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ABSTRACT 

Optimal trajectory design has been extensively studied across multiple disciplines adopting 

different techniques for implementation and execution. It has been utilized in past space 

trajectory missions to either optimize the amount of fuel spent or minimize the time of flight to 

meet mission requirements. Coupled Radial Basis Functions (CRBFs) are a new way to solve 

these optimal control problems, and this thesis applies CRBFs to spacecraft trajectory 

optimization design problems. CRBFs are real-valued radial basis functions (RBFs) that utilize a 

conical spline while also not being affected by the value of the shape parameter. The CRBF 

approach is applied to nonlinear optimal control problems. We adopt the indirect formulation so 

that the necessary and boundary conditions are derived from the system dynamical equations.  

As a result, a set of nonlinear algebraic equations (NAEs) is generated. The NAEs are then 

solved using a standard solver in MATLAB and the results are produced. CRBFs do not rely 

heavily on initial extensive analysis of the problem, which makes it very intuitive to use. The 

states, control, and co-states are defined as the equations to be solved and approximated using 

CRBFs. The results show that CRBFs can be applied to space trajectory optimization problems 

to produce accurate results across state and costate variables on uniform user defined nodes 

across the simulation time. 
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CHAPTER ONE: INTRODUCTION 

The optimal control theory has been around since the 20th century with some of the most 

significant discoveries happening in the 1940s and 1950s. A subfield of this is optimal trajectory 

design which focuses on finding an optimal path or trajectory that a system must follow in order 

to reach an objective. Optimal trajectory design has various applications throughout different 

fields including, but not limited to: aerospace engineering, robotics, control systems, guidance 

and navigation, manufacturing and process control, and biomechanics. In aerospace engineering, 

optimal trajectory design plays a crucial role in space missions, satellite deployments, and 

planetary transfers. While considering numerous constraints such as fuel consumption, time, and 

mission objectives, optimal trajectory design helps determine the most efficient and cost-

effective paths for spacecraft to take.  

 

Much of the foundation for optimal trajectory design was set by mathematicians such as Pierre-

Louis Lions, Lev Pontryagin, and Richard Bellman in the 1940s and 1950s. Some of the 

concepts they developed were the maximum principle and dynamic programming. During the 

mid-20th century, optimal trajectory design was noticed by the space community and began 

implementing different solutions into distinctive missions such as the Apollo mission. With 

advancements in computing power and numerical methods happening in the 1960s and 1970s, 

practical techniques were developed. These techniques include direct methods, indirect methods, 

shooting methods, collocation methods, and pseudospectral methods. As optimal trajectory 

problems became more complex through the 1980s, advancements in direct and collocation 

methods began to emerge. Current algorithms and machine learning have been an active area of 
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study when being applied to high dimensional systems and real time planning for self-sufficient 

systems. 

 

Radial Basis Function (RBF) collocation has been around for a few decades in solving the 

optimal trajectory design problem, but still remain as a trustworthy method. RBFs are 

mathematical functions used for approximating the trajectory of the system. While being a very 

efficient method in approximating nonlinear dynamic equations, RBFs stumble into an issue 

when implementing the shape parameter. This work aims to solve this issue with a new method 

called Coupled Radial Basis Functions (CRBFs) in which a conical spline is utilized to solve the 

optimal trajectory design problem. As this method has been used to solve benchmark optimal 

control problems, it has not been utilized in the optimal trajectory design field. Despite the 

current advancements in solving the optimal trajectory design problem and recent 

implementation of RBFs, understanding how they can be improved and involve less analytical 

analysis remains important. The purpose of this study is to advance the research field with 

another way to solve the optimal trajectory problem.  

 

Firstly, shooting methods will employed in MATLAB to solve multiple orbit trajectory design 

problems. Subsequently, the new CRBF method will be used in MATLAB as well. The results 

between the two methods will be compared to show accuracy of the CRBF method. These results 

will include the path of the spacecraft along with the states and costates over time. The 

significance in applying CRBFs to trajectory design problems will allow the community to 

establish a new understanding and advancement in the aerospace engineering field for solving 

these problems with less analytical background while also not relying on the shape parameter. 
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The thesis is structured as follows: in Chapter 2, a review of all the recent and past literature is 

done to show to significance of this study. In Chapter 3, the methodology of applying CRBFs to 

the optimal trajectory design problem is portrayed as well as the development of the optimal 

trajectory problems being solved. In Chapter 4, the findings of the shooting method and CRBFs 

are discussed and compared. Lastly, in Chapter 5, the conclusions are shown. 
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CHAPTER TWO: LITERATURE REVIEW 

The purpose of this literature review is to provide a comprehensive analysis of the existing 

research on the techniques and methods developed in solving the optimal control problem. With 

the advancement and execution of past methods, current systems have evolved to be more 

complex which rely heavily on both modern-day technology and extensive analyses of the 

situation. This literature review aims to evaluate the most recent body of knowledge, identify key 

themes, research gaps, and methods used in previous studies. By evaluating the various 

perspectives, this review pursues to summarize the past findings in solving the optimal control 

problem and identify how this thesis can fill in those research gaps. 

 

Many techniques have been explored to solve the optimal control problem. Stryk and Bulirsch 

(1992) explain the differences between direct and indirect methods. While indirect methods are 

based on the calculus of variations, also known as the maximum principle, direct methods 

transform the optimal control problem into a system of NAEs. They point out that the user must 

have a well-established understanding of the problem in order to define its equations correctly. 

Direct methods lack in producing accurate results as compared to indirect methods due to the 

complicated nature of the problem. They further went into detail about a hybrid approach by 

combining the convergence properties of the direct method and coupling it with the reliability 

and accuracy of indirect methods. This method was successfully applied to many test cases, but 

further improvement is needed for approximation of the control variables. Osborne (1969) 

explains that shooting methods issues are caused by instabilities of the initial value problem as 

well as having the proper starting values. Though this technique may be widely available on 
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most computers, it still relies heavily on manual analysis or guesses in order to implement a 

starting point.  

 

Figure 1 shows the break out between indirect and direct methods and how they correlate. 

Depending on the type of simulation and how often the dynamics are integrated will decipher 

which numerical method will be used to solve the optimal control problem. This study focuses 

on an indirect collocation method highlighted by the red flow. 

