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ABSTRACT 

 

The use of data and deep learning algorithms in transportation research have become 

increasingly popular in recent years. Many studies rely on real-world data. Collecting accurate 

traffic data is crucial for analyzing traffic safety. Still, traditional traffic data collection methods 

that rely on loop detectors and radar sensors are limited to collect macro-level data, and it may 

fail to monitor complex driver behaviors like lane changing and interactions between road users. 

With the development of new technologies like in-vehicle cameras, Unmanned Aerial Vehicle 

(UAV), and surveillance cameras, vehicle trajectory data can be collected from the recorded 

videos for more comprehensive and microscopic traffic safety analysis. This research presents 

the development, validation, and integration of three AI-driven computer vision systems for 

vehicle trajectory extraction and traffic safety research: 1) A.R.C.I.S, an automated framework 

for safety diagnosis utilizing multi-object detection and tracking algorithm for UAV videos. 

2)N.M.E.D.S., A new framework with the ability to detect and predict the key points of vehicles 

and provide more precise vehicle occupying locations for traffic safety analysis. 3)D.V.E.D.S 

applied deep learning models to extract information related to drivers’ visual environment from 

the Google Street View (GSV) images. Based on the drone video collected and processed by 

A.R.C.I.S at various locations, CitySim: a new drone recorded vehicle trajectory dataset that aim 

to facilitate safety research was introduced. CitySim has vehicle interaction trajectories extracted 

from 1140- minutes of video recordings, which provide a large-scale naturalistic vehicle 

trajectory that covers a variety of locations, including basic freeway segments, freeway weaving 

segments, expressway segments, signalized intersections, stop-controlled intersections, and 

unique intersections without sign/signal control. The advantage of CitySim over other datasets is 

that it contains more critical safety events in quantity and severity and provides supporting 
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scenarios for safety-oriented research. In addition, CitySim provides digital twin features, 

including the 3D base maps and signal timings, which enables a more comprehensive testing 

environment for safety research, such as autonomous vehicle safety. Based on these digital twin 

features provided by CitySim, we proposed a Digital Twin framework for CV and pedestrian in-

the-loop simulation, which is based on Carla-Sumo Co-simulation and Cave automatic virtual 

environment (CAVE). The proposed framework is expected to guide the future Digital Twin 

research, and the architecture we build can serve as the testbed for further research and 

development.  
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CHAPTER 1 : INTRODUCTION 

1.1 Overview 

Data-driven intelligent transportation has developed as a popular research issue[1-3], due to the 

rapid development of deep learning algorithms[4-6]. It is vitally important to collect traffic data 

before doing any traffic safety analysis. When analyzing the traffic conditions for specific areas 

or road segments, thousands of detectors such as loop detectors or radar sensors located at fixed 

locations help the traffic data collections. In 2018, researcher analyzed rear-end crash risk for 

individual vehicles through a radar sensor on a freeway location [7]. However, such analysis is 

still limited to certain locations that have installed detectors; the detectors could not monitor 

many detailed driver behaviors, such as lane changing, merging, interaction between road users, 

etc. Due to the development of various new technologies such as in-vehicle GPS, surveillance 

cameras, and Unmanned Aerial Vehicle (UAV) trajectory data could be collected and utilized in 

traffic safety analysis in recent years [8-10].To determine the relationship between crash risk and 

driver behavior, some studies utilize in-vehicle devices to collect data and some studies extracted 

road users’ trajectories by surveillance cameras.  By reviewing the data from surveillance 

cameras, the safety conditions for the selected areas can be calculated through surrogate safety 

measures, such as time-to-collision (TTC), post-encroachment time (PET)) [11-13].  

Another necessary part of conflict analytics is scenario-based traffic safety evaluation. And this 

method is also used when testing the effectiveness of automated driving systems. However, this 

approach heavily relies on real-world data to calibrate the model. Driving tests and naturalistic 

driving studies (NDS) are this study's most common data sources. Most of this data was from a 

different floating vehicle equipped with a senor or infrastructure sensor installed with a roadside 

unit. Due to the physical limitations of the sensor visibility, those two approaches cannot give 
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accurate naturalistic behavior invariably. Meanwhile, UAVs equipped with 4K cameras have the 

advantage of being able to capture traffic from a top-down perspective with great longitudinal 

and lateral accuracy. From the drone video, as shown in FIGURE 1 SNAPSHOOT OF  , all the 

vehicle GPS positions, velocity, acceleration, deceleration, and the gap between vehicles can be 

directly obtained and plotted on a 2D map based on detection and tracking results without 

considering the impact of depth of field like in-vehicle or conventional surveillance cameras. 

 

 

FIGURE 1 SNAPSHOOT OF  UAV VIDEO 

 

However, collecting and processing such a large amount of drone data will be expensive and 

time-consuming. In addition, most researchers may not have the resources to do it themselves. 

Therefore, the need for Open datasets is significant in traffic safety research because they allow 

for greater collaboration and transparency among researchers and increase the data access of 

many researchers. As a result, open datasets can lead to more efficient and effective research and 

a greater understanding of traffic safety issues. Additionally, open datasets can help to ensure 
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that research findings are reproducible, which is essential for building trust in the research 

community and advancing the field. 

Another emerging technology that has attracted increasing attention in academia and industry is 

Digital Twin based study, which use various techniques to replicate real-world entities in a 

virtual space for different types of study. Researchers are investigating the potential of Digital 

Twin technology in the transportation industry to aid in developing Intelligent Transportation 

Systems (ITS). Vehicles and pedestrians are among the major traffic participants in ITS. 

Although the Digital Twin concept has been applied to vehicles, drivers, and other traffic 

participants, many simulation or field test efforts have been made for it. Still, there is a lack of 

systematic framework and research tool that considers vehicle and pedestrian in-the-loop for a 

Digital Twin environment. 

1.2 Objectives 

1.2.1 Development Of Ai-Driven Computer Vision Systems 

 

1.2.1.1 Automated Roadway Conflicts Identification System (A.R.C.I.S) 

UAVs with 4K camera to monitor traffic was already investigated [14, 15]. However, the 

majority of the research was to extract macroscopic statistics such as traffic density, flow, and 

speed[16-19]. The resultant trajectories are not acceptable for the safety certification of conflict 

research because the positions of road users were not recovered with decimeter-accuracy.  

In this study, an automated framework for safety diagnosis to extract accurate trajectory data and 

vehicle information from UAV videos based on the pixel-to-pixel manner predicted masks will 

be proposed. And safety diagnostics based on PET values should be conducted for each pixel in 

the UAV images. 
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1.2.1.2 Near Miss Identification and Analysis System 

The study of near-miss identification and analysis has been prevalent in recent years. Video data 

that could provide high-resolution trajectories is an essential source for identifying near misses 

that happen on roadways. Closed-Circuit Television (CCTV) cameras, which has been widely 

installed in the current roadway system, should be a cost-effective sensor to monitor traffic 

safety in the within-intersection area. Thus, it would be essential to investigate how to conduct 

traffic analysis using CCTV cameras, especially road safety analysis. Unlike the UAVs’ video 

images that could observe the vehicles’ occupying areas (vehicle sizes) based on bird’s-eye 

views, CCTV cameras at intersections are generally at low positions. The methods used for 

detecting vehicles in UAV videos could not describe the actual locations and sizes in the 3D 

scene. Key points detection of vehicles such as headlights and taillights would be necessary for 

vehicle localization if no in-depth information could be obtained from other sensors (e.g., Lidar, 

radar).There is needed to fill the gap by proposing a framework named “Near Miss Event 

Detection System (NMEDS)” for CCTV cameras. To be specific, the proposed system 

contributes to the literature for safety analysis in three parts:  

(1) In adaptation to regular detection and tracking with a bounding box, A new method with 

the ability to detect and predict the key points of vehicles, including right-front headlight, 

left-front headlight, right-back taillight, and left-back taillight. The key points could 

provide more precise vehicle occupying locations than the bounding boxes generated 

based on regular deep learning detection.  

(2) proposing a method to modify the occluded points in the real-world coordinate system 

considering the relation of identified key points;  

(3) introducing a grid-based spatial autocorrelation analysis to identify significant hotspots in 

the within-intersection area.  
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A case study is presented at a typical intersection. The results should indicate the proposed 

framework’s performance for vehicle localization. It is expected that the proposed methods could 

help diagnose road safety problems using roadside video cameras.  

1.2.1.3 Driving Visual Environment Detection System (D.V.E.D.S) 

Speeding is one of the major factors impacting traffic safety. According to the National Highway 

Traffic Safety Administration (NHSTA), nearly a third of fatal crashes in the United States have 

been designated as “speeding-related” in the last decade[20]. On urban arterials, the speed limit 

violation could significantly increase the severity levels of pedestrian and bicycle crashes [21]. A 

lot of studies have been conducted to examine the contributing factors for the crash occurrence 

and speeding behavior. The factors include traffic volume, roadway geometric design, land use, 

socio-demographic characteristics, weather, etc. For example,[22]  developed grouped random 

parameter models to examine the crash occurrence on segments and intersections considering the 

roadway attributes such as speed limit and the zonal level effects.[23]  categorized the speeding 

behavior into three levels by proportions based on the speed camera data. It was found that high 

speed limits are highly associated with moderate speed limit violations, compared to minor or 

major speed limit violations. Besides, the study also revealed that a divided median and higher 

functional class could lead to more major speed limit violations. [24] explored factors 

contributing to operating speeds on arterial roads and revealed the significant effects of inside 

shoulder width, speed limit, and number of signalized intersections per mile on operating 

speeds.[25]  firstly investigated the effects on monthly weather variations on crash occurrence 

and revealed that the driving environment such as weather could have significant effects on 

traffic safety. When driving on roads, the visual environment could be also a major contributor to 

drivers’ speeding and traffic safety[26-28] . 

https://www.sciencedirect.com/topics/engineering/severity-level
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However, the existing data to reflect drivers’ visual environment is limited or less detailed. Thus, 

it is important to explore a new method to collect extensive data to represent drivers’ visual 

environment on roads and explore its effects on speeding crashes. This study will proposing a 

novel method to obtain drivers’ visual environment from GSV images and explore the effects of 

the visual environment on speeding crashes. To this end, deep learning models were applied to 

obtain the cluster and depth information from GSV images. The coordinate transformation was 

conducted to quantify drivers’ visual environment in the real world. Then, the important 

variables reflecting drivers’ visual environment were extracted and their effects on speeding 

crashes were explored by developing explainable machine learning models. 

1.2.2 A Drone-Based Vehicle Trajectory Dataset for Safety Oriented Research and Digital 

Twins 

 

The traffic safety research domain has rapidly progressed in the past few years. Example 

applications include autonomous vehicle safety, proactive traffic safety, and connected traffic 

safety applications based on Vehicle-to-Everything (V2X) and Infrastructure-to-Everything (I2X) 

communication paradigms. Increasing interest in safety research stimulates a rising demand for 

vehicle interaction datasets, in particular, birds-eye-view video-based trajectory datasets 

Currently, a significant portion of related studies were formulated based on several video-based 

trajectory datasets such as NGSIM,[29] highD[30] and InD[31] etc. These studies include driver 

behavior analysis[32-34], autonomous vehicle virtual testing [35-37], crash mitigation and 

avoidance system design [26, 38, 39], advanced autonomous control algorithm development ([40-

43]), surrogate safety measures[44-47], and many other safety applications. NGSIM was proposed 

in 2002. Due to the technological limitations in early years, some dataset contains many trajectory 

errors and most existing dataset has a low density of aggressive driving and very few near-collision 

events [48-50].Consequently, safety research that depends on critical driving trajectories might not 



 

 

7 

be able to collect sufficient samples from those dataset. Another major issue with those datasets is 

that the rotated bounding box information of the vehicles and their trajectories are not provided. 

As further demonstrated in later sections of this study, accurate vehicle geometric representation 

is essential for robust safety-related measurements and applications. 

In addition, the most recent autonomous vehicle safety research is looking at the digital twin 

concept that leverages the advancement of virtual simulation. By providing a virtual environment 

that is an exact copy of the real world, the autonomous vehicle can be tested more thoroughly with 

virtual on-board sensors. While, neither NGSIM, highD nor InD has features to support the digital 

twin concept.  

To address this issue, the following feature of a new open dataset were identified:  

1) Accurate vehicle trajectories. Detailed introduction of the algorithms and data processing 

methods are presented to give user a clear mind about the strict quality control of the dataset.  

2) Full observation of trajectory. Drone have a flight height limit of 400 feet, this dataset need to 

covers a much larger area compared to other datasets which only used one drone. A stitching 

method is required used two or more drones hovering over target areas (freeways and 

intersections) and provides comprehensive results,  

3) More critical safety events. This dataset should selected locations that contain more intensive 

vehicle interactions which has more critical safety events compared with other datasets, in 

terms of both event severity level and sample size 

4) More accurate critical safety events. This dataset need provides highly accurate bounding box 

information for each detected vehicle, which enables a more accurate estimation of the safety 

level when compared with only using the vehicle central point information.  
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5) Digital twin features: To facilitate for researchers to verity their vehicle safety products in a 

more high-fidelity virtual environment.  This dataset need provides high resolution of 3D maps 

and physical models for each of the collected locations, and it provides the signal timing 

information as well.  

1.2.3 Digital Twin Based Simulation Framework 

Digital Twin is an emerging technology that replicates real-world entities into a digital space. It 

has attracted increasing attention in the transportation field and many researchers are exploring 

its future applications in the development of Intelligent Transportation System (ITS) 

technologies. Connected vehicles (CVs) and pedestrians are among the major traffic participants 

in ITS. Although the Digital Twin concept has been applied to vehicles, drivers and other traffic 

participants, and many simulation or field test efforts have been made for it, to the best of our 

knowledge, there is a lack of systematic framework and research tool that considers both CV and 

pedestrian in-the-loop for a Digital Twin environment. As they are among the two most 

important traffic participants on the road, it is necessary to build a Digital Twin architecture to 

facilitate the research and development of the next generation of ITS technology. 

In this study, a Digital Twin framework for CV and pedestrian in-the-loop simulation is 

proposed. The proposed framework consists of the physical world, the digital world, and data 

transmission in between. The features for the entities (CV and pedestrian) that need digital 

twining are divided into external state and internal state, and the attributes in each state are 

described. We also demonstrate a sample architecture under the proposed Digital Twin 

framework, which is based on Carla-Sumo Co-simulation and Cave automatic virtual 

environment (CAVE). A case study that investigates Vehicle Pedestrian (V2P) warning system is 

conducted to validate the effectiveness of the presented architecture. The proposed framework is 
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expected to provide guidance to the future Digital Twin research, and the architecture we build 

can serve as the testbed for further research and development of ITS applications on CV and 

pedestrians. 

1.3 Source of Data 

• Crash data: The crash data is obtained from the Florida Crash Analysis Reporting System 

(CARS) database. The CARS database provides the information about the time of a crash, 

crash location, crash type, crash severity level, driver age, etc.  

• Drone Data: the drone video is obtained from UCF SST team and private contractor. From 

the drone video, the vehicle GPS position, velocity, acceleration, deceleration, gap and 

conflict can be extracted. 

• CCTV Data: the drone video is obtained from FDOT Center to Center (c2c) connection. 

From those CCTV video, the vehicle GPS position, velocity, acceleration, deceleration, gap 

and conflict can be extracted. 

• Google Street view Data: The data used in this study were collected from urban arterials in 

Central Florida. The urban arterials of nearly 75 miles were included, and around 15,000 

GSV images were downloaded and processed to get the indexes about drivers’ visual 

environment 

 

1.4 Dissertation Organization 

The rest of the dissertation is organized as follows: Chapter 2 covers the literature review for 

each research objective. Chapter 3, discusses the system architecture of UCF SST Automated 

Roadway Conflicts Identification System (A.R.C.I.S)[51], Near Miss Event Detection System 
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(N.M.E.D.S)[52] and Driving Visual Environment Detection System (D.V.E.D.S)[53]. Chapter 4 

describes the development of CitySim: A Drone-Based Vehicle Trajectory Dataset for Safety 

Oriented Research and Digital Twins[54]. In Chapter 5 explores framework of Digital Twin 

based Co-Simulation Pedestrian and Connected Vehicle In-the-loop simulation[55]. Chapter 6 

summarizes the dissertation’s key findings and contributions.  
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CHAPTER 2: LITERATURE REVIEW 

2.1 Computer Vision In Traffic Safety 

Various methods could be utilized to conduct road safety analysis. The traditional crash count 

analysis uses highly aggregated data to evaluate road safety for certain situations [56]. However, 

one of the limitations of using highly aggregated data is that it could not consider the 

heterogeneity traffic or the surrounding environment, which could have an impact on the 

estimation accuracy; In the recent decades, the wide employment of traffic infrastructure-based 

sensors could generate big data in real-time that enables researchers to conduct crash likelihood 

analysis by aggregating it into shorter time interval. By aggregating the data from nearby traffic 

detectors (e.g., MVDS, Loop Detectors) and the other infrastructures (e.g., weather stations, 

signals) at certain time intervals, precursors of crash occurrence could be identified, which could 

be used to investigate road safety situations and identify corresponding strategies to prevent 

crashes[57-60].  

Although the deployment of traffic infrastructure brings big data and enables the analysis of real- 

time crash risk, the rarity of crashes leads to some limitations to safety research and practice. The 

use of conflicts could overcome the limitation of crash-based safety analysis and provide 

compelling explanation to crash causations while considering the interactions between road users 

and other behavioral factors by obtaining individual road users’ data. First, only after crashes 

have been observed can researchers and practitioners evaluate the safety performance of the 

studied locations and situations. The use of conflicts provides an alternative method to 

investigate road safety conditions that overcomes the limitations of crash analysis [61]. Second, 

although risky situations are present, crashes may still be prevented through evasive actions, 
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such as emergency brake, lane changing, etc. However, the traditional infrastructure-based traffic 

data could barely capture information of individual road users’ behavior, and the crash prediction 

model could be prone to providing false alarms [62]. Moreover, as human factors are solely or in 

conjunction with other factors contribute to around 95% of crash occurrence, traffic data from 

detectors may not be sufficient to identify crash precursors for many situations [63]. The conflict 

events could be observed by calculating the surrogate safety measures between road users. Time-

to-collision (TTC) and post-encroachment time (PET) are two of the most prevalent surrogate 

safety measures that use road users’ trajectory data to investigate safety conditions. TTC is 

widely employed to estimate rear-end conflicts. Meanwhile, PET describes the time separation 

between two road users with consideration of the effect of road users’ evasive conflict avoidance 

behaviors and is more commonly utilized when using large datasets or evaluating safety 

conditions when turning movements are prevalent. Researcher utilized PET to investigate 

vehicle- bicycle conflicts at signalized intersections[64]. In 2020, researcher proposed a 

framework to conduct road safety diagnostics by automated extracting vehicles’ trajectory using 

Mask-RCNN detection and Channel and Spatial Reliability Tracking (CSRT). The trajectory 

data are utilized to calculate PET values to identify conflict situations based on Unmanned Aerial 

Vehicle (UAV) video images [51].  

2.1.1 Objection Detection, Tracking And Classification 

Detection and tracking of road users are one of the central applications in computer vision 

studies[65, 66]. Thus, in recent years, it has attracted more attention to solve video-based detection 

and tracking issues for both automated driving applications and road monitoring 

applications.  Some car manufactures integrate cameras with Lidars in automated vehicles to 

obtain depth information and determine the boundaries of surrounding vehicles using sensor fusion 



 

 

13 

technology. The improvement of vehicle boundary detection would be beneficial for real-time 

safety estimation including calculating TTC between the automated vehicles and their surrounding 

road users to avoid potential collisions. As for vision-based detection, the conventional vehicle 

detection methods (e.g. background subtraction, optical flow) tend to only work under simple 

traffic scenes such as uninterrupted traffic flow and have limitations to detect the precise locations 

of vehicles from UAV images. Meanwhile, the results could be sensitive to the environment like 

vehicle color, vehicle orientation, shadows, background motion, intricate ground conditions. 

Moreover, these methods may have difficulties to detect and track slow-moving or stopped 

vehicles. Thus, these methods could not be employed to analyze congested area or intersections. 

In recent years, multiple Regional-CNN (R-CNN) detection methods have been proposed based 

on deep learning approaches, which include R-CNN, fast R-CNN, and faster R-CNN. These 

methods have been applied for vehicle detection and have shown better performance than 

conventional approaches [67-69] 

2.1.2 UAV Video 

Several studies have been conducted UAV video, to obtain traffic parameters through detecting 

and tracking road users’ positions and movements from UAV videos. Most of the previous studies 

focused on obtaining traffic flow data. In details, the data includes speed, volume, and density 

from UAV videos. For example, researcher  proposed a framework for traffic flow parameters 

estimation based on UAV videos through ensemble classifier (Haar cascade + convolutional neural 

network) and optical flow, and UAV videos from a freeway segment was utilized to test the system 

performance[70].Zhao et al. collected speed, density, and volume data for uninterrupted flow 

corridors based on an aerial camera array mounted on an airplane [71].Yamazki extracted vehicle 

speeds based on detecting vehicles from two consecutive digital aerial images  [65]. Meanwhile, 
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some studies utilized UAV videos to investigated traffic safety related issues, such as incident 

detection. In 2014, researcherused UAV to detect traffic incidents for low-volume roads[72].In 

2015, Lee  proved the applicability of using UAV to conduct real-time incident monitoring through 

pilot tests [73]. Even though some studies have been conducted to evaluate traffic safety situations 

using UAV[8, 74], to the authors’ best knowledge, few studies have been conducted to propose 

methods to specifically diagnose traffic safety conditions based on UAV videos other than incident 

detection. Although UAV videos with high resolution and frame frequency could capture adequate 

ground details and vehicles’ movements, most of the current studies focus on calculating the traffic 

flow characteristic and aggregating the data into certain time intervals.  

2.1.3 Roadside Video 

Computer-vision technologies play a vital role in video-based traffic analysis, which is employed 

for object classification, localization, and trajectory extraction. Various techniques have been 

utilized to obtain data from video images including feature-based detection & tracking, 

background subtraction, and optical flow [12, 70]. In recent years, some studies employed deep 

learning approaches to extract traffic parameters from videos that could be utilized to overcome 

the limitations of the traditional approaches under uninterrupted traffic flow conditions or the 

changes in environments (e.g., shadows, intricate ground conditions)[75]. Besides the trajectory 

extraction, vehicle localization for the occupying areas also has a significant influence on road 

safety diagnostics when calculating surrogate safety measures including TTC and PET. The video 

data used for traffic analysis could be collected from multiple types of video cameras that include 

UAVs and video cameras at the roadside. For example, the UAVs could be employed for data 

collection and provide high flexibility of locations, angle of view, and time selection[9, 41, 76] . 

