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ABSTRACT 

This thesis focuses on two important computational problems in genomics and metagenomics 

with the public available next-generation sequencing data. One is about gene regulation, for 

which we explore how distal regulatory elements may interact with the proximal regulatory 

elements. The other is about metagenomics, in which we study how to reconstruct bacterial 

strain genomes from shotgun reads. Studying gene regulation, especially distal gene 

regulation, is important because regulatory elements, including those in distal regulatory 

regions, orchestrate when, where and how much a gene is activated under every experimental 

condition. Their dysfunction results in various types of diseases. Moreover, the current study 

on distal gene regulation is still under development. The study of bacterial strains is also vital, 

as the bacterial strains are the main source of drug resistance, mixed infection, reinfection, etc. 

The study of novel bacterial strains is still in its infancy, with only one tool that can work 

with multiple metagenomic samples while has suboptimal performance. We identified 

hundreds of pairs of regulatory elements that are biologically sound and are likely to 

contribute to the interaction of distal and proximal regulatory regions. We demonstrated for 

the first time that ribosomal protein genes share common distal regulatory regions under the 

same experimental conditions and might be differentially regulated across different 

experimental conditions. In addition, we developed a novel approach called SMS to 

reconstruct novel bacterial strains from multiple shotgun metagenomic samples. Tested on 

702 simulated and 195 experimental datasets, we showed that SMS has high accuracy in 

inferring the present strains, including the strain number, strain abundance, strain variations, 
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etc. Compared with the two existing approaches, SMS shows much better performance. Our 

studies shed new light on genomics and generated novel tools in metagenomics.  
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CHAPTER 1: INTRODUCTION 

1.1 Next-generation sequencing 

Next-generation sequencing (NGS) [1] refers to the non-Sanger-sequencing-based 

high-throughput DNA sequencing technologies that have been commercially available since 

2005. The entire human genome can be sequenced in one day with NGS technologies. By 

contrast, it took Sanger sequencing more than a decade to generate the first human draft 

genome in 2001 [1, 2]. The main difference between Sanger sequencing and NGS includes 

the sequencing capability, the sequenced fragment length, etc. The sequenced DNA fragments 

are called reads. While the Sanger method only sequences 96 or 392 reads of 1000 base pairs 

(bps) long or os in one instrumental run, NGS is massively parallel and can sequence millions 

of much shorter reads [3]. For instance, the NGS reads from Illumina in the early time are 

about 36 bps long and are about 150 bps long currently. 

NGS have revolutionized genomics, epigenomics and metagenomics research [4]. Various 

forms of NGS-based platforms have been developed, including chromatin 

immunoprecipitation followed by massive parallel sequencing (ChIP-Seq) [5, 6], 

RNA-sequencing (RNA-seq) [7], high-throughput chromosome conformation capture (Hi-C) 

[8], etc. ChIP-seq can identify transcription factor binding sites (TFBSs) of regulatory 

proteins called transcription factors (TFs) on the genome scale. It can also be applied to 

identify genome-wide histone modification patterns and other regulatory proteins. RNA-seq 

is widely used to profile gene expression under different experimental conditions, with more 
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accurate measurements than the previously used microarray-based technologies [9]. Hi-C is 

used to detect the physical closeness of two genomic regions in 3D, which indicates the 

potential physical interactions of two distant genomic regions [10].  

In addition to the above most widely used NGS platforms, there are other types of NGS 

experiments such as PAR-CLIP (Photoactivatable-Ribonucleoside-Enhanced Crosslinking 

and Immunoprecipitation) [11], CLASH (Cross-linking Ligation And Sequencing of Hybrids) 

[12], CAGE (Cap-Analysis Gene Expression) [13], DNase-seq (DNase I hypersensitive sites 

sequencing), ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing), etc. 

PAR-CLIP and CLASH are used to study the microRNA target sites [11, 12, 14-17]. CAGE is 

used to measure gene expression levels and transcription start sites of different transcripts, 

which is originally based on microarray while relies on NGS technologies since the last 

decade [13, 18, 19]. DNase-seq and ATAC-seq determine the genome-wide open chromatin 

regions, which describe all potential active elements, including active genes and regulatory 

elements under a specific experimental condition. These high-throughput approaches have 

generated a plethora of data and have revolutionzed our understanding of genomics, 

epigenomics, metagenomics, etc. [20, 21]. 

1.2 Gene regulation 

Gene regulation is a cellular mechanism related to gene expression that controls the types of 

gene products and the amount of each gene product synthesized under a given experimental 

context [22, 23]. It begins with open chromatin and transcription initiation, followed by 
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transcription, post-transcirption, translation, post-translational modifications, etc. [24]. At 

every step, gene expression is regulated precisely. For instance, chromatin structure is a key 

factor in gene regulation, where euchromatin and heterochromatin can interconvert through 

DNA methylation to modify histones and determines when and where the genome is active 

and ready for transcription initialization.  

The regulation of gene expression has important implications for controlling developmental 

processes, responses to environmental stress, adaptation to new environmental conditions, etc. 

Almost every cell in an organism has the same set of genes in its DNA. Some genes in the 

genome are always expressed because their function is fundamental to the organism. On the 

contrary, other genes may only be expressed in specific cells, tissues, or organs. At the same 

time, the amount of expression for each gene is precisely controlled in individual cell types 

under specific experimental conditions.  

Gene regulation modulates gene activities, which involve proximal regulatory elements in 

promoters and distal regulatory elements in enhancers [25-27]. Together with the regulatory 

proteins, the proximal and distal regulatory elements work together to turn on/off a gene in a 

cell. RNA polymerase is the enzyme responsible for transcription that polymerizes 

complementary nucleotides to synthesize mRNA molecules. TFs bind to their binding sites in 

promoters and enhancers to recruit RNA polymerase, which binds to specific DNA sequences 

called response elements in promoters. A promoter contains the basic regulatory elements of 

a gene, which explains the basal expression level of a gene. It is located near the gene, in 

upstream of the codon sequence. The size of the promoter can be 100-1000 bps. Enhancers 
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are cis-acting elements involved in increasing the activity of specific promoters. There are 

short DNA sequences of about 50-1500 bps to which TFs called activators. Enhancers can be 

located up to several million bps from the promoters. They can also be in the upstream or 

downstream of the promoters. In spite of their large distances from the promoters, enhancers 

are spatially close to promoters, allowing interactions with RNA polymerases and basal TFs 

in promoters. Activators bound to enhancer regions subsequently bind to mediator complexes, 

which in turn recruit RNA polymerase and basal TFs to promoters. The orientation of the 

enhancer sequences does not affect their functionality in strengthening gene expression 

levels. 

TFs play essential roles in gene regulation [6, 28, 29]. TFs are proteins that can bind to 

specific nucleotide sequences upstream of a gene and regulate the transcription of this gene. 

A motif is a pattern of the DNA segments bound by a TF, commonly represented by a 

position weight matrix or a consensus sequence (Figure 1-1). In high eukaryotes, multiple 

TFs often bind to their TFBSs within a short DNA region to work together to modulate the 

gene expression of their target genes. Such short regions with TFBSs of different TFs are 

called cis-regulatory modules. It is said that there are at least five to ten times more 

cis-regulatory modules than genes, which determine the temporal and spatial expression 

pattern of their target genes in high eukaryotes [30, 31].  

In order to understand gene transcriptional regulation, it is important to identify and study 

enhancer-promoter (EP) interactions (EPIs) [10]. As described above, promoters are the 

upstream 1000 bps regions of gene transcription start sites, and enhancers are short genomic 
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regions that can strengthen their target genes’ transcriptional levels independent of their 

distance and orientation to the target genes [32]. Enhancers interact with promoters of their 

target genes, which will increase target genes’ transcription and modulate their 

condition-specific expression [32-34]. In this thesis, we will study the EPIs and distal 

regulatory regions (also called enhancers) of ribosomal protein genes (RPGs), which will 

help us to better understand gene transcriptional regulation especially distal gene 

transcriptional regulation. 

As pairs of interacting TFs have been shown to contribute to EPIs by binding to enhancers 

and promoters, it is important to investigate which TF pairs may contribute to EPIs. Since a 

motif is the pattern of the DNA segments bound by a TF, it is meaningful to study the motif 

pairs that contribute to EPIs. Until now, we still lack a clear view of how TF pairs interact, 

how the interaction of TF pairs will contribute to EPIs, which TF pairs impact EPIs, etc. It is 

thus important to identify TF-binding motif pairs in high-quality EPIs. 
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Figure 1-1: The CTCF motif from JASPAR.  

Many resources are available to study gene regulation. TRANSFAC [28] provides data on 

eukaryotic TFs, their experimentally-determined TFBSs, consensus binding sequences, 

positional weight matrices, and regulated genes. JASPAR [29] is an open-access database 

containing manually curated, non-redundant TF motifs for TFs across six taxonomic groups. 

UniPROBE [35] database hosts data generated by universal protein binding microarray (PBM) 

technology on the in vitro DNA-binding specificities of TFs. MEME SUITE [36] provides a 

unified portal for online discovery and analysis of sequence motifs representing features such 

as DNA binding sites and protein interaction domains. 

1.3 RPG (ribosomal proteins genes) 

Human RPGs are house-keeping genes that code for the structural proteins in the ribosome, 

the machine that makes proteins in every organism. RPGs are well known for their 

coordinated expression, meaning that in a given species, their mRNA expression levels are 
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highly correlated across various experimental conditions [37]. In order to understand the 

molecular basis of the RPG coordinated gene expression [38, 39], it will be crucial to study 

RPG transcriptional regulation and address the following two issues: 1) How RPG 

coordinated expression is controlled; 2) how distal regulatory elements may contribute to the 

coordinated gene expression of RPGs. Rarely is a study that explores the distal regulatory 

regions of RPGs. Studying the RPG distal regulatory regions will thus shed new light on our 

understanding of RPG coordinated transcriptional regulation. 

Many studies have been carried out to understand how RPGs are coordinately regulated. 

Early experimental studies showed that several RPGs share TFBSs of a common TF and 

validated the regulatory roles of these TFBSs [40, 41]. Later, high-throughput experiments 

showed that TFs such as RAP1 and FHL1 bind promoters of almost all RPGs in yeast [42, 

43]. With the genomes of human and other organisms available, computational studies 

became popular and demonstrated that there are TFBSs of the same TFs in promoters of 

almost all RPGs in a species [37, 44-46]. 

All the above studies focused on RPG promoter regions. Rarely is a study that explores the 

distal regulatory regions of RPGs. To fill this gap, Li et al. previously studied the putative 

regulatory regions within one megabase (Mbps) of the 80 human RPGs with the DNase I 

hypersensitive sites (DHSs) in 349 samples [33]. For the sake of simplicity, henceforth, we 

use a “sample” to refer to a cell line, a cell type, or a tissue under an experimental condition. 

They identified 217 putative regulatory regions of RPGs that are shared by the majority of the 
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349 samples. More than 86% of these shared regulatory regions were supported by the 

chromatin interaction data. 

Although this previous study shed new light on human RPG transcriptional regulation, it is 

limited in the following aspects [33]. First, not all identified regions interacted with RPG 

promoters and thus they may not be RPG regulatory regions. Second, the previously 

identified regions are shared across the majority (>=85%) of the 349 samples and are limited 

in terms of studying sample-specific regulation of human RPGs. Third, these regulatory 

regions are limited to 1 Mbps neighborhood of RPGs, while regulatory regions may be more 

distal than 1 Mbps [47]. 

To understand human RPG distal regulation better, in this thesis, we defined sample-specific 

putative RPG regulatory regions directly from high-throughput chromatin interaction data in 

eleven samples [10, 48]. We identified about 22797 putative RPG regulatory regions, the 

majority of which were distal regions. More than 44% of these regions were only identified 

in one sample, implying that RPGs were likely differentially regulated in different samples. 

Interestingly, 2 to 77 RPGs shared a common regulatory region in a sample, and the same 

pairs of RPGs shared common regulatory regions across samples, which may partially 

explain their coordinated gene expression. By studying the overrepresented TF binding 

motifs in these regions in a sample, we identified common TF binding motifs shared by 

samples. Our study shed new light on the distal regulation of the human RPGs. 
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1.4 Metagenomics 

Metagenomics is also called microbial environmental genomics. It directly extracts the DNA 

of all microorganisms in a sample, constructs a metagenomic library, and uses the research 

strategy of genomics to study the genetic composition and community functions of all 

microorganisms in the given sample. It is a strategy to study microbial diversity and discover 

new genes. Its main steps include Cloning the total DNA (also called metagenome) of all 

microorganisms in a specific environment and obtaining new physiologically active 

substances by means of building a metagenomic library and screening; or designing primers 

according to the rDNA database through Phylogenetic analysis obtained genetic diversity and 

molecular ecology information of microorganisms in this environment. 

16S ribosomal RNA sequencing [49] and shotgun sequencing [50] are used in metagenomics 

to study both culturable and unculturable bacteria and archaea [51] with NGS technologies. 

16S ribosomal RNA sequencing use PCR to target and amplify portions of the 16S rRNA 

gene. Then PCR amplicons from an individual sample could be pooled together and 

sequenced. Shotgun metagenomic sequencing is different from 16S ribosomal RNA 

sequencing, which only targets the 16S rRNA gene [52]. In shotgun metagenomic 

sequencing, microbial genomes of all microbial organisms in the sample are randomly 

fragmented. The generated fragments are then sequenced. The sequenced fragments called 

reads are then employed to infer the present species and strains and their abundance in this 

sample. Therefore, shotgun metagenomic sequencing is more unbiased than the 16S  
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ribosomal RNA sequencing and is more widely applied in the current metagenomic studies 

[53-55].  

Hundreds of computational methods are developed for high-level taxon analysis, leaving 

about a few dozen computational methods available to infer bacterial strains from shotgun 

metagenomic reads. Most of these computational tools for bacterial strain analyses are 

known-strain-based. For example, Pathoscope 2.0 [56] is based on the 

expectation-maximization algorithm to reassign reads to known species/strains. Sigma [57] is 

based on a known-strain reference genome and a user-defined database with the maximum 

likelihood estimation to predict strains. StrainSeeker [58] needs a known-strain reference 

genome, a k-mer database, and a guide tree to identify k-mers at nodes. Although this type of 

analysis is valuable to understanding bacterial strains, they are primarily used to discover 

known strains, not to reconstruct novel ones. In practice, many mutations are likely to 

accumulate in bacterial strains. Therefore, genomes of novel strains rather than known strains 

are expected to appear in the samples. In other words, known strain information may be 

limited in practice [59]. 

Dozens of computational methods are available to infer novel microbial strains from shotgun 

metagenomic reads. MixtureS [60] and StrainFinder [61] showed better performance for 

novel strain identifications previously [60]. MixtureS predicts novel bacterial strains in one 

sample based on binomial testing and has good performance. StrainFinder uses the 

multinomial distribution to predict novel strains in multiple samples. However, it cannot even 
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reliably predict the strain number. MIDAS [62] analyzes novel bacterial strains based on 

marker genes with a database of reference genomes and can predict one strain at a time.  

In summary, existing methods and tools often depend on known strains, barely can work on 

multiple samples, and are not reliable or not easy to use. It will be necessary to develop a 

more user-friendly tool to identify strains more accurately. In this thesis, we thus developed a 

novel approach called SMS to reconstruct bacterial strains from multiple shotgun 

metagenomic samples to address the above limitations. 
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CHAPTER 2: MOTIF PAIRS IN ENHANCER-PROMOTER 

INTERACTIONS 

Previously published as Wang S, Hu H, Li X. A systematic study of motif pairs that may 

facilitate enhancer-promoter interactions. J Integr Bioinform. 2022 Feb 7;19(1). 

2.1 A systematic study of motif pairs that may facilitate enhancer-promoter interactions 

2.1.1 Introduction 

Identifying enhancer-promoter (EP) interactions is important for the understanding of gene 

transcriptional regulation [10]. Enhancers are short genomic regions that can strengthen their 

target genes’ transcriptional levels independent of their distance and orientation to the target 

genes [32]. They are in general several hundred bps long, can be hundreds to thousands of bps 

away from their target genes, and can be in the upstream or downstream of the target genes or 

in introns. By interacting with promoters of their target genes, enhancers increase target 

genes’ transcription and modulate their condition-specific expression [32-34]. 

There are many studies that have attempted to identify EP interactions. Experimental 

approaches based on chromatin conformation capture techniques and their extensions have 

identified many EP interactions across several cell lines, cell types and tissues [10, 48, 63-68]. 

These experimental approaches nurtured our rudimentary understanding of EP interactions. 

However, they are either time-consuming or still costly because of the large number of EP 

interactions under an experimental condition and the required high-sequencing depth to 
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comprehensively identify them on the genome-scale [10, 69]. Computational methods for EP 

interaction predictions are thus indispensable. These methods usually consider the distance, 

conservation, correlated activity between enhancers and promoters, etc., to identify EP 

interactions [70-79]. Although having shown success, they have a suboptimal performance on 

discovering EP interactions, especially condition-specific EP interactions [47, 74, 80-82]. It is 

thus necessary to further investigate the characteristics of EP interactions, which may 

significantly facilitate the improvement of the accuracy of the existing methods. 

There are several studies that pointed out a new venue to explore the characteristics of EP 

interactions, which suggested that the interaction of transcription factors (TFs) that bind an 

enhancer and TFs that bind a promoter of an EP pair may contribute to the interaction of this 

EP pair [32, 69, 77, 83-87]. For instance, it is well known that the TF and structural protein 

CTCF binds to a fraction of enhancers and promoters, which facilitates the physical 

interaction of enhancers and promoters in these EP pairs [88]. Another example, the 

ubiquitous TF YY1, binds to enhancers and promoters and contributes to EP interactions as 

well [89]. It is thus promising to systematically study the potential interactions of TFs that 

bind to enhancers and promoters and understand how such interactions may lead to the 

interaction of EP pairs. A computational study integrated chromatin immunoprecipitation 

followed by massive parallel sequencing (ChIP-seq) data and Hi-C data in two cell lines and 

predicted 565 interactions of DNA-binding proteins, including TFs [69]. This study was 

encouraging while limited with a small number of TFs in only two cell lines. To date, we still 
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lack a clear view of the interaction of which TF pairs may render the specificity of the 

interaction of the enhancer and the promoter in an EP pair.  

In order to address these problems, we systematically investigated the co-occurrence of 

potential TF binding motifs in enhancers and their corresponding interacting promoters 

(Material and Methods). A motif is a TF binding pattern, which is often represented by a 

position weight matrix [90, 91]. We identified 114 non-redundant motifs in interacting EP 

pairs that represented the binding patterns of potential TFs. We also identified 423 motif pairs 

that significantly co-occurred in interacting EP pairs. Interestingly, on average, more than 62% 

of these motif pairs in a cell line were shared across cell lines and were able to help to 

distinguish true interacting EP pairs from false ones. Our study provides a comprehensive list 

of motif pairs that may contribute to EP physical interactions and facilitate their predictions, 

which also creates meaningful hypotheses for experimental validation of EP interactions.   