 

 

Figure 1 Indirect and Direct Method Flow Diagram 

 

Cots et al. (2016) utilize both indirect and direct methods in solving the minimum time and 

minimum fuel consumption problem of a climbing aircraft. The indirect method utilizes the 

maximum principle with state constraints of the problem and is transformed into a boundary 
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value problem (BVP). The problem is eventually initialized using the direct method to find an 

optimal initial guess and structure of the problem. Rao (2010) goes into deep detail on the pros 

and cons of both indirect methods and direct methods. While indirect methods have an advantage 

in regards to simplicity and highly accurate solutions, it is extremely sensitive to unknown 

boundary conditions and requires the derivation of the first-order optimality conditions. Indirect 

methods lack in the ability to solve very complex optimal control problems due to this required 

derivation. Direct methods prove to be accurate and robust in cases where the control can be 

parametrized simply and the problem can be characterized accurately. Highly complex optimal 

control problems can easily be formulated and solved using NLP solvers, due to the nature of 

them not requiring a good initial guess. Direct methods are also computationally efficient due to 

being able to exploit the sparsity in the derivatives of the constraints and objective function. 

Betts (1998) explains that indirect methods requires analytically computing the gradient, then 

utilizing a root-finding algorithm that finds the set of variables where the gradient is zero. This 

root-finding algorithm has a small area of convergence due to the initial guesses possibly not 

having a good meaning of physical interpretation. Betts then explains that direct methods does 

not require initial guesses for the adjoint variables since the states and control variables are 

adjusted to directly solve the optimal control problem. Another note is that parameterization of 

the control variables is utilized during direct methods. Bianco et al. (2018) compares direct and 

indirect methods in solving the minimum lap time problems. While both methods displayed 

similar behavior, the implementation features of each had some differences including the 

integration scheme, and the projection of the state. 
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Huntington (2008) compared global and local collocation. Global collocation implements a 

global polynomial across the entire time interval of the mission, while local collocation 

discretizes the problem into certain points so that it’s able to support the behavior of the 

dynamics at that time. Again, these methods still rely heavily on initial knowledge of the 

problem. There have been many different types of discretization techniques used in local 

collocation including the pseudospectral method which utilizes Legendre-Gauss-Lobatto points 

to collocate the system dynamics (Elnagar et al., 1995). Narayanaswamy and Damaren (2020) 

implemented the Legendre-Gauss and Hermite-Legendre-Gauss-Lobatto direct collocation 

methods for a minimum-time low thrust mission in which utilized the Edelbaum trajectory to 

create an initial guess. A common theme among local and global collocation is developed such 

that there must be a heavy physical and analytical understanding of the problem in order to 

define proper initial conditions. Improper initial conditions can lead to divergence among these 

methods studied. 

 

A Radial Basis Function (RBF) is a real-valued function in which its value is dependent on the 

distance from a fixed point. Kansa (1990) introduced RBFs and showed that they are more 

efficient and effective than standard finite difference approximations. Mirinejad and Inanc 

(2017) introduced an RBF collocation method for solving optimal control problems. They show 

that is more accurate and effective when compared to a local polynomial method and a global 

polynomial method when solving an unmanned aerial vehicle (UAV) navigation problem. RBFs 

have been widely used to solve differential equations across many different applications. Tatari 

and Dehghan (2010) apply RBFs to the heat equation. Kazem et al. (2012) use the RBF method 

for solving the Fokker–Planck equation. Tolstykh and Shirobokov (2003) utilize RBF 
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approximation techniques to solve non-linear Karman-Fopple equations. Finally, Carr et al. 

(1997) employ RBFs on interpolating incomplete surfaces for medical imaging. For infinitely 

smooth RBFs, a shape parameter must be implemented to tune the shape of the RBF. Increasing 

and decreasing this parameter effects the RBF’s shape drastically. Finding the optimal shape 

parameter can be complicated and involves excessive calculations as a part of the methodology 

of RBFs. Previous research does try and implement a strategy of selecting the best shape 

parameter, but none have tried to remove the shape parameter all together. For example, Bhatia 

and Arora (2016) describe that it is difficult to find the best shape parameter for various RBFs. 

Utilizing a small shape parameter gives the best result for some RBFs, but the interpolation 

matrix becomes ill-conditioned. Mongillo (2011) tested the properties of the shape parameter and 

tried to create a method for finding an optimal shape parameter. The potential instability in the 

proposed methods may risk inaccurate results to be produced. Koupaei et al. (2018) produced a 

new algorithm to find the optimal shape parameter, but as the domain of the problem increased, 

the accuracy of the algorithm decreased. Chen et al. (2023) studied correlations between finding 

a “good” shape parameter and the effective condition number. Again, choosing the shape 

parameter played a vital role in determining the error in RBF approximation. 

 

RBF collocation has been heavily studied in solving different types of problems. Elgohary et al. 

(2014a) presents an RBF collocation algorithm that obtains a solution for the initial value 

problem (IVP). Elgohary et al. (2014b) also used RBF collocation to solve the Duffing optimal 

control problem with initial and final conditions as well as the orbital transfer Lambert’s 

problem. Elgohary (2015) then utilized RBFs combined with time collocation to produce an 

integrator that’s able to handle orbit propagation problems. This deep research has shown that 
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RBF collocation is a valid technique to solve many different problems. Seleit (2022) introduced 

a new method called coupled radial basis functions (CRBFs) which couples traditional RBFs 

with a conical spline. His study created and developed this new method for benchmark optimal 

control problems including Zarmelo’s problem, the nonlinear Duffing oscillator problem, and the 

nonlinear cart pendulum problem. Seleit validated the CRBF collocation method using the 

shooting method and the Imperial College London Optimal Control Software (ICLOCS2) and 

proved the accuracy against the exact solution. Kelly et al. (2022) created a MATLAB tool for 

CRBF collocation techniques to solve nonlinear optimal control problems.  

 

This thesis aims to fill that gap in optimal trajectory design methods by applying the CRBF 

method to nonlinear spacecraft trajectory optimization problems and eliminating the selection of 

the shape parameter all together.   
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CHAPTER THREE: METHODOLOGY 

This research is designed to implement a new method for solving optimal trajectory problems 

that display insensitivity to the shape parameter. This involves applying a theoretical and 

computational approach already designed and employed on benchmark optimal control problems 

such as Zarelmo’s problem, Duffing oscillator problem, and cart problem (Seleit, 2022). This 

thesis focuses on applying this new approach to the maximum orbit radius and thrust control 

problems in spacecraft trajectory design. 

 

No participants or data collection methods are used for this study as it only involves 

computational methods, simulated data, and mathematical models for real-world application.  