Moreover, the bird’s-eye view video images collected from UAVs could reduce the efforts needed 
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for data processes such as perspective transformation and vehicle localization. However, the issues 

of short battery life, matching images from multiple times of flies, and the concerns of safety are 

nonnegligible. In order to overcome the limitations, many studies utilized their own cameras to 

collect video data at the roadside. [77]developed conflict-based real-time safety models using 

multiple safety indicators that were calculated using surveillance camera data. [78]used massive 

vehicle trajectory data that were collected from 70-hour video data at two signalized intersections 

for proactive safety analytics. These studies were conducted by using their own cameras at the 

roadside, which could provide high-resolution video data. It is worth noting that CCTV cameras 

could collect video data with much longer duration without additional hardware installation or 

labor work, which could also be integrated with other infrastructure data and conduct conflict-

based road analysis. Besides, CCTV cameras have been widely installed in the existing roadway 

system. Hence, with the consideration of cost and coverage, CCTV camera videos are generally 

preferred when relatively larger datasets in a wider area are needed for analysis. Thus, it would be 

essential to investigate how to conduct traffic analysis, especially road safety analysis, using 

CCTV cameras. Moreover, with the development of Connected-Vehicle (CV) techniques, it is 

expected that CCTV cameras would play an important role in the infrastructure-to-Vehicle (I2V) 

technologies development and deployment. 

Hence, it is very important to get accurately the vehicles’ locations and shapes from videos when 

calculating surrogate safety measures. Besides, the camera calibration is required considering the 

relationship between the video image coordinates to physical coordinates on a world map. In this 

way, the trajectory information in real-world coordinates instead of pixel-based coordinates is used 

for the surrogate safety measure calculation. Videos recorded by UAVs are in a bird’s-eye view 

and vehicles can be treated as 2D objects directly (FIGURE 2a)). For the 2D viewpoint detection, 
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many methods using feature detection and  Convolutional Neural Network (CNN) such as Mask 

R-CNN ([79]) have achieved a good detection performance of road user on roads. Also proposed 

a method to generate rotated bounding rectangles based on the pixel-to-pixel manner masks[80]. 

The method could improve Mask R-CNN detection at intersections where vehicles make turning 

movements.  

 
 

(a) AN EXAMPLE FROM A UAV 

VIDEO 

(b) AN EXAMPLE FROM A CCTV 

CAMERA 

FIGURE 2 DETECTION AND TRACKING EXAMPLES IN UAV AND CCTV CAMERA 

VIDEOS 

 

Different from the UAVs’ video images that could observe the vehicles’ occupying areas (vehicle 

sizes) based on bird’s-eye views, CCTV cameras at intersections are generally at low positions. 

Objects such as vehicles are recorded by CCTV cameras through the extrinsic camera rotation to 

project 3D objects to the 2D videos (FIGURE 2(b)). Hence, the methods used for detecting 

vehicles in UAV videos could not describe the true locations and sizes in the 3D scene. Key points 

detection of vehicles such as headlights and taillights would be necessary for vehicle localization 

if no in-depth information could be obtained from other sensors (e.g., Lidar, radar) [81] The key 

points could be detected and tracked based on feature-based approaches [61]. 



 

 

17 

However, in the within-intersection areas, vehicles in the video images from CCTV cameras 

usually have occluded areas due to the angle of video cameras or view obstruction by their nearby 

objects (e.g., vehicles, traffic signs). However, the occluded key points could not be identified 

from the feature-based approaches, and the occluded key points could be changed during the 

vehicle movement, which brings additional challenges for vehicle tracking and localization. Based 

on feature-based detection, the occluded points are difficult to be identified and used to estimate 

precise vehicle locations. Moreover, when turning movements are prevalent in the within-

intersection area, the occluded points of vehicles could change during the turning movements, 

which brings more challenges for vehicle detection and tracking. For example, a vehicle moves 

from the left side of the video images to the right side of the video images, the occluded point of 

the vehicle may change from the rear-left point to the front-left point. If the front-left point is 

tracked by the feature-based tracking methods, the trajectory of the front-left point will be ended 

when it is occluded, which leads to the difficulties of vehicle localization and tracking. Reddy 

proposed a framework named “Occlusion-Net” for key points localization and vehicle key points 

estimation[82]. The points that are occluded due to the angle of view (self-occlusion) or the nearby 

objects (object-occlusion) could be predicted in the video images. The framework was proposed 

for the camera view from vehicles for the use of the driver-assist system, without the consideration 

of vehicle moving characteristics in the within-intersection area. Hence, to the authors’ best 

knowledge, no study has been conducted to use the technology of key points location and vehicle 

key points estimation to improve the accuracy of vehicles’ locations and occupying areas from 

CCTV cameras for safety diagnosis in the within-intersection area. 
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2.1.4 Google Street View (GSV) Images 

Within the rapid development of deep learning and computer vision technology, detailed 

information including object clusters and depth could be obtained from images. In the era of 

transportation studies, computer vision has been applied to count traffic volume and detect traffic 

speed[83]. Besides, some studies applied detection and tracking algorithms to get vehicles’ 

trajectory and calculate the surrogate safety measures [78, 80]. In these studies, researchers 

needed to use cameras to collect the video and image first. It might be time-consuming to collect 

data in a large study area. In the recent years, Google Street View (GSV) images have been used 

to analyze the relationship between the environment and traffic safety. For example, Mooney 

used GSV images to assess environmental contributions to the frequency of pedestrian 

crashes[84]. It was found that traffic islands, visual advertising, bus stops, and crosswalk 

infrastructures are significantly associated with the counts of pedestrian crashes. Kita and 

Kidziński manually labeled data about the conditions of the house and neighborhood from GSV 

images and developed a Generalized Linear Model (GLM) model to reveal the correlations 

between these factors and the risk of that house’s residents getting involved in a car crash[84]. 

Recently, machine learning techniques were also used to explore traffic safety based on GSV 

images. Li developed deep learning algorithms to estimate and map the occurrence of sun glare 

for drivers using GSV images[85]. The study also estimated the time windows of sun glare by 

calculating the sun positions and the relative angles between drivers and the sun for different 

locations developed a distance-aware pixel accumulation to extract information about objects 

surrounding the spots on roads in the street view images[86]. The extracted characteristics were 

used to train fully connected neural networks to identify black spots on roads. While the machine 

learning methods could reach a high accuracy in traffic safety analysis, the relation between the 
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characteristics related to drivers’ view extracted from GSV images and safety is unclear. 

Meanwhile, to the best of the authors’ knowledge, several factors such as tree density and 

driving environment complexity which reflect drivers’ visual environment have not been 

explored by using GSV images. Hence, the applications of using GSV images to enhance traffic 

safety might be limited.  

Through a Google API, users could specify the location, heading, and vertical angle when 

downloading the image. Hence, it is possible to get a lot of images with drivers’ views through 

the GSV images. Computer vision technology has been applied to process GSV images 

automatically instead of manually. Based on the computer vision technology, different 

information such as street-level morphology, urban feature composition, and urban greenery 

could be extracted from the GSV images [87-89]. [90]assessed the street-level urban greenery 

with the field of view (fov) as 60 degrees by using GSV images. The Red, Green, Blue (RGB) 

bands were detected from the images, and the difference among different bands was calculated to 

determine the area of green vegetation. Gong used the PSPNet model, which is a deep 

Convolutional Neural Network (CNN) model for the semantic segmentation of GSV images[87]. 

Several view factors, including sky, tree, and building view factors of street canyons, were 

quantified by using the photographic method. Researcher (derive street-level morphology and 

urban feature composition as experienced by a pedestrian from GSV images[88]. This study used 

the Caffe deep learning framework to segment GSV images into six classes: sky, trees, buildings, 

impervious surfaces, pervious surfaces, and non-permanent objects. While the previous studies 

could extract accurate information at each pixel from images by using computer vision methods, 

these studies focused on the feature segmentation in GSV images without considering depth 

information of features. In a GSV image, features should have different distances away from the 
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camera, reflecting objects at different locations drivers pass by along the road. Hence, depth 

information should be considered to reflect drivers’ visual environment when driving along roads 

in the real world. 

2.1.5 Surrogate Safety 

Surrogate safety measures are widely employed for safety diagnostics using trajectory data to 

describe the safety situations for a certain time and spatial range. Among the previous studies, 

Time-to-collision (TTC) and post-encroachment time (PET) are two of the most prevalent 

surrogate safety measures that use road users’ trajectory data to investigate safety conditions. 

TTC is widely employed to estimate rear-end conflicts. Meanwhile, PET describes the time 

separation between two road users considering the effect of road users’ evasive conflict 

avoidance behavior and is more commonly utilized when using large datasets or evaluating 

safety conditions when turning movements are prevalent. Due to its ability to measure the 

proximity of conflicting road users to each other, PET has been recognized as an effective 

indicator of safety at intersections, where crossing events are frequently observed[11]. 

Researcher utilized PET to investigate vehicle-bicycle conflicts at signalized intersections[64]. 

Researcher proposed a framework to conduct road safety diagnostics by automated extraction of 

vehicles’ trajectories using Mask-RCNN detection and Channel and Spatial Reliability Tracking 

(CSRT)[51]. The trajectory data are utilized to calculate PET values to identify conflict 

situations based on Unmanned Aerial Vehicle (UAV) videos. By using PET as an input to model 

crashes, Peesapati found that the PET could reflect the safety conditions considering the effects 

of characteristics such as sight distance, grade, and other parameters at intersections[91]. Other 

features of vehicles such as length and bumper location have also been considered to modify the 
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TTC and PET to better reflect the safety conditions[78, 80]. The thresholds to define risky 

conditions based on TTC and PET are normally between 1 and 3 seconds. 

 

2.2  Drone-Based Vehicle Trajectory Dataset For Traffic Safety Research 

Previous research efforts that utilized drone-video-based trajectories, particularly in the traffic 

safety domain, have outlined some limitations with the available datasets. Existing video-based 

trajectory datasets were not specifically designed for safety research. Therefore, they have not 

focused on capturing a significant number of safety-critical vehicle interactions. Currently, the 

most well-known and widely used video-based trajectory datasets are NGSIM (19) [29], 

highD[30], inD[31], and Interaction[92]. NGSIM was proposed in 2002. Due to the technological 

limitations in early years, the dataset contains many trajectory errors [48, 93, 94]. The dataset has 

a reported false negative issue which causes more than 10 percent of the vehicles’ detection and 

tracking process to fail for several consecutive frames[49]. Consequently, previous work 

conducted filtering processes before using the dataset to remedy this issue[48].In addition, NGSIM 

has a low density of aggressive driving and very few near-collision events [92]. 

The highD, inD, and Interaction datasets were proposed much recently in 2018-2019, and they 

were able to use much more advanced computer vision technology to accurately extract vehicle 

trajectories. While, highD is mainly the videos from freeway segments under a free-flow 

condition, in which intensive vehicle interactions and critical safety events were inevitably 

limited[50]. Consequently, the vehicle safety research that depends on the critical safety 

scenarios might not be able to collect sufficient samples from highD. As for inD and Interaction, 

they are videos from intersections; the main issue is that the trajectories were measured only in 

the form of central point without the information about the true vehicle body profile, which 
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would cause a bias when calculating the safety metrics based on turning trajectories. 

Consequently, some critical safety events would be missed. The bias is further demonstrated in 

this dissertation.  

2.3 Digital Twin based Simulation for Pedestrian safety and Connected Vehicle 

Digital Twins have been discussed informally since the early 2000s [95]. Grieves introduced the 

first nomenclature in a 2003 presentation, which was later recorded in a white paper that laid the 

groundwork for the development of Digital Twins [95]. In 2012, the National Aeronautical 

Space Administration (NASA) published a document titled "The Digital Twin Paradigm for 

Future NASA and US Air Force Vehicles," which marked a turning point in the definition of 

Digital Twins. A digital twin is a computer representation of an existing or planned physical 

object. It could include but is not limited to, architectural plans, product designs, and 

development. The reference "Digital Twin" is created when data travels between an existing 

physical thing and a digital object, and they are fully integrated into both directions. When you 

change to a physical object in real-world, it automatically affects the digital object. Recently, 

Digital twins are becoming more popular in academics[96-101]. Due to rapid improvements in 

connectivity through IoT, the application and potential for Digital Twins to be highly successful 

inside a smart city are expanding year to year. 

The more smart cities that are built, the more connected communities become, and the more 

Digital Twins are used. Not only that, but the more data we collect from IoT sensors implanted 

in our core city services will open the road for research aimed at developing sophisticated AI 

algorithms [102-104]The capacity of services and infrastructures in a smart city to be monitored 

using IoT devices and have sensors is extremely valuable for future-proofing. It can be utilized to 
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aid in the design and development of current smart cities and future smart city developments. 

Therefore, there are numerous advantages to preparing. 

2.3.1 For Pedestrian Safety 

Pedestrian safety is a serious concern. According to the National Highway Traffic Safety 

Administration (NHSTA), a pedestrian was killed every 85 minutes in traffic crashes in 2019 

[105]. The pedestrian deaths accounted for 17% of total crash fatalities, 26% of the pedestrian 

fatalities happened at intersections [106]. Meanwhile, it was found that the obstruction of drivers’ 

view is one of the most common crash causations for pedestrian crashes [107].  

Many studies have been conducted that focused on pedestrian safety. In 2012, Zegeer & Bushell 

summarized the pedestrian crashes contributing factors into five categories: driver, vehicle, social-

demographical or policy, pedestrian, and roadway factors [108]. Among those factors, vehicle 

speeds are found to have a significant impact on pedestrian safety for both crash occurrence and 

crash severity. Higher operating speed leads to a longer stopping distance. Thus, vehicles with 

higher speeds may not be able to stop completely and avoid crashes by emergency brakes. Previous 

research indicated that the odds of pedestrian fatality increase by 11% for a 1 km/h increment 

[109]. It was also found that if a pedestrian was hit by vehicles’ bumpers, hoods, or the windshield 

area, the severity of the crash tends to be higher [106].  In 2014, Bertulis and Dulask investigated 

the relationship between vehicle speeds and yield rate [110]. The results indicated that vehicles 

with higher speeds are less likely to yield to pedestrians, which is consistent with other studies 

[111, 112]. Unexpected crossing behavior of pedestrians are also one of the common contributing 

factors for pedestrian safety critical situations [113], such as running and jaywalking. Meanwhile, 

it was found that some pedestrians have lower speeds and could not complete crossing before the 

onset of red signal [114], which could lead to potential conflicts with vehicles.  
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The advent of Autonomous Vehicle (AV) technologies provides tremendous opportunities to 

prevent crashes by mitigating human errors. One of these technologies is Automatic Emergency 

Braking (AEB), which is expected to benefit pedestrian safety by preventing pedestrian-related 

crashes. For pedestrian-related situations, if the vehicle sensors detect an imminent collision, the 

vehicle will begin to brake automatically. Some studied were conducted to estimate the safety 

benefits of AEB technologies. In 2013, Rosen investigated the impact of AEB systems on both 

pedestrian and cyclist crashes using real-world crash data. The results indicate that when the 

system is optimized, the effectiveness can be 52% and 31% for pedestrians and cyclists, 

respectively [115]. However, the effectiveness of AEB systems is highly influenced by other 

factors, such as sensors’ Field of View (FoV) and the design of the systems [116]. According to 

previous research, the effectiveness of AEB decreases significantly with the decrease of FoV, as 

vehicles may not be able to detect dangerous situations in time and have a complete stop before a 

crash happens [117].  Yue proposed an augmentation function to estimate the crash risk given its 

time-space-distance relationship with a pedestrian [118]. The crash risk represents the probability 

of hitting the pedestrian given all the pedestrian’s possible random trajectories in the near future. 

The study demonstrated that an FoV of 50o and a detection range of 40 m would be the minimum 

requirement to support the augmentation function. Similarly,   Zhao reconstructed 40 crash cases 

based on the collected video data related to taxi-to-cyclists crashes [25]. The results illustrated that 

an increase of FoV from 50 ° to 90° could avoid 30% more cyclist-related crashes. Meanwhile, the 

effectiveness of AEB could be various based on when the vehicles start to decelerate automatically 

and what deceleration rate is employed. The start to brake decisions of the AEB systems usually 

depend on the Time-to-Collision (TTC) values. When the TTC is lower than the threshold, the 
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vehicle will start to decelerate to avoid the imminent collision. Thus, AEB systems with larger 

TTC thresholds are found to have higher safety benefits [119].  

In recent years, many efforts have been conducted to evaluate the effects of various in-vehicle 

technologies.  Some studies were conducted using naturalistic driving data that were collected in 

real-life driving conditions. This type of data could capture the drivers’ behaviors and some 

crashes/near-crashes events [120, 121]. In 2020, Seacrist utilized SHRP 2 rear-end striking crashes 

data to evaluate the effectiveness of AEB for rear-end crashes. This study also found that the 

increase in vehicle operating speeds has a negative impact on the effectiveness of the AEB system 

[122].  One of the limitations of naturalistic driving-based studies is that the data collection method 

is found to be inefficient to obtain sufficient sample sizes for analysis, especially when interaction 

effects are explored. Hundreds of millions of miles driving may be necessary to assess AVs’ safety 

performance [123]. Another type of method is the driving simulator experiment. Driving simulator 

experiments are widely utilized to investigate the effects of human factors. In 2017, a driving 

simulator experiment was conducted to investigate the differences in effects among various types 

of AEB systems under snow conditions and identified significant differences between males and 

females [124]. Although the abovementioned methods could be utilized to investigate AV’s 

performance, they have limited capability to explore the relationship between the AV sensors’ 

specifications and the driving performance. An open-source autonomous vehicle simulation 

platform named “CARLA” was developed in recent years and could be utilized to obtain simulated 

naturalistic driving data, which provides the flexibility of changing driving environments and 

sensors’ specifications [125, 126]. Thus, it could be employed to identify the impact of AV 

technologies with different sensor-fusion techniques and AV control algorithms.  In 2021, Feng 

utilized CARLA to build an environment and simulated life-like driving for AVs [123]. The 
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proposed method aims to accelerate the procedure of AV evaluation by reducing the required miles 

of naturalistic driving. Meanwhile, the CARLA platform can also be extended and employed to 

test Vehicle-to-Everything (V2X) or Cooperative Driving Automation (CDA) technologies  [127, 

128]. 

2.3.2 Connect Vehicle 

There are numerous research focused on CV technology, including vehicle connectivity, cyber 

security, driving assistance, automotive control, and cooperative driving, etc. Most of the studies 

were conducted in a simulation environment as field test is expensive and time-consuming. 

Microscopic traffic simulation is widely used to study CV applications’ benefits on safety[7, 

129, 130], mobility [131-133], and energy consumption[134-136]. Virtual simulators, powered 

by game engine, have become increasingly popular for CV research, as they can simulate 

environment perception, vehicle dynamics, and control algorithms[125, 137-139]. Driving 

simulator is also an effective tool to test CV technology including safety warning system [140, 

141], traveler information[142] , and cooperative driving[143, 144]. Recently, an increasing 

number of research adopted co-simulation technics for CV research. The co-simulation 

incorporates multiple simulation tools with different functionalities such as autonomous driving, 

traffic flow simulation, vehicular network and sensing technology [139, 145] 

2.3.3 CAVE System  

The research on applying intelligent transportation system applications to enhance pedestrian 

safety heavily relies on simulation. Various collision warning or avoidance systems have been 

proposed that powered by vehicle-to-pedestrian communication [146, 147], and tested in micro-

simulation by modeling the vehicle and pedestrian behavior. The advent of virtual reality (VR) 

technology brings opportunities to create a high-fidelity environment to involve real pedestrians 
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for research and testing. VR headset is the most adopted equipment to display a virtual 

environment because of reasonable price and comprehensive technical support. However, the 

motion sickness issue is still a major problem that affects user experience[148] . Recently, some 

researchers used the Cave automatic virtual environment (CAVE) for pedestrian research [149-

151] CAVE is a VR environment where projectors are directed to between three and six of the 

walls of a room-sized cube [152]. It has much less motion sickness compared to headsets and 

allows people to walk in the cube space freely. 

2.3.4 Pedestrian Motion 

Pedestrian motion, the way of simulating walking in the virtual environment, is another hard task 

for pedestrian-in-theloop research. The traditional method to simulate pedestrian crossing 

behavior is to perform “shout test”: participants shout their crossing decision when they intend to 

cross the street. Walking simulators such as VR treadmills are also used in some research [153]. 

When conducting experiments, the participant is wearing VR goggles and walking in-place on a 

bowl-like treadmill, while tied with a band on his/her waist to prevent falling down. It could 

simulate unlimited walking distance, but the walking experience is inconsistent and still quite 

different from real-world walking. Recent studies have tried walking inhouse with a VR headset 

[154]. The issue with it is that the participant is easy to lose balance and prone to fall down. 

Locomotion, that pedestrian mark time, and use leg a band to detect pedestrian motion, is another 

method to simulate walking .[153] 

2.3.5 Real-Digital World Hybrid Environment 

The above-mentioned efforts are CV or pedestrian research based on simulation in designed 

experiments. The emerging Digital Twin technology allows researchers to develop new ITS 

applications in a real-virtual hybrid environment. There are already a few research studies that 



 

 

28 

explored the applications of Digital Twin on connected vehicles and drivers. A Mobility Digital 

Twin framework is proposed in [155], which consists of physical and digital space of three 

components: human, vehicle, and traffic. A concept of Driver Digital Twin is introduced with the 

aim of bridging the gap between existing automated driving system and driver digitization [156]. 

Also, deep learning for security in Digital Twin of cooperative ITS is investigated[157] . 

Although the Digital Twin concept has been applied to vehicles, drivers and other traffic 

participants, and many simulation or field test efforts have been made for it, to the best of our 

knowledge, there is a lack of systematic framework and research tool that considers both CV and 

pedestrian in-the-loop for a Digital Twin environment. As they are among the two most 

important traffic participants on the road, it is necessary to build a Digital Twin architecture to 

facilitate the research and development of the next generation of ITS technology. 
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CHAPTER 3: DEVELOPMENT OF AI-DRIVEN COMPUTER VISION SYSTEMS 

3.1 Automated Roadway Conflicts Identification System (A.R.C.I.S) 

3.1.1 Introduction 

This study presents an automated traffic safety diagnostics solution using deep learning 

techniques to process traffic videos by Unmanned Aerial Vehicle (UAV). Mask R-CNN is 

employed to better detect vehicles in UAV videos after video stabilization. The vehicle 

trajectories are generated when tracking the detected vehicle by Channel and Spatial Reliability 

Tracking (CSRT) algorithm. During the detection process, missing vehicles could be tracked by 

the process of identifying stopped vehicles and comparing Intersect of Union (IOU) between the 

tracking results and the detection results. In addition, rotated bounding rectangles based on the 

pixel-to- pixel manner masks that are generated by Mask R-CNN detection, which are also 

introduced to obtain precise vehicle size and location data. Moreover, surrogate safety measures 

(i.e. post- encroachment time (PET)) are calculated for each conflict event at the pixel level. 

