to 

11.31 ± 0.10 in infected macrophages [Figure 9]. Elevated folate reduced IL-1β expression from 

1.00 ± 0.01 to 0.55 ± 0.10-fold in uninfected macrophages and from 10.75 ± 0.25 to 8.19 ± 0.11-

fold in infected macrophages [Figure 9] Supplementation with B12 reduced IL-1β expression 

from 1.00 ± 0.04 to 0.80 ± 0.01-fold in uninfected macrophages and from 10.75 ± 0.25 to 9.39 ± 
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0.09-fold in infected macrophages [Figure 9]. Concurrent folate/B12 supplementation’s effect is 

more uniform in IL-1β than TNF-α, which shows a reduction from 1.00 ± 0.04 to 0.69 ± 0.02-

fold in uninfected macrophages and from 10.75 ± 0.25 to 7.00 ± 0.10-fold in infected 

macrophages [Figure 9]. These results indicate that folate and B12 supplementation have an anti-

inflammatory effect on macrophage cytokine expression during MAP infection, with results 

varying by specific cytokine. By contrast, folate and B12 deprivation enhance the inflammatory 

response in identically treated cells. 

MAP Infection Increases Apoptosis during Folate and B12 Supplementation and Decreases 
Apoptosis during Depletion 

Apoptosis of infected cells is a critical immune mechanism for countering intracellular 

pathogens, and MAP consequently uses a suite of anti-apoptotic proteins to impede it [44]. 

Accordingly, we hypothesized that infected macrophages supplemented with folate and B12 

would increase apoptosis to control the infection. We used two methods to assess the apoptosis 

of MAP-infected macrophages. First, we directly quantified apoptosis using annexin V 

luminescence. MAP infection increased apoptosis by 1.83 ± 0.40 fold compared to uninfected 

controls, as anticipated. Furthermore, folate-enriched media increased macrophage apoptosis 

during infection by 3.38 ± 0.07-fold, a significant increase compared to MAP infection in control 

media [Figure 10A]. An increase in apoptosis to 2.58 ± 0.14-fold was also observed in 

concurrent folate and B12 supplemented media [Figure 10A]. We did not observe a significant 

change in media supplemented with B12 alone. Depletion of folate, B12, and both folate and B12 

had the inverse effect: annexin V luminescence decreased to 1.04 ± 0.08, 0.64 ± 0.12, and 0.45 ± 

0.07-fold, respectively [Figure 10A].  
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We followed this experiment with an ATP-based viability assay. General macrophage 

viability after MAP infection declined to 0.80 ± 0.05 and 0.82 ± 0.02-fold in folate and 

concurrent folate/B12 supplemented media, corresponding with the observed increases in annexin 

V luminescence [Figure 10B]. Interestingly, there was no significant change in macrophage 

viability in the MAP-infected cells compared with the uninfected cells. Similarly, decreased 

annexin V in folate, B12, and folate/B12 deficient media did not correspond with a change in 

overall viability in these groups [Figure 10B]. However, there was a small but statistically 

significant decrease in overall macrophage viability in the folate/B12-low group, from 1.00 ± 

0.05-fold to 0.91 ± 0.04-fold. 

Folate and Vitamin B12 Deficiency Individually Exacerbate Cytotoxicity in Caco-2 Monolayers 

After assessing the effects of folate and vitamin deficiency on macrophage inflammation, 

we considered the impact of altered macrophage inflammation on enterocytes. We hypothesized 

that changes in macrophage survival and pro-inflammatory cytokine expression would have a 

detrimental impact on co-cultured Caco-2 cells. Accordingly, we differentiated Caco-2 cells into 

monolayers and maintained them in culture for 7 days in RPMI 1640 with altered vitamin levels. 

administered supernatant collected from macrophages cultured and infected in media with 

comparably altered vitamin levels. 24 h post-treatment, we examined LDH release and 

NADP+/Total NADP in the monolayers. 

Treating Caco-2 cells with supernatant from infected macrophages increased LDH 

luminescence 3.16 ± 0.95-fold compared with uninfected controls, though this effect did not 

reach statistical significance [Figure 11]. By contrast, administration of infected macrophage 
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supernatant in vitamin B12-low conditions increased LDH luminescence 7.73 ± 1.01-fold, which 

was significant compared to both infected and uninfected cells in control media [Figure 11]. 

Similarly, folate-low media increased luminescence by 5.87 ± 1.78-fold compared with the 

control [Figure 11]. Interestingly, concurrent folate and vitamin B12 deprivation did not 

significantly alter LDH luminescence in culture. Treating Caco-2 cells with supernatant from 

infected macrophages did not significantly alter the percentage of NADPH compared with the 

control in any group, suggesting that oxidative stress did not mediate the damage observed in the 

LDH assay [Table 2]. 

Discussion 

CD patients are at an elevated risk of malabsorptive folate and vitamin B12 deficiency 

[21,32]. Furthermore, attempts to avoid foods that patients believe to be triggers for CD relapse 

can lead to self-imposed dietary restriction and reduced nutrient intake [45]. Accordingly, 

periodic screenings for these vitamins are indicated for CD patients, particularly those who 

received ileal resection [40]. However, there is a dearth of information on the effects of folate 

and vitamin B12 supplementation on CD symptoms and inflammation. Furthermore, the state of 

the literature is murky on the effects of folate and B12 supplementation on common CD 

pathogens like MAP. Physicians with CD patients are left without guidance about the risks of 

prolonged folate and B12 deficiency in this patient subset and a potential tool to mitigate 

inflammation. 

Gastrointestinal health and resilience against infection have been correlated with folate 

and vitamin B12 intake. Rat models of methyl donor deficiency indicate that methyl donor-low 
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diets impede bowel development and barrier function while aggravating induced colitis [18,46]. 

By contrast, folate-producing lactic acid bacteria have an anti-inflammatory effect on induced 

murine mucositis [47]. Additionally, murine diets supplemented with folate and other methyl-

donating nutrients improved antimicrobial gene expression and resilience against adherent 

invasive E. coli in a mouse model of CD [36]. These findings concur with a study establishing 

that neonatal folate deprivation sensitizes adult guinea pigs to Shigella infection [48]. In humans, 

folate-associated metabolic pathways are perturbed in pediatric CD patients, and a review of 

meta-analyses for CD environmental risk factors indicated that high folate levels were protective 

[49,50]. Furthermore, low folate levels in CD were associated with increased CD activity in a 

Swiss cohort of patients [26]. 