2.1.2 Material and Methods 

2.1.2.1 Positive and negative EP pairs 

The Hi-C contact matrices are downloaded in the following seven cell lines: GM12878, 

HMEC, HUVEC, IMR90, K562, KBM7 and NHEK, which were normalized with the Knight 

and Ruiz normalization vectors by Rao et al. [10]. Two genomic regions are interacted in a 

cell line (except GM12878) if the corresponding entry in the normalized contact matrix of 

this cell line was larger than 30. The interacting regions defined by this cutoff would include 

almost all pairs of interacting regions defined in IMR90 and K562 by independent studies [63, 
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64]. Because the Hi-C sequencing depth in GM12878 was one magnitude larger than that in 

all other cell lines (Table 2-1), to control false positives, a larger cutoff 150 is used in in 

GM12878. This larger cutoff resulted in a similar number of selected pairs of interacting 

regions in GM212878 [10]. In this way, positive pairs of interacting regions are got. Note that 

we could use the looplists defined by Rao et al. as positive pairs of interacting regions [10]. 

However, the number of looplists was small, which resulted in an even smaller number of 

positive EP pairs that could not be used to discover interacting TF pairs below.  

Table 2-1: Basic information about the data used in the paper. 

cell line sequencing 

depth 

(million) 

#enhancers #promoters #enhancer 

length 

#promoter 

length 

#positive 

EP pairs 

#3rd type 

negative EP 

pairs  

GM12878 15112.0 2731 2171 372 1100 3688 28458 

HMEC 1068.0 1761 1713 370 1100 2157 10719 

HUVEC 892.8 751 650 382 1100 835 4966 

IMR90 1683.1 2344 2137 381 1100 3226 8859 

K562 1366.2 2096 1942 367 1100 2972 9666 

KBM7 1247.9 6278 5970 320 1100 7862 56787 

NHEK 1347.5 1160 1018 372 1100 1313 5022 

In order to obtain positive EP pairs in a cell line, the above positive pairs of genomic regions 

are overlapped with the corresponding “active” enhancers and “active” promoters (Figure 

2-1A). An active enhancer was one of the 32284 enhancers defined by FANTOM [92] that 

overlapped with the H3K27ac ChIP-seq peaks [93] in the corresponding cell line. To our 

knowledge, FANTOM enhancers were the largest collection of mammalian enhancers with 

direct experimental evidence. With the transcription start sites (TSSs) defined in GENCODE, 

we defined 57820 promoters, each of which was the genomic region from the upstream 1000 
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bps to the downstream of 100 bps the TSS of a GENCODE gene. An active promoter was 

then defined with these GENCODE promoters and the ENCODE RNA-seq data as 

previously [47, 76]. In this way, every positive EP pair had its enhancer overlapping with one 

genomic region and its promoter overlapping with the other genomic region of a positive pair 

of genomic regions, and the distance between the active enhancer and the active promoter 

was within 2.5 kilobase pairs to 2 megabase pairs. The majority of the positive EP pairs were 

likely to be true positives, despite false positives and false negatives. 

 

Figure 2-1: EP pairs and motif pairs (A). The procedure to obtain positive and negative EP 

pairs. (B). The pipeline to study motif pairs in positive EP pairs.  

To assess how well the predicted motif pairs facilitate the identification of true interacting EP 

pairs, we generated three types of negative EP pairs (Figure 2-1A). The first type was the 

permuted version of the positive ones, in which the enhancer and the promoter sequence of a 

negative EP pair was a random permutation of the enhancer and the promoter sequence in the 
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corresponding positive EP pair, respectively. The second type of negative EP pairs was 

generated by replacing the enhancers in positive EP pairs with randomly chosen genomic 

regions. These random genomic regions had a similar length distribution and a similar 

distance distribution to promoters as the enhancers in positive EP pairs. The third type was 

defined from the normalized Hi-C contact matrices with the cutoff 5, similar to the positive 

EP pairs (Figure 2-1A). In brief, if a pair of genomic regions had fewer than 5 supported 

normalized Hi-C reads, we called this pair of regions a negative pair of genomic regions. We 

then overlapped the negative pairs of genomic regions with the active FANTOM enhancers 

and active GENCODE promoters to obtain negative EP pairs. The first two types of negative 

EP pairs were used to assess whether the predicted motif pairs could distinguish non-EP pairs 

from positive EP pairs, while the third type was used to determine whether they could 

separate the interacting pairs from non-interacting pairs.  

2.1.2.2 Non-redundant known motifs 

We collected known TF binding motifs from JASPAR and CIS-BP databases [90, 94]. We 

compared every pair of motifs from these two sources with the tool STAMP [95]. As 

previously [96, 97], if two motifs had a STAMP similarity E-value smaller than 1E-05, we 

claimed they were similar. We obtained 649 non-redundant known motifs from the two sources 

by keeping only one motif in each group of similar motifs. 
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2.1.2.3 Discovery of motif pairs  

To study motif pairs that may facilitate EP interactions, we obtained the DNA sequence of the 

enhancer and promoter in every positive EP pair in each cell line. We then concatenated an 

enhancer sequence with its corresponding promoter sequence, if this enhancer and this 

promoter formed a positive EP pair (Figure 2-1B). The obtained sequences were repeat masked 

by repeatmasker with the default parameters (https://www.repeatmasker.org/) so that patterns 

due to the overrepresentation of repeats in input sequences would not be identified as TF 

binding motifs. 

Next, we applied the tool SIOMICS [96, 98] to these repeat-free concatenated sequences in 

every cell line to identify motif modules. A motif module is a group of motifs whose binding 

sites significantly co-occur in input sequences. Biologically, a motif module mimics the group 

of motifs for one TF and its cofactor TFs, where this TF and its cofactor TFs bind to sequences 

to regulate a common group of genes. SIOMICS considers multiple co-occurring sequence 

patterns to identify motif modules and motifs, which significantly reduces false positive 

predictions compared with the strategy to predict individual TF motifs separately [91]. 

Moreover, it can de novo predict motifs, which thus does not depend on the limited number of 

known motifs available. We ran SIOMICS on the repeat-masked sequences in each cell line 

separately, with the default parameters except s = 30 and n = 1500, which meant that we 

intended to identify up to 1500 motifs in a cell line and all motifs in a motif module must 

co-occur in at least 30 input sequences. The choice of 1500 is because there are about 1500 

sequencing-specific binding TFs in the human genome [99]. SIOMICS assesses the statistical 

https://www.repeatmasker.org/
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significance of the co-occurrence of every group of motifs by the Poisson clumping heuristic 

[100] and outputs the significant motif groups as motif modules (corrected p-value<0.01). 

We then compared the predicted motifs in motif modules with the above non-redundant known 

motifs. A predicted motif was similar to a known motif if the STAMP E-value smaller than 

1E-5. The TF(s) corresponding to this known motif was considered to be the TF(s) bound to 

this predicted motif. We also compared motifs predicted in different cell lines and claimed that 

two predicted motifs were the same if their STAMP E-value was smaller than 1E-8. This more 

stringent cutoff 1E-8 was used here because the same motifs predicted by the same tool should 

be more similar to each other than the motifs from different tools/sources [101, 102]. 

Alternatively, we studied motif modules with known TF motifs. With the above 649 known 

motifs, we scanned the same EP sequences with FIMO [103] in every cell line separately to 

obtain initial putative binding sites of known motifs. We then studied the co-occurrence of 

known motifs with these binding sites by ChIPModule [104]. ChIPModule is similar to 

SIOMICS except that it considers the co-occurrence of the binding sites of known motifs to 

predict motif modules, which minimizes the false positive predictions in these binding sites 

defined by FIMO [104].   

Finally, with the predicted motif modules, we obtained all pairs of motifs in every motif 

module. We then kept the pairs with one motif occurring in promoters and the other motif 

occurring in enhancers of positive EP pairs. The occurrence of a motif in enhancers and 

promoters was defined by SIOMICS. In other words, we filtered pairs that co-occurred in only 
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enhancers or only promoters. These remaining pairs were the final motif pairs we considered, 

the TFs of which may be likely to interact and contribute to the interaction of the EP pairs 

(Figure 2-1B). 

2.1.2.4 Homogeneous motif pairs 

We consider a motif pair composed of the same motif as a homogeneous motif pair if this 

motif significantly co-occurs in both enhancers and promoters of positive EP pairs. We apply 

two approaches to measure the significance of such a co-occurrence of the same motif to 

identify homogeneous motif pairs. In one way, assume there are N positive EP pairs, and n 

has such a motif in both enhancers and promoters (based on FIMO scan). Assume the average 

promoter and enhancer length is l1 and l2 in this cell line, respectively. Also, assume this 

motif occurs x times in these N EP pairs. We calculate the p-value as pbinom(n, N ,p), where 

pbinom(n, N ,p), where 𝑝 =
𝑥

𝑁∗(𝑙1+𝑙2)
  , 𝑝𝑏𝑖𝑛𝑜𝑚(𝑥, 𝑛, 𝑝) = ∑

𝑛!

𝑖!(𝑛−𝑖)!
𝑝𝑖(1 − 𝑝)𝑛−𝑖𝑛

𝑖=𝑥 . If this 

p-value is smaller than 0.01/𝐾, where K is the number of the predicted motifs in this cell 

line, we claim that this motif forms a homogeneous motif pair. In the other way, assume this 

motif occurs in x of the N enhancers and y of the N promoters based on the FIMO scan. We 

calculate the p-value with the same formula but different 𝑝 =
𝑥∗𝑦

𝑁∗𝑁
. If this p-value is smaller 

than 0.01/𝐾, we claim this motif is significant.  

2.1.2.5 Enrichment analysis of the predicted EP motif pairs 

We compared the predicted EP motif pairs with known motif pairs of interacting TFs. We 

collected directly and indirectly interacting TF pairs from BioGRID [105]. The direct TF 



21 

 

interactions meant that two TFs physically interacted with each other. The indirect ones 

referred to pairs of TFs without direct interaction but directly interacting with a common third 

protein. There were 6820 pairs of direct and 120,277 pairs of indirect known TF interactions in 

BioGRID, which involved 1520 and 1207 TFs, respectively. We then assessed the statistical 

significance of the enrichment of the motif pairs of known interacting TFs in the predicted 

motif pairs in every cell line by the hypergeometric testing. In brief, assume there were N TFs 

and M pairs of TFs in BioGrid, among which there were m pairs that involved n TFs in the 

predicted EP motif pairs in a cell line. We calculated the p-value of enrichment of motif pairs of 

known interacting TFs as 𝑝ℎ𝑦𝑝𝑒𝑟 (𝑚,
𝑛(𝑛−1)

2
, 𝑀,

𝑁(𝑁−1)

2
) , where 𝑝ℎ𝑦𝑝𝑒𝑟(𝑥1, 𝑦1, 𝑥2, 𝑦2) =

∑
𝑦1!(𝑦2−𝑦1)!𝑥2!(𝑦2−𝑥2)!

𝑦2!𝑘!(𝑥2−𝑘)!(𝑦1−𝑘)!(𝑦2−𝑥2−𝑦1+𝑘)!

𝑚𝑖𝑛 (𝑦1,𝑥2)
𝑘=𝑥1

. We also compared the predicted EP motif pairs with 

those predicted in a previous study, which predicted 298 pairs of TF interactions involved 61 

TFs in GM12878 and 46 pairs of TF interactions involved 22 TFs in K562 [69].  

2.1.2.6 Enhancer and promoter enriched motifs 

We studied whether a predicted motif preferred to occur in enhancers or promoters. We 

assessed the statistical significance of a preference in two ways by the binomial testing, 

similarly to what we did in the analysis of the homogenous motif pairs. That is, we calculated 

the significance by considering the number of sequences only or both the number and the 

length of sequences.  
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2.1.2.7 Machine learning methods to distinguish positive from negative EP pairs 

We studied how well the predicted motif pairs distinguish positive from negative EP pairs. We 

described each EP pair with a 4n+1 vector, where 4 entries were for each of the n motif pairs 

and one entry was for the positive or negative status. The four entries for a motif pair were the 

occurrence number of its motifs (based on FIMO) in the enhancer and promoter, respectively.  

We applied the following four methods (https://scikit-learn.org/stable/), random forests, least 

absolute shrinkage and selection operator (lasso), decision tree, and support vector machines 

[106-109], to distinguish positive from negative EP pairs . We did 10-fold cross-validation to 

measure the performance of different methods. The four methods had similar F1 scores in 

separating positives from negatives. Because lasso selects a subset of the predicted motif pairs 

while achieved similar performance, we presented our study with lasso in this study. 

2.1.3 Results 

2.1.3.1 The predicted motif pairs were likely to be biologically meaningful 

We identified 434 motif pairs in interacting EP pairs in seven cell lines (Table 2-2). For every 

motif pair, at least one motif occurred in enhancers, and the other motif occurred in promoters 

of significantly many interacting EP pairs. These motif pairs were from the predicted motif 

modules, each of which contained 2 to 5 motifs. As mentioned above, a motif module is a 

statically significant group of co-occurring motifs, which represents the motif combination of 

a TF and its cofactors [110]. The predicted motifs, motif pairs, motif modules, and other 

information are available at https://doi.org/10.6084/m9.figshare.14192000. 

https://scikit-learn.org/stable/
https://doi.org/10.6084/m9.figshare.14192000
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Table 2-2: The predicted motif pairs in seven cell lines. 

Cell line 

(billion) 

#enhancers #promoters #EP 

pairs 

#predicted 

motifs 

#predicted motif pairs 

GM12878(15.1) 2731 2171 3688 51(76.47%) 233(66.52%, 0.86%, 1.23E-14) 

HMEC(1.1) 1761 1713 2157 33(87.88%) 88(59.09%, 2.27%, 0) 

HUVEC(0.9) 751 650 835 8(100.0%) 5(60.0%, 0, 0) 

IMR90(1.7) 2344 2137 3226 53(71.7%) 116(59.48%, 7.76%, 0) 

K562(1.3) 2096 1942 2972 48(83.33%) 144(56.25%, 6.25%, 3.33E-16) 

KBM7(1.2) 6278 5970 7862 78(53.85%) 264(42.8%, 8.33%, 1.25E-14) 

NHEK(1.3) 1160 1018 1313 18(88.89%) 28(89.29%, 7.14%, 4.44E-16) 

The sequencing depth is under each cell line name in the first column, in the unit of billion. The 

percentage in the second last column is the percent of motifs in a cell line identified in other cell lines. 

The four numbers in the last column are the number of the predicted motif pairs, the percentage of the 

predicted motif pairs in a cell line identified in other cell lines, the percentage of random motif pairs 

in a cell line identified in other cell lines, and the p-value of the number of the predicted motif pairs in 

a cell line identified in other cell lines, respectively. 

The identified motif pairs were likely to be biologically meaningful, because we did not 

discover any motif pair when we carried out the same procedure in random sequences (the 

first type of negative EP pairs). We generated the corresponding number of random sequences 

as the original input for each of the seven cell lines by randomly permuting the nucleotides in 

each original sequence. We could not identify any motif in any cell line by applying the same 

procedure to these random sequences in each cell line. We thus could not identify any motif 

pair, implying the biological significance of the identified motif pairs.  

The predicted motifs also corroborated the biological significance of the identified motif 

pairs. Motif pairs were composed of pairs of motifs predicted in the corresponding cell line. 

We noticed that on average, we independently discovered, more than 80% of the predicted 

motifs in different cell lines. The re-discovered motifs in multiple cell lines were not due to 
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the shared EP pairs. We removed the shared EP pairs between every pair of GM12878, 

IMR90 and KBM7, which had the largest number of EP pairs, we could still find about 75% 

of the predicted motifs shared between every pair of the three cell lines. The independent 

discovery of the majority of motifs in other cell lines supported that these motifs were likely 

biological meaningful, which corroborated the function of the predicted motif pairs. 

Moreover, we also noticed that, on average, more than 55% of motifs in a cell line were 

similar to the annotated known motifs [90], further supporting the biological significance of 

the identified motif pairs in different cell lines.  

The conservation of the identified motif pairs supported their biological significance as well. 

On average, more than 62% of motif pairs in one cell line were independently identified in 

other cell lines (Table 2-2). By randomly choosing the same number of motif pairs in each of 

the seven cell lines, we never had more than 10% random motif pairs discovered in other cell 

lines (p-value<1.25E-14). After removing similar motif pairs (both pairs of motifs had 

STAMP E-value<1E-08), we obtained 423 non-redundant motif pairs in seven cell lines. The 

conservation of the identified motif pairs suggests that these motif pairs were likely to be 

biologically meaningful. 

2.1.3.2 The predicted motif pairs were enriched with motif pairs of interacting TFs  

In addition to the above evidence that supported the predicted motif pairs, we noticed that the 

TFs binding to these motif pairs is likely to interact. We obtained the TFs that may bind to a 

motif by comparing the predicted motifs with known motifs. In this way, we obtained the 
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predicted TF pairs for the corresponding predicted motif pairs. We then compared the 

predicted TF pairs with the known interacting TF pairs extracted from BioGRID [105] 

(Material and Methods). We found that the predicted motif pairs were significantly enriched 

with those of interacting TFs in BioGRID. 

In brief, in every cell line, we obtained TF pairs corresponding to the predicted motif pairs. 

Multiple TFs may bind to the same motif. We thus considered the TFs for a predicted motif in 

two ways: one was to include all TFs with their motifs similar to a predicted motif as the TFs 

of this predicted motif, and the other was to consider only the TF with the most similar motif 

as the TF of a predicted motif (STAMP E-value <1E-05 in both cases). In this way, we 

obtained two sets of TF pairs for the predicted motif pairs in every cell line (Figure 2-2 and 

Table 2-3). We then compared each of the two sets of TF pairs with the interacting TF pairs in 

BioGRID. The interacting TF pairs in BioGRID interacted directly or indirectly through a 

third common protein (Material and Methods). We found that the predicted interacting TF 

pairs were significantly enriched with the known interacting TF pairs in BioGRID in almost 

every cell line by hypergeometric testing (Figure 2-2 and Table 2-3).   
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Figure 2-2: The predicted motif pairs are enriched with known interacting TF pairs. 