Therefore, conflicts could be identified through the process of comparing the PET values and the 

threshold. To be more specific, conflict types that include rear-end, head-on, sideswipe, and 

angle could be determined. A case study is presented at a typical signalized intersection, the 

results indicate that the proposed framework could notably improve the accuracy of the output 

data. Furthermore, by calculating the PET values for each conflict event, an automated traffic 

safety diagnostic for the studied intersection could be conducted. According to the research, rear-

end conflicts are the most prevalent conflict type at the studied location, while one angle 

collision conflict is identified at the study duration. It is expected that the proposed method could 

help diagnose the safety problems efficiently with UAVs and appropriate countermeasures could 

be proposed after then. 
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3.1.2 Methodology 

ARCIS has five steps (FIGURE 3). The five steps are video stabilization, object filtering, video 

stitching, enhanced error filtering and detection and tracking. These steps ensure the output 

(FIGURE 4) trajectory to be accurate as much as possible. 

 

 

FIGURE 3 THE PRODUCTION PIPELINE OF ARCIS 
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FIGURE 4 EXAMPLE OF ARCIS OUTPUT 

3.1.2.1 Video Stabilization 

Since the drone may be affected by unstable airflow and has vibration, it is necessary to stabilize 

the video. Firstly, the scale-invariant feature transform (SIFT) algorithm (30) was used to compare 

the first and last frames of the video, and a vehicle-free background feature map was generated. 

Further, the median pixel over 6000 random frames were calculated to build an accumulated 

weighted frame. Then, based on the weighted frame, each frame was mapped to the background 

feature map through the homography transformation. During the mapping, a CSRT tracker was 

used to resolve the failure mapping issue, and the position changes between frames were smoothed. 

Finally, the video was stabilized as shown in FIGURE 5 
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(A) BEFORE STABILIZATION 

 

(B) AFTER STABILIZATION 

FIGURE 5 (A) BEFORE AND (B) AFTER VIDEO STABILIZATION 

3.1.2.2 Object Filtering 

Since the video recordings may have some road markings or other objects that may cause a 

detection error; therefore, these objects have to be eliminated. Firstly, the vehicles were removed 

from the background by using a Gaussian-mixture-based algorithm (31); then the inpainting 

algorithm (32) was used to remove the unwanted objects in the background.  FIGURE 6 shows the 

object filtering operation. 
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(A) BEFORE OBJECT FILTERING 

 

(B) AFTER OBJECT FILTERING 

FIGURE 6 (A) BEFORE AND (B) AFTER OBJECT FILTERING FROM THE VIDEO 

RECORDING 

3.1.2.3 Multi-Video Stitching 

Since one drone can only cover a limited length of segment due to the flying height restriction, 

two or more drones were used to have a complete covering of the interested area. AS shown in 

FIGURE 7The multi-video recordings were stitched based on the histogram matching algorithm, 

SIFT algorithm and motion blur idea. These algorithms enable multi-videos to be of the same 

brightness level, color distribution and well-mapped feature points.   
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FIGURE 7 MULTI-VIDEO STITCHING FLOW CHART 

3.1.2.4 Object Detection and Tracking 

Mask R-CNN is used for vehicle detection in this research, which predicts segmentation mask in 

a pixel-to-pixel manner [5]. The pixel-to-pixel manner mask would be beneficial to obtain 

precise location of vehicles in UAV images. Mask R-CNN algorithm could provide both 

classification and masks as output. Meanwhile, since Mask R-CNN could generate precise masks 

for detected objects, rotated bounding rectangles can be obtained from the masks, which provide 

an alternative method to obtain vehicle sizes and more precise locations. The rotated bounding 

rectangles for the detected objects can be generated based on the mask as the smallest rectangle 

that could cover the predicted mask [158].Since the straight bounding rectangles of the vehicles 

from detection would not be rotated to align with the vehicles moving direction. Thus, the results 

of vehicle sizes tend to be larger when vehicles are on a curve or turn at an intersection. FIGURE 

8illustrates an example of the differences between the detected object’s mask, straight bounding 

rectangle, and rotated bounding rectangle. The area within the green line is the masked area of 
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the detected object. The red rectangle is the rotated bounding rectangle of the predicted mask, 

while the yellow area is the straight bounding rectangle. As shown in the figure below, the area 

covered by the straight bounding rectangle tends to be larger when the vehicle is conducting 

turning movement.  

 

 

FIGURE 8 DIFFERENCES BETWEEN MASK, STRAIGHT BOUNDING BOX, AND 

ROTATED BOUNDING BOX 

The first step of detection is to collect sample library for vehicle images from UAV videos.  In 

this study, over 10,000 vehicle samples were manually collected from multiple UAV videos (1 

image per 10 seconds) from different locations. Thus, each sample includes one vehicles without 

duplicated samples [159]. Three indicators are chosen to evaluate the detection accuracy, which 

include correctness, completeness, and quality. 

correctness=TP/(TP+FP) 

completeness=TP/(TP+FN) 

quality=TP/(TP+FP+FN) 
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where, True Positive (TP) means the number of vehicles that detected correctly; False 

Positive (FP) means the number wrongly detected vehicles; False Negative (FN) means the number 

of missing vehicles. Over 2,000 samples with different vehicle images were utilized to test the 

performance of training results. The performance of the detection algorithm is as follows: The 

correctness of the sample is 98%; The completeness is 77%; The quality of the samples is 76%. It 

is worth noting that since detection will run multiple times during the detection & tracking process 

to find the untracked vehicles, the performance is expected to be better when processing 

continuous video images.  Moreover, in order to illustrate the differences between rotated 

bounding rectangles and straight bounding rectangles. Intersection of Union (IOUgt) are calculated 

based on the following equation: 

 

For all the detected vehicles, the average IOU for rotated bounding rectangle area is 0.81, while 

the average IOU for straight bounding rectangle area is 0.62. Meanwhile, based on the results of 

paired t-test, there is a significant difference in IOU values between the rotated and straight 

bounding rectangle area (p-value<0.01). The results indicate that the rotated bounding rectangle 

could provide more precise data for the locations of the detected objects.   

Chanel and Spatial Reliability Tracking (CSRT) is used for tracking the object that are 

detected based on Mask R-CNN algorithm [5], which provides high accuracy but lower speed 

based on two standard features (i.e.  HoGs, Colornames) [158].One of the challenges for vehicle 

tracking is that vehicles may lose tracking due to the influence of shadows, light conditions, etc. 

Since the accuracy of the vehicle trajectories has a significant impact when calculating surrogate 
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safety measures and plays an importation role in safety analysis, this study proposes the following 

step to detect lost vehicles while tracking: 

Step 0: Identify vehicle speed=0 at frame j; 

Step 1: Conduct detection for frame j; 

Step 2: Calculate the intersection-over-union for tracking and detection areas based on the 

following equation. 

 

Step 3: if IOUDT<threshold, find a lost vehicle and start tracking for the lost vehicle. The 

threshold that we employed in this study is 0.5. 

Meanwhile, vehicles’ moving directions can be extracted based on the difference in 

locations from two consecutive frames. Thus, vehicles’ bounding rectangles are rotated according 

to the moving direction to obtain more precise information of vehicles’ occupied locations. Error! 

Reference source not found.(a) shows an example of a vehicle (#609) lost tracking when 

approaching a tree shadow area. The speed of the vehicle would be 0 after lost tracking. Thus, 

detection was conducted at that frame in order to find and continue tracking the lost vehicle. As it 

is shown FIGURE 9(b), the lost vehicle is detected and tracked again as vehicle #634. Then, by 

comparing the lost time and location of vehicle #609 and the detected time and location of vehicle 

#634, vehicle #609 and vehicle #634 could be identified as the same vehicle.   
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(a) LOST TRACKING 

 

(B) TRACK THE LOST VEHICLE 

FIGURE 9 AN EXAMPLE OF FIND LOST VEHICLE DURING TRACKING 

3.1.2.5 Enhanced Error Filtering 

The extracted trajectories may still have some bias due to factors such as the shade of trees or 

buildings, inevitable detection errors, and unobservable vehicle types in the training set. Therefore, 

we developed a data fix tool to further check potential errors. The data fix tool allows to manually 

delete wrong detection objects and adjust the size and heading of the bounding box. Then, the 

adjusted data was returned to the training dataset and participated in next rounds of training to 

increase the detection accuracy, using the active learning idea[160, 161]. FIGURE 10 shows an 

example of adjusting vehicle bounding box using the data fix tool.  
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(A) BEFORE ERROR FILTERING 

 

(B) AFTER ERROR FILTERING 

FIGURE 10 USING DATA FIX TOOL TO ADJUST BOUNDING BOX ERROR (THE 

LIGHT BLUE BOUNDING BOX IS FIXED IN THE FIGURE). 

3.1.2.6 Conflict Identification 

FIGURE 11 shows the flowchart of conflict and conflict type identification.  In order to calculate 

PET values, a vehicle occupancy table needs to be generated, which include the timestamps that 

each part of each vehicle (front, middle, rear) that arrive and leave each pixel that the vehicle has 

occupied in the video. Then, PET values could be calculated by comparing the timestamps for two 

consecutive vehicles at each pixel. The PET is calculated as time difference between the first 

vehicle leaving the pixel and the time that the second vehicle arrives at the pixel. Conflicts could 

be identified by filtering out the events that have PET less than the threshold. In this study, a 

sensitivity analysis was conducted for different thresholds. In order to find the precise locations 

and time of the identified conflicts, the earliest arrival time and pixel of the second vehicle are 

utilized as the corresponding conflict point and conflict time.  

Then, moving direction of the vehicles, Intersect of Pixels (IOP), and vehicle occupancy table are 

utilized to identify conflict types (i.e., head on, angle, rear-end, sideswipe). IOP is defined as the 

percentage of the pixels that have been occupied by both vehicles before the conflict event happens 

over the pixels that have been occupied by either vehicle. The value is employed to identify if the 
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second vehicle is following the first vehicle, which could be used to determine if the conflict is 

rear-end collision conflict or not. If the angle between the two vehicles’ moving direction is 

between 0 degree and 45 degree or between 315 degree and 360 degree, and the IOP is less than 

or equals to the threshold, the conflict is identified as a rear-end conflict; If the angle is between 0 

degree and 45 degree or between 315 degree and 360 degree, and the IOP is greater than the 

threshold, the conflict would be sideswipe conflict; Meanwhile, if the angle is between 135 degree 

and 225 degree and the conflict parts are not the front parts of the vehicles, the conflict would also 

be identified as sideswipe conflict; If the angle is between 135 degree and 225 degree and the 

conflict parts are the front parts of the vehicles, the conflict would be a head-on conflict; Otherwise, 

the conflict would be identified as an angle conflict. 
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FIGURE 11 CONFLICT IDENTIFICATION 

3.1.3 System Performance 

To validate the proposed conflict diagnose framework, data collection was conducted on October 

8th, 2018 from 8:30 AM to 8:50 AM at a typical 4-leg intersection at the University of Central 

Florida (UCF). A DJI Phantom 4 UAV was utilized to collect the data, and the video was captured 

by an optical camera with 1920 ×1080 resolution. Mask R-CNN detection was conducted at 

intervals of 0.5 seconds by Keras [162].Meanwhile, the position of the vehicles was tracked at 

intervals of every 115 second (15 frames per second mode) by OpenCV. All experiments are 
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conducted using Python implementation on a desktop computer with Intel i9-7980XE (18 cores 

and 36 threads) @ 4.2Hz, 64 GB DDr4 (3200MHz) memory and two Nvidia 2080ti GPUs.  

3.1.3.1 Detection and Tracking Performance 

In total, 1,588 vehicles were detected and tracked based on the UAV video. The accuracy of the 

proposed algorithm was evaluated based on IOU values. For each type of movement (i.e. left turn, 

right turn, straight), 20 vehicles were randomly selected from the UAV video. IOU values were 

calculated at the movement duration for each vehicle based on the outputs and the ground truths 

that were collected manually. Totally 3,541 video images were collected to calculate the IOU for 

the selected vehicles. Higher IOU values indicate higher accuracy of the detection and tracking 

results. Moreover, simple Mask R-CNN detection with CSRT tracker was conducted in order to 

compare with the performance of the proposed algorithm. As shown in  

TABLE 1 COMPARISON OF AVERAGE IOUS, the proposed algorithm could significantly 

improve the performance for all type of movements, especially for turning movements (i.e. left 

turn, right turn). Also, the straight movements have the best performance for both methods.  

TABLE 1 COMPARISON OF AVERAGE IOUS 
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3.1.3.2 PET Diagnostics 

In order to calculate the PET values for each pixel data, vehicles’ occupancy table for each pixel 

was generated based on the vehicles’ trajectories. A table with 68,211,472 observations were 

generated, which includes arrival and leave timestamps for every pixel of each part of the 

vehicles, and PET values were calculated based on the table. The PET values were calculated 

between two consecutive vehicles that have occupied the same pixels in the video, and one value 

is returned for each conflict with the corresponding conflict location at the pixel level. The 

conflict events with the corresponding locations of the identified potential conflicts were 

obtained based on the PET values. Moreover, heatmap could be generated based on the locations 

of the conflict events to investigate the spatial distribution of the conflicts.  

FIGURE 12 (a) shows the conflict heatmap that were identified based on vehicles’ trajectories 

where PET values are less than 1.5 s. As it is shown in the figure, the right-turning lane of the 

northbound has the highest risk. The results are expected as the right-turning vehicles have more 

frequently stop-and-go behavior in order to yield to vehicles from the other directions and lead to 

higher rear-end collision risk. Since the data collection was conduct at a typical morning peak 

duration, many vehicles turn right at the northbound to enter the UCF campus area. 

FIGURE 12(b) displays the number of conflicts based on different PET thresholds. Different PET 

values could be employed to determine conflict risk levels, while smaller PET values indicate 

higher risk (29; 30). Significant difference could be observed for the number of conflicts with the 

increase of PET thresholds. If the PET threshold is 1 s, only 2 conflicts were identified as high-

risk conflicts. When the threshold increases to 1.5 s, the conflict count increased to 22. Moreover, 

the number of conflicts increases to 90 when the PET threshold increases to 2 s.  
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From the UAV video, most of the identified conflicts are rear-end collision conflicts, only 1 angle 

collision conflict was identified with PET value equal to 1.7 s.  

FIGURE 12 (c) shows an example of angle collision conflict, where a left-turning vehicle (vehicle 

#948) has a potential conflict with the straight moving vehicle (vehicle #955).  

FIGURE 12(d) provides an example of rear-end collision conflict between vehicles #285 and #287 

which is due to relatively small headway.  

Based on the diagnosis results, countermeasures such as adding a dynamic message sign or beacon 

could be implemented at the upstream of the northbound approach to reduce the right-turn conflicts. 
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(A)CONFLICT HEATMAP                                          (B) CONFLICT COUNTS AT 

DIFFERENT PET THRESHOLDS 

    

  

(C ) AN EXAMPLE OF ANGLE COLLISION CONFLICT.  (D) AN EXAMPLE OF 

REAR-END COLLISION CONFLICT 

FIGURE 12 SAFETY DIAGNOSTICS 

3.1.4 Conclusions and Future Work 

This research proposes an automated framework for safety diagnosis utilizing Mask R-CNN 

detection algorithm and Channel and Spatial Reliability Tracking (CSRT) multi-object tracking 

algorithm for UAV videos. A case study was conducted at a typical signalized intersection at 

UCF. The case study has validated the feasibility of investigating safety situation from UAV 

videos based on surrogate safety measures (i.e. PET). It also demonstrated that the proposed 

methods of using computer vision techniques to automatically extract vehicles’ trajectories and 
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identify conflicts from UAV videos have better performance in terms of data accuracy, 

especially for turning vehicles (i.e., right turning, left turning). To the best of the authors’ 

knowledge, this is the first study that proposes a framework to automatically identify conflict 

types from video-based trajectory data without using other types of data (e.g., road geometry, 

lane configuration).  Sensitivity analysis for PET threshold was conduct in the study. The results 

of the identified conflicts indicate that rear-end conflicts is the most prevalent type of conflicts 

for the studied intersection, while only one angle collision conflict was identified between a left-

turning vehicle and a through vehicle. Moreover, the right-turning lane at the northbound was 

found to have the highest risk where many vehicles turn right to enter the UCF campus and 

frequently stop-and-go behavior were present in order to yield to the vehicles from other 

directions.  

In the future, different type of objects (e.g. pedestrian(FIGURE 13), cyclist) could be detected 

with enriched UAV datasets for detection. Also, other surrogate safety measures (e.g. TTC) 

could be utilized to further explore the safety conditions of the study area.  
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FIGURE 13 EXAMPLE OF PEDESTRIAN DECOCTION FROM DRONE VIDEO 

3.2 Near Miss Event Detection System (N.M.E.D.S) 

3.2.1 Introduction 

Various methods could be utilized to conduct road safety analysis. The traditional crash count 

analysis uses highly aggregated data to evaluate road safety for certain situations[56]. However, 

one of the limitations of using highly aggregated data is that it could not consider the heterogeneity 

of traffic or the surrounding environment, which could have an impact on the estimation accuracy. 

In recent decades, the wide employment of traffic infrastructure-based sensors could generate big 

data in real-time that enables researchers to conduct crash likelihood analysis by aggregating it 

into shorter time intervals. By aggregating the data from nearby traffic detectors (e.g., MVDS, 

Loop Detectors) and the other infrastructure elements (e.g., weather stations, signals) at certain 

time intervals, precursors of crash occurrence could be identified, which could be used to 

investigate road safety situations and identify corresponding strategies to prevent crashes. 
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Although the deployment of traffic infrastructure sensors brings big data and enables the analysis 

of real-time crash risk, the rarity of crashes leads to some limitations to safety research and practice. 

The use of conflicts could overcome the limitation of crash-based safety analysis and provide a 

compelling explanation to crash causations while considering the interactions between road users 

and other behavioral factors by obtaining individual road users’ data. First, only after crashes have 

been observed can researchers and practitioners evaluate the safety performance of the studied 

locations and situations. The use of conflicts provides an alternative method to investigate road 

safety conditions that overcome the limitations of crash analysis[61]. Second, although risky 

situations are present, crashes may still be prevented through evasive actions, such as emergency 

brake and lane changing. However, the traditional infrastructure-based traffic data could barely 

capture information of individual road users’ behavior, and the crash prediction model could be 

prone to providing false alarms [62]. Moreover, as human factors are solely or in conjunction with 

other factors contribute to around 95% of crash occurrence, traffic data from detectors may not be 

sufficient to identify crash precursors for many situations[63] .  

Many previous studies [22, 131, 163] have been conducted for the analysis of intersection safety 

by using total crashes at the intersection and intersection-related area (with a certain distance from 

the center of intersections). The effects of traffic, geometric design, and surrounding land use were 

identified for the whole intersection area. The intersection area could be divided into three types, 

which are intersection entrance area (where vehicles approach the stop line), within-intersection 

area (where vehicles make through, left-turn, right-turn, and U-turn movements), and intersection 

exit area (where vehicle pass the within-intersection area). Some recent studies attempted to 

explore traffic safety in the intersection entrance area by using traffic data of detectors at the 

entering approaches. For example, researcher used the Automated Traffic Signal Performance 
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Measures (ATSPM) data to predict crash risk at the entrance area in real-time. Researcher 

developed traffic conflict models to evaluate the safety of the entrance area at the cycle level based 

on vehicles’ trajectory data from the camera. In the within-intersection area, a large number of 

conflict points are generated by turning vehicles of different movements and drivers are more 

prone to make mistakes, which could lead to severe crash outcomes. However, only limited studies 

have been conducted about the safety in the within-intersection area due to the lack of detectors. 

Some researcher developed models to predict crash risk in the within-intersection area by using 

the ATSPM data at the entering area, which may not capture the traffic interaction in the within-

intersection area. This study attempts to analyze the safety in the within-intersection area by using 

Closed-Circuit Television (CCTV) Cameras. A new vehicle detection method is proposed to 

improve the trajectory accuracy for safety analysis. Also, a spatial analysis method is developed 

to identify safety hotspots.  

3.2.2 Data Collection 

The data collection was conducted on two different locations to validate the proposed framework 

(FIGURE 14): 

    1.October 30, 2019, from 8:30 am to 9:00 am at a Four-leg intersection in Lake Mary, Florida  

    2.May 24, 2021, from 9:30 am to 8:00 pm at a Four-leg intersection in, Casselberry, FL 

 

The CCTV camera videos were collected for both locations. Besides, drone video was collected 

for Location 2, which will be used to further validate the proposed framework. The covered area 

by the camera is illustrated by a rectangle in Figure 9. Only vehicles’ trajectories were collected 

to identify potential conflicts, and no confidential information was obtained. Mask R-CNN 

detection was conducted at intervals of 0.5 seconds to identify the bounding box, and the key points 
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detection was conducted at intervals of every 1/20 second (20 frames per second mode) using 

Occlusion-Net. Meanwhile, the position of the vehicles was tracked at intervals of every 1/20  

second by OpenCV [164] The vehicle trajectories were transformed into the real-world coordinate 

system and modified to get the occluded points. All experiments are conducted using Python 

implementation on a desktop computer with Intel i9-7980XE (18 cores and 36 threads) @ 4.2Hz, 

64 GB DDr4 (3200MHz) memory, and two Nvidia 2080ti GPUs. 

 

     

 

FIGURE 14 DATA COLLECTION LOCATION 
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3.2.3 Methodology 

FIGURE 15 shows the framework of conducting safety diagnostics using CCTV cameras. The 

first step of the proposed framework is detecting vehicles from video images. Mask-RCNN is 

utilized as the detection algorithm in this study. The Mask-RCNN model could provide a 

classification of the objects in the video images and predict pixel-to-pixel manner segmentation 

masks. Meanwhile, a 2D bounding box is generated around each mask to indicate the locations of 

the detected objects. The four vertexes of the bounding boxes and the corresponding center points 

are obtained as the initial localization for each vehicle. The second step is vehicle key points 

detection and tracking. Researcher proposed a framework named “Occlusion-Net” to predict key 

points for objects including the occluded points that cannot be observed in the images due to the 

angle of view or the obstruction of other objects[82]. The key points could be utilized to provide 

more accurate localization. In this study, Occlusion-Net is employed to find the four key points of 

vehicles (i.e., right-front headlight, left-front headlight, right-back taillight, left-back taillight). 