The results of our investigation add to these findings by showing that folate and B12 alter 

inflammation during infection with a common CD pathogen. MAP-positive CD patients have 

significantly lower plasma folate and B12 than MAP-negative CD patients. We further show that 

pro-inflammatory cytokines IL-1β and TNF-α are significantly upregulated during folate and 

vitamin B12 deprivation in after MAP infection, while supplementation significantly reduces their 

expression. Macrophages in folate and B12-deficient media are less likely to undergo apoptosis 

during MAP infection, suggesting this key mechanism to counteract intracellular pathogens is 

inhibited during vitamin deficiency. Folate supplementation, by contrast, increased apoptosis of 

infected macrophages. Finally, the treatment of enterocytes with folate-low or B12-low 

supernatant from infected macrophages leads to increased LDH release without significant 

alterations in oxidative stress. 
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Our findings on folate and B12 in CD patient plasma cannot at this time be compared with 

normal clinical serum ranges for these vitamins, as the ELISAs used to quantify folate and 

vitamin B12 availability are not approved for clinical practice. However, these results indicate 

that even within a patient group at risk for folate and B12 deficiency, distinct subsets of folate and 

B12 availability can be characterized based on MAP infection. Furthermore, the data on cytokine 

availability indicate that folate and B12 levels affect macrophage-mediated inflammation after 

only 48 of h prophylactic exposure. Since monocyte-derived macrophages constitutively 

infiltrate the gut, these results suggest that clinical trials of folate and B12 supplementation may 

gradually impact inflammation patterns as older, vitamin-restricted cells are replaced [51]. 

Importantly, our work builds on the findings of Samblas and colleagues by showing that the anti-

inflammatory effects of folate and B12 can be observed during an ongoing bacterial infection, not 

just after stimulation with a TLR agonist like LPS [30]. Since these findings are paired with 

improved apoptosis of infected macrophages, we propose that MAP-infected CD patients taking 

folate and B12 supplements may experience reduced inflammation upon the initial macrophage 

encounter with MAP. Altered inflammation may be followed by apoptosis of the pro-

inflammatory, MAP-infected cells, resulting in the removal of both pathogen and inflammatory 

mediator. 

Future studies are required to explore not merely how folate and B12 alter MAP infection 

in cell culture, but in animal and clinical studies. Our study centered on monocyte derived 

macrophages because prior studies have highlighted macrophages as a crucial innate immune 

mediator for both MAP destruction and proliferation [52]. However, we do not analyze other 

phagocytic immune cells or determine if the 48 h differentiation period is the only relevant 
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window to mediate folate and B12’s anti-inflammatory effects. Furthermore, macrophages 

frequently interact with components of the adaptive immune system, thereby alter adaptive 

immunity. We do not explore how folate and B12 might affect this function to contribute to long-

term inflammatory CD patterns. Accordingly, further investigation is warranted. 
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Figures 

 

Figure 5: Plasma folate and B12 availability in MAP-negative and MAP-positive CD 
patients. 

 

 

Figure 6: Effect of folate and B12 availability on TNF-α expression during MAP infection. 
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Figure 7: Effect of folate and B12 deficiency on IL-1β expression during MAP infection. 

 

 

Figure 8: Effect of folate and B12 supplementation on TNF-α expression during MAP 
infection. 



78 
 

 

Figure 9: Effect of folate and B12 supplementation on IL-1β expression during MAP 
infection. 

 

Figure 10: Effect of folate and B12 supplementation or depletion on macrophage apoptosis 
and viability. 
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Figure 11: Effect of folate and vitamin B12 concentration on LDH release from Caco-2 
monolayers after treatment with MAP-infected macrophage supernatant. 

 
  



80 
 

Tables 

Table 1: Concentrations of folate and B12 in modified RPMI 1640 media for macrophage 
cell culture and infection. 

Culture Condition Folate (μg/mL) B12 (ng/mL) 
 
Control RPMI 1640 

 
1.0 

 
5.0 

 
Folate-High 

 
10.0 

 
5.0 

 
B12-High 

 
1.0 

 
50.0 

 
Folate + B12-High 

 
10.0 

 
50.0 

 
Folate-Low 

 
0.10 

 
5.0 

 
B12-Low 

 
1.0 

 
1.0 

 
Folate + B12-Low 

 
0.10 

 
1.0 
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Table 2: Effect of folate and vitamin B12 concentration on NADP release from Caco-2 
monolayers after treatment with supernatant from infected macrophages. 

 

 

  

Infection and Treatment NADP+/(NADPH + NADP+)*100 ± SD 

Control (no infection) 6.23 ± 0.396 

MAP infection (1 × 107 CFU/mL) 6.89 ± 0.761 

Folate-low + MAP infection 7.74 ± 0.750 

B12-low + MAP infection 8.24 ± 0.657 

Folate/B12-low + MAP infection 7.07 ± 0.801 

Folate-high + MAP infection 7.63 ± 1.04 

B12-high + MAP infection 6.59 ± 1.00 

Folate/B12-high + MAP 6.80 ± 0.716 
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CHAPTER 3: CATHELICIDIN MEDIATES AN ANTI-INFLAMMATORY 
OF ACTIVE VITAMIN D (CALCITRIOL) DURING M. 

PARATUBERCULOSIS INFECTION 

Note: This chapter has been published in part. The citation link is as follows: Vaccaro, J.A.; 

Qasem, A.; Naser, S.A. Cathelicidin Mediates an Anti-Inflammatory Role of Active Vitamin D 

(Calcitriol) During M. paratuberculosis Infection. Front Cell Infect Microbiol 2022, 12, 875772, 

doi:10.3389/fcimb.2022.875772. 