Table 2-3: Comparison of the predicted TF interaction with known ones in BioGRID. 

cell line #predicted 

TFs 

supported by 

BioGRID 

#predicted direct 

TFs pairs 

supported by 

BioGRID 

P-value of #predicted 

direct TF pairs  

supported by 

BioGRID 

#predicted TF 

pairs supported 

by BioGRID 

 

P-value of # TF 

pairs  supported 

by BioGRID 

GM12878 299 

(265) 

335 

(208) 

5.7E-06 

(4.4E-01) 

7252 

(4868) 

6.4E-257 

(1.5E-65) 

HMEC 213 

(139) 

194 

(56) 

2.4E-07 

(5.0E-01) 

3902 

(1430) 

6.1E-178 

(4.7E-32) 

HUVEC 73 

(44) 

55 

(16) 

1.13E-15 

(4.1E-05) 

912 

(277) 

8.66E-228 

(1.3E-53) 

IMR90 262 

(205) 

297 

(113) 

7.0E-11 

(8.2E-01) 

6303 

(2753) 

0 

(5.3E-23) 

K562 285 

(241) 

258 

(164) 

1.0E-01 

(6.9E-01) 

6207 

(3733) 

1.2E-160 

(8.1E-25) 

KBM7 359 

(307) 

557 

(392) 

4.4E-19 

(1.19E-11) 

10876 

(8179) 

0 

(0) 

NHEK 78 

(57) 

56 

(33) 

7.5E-14 

(4.0E-10) 

1071 

(536) 

1.2E-278 

(4.5E-128) 

In each entry, the information in order is the result based on all TFs for each predicted motif with 

STAMP cutoff 1E-05, and the result based on the most similar TF for each predicted motif with 

STAMP cutoff 1E-05. The p-value in 4th and 6th column is calculated based on hypergeometric testing. 

There are 1520 TFs in BioGRID, which are supported by GO. And there are 6820 TF pairs in 

BioGRID based on the 1520 TFs 
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Previously, Zhang et al. studied the ChIP-seq data and Hi-C data and computationally 

predicted the interactions of 61 TFs in GM12878 and 22 TFs in K562 [69]. We compared the 

predicted TF pairs in this study with theirs. There were 27 and 10 TFs in GM12878 and K562, 

respectively, shared by Zhang et al.’s study and this study. The two studies did not share all 

TFs, because certain TFs do not have sequence-specific binding motifs or do not have a 

known motif. There were 55 interactions in GM12878 and 4 interactions in K562 involving 

these shared TFs identified in Zhang et al.’s study. We identified 46 of the 55 interactions in 

GM12878 and 4 of 4 interactions in K562 (p-value 4.0E-27 and 0, respectively).  

We investigated why we did not predict the remaining 9 interactions in GM12878. We found 

that we predict at least 8 of these 9 TF interactions. The motif pairs corresponding to these 8 

TF pairs did not satisfy the motif similarity cutoff 1E-05 when we compared the predicted 

motifs with the known motifs. We also examined the motif pairs that were composed of 

known motifs and predicted in GM12878. We could identify all of the 55 TF pairs in 

GM12878, including all TF pairs of the missing 9 TF pairs. Moreover, we similarly compared 

the TF interactions predicted by Zhang et al. with the BioGRID. Zhang et al. predicted much 

fewer interactions, and the enrichment p-values of their predictions were much larger (Table 

2-4). 

 

 

 

 

  



28 

 

Table 2-4: Comparison between Zhang et al.’s study with BioGRID 

cell line 

#predicted TFs 

supported by 

BioGRID 

#predicted 

direct TFs pairs 

supported by 

BioGRID 

P-value of # 

predicted direct TF 

pairs supported by 

BioGRID 

#predicted TF pairs 

supported by 

BioGRID 

 

P-value of # TF 

pairs supported 

by BioGRID 

GM12878 61 25 5.8E-05 155 1 

K562 22 4 1.3E-2 34 3.0E-2 

2.1.3.3 The predicted motif pairs were supported by EN-CODEC annotation  

We compared the predicted motif pairs in GM12878 and K562 with the EN-CODEC 

annotation [111]. EN-CODEC did not provide motif pairs or TF pairs. Instead, it annotated 

TFs that bind to enhancers and promoters of individual gene based on TF-specific ChIP-seq 

data in GM12878 and K562. Its enhancers were defined computationally based on 10 histone 

markers and integrated with additional experimental evidence. The enhancers were connected 

to their target genes by computational methods and filtered with experimental data such as 

Hi-C data. Because of the computational nature of the predicted enhancers and EP pairs in 

EN-CODEC, together with the fact that the binding of the cofactors instead of a TF under 

consideration may result in the discovery of the binding of this TF instead of its cofactors in 

ChIP-seq, the TF-gene relation annotated in EN-CODEC may have both false positives and 

false negatives.  

From the annotation, we defined an EN-CODEC TF pair as a pair of TFs with known motifs, 

in which one TF bound to enhancers and the other TF bound to promoters of the same genes 

for more than 30 genes. The cutoff 30 was for the consistency purpose, as each of our 

predicted motif pairs above occurred in at least 30 EP pairs. We considered only TFs with 
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known motifs, because we could only compare the predicted motif pairs with TF pairs of 

known motifs. In this way, we obtained 1379 and 4390 EN-CODEC TF pairs in GM12878 

and K562, respectively, which consisted 67 TFs in GM12878 and 109 TFs in K562 (Table 

2-5). We predicted motifs for 31 of the 67 TFs in GM12878 and 57 of the 109 TFs in K562. 

For motif pairs composed of these predicted motifs, more than 77% of motif pairs in 

GM12878 and all motif pairs in K562 were supported by the EN-CODEC TF pairs, 

indicating a high precision of our predicted motif pairs. On the other hand, fewer than 12% of 

EN-CODEC TF pairs were supported by our motif pairs.  

The much lower percentage of EN-CODEC TF pairs were supported, likely due to the large 

percentage of false positive EN-CODEC TF pairs we obtained above. Here we had only 67 

TFs in GM12878 and 109 TFs in K562, while we had 1379 TF pairs in GM12878 and 4390 

TF pairs in K560 (Table 2-5). In other words, more than 62% and 74% of all possible TF 

pairs regulated more than 30 genes, which was highly unlikely, indicating that the cofactors 

in ChIP-seq data may have biased the defined the TF-gene relation in EN-CODEC. In fact, 

Zhang et al. integrated the same Hi-C and TF-specific ChIP-seq data in GM12878 and K562 

and obtained much fewer TF pairs. Moreover, we could only identify 77 motif pairs in 

GM12878 and 490 motif pairs in K562 with known motifs of these TFs by the 

aforementioned ChIPModule analyses we did, suggesting that the majority of the defined 

EN-CODEC TF pairs did not occur in EP pairs of enough genes to be statistically significant. 

In other words, although we may have missed certain motif pairs that contribute to EP  
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interactions, at least more than 77% of the predicted motif pairs were likely biologically 

meaningful.   

Table 2-5: EP motif pair comparison with EN-CODEC. 

Cell line method % predicted motif pairs shared 

with EN-CODEC 

% TF pairs in EN-CODEC 

identified 

GM12878 Based on all TFs 64/75=85.33% 87/1379=6.31% 

Based on unique TFs 51/66=77.27% 50/1379=3.63% 

K562 Based on all TFs 25/25=100.00% 490/4390=11.16% 

Based on unique TFs 22/22=100.00% 237/4390=5.40% 

‘Based on all TFs’ is the result based on all TFs with their motifs similar to each predicted motif 

(STAMP E-value<1E-05). ‘Based on unique TF’ is the result based on the TF with its motif most 

similar to each predicted motif (STAMP E-value<1E-05).  

2.1.3.4 The predicted motif pairs can help to distinguish positive EP pairs from negative ones 

Since the predicted motif pairs were likely to be biologically meaningful, we tested whether 

they could help to distinguish positive EP pairs from negative ones (Material and Methods). 

We found that the predicted motif pairs separated the positive EP pairs from the first two 

types of negative EP pairs well and reasonably distinguish the positive EP pairs from the third 

type of negative EP pairs (Table 2-6). All had the F1 score larger than 0.66. 
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Table 2-6: The accuracy of motif pairs in distinguishing positive EP pairs from three types of 

negative EP pairs based on lasso. 

Cell line 1st type  2nd type  3rd type  #selected motif 

pairs 

%selected motif 

pairs shared  

GM12878 (0.91,0.92,0.92) (0.86,0.76,0.80) (0.69,0.87,0.77) (78, 96, 70) 43/70=61.43% 

HMEC (0.90,0.90,0.90) (0.85,0.72,0.78) (0.52,0.99,0.68) (66, 58, 36) 26/36=72.22% 

HUVEC (0.83,0.88,0.85) (0.67,0.79,0.70) (0.51,1.00,0.67) (5, 5, 5) 5/5=100.00% 

IMR90 (0.91,0.92,0.92) (0.91,0.79,0.84) (0.50,0.99,0.67) (56, 86, 43) 18/43=41.86% 

K562 (0.91,0.90,0.91) (0.87,0.75,0.81) (0.50,0.97,0.66) (71, 102, 53) 25/53=47.17% 

KBM7 (0.91,0.89,0.9) (0.90,0.72,0.80) (0.59,0.90,0.71) (107,108,53) 16/17=94.12% 

NHEK (0.89,0.90,0.89) (0.65,0.78,0.70) (0.51,0.99,0.67) (23, 24, 17) 16/40=40.00% 

Average (0.89,0.90,0.90) (0.82,0.76,0.78) (0.55,0.96,0.69) (58,68,40) 55.46% 

The three numbers from the 2nd column to the 4th column are the precision, recall and F1 score. The 

second last column is the number of motif pairs selected by lasso in distinguishing positives from 

negatives for the three types of negatives in order. The last column shows the percentage of the 

selected motif pairs based on the third type of negatives by lasso in multiple cell lines. 

We tried to determine how well the identified motif pairs could differentiate the positive EP 

pairs from the first two types of negative ones (Material and Methods). These two types of 

negative ones were “false” EP pairs. We found that the predicted motif pairs told the positive 

EP pairs apart from the first type of negative EP pairs with an average precision of 0.89, and a 

recall of 0.90 in individual cell lines in 10-fold cross validation. Similarly, on average, the 

predicted motif pairs distinguished the positive EP pairs from the second type of negative EP 

pairs with an average precision of 0.82, and a recall of 0.76 in the 10-fold cross-validation 

(Table 2-6).  

We also studied how well the predicted motif pairs separated the positive EP pairs from the 

third type of negative EP pairs. In the 10-fold cross validation, the precision in all cell lines 
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was from 0.50 to 0.69, while the recall was from 0.87 to 1 (Table 2-6). The much-reduced 

precision was likely because the number of negative EP pairs was much larger than that of 

positive EP pairs. We also noticed that the F1 score was decreasing from the first type of 

negatives to the third type of negatives, suggesting that it was more difficult to distinguish 

positive EP pairs from the third type of negatives than that from the first type of negatives. 

However, the F1 score was still above 0.66, indicating that the predicted motif pairs could 

facilitate to distinguish the true EP interactions from the false ones. In total, lasso selected 5 

to 70 motif pairs in a cell line, which corresponded to 147 non-redundant motif pairs (Table 

2-6). There were 30 motif pairs selected independently in at least two different cell lines. 

We studied whether the predicted motif pairs in one cell line could distinguish the positive EP 

pairs from the third type of negative EP pairs in another cell line. The identified motif pairs in 

one cell line had similar precision and recall to distinguish the positive EP pairs from the 

third type of negative EP pairs in every other cell line to the predicted motif pairs from the 

corresponding cell line. This suggested that a large proportion of the predicted motif pairs in 

one cell line were likely to be conserved in another cell line. In other words, the predicted 

motif pairs represented conserved mechanisms across cell lines. We noticed that different cell 

lines shared not only the majority of the predicted motif pairs but also the majority of 

selected motif pairs used to distinguish positive EP pairs from the third type of negative EP 

pairs (Table 2-6).  
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2.1.3.5 The selected motif pairs are likely to contribute to EP interactions 

We studied whether the selected motif pairs contribute to EP interactions. Starting from the 

above 147 selected motif pairs, we identified pairs of TFs with their motifs similar to the 

selected motif pairs (STAMP E-value<1E-5). We could identify TF pairs for 72 of the above 

147 selected motif pairs and 19 of the 30 motif pairs selected in multiple cell lines. For 64 of 

the 72 selected motif pairs and 18 of the 19 selected conserved motif pairs, their 

corresponding pairs of TFs interact in BioGRID. For at least 45 of the 72 pairs and 14 of the 

19 pairs are shown to contribute to EP interactions in literature, among which 40 of the 72 

pairs and 14 of the 19 pairs are supported by both BioGRID and literature. We provided two 

examples of the TF pairs corresponding to these selected motif pairs in the following. 

An example of a novel motif pair selected is for the TF pair GATA1-ZNF423. GATA1 is 

known to bind to distal regions and physically interacts with ZFPM1 in the beta-major globin 

promoter [112]. Similar to ZFPM1, ZNF521, a paralog of ZNF423 that shares 65% of 

homology with ZNF423, is known to have a functional NuRD sequence at the N-terminal 

[113, 114]. Moreover, ZNF521 modulates erythroid cell differentiation through direct binding 

with GATA1 [115]. It is thus evident that GATA1-ZNF423 interaction is likely to facilitate EP 

interaction, which may be through the GATA1 interaction with the NuRD sequence at the 

N-terminal of ZNF423. 

Here is another novel motif pair that may facilitate EP interactions. This selected motif pair is 

for the TF pair EBF1-ZNF143. In vertebrates, the EBF1 is demonstrated to have the role of 
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controlling the higher-order chromatin structure [116]. ZNF143 is known to preferentially 

occupy anchors of chromatin interactions connecting enhancers and promoters [117]. 

Moreover, EBF1, ZNF143, and RAD21 have a three-way interaction in GM12878 [116]. It is 

thus likely that the interaction of EBF1-ZNF143 may contribute to EP interactions [76]. 

2.1.4 Conclusion 

We de novo identified 423 motif pairs in interacting EP pairs. These motif pairs were likely to 

be biologically meaningful because they were statistically significant, conserved across cell 

lines, enriched with motif pairs of known interacting TFs, and so on. We also demonstrated 

that the predicted motif pairs could help to distinguish positive EP pairs from negative ones. 

We provided the predicted motifs, motif pairs, and other related information about these 

motifs and motif pairs at https://doi.org/10.6084/m9.figshare.14192000.  

We identified 1183 motif pairs in interacting EP pairs with known motifs as well (Table 2-7). 

We found that most of the identified motif pairs based on known motifs were similar to those 

de novo predicted ones in the corresponding cell lines. For instance, in KBM7, 94% of the 

identified motif pairs based on known motifs were similar to the de novo predicted motif 

pairs. A small fraction of the motif pairs based on known motifs were not discovered in the de 

novo predicted motif pairs, likely due to the STAMP E-value cutoff 1E-05 used.  

 

 

 

  

https://doi.org/10.6084/m9.figshare.14192000
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Table 2-7: Predicted motif pairs from known motifs. 

cell line #enhancers #promoters # EP pairs #predicted 

motifs 

(%shared) 

#predicted 

motif 

modules 

#predicted motif 

pairs 

 

GM12878 2371 2171 3688 50 

(96.0%) 

10425 444 

(95.3%, 12.2%, 

2.1E-14, 89.4%) 

HMEC 1761 1713 2157 31 

(100.0%) 

736 98 

(100.0%, 14.3%, 

3.6E-15, 86.7%) 

HUVEC 751 650 835 10 

(100.0%) 

41 13 

(100.0%, 30.8%, 

2.2E-07, 46.2%) 

IMR90 2344 2137 3226 48 

(97.9%) 

9770 477 

(86.6%, 10.5%, 

3.2E-15, 89.5%) 

K562 2096 1942 2972 48 

(97.9%) 

7480 376 

(91.8%, 10.9%, 0, 

88.0%) 

KBM7 6278 5970 7862 74 

(76.6%) 

28701 989 

(48.6%, 13.7%, 

4.8E-14, 94.0%) 

NHEK 1160 1018 1313 12 

(100%) 

118 24 

(100.0%, 16.7%, 

1.4E-15, 79.2%) 

The percentage in the “#predicted motifs” column is the percent of motifs in a cell line identified in 

other cell lines. The four numbers in the last column are the number of the predicted motif pairs, the 

percent of the predicted motif pairs in a cell line identified in other cell lines, the percentage of 

random motif pairs in a cell line identified in other cell lines, and the p-value of the number of the 

predicted motif pairs in a cell line identified in other cell lines, and the percentage of motif pairs 

found in the de novo predicted motif pairs independent of known motifs in the paper, respectively. 

We noticed that more than 55% of predicted motifs were similar to known motifs in one cell 

line. We also observed that more than 80% of the predicted motifs in one cell line were usually 

identified in other cell lines. In addition, we studied whether the predicted motifs preferred to 

occur in enhancers and promoters (Table 2-8). Without considering the sequence length 



36 

 

difference between enhancers and promoters, almost all motifs preferred to occur in promoters 

in all cell lines. When we considered the sequence length difference, where on average the 

promoters were three times longer than the enhancers, there was barely any motif preferring 

promoters to enhancers. Therefore, the majority of motifs occurred in both enhancers and 

promoters, with more frequent occurrence of their binding sites in enhancers. 

Table 2-8: Almost all motifs (SIOMICS) are likely to occur in both enhancers and promoters. 

cell line 

 

# 

predicted 

motifs 

 

with length without length 

%Enhancer 

motif 

%Promoter 

motif 

%Enhancer 

and Promoter 

motif 

% 

Enhancer 

motif 

% 

Promoter 

motif 

% 

Enhancer 

and 

Promoter 

motif 

GM12878 241 51.5% 2.1% 46.4% 0.4% 99.2% 0.4% 

HMEC 83 45.8% 0% 54.2% 2.4% 96.4% 1.2% 

HUVEC 14 14.3% 7.1% 78.6% 0.0% 100.0% 0.0% 

IMR90 190 61.1% 1.5% 37.4% 0.0% 99.5% 0.5% 

K562 180 49.4% 2.2% 48.3% 0.5% 98.9% 0.6% 

KBM7 428 57.0% 1.2% 41.82% 0.7% 98.8% 0.5% 

NHEK 29 31.0% 13.8% 55.2% 0.0% 100.0% 0.0% 

We also checked whether there were homogeneous motif pairs that have the same motifs 

significantly occurring in both enhancers and promoters, such as the aforementioned 

CTCF-CTCF motif pair and the YY1-YY1 motif pair (Material and Methods). If we 

considered the sequence lengths, 78.6% to 93.1% motifs could form homogenous motif pairs 

that significantly co-occurred in positive EP pairs, including the CTCF-CTCF motif pair in 

six of the seven cell lines and the YY1-YY1 motif pairs in five of the seven cell line. Even if 

we did not consider the sequence length, we still could identify 13, 5, and 158 motifs that 
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could form homogeneous motif pairs in GM12878, HMEC and KBM7. In this case, CTCF 

was still found in HMEC. If we lower the STAMP E-value cutoff when comparing the 

predicted motifs with known motifs, the predicted motifs similar to CTCF and YY1 were 

found in both GM12878 and KBM7. We provided two lists of homogeneous motif pairs 

based on the two different considerations at https://doi.org/10.6084/m9.figshare.14192000 for 

future validation studies.  
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CHAPTER 3: DISTAL REGULATORY REGIONS OF HUMAN 

RIBOSOMAL PROTEINS GENES 

Previously published as Wang S, Hu H, Li X. Shared distal regulatory regions may contribute 

to the coordinated expression of human ribosomal protein genes. Genomics. 2020 

Jul;112(4):2886-2893. 