Those key points are utilized to find more precise information about the vehicle occupying area, 

which would be important for calculating surrogate safety measures. Then, data filters will be 

applied to obtain the datasets that could be utilized to calculate surrogate safety measures (e.g., 

TTC, PET). The data filters include perspective transformation and data smoothing. The outputs 

from steps 1 & 2 are in a pixel format (x,y) based on the video images. Perspective transformation 

is employed to transfer the outputs to a real-world coordinate format, or a coordinate system based 

on the bird’s-eye view of the study area[165]. Since the Occlusion-Net algorithm predicts the 

occluded key points based on the roadside view, occluded key points modification could be 

conducted using a 2D bird’s-eye view. Finally, safety diagnostics could be conducted based on the 

outputs from step 3 by identifying conflicts through calculating surrogate safety measures.  
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FIGURE 15 THE PROPOSED FRAMEWORK 

 

Steps 1&2: Detection and Tracking  

Bounding box vehicle detection and tracking 

We proposed a framework named “Automated Roadway Conflict Identification System (ARCIS)” 

to detect and track vehicles from Unmanned Aerial Vehicle (UAV) images. Mask-RCNN was 

employed as the detection algorithm to find untracked vehicles from video images Meanwhile, 

Channel and Spatial Reliability Tracking (CSRT) algorithm was utilized to obtain the trajectories 

of the detected vehicles. Moreover, missing or lost vehicles could be found by comparing the 

Intersect of Union (IOU) between the detection results and the tracking results). In this study, the 

previous efforts are extended to videos from CCTV cameras. As a vast amount of data is needed 

to train a deep neural network object detection, a pre-trained weight using COCO 2017 dataset that 

includes 12,786 cars, 61,377 trucks, and 4,141 buses is utilized to find road users from video 

images. FIGURE 16 presents examples of the detection results based on Mask-RCNN. The 

rectangles are the bounding boxes of detected objects that were obtained based on the masks, and 
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the dots are the center points of the bounding box. It is worth noting that although most of the 

existing studies use one point of each object (e.g., center point) to represent vehicle locations and 

obtain vehicle trajectories, the length and width of vehicles should not be ignored, especially when 

conducting safety analysis. Meanwhile, some studies use bounding boxes to represent the 

occupying area of vehicles. However, the bounding box could not reflect the precise locations of 

vehicles, as the bounding boxes are obtained based on a 2D roadside view instead of 3D detection 

or 2D bird’s-eye view.  

 

 

 

 

 

FIGURE 16 MASK-RCNN DETECTION 

Vehicle key points detection 

One of the methods to obtain more precise vehicle localization is using 3D reconstruction by 

identifying the key points on the objects. In this study, four key points’ detection results of each 

vehicle are archived for each vehicle as outputs using the Occlusion-Net algorithms including 

right-front headlight, left-front headlight, right-back taillight, and left-back taillight at the detected 

frames. A pre-trained model developed by using open datasets is utilized in this study. While the 

keypoints detection could provide the 3D detection results, it could miss detections of some 

vehicles[82].Hence, this study combined the bounding box detection and key points detection to 

improve the accuracy, i.e., vehicle key points detection is conducted within the bounding box areas. 

Thus, key point detection results for the same vehicle at different frames could be identified by 
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matching the key point detection results with the bounding box detection and tracking results. The 

combined detection process could also improve the detection efficiency since the key points 

detection is only conducted in the bounding box area instead of the whole road. FIGURE 17 

illustrates an example of the detection and tracking results. FIGURE 17(a) shows the original 

image, and FIGURE 17(b) shows the generated vehicle bounding box for the two detected vehicles 

based on the Mask-RCNN algorithm (red rectangles) and the vehicle key points based on 

Occlusion-Net. It is worth noting that most of the vehicles from roadside views have occluded key 

points. The occlusion may be due to the angle of view (self-occlusion) or other nearby objects, 

which is very common in the within-intersection area. Thus, a modification method is introduced 

to get occluded key points in the following section.  

 

 

 

 

 

 

(a) ORIGINAL IMAGE (b) BOUNDING BOXES AND KEY 

POINTS 

FIGURE 17 VEHICLE DETECTION AND TRACKING 

 

FIGURE 18 illustrates the vehicle detection and tracking procedures, which include bounding box 

vehicle detection & tracking and vehicle key points detection & tracking. The first four steps are 

used to ensure all vehicles could be detected and tracked. Then, the bounding box of each vehicle 

could be generated, where the key points detection is conducted. Two types of outputs could be 
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generated for all the vehicles in the video images at each timeframe: (1) bounding box data; (2) 

vehicle key points data. 

 

FIGURE 18 VEHICLE DETECTION AND TRACKING FLOW CHART 

Step 3: Perspective Transformation and Occluded Key Points Modification 

As illustrated in FIGURE 19, this step has two major parts: (1) key points transformation; (2) 

occluded key points modification. First, the output data collected from detection and tracking are 

transferred to coordinates format based on perspective transformation. The coordinates format data 

could be plotted on the Google satellite image at the selected location. Thus, the following data 

processing and analysis are based on the coordinate system of bird’s-eye view (i.e., google satellite 

image) instead of the roadside view. After the perspective transformation, moving average is 

conducted for data smoothing and aggregated for a certain duration to make sure the trajectory of 

vehicles is smooth. In FIGURE 19, the red polygon is the bounding box after transforming to a 2D 

bird’s-eye view, and the orange polygon is the key points detection results. The box should be 

outmost parts of the vehicle. It is shown that the bounding box areas tend to be much larger than 

the areas based on the key points detection. Thus, using the bounding box detection to conduct 

safety analysis could lead to significant errors since vehicle lengths and front/rear locations play 

important roles when calculating surrogate safety measures. Some studies even use center points 
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of the bounding boxes to estimate surrogate safety measures. However, after the perspective 

transformation, the center points are not the accurate center points of vehicles, and the vehicle’s 

length estimation based on bounding boxes could tend to be longer than the true values. Moreover, 

it is known that each vehicle’s shape should be close to a rectangle from the bird’s-eye view. As 

noted above, most of the vehicles from roadside views have occluded key points. Occlusion-Net 

could predict occluded key points using the roadside view. After the perspective transformation, 

the occupying area of vehicles may not be a rectangle or a parallelogram due to the errors of 

occluded key points detection. Due to the detection errors, the detection for occluded points (the 

green point in FIGURE 19(d)) tend to be less accurate than the observed points and the shape of 

the vehicles may not be rectangular. Thus, the modification of occluded key points is needed in 

the 2D bird’s-eye view. In this study, an occluded point modification method is proposed by using 

the locations of the observed points. A triangle is generated based on the observed key points, and 

a parallelogram could be generated based on the triangle. As shown in FIGURE 20, different 

parallelograms could be generated. The key point detection could provide the location information 

of three observed points corresponding to the vehicles. Hence, the correct parallelogram could be 

determined. Finally, the locations of the occluded points are modified based on the parallelogram 

(the red point in FIGURE 20(g)).  
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FIGURE 19 OCCLUDED KEY POINT MODIFICATION 

      

 

  

 

(a)  (b) (c) 

FIGURE 20 ILLUSTRATION OF PARALLELOGRAMS BASED ON THE TRIANGLE 
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Step 4: Near Miss/Conflict Identification 

PET values are calculated in this study to identify near misses/conflicts between vehicles. FIGURE 

21 illustrates the procedures of PET calculation and conflict detection. First, a polygon is generated 

based on the key points detection and modification for each vehicle at each time frame. For 

example, for vehicle i, a polygon P1 would be generated based on the key points detection and 

modification results at time t1. Then, other vehicles’ polygons are compared with the polygon to 

identify the polygons that have intersected with P1. If the polygons are intersected with each other, 

it indicates those vehicles have occupied the same locations as vehicle i. By comparing the 

occupying time of the two vehicles, a list of vehicle pairs with potential conflicts could be obtained. 

Then, we assume that each vehicle could only have one conflict for each frame, the conflict event 

with minimum PET value would be selected. Thus, redundant data could be filtered out and the 

near miss/conflict detection results would be generated for further safety diagnostics.   
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FIGURE 21 CONFLICT IDENTIFICATION 

 

In summary, this study proposed a method to obtain accurate vehicle trajectories from the CCTV 

videos, with the purpose of traffic safety analysis in the within-intersection area. The method 

combined the bounding box detection and key points detection algorithms to detect and track 

vehicles more accurately and efficiently. The key points of vehicles in a 3D reconstruction could 

be obtained and transformed into the real-world coordinate system based on the perspective 

transformation. Then, a modification method was proposed to get the correct occluded key points 

of vehicles. Finally, a framework was developed to identify conflicts based on PET values, which 

are calculated by using vehicles’ trajectories.  
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3.2.4 System Performance 

In order to investigate the performance of the proposed framework, its performance is compared 

with the following three approaches commonly used in the literature:  

(1) Bounding box: vehicle key points detection is not included. Only Mask-RCNN and CSRT 

tracker are employed to obtain the bounding boxes of the vehicles and the corresponding 

trajectories; 

(2) Key point detection only: Occluded key points modification is not included. The key points 

by Occlusion-Net were used directly.  

(3) Drone data: Drone video process by UCF SST Automated Roadway Conflict Identification 

System (ARCIS) and manually corrected misdetection data.  

Based on the collected data, 514 video images were used to test the proposed performance. In total, 

925 vehicles are included in the 514 video images. For each vehicle, the four key points (i.e., right-

front headlight, left-front headlight, right-back taillight, and left-back taillight) were collected 

manually based on the original roadside view as the ground truths. Then, the ground truths are 

compared with the results from the bounding box detection & tracking, key points detection only, 

and the proposed framework. Figure 10shows an example of the comparison. In Figure 10(     e), 

the green box indicate the ground truth locations of key points that are collected though drone 

video Also, a polygon could be generated based on the key points (orange polygon). Meanwhile, 

the blue line indicates the mask of the vehicle based on the Mask-RCNN detection, while the blue 

rectangle is the bounding box generated based on the mask. Figure 22 provides examples of the 

detection and tracking results for both bounding box and key points. Figure 22 (a) and Figure 22 

(b) show that the bounding box detection and key points detection could successfully detect 

vehicles from the camera videos. Figures Figure 22 (c) show example of ARCIS detection output. 
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Figure 22 (e) and Figure 22 (d) illustrate the comparison of ground truth and results of different 

detection methods in the roadside and bird’s-eye views. As shown in Figure 22 (e), the bounding 

box (blue polygon) tends to be much larger than the ground truth (green polygon). The occluded 

key point detection only (upper right vertex of the orange polygon) has a relatively large error. 

Thus, the results based on the proposed frame (yellow polygon)in Figure 22 (g) shows the best 

performance in this example.   

 

FIGURE 22 GROUND TRUTH DATA COLLECTION FOR LOCATION 2 

In this study, the intersection of Union (𝐼𝑂𝑈) is calculated to evaluate the accuracy of the vehicle 

localization. The IOU value is calculated as follows: 

𝐼𝑂𝑈 =
𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑅𝑒𝑠𝑢𝑙𝑡 ∩ 𝐺𝑟𝑜𝑢𝑑𝑇𝑟𝑢𝑡ℎ

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑅𝑒𝑠𝑢𝑙𝑡 ∪ 𝐺𝑟𝑜𝑢𝑑𝑇𝑟𝑢𝑡ℎ
 

FIGURE 23 illustrates the comparison between different methods. For the first location, the 

average IOU for the bounding box is 0.15. Meanwhile, the average IOU of key points detection 

only and the proposed framework with key point modifications is 0.41 and 0.55, respectively, 
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which shows significant improvement compared to the bounding box detection and tracking based 

on paired t-test (p-value<0.01) (FIGURE 23 (a)). The reason that the bounding box results have 

significantly lower IOU values is that the areas of bounding boxes tend to be much larger than the 

ground truths as shown in Figure 22. As shown in FIGURE 23 (b), the average vehicle size of 

ground truths is 74.57 ft2, while the average vehicle size is 479.25 ft2 for bounding boxes. However, 

due to occlusion point detection errors, the average vehicle size is 35.20 ft2 based on key points 

detection only, which is smaller than the ground truths. After the modification based on the 

proposed framework, the average vehicle size value is 67.47 ft2, which is closer to the ground truth. 

The results of the second location are shown in TABLE 2 SYSTEM PERFORMANCE 

COMPARISON (LOCATION 2). The paired t-test results between the proposed framework and 

bounding box detection/ key points only detection showed significant improvement with all the p-

values smaller than 0.01. 
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(a) IOU (b) VEHICLE SIZE 

 
 

(c) AVERAGE VEHICLE CENTER 

POINT DISTANCE 

(d) AVERAGE VEHICLE KEY 

POINT DISTANCE 

FIGURE 23 SYSTEM PERFORMANCE COMPARISON (LOCATION 1) 
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TABLE 2 SYSTEM PERFORMANCE COMPARISON (LOCATION 2) 

 

Ground Truth 

(ARCIS output 

UAV Data) 

Bounding Box Key Point Only Proposed Framework 

IOU 1.00 0.14 0.15 0.28 

Vehicle Size (ft2) 104.65 

651.93 (MSE= 

217319.11) 

31.06 (MSE= 

5838.93) 

74.37  (MSE= 

1274.23) 

Average vehicle 

center point 

distance (ft) 

0.00 14.35 2.27 2.23 

 

Moreover, the average car center distance and average key points distance were calculated to 

evaluate the performance of the different methods. The values are defined as follows: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑎𝑟 𝐶𝑒𝑛𝑡𝑒𝑟 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
∑ √(𝑥𝑐

𝐷 − 𝑥𝑐
𝐺𝑇)2 + (𝑦𝑐

𝐷 − 𝑦𝑐
𝐺𝑇)2

𝑛
 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑉𝑒𝑟𝑡𝑒𝑥 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
∑ √(𝑥𝑖

𝐷 − 𝑥𝑖
𝐺𝑇)2 + (𝑦𝑖

𝐷 − 𝑦𝑖
𝐺𝑇)2

4𝑛
 

Where (𝑥𝑐
𝐺𝑇, 𝑦𝑐

𝐺𝑇) is the center point of the ground truth polygon; (𝑥𝑐
𝐷, 𝑦𝑐

𝐷) is the center point of 

the detected polygon; (𝑥𝑖
𝐷, 𝑦𝑖

𝐷) is the vertex point of the detected polygon. The comparison results 

are presented in FIGURE 23 (c) and FIGURE 23 (d). It shows that the proposed framework has 

the smallest average car center distance, which is 1.33 ft. Meanwhile, using key points detection 

could significantly reduce the average key points distance, and the proposed framework could 

slightly further reduce the error. The results indicate that the proposed framework could provide 
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more accurate localization from 2D bird’s-eye views, which is expected to influence the results of 

near miss detection.  

3.2.5 Conflict Analysis and Hotspots Identification 

3.2.5.1 Comparison of Identified Conflicts 

In the previous section, it has been validated that the proposed framework could 

significantly improve the accuracy of localization from the 2D bird’s-eye view. In this section, 

PET values are calculated in order to identify the near misses/conflicts between vehicles. TABLE 

2 SYSTEM PERFORMANCE COMPARISON (LOCATION 2)summarizes the number of near 

misses/conflicts with different thresholds using different methods. PET values could be utilized to 

indicate risk levels, and smaller PET values indicate higher risks. FIGURE 24 presents the density 

of PET values by detection methods. In this study, the PET values smaller than 3 seconds were 

considered as dangerous situations and utilized for the analysis. It is shown that the conflicts based 

on the key points detection and the proposed framework follow the normal distribution based on 

the Shapiro-Wilk test. Also, smaller PET values could be observed based on the bounding box 

detection method. The CCTV camera used to collect data is located at the bottom-left area in the 

video image, and the bounding boxes at the upper-right area tend to overlap with each other due 

to the angle of the view. FIGURE 25 shows an example where the bounding boxes of vehicle #5 

and #12 are highly overlapped, which leads to a potential conflict with a small PET value. On the 

other hand, the key points detection could construct the vehicles’ key points in a 3D view. The 

overlapping problem could be significantly mitigated.  
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FIGURE 24 DENSITY OF PET VALUES BY DETECTION METHODS 

 

 

FIGURE 25  EXAMPLE OF VEHICLE OVERLAPPING IN A CCTV CAMERA 

The conflicts were aggregated by 3 minutes and 10 groups were obtained for each detection 

method. FIGURE 26 presents the conflict counts by detection methods and time. Ismail (2011) 

suggest the PET threshold of 3 seconds to be considered as a severe conflict[11]. Researcher find 

a conflict with PET threshold of approximate 1 seconds is highly related to crash[11]. Hence, in 

this paper, we adopted three different PET values:  1 second, 2 seconds, and 3 seconds. The paired 

Wilcoxon signed rank exact test was conducted to compare the proposed framework with the two 

counterparts with three the different PET. The results are summarized in TABLE 3 PAIRED 
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WILCOXON SIGNED RANK EXACT TEST FOR PET AT LOCATION 1. A significant 

difference could be observed between the conflict counts identified by using the bounding box 

detection and the conflicts based on the proposed framework. Compared to the proposed 

framework, the bounding detection method at least detected 242% more conflicts. It is suggested 

the bounding detection is not appropriated for the safety analysis at the within-intersection area 

since the over detection of conflicts could raise unnecessary concerns and even cause many false 

alarms if the information of the detected conflicts is sent to the approaching vehicles through the 

Infrastructure-to-Vehicle (I2V) technology. On the other hand, the difference between the 

proposed framework and key points detection only is significant when the threshold is 2 and 3 

seconds. The proposed framework could identify 2-3% more conflicts than the key points detection 

only method. The miss detection of conflicts by the key points detection only method should be 

due to the errors of occluded points. Hence, it could be concluded that the proposed framework 

could improve conflict detection in the within-intersection area by using CCTVs.  

A smaller PET threshold represents a higher conflict severity. The paired Wilcoxon signed rank 

exact test is conducted for location 1, and the results are shown in TABLE 3 PAIRED 

WILCOXON SIGNED RANK EXACT TEST FOR PET AT LOCATION 1. The bounding 

box detection method detects way more conflicts than the other two methods at all three thresholds. 

This is due to the bounding box expand the vehicle size, causing potential overlap between vehicles, 

which reduces the PET value. When compared to the key points detection only method, the 

proposed framework showed significant performance improvement for detecting less severe 

conflicts (p=0.03 and p=0.01 for PET threshold of 2 seconds and 3 seconds respectively). For the 

PET threshold of 1 second, although the improvement is not statistically significant, it still detects 

1% more severe conflicts than the key points detection only method. 
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FIGURE 26 CONFLICT COUNTS BY DETECTION METHODS 

TABLE 3 PAIRED WILCOXON SIGNED RANK EXACT TEST FOR PET AT 

LOCATION 1 

Threshold 

Bounding 

box 

detection 

Key 

points 

detection 

only 

Proposed 

framework 

Comparison between 

proposed framework and 

bounding box 

Comparison between 

proposed framework 

and key points detection 

only 

1 second 310 14 18 1622% (p_value=0.02) -1% (p_value=0.63) 

2 seconds 609 132 143 326% (p_value<0.01) -2% (p_value=0.03) 

3 seconds 694 185 203 242% (p_value<0.01) -3% (p_value=0.01) 

 

For Location 2, conflicts with PET value smaller than 3 seconds are examined for the three vehicle 

detection methods. Totally 78 conflicts were identified during the period of video data. The 

difference in the PET value of each conflict between our proposed algorithm and bounding 

box/key point detection is calculated, and the results are plotted in FIGURE 27 DIFFERENCE 

IN PET BETWEEN PROPOSED VS BOUNDING BOX AND PROPOSED VS KEY POINT 
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METHOD. The average difference in PET value between the proposed framework and bounding 

box detection is 0.808 (p-value<0.01), while the average difference between the proposed 

framework and the key point detection only method is -0.146 (p-value<0.01). This is because the 

bounding box detection usually expand the size of the vehicle, while the key point only detection 

tend to miss a key point and reduce the vehicle size. A bigger vehicle size leads to a smaller PET 

value given the same vehicle center. Hence, the PET value calculated based the proposed method 

is greater than the bounding box value and smaller than the key point detection value. 

 

FIGURE 27 DIFFERENCE IN PET BETWEEN PROPOSED VS BOUNDING BOX AND 

PROPOSED VS KEY POINT METHOD 

3.2.5.2 Hotspots Identification 

The identified conflicts based on the proposed framework could be used to identify the hotspots, 

which could help develop the corresponding countermeasures to improve safety. The conflict 

points in the real-world coordinate system could be determined based on the corresponding 

vehicles’ transformed location in the bird’s-eye view. For hotspots analysis, kernel density is the 

most common method used in the field of traffic safety. While the kernel density could create a 

smooth and continuous surface of the density of observations for visualization, it has two major 
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limitations. First, the plot heavily depends on choosing the appropriate bandwidth to best display 

the data. If the choice of bandwidth is incorrect, it can distort the data by over- or under-smoothing . 

Second, it could not identify statistically significant hotspots. Hence, it is difficult to tell whether 

the clusters are random or there are some underlying spatial patterns. Instead, a grid-based hotspot 

identification method was proposed. Two spatial statistic methods including Moran’s I and Getis-

Ord 𝐺𝑖
∗ were used. The study area is divided evenly into grids with uniform side length (FIGURE 

28). Then, the identified conflicts are assigned to grids based on the locations.  

 

FIGURE 28 ILLUSTRATION OF GRIDS IN THE STUDY AREA 

The grid-based analysis may have the Modifiable Areal Unit Problem (MAUP), which means that 

the analysis results might be affected by the side length of grids. The Moran’s I index is used to 

measure the spatial autocorrelation by different side lengths from 2 to 20 feet. The length within 

the most significant spatial autocorrelation will be used for the hotspots identification. Moran’s I 

combines the measure for attribute similarity and the measure of location proximity using an index. 