Introduction 

Vitamin D is a steroid hormone crucial to the efficient uptake and storage of calcium and 

phosphorus [1]. Most vitamin D are endogenously synthesized in human using exposure to 

ultraviolet radiation, which converts 7-dehydrocholesterol to an isomer of the pro-vitamin D3, it 

then undergoes hydroxylation in the liver via the enzyme CYP27A1 to yield calcifediol or 

25(OH)D3 [2]. Calcifediol makes up the majority of circulating vitamin D but displays minimal 

hormonal activity. When blood calcium or phosphate levels are low, the parathyroid gland 

detects the decline and releases parathyroid hormone (PTH) [3]. PTH acts upon the kidneys to 

stimulate the hydroxylation of 25(OH)D3 to 1,25(OH)2D3, or calcitriol, using the enzyme 

CYP27B1 [2,3]. Interestingly, this enzyme can also be found in extra-renal tissues, including 

macrophages, where it regulates various intracranial events [4]. Calcitriol, the active form of 

vitamin D, is then carried through the circulation to tissues across the body [1]. As a fat-soluble 

hormone, it is capable of binding to the ubiquitously expressed vitamin D receptor (VDR), which 

heterodimerizes with the retinoid X receptor (RXR), then translocates to the nucleus, where it 

begins stimulating transcription of its target genes [1].  
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Among the genes enhanced by the VDR/RXR complex is CAMP, encoding Cathelicidin 

Antimicrobial Peptide [5]. The active form of cathelicidin is LL-37, which is a 37 residue-long 

peptide produced by macrophages in response to inflammation [6]. Like the defensin family, 

cathelicidin displays potent bactericidal and anti-inflammatory effects, through disruption of 

microbial membranes and conveying anti-inflammatory signals to immune cells [6]. Cathelicidin 

has shown notable beneficial effects even on persistent, long-term infections like tuberculosis 

and those found in inflammatory bowel disease (IBD) [7-11]. Its broad-spectrum effect on 

immunity makes cathelicidin a potential link between vitamin D and resistance to pathogens, 

even pathogens that are comparatively understudied; notably, its dependence on vitamin D 

signaling exposes cathelicidin to disruption when calcitriol is restricted [5,8]. Under ordinary 

circumstances, Toll-like receptors (TLRs) stimulation enhances transcription of the VDR and 

CYP27B1 in macrophages [7]. This signal allows the macrophage to enhance vitamin D-

mediated cathelicidin production even without high circulating calcitriol [7,8]. However, 

previous work has shown that Mycobacterium tuberculosis (Mtb) lipoprotein LprE inhibits 

CYP27B1 and VDR upregulation, reducing cathelicidin production and enhancing bacterial 

survival [12]. This mechanism partially explains the persistence of tuberculosis within alveolar 

macrophages, and related bacteria might share a similar mechanism [12]. 

Mycobacterium avium subsp. paratuberculosis (MAP) is known to cause Johne’s disease 

in ruminants, resulting in intestinal damage and chronic wasting [13]. Furthermore, in some 

genetically susceptible patients, MAP infection causes Crohn’s disease (CD), an inflammatory 

bowel disease (IBD) characterized by asymmetrical, segmental, transmural inflammation with a 

relapsing-remitting pattern [13-16]. Similar to Mtb, MAP can infect macrophages and evade 
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immune system clearance to establish a persistent infection, which warranted the necessity of 

using antibiotics for MAP eradication among infected CD patients [17-20]. Therefore, we were 

intrigued to find out if MAP shares Mtb’s method of evading immune detection by interfering 

with vitamin D signaling, which could be responsible for interference with CAMP expression 

and subsequent dysregulation of the intestinal microbiota in CD.  

Additionally, therapeutic interventions of inactive vitamin D for IBD, which have so far 

shown mixed results for CD overall, might prove ineffective in MAP-infected patients and 

effective for MAP-uninfected patients. As such, it is necessary to determine whether MAP 

survival depends on interference with macrophage conversion of inactive calcifediol to active 

calcitriol, thereby inhibiting cathelicidin production and bacterial clearance. The objective of this 

study is to examine the effect of various forms of vitamin D and exogenous cathelicidin 

treatment on MAP infection and burden and subsequent macrophage-mediated inflammatory 

response. Our study clearly outlines a novel immunoevasive mechanism of MAP infection and 

reveals the importance of vitamin D signaling in eradicating infection in CD.  

Materials and Methods 

Measurement of Plasma Calcitriol and Cathelicidin in Clinical Samples 

Plasma from peripheral blood samples (4.0 mL K2-EDTA tube) was collected from 100 

CD patients (CDAI ≥220 and ≤450). The status of MAP infection was subsequently determined 

via IS900 PCR as described earlier [21], and then we randomly selected 40 MAP positive and 40 

MAP negative CD patients for this study. We then used the Human Cathelicidin Antimicrobial 

Peptide ELISA Kit (MyBioSource, San Diego, CA) and the Calcitriol ELISA Kit (MyBioSource, 
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San Diego, CA) to determine the plasma levels of cathelicidin and calcitriol, respectively. This 

study was approved by the University of Central Florida Institutional Review Board # 

STUDY00003468. All samples were de-identified before handling. 

Infection and Treatment of Monocyte-Derived Macrophages 

 The THP-1 cell line (ATCC TIB-202) was cultured in RPMI-1640 medium (ATCC 30-

2001) with 10% fetal bovine serum (FBS; Sigma Life Science, St. Louis, MO). The cells were 

maintained in a humidified 5% CO2 incubator at 37°C and grown to confluency in cell culture 

flasks. A total of 1.0 mL of cell suspension was transferred to 12-well tissue culture plates with 

1x105 cells per well. They were then differentiated into monocyte-derived macrophages using 50 

ng/mL phorbol 12-myristate 13-acetate (PMA; Sigma Life Science, St. Louis, MO) followed by 

48 hours of incubation at 37°C. Next, monocyte-derived macrophages were treated with 5 µg/mL 

lipopolysaccharide (LPS) or infected with clinical MAP UCF4 (1x107 CFU/mL), followed by 24 

hours of incubation at the same conditions. When the macrophages were infected or stimulated 

with LPS, they also were dosed with 50 ng/mL vitamin D2, vitamin D3, calcifediol, or calcitriol, 

all purchased from Sigma Aldrich (St. Louis, MO), or 30 μg/mL LL-37 (Tocris Bioscience, 

Bristol, UK). 