 

 

CRBF Implementation In Optimal Control  

 

Generally, the continuous-time optimal control problem consists of a cost functional subject to a 

set of dynamic equations and both path and endpoint conditions. Bryson and Ho (1975) presents 

the methodology to solve the optimal control problem. The continuous-time cost function to be 

minimized is written as  

 

𝐽 = Φ(𝑥(𝑡𝑓), 𝑡𝑓) + ∫ ℒ(𝑥(𝑡), 𝑢(𝑡), 𝑡)𝑑𝑡
𝑡𝑓

𝑡0
 ( 1 ) 

 

where Φ is the endpoint or terminal cost and also referred to as the Mayer Term (Soler & 

Hansen, 2014) and ℒ is the Lagrangian term or the running cost, which encompasses the states 
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and control throughout the time interval of minimization. The cost functional, 𝐽, is subject to the 

following dynamics and boundary conditions respectively which rely heavily on the system and 

environments being evaluated 

 

�̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡) ( 2 ) 

 

𝑔(𝑥(𝑡0), 𝑡0, 𝑥(𝑡𝑓), 𝑡𝑓) = 0 ( 3 ) 

 

The dynamics are the main definition of the system that is being optimized and is critical that it 

is defined clearly and accurately. The boundary conditions encompass both path and endpoint 

conditions. Generally, path constraints are in turn inequality conditions that may not be 

functioning during the optimality of the solution. In this work, path constraints will not be 

studied. Optimal control problems are nonlinear which adds complexity to numerically solving 

them. The Lagrange multipliers are used to obtain the augmented performance index, 𝐽𝑎  

 

𝐽𝑎 = Φ(𝑥(𝑡𝑓), 𝑡𝑓) + ∫ ℒ(𝑥(𝑡), 𝑢(𝑡), 𝑡) + 𝜆𝑇(𝑡)(𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡 − �̇�(𝑡))𝑑𝑡
𝑡𝑓

𝑡0
 ( 4 ) 

 

The Hamiltonian function is defined to solve optimal control problems numerically 

 

ℋ = ℒ(𝑥(𝑡), 𝑢(𝑡), 𝑡) + 𝜆𝑇(𝑡)𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡) ( 5 ) 

 

The augmented performance index is re-written as 

 

𝐽𝑎 = Φ(𝑥(𝑡𝑓), 𝑡𝑓) + ∫ ℋ − 𝜆𝑇(𝑡)(𝑓(�̇�(𝑡))𝑑𝑡
𝑡𝑓

𝑡0
 ( 6 ) 
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In terms of 𝑥, 𝑢, and 𝜆, the variation of the augmented performance index, 𝛿𝐽𝑎 is expressed as 

 

𝛿𝐽𝑎 = Φ𝑥
𝑇𝛿𝑥|𝑡𝑓

+ ∫ [ℋ𝑥
𝑇𝛿𝑥 − 𝜆𝑇(𝑡)𝛿(�̇�(𝑡)) + ℋ𝜆

𝑇𝛿𝜆 − (�̇�𝑇(𝑡))𝛿𝜆 + ℋ𝑢
𝑇𝛿𝑢] 𝑑𝑡

𝑡𝑓

𝑡0
= 0 ( 7 ) 

 

Equation (7) is re-written as the following where ( )∗ =
𝜕( )

𝜕∗
 

 

𝛿𝐽𝑎 = (Φ𝑥 − 𝜆)𝑇𝛿𝑥|𝑡𝑓
+ 𝜆𝑇𝛿𝑥|𝑡0

 

+ ∫ [(ℋ𝑥 + �̇�(𝑡))
𝑇

𝛿𝑥 + (ℋ𝜆 + �̇�(𝑡))𝑇𝛿𝜆 + ℋ𝑢
𝑇𝛿𝑢] 𝑑𝑡

𝑡𝑓

𝑡0
= 0 ( 8 ) 

 

The constant variance over time allows the removal of ∫ [(ℋ𝑥 + �̇�(𝑡))
𝑇

𝛿𝑥 + (ℋ𝜆 +
𝑡𝑓

𝑡0

�̇�(𝑡))𝑇𝛿𝜆 + ℋ𝑢
𝑇𝛿𝑢] 𝑑𝑡 and leads to the following necessary conditions or Euler-Lagrange 

equations 

 

�̇� =
𝜕ℋ

𝜕𝜆
= 𝑓(𝑥, 𝑢, 𝑡) ( 9 ) 

 

�̇� = −
𝜕ℋ

𝜕𝑥
 ( 10 ) 

 
𝜕ℋ

𝜕𝑢
= 0 ( 11 ) 

 

The costate variables, 𝜆, are referred to as the Lagrange multipliers which are tied to the state 

equations. The methodology for applying CRBFs to solve the optimal control problem is: 

• Formulate the optimal control problem based off the certain mission 



 13 

• Derive the necessary conditions from the Hamiltonian function 

• Utilize CRBFs to approximate the states, costates, and control in the two-point boundary 

value problem 

 

This transformation creates a set of nonlinear equations, which are solved using a nonlinear 

solver in MATLAB. The approximation of the states, costates, and control is written as the 

following with 𝜑 being the approximation matrix. 

 

𝑥(𝑡) ≅ �̅�(𝑟) = ∑ 𝛼𝑖𝜑𝑖(𝑟)𝑁
𝑖=1  ( 12 ) 

 

𝜆(𝑡) ≅ �̅�(𝑟) = ∑ 𝛽𝑖𝜑𝑖(𝑟)𝑁
𝑖=1  ( 13 ) 

 

𝑢(𝑡) ≅ �̅�(𝑟) = ∑ 𝛾𝑖𝜑𝑖(𝑟)𝑁
𝑖=1  ( 14 ) 

 

where 𝑁 is the number of collocation points and 𝛼, 𝛽, and 𝛾 are coefficient vectors. The size of 

𝜑 is altered depending on the size of 𝑁. 𝜑 is approximated as follows 

 

𝜑 = [

𝜑(‖𝑡1 − 𝑡1‖) 𝜑(‖𝑡2 − 𝑡1‖) ⋯ 𝜑(‖𝑡𝑁 − 𝑡1‖)

𝜑(‖𝑡1 − 𝑡2‖) 𝜑(‖𝑡2 − 𝑡2‖) ⋯ 𝜑(‖𝑡𝑁 − 𝑡2‖)
⋮ ⋮ ⋮ ⋮

𝜑(‖𝑡1 − 𝑡𝑁‖) 𝜑(‖𝑡2 − 𝑡𝑁‖) ⋯ 𝜑(‖𝑡𝑁 − 𝑡𝑁‖)

] ( 15 ) 

 

The approximation function, or CRBF, is defined as the following in Table 1. 
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Table 1 Common CRBF Definitions 

Type 𝜑(𝑟, 𝑐), where 𝑟 = ‖𝑡(𝑁) − 𝑡𝑁‖, ℎ =
𝑟

𝑐
, 𝐹 = √ℎ2 + 1 

Coupled Multiquadric 𝐹 + 𝑟5 

Coupled Gaussian 𝑒ℎ2
+ 𝑟5 

Coupled Inverse Multiquadric 1/𝐹2 + 𝑟5 

 

 

Note that implementing the conical spline, 𝑟5, allows the user to utilize a wide range of shape 

parameters, 𝑐. A higher shape parameter will not affect the effectivity of the CRBF due to the 

conical spline. Classical RBFs do not have this conical spline, which in turn will cause an 

unwanted unstable behavior. 