In this study, the location proximity weight between two grids is defined as the inverse of the 
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distance between their centroids. The attribute similarity of conflicts of two grids is determined 

based on the difference between each value and the global mean value (Wong and Lee, 2005). The 

Moran’s index could be calculated as: 

𝐼 =
𝑛 ∑ ∑ 𝑤𝑖𝑗(𝑥𝑖 − 𝑥)(𝑥𝑗 − 𝑥)𝑛

𝑗=𝑖
𝑛
𝑖=1

(∑ ∑ 𝑤𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1 )(∑(𝑥𝑖 − 𝑥)2)

 

where, 𝑤𝑖𝑗  is the proximity weight of grid i and grid j,   𝑥𝑖 is the number of conflicts in grid i, 𝑥 is 

the global mean value, and n is the total number of grids by different side length in the study area. 

The statistical significance for Moran’s I is calculated using Z-score methods. Based on the 

expected values (E[I]) for a random pattern and the variances (VAR[I]), and the standardized Z-

score can be calculated as: 

𝑍(𝐼) =
𝐼 − 𝐸(𝐼)

√𝑉𝐴𝑅(𝐼)
 

The spatial autocorrelation was tested with different side lengths to find the length with the 

maximum Z-score, which is shown in TABLE 4. It is indicated that the 10-feet length could reach 

the highest Z-score value. Then, grids of 10-feet side length are used to identify the hotspots.  
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TABLE 4 GLOBAL MORAN’S I VALUE BY LENGTH OF GRIDS 

Side Length (feet) Moran's I value P_value 

2 0.018 <0.001 

4 0.061 <0.001 

6 0.073 <0.001 

8 0.081 <0.001 

10 0.082 <0.001 

12 0.075 <0.001 

14 0.056 <0.001 

16 0.043 <0.001 

18 0.017 0.027 

20 -0.005 0.143 

Getis-Ord 𝐺𝑖
∗ statistic is used to identify the hotspots of conflicts in the within-intersection area. 

Getis-Ord 𝐺𝑖
∗  allows the assessment of spatial association in the study area of a particular 

observation and it could identify statistically significant hotspots (Soltani and Askari, 2017). A 

high value of Getis-Ord 𝐺𝑖
∗ statistic represents a cluster of more conflicts (i.e., hotspots), while a 

low value represents a cluster of fewer conflicts (i.e., cold spots). The exposure is considered for 

all the grids.The total number of conflicts has been deivded by the volumn of each grid for correct 

hotpost identification. Getis-Ord 𝐺𝑖
∗ statistic and its Z-score are mathematically expressed by the 

following equations: 

𝐺𝑖
∗(𝑑) =

∑ 𝑤𝑖𝑗𝑥𝑗
𝑛
𝑗=1

∑ 𝑥𝑗
𝑛
𝑗=1
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𝑍(𝐺) =
𝐺𝑖

∗ − 𝐸(𝐺𝑖
∗)

√𝑉𝐴𝑅(𝐺𝑖
∗)

 

The results of the analysis of location 1 and location 2 are shown in FIGURE 29(a), and FIGURE 

30, respectively. The Z score greater than 2 indicates that the corresponding grid is a hot spot at a 

statistical significance level of less than 0.05. On the other hand, the Z score less than -2 suggests 

that the grid is a significantly cold spot at a level of less than 0.05FIGURE 29(b) summarizes the 

conflict points in the within-intersection area by different vehicle paths. The yellow point indicates 

a conflict point of two vehicle paths, while the red point represents conflict points of multiple 

vehicle paths at the same location. Area 1 close to the westbound exit in the study area is identified 

as the hotspot area. Although Area 2 has more conflict points, it is not identified as the hot areas. 

The identification of the hotspots at the grid level firstly helps identify specific areas within the 

intersection prone to have more conflicts, and then the frequency and severity in this area can be 

further examined to understand the reason of conflicts presence. Based on the outcomes for the 

identified grid area, the transportation engineers can implement countermeasures, including 

optimizing signal timing, adding warning signs, add raised medium, and adjusting turning 

guidelines. For example, the hot zones identified in FIGURE 29(a), the conflicts are mainly caused 

by the conflict points between southbound through and westbound through, southbound through 

and eastbound left-turn, and westbound through and eastbound left-turn traffic flows. Hence, the 

green phase releasing timing between these directions should be closely examined to see whether 

a sufficient gap for two crossing flows is provided or not. If not, the signal timing should be 

adjusted to further separate traffic flows from two directions whose conflicts point are in the 

hotspot grid. Also, the generation of conflicts may be due to another circumstance that the left turn 

is permissive when is oncoming traffic is on green phase. If this is the case, left turn could be 

restricted when the opposite through traffic is on green. FIGURE 30presents the conflict hot zones 
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identified based on different severity levels. FIGURE 30(a) shows that conflicts, regardless of the 

severity, are prone to be located at the conflict point of northbound through and westbound through, 

westbound through and eastbound left-turn traffic flows. FIGURE 30 (b) and (c) shows hot zones 

for severe conflicts are at the intersection entrance of the eastbound through and northbound right 

turn traffic. Potential cause of the severe conflicts could be some of the vehicles on the rightmost 

though lane making right turning movement at last moment and decelerate harshly before turning, 

causing the following vehicle to have little time to react and come too close to the leader. More 

detailed conflicts analysis should be conducted, and countermeasures could be implemented as the 

same as discussed above.  
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(a) HOT ZONE IDENTIFICATION 

 

(b) CONFLICT POINTS BY DIFFERENT VEHICLE 

PATHS (YELLOW POINT: A CONFLICT POINT BY 

TWO VEHICLE PATHS; RED POINT: CONFLICT 

POINTS BY MULTIPLE VEHICLE PATHS) 

FIGURE 29 HOTSPOT IDENTIFICATION 
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(a) PET THRESHOLD OF 3 SECONDS 

 

(b) PET THRESHOLD OF 2 SECONDS 

 

(c) PET THRESHOLD OF 1 SECONDS 

FIGURE 30 HOTSPOT IDENTIFICATION WITH DIFFERENT PET THRESHOLD 

3.2.6 Conclusions And Future Work 

In the within-intersection area, many conflict points are generated by turning vehicles of different 

movements and drivers are more prone to make mistakes, which could lead to severe crash 
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outcomes. Closed-Circuit Television (CCTV) cameras, which has been widely installed in the 

current roadway system, should be a cost-effective sensor to monitor traffic safety in the within-

intersection area. This study contributed to propose a framework for safety diagnosis based on 

videos collected from CCTV cameras named “Near Miss Event Detection System (NMEDS)”. 

The framework combined the Mask-RCNN bounding box detection and Occlusion-Net detection 

to detect vehicles’ key points more accurately and efficiently in a 3D view. Mask-RCNN algorithm 

is utilized to provide object classification and the initial locations for vehicle tracking. Then, 

Channel and Spatial Reliability Tracking (CSRT) multi-object tracking algorithm is employed to 

track the detected objects. Meanwhile, Occlusion-Net is utilized to detect and predict the key 

points on the vehicles (i.e., right-front headlight, left-front headlight, right-back taillight, left-back 

taillight) in order to provide precise localization data for vehicles. After transforming the key 

points to the 2D view (real-world coordinate system), a method was proposed to further modify 

the occluded points of vehicles. After occluded key points modification, PET values could be 

calculated to conduct road safety diagnostics by identifying conflicts between vehicles.  

An empirical study was conducted at a typical signalized intersection to validate the proposed 

framework. The proposed framework was compared with two state-of-the-art counterparts in the 

literature: (1) bonding box detection; (2) key point detection only. Nearly 1000 vehicles were 

manually labeled from 514 video images as the ground truth from the CCTV camera at the 

intersection. According to the comparison results, the proposed framework had better performance 

to detect and track vehicles considering several measures including Intersect of Union (IOU) 

values, average vehicle size, average vehicle center point distance, and vehicle key point distance. 

The results indicated that the proposed framework has better performance for vehicle localization, 

which would be beneficial for road safety analysis, especially when calculating surrogate safety 
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measures. Then, the conflicts identified by different detection and tracking methods were 

compared by different PET thresholds. Significant differences could be observed between the 

proposed framework and other detection methods, which also confirmed the improvement by the 

proposed framework. By using the conflicts identified by the proposed framework, a grid-based 

hotspots identification method was proposed by using Moran’s and Getis-Ord 𝐺𝑖
∗  statistical 

methods. The best side length of girds was determined for the hotspots identification and the 

significantly dangerous locations were identified in the within-intersection area. It could be 

concluded that the proposed framework, which combines two detection methods (i.e., bounding 

box and key points detections) and modifies the occluded key points, could obtain more accurate 

location and occupying area information of vehicles in the within-intersection area from videos by 

CCTVs. The improved trajectory data could better identify the conflicts occurring at intersections. 

The grid-based hotspots identification method could reveal significantly dangerous areas and it 

has less bias compared with the traditional kernel density method. Given the fact that CCTVs have 

been installed widely in the existing roadway system, the method proposed in this paper should be 

a cost-effective method to analyze traffic safety at intersections, especially in a large-scale area.    

In the future, the framework could be extended to vulnerable road users (e.g., pedestrians, 

cyclists, e-scooters) [166].Also, the training datasets from roadside camera images could be 

prepared to further improve the system performance. Moreover, explore deploying the proposed 

method into Connected Vehicle Systems could be conducted to provide information to nearby 

drivers and the traffic management center [64, 167, 168] 
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3.3 Driving Visual Environment Detection System (D.V.E.D.S) 

3.3.1 Introduction 

This study aims to explore the effects of drivers’ visual environment on speeding crashes based 

on Google street view (GSV). Deep learning algorithms and computer vision technologies were 

applied to obtain the clustering and depth information from the GSV images. To quantify 

drivers’ visual environment, several indexes were proposed and calculated. Machine learning 

algorithms were applied to rank the importance of variables related to visual environment on 

speeding crashes. The effects of other factors such as traffic volume, speeding proportion, and 

roadway attributes were also explored. Based on the importance rank, a statistical model was 

developed to quantify the effects of important factors including the drivers’ visual environment. 

The results validated the visual environment data obtained by the proposed method for the 

speeding crashes analysis. It was suggested that the visual complexity and proportion of trees in 

drivers’ view have significantly negative effects on speeding crashes. It is expected that this 

study provided new insights to obtain the detailed information from GSV images for the traffic 

safety analysis. The findings could also help improve roadway design for the future automated 

vehicles  

3.3.2 Data Collection 

The GSV panorama is a 360 degree surrounding image generated from the eight original images 

captured by multiple cameras by stitching together in sequences. The GSV image could be 

requested in an HTTP URL form using the GSV image API provided by the Google company. 

Users can request a static GSV image in a customized direction and angle for the GSV locations. 

An example of requesting a GSV static image is shown below: 

https://maps.googleapis.com/maps/api/streetview?size=640x400&location= 28.78291, -81.2729 
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& fov=60&heading=0&pitch=0. FIGURE 31 shows the GSV image requested by the above 

URL. In this example, the output size of GSV image and latitude and longitude of the location 

was specified. Besides, the heading indicates the compass heading of the camera which ranges 

from 0 to 360, pitch specifies the up or down angle of the camera relative to the data collection 

vehicle, and FOV is the horizontal field view of the image. Previous studies suggested the 

horizontal field view is between 50 𝑎𝑛𝑑 60[169]. Another researcher used FOV of 60 to collect 

GSVs [90], which was adopted in the current study. 

 

FIGURE 31 AN EXAMPLE OF GSV COLLECTED BY THE URL 

3.3.3 Methodology 

Studies about information extraction from images has been growing in the field of computer 

science. Deep learning has been heavily applied and developed to cluster the objects from 

images.  In this study, “Detectron2” from Facebook was used to cluster objects. Detectron2, 

starting with Maskrcnn-benchmark [5]is Facebook AI research’s next generation software 

system that  implements start-of-the-art object detection algorithms[170] . As shown in FIGURE 
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32 we could detect roads, trees, sky, buildings, etc. from the images. Based on the clustering 

results, we could know  the object type by each pixel in the image. Then, the proportion of pixels 

by object type in drivers’  view could be calculated, such as the proportion of trees, and the 

proportion of building areas. Besides, the visual complexity level of the driving environment 

could be calculated as:  

 

where k is the category of object, p is the proportion of category k points, N is the number of 

object categories.  

 

FIGURE 32 ILLUSTRATION OF SEMATIC SEGEMENTATION RESULTS 

Meanwhile, the depth information could be obtained from the 2D images. Since the GSV image 

could be treated as a mono camera, a self-supervised monocular depth estimation proposed by 

Godard in 2019 was used to obtain the depth information [171].It was suggested that the method 
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could reach high quality and state-of-the-art results on the KITTI benchmark. FIGURE 33 

illustrates the depth information subtracted from the image in black and white colors.  

 

FIGURE 33 ILLUSTRATION OF DEPTH INFORMATION 

Through the camera, 3D points are mapped to the image plane (u,v) =f(X,Y,Z). The complete 

mathematical model that describes this transformation can be written as p=K[R|t]*P. In a 

matrix format, it could be rewritten as:  

 

Where 

1. p is the projected point on the image plane  

2. K is the camera intrinsics matrix  

3. [R|t] is the extrinsic parameters describing the relative transformation of the point in the  

4. world frame to the camera frame  

5. P, [X, Y, Z, 1] represents the 3D point expressed in a predefined world coordinate system  
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6. in Euclidean space  

7. Aspect ratio scaling, s: controls how pixels are scaled in the x and y direction as focal 

length  

8. changes  

9. Focal length (fx, fy): measure the position of the image plane wrt to the camera center.  

Then, by using an inverse projection process, figures with depth information could be 

transformed into a 3D point cloud. Then, as shown in FIGURE 34, we could know the exact x, y, 

z locations in the real world for specific objects. In this study, the proportion of road length with 

trees was obtained based on the depth information.  
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3D POINT CLOUD DATA FROM DRIVER’S VIEW 

 

3D POINT CLOUD DATA FROM ROADSIDE VIEW 

FIGURE 34 ILLUSTRATION OF 3D POINT CLOUD DATA 
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3.3.4 Case Study: Explore Effects of Drivers’ Visual Environment on Speeding 

3.3.4.1 introduction 

Speeding is one of the major factors in traffic safety. According to the National Highway Traffic 

Safety Administration (NHSTA), nearly a third of fatal crashes in the United States have 

been designated as “speeding-related” in the last decade [20]. On urban arterials, the speed limit 

violation could significantly increase the severity levels of pedestrian and bicycle crashes. A lot 

of studies have been conducted to examine the contributing factors for the crash occurrence 

and  speeding behavior. The factors include traffic volume, roadway geometric design, land use, 

socio-demographic characteristics, and weather, etc. For example, some researcher developed 

grouped random parameter models to examine the crash occurrence on segments and 

intersections considering the roadway attributes and the zonal level effects[22]. Another  

categorized the speeding behavior into three levels by proportions based on the speed camera 

data. It was found that high speed limits are highly associated with moderate speed limit 

violations, compared to minor or major speed limit violations[23]. Besides, the study also 

revealed that a divided median and higher functional class could lead to more major speed limit 

violations.  

Recently, several studies have focused on the effects of the driving environment on drivers’ 

behavior and safety. For example, researcher investigated the effects of road environment visual 

complexity on travel speed and reaction time by conducting a driving simulator study[172] . It 

suggested that the visual complexity of the roadside environment is an important contributor to 

driver workload and performance. Based on a survey study, they revealed the significant effects 

of the driving environment on speeding and overtaking violations [173]. Researcher developed 
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statistical models to study the effects of trees on crash frequency in the urban area  [174]. The 

study indicated that tree density could reduce the crashes. However, to the best of the authors’ 

knowledge, the study about the drivers’ visual environment on traffic safety is limited. One 

possible reason is that it is difficult to obtain the data from drivers’ view.  

This study attempts to propose a novel method to obtain drivers’ visual environment from 

GSV images and explore the effects of the visual environment on speeding crashes. To this end, 

deep learning models were applied to obtain the cluster and depth information from GSV 

images. Several indexes were proposed to quantify the visual environment. Then, the effects of 

the visual environment on speeding crashes were explored by developing both machine learning 

and statistical models. This paper is organized as follows: the method to process GSV images 

and obtain the indexes for the visual environment is introduced in Section 2. The method about 

exploring the effects of the visual environment was also included in this section. Section 3 

describes the data used for the analysis including the data related to the visual environment. 

Section presents the analysis results and discussions. Finally, the last section concludes the 

findings of this paper.  

3.3.4.2 Model for crash analysis 

Both machine learning and statistical models have been used for crash count analysis (18-

22)[175]  [176] [177] [178] [179]. The machine learning could achieve high prediction accuracy 

and effectively rank the importance of explanatory variables for the crash count. On the other 

hand, the statistical model could identify the effects of candidate variables in a more 

interpretable way. Hence, this study took advantage of both approaches by utilizing machine 
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learning techniques for variable selection and statistical model for an interpretable variable effect 

evaluation, especially for the factors related to the driving environment  

 

3.3.4.2.1 Statistical model 

In the previous studies, the Poisson or Poisson-extended models such as negative binomial (NB) 

and Poisson lognormal models have been widely used to analyze the count variables. The 

Poisson model is limited to deal with the over-dispersion issue (i.e., variance exceeds mean) for 

the count variables. Both NB and Poisson lognormal model could relax the variance assumption 

and allow for over-dispersed parameter by adding an error term. Recently, it was suggested that 

the Poisson lognormal model consistently has a better data fit than the negative binomial model 

for the crash count analysis [56] [180]Hence, the Poisson lognormal model was adopted to 

analyze the bicycle crash count. The Poisson lognormal model could be specified as:  

 

where 𝑃(𝑦L) is the probability of intersection entity 𝑖 having 𝑦L crashes and 𝜆L is the Poisson 

parameter for intersection entity 𝑖. 𝝎𝒊 is the vector of the explanatory variables and Υ is a vector 

of the corresponding parameters. Besides, 𝜀L is the error term with the distribution of N(0, 

𝜎B).  The model parameters were estimated using the Bayesian method by using the free 

statistical software WinBUGS.  
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3.3.4.2.2 Machine learning model 

Extreme Gradient Boosting (XGBoost) was applied for the analysis in this study. XGBoost is 

a variant of the gradient boosting framework introduced by Friedman [181], which could provide 

more accurate results than the regular Gradient Boosting models. It can find the best tree model 

through a more accurate approximation method. To be specific, it interactively improves learning 

accuracy by combining an ensemble of weak learners into a single strong model. Besides, as a 

decision tree algorithm, XGBoost is not affected by multicollinearity [182], which means the 

model could include variables that reflect the same phenomenon on the study road. The 

‘XGBoost in the Python interface was used for the analysis. The ‘Poisson’ object was specified 

since the crash count was analyzed. The mean absolute error was used to tune the XGBoost to 

determine the best combination of parameters.  

3.3.4.3 Data 

The data used in this study were collected from urban arterials in Central Florida. As shown in  

 classifications the urban arterials of nearly 75 miles were included, and around 15,000 GSV 

images were downloaded and processed to get the indexes about drivers’ visual environment. 

From the images, the proportion of trees, the proportion of buildings, and the complexity level 

from the drivers’ view were collected. In addition, the proportion of road length with trees was 

calculated based on the cluster and depth information. The corresponding variables were 

summarized in TABLE 5. The speeding crashes were collected from the Florida Department of 

Transportation (FDOT). In addition to the driving environment data collected from GSV, other 

exogenous variables were also collected, which included traffic data, roadway information, lane 

use attributes, and socio- demographic for each segment. For traffic data, the Average Annual 
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Daily Traffic (AADT), the proportion of truck traffic, and daily transit frequency were collected 

from FDOT. Besides, the probe vehicle data INRIX were collected from RITIS by 5 minutes 

from 2017 to 2019. Based on each segment, the proportion of INRIX speed over the posted 

speed limit was calculated, which could indicate the general speeding trend. Seven collected 

roadway attributes are related to speed management strategies in Florida Design Manual (FDM) 

[183]. They are asphalt pavement, the indicator of narrow lane, average block length, the 

existence of median island on crossing, number of parking per mile, presence of road diet, and 

length of the two-way-left-turn lane. Other roadway variables such as lane number, speed limit, 

median type and width, shoulder type and width were also collected from FDOT. Finally, the 

land use and socio-demographic variables were also collected in this study.  

 

 

FIGURE 35 STUDY ROADS BY CONTEXT CLASSIFICATIONS 
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TABLE 5 SUMMARY OF VARIABLES 

Variable Mean S.D. Min. Max. 

Speeding Crashes 1.24 1.51 0 8 

Length(Mile) 0.52 0.37 0.10 1.80 

Traffic Variables 

Average Daily Transit Frequency (Aadt) 29873 95666 9833 66833 

Proportion Of Truck Traffic 6.76 3.31 1.77 16.19 

Average Daily Transit Frequency 19.97 18.05 0 72 

Proportion Of INRIX Speed Data Over The Speed 

Limit 

0.18 0.14 0 0.78 

Drivers' Visual Environment Data From GSV Images 

Proportion Of Tree View 0.13 0.06 0.03 0.31 

Proportion Of Building View 0.03 0.03 0 0.22 

Complexity Level Of Driving View 0.73 0.03 0.64 0.79 

Proportion Of Read Length With Trees 0.28 0.06 0.15  

Roadway Variables 

Variables Related To FDM Speed Management Strategies 

Indicator Of Asphalt Pavement (1: Yes; 0: No) 0.84 0.36 0 1 

Indicator Of Narrow Lane (Lame Width-12 Feet) (1: 

Yes; 0: No) 
0.36 0.48 

0 1 

Average Block Length (Mile) 1.60 3.26 0.06 10.33 

Existence Of Median Island On Pedestrian Crossing (1: 

Yes; 0: No) 
0.07 0.25 

0 1 

Log (Number Of Parking Spot Per Mile) 0.27 1.12 0 6 

Presence Of Road Diet (1: Yes; 0: No) 0.44 0.5 0 1 

Log (Length Of Two-Way-Left-Turn Lane) 0.13 0.23 0 1 

Other Roadway Variables 

Number Of Lanes 2.1 0.52 1 4 

Speed Limit (Mph) 38.59 5.2 25 55 

Pavement Condition 4.17 0.8 0 5 

Raised median (1: yes; 0: no) 0.44 0.5 0 1 

Median Width (feet) 16.53 9.32 0 55.07 

Curb, gutter inside shoulder type (1: yes; 0: no) 0.34 0.47 0 1 

Width of inside shoulder (feet) 0.97 1.47 0 9 

Curb, gutter outside shoulder type (1: yes; 0: no) 0.48 0.5 0 1 

Width of outside shoulder (feet) 3.45 1.88 0 10 

Proportion of sidewalk length 0.91 0.25 0 1 

Sidewalk width (feet) 5.09 1.35 0 10 

Proportion of bike lane length 0.12 0.3 0 1 

Proportion of bike slot length 0.01 0.05 0 0.64 

Number of signalized intersections per mile 3.11 3.15 0 16.98 

Number of access per mile 9.52 5.86 0 28.37 

Land use and socio-demographic variables 
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Variable Mean S.D. Min. Max. 