Measurement of CAMP, NOX-1, TNF-α, IL-1β, and IL-10 Expression in Treated Macrophages 
and Caco-2 Monolayers 

RNA was isolated from each 1.0 mL sample of monocyte-derived macrophages 

following 24 hours of treatment with vitamin D or cathelicidin or from Caco-2 cells following 24 

hours of co-culture with infected or treated macrophages. RNA was then reverse-transcribed to 
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cDNA, then gene expression was measured using specific primers for GAPDH, CAMP, TNF-α, 

IL-1β, and IL-10 obtained from Bio-rad (Hercules, CA) followed by quantitative reverse 

transcription PCR (RT-qPCR) analysis. RNA was extracted using the RNeasy ® Mini Kit 

(Qiagen, Hilden, Germany) according to manufacturer protocols. RNA concentrations were 

measured using NanoDrop (OD at 260 nm). Next, cDNA was synthesized from 1000 ng of each 

RNA sample using 5.8 µL master mix made from the High Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems, Waltham, MA) and then topped up to a total volume of 

20 µL with RNase-free water, according to manufacturer protocols. A thermal cycler (MyGene 

Series Peltier Thermal Cycler) was used to perform the reactions for 5 min at 25°C, 20 min at 

46°C, and 1 min at 95°C. The cDNA samples were stored at -20°C or used immediately for RT-

qPCR analysis. For each sample, 5 µL of cDNA was mixed with 10 µL of Fast SYBR Green 

Master Mix (ThermoFisher Scientific, Waltham, MA), 1 µL primer mix, and 4 µL of DEPC-

treated water. Samples were added in triplicate to a 96-well microamp RT-PCR reaction plate, 

and the experiment was run using 7500 Fast Real-Time PCR System (Applied Biosystems, 

Waltham, MA). Deleted: repeated sentence. GAPDH was the control used to obtain baseline CT 

readings. Relative mRNA expression levels were calculated using the equation (2^(- ∆∆CT). 

Measurement of CAMP, TNF-α, IL-1β, and IL-10 Protein Level in Treated Macrophages 

Following 24 hours of infection and treatment with vitamin D forms or LL-37, monocyte-

derived macrophages were pelleted by centrifugation at 2,500 rpm for 5 min at 4°C. The 

supernatants were saved, and TNF-α, IL-1β, and IL-10 protein levels were determined using the 

Ella automated immunoassay system (ProteinSimple, Santa Clara, CA). The Human Cathelicidin 
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Antimicrobial Peptide ELISA Kit (MyBioSource, San Diego, CA) was used to determine LL-37 

levels following manufacturer’s instructions.  

Measurement of MAP Viability in MGIT Culture 

We inoculated 1 mL BACTEC™ MGIT™ ParaTB medium (BD Diagnostics, Sparks, 

MD) with 10^7 CFU/mL MAP strain UCF4 as described earlier [22]. The media was then 

treated with LL-37 (Tocris Bioscience, Bristol, UK) and Halt™ Protease Inhibitor Cocktail 

(Thermo Scientific, Rockford, IL). The same amount of protease inhibitor cocktail and LL-37 

was added to the media every 3 days to maintain a consistent concentration. Bacterial growth 

expressed in CFU/mL was quantified daily using the BACTEC™ MGIT™ 320 for 20 

consecutive days. The medium contains a molecule which fluoresces in the presence of actively 

respiring mycobacteria, permitting automatic quantification of growth as described previously 

[19]. 

Measurement of MAP Viability in Infected Macrophages 

We cultured THP-1 macrophages in 2 mL media as described previously. Following 24 

hours of MAP infection and vitamin D/LL-37 treatment, the cultures were treated with 350 µL 

lysis buffer (Qiagen, Hilden, Germany) and incubated at room temperature for 15 minutes. 

Subsequently, 700 μL of each sample were transferred to a respective 1.5 mL microcentrifuge 

tube, and all samples were centrifuged for 1 minute at 8,000 rcf. The pellet was resuspended by 

gently vortexing, and 100 μL of each sample was mixed with 100 μL BacTiter-Glo Microbial 

Cell Viability Assay (Promega, Madison, WI) in a 96 well opaque-sided plate. Samples were 

incubated at room temperature on a shaker for 5 minutes, and luminescence was recorded using 
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the GloMax Navigator system GM-2000 (Promega, Madison, WI). Bacterial viability was 

analyzed from the generated luminescence. 

Measurement of Calcitriol Production in Treated Macrophages 

Following 24 hours of infection with MAP and treatment with 50 ng/mL calcifediol, 

THP-1 monocyte-derived macrophages were pelleted by centrifugation at 2,500 rpm for 5 min at 

4°C. The supernatants were saved, and calcitriol levels were determined using the Calcitriol 

ELISA Kit (MyBioSource, San Diego, CA).  

Knockdown of CAMP by siRNA Transfection 

5 nmol of Silencer™ Pre-Designed siRNA (siRNA ID: 14402, ThermoFisher, Waltham, 

MA) specific to CAMP were diluted first in 50 uL nuclease-free H2O. 3.3 μL of this stock were 

mixed with 30 μL Optimem media (Gibco, Waltham, MA) and further diluted in an additional 

450 μL Optimem. 27 μL Lipofectamine reagent (Invitrogen, Carlsbad, CA) was then mixed with 

450 μL Optimem and the resulting mixture was added to the 459 μL of diluted siRNA mix. 300 

μL of the resulting transfection master mix was added to every 2 mL of media containing target 

cells, or 15 μL into 100 μL of a 96 well plate. 