 

Carl Runge in the early 20th century observed what is now called Runge’s phenomenon. This 

refers to the poor approximation that can occur when using polynomial interpolation, especially 

with equally spaced interpolation points. Runge’s phenomenon can manifest upon certain 

functions that are highly oscillatory or have sharp variations. Figure 2 shows two different types 

of nodal distributions or interpolation points. Runge’s phenomenon is mostly observed with 

uniformly spaced nodes. Chebyshev nodal distribution helps minimize the oscillations by non-

uniformly distributing the nodes towards the boundaries unlike the uniform distribution. 

 

 

 

Figure 2 Nodal Distributions 
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Figure 3 shows polyfit via MATLAB, which is being plotted against a uniform nodal 

distribution. The function 𝑓(𝑥) =
1

1+25𝑥2 is being utilized to show how having a uniform 

distribution of the data points can affect the approximation of the problem. Notice how the 

polyfit plot experiences Runge’s phenomenon due to the lack of nodes towards the boundaries. 

CRBFs help stay away from experiencing Runge’s phenomenon by being able to approximate 

the function by utilizing any type of nodal distribution. 

 

 

Figure 3 MATLAB Polyfit Over Uniform Distribution 

 

Taking the time-derivatives of the approximations of the states and costates 

 

�̇̅�(𝑟) = ∑ 𝛼𝑖�̇�𝑖(𝑟)𝑁
𝑖=1  ( 16 ) 

 

�̇̅�(𝑟) = ∑ 𝛽𝑖�̇�𝑖(𝑟)𝑁
𝑖=1  ( 17 ) 
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To better represent these approximations, a new matrix is defined, 𝐷, as follows 

 

𝛼 =  𝜑−1�̅� ( 18 ) 

 

�̇̅� = 𝛼�̇� ( 19 ) 

 

�̇̅� = 𝜑−1�̅��̇� ( 20 ) 

 

�̇̅� = 𝐷�̅� ( 21 ) 

 

The approximate set of NAEs is written as 

 

�̇� ≅ �̇̅� = 𝐷�̅� =
𝜕ℋ

𝜕𝜆
 ( 22 ) 

 

−�̇� ≅ �̇̅� = −𝐷�̅� =
𝜕ℋ

𝜕�̅�
 ( 23 ) 

 

0 ≅
𝜕ℋ

𝜕𝑢
 ( 24 ) 

 

These are solved using an ordinary nonlinear algebraic equation (NAE) solver in MATLAB. 

 

In summary, the implementation of the proposed method involved the following steps: 

1. Defining the discretization of the system by establishing the number of collocation 

points, equations, and instituting the simulation time defined for the problem. As 

described in Table 1 the CRBF type is also selected in this structure and passed to the 

system parameter function. 
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2. The system parameters are collected and stored in a different structure which is 

eventually passed to the dynamics of the system. 

3. Using the number of collocation points, simulation time, and CRBF type the 

approximation matrices are created and stored in another structure which are used to 

approximate the states and costates. 

4. The main portion of the work is established in defining the dynamics of the system. 

Along with this portion of the code, the boundary and necessary conditions are defined. 

These functions are solved using MATLAB fsolve or fmincon (nonlinear solvers) and the 

solution is created. 

5. The solution goes through some post processing to remove any repetitions and is cleaned 

up to eventually produce the results and trajectory of the spacecraft. 

 

 

Maximum Radius Orbit Transfer Problem 

The maximum radius orbit transfer problem involves getting a spacecraft from a fixed initial 

state to a free final state where the final radius is unknown. This certain mission involves a fixed 

time of 193 days between an Earth to Mars orbit transfer with fuel consumption being accounted 

for. The general CRBF approach defined is applied to the maximum radius orbit transfer 

problem in a given time (Bryson & Ho, 1975).  

 

The visual representation of this problem is shown in Figure 4. 
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Figure 4 Maximum Radius Orbit Transfer in a Given Time 

Source: Bryson and Ho, 1975, p. 66 

 

Using the classification of the parameters, the dynamics of the problem are written as: 

 

�̇� = 𝑢 ( 25 ) 

 

�̇� =
𝑣2

𝑟
−

𝜇

𝑟2 +
𝑇𝑠𝑖𝑛𝜙

𝑚0−|�̇�|𝑡
 ( 26 ) 

 

�̇� = −
𝑢𝑣

𝑟
+

𝑇𝑐𝑜𝑠𝜙

𝑚0−|�̇�|𝑡
 ( 27 ) 

 

The Hamiltonian is defined as 

 

𝐻 = 𝜆𝑟𝑢 + 𝜆𝑢 (
𝑣2

𝑟
−

𝜇

𝑟2 +
𝑇𝑠𝑖𝑛𝜙

𝑚0−|�̇�|𝑡
) + 𝜆𝑣 (−

𝑢𝑣

𝑟
+

𝑇𝑐𝑜𝑠𝜙

𝑚0−|�̇�|𝑡
) ( 28 ) 

with 

Φ = 𝑟(𝑡𝑓) ( 29 ) 
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Taking the partial derivatives of the Hamiltonian with respect to the states and control 

 

�̇�𝑟 = −
𝜕𝐻

𝜕𝑟
= −𝜆𝑢 (−

𝑣2

𝑟2 +
2𝜇

𝑟3 ) − 𝜆𝑣 (
𝑢𝑣

𝑟2 ) ( 30 ) 

 

�̇�𝑢 = −
𝜕𝐻

𝜕𝑢
= −𝜆𝑟 + 𝜆𝑣

𝑣

𝑟
 ( 31 ) 

 

�̇�𝑣 = −
𝜕𝐻

𝜕𝑣
= −𝜆𝑢 (

2𝑣

𝑟
) + 𝜆𝑣 (

𝑢

𝑟
) ( 32 ) 

 

0 =
𝜕𝐻

𝜕𝜙
= (𝜆𝑢𝑐𝑜𝑠𝜙 − 𝜆𝑣𝑠𝑖𝑛𝜙)

𝑇

𝑚0−|�̇�|𝑡
→ 𝑡𝑎𝑛𝜙 =

𝜆𝑢

𝜆𝑣
→ 𝜙 = tan−1(

𝜆𝑢

𝜆𝑣
) ( 33 ) 

 

The known boundary conditions at the initial and final time are written as 

 

𝑟(𝑡0) = 4.9081𝑒11 𝑓𝑡 ( 34 ) 