3.1 Shared distal regulatory regions may contribute to the coordinated expression of human 

ribosomal proteins genes 

3.1.1 Introduction 

It is important to study the transcriptional regulation of ribosomal protein genes (RPGs) [38, 

118]. RPGs are house-keeping genes that code for the structural proteins in the ribosome, the 

machine that makes proteins in every organism. In addition to their ribosome-related function, 

RPGs have also been involved in other functions and their dysfunction may result in various 

diseases [119, 120]. As a set of essential genes and one type of the most abundantly expressed 

genes [121], RPGs are well known for their coordinated expression, meaning that in a given 

species, their mRNA expression levels are highly correlated across various experimental 

conditions [37]. To study RPG transcriptional regulation is thus fundamentally important, not 

only for our understanding of the molecular basis of their functions, but also for deciphering 

the general principles of gene transcriptional regulation especially coordinated gene 

regulation [38, 39].  
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Many studies have been carried out to understand how RPGs are coordinately regulated. 

Early experimental studies showed that several RPGs share transcription factor (TF) binding 

sites (TFBSs) of a common TF and validated the regulatory roles of these TFBSs [40, 41] . 

Later, high-throughput experiments showed that TFs such as RAP1 and FHL1 bind to their 

TFBSs in promoters of almost all RPGs in yeast [42, 43]. With the genomes of human and 

other organisms available, computational studies became popular and demonstrated that there 

are TFBSs of common TFs spread in promoters of almost all RPGs in a species [37, 44-46]. 

All above studies focused on RPG promoter regions. Rarely is a study that explores the distal 

regulatory regions of RPGs. Here and in the following, promoters were defined as previously 

[33, 78] as the upstream 1000 base pairs (bps) to the downstream 100 bps of RPG 

transcriptional start sites (TSSs); and distal regions were defined as genomic regions that 

were at least 2500 bps away from the annotated genes. To fill this gap, we previously studied 

the putative regulatory regions within one megabase (Mbps) of the 80 human RPGs with the 

DNase I hypersensitive sites (DHSs) in 349 samples [33]. For the sake of simplicity, 

henceforth, we used a “sample” to refer to a cell line, a cell type, or a tissue under an 

experimental condition. We identified 217 putative regulatory regions of RPGs that are 

shared by the majority of the 349 samples. More than 86% of these shared regulatory regions 

were supported by the chromatin interaction data . 

Although our previous study shed new light on human RPG transcriptional regulation, it is 

limited in the following aspects [33]. First, not all identified regions interacted with RPG 
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promoters and thus they may not be RPG regulatory regions. Second, the previously 

identified regions are shared across the majority (>=85%) of the 349 samples and are limited 

in terms of studying sample-specific regulation of human RPGs . Third, these regulatory 

regions are limited to 1 Mbps neighborhood of RPGs, while regulatory regions may be more 

distal than 1 Mbps[47].  

To understand human RPG distal regulation better, in this study, we defined sample-specific 

putative RPG regulatory regions directly from high-throughput chromatin interaction data in 

eleven samples [10, 48]. We identified about 22797 putative RPG regulatory regions, the 

majority of which were distal regions. More than 44% of these regions were only identified 

in one sample, implying that RPGs were likely differentially regulated in different samples. 

Interestingly, 2 to 77 RPGs shared a common regulatory region in a sample and the same 

pairs of RPGs shared common regulatory regions across samples, which may partially 

explain their coordinated gene expression. By studying the overrepresented TF binding 

motifs in these regions in a sample, we identified common TF binding motifs shared by 

samples. Our study shed new light on the distal regulation of the human RPGs. 

3.1.2 Material and Methods 

3.1.2.1 Human RPGs and high-throughput chromatin interaction data  

We obtained the coordinates of the 80 human RPGs from the National Center for 

Biotechnology Information. We compared the obtained RPG coordinates with those at the 

RPG database (http://ribosome.med.miyazaki-u.ac.jp/) and found that they were consistent.  

http://ribosome.med.miyazaki-u.ac.jp/
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We obtained chromatin interaction data from two studies (Table 3-1). One was the Hi-C data 

in seven cell lines (GM12878, IMR90, HMEC, KBM7, HUVEC, NHEK, K562) from Rao et 

al. [10] . Rao et al. defined high-confidence interacting pairs of genomic regions called 

looplists, the number of which was too small to be used here. We thus downloaded their 

normalized contact matrix for each of the above seven samples from 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63525. Rao et al. generated these 

contact matrices by the Knight and Ruiz normalization vectors. Knight and Ruiz 

normalization vectors [10]. They provided the normalized number of Hi-C reads that 

supported the interaction of the two corresponding genomic regions. We considered the pairs 

of genomic regions with at least 30 supporting normalized Hi-C reads as interacting pairs of 

regions in this study. Here 30 was the largest cutoff that enabled the inclusion of more than 

99% of the defined interacting regions by other studies in two common cell lines, IMR90 and 

K562 [63, 64]. Note that these pairs of interacting regions can be from different 

chromosomes, although the majority of them are intra-chromosome interactions. We obtained 

the corresponding DHS data for each of the seven samples from the ENCODE project [93] 

(https://www.encodeproject.org/search/?type=Experiment).   

 

 

 

 

 

 

 

  

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63525
https://www.encodeproject.org/search/?type=Experiment
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Table 3-1: The identified RPG regulatory regions in the two datasets. 

Data Source 

 

Sample #RPGs 

involved 

(simulation) 

#Direct 

regions 

(simulation) 

 

#Indirect 

regions 

(simulation) 

Mean 

length  

Medium 

length  

Mean 

distance 

(Mbps) 

Medium 

distance 

(Mbps)  

#Unique 

reads 

(million) 

Rao 

(16588, 

15148) 

GM12878 79 (68) 2226 (741) 14315 

(7924) 

5000 5000 48.3 35.7 15112.0 

HMEC 47 (17) 85 (25) 305 (79) 5000 5000 45.3 26.3 1068.0 

HUVEC 41 (10) 68 (14) 270 (56) 5000 5000 40.7 32.7 892.8 

IMR90 78 (52) 347 (164) 1634 (821) 5000 5000 47.9 30.7 1683.1 

K562 75 (40) 351 (102) 1549 (679) 5000 5000 53.5  38.1 1366.2 

KBM7 59 (31) 112 (52) 684 (302) 5000 5000 45.1 19.0 1247.9 

NHEK 49 (23) 102 (35) 461 (162) 5000 5000 37.8 18.8 1347.5 

Javierre 

(6209,3522) 

nB 73(9) 528 (26) 2515 (232) 5175 3914 51.8 37.1 2127.3 

tCD8 68(9) 580 (29) 2600 (308) 5105 3789 45.0 20.5 1849.2 

FoeT 66(7) 484 (17) 2418 (201) 5098 3790 43.4 24.3 2728.4 

tCD4 68(10) 586 (29) 3553 (361) 5338 4040 50.2 39.3 2227.4 

The other dataset was a promoter capture Hi-C dataset in seventeen primary cell types, where 

relatively more abundant data were available in eight of the seventeen cell types [48]. These 

eight cell types were aCD4, nB, EP, tB, tCD8, FoeT, naCD4, tCD4. The interactions between 

genomic regions were defined in the original study [48]. All pairs of interaction regions were 

from the same chromosomes. We were able to download the corresponding DHS data for the 

following four cell types: aCD4, nB, tCD8, FoeT from 

https://www.encodeproject.org/search/?type=Experiment.  

  

https://www.encodeproject.org/search/?type=Experiment
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3.1.2.2 Direct and indirect RPG regulatory regions and enhancers 

With a chromatin interaction dataset and the corresponding DHS data in a sample, we 

obtained direct and indirect regulatory regions of RPGs in this sample (Figure 3-1). A direct 

region in a sample is a region  overlapping with at least one DHS region and interacting 

with another region that overlaps with RPG promoters . The overlap of two genomic regions 

is done by the bedtools (https://bedtools.readthedocs.io/en/latest/content/tools/intersect.html) 

with the following command: bedtools intersect -a a.bed -b b.bed -wao > out.bed. The 

interaction and DHS regions used are defined in the corresponding sample. Similarly, an 

indirect region is a region overlapping with at least one DHS region and interacting with 

another region that overlaps with a direct region or an indirect region. Note that a RPG may 

have multiple direct and indirect regions, an indirect region may interact with another indirect 

region of the same RPG, and a direct region of a RPG may be an indirect region of another 

RPG in the same sample.  

 

Figure 3-1: The identification of the putative RPG regulatory regions (a) Different sources of 

interaction data were used to infer RPG regulatory regions and the enriched TF binding 

motifs in these regions; (b) An example of direct and indirect regulatory regions of a RPG.  

https://bedtools.readthedocs.io/en/latest/content/tools/intersect.html
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Each direct or indirect region was about 5000 bps long, which depended on the Hi-C 

resolution and was on average much longer than known regulatory regions [110, 122]. To 

predict TF binding motifs in these regions, we considered the minimum sub-regions within a 

regulatory region that contained all overlapping DHSs in this region. When the minimum 

regions were shorter than 800 bps, we extended them equally on both sides of these regions 

so that the regions were at least 800 bps. The reason to extend short region was that the 

length of the known mammalian regulatory regions are normally in this range based on 

previous studies and the DHS data may not be perfect [110, 122]. We then obtained the DNA 

sequences for these processed regions. 

3.1.2.3 Motif analyses in promoters and enhancers 

For a given set of sequences, such as the set of sequences from all potential RPG regulatory 

regions in a sample, we predicted the overrepresented motifs in these sequences by the 

SIOMICS tool [98, 123]. SIOMICS considers the co-occurrence and overrepresentation of 

various combinations of patterns (initialized with 8-mers, 8 bps long DNA segments) in the 

input sequences to identify motifs through an effective tree structure and algorithm, which 

showed good performance in previous studies [103, 123]. The combination of motifs output 

from SIOMICS are called motif modules, which represent groups of motifs and their cofactor 

motifs. We considered motif modules in input sequences, as in high eukaryotes, it is the 

TFBSs of different TFs in a short region to form cis-regulatory modules to control the gene 

expression patterns [122]. 
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We compared the predicted motifs with the motifs in the JASPAR database [124]. The 

JASPAR database is widely used for its manually annotated TF motifs. We claimed a 

predicted motif was similar to a known motif in JASPAR if it had a STAMP [95] similarity 

E-value smaller than 1e-5, a cutoff used in previous studies [97, 125].  

3.1.2.4 Other analyses 

We downloaded the normalized gene expression data in 79 different tissues from UCSC(GNF 

Expression Atlas 2)[126], which is widely used to study gene transcriptional regulation[122, 

127]. For every pair of human RPGs, we calculated their Spearman’s correlation coefficient. 

We then compared the correlation of RPG pairs with a common distal regulatory region and 

the correlation of RPG pairs without a common distal regulatory region by the Wilcoxon 

test[128].  

3.1.3 Results 

3.1.3.1 About 22797 regions may regulate human RPGs 

We studied the direct and indirect regulatory regions of RPGs in eleven samples based on the 

high-throughput chromatin interaction data [10, 48] and the DHSs in the corresponding 

samples [93] (Material and Methods) (Figure 3-1). We used the interaction data from two 

studies, because both had multiple samples with a high sequencing depth. The sequence 

depth is the ratio of the sum of the length of all uniquely mapped Hi-C reads in a sample to 

the length of the human genome. In a sample, a direct region of a RPG is a region that 
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physically interact with this RPG promoter based on the corresponding chromatin interaction 

data and overlap with at least a DHS region in this sample, and an indirect region of a RPG is 

a region that indirectly interact with this RPG promoter and overlap with at least a DHS 

region (Material and Methods). In total, we identified about 22797 putative regulatory 

regions that interacted with RPG promoters in different samples. The majority of these 

regions were distal regions (Table 3-2) . The number of the putative regions varied across 

samples. The details were in the following. 
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Table 3-2: The distance of the identified regulatory regions to RPGs. 

Data Source Cell Line 

or Type 

Mean 

(Mbp)  

Min 

(bp) 

Medium(bp) Max 

(Mbp) 

Average 

(Mbp) 

# regions in 

Upstream 

#regions in 

Downstream 

#regions in 

introns 

Rao all regions GM12878 1.3 47 131424 223.9 2.8 4584 4269 93 

IMR90 2.6 47 20464 216.5 472 538 87 

HMEC 3.0 47 5728 149.0 67 84 53 

KBM7 5.0 47 5536 136.2 95 90 67 

HUVEC 5.1 47 7841 111.2 57 74 46 

NHEK 1.7 47 7637 148.2 88 131 58 

K562 1.2 47 17425 188.7 535 518 91 

Rao_direct 

regions 

GM12878 0.5 47 70536 134.7 1.2 1150 1043 41 

IMR90 0.7 47 10464 120.0 150 162 36 

HMEC 1.8 47 5421 149.0 31 36 18 

KBM7 1.7 47 5189 60.6 40 41 27 

HUVEC 2.1 47 5728 44.3 26 27 12 

NHEK 1.0 47 5536 69.1 34 40 25 

K562 0.6 47 9811 137.2 148 163 42 

Javierre all 

regions 

nB 7.8 28 294687 237.9 9.7 1093 1403 79 

tCD8 9.1 28 406751 234.4 1241 1430 78 

FoeT 3.8 28 433201 112.8 1031 1359 71 

tCD4 18.4 28 1070975 237.3 1658 2058 74 

  

Javierre_direct  

regions 

nB 5.3 3296 325844 237.5 5 265 265 0 

tCD8 5.1 3296 341043 234.4 265 319 0 

FoeT 1.9 3296 391885 65.8 215 270 0 

tCD4 7.7 4138 446695 234.4 276 317 0 

In seven samples from Rao et al., we identified 16588 potential RPG regulatory regions. The 

number of regions in one sample varied from 338 to 16541, depending on the sequencing 

depth and the nature of the samples (Figure 3-2A, C, E). For instance, in GM12878, there 
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were 2226 direct regions and 14315 indirect regions identified, which was at least eight times 

of the direct and indirect regions identified in other samples. This was because GM12878 had 

a sequencing depth about nine to seventeen times of that in other samples [10]. In general, 

with a larger sequencing depth in a sample, there are more potential RPG regulatory regions 

identified in this sample (Figure 3-3). However, this is not always true. For instance, KBM7 

had a lower sequencing depth than NHEK, while it had more direct and indirect RPG 

regulatory regions than NHEK. The different number of direct and indirect regions in 

samples with similar sequencing depth, such as that in K562, KBM7, and NHEK, indicates 

the sample-specific characteristics (Figure 3-2C). On average, we identified 470 direct and 

2745 indirect regions in a sample excluding GM12878. 

 

Figure 3-2: The identified putative RPG distal regulatory regions. (A) & (B) The number of 

RPGs with identified regulatory regions in a sample; (C) & (D) The number of identified 

direct regions in a sample; (E) & (F) The number of identified indirect regions in a sample. In 

each section, the box plot is from 200 simulated sets of 80 random genomic regions. There 

are 2226 direct and 14315 indirect regions identified (741 direct and 7924 indirect regions 
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identified for random regions) in GM12878, which are not shown in (C) and (E), as they are 

much larger than the corresponding numbers in other samples.  

 

Figure 3-3: The sequencing depth and the number of regulatory regions identified across 

samples. In both Rao et al.’s samples and Javierre et al.’s samples, the higher sequencing 

depth does not always mean a larger number of RPG regulatory regions identified.  

To assess the statistical significance of the identified regulatory regions, we randomly chosen 

80 genomic regions, each of which was the same length as the RPG promoters. We then 

applied the same procedure to identify direct and indirect regions in each sample for these 80 

random regions. We repeated this procedure 200 times with 200 groups of 80 random regions. 

We identified much fewer direct and indirect regions that interacted with the 80 random 

regions (Figure 3-2A, 2C, 2E). For instance, in K562, we had 102 direct regions and 679 

indirect regions for random regions on average, while there were 351 direct and 1549 indirect 

regions for the 80 RPGs. This suggested that compared with random genomic regions, RPGs 

had significant more potential regulatory regions. 
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Similarly, we identified in total 6209 regions that were likely to regulate RPGs in four 

samples from Javierre et al [48]. Javierre et al. studied seventeen samples while only four 

samples had the corresponding DHS data and had enough sequencing depth to have putative 

regulatory regions for at least 50 RPGs (Figure 3-2B). The number of regulatory regions in a 

sample varied from 2902 to 4139, depending on the samples instead of the sequencing depth 

(Figures 3-2D and 3-2F). For instance, the sample FoeT had the largest sequencing depth, 

while the number of regions identified in FoeT was the smallest. In these four samples, the 

number of RPG regulatory regions identified was larger than that in all samples from Rao et 

al. except GM12878. On average, in each sample, we identified 545 direct and 2792 indirect 

regions, respectively (Figure 3-2D and 3-2F). Compared with randomly chosen genomic 

regions, on average, there were 25 direct and 275 indirect regions for the 80 random regions 

in 200 simulations. Interestingly, despite the higher sequencing depth and more RPG 

regulatory regions identified in Javierre et al.’s samples, the number of RPGs with identified 

regulatory regions was smaller in Javierre et al.’s samples compared with that in Rao et al.’s 

samples, which may be due to the bias of the capture Hi-C experiments in identifying 

chromatin interactions, the unsaturated sequencing depth, sample-specific RPG regulatory 

regions, etc.  

The above direct and indirect regions in a sample were obtained by overlapping the 

corresponding interacting regions defined by Hi-C with the RPG promoters (Material and 

Methods). Since the interacting regions were defined at about 5000 bps resolution [10, 48], 

we loosed the criteria of overlapping of two regions. We claimed two regions overlapping if 
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they were within x bps to each other, for x to be 1000, 2000, or 5000 bps, respectively. For a 

given x, we defined direct and indirect regions of RPGs similarly as illustrated in Figure 1. 

We found that the number of the defined RPG direct and indirect regions was similar as that 

with x equal to 0. This suggested that the RPG direct and indirect regions defined were robust 

and were not greatly affected by the overlapping criteria. It also indicated that these regions 

were not close to each other. In fact, the mean and median distance of adjacent regions was 

299,917 bps and 10,000 bps, respectively, in Rao et al.’s samples; and 93,913 bps and 3,919 

bps, respectively, in Javierre et al.’s samples.  

We also studied the distances between the identified regions and their corresponding RPGs 

(Figure 3-4). In Rao et al.’s data, 55.5% (9210/16588) of these regions were distal regions. 

The distance between a region and the corresponding RPG had a mean of 2.8 Mbps and a 

median of 28007 bps. Similarly, in Javierre et al.’s data, 98.9% (6140/6209) of these regions 

were distal regions. The distance between a region and the corresponding RPG had a mean of 

9.7 Mbps and a median of 551403 bps. Since almost all human RPGs have neighboring 

protein-coding genes within 1 Mbps [33], this suggested that RPGs were not the closest genes 

to many of these regions. 
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Figure 3-4: The distance between a regulatory region and the corresponding RPG. We 

divided the distances into seven bins, such as the bin >=2.5k but <5k, where k means 

kilobase pairs. (a) and (b) Direct regions and all regulatory regions from Rao et al.’s data, 

respectively; (c) and (d) Direct regions and all regulatory regions from Javierre et al.’s data, 

respectively. 3.1.3.2 The identified putative RPG regulatory regions varied dramatically 

across samples 

We compared the identified RPG regulatory regions in different samples (Table 3-1). We 

found that the majority of them were not the same and not even overlapping across samples. 