Co-culturing THP-1 Macrophages with Caco-2 Monolayers 

The effects of calcitriol and cathelicidin on macrophage-mediated oxidative stress were 

examined in a human enterocyte-like cell line (Caco-2 ATCC HTB-37). Cells were routinely 

cultured in ATCC-formulated Eagle's Minimum Essential Medium (EMEM) supplemented with 

20% FBS (ATCC, Manassas, VA) and maintained at 37°C in a humidified 5% CO2 incubator. 
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Cells were grown in 12-well plates or microscope slides at a density of 3×105 cells per well until 

confluency and differentiation were reached in 21 days. On day 14, THP-1 macrophages were 

plated separately in co-culture wells. They were differentiated, infected with MAP, and treated 

with vitamin D within these wells as previously described. 24 hours following the infection, the 

co-culture wells were transferred to the 12-well plates containing Caco-2 cells to permit the free 

exchange of cytokines and other paracrine signals.  

Visualizing Caco-2 Oxidative Stress via DHE Fluorescence Staining Assay 

DHE fluorescence staining was performed on Caco-2 monolayers following 24 hours of 

co-culture with MAP-infected macrophages. First, monolayers were washed twice with cold PBS 

and then fixed with 4% paraformaldehyde (PFA) for 15 min. Monolayers were then washed 

twice with cold PBS and treated with 1 μM DHE stain (Sigma Aldrich, St. Louis, MO) for 25 

min. Next, 60 μL VECTASHIELD Antifade Mounting Medium containing 4′,6-diamidino-2-

phenylindole (DAPI; Vector Laboratories, Burlingame, CA) was used to co-stain nuclei. Slides 

were examined under Amscope IN480TC-FL-MF603 Fluorescence Microscope, where red 

staining indicates oxidative stress and blue staining represents nuclei. Captured images were 

analyzed by measuring average integrated density using NIH Image J 1.39o software, which was 

also used to generate merged images as we described earlier [23]. 

Measurement of Nicotinamide Adenine Dinucleotide Phosphate (NADPH) 

Following 24 hours of co-culture with infected and treated macrophages, Caco-2 cells 

were lysed, and their levels of NADPH and total NADP were measured using the 

NADP/NADPH Assay Kit (Abcam, Cambridge, UK) according to manufacturer protocols. 
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Briefly, the cell lysates were halved, with one half heated for 30 min to degrade the oxidized 

NADP+ while leaving the NADPH untouched. Each lysate was then mixed with the kit 

developer in triplicate on a 96 well plate and left to incubate in the dark for 24 hours. NADP was 

then quantified for each well, with the heated lysate measuring the reduced NADPH as a fraction 

of total NADP. 

Statistical Analysis 

GraphPad Prism V.7.02 (GraphPad, La Jolla, CA, USA) was used for analyzing data 

statistics. The Kolmogorov–Smirnov normality test was used to test normal distribution for all 

values. Two-way analysis of variance (ANOVA) was used to assess significance among 

experiments, which was followed by Bonferroni correction test. Data are expressed as average ± 

SD of the mean, and the difference between treated samples vs. controls was considered 

statistically significant at a level of P-value < 0.05 and 95% confidence interval (CI). All 

experiments were performed in triplicates. 

Results 

Cathelicidin and Calcitriol Are Reduced in MAP-Infected CD Patients 

We measured cathelicidin and calcitriol levels in 80 clinical plasma samples, 40 of which 

were MAP negative, 40 of which were MAP positive. We observed statistically significant 

reductions in plasma cathelicidin [Figure 12A] and plasma calcitriol [Figure 12B]. Cathelicidin 

in MAP-positive patients measures 155.55±49.77 ng/mL, increasing to 193.01±78.95 ng/mL in 

MAP-negative patients. The shift in calcitriol levels was more dramatic than cathelicidin; the 
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average calcitriol for MAP-positive patients was 51.48±31.04 pg/mL, but 272.36±94.77 pg/mL. 

This trend lends preliminary support to the hypothesis that MAP infection alters calcifediol 

hydroxylation. 

Calcitriol Enhances CAMP Expression and Cathelicidin Production in THP-1 Macrophages 

We next examined whether THP-1 macrophages respond to treatment with all forms of 

vitamin D or only calcitriol and calcifediol. Treatment with vitamin D2 and D3 did not 

significantly enhance CAMP expression compared with the control. Calcifediol treatment 

enhanced CAMP expression in uninfected cells by a factor of 3.29±0.15, and calcitriol enhanced 

expression by a factor of 5.24±0.08 [Figure 13A]. The effect of calcitriol increased in a dose-

dependent manner. Treatment with 25 ng/mL calcitriol enhanced expression by only 2.79±0.07 

fold, and 100 ng/mL yielded a 6.37±0.07-fold change [Figure 13B]. These phenomena change 

after MAP infection; MAP-infected cells had no significant CAMP enhancement upon treatment 

with calcifediol. However, calcitriol is still effective at increasing CAMP expression during MAP 

infection, increasing CAMP mRNA by a factor of 2.52±0.23 [Figure 13C]. These trends were 

later validated by ELISA, confirming that expression corresponds with LL-37 production [Figure 

14].  

Calcitriol and LL-37 Reduce Pro-Inflammatory Cytokine Expression in Infected Macrophages 

To examine calcitriol’s effect on MAP-induced inflammation, we infected THP-1 

macrophages with MAP and treated them with different forms of vitamin D. Calcitriol was the 

only form of vitamin D which significantly reduced TNF-α and IL-1β expression [Figure 15A-B] 

and production [Table 3] compared to the untreated, infected cells. Furthermore, calcitriol 
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treatment partially rescued IL-10 expression [Figure 15C] and production [Table 3] in infected 

macrophages.  

We observed similar effects with LL-37 treatment. MAP-infected macrophages showed a 

sharp decrease in TNF-α expression upon LL-37 treatment, a 5.27±0.23-fold increase reduced to 

2.61±0.08 after treatment [Figure 16A]. IL-1β showed a similar decrease with LL-37, a 

4.12±0.16-fold change reduced to 2.13±0.13-fold [Figure 16B]. IL-10, by contrast, increased in 

expression upon LL-37 treatment from 1.94±0.11-fold to 3.85±0.17-fold [Figure 16C]. These 

trends were then verified by measuring cytokine production levels. TNF-α was secreted into the 

supernatant at concentrations of 173.12±4.73 pg/mL upon MAP infection, but LL-37 treatment 

reduced it to 89.43±4.96 pg/mL. Likewise, IL-1β secretion dropped from 163.87±5.72 pg/mL to 

82.23±4.39 pg/mL and IL-10 secretion increased from 69.18±3.69 pg/mL to 102.31±4.11 pg/mL 

[Table 4]. Interestingly, LPS-stimulated macrophages also decreased pro-inflammatory cytokine 

expression and increased IL-10 expression upon LL-37 treatment [Figure 17A-C]. These results 

were verified by measuring cytokine production levels [Table 4]. As such, LL-37 not only 

functions by clearing bacteria but can serve as an anti-inflammatory signal.     