 

𝑢(𝑡0) = 0 ( 35 )

  

𝑣(𝑡0) = √
𝜇

𝑟0
 ( 36 ) 

𝜆𝑟(𝑡𝑓) =
𝜕Φ

𝜕𝑟
= 1 ( 37 ) 

 

𝑢(𝑡𝑓) = 0 ( 38 ) 

 

𝑣(𝑡𝑓) = √
𝜇

𝑟𝑓
 ( 39 ) 

 

After defining the dynamics, costate derivatives, and boundary conditions, the residuals are 

expressed using Equations (22) and (23) 

 

𝑅1:𝑁 = 𝐷�̅� − �̅� ( 40 ) 

 

𝑅𝑁+1:2𝑁 = 𝐷�̅� −
�̅�2

�̅�
+

𝜇

�̅�2 −
𝑇𝑠𝑖𝑛𝜙

𝑚0−|�̇�|𝑡
 ( 41 ) 
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𝑅2𝑁+1:3𝑁 = 𝐷�̅� +
𝑢�̅�

�̅�
−

𝑇𝑐𝑜𝑠𝜙

𝑚0−|�̇�|𝑡
 ( 42 ) 

 

𝑅3𝑁+1:4𝑁 = 𝐷�̅�𝑟 + �̅�𝑢 (−
�̅�2

�̅�2 +
2𝜇

�̅�3 ) + �̅�𝑣 (
𝑢�̅�

�̅�2 ) ( 43 ) 

 

𝑅4𝑁+1:5𝑁 = 𝐷�̅�𝑢 + �̅�𝑟 − �̅�𝑣
�̅�

�̅�
 ( 44 ) 

 

𝑅5𝑁+1:6𝑁 = 𝐷�̅�𝑣 + �̅�𝑢 (
2�̅�

�̅�
) − �̅�𝑣 (

𝑢

�̅�
) ( 45 ) 

 

Now collocating the boundary conditions using Equations (34) – (39) 

 

𝑅1 = �̅�(1) − 𝑟(𝑡0) ( 46 ) 

 

𝑅𝑁+1 = �̅�(1) − 𝑢(𝑡0) ( 47 ) 

 

𝑅2𝑁 = �̅�(𝑁) − 𝑢(𝑡𝑓) ( 48 ) 

 

𝑅2𝑁+1 = �̅�(1) − 𝑣(𝑡0) ( 49 ) 

 

𝑅3𝑁 = �̅�(𝑁) − 𝑣(𝑡𝑓) ( 50 ) 

 

𝑅4𝑁 = �̅�𝑟(𝑁) − 𝜆𝑟(𝑡𝑓) ( 51 ) 

 

Now that the six differential equations and six boundary conditions are defined, the 

implementation and execution of the CRBF collocation method can ensue. The key variables of 

interest are the state and costate development throughout the time domain. These variables are 

measured in MATLAB through a series of simulations at each time discretization. 

 

The data is analyzed by evaluating the performance of the optimal trajectory and ensuring the 

system remained in its defined constraints and satisfied the ask of the mission: maximizing its 
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orbit transfer distance. The accuracy and consistency of the results are compared with the 

shooting method. 

 

 

Thrust Control Orbit Transfer 

Similar to the maximum radius orbit transfer problem as previously discussed, this problem deals 

with optimizing the thrust elements to reach the desired prescribed final state. This thrust control 

orbit transfer utilizes the same parameters as described in Table 2, but the final radial distance is 

known as about 150% of the initial radial distance. This problem excludes the fuel consumption 

of the spacecraft, and implements a fixed time of 193 days. The dynamics of the problem are 

written as 

 

�̇� = 𝑢 ( 52 ) 

�̇� =
𝑣2

𝑟
−

𝜇

𝑟2 + 𝑇𝑢 ( 53 ) 

�̇� = −
𝑢𝑣

𝑟
+ 𝑇𝑣 ( 54 ) 

 

Now considering the change of the cost function, the Hamiltonian is written as 

 

𝐻 =
1

2
(𝑇𝑢

2 + 𝑇𝑣
2) + 𝜆𝑟𝑢 + 𝜆𝑢 (

𝑣2

𝑟
−

𝜇

𝑟2 + 𝑇𝑢) + 𝜆𝑣 (−
𝑢𝑣

𝑟
+ 𝑇𝑣) ( 55 ) 

 

The costate derivatives are the same as Equations (30) – (32), since the Hamiltonian did not 

change with respect to the states. The control optimality condition is defined as 
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0 =
𝜕𝐻

𝜕𝑇𝑢
= 𝑇𝑢 + 𝜆𝑢 → 𝑇𝑢 = −𝜆𝑢 ( 56 ) 

0 =
𝜕𝐻

𝜕𝑇𝑣
= 𝑇𝑣 + 𝜆𝑣 → 𝑇𝑣 = −𝜆𝑣 ( 57 ) 

 

Equations (53) and (54) are rewritten as 

 

�̇� =
𝑣2

𝑟
−

𝜇

𝑟2 − 𝜆𝑢 ( 58 ) 

 

�̇� = −
𝑢𝑣

𝑟
− 𝜆𝑣 ( 59 ) 

 

The boundary conditions used for this application are the following 

 

𝑟(𝑡0) = 4.9081𝑒11 𝑓𝑡 ( 60 ) 

 

𝑢(𝑡0) = 0 ( 61 ) 

 

𝑣(𝑡0) = √
𝜇

𝑟0
 ( 62 ) 

 

𝑟𝑓(𝑡𝑓) = 1.5 ( 63 ) 

 

𝑢(𝑡𝑓) = 0 ( 64 ) 

 

𝑣(𝑡𝑓) = √
𝜇

𝑟𝑓
 ( 65 ) 

 

Note Equation (63) was taken from the results of the maximum radius orbit application. 