Proportion of residential land use 0.04 0.09 0 0.62 

Land use mix 0.04 0.09 0 0.62 

Proportion of population below poverty 0.06 0.11 0 0.73 

Proportion of zero-vehicle household 0.02 0.04 0 0.22 

Proportion of commuters by walking or biking 0.02 0.04 0 0.20 

 

 

3.3.4.4 Results and discussion 

3.3.4.4.1 XGBoost model tuning and variable selection 

A tuning process was applied to determine the best set for the number of clusters and the 

number of boosted trees. The mean absolute error was used as the performance measure. The 

tuning process included values of the number of clusters from 2 to 10 and the number of 

boosted trees from 20 to 200. The evaluation results are presented in FIGURE 36 MODEL 

PERFORMANCE BY CLUSTERS AND BOOSTING TREES. The clustering with 4 groups 

and 100 boosting trees could achieve stable performance, which was used to rank variables’ 

importance.  
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FIGURE 36 MODEL PERFORMANCE BY CLUSTERS AND BOOSTING TREES 

The results of variable importance are shown in FIGURE 37 VARIABLE IMPORTANCE. 

Unsurprisingly, the road length clearly prevails as the most important feature. The traffic 

volume, speeding proportion, and other road attributes were also identified as important 

variables. The results revealed the variables about the drivers’ visual environment collected from 

GSV images as important features for speeding crashes. They are the proportion of buildings, the 

proportion of trees, the complexity level of view, and proportion of road length with trees. The 

development of the statistical model will be based on the variable importance following a 

backward stepwise variable selection procedure. It should be noted that the proportion of trees 

and proportion of road length with trees indicate the attributes of trees. Although both were 
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included in the XGBoost model, only one of these two variables will be included in the statistical 

model.  

FIGURE 37 VARIABLE IMPORTANCE 

3.3.4.4.2 Poisson lognormal modeling results 

The Poisson lognormal modeling results are summarized in TABLE 6 POISSON 

LOGNORMAL MODELING RESULTS. There are nine variables significant for the speeding 

crashes. The AADT as a traffic exposure has a significantly positive relation with speeding 

crashes. Meanwhile, the speeding proportion indicates the speeding level of the segment. It is 

expected that more speeding crashes occur on a segment with a high speeding Two variables 



 

 

94 

related to drivers’ visual environment from the GSV images are found to be significant. It was 

found that the complexity level from drivers’ view is negatively associated with the speeding 

crashes. The result is consistent with the finding in the literature that drivers select lower vehicle 

speeds under higher levels of complexity [184]. It suggests that roadside trees could reduce the 

number of speeding crashes. The previous driving simulator study found that drivers tend to 

decrease their speeds significantly and move toward the centerline of the road when trees 

present[185]. Besides, it was found that the crashes could decrease with the increase in tree 

density ([174]). With the effects of trees on speeding and crash occurrence, it is reasonable to 

find a negative effect of trees on speeding crashes. Five other road attributes were found 

significant: pavement condition, road length with two-way-left-turn-lane, outside shoulder width, 

number of accesses per mile, and segment length. Fewer crashes could be found on the road with 

good pavement conditions. The two-way-left-turn lane is a speed management strategy. Drivers 

might reduce the speed if a two-way-left-turn lane presents. The wide outside shoulder could 

reduce the crashes, which is in line with the previous study (30 [176]). The road access could 

increase the interactions between road users, resulting in more crashes. The segment length could 

increase the exposure and result in more speeding crashes.  
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TABLE 6 POISSON LOGNORMAL MODELING RESULTS 

Variable Estimate Standard Error 
BCI 

2.50% 97.5% 

Intercept -1.90 1.65 -1.86 1.05 

Log(AADT) 0.99 0.20 0.95 1.34 

Speeding proportion 1.13 0.49 1.14 2.04 

Complexity Level of View -7.70 1.07 -7.56 -6.00 

Proportion of Road Length With Trees -0.94 0..9 --0.95 -0.20 

Log(Pavement Condition) -1.19 0.50 -1.18 -0.31 

Log(Road Length With two-way-left-

turn lane) 
-0.24 0.10 

-0.25 -0.05 

Log(outside shoulder width) -0.61 0.17 -0.60 -0.28 

Log(number of access per mile) 0.23 0.08 0.23 0.39 

Log(length) 0.73 0.12 0.73 0.97 

 0.50 0.11 0.50 0.71 

DIC 424.49 

 

3.3.4.5 Conclusions and Future Work 

This study applied deep learning models to extract information related to drivers’ visual 

environment from the Google Street View (GSV) images. Around 15,000 GSV images of urban 

arterials were downloaded. The deep learning algorithm developed by Facebook was used to 

cluster objects in the images. Based on the clustering results, indexes including the proportion of 

trees, the proportion of buildings, and the complexity level of the visual environment were 

calculated by counting the number of pixels. Besides, another deep learning method was 

applied to get distance information from the images. By combining the clustering information, a 

3D point cloud data was generated for each GSV image. The proportion of road length with trees 

was calculated. The information reflects the environment information from the drivers’ view and 

was used to explore its effects on speeding crashes. XGBoosting analysis was conducted to 

identify the variable importance and a statistical model was developed to quantify the effects of 



 

 

96 

information extracted from GSV images on the speed crashes. Other factors including traffic 

volume, speeding proportions, road attributes, land use, and socio-demographic characteristics 

were also examined.  The XGBoosting regression result revealed that the trees and the 

complexity level of driver visual view are very important contributing factors for speeding 

crashes on urban arterials. The statistical model suggested that the proportion of roads with trees 

and the complexity level could reduce the speeding crashes. The results validated that more 

insight could be obtained by using deep learning algorithms to extract detailed information from 

GSV images. Besides, other significant factors for speeding crashes were also revealed, such as 

traffic volume, pavement conditions, road length with two-way-left-turn lane, outside shoulder 

width, number of accesses per mile, and segment length. This paper contributed to propose a 

method to obtain valuable information from GSV images by using deep learning algorithms. The 

information from drivers’ visual view was obtained and used to analyze speeding crashes. The 

modeling results confirmed the importance of information obtained from GSV images. In this 

paper, aggregated information from GSV was used for the speeding crash analysis. It would be 

interesting to use pixel-level data for traffic safety and driving environment analysis. Besides, the 

current study could be extended to explore safety by using naturalistic driving data.  
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CHAPTER 4 : CITYSIM: A DRONE-BASED VEHICLE TRAJECTORY 

DATASET FOR SAFETY ORIENTED RESEARCH AND DIGITAL TWINS 

4.1 Introduction 

In this dissertation, we introduce the CitySim dataset: a video-based trajectory dataset generated 

from drone recordings with a focus on traffic safety. This dataset is intended to facilitate safety 

research by providing traffic trajectories that are rich with conflicts and near misses. Therefore, it 

was designed with some novel features which are safety research friendly: 1) Accurate vehicle 

trajectories. CitySim has a five-step procedure to ensure high trajectory accuracy: video 

stabilization, object filtering, multi-video stitching, enhanced error filtering, and detection and 

tracking using an integrated algorithm of Mask R-CNN and CRST. The utilized algorithms and 

data processing methods are further delineated to give the dataset users a clear idea about the 

quality of the extracted trajectories.  

1) Wider vehicle trajectory range. Due to drone flight altitude restrictions and video 

resolution limitations, the coverage areas of drone cameras are limited. In order to 

capture wider observation ranges, CitySim utilizes multiple drones hovering over target 

areas and subsequently stitches the generated videos into one cohesive video. Therefore, 

CitySim users are able to observe and analyze vehicle interaction behavior from a much 

longer trajectory range, which accounts for various scenarios and provides 

comprehensive results.  

2) More critical safety events. CitySim selected locations that contain more aggressive and 

intense vehicle interactions, such as weaving segments. As demonstrated in later parts of 

this paper, CitySim has more critical safety events compared with other datasets in terms 

of both event severity level and sample size.  
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3) Accurate vehicle geometric representation. CitySim provides highly accurate bounding 

box information for each detected vehicle, which enables a more accurate estimation of 

the safety levels when compared with only using the vehicle central point information. 

This paper demonstrates the necessity of using bounding box information to calculate the 

safety metrics at the intersections in later parts of the paper.  

4) Digital twin features. CitySim provides high resolution 3D maps and physical models for 

each of the collected locations. Additionally, it provides the signal timing information for 

relevant locations. These assets allow researchers to test and verify their safety research 

in a high-fidelity virtual environment.  

4.2 Dataset Generation 

4.2.1 ARCIS 

CitySim was generated through five steps (FIGURE 3).The five steps are video stabilization, 

object filtering, video stitching, enhanced error filtering and detection and tracking. These steps 

ensure the output trajectory to be accurate as much as possible. 

4.3 CitySim Dataset Description 

Currently, CitySim contains vehicle trajectories from 1140-minute drone (DJ mavic 2,2 s, 3 or 

phantom 4) video recordings at 12 locations. The locations include one freeway basic segment, 

one weaving segment, two merge/diverge segments, five signalized intersections, one stop-

controlled intersection and two control-free intersections. The weaving segment and 

merge/diverge segments are particularly selected to provide sufficient number of critical safety 

events including cut-in, merge and diverge events. Detailed data collection information can be 

found inTABLE 7, and a bird view of each location is provided in FIGURE 39.  
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CitySim provides the following attributes: seven positions of a vehicle body (measured in pixel 

and GPS, see Figure 38), speed, heading (measured in global north and image coordinate X-axis), 

and the lane number of the vehicle,  

 

Figure 38 Vehicle body 

The dataset can be downloaded from https://github.com/ozheng1993/UCF-SST-CitySim-Dataset, 

while MATLAB and Python source code to handle the data, create visualizations and extract 

maneuvers is provided at https://github.com/ozheng1993/UCF-SST-CitySim-Dataset/wiki. 

 

 

 

 

 

 

 

https://github.com/ozheng1993/UCF-SST-CitySim-Dataset
https://github.com/ozheng1993/UCF-SST-CitySim-Dataset/wiki
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TABLE 7 DATA COLLECTION INFORMATIOM 

A: control-free intersection is neither signalized nor stop-controlled.  

B: drone height is based on the height of the surface of the take-off 

 

ID Location Location Type FPS 
Recording 

Resolution 

Recording 

Length 

(min) 

Drone 

Height 

(m) B 

1 Expressway A Weaving Segment 30 5120 x 2880 120 120 

2 Freeway B Basic Segment 30 5120 x 2880 60 320 

3 Freeway C Merge/Diverge Segment 30 5120 x 2880 60 320 

4 I-4 Express Lane Exit Merge/Diverge Segment 30 3840x2160 60 120 

5 University @Alafaya Signalized Intersection 30 3840x2160 120 120 

6 UCF Garage C Signalized Intersection 30 3840x2160 120 120 

7 UCF Garage C V2 Signalized Intersection 30 4096*2160 120 120 

8 426@Oxford Signalized Intersection 30 3840x2160 120 120 

9 

Hydra Ln@ Gemini 

(UCF GYM) 

Signalized Intersection 30 3840x2160 120 120 

10 

Aquarius Agora @ 

Gemini (art Building) 

Stop-Control intersection 30 3840x2160 120 120 

11 

McCulloch @ 

Seminole 

Control-Free Intersection 

A 

30 3840x2160 60 120 

12 

University @ 

McCulloch 

Control-Free Intersection 30 3840x2160 60 120 



 

 

101 

 

FIGURE 39 BIRD VIEW OF THE CITYSIM LOCATIONS 
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4.4 Toward Safety Research 

CitySim is highlighted for its specialties that help with the autonomous vehicle safety research. 

Here, we compared CitySim with NGSIM and highD, in terms of the following potential safety 

event: 

1) Freeway cut-in event: the cutting-in vehicle may cause a significant conflict with the 

following vehicle on the target lane, and it is one of the contributing factors that cause a rear 

end crash. In addition, it was observed from the CitySim data that when a vehicle begins a lane 

change from a source to a target lane, its following vehicle on the source lane often accelerates 

and generates conflict risk. Therefore, two types of minimum time-to-collision (minTTC) 

during the cut-in event were calculated (FIGURE 40) the before-minTTC is the minimum TTC 

between the cut-in vehicle and the following vehicle on the source lane, while the after-

minTTC is the minimum TTC between the cut-in vehicle and the following vehicle on the 

target lane. The cut-in behavior must have following vehicles.  

2) Freeway merge/diverge event: similar to cut-in behavior, the merge/diverge event often 

causes a conflict or even a crash to the following vehicle. The corresponding minTTC was 

calculated as the conflict indicator. The merge/diverge behavior must have following vehicles.  

3) Intersection conflict event: this type of behavior was measured in minimum post 

encroachment time (minPET) (35) to describe the conflict severity between two vehicles that 

have an intersected trajectory. The lower the minPET, the server the conflict.  

4)  
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FIGURE 40 TWO TYPES OF MINIMUM TIME-TO-COLLISION DURING THE CUT-

IN EVENT. 

4.4.1 Freeway/Expressway Cut-in/Merge/Diverge 

Regarding the number of potential safety events, CitySim has significantly more cut-in, 

merge and diverge events compared with the highD and NGSIM. We selected two locations from 

CitySim, namely Expressway A and Freeway C, and compared them with highD and NGSIM (US-

101 & I-80). The NGSIM Lankershim Boulevard Dataset was not included since it contains the 

urban scene which is not similar to other locations. FIGURE 41shows that two locations from 

CitySim have 8873 cut-in events, while highD has 5468 cut-in events and NGSIM only has 1363 

cut-in events. The two CitySim locations have 1954 merge events and 3910 diverge events. In 

contrast, the merge and diverge sample sizes of highD and NGSIM are very small. Given that the 

cut-in scenario, merge scenario and diverge scenario often cause severe conflicts or even crashes, 

the scenarios are heavily tested for autonomous vehicle safety. As shown in the figure, CitySim 

can sufficiently provide these types of scenarios for thorough safety testing scenarios for 

autonomous vehicle.  



 

 

104 

 

FIGURE 41 THE POTENTIAL SAFETY EVENTS COUNT FOR EACH DATASET 

CitySim not only has larger sample size of potential safety events, but also contains much more 

critical safety events. Critical safety events are defined as a potential safety event with a 

minTTC/minPET less than a threshold. Therefore, critical safety events are more likely to cause a 

crash. In this paper, we adopted a threshold of 5.0s and analyzed the distribution of critical safety 

events. FIGURE 42 shows that, compared with highD, Expressway A has more cut-in events with 

minTTC less than 5.0s in terms of both types of minTTC, and Freeway C also has more critical 

cut-in events involving the following vehicle on the target lane. Regarding the merge events, both 

Expressway A and Freeway C have more critical merge events than highD. The NGSIM was not 

considered here due to its trajectory error which causes abnormal minTTC. FIGURE 43 shows 

some example critical safety events observed in CitySim. 
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CUT-IN EVENTS (MINTTC<5.0S) 

  

MERGE EVENTS (MINTTC<5.0S) 

FIGURE 42 CUT-IN AND MERGE EVENT COMPARISON BETWEEN CITYSIM AND 

HIGHD 
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(A) CUT-IN EVENTS 

   

(B) MERGE EVENTS 

   

(C) DIVERGE EVENTS 

FIGURE 43 CRITICAL SAFETY EVENTS EXTRACTED FROM CITYSIM 

4.4.2 Intersection Conflicts 

As aforementioned, when safety metrics such as PET/TTC are calculated based on the central 

points, there might be a bias since the true vehicle body profile is not considered, particularly for 

the turning trajectories. As shown in FIGURE 44, larger number of critical conflict events are 

identified by the bounding box measurement; meanwhile, the conflict events are severer than the 

those identified by the center point. Further, the distribution of the critical conflict events at the 

intersections are significantly changed (shown in FIGURE 45). This demonstrates the significant 
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bias caused by the center point for the turning trajectory. Therefore, the bounding box information 

provided by CitySim is believed to benefit safety evaluation much more than many other datasets. 

 

UNIVERSITY @ ALAFAYA 

 

MCCULLOCH @ SEMINOLE 

FIGURE 44 THE CRITICAL CONFLICT EVENTS AT TWO CITYSIM 

INTERSECTIONS MEASURED BY DIFFERENT MINPET THRESHOLDS 
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McCulloch @ Seminole 

 

FIGURE 45 THE HEATMAP OF CRITICAL CONFLICT EVENT DISTRIBUTION AT 

TWO CITYSIM INTERSECTIONS MEASURED BY DIFFERENT MINPET 

THRESHOLDS 

(The number in the parathesis means the identified number of events) 
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4.5 Towards Digital Twins 

CitySim provides 3D base map for each location with an objective to facilitate the digital-twin-

based autonomous vehicle safety research. FIGURE 46 shows part of 3D base maps for the 

CitySim locations. In addition to the digital twin models, CitySim also provides signal timing data 

related to signalized intersections. The signal data CSV file provides event level data. Each record 

in the signal data represents a change in one of the signals. The data is represented by eight different 

digits that corresponds to different signal phases at the intersection. 

FIGURE 47 shows a case study of using CitySim to achieve digital-twin-based simulation. 

CitySim provides accurate vehicle trajectories from its drone data, and the data is used to calibrate 

microscopic traffic patterns; then, both the traffic patterns and 3D base maps enter a co-simulation 

platform which integrates the SUMO and Carla. By simulating the virtual testing environment, 

vehicle dynamics and vehicle sensors, a human-in-loop simulator experiment can be conducted on 

the co-simulation platform, which fulfills a digital-twin-based experiment that connects the virtual 

and real world together.  



 

 

110 

   

(A) EXPRESSWAY A 

   

(B) FREEWAY C 

   

(C) UNIVERSITY @ ALAFAYA 

   

(D) MCCULLOCH @ SEMINOLE 

FIGURE 46 3D MODELS FOR EACH LOCATION OF CITYSIM 
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FIGURE 47 A DIGITAL-TWIN-BASED SIMULATION OF INTEGRATING BOTH THE 

VIRTUAL AND REALITY 

4.6 Conclusions And Future Work 

This paper introduces a new video-trajectory based dataset, CitySim, which aims to facilitate the 

autonomous vehicle and conflict based safety research. CitySim has vehicle interaction trajectories 

extracted from 1140-minutes of video recordings, which have covered variety of locations 

including freeway basic and weaving segments, expressway segments, signalized intersections, 

stop-controlled intersections and special intersections without sign/signal control. The biggest 

advantages of CitySim over other datasets is it has more critical safety events and more severe 

safety events, which would be a great support for the safety-oriented research. Meanwhile, by 

providing the bounding box information, CitySim is able to measure the safety level more 

accurately. In addition, CitySim has the digital twin features including the 3D base maps, and 

signal timings, which enables a more comprehensive testing environment for the autonomous 

vehicle safety.  In the future, we are planning to increase the size of the dataset and add more 

digital twin features. 
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CHAPTER 5: TOWARDS NEXT GENERATION OF PEDESTRIAN AND 

CONNECTED VEHICLE IN-THE-LOOP RESEARCH: A DIGITAL TWIN 

CO-SIMULATION FRAMEWORK 

5.1 Introduction 

The emergence of numerous Intelligent Transportation System (ITS) applications have made an 

extensive contribution to the transportation system in terms of safety, mobility, and energy 

consumption. Connected vehicle (CV), as a core component of ITS, has received vast attention 

since it was proposed in the late 20th century [186, 187][. With the advancement in vehicle 

connectivity, computing power, and automotive control, the CVs are able to “talk” to other 

traffic actors (vehicle, infrastructure, pedestrian, etc.) and collaboratively make decisions and 

perform driving tasks. Apart from the vehicles, pedestrian safety also raised much awareness, as 

it has the highest fatality rates among road accidents. Many ITS applications have been 

developed and investigated to enhance pedestrian safety in a CV environment. Due to safety 

concerns, most of the ITS technologies are developed and tested in a simulation environment, 

which is based on the assumption that the simulation environment is well-calibrated to represent 

real-world scenarios. However, this is not always true. Furthermore, there is no interaction 

between simulated entities and real-world traffic participants, causing a reduction in the validity 

of testing. Hence, an experimental environment that supports both CV and pedestrian in-the-loop 

is needed for the research and development of vehicle-to-pedestrian (V2P) ITS applications. 

Digital Twin, as an emerging technology in the transportation field, provides unprecedented 

opportunities to support the development of ITS applications and address the above issues. By 

definition, a Digital Twin is a digital replica of a physical entity in the real world[188]. In 

transportation, it could be the technology that projects all the traffic participants into a digital 

road network in a real-time manner. As real vehicle or pedestrian behaviors are reflected in a 

digital environment, the V2P applications can be implemented virtually. By such means, the 
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effects of ITS applications in a dangerous scenario can be tested as there is no safety concern in 

the digital environment. Also, as the digital entities are projections of real traffic participants 

representing real-world traffic, the experiment results could be as convincing as field 

experiments. In this work, we propose a Digital Twin framework to support ITS research on CV 

and pedestrians. A sample architecture under the framework is demonstrated, which incorporates 

a Sumo-Carla co-simulation platform for CV and a Cave automatic virtual environment (CAVE) 

for pedestrians. The contribution of this study includes:  

• Introduced a CV and pedestrian in-the-loop Digital Twin framework, which consists of 

physical world, digital world, and the connection in between. The framework describes 

the features that need to be digitally twined for both CV and pedestrians, including their 

external and internal states.  

• A sample architecture is presented to show a realization method of the Digital Twin 

framework. The architecture innovatively connects a CV simulation environment (Carla-

Sumo co-simulation) and pedestrian simulator (CAVE). The functions of the sample 

architecture currently include bi-direction data transmission, pedestrian, and driver state 

capturing, and V2P application display.  

• Demonstrated a case study of V2P collision warning under occlusion condition that 

validates the proposed framework. The case study investigates the effect of V2P warning 

over baseline (no warning) and autonomous vehicles (equipped with AEB). The 

advantage of using the CV and pedestrian in-the-loop system is shown through the 

experiments. The organization of the remaining paragraphs is as follows: Section II 

reviews the literatures of CV and pedestrian simulation as well as digital twin 

technology; Section III introduces the proposed Digital Twin framework; Section IV 
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presents a sample architecture using Carla-Sumo co-simulation and CAVE; Section V is 

the case study and Section VI is a summary and conclusion 

5.2 Digital Twin Framework 

The proposed Digital Twin framework consists of the physical world, the digital world, and the 

data transmission between all the modules. The framework architecture is shown in FIGURE 48. 