LL-37 Reduces MAP Viability in both Bacterial Culture and Macrophages 

To verify that LL-37 reduces extracellular MAP viability, we inoculated five MGIT tubes 

with MAP and cultured them over the course of 20 days with differing concentrations of LL-37. 

We observed a concentration-dependent bacteriostatic effect of LL-37, by reducing both rate of 

growth and maximum bacterial load. At 50 ug/mL, MAP culture required an additional 3 days to 
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reach the stationary phase, and bacterial load at stationary phase was far lower than the untreated 

culture [Figure 18].  

Additionally, we tested the effects of multiple vitamin D forms and LL-37 on bacterial 

viability in MAP-infected macrophages. There was no significant change upon treatment with 

the inactive forms of vitamin D. However, both LL-37 treatment and calcitriol treatment 

substantially reduced MAP viability from 2.92±0.45*10^4 CFU/mL to 1.07±0.41*10^4 CFU/mL 

and 1.24±0.52*10^4 CFU/mL, respectively [Figure 19].  

Knockdown of CAMP Eliminates the Anti-Inflammatory Effect of Calcitriol during MAP 
Infection 

We treated two groups of macrophages with 50 ng/mL calcifediol and infected one group 

with MAP. Following 24 hours of infection, we collected the supernatant and measured calcitriol 

level. The uninfected macrophages yielded 72.98±2.86 pg/mL calcitriol, while infected 

macrophages produced only 16.64±9.23 pg/mL [Figure 20A]. As such, the data indicate that 

MAP interferes with the conversion of calcifediol to calcitriol. 

Furthermore, we transfected THP-1 macrophages with CAMP-siRNA to inhibit 

cathelicidin translation while leaving other VDR-controlled genes unaffected [Figure 8B]. We 

analyzed cytokine expression [Figure 21] and production [Table 5] in cells where CAMP was 

knocked down and calcitriol was present in the medium. CAMP-knockdown macrophages 

treated with calcitriol showed no significant reduction compared with untreated macrophages in 

TNF-α, IL-1β and IL-10 expression had no significant rescue. Accordingly, we conclude that 

during MAP infection, cathelicidin is necessary for calcitriol to mediate its anti-inflammatory 

effects. 
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Calcitriol and Cathelicidin Reduce Macrophage-Mediated Oxidative Stress on Co-cultured Caco-
2 Monolayers. 

To examine the tissue damage effect of MAP-infected macrophages on co-cultured Caco-

2 monolayers, we used three methods to assess oxidative stress levels. First, co-cultured Caco-2 

monolayers were stained with DHE, imaged, and the red DHE stain was quantified using imageJ 

software [Figure 22A]. Untreated MAP infection in co-cultured macrophages raised oxidative 

stress in the monolayer 14.78±0.71 fold compared with the control. Treatment with LL-37 or 

calcitriol reduced oxidative stress to 1.74±1.22 fold and 2.78±1.00 fold, respectively [Figure 

22B].  

We verified these results with analysis of NOX-1 expression and NADPH/NADP assay in 

co-cultured Caco-2 monolayers. Expression of NOX-1 was 5.09±0.09 fold higher when the co-

cultured macrophages went untreated, but calcitriol treatment reduced it to 2.03±0.14 fold, and 

LL-37 reduced NOX-1 expression to 2.51±0.16 [Figure 23A]. MAP infection in co-cultured 

macrophages caused a decline in NADPH/NADPt ratio to 44.51±3.81%, indicating that a highly 

oxidative intracellular environment was present. Treating MAP-infected macrophages with LL-

37 or calcitriol rescued NADPH to 63.12±2.63% and 73.44±1.17% of total NADP, respectively 

[Figure 23B].  

Discussion  

Vitamin D deficiency is widespread in CD patients [24,25]. A recent meta-analysis found 

an inverse relationship between circulating vitamin D and CD severity [26]. Similarly, low 

vitamin D levels are inversely correlated with the likelihood of later surgical intervention in these 

patients [27].  From a therapeutic standpoint, vitamin D supplementation has shown promise in 
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reducing disease activity and inflammatory biomarkers [28]. However, little is known about how 

vitamin D is metabolized in patients with inflammatory bowel disease.  

Vitamin D activation is necessary to mediate transcriptional changes [1]. It has been 

reported that vitamin D can directly inhibit the growth of bacteria following exposure to high 

doses, but the mechanism is unclear [29]. Subversion of the antibacterial response is a classical 

and potent way for mycobacteria to evade the host immune response and establish persistent 

infection [17,30]. Therefore, understanding how MAP alters the function of the macrophages in 

CD is crucial to explain why it is challenging to eradicate the infection in these patients. It is 

worth noting that Mtb possesses a host of mechanisms that assist in its survival within alveolar 

macrophages, many of which involve preventing phagolysosome fusion and halting apoptotic 

signals [31,32]. Interestingly, calcitriol has been shown to upregulate autophagy via cathelicidin, 

which leads to phagolysosome fusion and destruction of phagocytosed bacteria [33,34]. 

Similarly, a substantial body of work in cattle establishes MAP’s adept evasion of the bovine 

immune system [17]. 