The residual equations are very similar to the maximum radius orbit problem with the only 

difference being the exclusion of the fuel consumption of the spacecraft. 
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𝑅1:𝑁 = 𝐷�̅� − �̅� ( 66 ) 

 

𝑅𝑁+1:2𝑁 = 𝐷�̅� −
�̅�2

�̅�
+

𝜇

�̅�2 − 𝑇𝑢 ( 67 ) 

 

𝑅2𝑁+1:3𝑁 = 𝐷�̅� +
𝑢�̅�

�̅�
− 𝑇𝑣 ( 68 ) 

 

𝑅3𝑁+1:4𝑁 = 𝐷�̅�𝑟 + �̅�𝑢 (−
�̅�2

�̅�2 +
2𝜇

�̅�3 ) + �̅�𝑣 (
𝑢�̅�

�̅�2 ) ( 69 ) 

 

𝑅4𝑁+1:5𝑁 = 𝐷�̅�𝑢 + �̅�𝑟 − �̅�𝑣
�̅�

�̅�
 ( 70 ) 

 

𝑅5𝑁+1:6𝑁 = 𝐷�̅�𝑣 + �̅�𝑢 (
2�̅�

�̅�
) − �̅�𝑣 (

𝑢

�̅�
) ( 71 ) 

 

Now collocating the boundary conditions using Equations (60) – (65) 

 

𝑅1 = �̅�(1) − 𝑟(𝑡0) ( 72 ) 

 

𝑅𝑁 = �̅�(𝑁) − 𝑟(𝑡𝑓) ( 73 ) 

 

𝑅𝑁+1 = �̅�(1) − 𝑢(𝑡0) ( 74 ) 

 

𝑅2𝑁 = �̅�(𝑁) − 𝑢(𝑡𝑓) ( 75 ) 

 

𝑅2𝑁+1 = �̅�(1) − 𝑣(𝑡0) ( 76 ) 

 

𝑅3𝑁 = �̅�(𝑁) − 𝑣(𝑡𝑓) ( 77 ) 

 

The same process is used as discussed previously, and the results are created. This example uses 

different dynamics, constraints, and objective cost function and still produces accurate results 

that can be compared to the shooting method.  
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CHAPTER FOUR: RESULTS 

This chapter presents the findings obtained from the analysis of the data collected during the 

study. The objective of this section is to provide a full overview of the results and insights 

derived from the research. The CRBF collocation method is successfully developed and executed 

in solving orbit trajectory problems. This establishes the CRBF collocation method in the 

optimal trajectory design field that can be expanded across various problems. After post 

processing the data, the maximum radius and thrust control are found to be consistent and 

accurate across the shooting method and CRBF collocation method. 

 

Throughout this chapter, the data is analyzed in both a qualitative and quantitative manner to 

ensure there is a comprehensive understanding of the research problem. The presentation of the 

findings is supported by visual representations, including tables and figures to facilitate a clear 

and concise communication of the results. The results will also be discussed in the aspect of the 

implications it will have on the aerospace engineering field.  This provides a deeper 

understanding of the data and allow for transparency to the relation of the existing methodologies 

in the field. This research contributes to the existing body of knowledge and gives further insight 

into solving optimal trajectory design problems. The findings are shown to have important 

implications on the Department of Defense (DoD), commercial, and everyday engineering 

applications in designing trajectories of spacecraft. 

 

The shooting method has been one of the benchmark numerical methods in solving the optimal 

control problem. It involves transforming the problem into a set of IVPs. An initial guess is first 

used for the states and costates. After integrating the system dynamics, the shooting method 
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compares the results with the boundary conditions and adjusts the initial guesses on its next 

iteration until the boundary conditions are met. This process is shown in Figure 5. Later in this 

chapter, the shooting method is utilized to validate the solution of the CRBF collocation method. 

 

 

Figure 5 Shooting Method Flow Diagram 

 

The shooting method is chosen as a validation tool for its wide adoption in optimal control 

problems as it is considered a baseline and standard approach for solving such problems. Note in 

the flow diagram different methods can be used to modify the initial guess. These methods can 

include Newton’s method, the bisection method, the secant method, and many more. The choice 
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of which method to use depends on the characteristics of the problem as well as what 

computational resources are available. For these problems, Newton’s method was utilized to 

adjust the initial guess during the shooting method. 

 

 

Maximum Radius Orbit Transfer Problem Solution 

The objective of the maximum orbit radius transfer problem is to achieve the farthest final 

circular orbit from the initial orbit while being defined within the constraints. The CRBF 

collocation method is created by first defining the system parameters as shown in Table 2, then 

approximating the states and costates. Furthermore, the dynamics are defined along with the 

necessary conditions. Figure 6 shows the trajectory of the spacecraft solved with both the CRBF 

and the shooting methods. 

 

Table 2 System Parameters for Maximum Radius Orbit Problem 

Parameter Value 

𝑇ℎ𝑟𝑢𝑠𝑡 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑇 0.85 

𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡 𝑊𝑒𝑖𝑔ℎ𝑡,
𝑚

𝑔
 10,000 𝑙𝑏𝑠 

𝐹𝑢𝑒𝑙 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛, �̇� 12.9 𝑙𝑏/𝑑𝑎𝑦𝑠 

𝑇𝑖𝑚𝑒 𝑜𝑓 𝐹𝑙𝑖𝑔ℎ𝑡, 𝑡𝑓 193 𝑑𝑎𝑦𝑠 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑅𝑎𝑑𝑖𝑎𝑙 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝑟0 4.9081𝑒11 𝑓𝑡 
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Parameter Value 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑅𝑎𝑑𝑖𝑎𝑙 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑓 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦, 𝑢(0) 0 𝑓𝑡/𝑑𝑎𝑦𝑠 

𝐺𝑟𝑎𝑣𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟, 𝜇 3.5031𝑒31 𝑓𝑡3/𝑑𝑎𝑦𝑠2 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑇𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑓 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦, 𝑣(0) √𝜇/𝑟0 𝑓𝑡/𝑑𝑎𝑦𝑠  

𝐹𝑖𝑛𝑎𝑙 𝑅𝑎𝑑𝑖𝑎𝑙 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝑟𝑓 𝑓𝑟𝑒𝑒 𝑠𝑡𝑎𝑡𝑒 

𝐹𝑖𝑛𝑎𝑙 𝑅𝑎𝑑𝑖𝑎𝑙 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑓 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦, 𝑢(𝑡𝑓) 0 𝑓𝑡/𝑑𝑎𝑦𝑠 

𝐹𝑖𝑛𝑎𝑙 𝑇𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑓 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦, 𝑣(𝑡𝑓) √𝜇/𝑟𝑓 𝑓𝑡/𝑑𝑎𝑦𝑠 

 

 

 

Figure 6 Orbit Trajectory Solution for Maximum Orbit Radius 
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Both methods do not align point to point but represent a similar trajectory to meet the objective 

function of maximizing the orbit radius. As shown in Table 3, the results between the two 

methods and optimality conditions later discussed favor the CRBF method.  