This suggests that RPGs are likely regulated by different distal regions under different 

experimental conditions, which is consistent with our previous study [33]. 

More than 91% (15148) of the 16588 regions in Rao et al.’s data were not shared across 

samples. Excluding GM12878, which had much higher sequencing depth than other samples, 

~80% (2891) of the 3598 regions were identified in only one of the remaining samples. This 
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percentage became smaller for Javierre et al.’s data, where more than 56% (3522) of the 6209 

regions were identified in only one sample. A large proportion of the regulatory regions were 

sample-specific, which were unlikely caused by the difference of the sequencing depth. This 

was because in all seven samples except GM12878 in Rao et al.’s data and in all four samples 

in Javierre et al.’s data, the sequencing depth was similar, while the number of identified 

regulatory regions was very different. Moreover, although GM12878 had a much higher 

sequencing depth, more than 49.7% of regions identified in other six samples in Rao et al.’s 

data were not identified in GM12878. It thus implied that RPGs were likely to be regulated 

differently across different samples.  

To assess the statistical significance of the shared regions across samples, we studied the 

shared interacting regions by the aforementioned 200 sets of 80 random regions. We found 

that in these 200 simulations, the random regions always had fewer potential regulatory 

regions but higher percentages of unshared potential regulatory regions across samples (Table 

3-1). For instance, there were 3598 regions identified for the 80 RPGs in all seven samples 

except GM12878 from Rao et al., 80.1% of which did not overlap with any identified region 

in other five samples. Correspondingly, on average, there were 1837 regions identified for the 

80 random regions in these six samples, 90.4% of which did not overlap with any identified 

region in other five samples. Moreover, the random regions always had lower percentages of 

regions shared by different number of samples than the 80 RPGs. For instance, in Javierre et 

al.’s data, there were 11.9% of regions were shared by all four samples for RPGs, compared 

with the average 6.8% of regions shared by four samples for the 80 random regions (Table 
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3-3). These observations are consistent with the fact that RPGs and their regulation are more 

conserved across samples than random regions. 

Table 3-3: The comparison of regulatory regions across samples. 

 Number of 

regions 

%Regions 

not shared 

 %Regions 

shared by 2 

samples 

 %Regions 

shared by 3 

samples 

 %Regions 

shared by 4  

samples 

 %Regions 

shared by 5 

samples 

 %Regions 

shared 

by >=6 

samples 

Rao 16588 

(9400) 

91.3%  

(95.4%) 

4.9% 

 (3.2%) 

2.2%  

(1%) 

0.6% (0.2%) 0.5% (0.1%) 0.5% 

(0.1%) 

Rao without 

GM12878 

3598 

(1837) 

80.3%  

(90.4%) 

11.8% 

(6.6%) 

3.2%  

(1.7%) 

2.1% (0.7%) 1.2% (0.4%) 1.4% 

(0.2%) 

Javierre 6209  

(672) 

56.72% 

(61.0%) 

19.87% 

(20.8%) 

11.53% 

(11.2%) 

11.87% 

(7.0%) 

NA NA 

The number in the parentheses are for the sets of 80 random regions. 

To further understand the conservation of these regions across samples, we studied how direct 

regions were shared across samples (Figure 3-4). The direct regions were those physically 

interacting with RPG promoters and detected by the Hi-C experiments (Figure 3-1). We 

found that a large proportion of the direct regions in a sample did not overlap with the direct 

regions in another samples in both Rao et al.’s and Javierre et al.’s data, suggesting that RPGs 

are likely to have different regulatory regions across samples. Moreover, fewer than 20% of 

GM12878 direct regions were found in other samples, which was likely to due to its much 

larger sequencing depth. In addition, the direct regions in the seven samples by Rao et al. and  
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those in the four samples by Javierre et al. were quite different, indicating the intrinsic 

difference between the seven cell lines and the four cell types.  

All these observations together suggested RPGs are likely to have different regulatory regions 

across samples. Otherwise, we should have seen that a much larger portion of direct regions 

shared across samples. For instance, if 90% of the RPG regulatory regions were conserved 

across samples, we should have seen that two samples shared at least 80% of their regulatory 

regions. However, this was not case. For instance, there were more than 37% and 42% of 

HMEC direct regions did not overlap with KBM7 direct regions and HUVEC direct regions, 

respectively (Table 3-4). In fact, GM12878 had a much higher sequencing depth than other 

samples, which should include almost all direct regions in other samples, while close to 20% 

of HUVEC direct regions and more than 56% of direct regions in the four samples considered 

by Javierre et al. were not identified in GM12878. 

 

Figure 3-5: The comparisons of regulatory regions across samples. The percentage of direct 

regions in a sample (row) overlap with (A) the direct regions and (B) all regulatory regions in 

another sample (column) is represented by the heatmap.   
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We also compared the direct regions in a sample with all regulatory regions in another sample 

(Figure 3-5B). There were more direct regions in a sample identified in another sample, when 

we considered all regulatory regions instead of direct regulatory regions. However, the 

increment was small, only a handful of percentage, indicating that the majority of direction 

regions in one sample were still direct regions in another sample. Although most direct 

regions were shared across samples when we considered all regulatory regions, there were 

still a fraction of direct regions not shared, which were likely due to sample-specific 

regulatory regions. For instance, at a much larger sequencing depth in GM12878, there were 

still about 15% of direct regions in HUVEC were not identified in GM12878 (Table 3-5).  

Table 3-4: The direct regions shared across samples in Rao et al.’s data and Javierre et al.’s 

data. 

 GM12878 IMR90 HMEC KBM7 HUVEC NHEK K562 nB tCD8 FoeT tCD4 

GM12878 100.0% 18.6% 6.0% 6.6% 4.4% 6.3% 17.0% 14.4% 14.9% 12.1% 14.1% 

IMR90 88.2% 100% 32.3% 36.0% 24.2% 36.6% 76.4% 4.3% 6.9% 6.3% 4.6% 

HMEC 91.8% 90.6% 100% 62.4% 57.7% 76.5% 94.1% 18% 53% 88% 35% 

KBM7 85.7% 82.1% 55.4% 100% 42.9% 63.4% 85.7% 0.9% 1.8% 5.4% 0.9% 

HUVEC 80.9% 82.4% 72.1% 67.7% 100% 69.1% 82.4% 1.5% 1.5% 5.9% 1.5% 

NHEK 87.2% 88.2% 72.6% 67.7% 54.9% 100% 90.2% 1% 3.9% 4.9% 2% 

K562 91.5% 86.3% 38.8% 43.3% 29.1% 41.6% 100% 2.3% 4.8% 4.3% 2.6% 

nB 43.8% 3.4% 0.2% 0.2% 0.2% 0.2% 1.7% 100% 58.1% 46.8% 57% 

tCD8 39% 4.1% 0.5% 0.3% 0.2% 1% 3.6% 52.9% 100% 50.7% 68.1% 

FoeT 34.1% 2.7% 0.4% 0.4% 0.4% 0.4% 2.1% 51% 60.8% 100% 55.2% 

tCD4 35.8% 2.6% 0.3% 0.2% 0.2% 0.3% 1.5% 51.4% 67.4% 45.6% 100% 

In each entry (i, j) , the number is the percentage of the direct regions in the i-th sample overlapping 

with the direct regions in the j-th sample. 
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Table 3-5: The direct regions shared across samples (compared with all RPG regulatory 

regions identified) in Rao et al.’s data and Javierre et al.’s data. 

In each entry (i, j), the number is the percentage of the direct regions in the i-th sample overlapping 

with all regions in the j-th sample. 

We also studied how indirect regions were shared across samples (Table 3-6). The indirect 

regions were not as conserved as direct regions. In other words, there were an even higher 

percentage of indirect regions that were not shared by two samples. Moreover, there were 

much more indirect regions that were not conserved across samples. 

 GM12878 IMR90 HMEC KBM7 HUVEC NHEK K 5 6 2 n B t C D 8 F o e T t C D 4 

GM12878 100% 43.4% 10.2% 9.8% 7.2% 11.2% 41.7% 43.1% 40.2% 32.7% 40.1% 

IMR90 92.5% 100% 43.2% 46.1% 32.9% 49.3% 88.8% 63.1% 61.7% 54.5% 62% 

HMEC 97.7% 94.1% 100% 70.6% 65.9% 84.7% 96.5% 76.5% 76.5% 69.4% 72.9% 

KBM7 91.1% 87.5% 60.7% 100% 51.8% 69.6% 89.3% 71.4% 73.2% 66.1% 76.8% 

HUVEC 85.3% 82.4% 73.5% 72.1% 100% 73.5% 82.4% 66.2% 70.6% 63.2% 63.2% 

NHEK 92.2% 91.2% 77.5% 77.5% 59.8% 100% 93.1% 73.5% 69.6% 67.7% 68.6% 

K562 94.9% 92.6% 54.7% 55.8% 39.6% 54.1% 100% 63.8% 59.8% 53.6% 59.3% 

nB 66.7% 10.4% 1.1% 1.5% 0.6% 1.7% 8.9% 100% 68.4% 58.7% 72.5% 

tCD8 62.6% 12.8% 1.2% 2.1% 1.2% 3.3% 12.1% 70.3% 100% 65.3% 89.3% 

FoeT 59.3% 9.7% 1% 1% 0.8% 2.1% 8.5% 71.3% 81% 100% 79.8% 

tCD4 56.8% 9.7% 1% 0.9% 0.9% 1.7% 8.4% 65.2% 80.4% 62.1% 100% 
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Table 3-6: The indirect regions shared across samples in Rao et al.’s data and Javierre et al.’s data. 

 GM12878 IMR90 HMEC KBM7 HUVEC NHEK K562 nB tCD8 FoeT tCD4 

GM12878 100% 8.4% 2% 2.5% 1.6% 2.4% 8.4% 12.6% 11.3% 10.2% 12.1% 

IMR90 61% 100% 12.6% 13.5% 9.5% 14.8% 42.2% 28.6% 27.5% 23.3% 28.4% 

HMEC 70.8% 61% 100% 37.7% 38% 45.6% 62.3% 45.3% 43.9% 41.3% 41.6% 

KBM7 39.2% 27.3% 16.2% 100% 4.3% 19.4% 27.3% 22.1% 21.9% 20.3% 23.1% 

HUVEC 61.1% 50.4% 40.4% 37% 100% 38.2% 50.7% 37.8% 37.8% 2.2% 35.2% 

NHEK 56.2% 46.2% 29.7% 30.2% 23.4% 100% 44.9% 35.6% 33.4% 30.8% 32.1% 

K562 70.6% 52.2% 17.3% 17.2% 12.9% 18.1% 100% 33.5% 31.6% 26.2% 30.6% 

nB 48.5% 12.8% 4.3% 5.1% 3.4% 5% 12.8% 100% 49.9% 40.4% 52.2% 

tCD8 40.5% 11.9% 3.9% 5% 3.2% 4.6% 11.4% 48.3% 100% 45.3% 68% 

FoeT 36.7% 10.1% 3.3% 4.3% 2.4% 3.9% 9.5% 42% 48.7% 100% 52.8% 

tCD4 32.9% 9% 2.6% 3.7% 2.2% 3.3% 8.1% 36.9% 49.8% 35.9% 100% 

In each entry (i, j), the number is the percentage of the indirect regions in the i-th sample overlapping 

with the indirect regions in the j-th sample.  

3.1.3.3 RPGs shared distal regulatory regions to form putative co-regulated gene clusters 

With many regulatory regions identified only in one sample, we attempted to understand how 

RPGs are coordinately regulated. We hypothesized that in a sample, there may exist a region, 

which physically interacted with multiple regions that targeted various RPGs. In this way, 

such a region controls all RPGs and thus may contribute to their coordinate transcriptional 

regulation. We had no success in finding such a region in any sample. However, we did 

notice that one region may regulate multiple RPGs in every sample.  

We started to identify pairs of RPGs that had at least a pair of their regulatory regions 

overlapped. In each sample, there was at least one pair of RPGs that had their regulatory 

regions overlapped (Table 3-8). In other words, these pairs of RPGs shared common 

regulatory regions in a sample. There were 890 such pairs in GM12878 that involved 77 of 
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the 80 RPGs (except RPS4Y, RPL34 and RPL36A), which was much larger than that in other 

samples, most likely due to its much larger sequencing depth. In samples other than 

GM12878, on average, we identified five pairs of RPGs sharing regulatory regions that 

involved 30 RPGs. The regulatory regions shared by different RPGs may partially explain 

their coordinated transcriptional regulation.  

We tried to understand what characteristics these pairs of RPGs sharing regulatory regions 

may have. We checked whether these pairs were from the same ribosomal unit. We found that 

most pairs contained one RPG from the small unit and the other RPG from the large unit. We 

checked whether these pairs were from the same chromosomes or have a higher sequencing 

similarity and did not observe such a relationship. We also studied whether these RPG pairs 

may have more correlated expression (Material and Methods). Indeed, these RPG pairs had 

significantly larger gene expression correlation across different human tissues than the RPG 

pairs that did not share any regulatory region (Mann-Whitney test p-value<2E-7). We 

checked whether these pairs were conserved across samples as well. We found that except 

those from GM12878, they were indeed quite conserved across samples (Table 3-7). For 

instance, 100% of the identified RPG pairs in HMEC, HUVEC, KBM7, NHEK and tCD8 

were also identified in other samples. As to the 80 random regions, in 200 simulation runs, 

we barely had any pair of random regions sharing regulatory regions across samples (Table 

3-7). The RPG pairs in GM12878 were often not identified in other samples, which was 

likely due to the much smaller sequencing depth in other samples.  
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Table 3-7: Clusters of RPGs shared their regulatory regions. 

Data 

source 

 

Sample #Pairs 

(#RPGs 

involved) 

%Shared RPG 

pairs (%shared 

random pairs) 

across samples  

  Loose clusters      Strict clusters 

#Clusters 

(#RPGs 

involved) 

Minimum(Maximum) 

#RPGs in a  cluster 

# Clusters 

(#RPGs 

involved) 

Minimum(Maximum) 

#RPGs in a   

Cluster 

Rao 

 

GM12878 890 (77) 1.91%(1.03%) 1 (77) 77 (77) 820 (77) 2 (14) 

HMEC 1 (2) 100%(0) 1 (2) 2 (2) 1 (2) 2 (2) 

HUVEC 1 (2) 100%(0) 1 (2) 2 (2) 1 (2) 2 (2) 

IMR90 13 (19) 61.54%(0.12%) 6 (19) 2 (8) 13 (19) 2 (2) 

K562 9 (12) 66.67%(0.13%) 3 (12) 2 (8) 9 (12) 2 (2) 

KBM7 4 (8) 100%(0) 2 (8) 2 (2) 4 (8) 2 (2) 

NHEK 2 (4) 100%(0) 2 (4) 2 (2) 2 (4) 2 (2) 

Javierre 

 

nB 16 (18) 62.50%(0) 6 (18) 2 (7) 8 (18) 2 (3) 

tCD8 21 (23) 100%(0) 8 (23) 2 (6) 11 (23) 2 (3) 

FoeT 24 (23) 62.50%(0) 8 (23) 2 (5) 10 (23) 2(5) 

tCD4 22 (27) 95.45%(0) 11 (27) 2 (4) 11 (27) 2 (4) 

With the above pairs of RPGs in a sample, we grouped them into clusters of RPGs in two 

ways (Table 3-7). One was the strict way, in which we required that every pair of RPGs in a 

resulted cluster shared at least one regulatory region. We called the resulted clusters strict 

clusters. The other was the loose way, where a RPG was added into a cluster if this RPG 

shared a regulatory region with at least one RPG in that cluster, with the pairs of RPGs 

identified above as the initial clusters. We called the resulted final clusters by the second way 

loose clusters. We obtained 1 to 820 strict clusters and 1 to 11 loose clusters in a sample. The 

strict clusters in a sample contained 2 to 77 RPGs, with the 77 RPGs in different clusters. 

Similarly, the loose clusters in a sample contained 2 to 77 RPGs, where the 77 RPGs could be 
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in one cluster such as a cluster in GM12878. In terms of 80 random regions, in 200 

simulations, except in GM12878, they barely formed clusters in a sample (Table 3-8). Even 

when they formed clusters, the number of regions involved was much smaller. Most 

importantly, the pairs of random regions sharing a regulatory region in a sample rarely shared 

any regulatory region in another sample. In other words, the observed shared regulatory 

regions by pairs or groups of RPGs may explain the coordinated regulation of RPGs, as their 

regulatory regions were connected instead of independent.  

Table 3-8: Average simulation result of the Cliques (200 runs) 

Data 

source 

Sample #Pairs 

(#RPG 

involved) 

#Shared pairs 

across 

samples 

Loose clusters Strict clusters 

#Clusters 

(#RPGs 

involved) 

Minimum 

(Maximum)#RPGs 

in a cluster 

# Clusters 

(#RPGs 

involved) 

Minimum 

(Maximum)#RPGs 

in a   Cluster 

Rao GM12878 195 1.03% 1(64) 42(63) 893(4) 1(7) 

HMEC 0 0 1(1) 1(1) 1(1) 1(1) 

HUVEC 0 0 1(1) 1(1) 1(1) 1(1) 

IMR90 2 0.12% 6(18) 1(13) 18(17) 1(2) 

K562 4 0.13% 2(15) 4(14) 18(15) 1(2) 

KBM7 1 0 4(7) 1(4) 7(7) 1(1) 

NHEK 0 0 3(4) 1(2) 4(4) 1(1) 

Javierre 

 

nB 0 0 2(2) 1(1) 2(2) 1(1) 

tCD8 0 0 3(4) 1(1) 4(4) 1(1) 

FoeT 0 0 3(4) 1(1) 4(4) 1(1) 

tCD4 0 0 4(4) 1(1) 4(4) 1(1) 
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3.1.3.4 RPGs shared common regulatory motifs across samples 

To understand why RPGs have coordinated expression patterns, we also studied the putative 

regulatory motifs in the above RPG regulatory regions. We only considered the DHSs within 

these regions in the corresponding samples for the motif analysis, as these regions were open 

for TFs to bind. The average length of these DHS regions was 150 bps, shorter than that of 

known regulatory regions, which was mostly several hundred bps but can up to a couple of 

thousand bps [110, 122, 129, 130]. We thus extended each region equally from its two ends if 

this region was shorter than 800 bps so that the extended regions were at least 800 bps. We 

then identified motifs in these extended regions by de novo motif discovery [98, 123], as the 

number of known motifs was still limited [94, 104, 124]. We found that about two dozen 

motifs were shared by different samples.  