Previous work has shown that Mtb possesses at least one protein that subverts the vitamin 

D signaling pathway in macrophages, altering the antibacterial response [12]. Here, we present 

evidence that MAP is similarly capable of affecting vitamin D activation. Our analysis of clinical 

samples has shown that calcitriol and cathelicidin are both reduced in MAP-positive CD patients 

compared with MAP-negative CD patients. Moreover, we demonstrated that both calcifediol and 

calcitriol induce expression and production of cathelicidin in uninfected macrophages, but MAP 

infection alters calcifediol’s inductive capacity. First, calcitriol treatment reduces pro-

inflammatory cytokine expression and restores IL-10 production in MAP-infected macrophages. 
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In addition, LL-37 treatment displayed similar effects to calcitriol, and we verified that LL-37 

has potent anti-microbial effects against MAP in both bacterial culture and infected 

macrophages. Consequently, CAMP knockdown removes the beneficial effects of calcitriol and 

cathelicidin on MAP infection, which validated the role of LL-37 as a mediator of calcitriol’s 

anti-inflammatory signal in macrophages. Finally, we show that the anti-inflammatory effect of 

calcitriol and cathelicidin reduces MAP-induced oxidative stress in Caco-2 cells co-cultured with 

infected macrophages.  

These findings strongly suggest that MAP and Mtb share a homologous mechanism that 

interferes with vitamin D signaling, which justifies further study on how MAP uniquely leads to 

CD pathogenesis. Additionally, our data highlight cathelicidin’s key role in mediating vitamin 

D’s anti-inflammatory properties and indicate that MAP substantially improves its viability by 

disrupting vitamin D signaling [Figure 24]. Likewise, the inductive effect of cathelicidin on co-

cultured epithelial cells suggests that this effect may correspond with reduced oxidative stress in 

intestinal tissue.  

Further studies may determine if MAP suppresses calcitriol production in the same way 

as Mtb via a lipoprotein-mediated disruption of TLR2 signaling [12]. However, the lack of a 

comprehensive genomic map of any MAP strain may hamper the bioinformatics approach to 

examine homology between the two species. Nevertheless, impeded stimulation of this pathway 

would be compelling evidence of a homologous protein and could then direct protein isolation 

and purification studies. 

Outside the context of immunity, vitamin D is a crucial signal for maintaining bone 

homeostasis [1]. Since IBD patients are at increased risk of osteoporosis and other skeletal 
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abnormalities, an investigation into the mechanism by which IBD disrupts bone homeostasis is 

warranted [35]. Previous work in our laboratory has identified distinct changes in 

undercarboxylated osteocalcin, activated osteocalcin, and serum calcium levels in MAP-infected 

bovines and CD patients [36]. We have further noted a correlation between osteoporosis markers 

in the blood of rheumatoid arthritis (RA) patients, polymorphisms in the TNF-α gene and those 

of its receptor, and MAP infection [37]. The findings of this study are highly suggestive of a 

novel mechanism by which MAP might interfere with bone homeostasis. An aberrant, prolonged 

inflammatory response paired with impaired vitamin D activation may account for MAP’s 

deleterious effect on CD and RA patients, where its presence would represent a subgroup at 

particular risk of osteoporosis. Consequently, testing for MAP DNA in RA and CD patients may 

prove valuable for clinicians. 

From a therapeutic standpoint, MAP suppression of vitamin D activation suggests that 

the active form of vitamin D supplementation may prove more effective in MAP-infected CD 

patients since most vitamin D in circulation and commercial supplements is inactive [1]. This 

suggestion has some precedent in clinical trials with Mtb; despite vitamin D deficiency being a 

risk factor for tuberculosis, a course of supplementation with inactive vitamin D in Mongolian 

children had no significant impact on Mtb infection rates [38]. Furthermore, the fact that 

cathelicidin supplementation mirrors the effects of calcitriol on macrophage-mediated 

inflammation and enterocyte oxidative stress suggests that LL-37 could be a therapeutic option 

for the suppression of CD inflammatory symptoms. Accordingly, further studies of this 

phenomenon and vitamin D’s effect on CD patients are warranted. 
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Figures 

 
Figure 12: Plasma cathelicidin and calcitriol in MAP-positive and MAP-negative CD 
patients. 

 

 
Figure 13: Effect of different forms of vitamin D and different concentrations of calcitriol 
on CAMP expression. 
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Figure 14: Effect of different forms of vitamin D and different concentrations of calcitriol 
on LL-37 production. 

 

 
Figure 15: Effects of vitamin D treatment on cytokine expression in MAP-infected 
macrophages. 
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Figure 16: Effect of LL-37 treatment on cytokine expression in MAP-infected macrophages 

 

 
Figure 17: Effect of LL-37 treatment on cytokine expression in LPS stimulated 
macrophages. 
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Figure 18: Direct effect of LL-37 treatment on MAP viability in MGIT culture. 

 

 
Figure 19: Effect of vitamin D and LL-37 on intracellular MAP viability. 
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Figure 20: Disruption of calcitriol production after MAP infection and successful 
knockdown of CAMP. 

 

 
Figure 21: Effect of CAMP-siRNA transfection on cytokine expression in MAP-infected 
macrophages. 
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Figure 22: Impact of calcitriol and LL-37 treatment on oxidative stress in Caco-2 
monolayers co-cultured with MAP-infected macrophages. 
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Figure 23: Quantitative analysis of oxidative stress levels in Caco-2 cells co-cultured with 
MAP-infected macrophages. 

 

 
Figure 24: Cathelicidin mediates an anti-inflammatory role of calcitriol during MAP 
infection. 
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Tables 

Table 3: Effect of vitamin D treatment on cytokine production in MAP-infected 
macrophages. 

 
Infection and Treatment TNF-α ± SD 

(pg/mL) 

IL-1β ± SD 

(pg/mL) 

IL-10 ± SD 

(pg/mL) 

Control (no infection) 60.52 ± 1.75 56.13 ± 1.81 125.65 ± 6.11 

Control (MAP W/O Treatment) 173.12 ± 4.73 163.87 ± 5.72 69.18 ± 3.97 

MAP + Vitamin D2 157.84 ± 3.14 145.37 ± 6.17 73.14 ± 3.69 

MAP + Vitamin D3 151.11 ± 5.44 140.61 ± 5.74 76.95 ± 5.26 

MAP + 25(OH)D 136.21 ± 2.48 127.54 ± 3.84 82.12 ± 2.55 

MAP + 1,25(OH)2D3 81.66 ± 2.79* 74.39 ± 3.72* 105.28 ± 4.58* 

 

Table 4: Effects of LL-37 treatment on cytokine production in MAP-infected and LPS-
stimulated macrophages. 