 

Table 3 Maximum Orbit Radius Problem Results Summary 

Method Cost - Final Radial Distance (feet) 

CRBF 7.5614e+11 

Shooting 7.4902e+11 

 

 

The CRBF produced a greater final radius, hence better achieving the objective as compared to 

the shooting method. The CRBF was able to output a larger final radius while staying within the 

constraints and system parameters of the problem. Both methods utilized fsolve as the NAE 

solver in MATLAB, as well as the same necessary conditions as shown in Table 4. The states 

and controls are comparable as well, but do not align. This non-alignment is not an issue and can 

be due to the nature of the methods. Both methods converged using the same dynamics and 

constraints. See the comparisons between the states in Figure 7. 
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Figure 7 State Comparison for Maximum Orbit Radius Problem 

 

As already discussed, the radial distance is comparable but does not align exactly. The CRBF 

method shows a high radial distance throughout the whole time domain beginning with the 

second time iteration (first time iteration is 𝑟0 for both methods). Again, both radial and tagential 

velocities are comparable and follow the same trajectory throughout the mission. The costate 

comparison can be found in Figure 8. 
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Figure 8 Costate Comparison for Maximum Orbit Raising Problem 

 

The costates align more between the methods as compared to the states. Since the costates 

represent the sensitivity of the cost function to the variations of the state variables, this shows (1) 

the validity of the methods against the optimal behavior of the system, (2) the methods 

converged to a consistent solution which indicates reliability and robustness, and (3) verification 

of the correctness of the mathematical modeling. Table 4 describes the boundary conditions used 

for each method and their values.  

 

Table 4 Maximum Orbit Radius Boundary Condition Values 

Method Boundary Conditions Value 

CRBF 

�̅�(1) − 𝑟(𝑡0) 0 

�̅�(1) 0 

�̅�(1) − 𝑣(𝑡0) 0 
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Method Boundary Conditions Value 

�̅�𝑟(𝑁) − 1 0 

�̅�(𝑁) 0 

�̅�(𝑁) − 𝑣(𝑡𝑓) 0 

Shooting 

𝑋(𝑒𝑛𝑑, 1) − 𝑟𝑓 0 

𝑋(𝑒𝑛𝑑, 2) 0 

𝑋(𝑒𝑛𝑑, 3) − 𝑣𝑓 0 

𝑋(𝑒𝑛𝑑, 4) − 1 −2.1094𝑒−15 

𝑋(𝑒𝑛𝑑, 2) 2.8253𝑒−05 

𝑋(𝑒𝑛𝑑, 3) − 𝑣𝑓 9.5367𝑒−06 

 

 

The CRBF method proves to produce an optimal solution. All necessary conditions are very 

small for the CRBF method which indicate the optimality of the method and solution as shown in 

Table 5.  

 

Table 5 Maximum Orbit Radius CRBF Necessary Condition Values 

Method Necessary Conditions Value 

CRBF 

𝑅1:𝑁 = 𝐷�̅� − �̅� 4.0634𝑒−07 

𝑅𝑁+1:2𝑁 = 𝐷�̅� −
�̅�2

�̅�
+

𝜇

�̅�2
−

𝑇𝑠𝑖𝑛𝜙

𝑚0 − |�̇�|𝑡
 −9.9995𝑒−09 

𝑅2𝑁+1:3𝑁 = 𝐷�̅� +
�̅��̅�

�̅�
−

𝑇𝑐𝑜𝑠𝜙

𝑚0 − |�̇�|𝑡
 −6.9114𝑒−09 

𝑅3𝑁+1:4𝑁 = 𝐷�̅�𝑟 + �̅�𝑢 (−
�̅�2

�̅�2
+

2𝜇

�̅�3
) + �̅�𝑣 (

�̅��̅�

�̅�2
) 2.2828𝑒−06 

𝑅4𝑁+1:5𝑁 = 𝐷�̅�𝑢 + �̅�𝑟 − �̅�𝑣

�̅�

�̅�
 1.4913𝑒−18 

𝑅5𝑁+1:6𝑁 = 𝐷�̅�𝑣 + �̅�𝑢 (
2�̅�

�̅�
) − �̅�𝑣 (

�̅�

�̅�
) 4.5782𝑒−17 
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Thrust Control Orbit Transfer Problem Solution 

The solution consists of seven parameters, all of which were defined in the structure ‘solution’. 

This solution has 50 collocation points which is an arbitrary selection. After defining the system 

parameters as shown in Table 6, as well as the CRBFs, the dynamics are approximated using the 

CRBFs and solved using fmincon in MATLAB. The main trajectory plot of the spacecraft is 

shown in parallel with the solution from the shooting method in Figure 9. Note the radial 

distance is normalized to show the comparison between the initial and final radial distances. 

 

Table 6 System Parameters for Thrust Control Orbit Problem 

Parameter Value 

𝑇ℎ𝑟𝑢𝑠𝑡 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑇 0.85 

𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡 𝑊𝑒𝑖𝑔ℎ𝑡,
𝑚

𝑔
 10,000 𝑙𝑏𝑠 

𝐹𝑢𝑒𝑙 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛, �̇� 12.9 𝑙𝑏/𝑑𝑎𝑦𝑠 

𝑇𝑖𝑚𝑒 𝑜𝑓 𝐹𝑙𝑖𝑔ℎ𝑡, 𝑡𝑓 193 𝑑𝑎𝑦𝑠 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑅𝑎𝑑𝑖𝑎𝑙 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝑟0 4.9081𝑒11 𝑓𝑡 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑅𝑎𝑑𝑖𝑎𝑙 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑓 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦, 𝑢(0) 0 𝑓𝑡/𝑑𝑎𝑦𝑠 

𝐺𝑟𝑎𝑣𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟, 𝜇 3.5031𝑒31 𝑓𝑡3/𝑑𝑎𝑦𝑠2 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑇𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑓 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦, 𝑣(0) √𝜇/𝑟0 𝑓𝑡/𝑑𝑎𝑦𝑠  

𝐹𝑖𝑛𝑎𝑙 𝑅𝑎𝑑𝑖𝑎𝑙 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝑟𝑓 7.3622𝑒11 𝑓𝑡 
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Parameter Value 

𝐹𝑖𝑛𝑎𝑙 𝑅𝑎𝑑𝑖𝑎𝑙 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑓 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦, 𝑢(𝑡𝑓) 0 𝑓𝑡/𝑑𝑎𝑦𝑠 

𝐹𝑖𝑛𝑎𝑙 𝑇𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑓 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦, 𝑣(𝑡𝑓) √𝜇/𝑟𝑓 𝑓𝑡/𝑑𝑎𝑦𝑠 

 

 

 

Figure 9 Orbit Trajectory Solution for Thrust Control 

 

For each collocation point in the CRBF method, the shooting method matches the position in 

relation to the radial and polar angle of the result across its time discretization. The summary of 

the results of each method can be found in Table 7. 

 

Table 7 Thrust Control Problem Results Summary 

Method Final Radial Distance (feet) Cost 

CRBF 7.561e+11 4.058e+16  
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Method Final Radial Distance (feet) Cost 

Shooting 7.561e+11 4.054e+16 

 

 

The radial distance for the final time is exactly the final state defined in the problem. Both 

methods are able to solve the system of dynamics while also staying within the constraints. 