By de novo motif discovery (Material and Methods), we identified 68 to 1118 motifs in 

different samples (Table 3-9). The number of motifs identified in a sample correlated well 

with the number of RPG regulatory regions identified in this sample, with GM12878 having 

the largest number of motifs and HUVEC having the smallest number of motifs. To assess the 

statistical significance of the identified motifs, we permuted the input genomic sequences and 

identified motifs in the permuted sequences in each sample. We identified at least eight times 

fewer motifs in the random sequences in every sample (Table 3-9), suggesting that the 

identified motifs in RPG regulatory regions were statistically significant and likely 

meaningful.  
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To assess the biological meaning of the predicted motifs, we further compared the predicted 

motifs with the known motifs in the JASPAR database [124]. In a sample, 38.28% to 54.36% 

of motifs were similar to known motifs (STAMP E-value < 1E-5 [95]). Moreover, we 

compared the motifs predicted in different samples. There were 98.53% to 100% of motifs 

identified in a sample that were also independently predicted in at least another sample. Note 

that the majority of the regions in two samples were different, suggesting that these motifs 

were likely biologically meaningful. In addition, we compared the predicted motifs with 

known RPG regulating motifs. We collected fourteen motifs that were reported to regulate 

RPGs in literature [33]. We found that on average, 53.25% of these RPG-regulating motifs 

were identified in a sample. Note that these RPG-regulating motifs were previously identified 

in RPG promoter regions, and now we identified them in the RPG distal regions as well. In 

total, almost all motifs predicted in a sample were either similar to known motifs, or 

independently identified in other samples, or similar to known RPG-regulating motifs. 
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Table 3-9: Motif discovery in the putative regulatory regions of RPGs. 

Data 

Source 

 

Sample  # predicted 

motifs 

(random) 

%motifs similar to 

JASPAR motif 

 

%motifs similar 

to motifs in other 

samples 

%known 

RPG-regulating 

motifs 

identified  

%motifs  

supported 

Rao GM12878 1118 (64) 38.28% 99.55% 71.43% 99.55% 

IMR90 371 (16) 42.05% 100.0% 57.14% 100.0% 

HMEC 103 (2) 41.75% 100.0% 35.71% 100.0% 

KBM7 149 (3) 54.36% 100.0% 35.71% 100.0% 

HUVEC 68 (8) 50.0% 98.53% 28.57% 98.53% 

NHEK 189 (12)  41.8% 100.0% 42.86% 100.0% 

K562 362 (14) 46.96% 100.0% 50% 100.0% 

Javierre nB 487 (23) 50.51% 99.59% 64.29% 99.59% 

tCD8 528 (26) 45.83% 99.81% 71.43% 99.81% 

FoeT 552 (48) 46.56% 100.0% 57.14% 100.0% 

tCD4 607 (12) 46.46% 99.67% 71.43% 99.67% 

Despite of the existence of different motifs in different samples, we were able to identify 48 

motifs shared by at least four samples between Rao et al.’s data and Javierre et al’s data, 

including the CTCF motif. We identified 99 motifs shared by at least four samples from Rao 

et al. and 131 motifs by the four samples from Javierre et al. Interestingly, 48 motifs were 

shared by the 99 motifs from Rao et al. and the 131 motifs from Javierre et al, demonstrating 

that there were common regulatory mechanisms among RPGs in spite of the different 

putative regulatory regions and regulatory motifs. Among these 48 motifs, 24 of them were 

known motifs and 11 of them were known to regulate RPGs.  

3.1.4 Discussion 

We studied the putative regulatory regions of human RPGs in eleven samples. We identified 

about 22797 regions that directly or indirectly interacted with RPG promoters, the majority of 
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which were distal regions. There were a large fraction of regulatory regions that were 

different in different samples. Interestingly, about 1% to 91% direct regions in a sample were 

often identified to interact with RPG promoter directly in other samples. Moreover, different 

RPGs may share common regulatory regions and form a co-regulated gene group. Such 

co-regulated gene groups were conserved across samples. In addition, in different samples, 

there were common regulatory motifs identified. All these observations may explain why 

human RPGs are coordinately regulated even though they have different regulatory regions 

and are regulated differently across samples.  

We identified 16588 regulatory regions that likely regulate RPGs from Rao et al.’s data. 

However, this number may be over-estimated, given the much higher sequencing depth in 

GM12878 and the imperfect cutoff 30 to define chromatin interaction from the normalized 

Hi-C contact matrices in GM12878. With this said, it is no doubt that there should be 

thousands of distal regions that may regulate RPGs. In fact, if we considered the other six 

samples from Rao et al., there were 9210 different distal regions identified. If we considered 

the four samples from Javierre et al., there were 6140 different distal regions. Note that the 

Javierre et al.’s interaction data were defined by the original study [48]. Since we only 

considered a handful of samples, there may be even more distal regions, given the fact that 

the majority of regions identified in a sample were not identified in a new sample.  

Previously, we identified 217 RPG regulatory regions based on DHS data in 349 samples [33]. 

Compared with the regions identified here, 95.9% of the 217 RPG regulatory regions were 
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identified in the seven samples from Rao et al., while only 1.9% of the regions identified in 

these seven samples here were also identified by the previous study. Similarly, 74.8% of the 

217 regions were identified in the four samples from Javierre et al. that accounted for about 

3.4% of the identified regions in Javierre et al.’s samples. These numbers suggested that the 

previously identified regions were limited by considering regions shared by the majority 

samples. It also implied that RPGs are likely regulated differently in different samples. 

Although the identified RPG regulatory regions here physically interact with RPG promoters 

in the corresponding samples, they were still putative RPG regulatory regions. This was 

because we did not know whether these direct or indirect interactions changed the RPG 

expression levels. Future studies may explore in this direction to define more accurate RPG 

regulatory regions. With this said, these regions represented our current understanding of 

RPG distal transcriptional regulation. Moreover, these regions shed new light on our 

understanding of the coordinated regulation of human RPGs.  

We noticed that 77 of the 80 human RPGs were in a loose cluster in GM12878 (Table 3-2). 

Because of the much larger sequencing depth in GM12878, we are not sure whether this is 

true in other samples, if the sequencing depth in other samples is increased. It will be 

valuable to test this in the future. If it is true, this cluster may significantly contribute to RPG 

coordinated regulation. Even if it is not true, it is clear that there are several dozen RPGs in 

different samples sharing regulatory regions, which facilitates their coordinated activities. It  
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is worth pointing out that the pairs of RPGs sharing regulatory regions in a sample were also 

observed in a different sample, suggesting that such a sharing mechanism is conserved.  

We identified different numbers of motifs across samples. This is not surprising, since the 

number of regulatory regions is quite different across samples. However, we noticed that 

there are about a dozen motifs shared by different samples from different studies, suggesting 

that these shared motifs may indeed RPG-specific and they may contribute to the RPG 

coordinated regulation as well. It is worth investigating whether these shared motifs, 

especially the novel ones, are bona fide RPG-regulating motifs. 

We noticed a surprising difference between the Hi-C data from Rao et al. and the promoter 

capture Hi-C data from Javierre et al. The sequencing depth was slightly larger in samples 

from Javierre et al. than those from Rao et al. except in GM12878. There were indeed more 

regions identified in the corresponding samples from Javierre et al. Surprisingly, there were 

slightly fewer RPGs with identified regions from Javierre et al. than those from Rao et al. We 

are not sure this is because the promoter capture Hi-C is biased, there is something different 

among the samples in the two studies, or something else.  

  



68 

 

CHAPTER 4: STRAIN GENOME RECONSTRUCTION 

4.1 SMS: a novel approach for microbial strain genome reconstruction in multiple samples 

4.1.1 Introduction 

Bacteria are ubiquitous and play crucial roles in human health [131-133]. Multiple strains of 

a bacterial species usually coexist in an environmental niche. These strain genomes of the 

same species are different from each other, with small variations such as single nucleotide 

polymorphisms (SNPs), different gene contents, and/or different plasmid genes [134]. Such a 

difference results in different fitness to survive or react to stimuli, which is often the cause of 

drug resistance, mixed infection, etc. [135, 136]. It is thus important to study bacterial strains 

and reconstruct their genomes. 

Dozens of computational methods are available to infer bacterial strains from shotgun 

metagenomic reads [56-58, 60-62, 137-146]. Most of them rely on prior knowledge of known 

strains. These methods have successfully identified known strains while cannot be applied to 

study new strains that commonly exist. A handful of methods that do not depend on known 

strains are thus developed, which can be divided into two groups [61, 62, 140, 142, 143, 147]. 

One group defines strain variations and strains based on species-specific marker genes, which 

can significantly speed up the process to analyze a large number of species in a microbiome 

while depending on the quality and quantity of the marker genes [62, 147]. The other group 

considers the SNPs across the entire reference genomes of a species instead of only the 

marker gene regions, which can delineate the strain genomes in detail and are important for 
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the study of individual pathogen species [60, 61, 139, 141]. These methods have shed new 

light on bacterial strains in environmental samples. However, their performance is still 

suboptimal in terms of the predicted strain number and abundance. For instance, a recent 

method, StrainFinder, did not have good accuracy in predicting strain SNPs and strain 

abundance, even provided with the correct strain number [60]. 

To accurately identify strains in shotgun metagenomic samples, we developed a novel 

method called SMS (Strains in Multiple Samples). Starting from a species genome, SMS de 

novo reconstructs its strain genomes from shtogun reads in multiple samples. It models the 

coverage of every strain in individual samples by zero-inflated Poisson (ZIP) distributions 

and classifies SNPs with adatively inferred centers, which enables it to identify low-coverage 

strains and predict strains with high accuracy. Tested on 702 simulated and 195 experimental 

datasets, SMS accurately predicted the strain number, abundance, and SNPs. Compared with 

two recent approaches, SMS showed much better performance.  

4.1.2 Methods 

SMS reconstructs bacterial strain genomes with a reference genome and raw reads in multiple 

shotgun metagenomic samples (Figure 4-1). The basic assumption is that different SNPs from 

the same strain follow a common ZIP distribution in a sample, and SNPs from different 

strains follow different ZIP distributions in individual samples. Assume there are R strains of 

a species of interest in m samples. Starting from the cleaned raw reads, SMS defines SNPs 

based on the reads mapped to the reference. It then determines the initial strains and their 
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abundance with the pooled sample, the combined m samples. Next, SMS refines the initial 

strains and their abundance based on the SNP coverage patterns across samples. The rationale 

is that unique SNPs from the same strain will have more similar coverage patterns across 

samples than SNPs from different strains. Finally, SMS outputs the predicted strains and their 

abundance. The details are in the following sections. 

 

Figure 4-1: The SMS workflow. 

4.1.2.1 Identification of potential SNPs 

With reads from m samples, SMS trims reads and filters low-quality reads with the tool 

trimmomatic. SMS then maps the cleaned reads to the reference genome by bowtie2 [148]. In 

every sample, SMS obtains a 4 by n sample-specific matrix composed of the frequencies of A, 

C, G, and T in the mapped reads at each of the n reference genome positions. Similarly, SMS 

acquires a pooled matrix of 4 by n for the pooled sample, the sum of the m sample-specific 

matrices. SMS then determines the 𝑛′ potential polymorphic positions based on these m+1 
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matrices. A reference genome position is potentially polymorphic if the following criteria are 

satisfied: 1). It has a coverage larger than 10% of the pooled coverage. The coverage of a 

genome (position or SNP) is calculated as the average number of reads mapped to this 

genome (position or SNP); 2). It has at least two nucleotides with coverage no smaller than 5% 

of the pooled coverage. Note that when the reference nucleotide at a position has fewer than 5% 

of the pooled coverage, the reference nucleotide is replaced with the most frequent nucleotide 

at this position; 3). Each of its two most frequent nucleotides must occur in at least 5% of the 

m samples. Finally, SMS considers all n1 nucleotides with coverage larger than 5% of the 

genome coverage at these positions as potential SNPs, where 𝑛′ ≤ 𝑛1 ≤ 3𝑛′. 

4.1.2.2 Prediction of the strain number and abundance 

With the n1 potential SNPs, SMS infers the strain number and abundance in four steps.  

First, SMS obtains an initial number of strains and their SNPs. SMS applies mixtureS to the 

above n1 SNPs with the pooled sample and outputs the predicted strains and their abundance. 

MixtureS reconstructs the strain genomes from shotgun reads in one sample and has shown 

good performance previously [60]. In this way, the strains with different pooled coverage are 

separated into R strains. R is automatically inferred.  

Second, SMS refines the predicted strains so that almost all SNPs in an actual strain are 

assigned to one predicted strain. Since the coverage of SNPs from the same strain are 

expected to follow the same ZIP distributions in individual samples, the coverage vectors of 

two SNPs from the same strain are more similar than those of two SNPs from different strains. 
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Here the coverage vector of a SNP is a vector composed of its coverage in the m samples. 

The similarity measurement of two vectors is described in the next section. Based on this 

observation, SMS iteratively regroups the n1 SNPs into R groups so that SNPs from the same 

group have more similar vectors. Starting from the predicted R strains by mixtureS, the 

majority of SNPs in each of which are likely from the same strain, SMS represents each 

strain by a m by 1 coverage vector, the average of the coverage vectors of the SNPs currently 

assigned to this strain. SMS then re-assigns each of the n1 SNPs to the strain with the most 

similar coverage vector to the coverage vector of this SNP. With the re-assigned SNPs, the 

coverage vectors of the strains are recalculated. This process is repeated a given number of 

times or until the assigned SNPs to each strain do not change. In this way, the coverage 

vector of each predicted strain and the assignment of the n1 SNPs become more and more 

accurate, with almost all SNPs from an actual strain grouped together. 

Third, SMS investigates whether there are more or fewer than R strains. SMS divides each 

strain into two strains, one strain at a time. To determine whether a strain should be divided, 

SMS models each strain in a sample by a ZIP distribution, estimates the parameters of the 

ZIP distributions, and calculates the likelihood ratio of observing the SNPs in this strain 

across the m samples to that in two divided strains. The details of the ZIP parameter 

estimation and the likelihood testing are in the following sections. A strain is divided only 

when its division significantly increases the likelihood (Chi-square test p-value<0.001). If a 

strain is divided, SMS considers whether the two new divided strains can be further divided 

similarly. This process is repeated until no strain can be further divided. With all possible 
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divisions that significantly increase the likelihood, SMS obtains the updated R strains and 

repeats Step two to reassign the n1 SNPs to these R strains again. SMS then considers 

removing each strain, one strain at a time. The process is similar to dividing a strain based on 

the ZIP parameter estimation and the likelihood test.  

Finally, SMS removes the predicted strains that are majorly composed of shared SNPs by 

multiple strains and reassigns their SNPs to the corresponding strains. To remove a strain, 

SMS identifies its consistent strains. Strain one is a consistent strain of strain two if every 

entry in the coverage vector of strain one is no large than the corresponding entry in the 

coverage vector of strain two plus a small cutoff. Similarly, multiple strains together are 

consistent with strain two if the sum of the corresponding entries in their coverage vectors is 

no large than the corresponding entry in the coverage vector of strain two plus the same 

cutoff. With the consistent strains of a strain, SMS constructs a graph, with each consistent 

strain as a node and edges connecting pairs of strains that are together still consistent with 

this strain. SMS then identifies the largest cliques in this graph with the corresponding groups 

of strains together consistent with this strain. With a clique identified, SMS removes this 

strain and reassigns its SNPs to all consistent strains in this clique. In this way, SMS finalizes 

the predicted strains and their SNPs. The abundance of every strain is calculated as the 

average coverage of the SNPs unique to this strain. 
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4.1.2.3 The similarity of two coverage vectors 

SMS calculates the similarity of two coverage vectors (𝑎1, 𝑎2, … , 𝑎𝑚) and (𝑏1, 𝑏2, … , 𝑏𝑚) by 

a pre-defined regression formula: 79.25d+ 43.06(c+c3)-0.04/(0.0025+d), where d is the 

distance between the two vectors, and c is their Kendall rank correlation. This formula was 

constructed based on a set of 18 pre-simulated training datasets. SMS chooses this similarity 

measurement, because it shows better performance than others, including correlation, 

Euclendian distance, relative entropy, etc.  

4.1.2.4 ZIP model of a strain in a sample 

SMS models the coverage of the SNPs from the p-th strain in the q-th sample by a ZIP 

distribution 𝑍𝐼𝑃(𝑥, 𝜋𝑝𝑞 , 𝜆𝑝𝑞) when the p-th strain occurs in the q-th sample, where  

𝑍𝐼𝑃(𝑥, 𝜋, 𝜆) = {

𝜋 + (1 − 𝜋) ∗ exp(−𝜆), 𝑓𝑜𝑟 𝑥 = 0
(1 − 𝜋) ∗ 𝜆𝑥

𝑥!
∗ exp(−𝜆), 𝑓𝑜𝑟 𝑥 = 1, 2, 3, …

            (1) 

Assume we have an n1 by m matrix, 𝑋 = (𝑥𝑖𝑗), which store the coverage of the above n1 

SNPs in the m samples. Assume 𝑍 = (𝑧𝑖𝑟) is the indicator to tell whether the i-th SNP 

belongs to the r-th strain, where ∑ 𝑧𝑖𝑟
𝑅
𝑟=1 = 1 for all i from 1 to n1 and 𝑧𝑖𝑟 can be only 0 or 

1. Assume Y= (𝑦𝑗𝑟) is the indicator to show whether the r-th strain occurs in the j-th sample, 

where 𝑦𝑗𝑟 can be only 0 or 1. If at least one SNP from a strain has a non-zero coverage in a 

sample, we tentatively claim that this strain occurs in this sample. When 𝑦𝑗𝑟 = 1,  we also 

define 𝑏𝑗𝑟 = ∑ 𝑧𝑖𝑟𝐼𝑥𝑖𝑗=0
𝑛1
𝑖=1 , 𝑛𝑗𝑟 = ∑ 𝑧𝑖𝑟

𝑛1
𝑖=1 , and 𝑎𝑗𝑟 = ∑ 𝑧𝑖𝑟𝑥𝑖𝑗

𝑛1
𝑖=1 /𝑛𝑗𝑟. 
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To estimate the parameters in the ZIP, for a given strain that occurs in a given sample, say the 

r-th strain in the j-th sample (i.e., 𝑦𝑗𝑟 =1), SMS initializes 𝜆𝑗𝑟 =
𝑠𝑗𝑟

2 +𝑎𝑗𝑟
2

𝑎𝑗𝑟
− 1 , 𝜋𝑗𝑟 =

𝑠𝑗𝑟
2 −𝑎𝑗𝑟

𝑠𝑗𝑟
2 +𝑎𝑗𝑟

2 −𝑎𝑗𝑟
, with 𝑠𝑗𝑟

2 =
∑ 𝑧𝑖𝑟(𝑥𝑖𝑗−𝑎𝑗𝑟)2𝑛1

𝑖=1

∑ 𝑧𝑖𝑟
𝑛1
𝑖=1 −1

. SMS then uses the following iteration method to 

obtain the maximal likelihood estimation of 𝜋𝑗𝑟  and 𝜆𝑗𝑟 : first replaces 𝜋𝑗𝑟  by 𝜋𝑗𝑟 =

𝑛𝑗𝑟(𝜆𝑗𝑟−𝑎𝑗𝑟)𝑒
−𝜆𝑗𝑟

𝜆𝑗𝑟𝑏𝑗𝑟−𝑛𝑗𝑟(𝜆𝑗𝑟−𝑎𝑗𝑟)(1−𝑒
−𝜆𝑗𝑟)

 in the equation 
𝑛𝑗𝑟𝑎𝑗𝑟

𝜆𝑗𝑟
−

(1−𝜋𝑗𝑟)𝑏𝑗𝑟

𝜋𝑗𝑟+(1−𝜋𝑗𝑟)𝑒
−𝜆𝑗𝑟

= 0   to obtain an 

equation of 𝜆𝑗𝑟, then solves this equation by the Newton’s iteration method. Everywhere in 

this process, if 𝜋𝑗𝑟=0, you will directly estimate 𝜆𝑗𝑟=𝑎𝑗𝑟.  