The elements inside the brown rectangle on the left are the digital replica of CV and pedestrians. 

The physical world is represented in the green rectangle on the right, in which the real drivers 

and pedestrians are involved. The blue 3 rectangles are the attributes of CV and pedestrian that 

need to be digitally twined. The grey rectangle at the center containsthe CV and pedestrian-

related ITS technologies that will be applied. 

 

FIGURE 48 DIGITAL TWIN FRAMEWORK FOR CONNECTED VEHICLE, 

PEDESTRIAN AND TRAFFIC ENVIRONMENT. 
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5.2.1 Physical world 

The Physical world is the space where the real traffic participants (vehicle, driver, pedestrian, 

signal, and traffic sensors, etc.) interact with the environment. The challenge of digital twinning 

associated with the physical world is the state detection of the physical entities and the extraction 

of key features to send to the digital world. The traffic participants could be divided into living 

entities and non-living entities, and they may need different digital twining techniques. For non-

living entities, they only have external states, which are the physical states instead of 

psychological states, and their states can be fully captured and modeled through sensing or 

detection. For vehicles, the states include the kinematic features (e.g., position, speed, and 

acceleration) and ego characteristics (e.g., vehicle model and color). These features can be 

captured in real-time through onboard sensing (e.g., CAN BUS, GNSS) or external sensor 

detection (e.g., roadside cameras, radar). The digital twinning of traffic flow can also be 

challenging. The traditional method like Microwave Vehicle Detection Sensor (MVDS) provides 

reliable information about traffic flow in terms of volume, speed, and occupancy[189] . 

However, the MVDS data is still at a macro-level and the micro-level, or vehicle group level 

information is not captured. The increase in vehicle connectivity makes it easier for precise 

information collection of a vehicle group. In a mixed traffic environment, which may be a long-

term state in the foreseeable future, the connected vehicles could build up a Vehicular ad hoc 

network (VANET) that collectively sense and share the information of the surrounding traffic. 

The digital twinning for living entities is more complex than non-living entities, as both external 

state and internal state need to be detected or modeled. The internal state refers to the 

psychological status of a traffic participant including intention, emotion, personality, etc. The 

internal state normally cannot be measured directly and relies on identification or prediction 
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through external behaviors. For drivers, their external state could be a set of human 

characteristics (e.g., gender, age) and wellness indicators (e.g., distraction, fatigue) that can be 

captured through wearable sensors (e.g., EEG sensor, EMG sensor), while the internal state 

includes driving intention and driving style preference. The internal state needs to be estimated 

and predicted using the external state as input, and various methods have been proposed 

including mapping attention field to external environment, RNN-based sequential models, and 

HMM models. For instance, the driver’s gazing intention can be predicted through various 

methods [24, 190]. For pedestrians, motion is the external state such as walking/running/standing 

and body gestures, and it could be measured by wearable sensing suites and devices, or through 

external sensing like video cameras. Pedestrians’ internal state mainly includes crossing intention 

and desired path, and it also needs to be predicted [163].  

5.3.2 Digital world 

The digital world is a virtual environment that parallels the real-world, where all the traffic 

participants are the projection of real entities in a real-time manner. Under the proposed Digital 

Twin framework, the digital world is the place where the vehicle and pedestrian-related ITS 

applications are deployed and simulated. FIGURE 48 Digital Twin framework for connected 

vehicle, pedestrian and traffic environment. 4 For connected vehicle digital twinning, the 

primary task is the projection of the vehicle states from the real world to the digital world. The 

vehicle’s external state, including localization, kinematic features, and vehicle characteristics, are 

the features that could be directly replicated in the digital world. If considering the CV and 

drivers as an entity, the vehicle could thus have internal state due to the drivers’ psychological 

attributes. The CVs share information about its ego states and the surrounding traffic, and thus 

they can conduct ITS applications such as safety warning, collaborative sensing, decision 
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making, and vehicle control. Assisted by the computing power in the digital world, the effects of 

these ITS technologies can be simulated. Afterwards, the optimal driving strategy can be derived 

and feedback to the real-world CVs. The digital pedestrian should also have the external state 

and internal state. The external state is relatively easy to be represented in the virtual space. It 

only requires the pedestrians’ motion captured from the real-world to be digitally twined such as 

localization, moving speed and direction, and body gesture. The internal state, referring to 

pedestrian’s psychological condition, needs to be modeled and predicted [191]. As the behavior 

of the digital avatar is the same as real-world pedestrian, their internal state (e.g., crossing 

intention, desired path) could be modeled and predicted through probabilistic models or machine 

learning methods [163, 192]. Once the digital avatar of vehicles and pedestrians are replicated in 

the digital space, ITS applications could be implemented virtually. For a traffic scenario with 

both CV and pedestrian presence, various ITS technologies can be applied. Based on the 

communication subjects, it can be divided into vehicle-to-vehicle (V2V), vehicle-to-pedestrian 

(V2P), vehicleto-infrastructure (V2I), or vehicle-to-everything (V2X) in general. In terms of 

functionality, these ITS technologies include driving cooperation, V2V or V2P collision 

warning, eco-driving guidance, etc. Normally, the digital world has stronger computing power 

(e.g., using cloud computing), and it can execute fast simulation and prediction to investigate the 

effects of the ITS technology and to generate optimal driving or crossing suggestions for CV and 

pedestrian, respectively. Afterwards, the suggestions are forwarded to the real world entities and 

form a data transmission closed loop. 
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5.3 Framework Realization 

In this section, a sample architecture is presented to demonstrate a possible realization of the 

proposed Digital Twin framework, as shown in FIGURE 49. The architecture is built based on 

various simulations and physical environments that incorporates both CV and pedestrians. 

 

FIGURE 49 SAMPLE ARCHITECTURE OF CV AND PEDESTRIAN IN-THE-LOOP 

DIGITAL TWIN FRAMEWORK 

5.3.1 Connected Vehicle Digital Twin 

Since it is technically challenging and cost demanding to use a real vehicle for field tests, driving 

simulator could be a good alternative to represent a high-fidelity driving environment. Also, for 

experiments with safety concerns (e.g., a pedestrian crossing in an occlusion condition), 

simulator is the primary choice. In this sample architecture, a multi-driver co-simulation platform 

is adopted. The simulator is based on the co-simulation between Carla and Sumo, while multiple 

participants can drive simultaneously in the Carla virtual environment[193] . FIGURE 50 
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demonstrates the Carla-Sumo co-simulation based on the location University of Central Florida 

FIGURE 49Sample architecture of CV and pedestrian in-the-loop digital twin framework 5 

(UCF) gym from CitySim dataset[54], which is an open-source vehicle trajectory dataset 

launched by our Safe&Smart Transportation (SST) team. Carla is an advanced autonomous 

driving simulator that is built on Unreal 4 game engine, and manual and autonomous driving can 

be conducted in Carla [125]. For driving simulator experiments, Carla is capable of rendering 

high-fidelity graphic displays and simulate vehicle dynamics. Sumo is an open-source 

microscopic traffic simulator [194]. It is powered by vehicle behavior models including driving 

behavior models and route choice models. After fine model calibration, Sumo can generate 

traffic flow that represents the real traffic and vehicle behaviors. For model calibration, vehicle 

trajectory data is adopted as it provides rich data on traffic flow and driving behaviors. The 

trajectory data used in this project is from the CitySim dataset. The Carla map and sumo road 

network are exactly matched as they share the same Opendrive road geometry file. The traffic 

actors are synchronized in both simulators, and Sumo vehicles and Carla vehicles can interact 

with each other to produce a mixed simulation environment. To power the co-simulation, a PC 

with Intel® Core™ i7-7800X CPU @ 3.50GHz × 12 and a memory of 64 GB plus NVIDIA 

GeForce RTX 2080 GPU is used. For the setup of driving simulator, we used triple 40’’ Vizio 

TVs with 1920*1080 resolution, and Fanatec V2.5 steering wheel and hydraulic-supported 

pedals To reproduce the real-world driving scene, high-fidelity 3D maps of the study location are 

built using the road scene designer RoadRunner (3D maps are available at CitySim dataset 

homepage: https://github.com/ozheng1993/UCF-SSTCitySim-Dataset). The maps are built using 

GIS data to guarantee the quality, including arial images, elevation data, and point cloud data. By 

such means, the driving behaviors of real drivers at real locations can thus be collected. 

https://github.com/ozheng1993/UCF-SSTCitySim-Dataset
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Benefiting from using the simulator, the vehicle state can be directly accessed through Carla’s 

Python API, instead of being detected or sensed as in real world. The drivers’ state can be 

captured through detecting or sensing the same methods as real-world incabin technologies such 

as eye-tracking and fatigue identification. Once the driver and vehicle data are obtained, they are 

uploaded to the cloud server (Redis in the architecture) and stored. In addition, the connected and 

automated vehicle (CAV) and human-driven vehicle (HDV) are also included in the sample 

architecture in FIGURE 49 to be able to simulate a mixed traffic environment. 

 

FIGURE 50 CARLA-SUMO CO-SIMULATION (LEFT: SUMO; RIGHT: CARLA) 

5.3.2 Pedestrian Digital Twin 

Safety is always the primary concern for pedestrian-related studies. When the pedestrian is 

exposed to potential risk in an experiment, it must be held in simulation instead of field testing. 

Due to this reason, the objective of pedestrian digital twinning is to create an immersive and 

close-to-real simulation environment for pedestrians. In this architecture, we used a Cave 

automatic virtual environment (CAVE) to serve as the testbed for pedestrians. The CAVE 

equipment used in this study is called “VDen”, which is a lightweight, portable version of 

CAVE. For this architecture, we used a PC with Intel® Core™ i7-10700 3.8GHz CPU, 32GB 
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DDR4 RAM, NVIDIA GeForce 2080 GPU. The system projects 3D videos on 4 screens (left, 

front, right and bottom), and provides a 3*3-meter movable physical space. The projectors in this 

architecture are 4 BenQ ultra-short throw projectors support up to 1920x1200 120Hz 3D output, 

60Hz per eye. The users are wearing a 3D glasses and a tracker for localization in the CAVE. 

Also, an additional tracker is used to track the eye position in order to get the correct perspective 

of view. Compared to the other VR device Head Mounted Displays (HMDs), CAVE has several 

evident advantages, especially for pedestrian simulation. First, it feels more natural and 

comfortable for the user only to wear a pair of lightweight 3D glasses and a tracker instead of a 

heavy headset. Second, CAVE brings less cybersickness because CAVE displays multiple 

images on the walls simultaneously instead of generating a new image when the user is moving 

his head. In addition, when experiencing VR in CAVE, users could naturally be aware of the 

physical presence of their own and each other’s entire bodies, which is crucial for multi-user and 

social VR scenarios. Users can freely communicate with one another as if they were in the real 

world. In HMD setups, this is very challenging to achieve. In order to replicate the pedestrian’s 

pose in the digital world, the real body’s keypoints are captured and matched to the digital 

avatar. Keypoint detection is carried out by Google MediaPipe Posekeypoint detector using pre-

trained weights from BlazePose GHUM 3D. Unlike most state-of-the-art approaches, which 

depend on a robust server environment for 6 inference, the MediaPipe achieves real-time pose 

detection on the 2022 MacBook pro with M1 Pro Max GPU. The MediaPipe outputs are 

uploaded to a Redis Pub/Sub server in JSON format, which includes 33 human key points’ 

names and the bone transform in 3D space. This JSON file will be pushed into CARLA Client 

“WalkerBoneControl” class every tick to modify the CARLA walker agent’s skeleton. To 

simulate the pedestrian’s walking movement, locomotion method is used. It allows users to move 
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forward or back by lifting their legs to simulate a real walking pose. The implementation is based 

on binding two additional lighthouse trackers to the user’s legs and monitoring the range of 

movement of the sensors in the vertical direction to trigger a movement event. The horizontal 

orientation of the movement of the sensor also determines the direction of motion. The methods 

of pedestrian pose matching and achieving locomotion are shown in FIGURE 51 

  

FIGURE 51. PEDESTRIAN DIGITAL TWINING IN CAVE 

5.3.3 Closed-loop Data Transmission  

Since the presented architecture uses two major platforms: Carla-Sumo (vehicles) and Unity 

(pedestrian), the two digital spaces need to be synchronized. FIGURE 52 shows the data 

transmission structure between the two platforms. The data transmitted from Carla-Sumo to 

Unity includes the vehicle state and driver state; while the data sent from Unity/CAVE to Carla 

is the pedestrian’s location, motion and pose. 
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FIGURE 52 DATA TRANSMISSION BETWEEN EACH MODULE 

The idea of Digital Twin is to form a closed loop from physical entities to digital avatars and 

then generate feedback for physical entities. Hence, the proposed architecture follows this 

concept and keeps a closed-loop data transmission structure. When conducting an experiment, 

the driver and vehicle information is read from the driving simulator and is uploaded to Redis 

server. The pedestrians’ location, motion and gestures are also tracked in the CAVE and are 

uploaded to the server simultaneously. At each simulation step, the system accesses the data 

server to download the vehicle or pedestrian data, and projects the avatar into the digital space. 

Afterwards, ITS technologies are implemented in the virtual world. For example, V2P collision 

warning system predicts crashing likelihood and triggers warning messages. Finally, suggestions 

for CV drivers or pedestrians are generated and feedback to the physical space (e.g., display 

warning messages on vehicle onboard unit). 
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5.4 Case study 

5.4.1 Investigates The Effects Of V2P Collision Warning System Under Occlusion Conditions 

In this section, a case study based on the proposed architecture will be presented that investigates 

the effects of V2P collision warning system under occlusion conditions. Three experiments are 

designed to investigate V2P safety of (a) HDV without V2P warning; (b) AV with Automatic 

emergency braking (AEB); and (c) CV with V2P communication, respectively. In the 

experiment, HDV and CV are operated by the drivers on the driving simulator and AV is 

automatically controlled, while the pedestrian is simulated using the CAVE. 

5.4.1.1 Experiment Setup 

The experiment is derived from a real crash case in front of the gym of UCF (FIGURE 50), 

where a pedestrian violated the traffic light and was hit by a vehicle under occlusion condition. 

During school hours, many students are heading to the gym and crossing behaviors with red-light 

violations are frequently observed, which sometimes leads to conflicts or even crashes. The 

development of multiple sensing and communication technologies allows the movement of both 

vehicles and pedestrian to be captured and broadcasted to each other, and V2P collision warning 

can be activated in a safety-critical scenario to prevent accidents. To test its effectiveness, three 

experiments are designed to reproduce the crash scene, as shown in FIGURE 53. For all three 

experiments, the vehicle (HDV/CV driven by the driver, or CAV controlled by Sumo) is driving 

at 25 mph towards the intersection. When the vehicle’s estimated arrival time to the conflict 

point is 5 seconds, the pedestrian light turns from “Don’t walk” into “Walk”, and the pedestrian 

in the CAVE starts to cross the street with a constant speed of 1 m/s.Two buses are placed in 

front of the zebra crossing, and both driver and pedestrian cannot see each other until closer to 

the conflict point. For experiment 1, the driver and pedestrian will not receive any warning; in 
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experiment 2, the AV activates the AEB system, and the vehicle and pedestrian are not receiving 

warning; while in experiment 3, the collision warning will be displayed through the smartphone 

(as on board unit OBU emulator) to both CV and pedestrian. 

 

FIGURE 53. EXPERIMENT DESIGN 

The collision warning system consistently calculates the time-to-collision (TTC) between vehicle 

and pedestrian and triggers warning when the TTC is below the predefined threshold. The V2P 

warning triggering condition is shown in following Equation. 
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where 𝑇𝑇𝐶∗ is the activation threshold (1.5 second in this study), and 𝑡𝑣𝑒ℎ, 𝑡𝑝𝑒𝑑 are the 

estimated arrival time to the collision point, which is calculated by the remaining distance to the 

conflict point divided by current speed (𝑑/𝑣). Once the system is triggered, a warning is sent to 

the CV driver and displayed through the Onboard Unit (OBU), which is emulated by a 

smartphone. For AV simulation, the P2V safety is ensured by activating the Automatic 

emergency braking (AEB) system. A Lidar is attached to the AV in Carla to detect the 

pedestrian, and once the V2P TTC is smaller than 1.5 seconds, the AEB triggers. This case study 

adopts the AEB algorithm of standard gradient deceleration on dry road[195, 196], and the 

braking profile is shown in following Equation. 

 

where 𝑡 is the time to the AEB activation time. Six groups (each group includes a driver and a 

pedestrian) of lab researchers participated in the experiments, and each group experience all 

three experiments. The participants are requested to behave in a safe manner and try to avoid 

potential crashes. 

5.4.1.2 Experiment Results 

The vehicle decelerates once the pedestrian is detected, and the vehicle’s distance to the zebra 

crossing when it completely stops (denote as V2P distance) can reflect the closeness of the V2P 

conflict. Braking point, which is defined as the vehicle’s distance to the zebra crossing when the 

vehicle starts to brake, is used to measure the braking timing. A larger braking point indicates the 

driver starts to brake earlier to prevent a crash. Also, the average deceleration of the vehicle 

during the braking period is examined.  The results of the average V2P distance and braking 

point for the three experiments are shown in TABLE 8 
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TABLE 8 RESULTS OF V2P DISTANCE AND BRAKING POINT 

Experiment V2P Distance 

(m) 

Braking Point 

(m) 

Average Deceleration 

(m/𝑠2) 

1. HDV-Pedestrian 3.941 11.458 7.464 

2. AV-Pedestrian 5.602 14.612 7.031 

3. CV-Pedestrian 17.179 28.325 6.216 

 

5.4.1.3 Conclusions and Future Work 

As expected, the experiments of HDV-pedestrian show the smallest V2P distance and braking 

point, which means the driver starts to brake latest among all experiments and almost hit the 

pedestrian. The CV-pedestrian experiments have the largest value for both V2P distance and 

braking point. This indicates that the driver receives V2P warning before seeing the pedestrian and 

makes braking maneuver in advance to ensure safety. The value of V2P distance and braking point 

of AV-pedestrian is between the other two experiments. In the occlusion condition, the Lidar 

cannot detect the pedestrian until the occlusion is relieved, and the AEB activates to avoid a crash. 

The results show that under occlusion conditions, the HDV gets very close to the pedestrian 

without the V2P warning. For AV, the AEB system improves the safety slightly. With the collision 

warning for both CV and pedestrian, the V2P safety has been enhanced by a significant margin. 

In terms of average deceleration, the result of experiment 1 is the largest with a value of 7.464 

m/s2, indicating that the human drivers braked hard after seeing the pedestrian. The AV also 

generates an average deceleration over 7 m/s2, while in experiment 3 the value is significantly 

smaller. This shows that the V2P warning also enhance comfort while ensuring safety.To further 

demonstrate the results, a group of experiments are visualized in FIGURE 54. The speed-time plot 

is presented in FIGURE 54(a), where the speed over time of the HDV, AV and CV are represented 

in the blue, orange, and green line, respectively. It can be observed that the CV brakes earliest, 

followed by the AV then HDV. FIGURE 54 (b) shows the space-time plot of the three experiments. 
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The space is the distance to the conflict point, and the upper lines belong to vehicles and the lines 

below the x-axis are pedestrians. The plot shows the CV stops far away from the conflict point 

while the HDV almost reaches the conflict point. In addition, the pedestrians in the HDV-

pedestrian and AVpedestrian group arrived at the conflict point, because they are not aware of the 

presence of vehicles. In the CV-pedestrian experiment, the pedestrian receives the warning and 

stops to cross the street, as the bottom green line stops to rise after 4 seconds. The differences in 

pedestrian behavior validate the need for both CV and pedestrian in-the-loop simulation, as 

conventional CV-related simulation study does not consider pedestrian reaction 

 

FIGURE 54 VISUALIZATION OF RESULTS. (A) SPEED-TIME PLOT FOR THREE 

EXPERIMENTS; (B) SPACE-TIME PLOT FOR BOTH VEHICLES AND 

PEDESTRIANS, NOTE: THE LINES ABOVE X-AXIS ARE VEHICLES AND THE 

LINES BELOW ARE PEDESTRIANS 

 

5.4.2 Using virtual simulator to evaluate the automated emergency braking system for avoiding 

pedestrian crashes at intersections under occlusion 

5.4.2.1 Experiment Setup 

The AEB system consists of two main parts: one is the sensor model and the other is the braking 

strategy. The sensor is mainly responsible for the perception of the surrounding environment in 

which the ego vehicle is moving. As illustrated in the FIGURE 55 sensor scans a segment of a 
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circle while transmitting detection rays to detect surrounding objects (e.g., a pedestrian). The 

minimal distance between the ego vehicle and the moving objects could be used to calculate the 

time to collision (TTC). The TTC could be applied as a metric to activate the brake signal of the 

AEB system. Once the TTC is below the specific configurable activation threshold, the AEB 

system is triggered to react to avoid the potential collision. In this study, the brake system described 

in the previous study [195, 197] has been adopted. The braking system response consists of a brake 

delay and the build-up time until the full brake, which could be expressed by the following 

equation. 

𝐷𝑒𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 (𝑢𝑛𝑖𝑡: 𝑓𝑒𝑒𝑡/𝑠2) = {
0; 𝑡 < 0.25

65.7(𝑡 − 0.25); 0.25𝑠 ≤ 𝑡 < 0.6𝑠
23; 𝑡 > 0.6𝑠

 

 

FIGURE 55 ILLUSTRATION OF PEDESTRIAN DETECTION AND FOV OF SENSOR 

While the effectiveness of the AEB system on avoiding pedestrian crashes has been validated in 

the previous studies [198], it remains unclear if the pedestrian is occluded by other vehicles. As 

shown in FIGURE 56(b), the sensor of the ego vehicle could not detect the pedestrian since the 

pedestrian is occluded by the stopping vehicle. In that case, there might not be enough time to 
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activate the brake system to decelerate to avoid collisions. Hence, further investigations are needed 

to explore the effectiveness of the AEB system under the occlusion conditions.    