Notice in Table 7 the CRBF method is showing a slightly higher cost function. While the CRBF 

collocation method implemented fmincon as its NAE solver in MATLAB, the shooting method 

used fsolve. Another note is that the shooting method uses guesses for the costate necessary 

conditions. In order to help the shooting method to converge, this had to be implemented. The 

CRBF method does need to use necessary condition costate guesses, as the boundary conditions 

for the states are defined. The comparison between the states are shown in Figure 10. 

 

 

Figure 10 State Comparison for Thrust Control Problem 
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The states, throughout the whole time domain, align for each collocation point. The thrust 

control throughout the mission is shown in Figure 11. Both the CRBF and shooting methods 

followed the same thrust control in the radial and tangential direction. This shows the accuracy 

of the CRBF method, since its control follows the same path as the shooting method. 

 

 

Figure 11 Thrust Control Results 

 

The boundary conditions are shown in Table 8. For each method, the boundary conditions are 

set-up differently in order to allow for convergence between the two methods. 

 

Table 8 Thrust Control Boundary Condition Values 

Method Boundary Conditions Value 

CRBF 

�̅�(1) − 𝑟(𝑡0) 0 

�̅�(1) 0 

�̅�(1) − 𝑣(𝑡0) −2.3803𝑒−18 
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Method Boundary Conditions Value 

�̅�(𝑁) − 𝑟(𝑡𝑓) 7.8503𝑒−19 

�̅�(𝑁) 0 

�̅�(𝑁) − 𝑣(𝑡𝑓) 0 

Shooting 

𝑋(𝑒𝑛𝑑, 1) − 𝑟𝑓 1.2207𝑒−04 

𝑋(𝑒𝑛𝑑, 2) 1.5795𝑒−06 

𝑋(𝑒𝑛𝑑, 3) − 𝑣𝑓 1.9073𝑒−06 

𝑋(𝑒𝑛𝑑, 4) − 𝜈1 −5.8208𝑒−11 

𝑋(𝑒𝑛𝑑, 5) − 𝜈2 0 

𝑋(𝑒𝑛𝑑, 6) − 𝜈3 −3.3527𝑒−08 

 

 

The CRBF method solution meets the optimality conditions. Table 9 shows the values of the 

necessary conditions of the CRBF method which provide the necessary assessment of the 

optimality of the method. The closer to zero the condition is, the more optimal the solution is. 

 

Table 9 Thrust Control CRBF Necessary Condition Values 

Method Necessary Conditions Value 

CRBF 

𝑅1:𝑁 = 𝐷�̅� − �̅� −5.5511𝑒−17 

𝑅𝑁+1:2𝑁 = 𝐷�̅� −
�̅�2

�̅�
+

𝜇

�̅�2
− 𝑇𝑢 1.1999𝑒−17 

𝑅2𝑁+1:3𝑁 = 𝐷�̅� +
�̅��̅�

�̅�
− 𝑇𝑣  −1.0087𝑒−16 

𝑅3𝑁+1:4𝑁 = 𝐷�̅�𝑟 + �̅�𝑢 (−
�̅�2

�̅�2
+

2𝜇

�̅�3
) + �̅�𝑣 (

�̅��̅�

�̅�2
) 3.5885𝑒−17 

𝑅4𝑁+1:5𝑁 = 𝐷�̅�𝑢 + �̅�𝑟 − �̅�𝑣

�̅�

�̅�
 6.8637𝑒−17 

𝑅5𝑁+1:6𝑁 = 𝐷�̅�𝑣 + �̅�𝑢 (
2�̅�

�̅�
) − �̅�𝑣 (

�̅�

�̅�
) −3.0104𝑒−17 
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CHAPTER FIVE: CONCLUSION 

This thesis aimed to create a reliable method for solving optimal spacecraft trajectory problems. 

After reviewing literature on previous methods, running simulations on trajectory optimization 

problems, and then analyzing the results, a new method has emerged in optimal trajectory 

design. The new CRBF collocation method is shown to solve spacecraft optimal trajectory 

problems. The shooting method was implemented to validate the CRBF results and verify the 

accuracy of the CRBF method in optimal trajectory design. 

 

Though many methods can be utilized to solve optimal control problems, CRBFs bring classical 

RBF benefits such as adaptability to complex functions, being able to effectively interpolate data 

points, utilize both global and local collocation, employ efficient computation, and generate 

robust solutions while avoiding RBF sensitivity to the shape parameter values. 

 

In this work, the CRBF collocation method has been studied for optimal spacecraft trajectory 

design. The indirect formulation is adopted and the necessary conditions of optimality are 

derived. CRBF collocation is then used to discretize the resulting two-point value problem. Then 

the set of NAEs are solved via a standard solver. The results show that CRBFs are able produce 

an optimal solution for spacecraft optimal trajectory problems. The solutions are also validated 

against the shooting method and showed agreement in accuracy and computational time. The 

CRBFs are less sensitive to the shape parameter and don’t require a need for an accurate initial 

guess.   
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While this research introduces the CRBF method in optimal trajectory design for the maximum 

orbit radius and thrust control problems, there are still plenty of areas CRBFs can be 

implemented. Further studies can look into the minimum time problem in optimal orbit design as 

well as three-dimensional dynamics and constraints. These problems can be simply solved using 

the trivial CRBF collocation method developed for optimal trajectory problems. As neural 

networks develop to be more intuitive and automated, CRBF collocation may be an area of study 

for advancement in space mission designs. While artificial intelligence and machine learning 

continue to advance in the aerospace engineering discipline across all necessary stakeholders 

when designing missions involving trajectory design, CRBFs can be a great resource when it 

comes to defining approximations for the system functions.  



 39 

APPENDIX: SCRIPT OVERVIEW 
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CRBF Collocation Script 

Output: Plot [solution] 

collpts () 

• # of Nodes 

• # of Equations 

• Final Time 

• RBF Type 

sysparam(collpts) 

• System Parameters 

• Shape Parameter 

• Boundary Conditions 

• Initial Guess 

getApprox(collpts,sysparam) 

• Differential Operator 

getSolution(collpts,sysparam,approx) 

• Dynamics Definition 

• Necessary Conditions 

• NAE Solver (fmincon) 

getSolError(T,solution,sysparam) 

• State and Costate Error 

plotSolution(T,solution,collpts,approx,solutionerror) 

• Plot Solution 

 

 

Shooting Method Script 

Output: Plot [solution] 

• Define system parameters 

• Implement initial guesses 

• Utilize fsolve to solve the dynamics 

within the constraints 

• Take solution from fsolve and use as 

initial guess into ode45 to output the 

solution 

• Plot solution 
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