4.1.2.5 Log likelihood test 

Given R strains, the full likelihood of observation the frequencies of these n1 SNPs in the m 

samples is  

𝐿(𝑋, 𝑍|𝜋, 𝜆) = ∏ ∏(∑ 𝑧𝑖𝑟𝑦𝑗𝑟𝑍𝐼𝑃(𝑥𝑖𝑗,

𝑅

𝑟=1

𝑚

𝑗=1

𝜋𝑗𝑟 , 𝜆𝑗𝑟)

𝑛1

𝑖=1

).             (2) 

When SMS splits one strain into two or removes one strain, the likelihood can be similarly 

calculated. To assess the significance of changing the current R strains, we calculate the ratio 

of the likelihood after changing (split or remove) to the likelihood before changing. The ratio 

approximately follows a Chi-square distribution with the degree of freedom equal to the 

difference of the parameters in the two models. If the Chi-square test p-value is smaller than a 

pre-defined cutoff, SMS correspondingly modifies the current R strains.  
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4.1.2.6 Simulated and experimental datasets  

We simulated 702 datasets (Table 4-1). In each dataset, a reference genome was chosen, 2 to 

4 strains were simulated, and 5 to 35 samples were generated. For each reference genome, 

their four strains were generated by randomly choosing 0.01% of the genome positions and 

then randomly substituted the reference nucleotide with another nucleotide. The read 

coverage of a reference genome in a dataset was one of the following five coverage, 50x, 

100x, 150x, 200x, and 300x. The number of strains and their relative abundance in a dataset 

were specified by one of the following five configurations: 10:20:30:40, 10:25:25:40, 

10:30:60, 15:30:55, and 30:70. For a dataset, with the chosen configuration and the number 

of samples, a subset of samples were randomly chosen for each strain and the coverage of 

this strain in one of the samples was then randomly determined so that the pooled coverage of 

this strain was the same as what was specified in the configuration. With the coverage of 

strains in a sample, paired reads of 100 base pairs long were randomly generated using 

dwgsim (https://github.com/nh13/DWGSIM).  
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Table 4-1: Simulated datasets. 

Types Strain Configuration #strains coverage 

Type1 10:20:30:40 4 100x 

10:30:60 3 100x 

15:30:55 3 100x 

30:70 2 100x 

10:25:25:40 4 100x 

10:25:25:40 4 150x 

10:25:25:40 4 200x 

10:25:25:40 4 300x 

Type2 10:20:30:40 4 100x 

10:25:25:40 4 100x 

10:25:25:40 4 150x 

10:25:25:40 4 200x 

10:25:25:40 4 300x 

Type3 10:20:30:40 4 100x 

10:25:25:40 4 100x 

10:25:25:40 4 150x 

10:25:25:40 4 200x 

10:25:25:40 4 300x 

Type4 10:30:60 3 100x 

15:30:55 3 100x 

10:30:60 3 150x 

10:30:60 3 200x 

10:30:60 3 300x 

15:30:55 3 150x 

15:30:55 3 200x 

15:30:55 3 300x 

There are 27 datasets generated in each row, each of which corresponds to one of the three different 

bacterial species (species 1: Bartonella clarridgeiae NC_014932, species 2: Enterococcus casseli 

flavus NC_020995, and species 3: Methanobrevibacter smithii NC_009515) and one of the nine 

different sample numbers (5, 8, 10, 12, 15, 20, 25, 30, 35). The number and order of strains in each 

dataset are specified by the strain configuration. For instance, the configuration 10:20:30:40 in the 

first row specifies that there are four strains, with the coverage of the 1st, 2nd, 3rd and 4th strain as 10X, 

20X, 30X and 40X, respectively. There is no shared SNPs among strains in Type 1 datasets. In each 

type 2 dataset, the first two strains share 30% of their SNPs, the first three strains share 20% of their 

SNPs, and the fourth strain shares no SNP with other strains. In each type 3 dataset, the first two 

strains share 30% of their SNPs, the first three strains share 10% of their SNPs, and there is no SNP 
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shared between the first three strains and the last strain. In each type 4 dataset, the first two strains 

share 30% of their SNPs, and the third strain share no SNP with other strains. 

We tested SMS on 195 experimental datasets [136]. Each dataset is known to have two 

Mycobacterium tuberculosis strains with predicted abundance. The abundance is inferred 

from two different computational methods. The actual SNPs in each strain are unknown.  

4.1.2.7 Comparison with existing methods 

We compared SMS with mixtureS and StrainFinder in a desktop computer with the Intel Core 

i9-9900KF CPU (16 cores@3.6GHz) and 32 gigabytes memory. We used the following 

commands to run the three tools respectively: 

SMS: python SMS/running.py --output_name %s  --genome_len %s --genome_name %s 

--genome_file_loc %s --bam_loc_file %s --res_dir %s 

MixtureS: python mixtureS/mixture_model.py --sample_name %s  --genome_len %s 

--genome_name %s --genome_file_loc %s --bam_file %s --res_dir %s 

StrainFinder: python StrainFinder/StrainFinder.py --aln %s -N %s --max_reps 10 --dtol 1 

--ntol 2 --max_time 3600 --coverage --em_out %s --out_out %s --log %s --n_keep %s 

--force_update --merge_out –msg 

  

mailto:cores@3.6GHz
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4.1.3 Results 

4.1.3.1 SMS correctly predicted the strain numbers 

We studied the number of strains predicted in 702 simulated datasets (Table 4-1). There were 

5 to 35 samples and 2 to 4 strains in every dataset, with the pooled coverage of strains from 

100X to 300X. The pooled coverage was the sum of the coverage of all strains of a species in 

all samples. The number of strains and their relative abundance are specified by one of the 

following five configurations in each dataset: 10:20:30:40, 10:25:25:40; 10:30:60, 15:30:55, 

and 30:70. For instance, for a dataset with the configuration 10:20:30:40, the proportion of 

reads from the four strains was 10%, 20%, 30% and 40%, respectively. 

Overall, SMS predicted the correct strain numbers in all but five datasets. Interestingly, SMS 

did not predict the correct strain number in at least one dataset for each of the three randomly 

selected species, implying that its performance was not species-specific. In each of the five 

datasets, a pair of strains shared 30% of their SNPs. In four of the five datasets, three strains 

were sharing 20% of their SNPs. These shared SNPs may have confused SMS when the 

coverage was 100X. As expected, when the coverage was increased, SMS predicted the 

correct strain number in each of the five corresponding datasets. These analyses suggested 

that SMS can accurately predict the strain number, even when the pooled coverage was 100X 

and there were only five samples in a dataset. Moreover, the predicted strain number was 

even more accurate with a larger pooled coverage (200X coverage for perfect prediction 

here).  
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4.1.3.2 SMS reliably estimated the strain abundance 

We investigated how well SMS predicted the strain abundance. No matter whether the strain 

number was correctly predicted, the predicted strain abundance agreed well with the known 

strain abundance (Figure 4-2). This agreement did not depend on the sample number, the 

pooled coverage, the strain number, etc.  

 

Figure 4-2: The predicted strain abundance. A) Unshared datasets; B) Shared datasets; and C) 

All datasets. MAE is the average Maximal Absolute Difference of the predicted abundance 

and the corresponding true abundance across datasets.  

In the 697 datasets SMS correctly predicted the strain number, the predicted strain abundance 

was within 97.31% of the true abundance. The mean and median ratio of the predicted 

abundance to the true abundance were 0.99 and 1.00, respectively. Even in the five datasets 

with the incorrectly predicted strain number, the predicted strain abundance was similar to the 

true abundance. For instance, SMS predicted four strains in three datasets with three strains. 

In two datasets, two strains had the predicted abundance about 0.08 and 0.29, respectively, 

which were close to the corresponding true abundance 0.10 and 0.30. The two remaining 
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predicted abundance were about 0.42 and 0.21, which differed from the third true abundance, 

0.60. In the third dataset, one strain was predicted with an abundance of 0.31, close to the 

true abundance of 0.30. The wrong prediction of the strain number and strain abundance was 

likely due to the third strain’s uneven and relatively limited coverage. After increasing the 

coverage, SMS predicted the correct strain number and more similar abundance.  

The accuracy was in general improved with more samples and a larger pooled coverage in a 

dataset (Figure 4-2). For instance, when the sample number was larger, the median of the 

predicted abundance was closer to the true abundance, and the variation of the maximal 

absolute difference (MAE) between the predicted abundance and the true abundance was 

smaller. The accuracy was not affected much by different species or the number of strains in a 

dataset (Figure 4-2). For instance, the MAE was within a similar range and with a similar 

mean/median when there were different numbers of strains. The small variations suggested 

that the predicted abundance by SMS was robust to different bacterial genomes, different 

number of strains, etc.   

4.1.3.3 SMS faithfully determined the SNPs 

Existing methods mainly focus on the predicted strain number and only occasionally consider 

their abundance. Rarely do they mention the accuracy of the predicted strain SNPs. With the 

simulated datasets, we systematically evaluated the predicted SNPs. We found that SMS has a 

precision of 0.97 and a recall of 0.96 to predict strain SNPs.  
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We studied the datasets without shared SNPs among strains. In all 216 datasets, on average, 

SMS had a precision of 0.98 and a recall of 0.98. For a given species with a specified pooled 

coverage, the precision and recall were higher on datasets with more samples in general. 

Similarly, they were generally higher on datasets with a larger pooled coverage when the 

species and the sample number were fixed. For instance, for the reference species genome 

NC_009515.1 and the sample number 20, the precison increased from 0.98 to 0.99 and the 

recall increased from 0.97 to 0.99 when the pooled coverage increased from 100X to 300X. 

We also studied the predicted strains on datasets with shared SNPs among strains. We again 

focused on the two most challenging configurations: 10:20:30:40 and 10:25:25:40. They were 

challenging because the shared SNPs among strains may have similar coverage across 

samples with SNPs unique to other strains. For instance, the shared SNPs between the first 

two strains in the configuration 10:20:30:40 had a relative abundance of 30%, the same as the 

relative abundance of the third strain. Even with such complexity, SMS on average had a 

precision of 0.97 and a recall of 0.96 on all datasets (Supplementary Tables S7 and S8). The 

performance suggested that SMS could reconstruct the complicated evolutionary trajectories 

of strains with shotgun sequencing reads. 

4.1.3.4 SMS performed well on experimental datasets 

We tested SMS on 195 experimental datasets (Table 4-2). We chose these datasets because 

their strain numbers were known. The strain abundance was also predicted previously [136]. 

Note that the datasets from the Critical Assessment of Metagenome Interpretation challenge 
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did not provide the strain number, strain abundance and SNPs unique to strains, thus not 

suitable for the strain genome reconstruction here [149].  

Table 4-2: 195 TB abundance result from three tools. 

sample # of verified 

method in 

refernce paper 

major strain 

proportion 

MixtureS SMS StrainFinder 

ERR036194 single 1 2(0.349) 2(0.071) 2(0.459) 

ERR036233 both 0.72 4(0.113) 2(0.124) 2(0.215) 

ERR036248 both 0.88 2(0.01) 2(0.045) 2(0.114) 

ERR037469 both 0.63 2(0.144) 2(0.001) 2(0.115) 

ERR037547 both 0.85 2(0.042) 2(0.025) 2(0.035) 

ERR126641 both 0.84 4(0.137) 2(0.025) 2(0.063) 

ERR126642 both 0.8 2(0.088) 2(0.161) 2(0.055) 

ERR161024 both 0.86 3(0.082) 2(0.033) 2(0.003) 

ERR161026 both 0.85 3(0.106) 2(0.182) 2(0.066) 

ERR161027 both 0.82 3(0.06) 2(0.081) 2(0.046) 

ERR161034 both 0.65 3(0.086) 2(0.332) 2(0.067) 

ERR161039 both 0.63 4(0.157) 2(0.352) 2(0.084) 

ERR161049 both 0.87 3(0.099) 2(0.209) 2(0.246) 

ERR161050 both 0.73 5(0.218) 2(0.214) 2(0.214) 

ERR161055 both 0.89 2(0.005) 2(0.022) 2(0.387) 

ERR161071 both 0.84 4(0.148) 2(0.318) 2(0.008) 

ERR161077 both 0.78 5(0.238) 2(0.116) 2(0.206) 

ERR161078 both 0.58 4(0.123) 2(0.054) 2(0.038) 

ERR161081 both 0.88 2(0.124) 2(0.105) 2(0.317) 

ERR161084 both 0.87 3(0.103) 2(0.349) 2(0.047) 

ERR161088 both 0.88 3(0.11) 2(0.175) 1(0.12) 

ERR161090 both 0.91 2(0.039) 2(0.062) 2(0.406) 

ERR161091 both 0.89 2(0.003) 2(0.08) 2(0.336) 

ERR161097 both 0.85 2(0.025) 2(0.131) 2(0.057) 

ERR161120 both 0.86 2(0.104) 2(0.128) 2(0.177) 

ERR161122 both 0.87 3(0.099) 2(0.187) 2(0.239) 

ERR161123 both 0.81 3(0.056) 2(0.166) 2(0.042) 

ERR161170 both 0.89 2(0.228) 2(0.094) 2(0.352) 

ERR161173 both 0.9 2(0.265) 2(0.086) 2(0.378) 

ERR161176 both 0.88 3(0.1) 2(0.101) 2(0.375) 

ERR161184 both 0.87 3(0.196) 2(0.114) 2(0.349) 
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sample # of verified 

method in 

refernce paper 

major strain 

proportion 

MixtureS SMS StrainFinder 

ERR161194 both 0.86 3(0.101) 2(0.07) 2(0.121) 

ERR161195 both 0.88 2(0.01) 2(0.104) 2(0.377) 

ERR163932 both 0.91 3(0.097) 2(0.201) 2(0.401) 

ERR163940 both 0.87 2(0.04) 2(0.109) 2(0.364) 

ERR163942 both 0.87 3(0.094) 2(0.078) 2(0.144) 

ERR163943 both 0.83 3(0.087) 2(0.011) 2(0.101) 

ERR163947 both 0.5 3(0.122) 2(0.211) 2(0.04) 

ERR163954 both 0.92 2(0.155) 2(0.208) 2(0.417) 

ERR163971 both 0.89 2(0.007) 2(0.021) 2(0.388) 

ERR163986 both 0.9 2(0.018) 2(0.398) 2(0.394) 

ERR163996 both 0.88 3(0.098) 2(0.042) 2(0.377) 

ERR164007 both 0.88 2(0.01) 2(0.334) 2(0.167) 

ERR164021 both 0.7 3(0.043) 2(0.001) 2(0.187) 

ERR176446 both 0.88 4(0.152) 2(0.1) 2(0.379) 

ERR176458 both 0.82 4(0.16) 2(0.29) 2(0.316) 

ERR176460 both 0.88 2(0.001) 2(0.27) 2(0.373) 

ERR176461 both 0.8 2(0.06) 2(0.189) 2(0.298) 

ERR176514 single 1 2(0.282) 2(0.048) 2(0.48) 

ERR176521 both 0.89 2(0.132) 2(0.182) 2(0.385) 

ERR176533 both 0.9 2(0.001) 2(0.036) 2(0.275) 

ERR176549 both 0.72 2(0.053) 2(0.071) 2(0.213) 

ERR176556 both 0.86 2(0.041) 2(0.032) 2(0.113) 

ERR176557 both 0.86 2(0.058) 2(0.081) 2(0.013) 

ERR176600 both 0.89 2(0.014) 2(0.096) 2(0.386) 

ERR176604 both 0.89 3(0.111) 2(0.384) 2(0.369) 

ERR176610 both 0.9 2(0.026) 2(0.089) 2(0.397) 

ERR176611 both 0.88 3(0.1) 2(0.106) 2(0.376) 

ERR176616 both 0.63 5(0.191) 2(0.333) 2(0.125) 

ERR176620 both 0.54 3(0.096) 2(0.378) 2(0.015) 

ERR176621 both 0.9 2(0.002) 2(0.039) 2(0.273) 

ERR176631 both 0.89 3(0.099) 2(0.089) 2(0.388) 

ERR176650 both 0.87 4(0.152) 2(0.225) 2(0.363) 

ERR176652 both 0.82 5(0.245) 2(0.097) 2(0.304) 

ERR176653 both 0.8 4(0.178) 2(0.154) 2(0.29) 

ERR176655 both 0.91 2(0.208) 2(0.251) 2(0.403) 

ERR176664 both 0.88 3(0.229) 2(0.166) 2(0.378) 

ERR176668 both 0.92 2(0.276) 2(0.038) 2(0.395) 

ERR176672 both 0.89 2(0.237) 2(0.201) 2(0.371) 
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sample # of verified 

method in 

refernce paper 

major strain 

proportion 

MixtureS SMS StrainFinder 

ERR176681 both 0.89 2(0.187) 2(0.068) 2(0.388) 

ERR176688 both 0.9 2(0.253) 2(0.077) 2(0.381) 

ERR176701 both 0.83 4(0.165) 2(0.159) 2(0.327) 

ERR176703 single 1 2(0.348) 2(0.494) 2(0.493) 

ERR176706 both 0.89 2(0.178) 2(0.073) 2(0.362) 

ERR176709 both 0.65 5(0.171) 2(0.042) 2(0.142) 

ERR176713 both 0.89 4(0.194) 2(0.265) 2(0.345) 

ERR176723 both 0.88 3(0.103) 2(0.043) 2(0.361) 

ERR176725 both 0.88 4(0.152) 2(0.181) 2(0.37) 

ERR176734 both 0.91 2(0.017) 2(0.063) 2(0.375) 

ERR176738 both 0.88 4(0.193) 2(0.184) 2(0.379) 

ERR176746 both 0.87 2(0.176) 2(0.053) 2(0.359) 

ERR176748 both 0.87 2(0.031) 2(0.119) 2(0.09) 

ERR176749 both 0.81 2(0.035) 2(0.175) 2(0.023) 

ERR176755 both 0.89 2(0.179) 2(0.055) 2(0.375) 