 

 

(a) NOT OCCLUSION CONDITION (b) OCCLUSION CONDITION 

FIGURE 56 ILLUSTRATION OF OCCLUSION AND NOT OCCLUSION CONDITIONS 

Occlusion scenarios 

In this study, three common occlusion scenarios of pedestrians for the through vehicles were 

investigated based on our previous study about pedestrian crashes [107]. The three scenarios are 

summarized as follows: 

• Scenario 1: the ego vehicle is going through, while a pedestrian is walking on the crosswalk 

of the ego vehicle’s exiting approach and the pedestrian is occluded by a vehicle on the 

left-turn lane (FIGURE 57(a)) 
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• Scenario 2: the ego vehicle is going through, while a pedestrian is walking on the crosswalk 

of the ego vehicle’s entering approach and the pedestrian is occluded by a vehicle on the 

left-turn lane (FIGURE 57(b)) 

• Scenario 3: the ego vehicle is going through, while a pedestrian is walking on the crosswalk 

of the ego vehicle’s entering approach and the pedestrian is occluded by a vehicle on the 

right-turn lane (FIGURE 57(c)) 

As illustrated in FIGURE 57, the pedestrian could be occluded by the stopping vehicle. If occluded, 

the pedestrian could not be detected by the sensor of the AEB system of the ego vehicle and the 

braking system would not be activated even reach the threshold. The potential collision points are 

also highlighted in the figure. In this study, a typical intersection in the Carla map- Town 3 is 

selected. The entering approach contains three lanes: one is left lane, one is through only lane, and 

one is through and right lane. The ego vehicle is on the middle lane and it will drive from the 

upstream to the intersection. It is assumed that the ego vehicle arrives at the intersection during 

the green time and it will pass the intersection without a stop. In addition, the intersection has 

crosswalks on which the pedestrian could walking across the intersection. The pedestrian is 

assumed to crossing the intersection during the red light without seeing the coming through 

vehicle. Hence, a collision is highly likely to happen and the effectiveness of the AEB system 

could even be reduced.  
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(a) SCENARIO 1 (b) SCENARIO 2 

 

(c) SCENARIO 3 

FIGURE 57 ILLUSTRATION OF SIMULATION SCENARIOS 

Agents’ motion states and system parameters 

The development of simulation cases considered the driving speed of the ego vehicle and the 

crossing speed of the pedestrian in the different study scenarios. As shown in TABLE 9 pedestrian 

six crossing speeds for the pedestrian are simulated, from 2 feet/s to 12 feet/s, similar to the 

previous study [198]. To simulate different conditions when the ego vehicle has a collision with 
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the pedestrian, an offset time was used to describe when the pedestrian starts to cross the 

intersection based on the arrival time of the ego vehicle to the collision point. According to the 

previous study [199], six offset time was used in this study. Six ego vehicle’s speed categories 

from 25 mph and 50 mph, which are the typical driving speed on the partial access-control road. 

Hence, the total combinations considering the pedestrian speed, ego vehicle speed, and the offset 

time for the pedestrian to cross are 216 for each scenario.  

TABLE 9 MOTION STATES OF EGO VEHICLE AND PEDESTRIAN 

Parameter Value Step size Counts 

Pedestrian initial speed (feet/s) 2-12 2 6 

Ego vehicle initial speed (through, mph) 25-50 5 6 

Offset time for pedestrian to cross (s) 1-6 1 6 

Total - - 216 

 

As described above, the maximum deceleration rate to achieve the target speed is 3.28 𝑓𝑒𝑒𝑡/𝑠2. 

Besides having to brake due to the curve as described above, the braking process would not 

consider other interactions with the surroundings once activated. The braking system is activated 

if the time to collision (TTC) reaches the threshold, and the pedestrian is not occluded by the 

stopping vehicle. If the pedestrian is occluded by the stopping vehicle, the activation time of AEB 

could be delayed. Three TTC thresholds to activate AEB were tested from 1 to 3 seconds. Besides, 

the sensor’s field of view (FoV) could affect the time when the pedestrian could be detected and 

then affect the activation time if under dangerous condition. Hence, five different angles of FoV 

were tested. Hence, there are 16 AEB control cases (i.e., 15 with AEB control and 1 without AEB 
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control) included. A total of 10,368 (3 scenarios × 216 motion states ×16 AEB control cases) 

simulation runs were conducted to evaluate the effects of AEB under occlusion conditions.   

TABLE 10 AEB CONTROL CASES 

Parameter Value Step size Counts 

AEB control 

Sensor FoV (angle) 60-180 30 5 

TTC threshold to activate AEB (s) 1-3 1 3 

No AEB control - - 1 

Total - - 16 

The model of the ego vehicle in this study is a typical passenger car that has a length of 16.5 feet 

and a width of 6.6 feet. The LiDAR sensor locates at the top front part of the ego car 1.6 feet away 

from the center of the ego vehicle. The sensor parameters in this study were based on as the 

following: 

• Upper FoV: 15° 

• Lower FoV: −25° 

• Number of channels: 64 

• Detection ranges: 300 feet 

• Rotation frequency: 20 HZ 

• Points per second: 500,000 

Evaluation methods 

Different measures were included to evaluate the performance of the AEB system. The output 

information from the Carla simulation such as agent center position (x, y) in the global coordinate 
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system, agent speeds, yaw angles of the ego vehicle, and vehicle dimension could be used to 

compute the measures. First, the collisions could be determined by the geometrical overlap of the 

agent contours, which could be calculated by each time frame. As shown in FIGURE 58,the 

position of both the ego vehicle and the pedestrian at the collision time could be identified. By 

using the geometrical features of the ego vehicle and the pedestrian, the relative impact location 

to the center of the respective contour edge can be estimated. Besides, the impact speed of the ego 

vehicle could be obtained for the evaluation as higher speed would result in more severe pedestrian 

crashes [109]. During the simulation, the information about whether the pedestrian is occluded 

(i.e., the pedestrian could not be detected by the LiDAR sensor even in the detection range) could 

be recorded. Hence, the duration of occlusion could be obtained to explore the effects of occlusion 

on the effectiveness of the AEB system.   

 

FIGURE 58 COLLISION LOCATION WITH THE RESPECT TO THE CENTER OF 

THE CORRESPONDING CONTOUR EDGE (IN %) 
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5.4.2.2 Experiment Results 

To validate the effectiveness of the AEB under occlusion conditions, the simulation without the 

AEB braking system was initially simulated as the baseline case. Under this condition, it is 

assumed that the ego vehicle is not able to react to take any deceleration maneuvers. For each 

scenario, a total of 226 simulations were conducted to reflect different motion statuses of the ego 

vehicle and the pedestrian. Corresponding to each case without AEB, fifteen simulations with AEB 

were conducted considering the different FOVs and AEB activate times. As discussed in Section 

2, the activation time is the time when the AEB is activated under the TTC threshold. For each 

threshold, the number of simulation cases is 1,080 in each occlusion scenario. The percentages of 

collisions over the simulation cases are summarized in TABLE 11 SUMMARY OF NUMBER OF 

COLLISIONS UNDER DIFFERENT CONDITIONS Without AEB, more collisions could be 

found in Scenario 3 (i.e., the pedestrian is occluded by a vehicle at the right side of the ego vehicle). 

The AEB system could still reduce the number of collisions significantly. With the increase of the 

activation threshold, more collision could be avoided. If the threshold is 1 second, the ego vehicle 

would still hit the pedestrian in around 20% of cases.  

 

 

 

 

 

 

 



 

 

137 

 

TABLE 11 SUMMARY OF NUMBER OF COLLISIONS UNDER DIFFERENT 

CONDITIONS 

Scenario Measures 

Without AEB  

(number of 

cases=216) 

With AEB with different activate time 

(number of cases per threshold=1080) 

1 second 2 seconds 3 seconds 

Scenario 1 

Percentage 33.80% 18.61% 3.43% 0.93% 

Reduction 

percentage 

- 

15.19% 30.37% 32.87% 

Scenario 2 

Frequency 28.70% 19.35% 13.80% 10.19% 

Reduction 

percentage 

- 

9.35% 14.91% 18.52% 

Scenario 3 

Frequency 50.56% 19.17% 9.17% 5.19% 

Reduction 

percentage 

- 

31.39% 41.39% 45.37% 

 

The percentage of the impact speed once a collision occurs between the ego vehicle and the 

pedestrian was calculated for different AEB control conditions. The results are presented in 

FIGURE 59The figure shows that higher impact speeds could be observed under the no AEB 

conditions, leading to more severe pedestrian crashes. In the cases when the pedestrian is occluded 

by the vehicle on the left-turn lane, the impact speeds get reduced with the increase of the activate 

threshold. However, in the cases when the pedestrian is occluded by the left-turn vehicle, the 

impact speeds tend to be higher with the increase of the activation time. It is because that it is more 
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dangerous under this case and the cases which are not avoided by the AEB system with a longer 

activation time are more critical cases with higher initial speeds. 

  

SCENARIO 1 SCENARIO 2 

 

SCENARIO 3 

FIGURE 59 DISTRIBUTION OF CRASH SPEED 

FIGURE 60 Presents the results about the collision location related to the front center of the ego 

vehicle. The distributions of collision points among different AEB cases in the same scenario are 

the same. As expected, more collision points are at the left side of the ego vehicle in Scenarios 1 

and 2 since the pedestrian crossed the intersection from the left side of the ego vehicle. Similarly, 

more collision points are found on the right side in Scenario 3.  
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SCENARIO 1 SCENARIO 2 

 

SCENARIO 3 

FIGURE 60 NORMALIZED COLLISION LOCATION TO THE FRONT CENTER OF 

THE VEHICLE 

 

In the 3 scenarios, there are 73, 62, and 109 cases in which the ego vehicle hit the pedestrian 

without the AEB system. In the same scenario that the ego vehicle without AEB has a collision 

with the pedestrian, the AEB could either avoid the collision or reduce the impact speed compared 

to the condition without AEB. For each scenario, the occlusion time was collected and compared 

between the ‘collision avoided’ (i.e., the collision could be avoided by the AEB) and ‘collision 

speed reduced’ (i.e., the collision could be avoided by the AEB while the impact speed gets reduced) 
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conditions. ANOVA test has been conducted to compare the occlusion time under the 2 different 

effect conditions. As shown in FIGURE 61, the occlusion time is significantly different between 

the ‘collision avoided’ and ‘collision speed reduced’ conditions. Longer occlusion time could be 

observed for the ‘collision speed reduced’ conditions. It indicates that the occlusion could make 

the sensor unable to detect the risky conditions and delay the activation of the AEB braking system. 

Under the occlusion condition, the effectiveness of AEB could get reduced.  
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FIGURE 61 COMPARISON OF OCCLUSION TIME FOR DIFFERENT COLLISION 

AVOIDANCE RESULTS 

To further explore the potential effects of different factors on the AEB’s effectiveness, a dummy 

variable is used to indicate if a collision is avoided (indicator=1) or the impact speed for the 

collision get reduced (indicator=0). A logistic regression model is estimated to quantify the effects 
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of different factors including the pedestrian initial speed, ego vehicle initial speed, TTC threshold 

to activate the AEB, occlusion time, FOV, and scenario. The results are summarized in TABLE 12. 

The Akaike information criterion (AIC) and Bayesian information criterion (BIC) are estimators 

of prediction error, it considers both the goodness-of-fit and the simplicity of a model. Smaller 

value of AIC or BIC is preferred. All factors except the FOV are significant in the model. A 

collision could be more likely to get avoided if the pedestrian walks faster since it takes less time 

for the pedestrian to cross the intersection and the occlusion time is less. The ego vehicle’s speed 

has the opposite effect on the effectiveness of AEB. The higher speed of the ego vehicle makes it 

difficult to reduce the speed to avoid collisions. It is expected that the ego vehicle could brake 

earlier with the longer TTC threshold to activate the AEB and avoid the collision. As discussed 

above, the effectiveness of AEB gets reduced if the pedestrian is occluded longer. Based on the 

effects of the TTC threshold to activate AEB and occlusion, a longer TTC threshold is needed if a 

long occlusion time is expected. Compared to Scenario 1, the effectiveness of the AEB system gets 

reduced in Scenarios 2 and 3 in which the pedestrian is closer to the stopping vehicle and easier to 

get occluded.  
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TABLE 12 LOGISTIC REGRESSION MODEL RESULT FOR AEB’ EFFECTIVENESS 

Variable Mean 

Standard 

error 

Z value p_value 

Intercept 1.081 0.490 -2.206 0.0274 

Pedestrian’s initial speed 0.920 0.109 -8.422 <0.001 

Ego vehicle’s initial speed -0.277 0.017 15.906 <0.001 

TTC threshold to activate the 

AEB 

1.582 0.104 -15.145 <0.001 

Occlusion time -0.297 0.071 4.189 <0.001 

Scenario (reference=scenario 1) 

Scenario 2 -1.868 0.152 12.321 <0.001 

Scenario 3 -1.222 0.246 4.967 <0.001 

AIC 2151 

BIC 2191 

 

 

5.4.2.3 Conclusions And Future Work 

This study introduced an open-source approach by using the CARLA virtual simulator to evaluate 

the effectiveness of the AEB system under the occlusion conditions. The AEB control algorithm 

was developed in the virtual simulator. The evaluation was conducted by exploring the collision 

between a pedestrian crossing at the red light and a through vehicle, which is one of the most 

dangerous conditions at intersections. Three scenarios in which the pedestrian was occluded by a 
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stopping vehicle on either the left-turn or right-turn lane were generated for the evaluation. By 

considering different motion statuses of the ego vehicle and pedestrian, and the AEB controls, a 

total of 10,368 cases were generated in the simulation platform. Different measures including the 

percentage of cases with collisions, impact speed of the collision, and collision locations were 

adopted to extensively evaluate the effectiveness of AEB under the occlusion conditions. The 

results suggested that the AEB could still effectively avoid collisions between the ego vehicle and 

the crossing pedestrian. However, the effectiveness of the AEB would get reduced by the occlusion. 

The longer the pedestrian was occluded by the stopping vehicle, the more the effectiveness of AEB 

got reduced. The results also suggested that a larger TTC threshold to activate the AEB could 

improve the effectiveness. In addition, a logistic regression model was developed to explore the 

effects of other factors. The modeling results suggested that the pedestrian’s and ego vehicle’s 

speeds could have significant effects on the effectiveness of the AEB system. Furthermore, 

different effectiveness of AEB could be found in different occlusion scenarios.  

The effectiveness of the AEB system has been evaluated extensively in this study if the pedestrian 

is occluded by a stopping vehicle. However, there are few limitations in this study. First, the study 

was built on the assumption that the sensors or motion controllers are 100% reliable and accurate, 

which omitted the potential impact of sensor errors or controller damages. Second, AEB system 

may vary from different manufactures by adopting different brake control parameters, and its 

impact on the AEB performance was not considered in this research. Furthermore, the current 

study could be extended by considering the scenarios in which the pedestrian is occluded by 

multiple moving vehicles. Also, since the study confirmed that the effectiveness of the AEB system 

is reduced under the occlusion conditions, it is important to explore the cooperative perception to 

reduce the occlusion through the connected vehicle technology.    
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5.5 Conclusions And Future Work 

A Digital Twin framework that incorporates CV and pedestrian is proposed. The framework 

consists of the physical world, the digital world, and the data transmission between real digital 

spaces. The attributes of the CV and pedestrian, including their external state and internal state 

are specified. A sample architecture of the framework is also built. The architecture combines 

two platforms: Carla-Sumo and Unity for the digital twinning of CV and pedestrian, 

respectively. The Carla-Sumo platform serves as the driving simulator to simulate a CV 

environment, while a CAVE powered by Unity is used to provide the simulation environment for 

the pedestrian. The data transmission between different platforms is defined and the method of 

forming a closed-loop data transmission structure is discussed. To validate the effectiveness of 

the proposed framework, a case study that investigates V2P collision warning system under 

occlusion condition is conducted based on the presented architecture. The results show that the 

V2P warning enhanced safety compared to HDV and AV. The case study also demonstrates the 

benefits of the proposed CV and pedestrian inthe-loop framework. The proposed Digital Twin 

framework is expected to serve as a powerful testbed for future research on ITS technology to 

enhance CV and pedestrian safety and mobility. The future work of this research is to expand the 

framework to incorporate other traffic participants such as cyclists, motorists and traffic light, 

and more complex traffic scenarios. Also, more complex scenarios like V2P safety application 

considering driver behavior and preference, vehicle connectivity, pedestrian motion prediction, 

and automated driving algorithms could be investigated using the proposed Digital Twin 

framework. 
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CHAPTER 6: CONCLUSIONS 
 

In this dissertation, Chapter 3 presents the development, validation, and integration of three AI-

driven computer vision systems: 1) A.R.C.I.S, an automated framework for safety diagnosis 

utilizing multi-object detection and tracking algorithm for UAV videos. 2)N.M.E.D.S., A new 

framework with the ability to detect and predict the key points of vehicles and provide more 

precise vehicle occupying locations for traffic safety analysis. 3)D.V.E.D.S applied deep learning 

models to extract information related to drivers’ visual environment from the Google Street 

View (GSV) images. Moreover, both A.R.C.I.S., and N.M.E.D.S. used deep learning techniques 

to process traffic videos collected by UAV or CCTV. Mask region convolutional neural network 

(R-CNN) is employed to improve the detection of vehicles in UAV videos. The detected vehicles 

and tracked by a channel and spatial reliability tracking algorithm, and vehicle trajectories are 

generated based on the tracking algorithm. Missing vehicles can be identified and tracked by 

identifying stationary vehicles and comparing the intersection of union (I.O.U.) between the 

detection and tracking results. Rotated bounding rectangles based on the pixel-to-pixel manner 

masks that are generated by mask R-CNN detection are introduced to obtain precise vehicle size 

and location data. In addition, the N.M.E.D.S. framework combined the Mask-RCNN bounding 

box detection and Occlusion-Net detection to detect vehicles’ key points more accurately and 

efficiently ((i.e., right-front headlight, left-front headlight, right-back taillight, left-back 

taillight)) in a 3D view. Based on the vehicle trajectories from both systems, post-encroachment 

time (P.E.T.) is calculated for each conflict event at the pixel level. By comparing the P.E.T. 

values and the threshold, conflicts with the corresponding pixels in which the conflicts can be 

reported. Various conflict types: rear-end, head-on, sideswipe, and angle, can also be determined. 

Both systems could reveal significantly dangerous areas and have less bias than traditional 
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conflict identification with bounding boxes. The third system presents a new method to obtain 

drive view information (road geometric and vegetation information etc.)  from GSV images 

using deep learning algorithms. Even though GSV image data accuracy is lower than the 3D data 

from the Digital Twins and LiDAR sensors, its data has a broad coverage at a low cost. The 

modeling results confirmed the importance of drivers’ visual view information obtained by 

D.V.E.D.S. This system could have various use cases, such as providing road planners and 

engineers with clear suggestions to select appropriate countermeasures to enhance traffic safety. 

Based on the drone video collected and processed by A.R.C.I.S at various locations, 

Chapter 4 describes the CitySim: a new trajectory dataset extracted from drone videos that aim to 

facilitate safety research was introduced. CitySim has vehicle interaction trajectories extracted 

from 1140- minutes of video recordings, which provide a large-scale naturalistic vehicle 

trajectory that covers a variety of locations, including basic freeway segments, freeway weaving 

segments, expressway segments, signalized intersections, stop-controlled intersections, and 

unique intersections without sign/signal control. The advantage of CitySim over other datasets is 

that it contains more critical safety events in quantity and severity and provides supporting 

scenarios for safety-oriented research. Furthermore, by providing accurate vehicle geometric 

representation in the form of rotated bounding boxes, CitySim can measure safety conflicts more 

accurately. In addition, CitySim provides digital twin features, including the 3D base maps and 

signal timings, which enables a more comprehensive testing environment for safety research, 

such as autonomous vehicle safety. To the best of our knowledge, CitySim is the first and largest 

open trajectory dataset bringing the digital twin concept by providing SUMO and Carla basemap. 

It leverages the advancement of virtual simulation for traffic safety.  
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Chapter 5 outlines the study done to investigate and complete the third research objective of this 

dissertation: the development of the framework of the next generation of pedestrian and 

connected vehicle in-the-loop digital twin simulation. The framework comprises the physical 

world, the digital twin world, and the real-time data transmission between those two worlds. The 

pedestrian and CV's outward and internal states and other characteristics are described. Carla-

Sumo and Unity are combined into one architecture for the digital twinning of CV and 

pedestrians. The pedestrian simulation environment is provided by a CAVE driven by Unity, 

while the driving simulator for the CV environment is provided by the Carla-Sumo platform. The 

definition of data transmission between various platforms and the creation a closed-loop data 

transmission system are discussed. An investigation into a V2P collision warning system under 

occlusion conditions is done as part of a case study to verify the efficacy of the suggested 

framework. The findings demonstrate that, in comparison to HDV and AV, the V2P warning 

improves safety. The case study also illustrates how the suggested CV and pedestrian in the the-

loop framework are advantageous. This research is the first to introduce the concept and 

technical detail of CV and pedestrian in-the-loop for a Digital Twin simulation. Furthermore, 

future studies on ITS technology to improve CV and pedestrian safety and mobility are 

anticipated to use the proposed Digital Twin framework as a potent testbed.  

The increasing demand for computer vision analytics, digital twin systems, and AI in future 

smart cities presents both opportunities and challenges. This dissertation explores new traffic 

safety diagnostic solutions that utilize computer vision and digital twin technology. The study 

presents the creation, validation, and integration of three AI-driven computer vision systems and 

a digital twin framework aimed at improving traffic safety diagnostics. Which supported 

numerous research efforts of its developing team, the University of Central Florida Smart and 
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Safe Transportation Lab (UCF-SST). Examples of the generated research include crash risk 

evaluation [200, 201], trajectory prediction [201, 202],and computer vision-based surrogate 

safety measurement. And many other research paper [51-55, 64, 74, 79, 164, 196, 200-208]based 

on this dissertation has been published in top journals. Still, there are issues that need to be 

explored, such as the ability to process real-time data in computer vision systems, the accuracy 

of detection and tracking models, the precise construction of driver view models, and the 

scalability of computer vision system. The design and framework of the three computer vision 

systems will serve as a guide To address these challenges and further advance the field. In 

addition, we also created the first and largest drone-based vehicle trajectory dataset for safety-

oriented research and digital twins, which will increase accessibility for other researchers to 

delve into digital twin research. Since the release of CitySim beta version in April 2022, the 

CitySim dataset has attracted international attention from many researchers worldwide. Over 62 

top research institutes and over 100 researchers from the United States, China, Europe, the 

Middle East, and many other places have requested and applied this dataset in their research.  

We envision that over the next five years, the CitySim dataset will drive the use of trajectory data 

in various areas of traffic safety research and popularize the adoption of digital twin technology 

for traffic safety. The CitySim open dataset will provide a foundation for future research on 

vehicle trajectory digital twins and traffic safety. Our belief is that this dissertation will make a 

significant contribution to the improvement of global traffic safety. 
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