 
Infection and Treatment TNF-α ± SD 

(pg/mL) 

IL-1β ± SD 

(pg/mL) 

IL-10 ± SD 

(pg/mL) 

Control (No Infection) 60.52 ± 1.75 56.13 ± 1.81 125.65 ± 6.11 

LL-37 64.12 ± 2.83 61.42 ± 3.94 129.37 ± 3.82 

Control (MAP W/O Treatment) 173.12 ± 4.73 163.87 ± 5.72 69.18 ± 3.69 

MAP + LL-37 89.43 ± 4.96* 82.23 ± 4.39* 102.31 ± 4.11* 

LPS Treatment 194.21 ± 3.51 183.04 ± 2.48 51.23 ± 1.56 

LPS + LL-37 95.75 ± 2.64* 94.71 ± 1.75* 96.14 ± 6.41* 
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Table 5: Effect of CAMP-siRNA transfection on cytokine production in MAP-infected 
macrophages. 

 
Infection and Treatment TNF-α ± SD 

(pg/mL) 

IL-1β ± SD 

(pg/mL) 

IL-10 ± SD 

(pg/mL) 

Control (No Infection) 60.52 ± 1.75  56.13 ± 1.81 125.65 ± 6.11 

CAMP-siRNA 69.07 ± 3.65 61.91 ± 2.63 120.46 ± 3.97 

Control (MAP W/O Treatment) 173.12 ± 4.73 163.87 ± 5.72 69.18 ± 3.69 

MAP + CAMP-siRNA 182.67 ± 3.18 173.75 ± 4.57 75.62 ± 5.26 

MAP + CAMP-siRNA + 

1,25(OH)2D3 

144.18 ± 4.03 132.86 ± 5.76 80.19 ± 2.55 

MAP + 1,25(OH)2D3 81.66 ± 2.79* 74.39 ± 3.72* 105.28 ± 4.58* 
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CHAPTER FOUR: CONCLUSIONS AND FUTURE DIRECTIONS 

Crohn’s disease affects approximately 214 of 100,000 Americans and 314 of 100,000 

Europeans [1]. Furthermore, CD incidence is rising in geographic regions undergoing 

industrialization and development [2]. Since CD can seriously harm quality of life and lead to 

complications like strictures, fistulas, abscesses, and colon cancer, active therapeutic intervention 

is necessary to manage this emerging problem [3]. While in the past a variety of 

immunomodulatory drugs have been used to manage CD inflammation, the current first-line 

treatment for moderate to severe CD consists of biologic agents, typically anti-TNF-α antibodies 

[3,4]. However, this therapeutic approach has severe shortcomings: 50% of CD patients display 

no response or eventually lose responses to anti-TNF-α antibodies [4]. Prolonged use of anti-

TNF-α antibodies also has deleterious effects on immune system function, sensitizing patients to 

tuberculosis and other granulomatous infections [5,6]. New treatment paradigms are therefore 

necessary to manage this growing global health issue. 

CD patients are at an elevated risk of micronutrient deficiencies, including folate, vitamin 

B12, and vitamin D [3]. However, the impact of vitamin deficiencies on MAP infection and CD 

inflammation remains poorly characterized. The investigation detailed herein illustrates the 

connection between folate, vitamin B12, and vitamin D and macrophage-mediated inflammation 

during MAP infection. Initially, we demonstrate that MAP-positive CD patients have lower 

plasma folate and vitamin B12 levels than MAP-negative CD patients. Folate and B12 

supplementation attenuate inflammatory cytokine expression in macrophages after MAP 

exposure; conversely, folate and B12 deficiency exacerbates macrophage inflammatory cytokine 

expression and oxidative stress in co-cultured enterocytes. Furthermore, folate and B12 
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deficiencies impede apoptosis of infected macrophages, depriving the immune system of a 

crucial clearance mechanism for intracellular bacteria.  

Similarly, our investigation indicates a compelling role for vitamin D in macrophage 

mediated inflammation and MAP infection. We demonstrate that MAP-positive CD patients 

have lower levels of plasma calcitriol than MAP-negative patients. Conversion of calcifediol to 

calcitriol, a necessary step for vitamin D signaling, is shown to be impeded by MAP infection in 

macrophages. Calcitriol deprivation removes a necessary signal for CAMP expression and 

cathelicidin production, which improves intracellular and extracellular MAP survival. 

Furthermore, cathelicidin treatment is an anti-inflammatory signal that reduces inflammatory 

cytokine release independent of its bactericidal properties. Calcifediol and calcitriol are similarly 

anti-inflammatory, but during MAP infection only calcifediol remains effective. We establish 

that cathelicidin is a necessary downstream signal for calcitriol to mediate its anti-inflammatory 

effects. CAMP knockdown abolishes calcitriol’s effect on inflammatory cytokine expression. 

Finally, oxidative stress in intestinal epithelial cells co-cultured with MAP-infected macrophages 

is reduced by cathelicidin and calcitriol treatment, highlighting their relevance for CD tissue 

damage in the intestinal tract. 

The findings detailed in this investigation open a rich avenue of future inquiry to develop 

future research. While MAP is present in approximately 50% of CD patients, it is uncertain 

whether folate and vitamin B12’s effect on inflammation occurs with other CD-associated 

pathogens like adherent-invasive E. coli [7]. Furthermore, the effect of folate and B12 on other 

macrophage antimicrobial processes such as cathelicidin expression and phagocytosis remains 

uncharacterized. While we have described how macrophages respond in response to altered 
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folate and B12 availability, a mechanism by which these vitamins affect cell death and 

inflammatory cytokine expression remains unknown. Similarly, we confirmed that MAP 

infection blocks vitamin D activation in macrophages. However, the mechanism and putative 

virulence factor by which MAP mediates this effect remains uncharacterized. Our findings also 

suggest that cathelicidin and calcitriol may have beneficent effects on MAP-positive CD 

patients. Transition to in vivo models of MAP infection and Crohn’s disease may illuminate if 

clinical trials are warranted.  
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