ERR176785 single 1 2(0.32) 2(0.172) 2(0.479) 

ERR176793 both 0.54 5(0.198) 2(0.146) 2(0.004) 

ERR176796 both 0.88 2(0.118) 2(0.072) 2(0.374) 

ERR176802 both 0.89 2(0.217) 2(0.187) 2(0.347) 

ERR176807 both 0.87 3(0.098) 2(0.164) 2(0.367) 

ERR176809 both 0.89 2(0.202) 2(0.064) 2(0.387) 

ERR176810 both 0.91 2(0.214) 2(0.072) 2(0.409) 

ERR176813 both 0.88 3(0.106) 2(0.364) 2(0.377) 

ERR181686 both 0.87 3(0.094) 2(0.183) 2(0.079) 

ERR181688 both 0.83 2(0.041) 2(0.153) 2(0.249) 

ERR181689 both 0.85 2(0.044) 2(0.148) 2(0.069) 

ERR181695 both 0.87 2(0.013) 2(0.277) 2(0.368) 

ERR181705 both 0.84 2(0.044) 2(0.231) 2(0.028) 

ERR181708 both 0.87 3(0.092) 2(0.027) 2(0.321) 

ERR181749 both 0.87 2(0.209) 2(0.352) 2(0.285) 

ERR181750 both 0.89 2(0.078) 2(0.045) 2(0.359) 

ERR181752 both 0.85 2(0.007) 2(0.116) 2(0.317) 

ERR181753 both 0.87 2(0.004) 2(0.363) 1(0.13) 

ERR181782 both 0.86 3(0.085) 2(0.114) 2(0.042) 

ERR181784 both 0.82 3(0.055) 2(0.131) 2(0.047) 

ERR181785 both 0.8 2(0.086) 2(0.267) 2(0.027) 

ERR181810 both 0.9 2(0.23) 2(0.007) 2(0.375) 

ERR181811 both 0.54 5(0.191) 2(0.413) 2(0.0) 
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sample # of verified 

method in 

refernce paper 

major strain 

proportion 

MixtureS SMS StrainFinder 

ERR181813 both 0.62 4(0.121) 2(0.072) 2(0.084) 

ERR181827 both 0.88 3(0.096) 2(0.2) 2(0.374) 

ERR181828 both 0.88 3(0.092) 2(0.194) 2(0.319) 

ERR181838 both 0.88 2(0.004) 2(0.108) 2(0.378) 

ERR181845 both 0.9 2(0.035) 2(0.051) 2(0.397) 

ERR181849 both 0.88 3(0.095) 2(0.111) 2(0.361) 

ERR181866 both 0.89 3(0.104) 2(0.101) 1(0.11) 

ERR181870 both 0.9 2(0.024) 2(0.085) 2(0.398) 

ERR181876 both 0.91 2(0.1913) 2(0.078) 2(0.2058) 

ERR181878 both 0.81 2(0.101) 2(0.178) 2(0.293) 

ERR181880 both 0.86 2(0.011) 2(0.124) 2(0.341) 

ERR181881 both 0.84 4(0.146) 2(0.292) 2(0.129) 

ERR181909 both 0.89 2(0.037) 2(0.092) 2(0.378) 

ERR181913 both 0.89 2(0.179) 2(0.097) 2(0.362) 

ERR181923 both 0.88 2(0.015) 2(0.073) 1(0.12) 

ERR181933 both 0.91 2(0.043) 2(0.003) 2(0.409) 

ERR181937 both 0.87 2(0.012) 2(0.059) 2(0.349) 

ERR181945 both 0.87 4(0.145) 2(0.067) 2(0.364) 

ERR181953 both 0.87 2(0.013) 2(0.092) 2(0.368) 

ERR181974 both 0.85 3(0.094) 2(0.146) 2(0.219) 

ERR181977 both 0.8 4(0.143) 2(0.096) 2(0.056) 

ERR181983 both 0.9 3(0.094) 2(0.399) 2(0.373) 

ERR182015 both 0.85 4(0.143) 2(0.342) 2(0.176) 

ERR182026 both 0.84 4(0.151) 2(0.01) 2(0.064) 

ERR182027 both 0.87 4(0.138) 2(0.208) 2(0.167) 

ERR182041 both 0.88 2(0.011) 2(0.065) 2(0.368) 

ERR182049 both 0.89 3(0.098) 2(0.091) 2(0.366) 

ERR190340 both 0.63 5(0.225) 2(0.356) 2(0.127) 

ERR190342 both 0.86 3(0.09) 2(0.185) 2(0.165) 

ERR190343 both 0.8 3(0.045) 2(0.215) 2(0.029) 

ERR190379 both 0.77 4(0.111) 2(0.239) 2(0.2) 

ERR190388 both 0.91 3(0.268) 2(0.319) 1(0.09) 

ERR211990 both 0.89 3(0.101) 2(0.084) 2(0.343) 

ERR212002 both 0.86 3(0.106) 2(0.065) 2(0.323) 

ERR212004 both 0.86 4(0.157) 2(0.331) 2(0.336) 

ERR212041 both 0.85 2(0.162) 2(0.165) 2(0.337) 

ERR212058 both 0.88 3(0.11) 2(0.09) 2(0.349) 

ERR212059 both 0.86 3(0.11) 2(0.356) 2(0.356) 
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sample # of verified 

method in 

refernce paper 

major strain 

proportion 

MixtureS SMS StrainFinder 

ERR212069 both 0.86 3(0.092) 2(0.0) 2(0.312) 

ERR212086 both 0.88 2(0.021) 2(0.179) 2(0.129) 

ERR212098 both 0.84 3(0.073) 2(0.109) 2(0.066) 

ERR212100 both 0.84 3(0.073) 2(0.309) 2(0.027) 

ERR212101 both 0.85 3(0.076) 2(0.174) 2(0.009) 

ERR212107 both 0.87 3(0.092) 2(0.112) 2(0.211) 

ERR212112 both 0.89 4(0.191) 2(0.184) 2(0.357) 

ERR212134 both 0.85 2(0.007) 2(0.143) 2(0.328) 

ERR212161 both 0.87 3(0.102) 2(0.356) 2(0.336) 

ERR212165 both 0.85 3(0.09) 2(0.01) 2(0.266) 

ERR216899 both 0.88 4(0.212) 2(0.033) 2(0.367) 

ERR216913 both 0.88 2(0.004) 2(0.37) 2(0.371) 

ERR216914 both 0.75 5(0.235) 2(0.236) 2(0.225) 

ERR216917 both 0.89 4(0.201) 2(0.083) 2(0.381) 

ERR216932 both 0.89 3(0.233) 2(0.084) 2(0.387) 

ERR216933 both 0.9 2(0.243) 2(0.084) 2(0.341) 

ERR216942 both 0.87 2(0.019) 2(0.353) 2(0.366) 

ERR216952 both 0.91 4(0.228) 2(0.007) 1(0.09) 

ERR216956 both 0.89 3(0.153) 2(0.197) 2(0.386) 

ERR216961 both 0.93 3(0.217) 2(0.051) 2(0.392) 

ERR216966 both 0.88 3(0.131) 2(0.006) 2(0.316) 

ERR216967 both 0.88 3(0.13) 2(0.215) 2(0.376) 

ERR216971 both 0.69 6(0.211) 2(0.033) 2(0.187) 

ERR216974 both 0.89 3(0.145) 2(0.186) 2(0.223) 

ERR216977 both 0.89 3(0.167) 2(0.021) 2(0.387) 

ERR216983 both 0.89 3(0.139) 2(0.322) 2(0.386) 

ERR216984 both 0.88 3(0.123) 2(0.218) 2(0.374) 

ERR216989 both 0.87 3(0.151) 2(0.099) 2(0.238) 

ERR221524 both 0.88 2(0.005) 2(0.097) 2(0.336) 

ERR221534 single 1 2(0.102) 2(0.47) 2(0.465) 

ERR221536 both 0.87 3(0.101) 2(0.081) 2(0.249) 

ERR221538 both 0.88 4(0.16) 2(0.351) 2(0.368) 

ERR221539 both 0.82 3(0.073) 2(0.284) 2(0.105) 

ERR221561 both 0.69 4(0.115) 2(0.132) 2(0.189) 

ERR221567 both 0.87 3(0.107) 2(0.369) 2(0.369) 

ERR221592 single 1 2(0.25) 2(0.047) 2(0.478) 

ERR221611 both 0.87 3(0.102) 2(0.201) 2(0.357) 

ERR245716 single 1 2(0.279) 2(0.099) 2(0.29) 
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sample # of verified 

method in 

refernce paper 

major strain 

proportion 

MixtureS SMS StrainFinder 

ERR245754 both 0.57 3(0.093) 2(0.064) 2(0.007) 

ERR245758 both 0.79 2(0.078) 2(0.122) 2(0.038) 

ERR245795 both 0.65 2(0.112) 2(0.196) 2(0.147) 

ERR245797 both 0.82 2(0.07) 2(0.085) 2(0.054) 

ERR323044 both 0.71 2(0.052) 2(0.272) 2(0.208) 

ERR323054 both 0.66 5(0.192) 2(0.323) 2(0.152) 

ERR323056 single 1 4(0.348) 2(0.481) 2(0.484) 

ERR323082 both 0.71 4(0.114) 2(0.206) 2(0.162) 

ERR473322 both 0.77 4(0.195) 2(0.213) 2(0.237) 

ERR473340 single 1 5(0.38) 2(0.043) 2(0.437) 

ERR473359 both 0.5 3(0.063) 2(0.234) 2(0.017) 

ERR773806 both 0.91 4(0.3) 2(0.19) 2(0.353) 

SMS identified two strains in each of these 195 datasets, which agreed well with the previous 

study [136]. This study showed that there were at least 11 heterozygous sites in each of these 

195 datasets. Interestingly, SMS showed that the two strains in different datasets were the 

same, which was consistent with the fact that these datasets were from clinical samples 

collected from the same region. Moreover, SMS distinguished strains with similar abundance 

in these datasets. For instance, in the dataset ERR323056, there were 69 heterozygous sites 

observed in reads [136]. SMS predicted two strains with a relative abundance of 0.52 and 

0.48. The previous study based on the SNP frequency identified only one strain, likely due to 

their similar abundance. Since the strain abundance was unknown, we compared the 

predicted abundance by SMS and by the previous study. The difference of the predicted strain 

abundance to the predicted abundance previously had a mean and median of 0.16 and 0.12 

respectively, if we considered only the 186 datasets where the previous study correctly 

predicted the strain number. 
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4.1.3.5 SMS reconstructed strain genomes better than existing methods 

We compared SMS with mixtureS [60] and StrainFinder [61]. mixtureS and StrainFinder 

showed better performance for novel strain identifications previously [60]. Since mixtureS 

works on one sample, we ran it on the pooled sample in each dataset. Because StrainFinder is 

unable to determine the strain numbers, we specified the known strain numbers in the 

corresponding datasets.  

We compared the strain number, abundance and SNPs predicted by the three methods. SMS 

performed much better than others (Table 4-3). For instance, for simulated datasets with no 

shared SNPs among strains, SMS predicted the correct strain number in all 216 datasets while 

mixtureS correctly predicted the strain number in 98 datasets. On average, the predicted 

SNPs by SMS had a precision of 0.97 and a recall of 0.98, larger than those of mixtureS and 

StrainFinder. Moreover, the predicted strain abundance by SMS had an average MAE of 

0.004, compared with 0.08 by mixtureS and 0.07 by StrainFinder.  

Table 4-3: The performance of the three tools. 

Dataset SMS mixtureS StrainFinder 

# (%) of 

datasets 

Precision, 

Recall, F1 

MAE # (%) of 

datasets 

Precision, 

Recall, F1 

MAE Precision, 

Recall, F1 

MAE 

702 

simulated 

datasets 

Unshared 216 

(100%) 

0.97, 

0.98, 0.98 

0.004 98 

(45.37%) 

0.81, 

0.83, 0.80 

0.08 0.66, 

0.56, 0.53 

0.07 

Shared 481 

(98.97%) 

0.97, 

0.96, 0.96 

0.008 184 

37.86% 

0.83, 

0.58, 0.63 

0.07 0.68, 

0.56, 0.56 

0.06 

All 697 

(99.29%) 

0.97, 

0.96,0.96 

0.007 282 

40.17% 

0.82, 

0.66, 0.68 

0.07 0.68, 

0.56, 0.55 

0.06 

195 experimental 

datasets 

195 

(100%) 

NA 0.16 146 

74.87% 

NA 0.12 NA 0.26 
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The three columns for each tool are the number (percentage) of datasets where the tool predicted the 

correct strain number; the precision, recall and F1 score of the predicted strain SNPs; and the average 

MAE of the predicted strain abundance. 

We also studied the running time of different methods (Table 4-4). SMS took a little more 

time to run than mixtureS. However, the difference was not so evident. For all tools, the time 

cost mainly depended on the number of strains and the number of SNPs, instead of the 

dataset sizes.  

Table 4-4: Tool running time on nine simulated datasets. 

configuration_#samples_pooled coverage_species 

index 

data 

size 

(MB) 

# 

Reads 

MixtureS 

(second) 

StrainFinde

r 

(second) 

SMS 

(second

) 

10:20:30:40_5_100_1 470 926579 69 1064 71 

10:20:30:40_8_100_1 470 926581 40 1341 42 

10:20:30:40_10_100_1 469 926579 24 1188 26 

10:20:30:40_12_100_1 469 926581 33 1030 35 

10:20:30:40_15_100_1 469 926579 28 1212 31 

10:20:30:40_20_100_1 469 926580 40 1281 42 

10:20:30:40_25_100_1 469 926578 83 1190 86 

10:20:30:40_30_100_1 469 926578 25 1085 28 

10:20:30:40_35_100_1 469 926585 18 1194 22 

SMS reconstructs bacterial strain genomes with multiple shotgun samples. It considers the 

coverage variation of individual strains across samples to distinguish strains. As 

demonstrated in simulated and experimental datasets, SMS is able to separate strains with 

similar abundance. The capability to separate strains with similar abundance is in general 

improved with more samples and larger pooled coverage. 

4.1.4 Discussion 

SMS reconstructs bacterial strain genomes with a species reference genome and the raw 

sequencing reads. The reference is employed to map the cleaned reads. The chosen reference 
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thus does not affect the predicted strain number and abundance, as they are inferred from the 

SNPs in strains that come from the mapped reads. SMS defines SNPs with an in-house 

procedure, which may affect the quality of individual SNPs. However, we do not think that 

the potential false SNPs will affect the predicted strain number and abundance, as they are 

determined by the coverage of the majority of SNPs in individual strains. Users may choose 

existing tools such as SAMtools [150] to define SNPs in samples. In addition, since reads are 

mapped to the reference genomes to predict bacterial strains, SMS can be applied to general 

metagenomic datasets instead of the shotgun samples for individual species illustrated here.    
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CHAPTER 5: CONCLUSION 

5.1 Conclusion 

In this dissertation, I have presented our work on distal gene regulation. We have studied 

motif pairs and their contribution to EPIs. We discovered 423 motif pairs that significantly 

co-occur in enhancers and promoters of interacting EP pairs. We demonstrated that these 

motif pairs are biologically meaningful and significantly enriched with motif pairs of known 

interacting TF pairs. We also showed that the identified motif pairs facilitated the discovery 

of the interacting EP pairs. Our study provides a comprehensive list of motif pairs that may 

contribute to physical EPIs, facilitating meaningful hypotheses for experimental validation. 

We also study human RPGs and the role of their shared distal regulatory region in expression. 

We identified about 22,797 putative distal regulatory regions that directly or indirectly 

interact with human RPG promoters. A large proportion of these regions are only present in 

one cell line or one cell type, implying that RPGs may be differentially regulated across 

experimental conditions. We also noticed that subsets of RPGs share common regulatory 

regions across cell lines and cell types. The shared distal regulatory regions by RPGs may 

contribute to their coordinated regulation. By studying the overrepresented motifs in the 

identified regulatory regions, we showed that about two dozen motifs are common in these 

regions across cell lines and cell types. Our study shed new light on the coordinated 

transcriptional regulation of human RPGs. 
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We have explored the reconstruction of bacterial strain genomes from multiple shotgun 

metagenomic samples. The analysis of the bacterial strains is important for understanding 

drug resistance. Despite dozens of computational tools for bacterial strain studies, most are 

for known bacterial strains. Almost all remaining tools are designed to analyze individual 

samples or local strain regions. With multiple shotgun metagenomic samples routinely 

generated in a project, it is necessary to create methods to reconstruct novel bacterial strain 

genomes in multiple samples. We have developed a new tool called SMS that can de novo 

identify microbial strains from shotgun reads of multiple clonal or metagenomic samples 

without prior knowledge about the strains and their variations. Tested on 702 simulated and 

195 experimental datasets, SMS reliably identified the strain number, abundance, and 

polymorphisms. Compared with the two existing approaches, SMS showed superior 

performance. 

5.2 Future Work 

5.2.1 EP motif pairs 

Several directions may help to understand EP motif pairs better. First, although the identified 

motif pairs are likely to be useful in predicting EP interactions, they should be integrated with 

other features used previously [47, 74, 76] to fulfill their potential. Second, a more 

comprehensive collection of enhancers and their condition-specific activity may improve the 

quality of the predicted motif pairs. The number of enhancers we used is relatively small 

compared with the collected enhancers in other resources [151, 152]. Third, with more 
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annotated known motifs, it may be better to discover motif pairs directly from known motifs. 

We look forward to exploring the EP motifs and their contribution to EPIs further. 

5.2.2 RPG coordinated regulation 

Although the progress we made, there is a long way to go to understand RPG coordinated 

regulation. First, chromatin interaction data with a much higher sequencing depth is greatly 

needed in other samples. With such data, we may understand how the number of the 

identified regulatory regions relates to the sequencing depth and how to more accurately 

define RPG regulatory regions. Moreover, we will be sure to know which regions are 

sample-specific and which are shared across samples and thus study how RPGs are able to 

orchestrate their coordinated expression with different regions under different conditions. 

Second, experimental validation of the functional consequences of certain RPG regulatory 

regions is a must. Such validation will not only generate new knowledge about RPG 

regulation but also provide guidelines to understand which of these regions may be truly 

functional. Third, integration of genomic and epigenomic data under the same conditions will 

greatly advance our understanding of RPG distal regulation. Finally, it is important also to 

study how RPGs are controlled at the translational level, which may contribute more to RPG 

coordinated regulation. We hope to work on these directions to under their regulation better. 

5.2.3 Update SMS with more functionalities 

SMS is not designed for the strain analysis of novel species. With more and more sequenced 

bacterial genomes, this issue may not be of concern in the future. Moreover, SMS considers 
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only the reference genomic regions to reconstruct bacterial strain genomes, and thus does not 

consider accessory genes that are not represented in the chosen reference. In this sense, what 

SMS reconstructs is similar to the strain core genomes. In the future, we may develop 

methods to further discover accessory genes in strains, with the inferred strain number and 

abundance in samples [153].   
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