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ABSTRACT 

Mobile brain/body imaging utilizes electroencephalography (EEG) to record brain activity 

during human walking in dynamic environments. Motion artifact from cable sway affects the 

quality of EEG signals collected from the scalp, masking contributions of synchronously firing 

neurons. Previous studies have explored cable sway-induced motion artifact, but only during 

vigorous exercise or controlled sinusoidal motion. Therefore, a need remains to further understand 

the underlying mechanisms of this artifact, as it may help with developing real-time mitigation 

methods, reducing reliance on offline signal processing. In this thesis, I aimed to show that 

controlled cable sway could produce specific motion artifact waveforms in a benchtop setup. I 

programmed a robotic arm to perform three different types of waveform motions - sinusoidal, 

square, and sawtooth - in two setups that had different levels of cable support: constrained and 

unconstrained. I used a novel dual-sided EEG electrode where one side of the electrode interfaces 

with the scalp to record traditional EEG signals while an outer-facing electrode interfaces with a 

conductive fabric cap to record isolated motion artifact and noise.  Additionally, I placed the 

electrodes in a 3D-printed holder designed to position them between two layers of conductive 

fabric and eliminate any electrode movement, which has not been previously constrained. Lastly, 

I computed correlations between cable sway and bottom electrode EEG, cable sway and top 

electrode EEG, and top and bottom EEG. Correlations for all variable combinations were low, 

ranging from -0.122 +/- 0.223 to 0.058 +/- 0.238. Out of six correlation measure comparisons 

(three across testing setups and three across waveform motions), five did not show significant 

differences (p-values = 0.391 - 0.958). These results suggest that EEG motion artifact is not the 
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result of just mechanical deformation of the cables but likely requires simultaneous movement of 

the electrode itself, altering the electrode-conductive surface interface dynamics. 
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CHAPTER 1: INTRODUCTION 

Mobile brain/body imaging is an approach that combines several different data collection 

methods and stimulus inputs to evaluate the relationship between brain dynamics and whole-body 

movement (Jungnickel et al., 2019). One such data collection method is electroencephalography 

(EEG), which is a non-invasive technique for recording the electrical activity of the human brain 

that is widely used for clinical applications due to its exceptionally high temporal resolution 

(Casson et al., 2018). However, because the summated postsynaptic potentials from multitudes of 

synchronously firing neurons have a small magnitude, the resulting EEG signals are often masked 

by electrical activity from other sources external to the brain, such as other parts of the body or the 

environment. This interfering electrical activity creates distortions, or artifacts, in EEG recordings, 

making it difficult to accurately distinguish between neuropathological events and artifacts, as well 

as identify normal brain waves (Britton et al., 2016). These challenges are particularly unfavorable 

for studies that involve recording electrocortical brain dynamics during human locomotion, 

specifically walking. Because walking is such an important motor task for everyday life, 

understanding its underlying neural mechanisms and how they are associated with actions such as 

speeding up/slowing down, maintaining balance when perturbed, and staying clear of obstacles, is 

critical for defining the level of the brain’s involvement throughout the gait cycle (Jacobsen et al., 

2022). However, EEG data collected during walking is susceptible to a specific type of 

environmental artifact known as motion artifact, the potential sources of which include head 

movement and cable sway (Gwin et al., 2010; Oliveira et al., 2016). 

Although previous studies have shown that head movement-related motion artifact is likely 

attributed to the motion of EEG electrodes with respect to the scalp, this issue has been partially 
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remedied by the use of active electrodes – EEG electrodes integrated with preamplifiers – in place 

of passive electrodes (Mihajlovic et al., 2014; Xu et al., 2017). Continuous monitoring of 

electrode-skin contact impedance as well as increased electrode surface area have also been shown 

to help with reducing this type of motion artifact (Bertrand et al., 2013; Symeonidou et al., 2018). 

Cable sway-induced motion artifact, on the other hand, is believed to be the result of triboelectric 

noise produced by the friction and mechanical deformation of the EEG cable insulators when the 

cables are subjected to movement during human locomotion (Simakov & Webster, 2010; Webster, 

1984). Cable shielding combined with the use of active electrodes have been suggested to reduce 

this artifact (Mihajlovic et al., 2015). However, previous research by Symeonidou et al. (2018) has 

shown the limited effectiveness of this hardware approach through a benchtop evaluation of cable 

sway-induced motion artifact, in which controlled cable sway was produced using a motion 

platform that moved the shielded cables using a controlled sinusoidal motion, and EEG signals 

were recorded with flat-type active electrodes. The study outcomes revealed that the artifact still 

significantly affected the quality of the EEG signal, linearly decreasing the signal-to-noise ratio as 

the frequency of controlled cable sway increased. 

Developed primarily as an advanced method of addressing motion artifact caused by head 

movement, dual-sided EEG electrodes offer potential as a more effective method of removing 

motion artifact caused by cable sway. In a dual-sided EEG electrode, the bottom electrode, which 

is a pin-type active electrode, has been shown to record electrocortical signals with accompanying 

motion artifacts, while the top electrode, which is an inverted flat-type active electrode, is 

electrically independent and has been shown to record motion artifact and electrical noise only. 

Because both electrodes are mechanically coupled to each other, they experience the same motion 

and capture similar levels of noise. Consequently, the noise characteristics in the isolated signal 
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from the top electrode closely resemble those in the scalp EEG signal from the bottom electrode. 

This facilitates artifact removal using sliding window spectral subtraction, as the frequency content 

of the noise in the scalp EEG signal can be directly extracted using a Fast Fourier Transform on 

each window of the isolated noise signal from the top electrode (Nordin et al., 2018). Utilizing this 

frequency information, a more reliable threshold for artifact cancellation can be defined, avoiding 

the need to derive it from an estimated noise spectrum. As a result, the quality of an EEG signal 

recorded during head movement can be effectively restored, minimizing the effects of motion 

artifact and electrical noise, to resemble signals recorded under stationary conditions. However, 

one study about this particular approach showed that the frequency spectra of the signal from the 

top electrode do not just capture the motion frequency of the head, but may also capture cable 

motion, though to a lesser extent compared to the former, which agrees with other studies related 

to motion artifact isolation and reduction through software or hardware approaches (Gwin et al., 

2010; Kline et al., 2015; Nordin et al., 2018). The frequency components associated with head 

movement and the components associated with cable motion are likely both attenuated in the 

process of sliding window spectral subtraction, but the actual contributions of the components 

associated with cable motion are not completely understood because the dual-sided electrode setup 

used by Nordin et al. (2018) required the use of a secondary cap tightly overlaid on the top 

electrodes, thereby also holding the cables in the same location in place. 

A different dual-sided electrode setup that does not require such tight contact between the 

top electrodes and the secondary cap, the latter of which forms a conductive interface with the top 

electrodes, can allow for improved visualization of the frequency components of the isolated 

motion artifact prior to artifact removal, such as one created for a study that investigated the 

relationship between the signals recorded by both the top and bottom electrodes. In this study, the 
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dual-sided electrode setup did not use a phantom head, and instead used a 3D-printed structure to 

hold two pieces of conductive stretch fabric parallel and close to each other, such that the bottom 

fabric piece served as the primary layer, in place of the primary cap, and the top fabric piece served 

as the secondary layer, in place of the secondary cap. In this configuration, the dual-sided 

electrodes were moved in a controlled manner by a user-operated robotic arm. The movements 

were produced with different combinations of displacement magnitude, frequency, and direction, 

and were tracked with motion capture as EEG signals were simultaneously collected. Signals from 

the top and bottom electrodes exhibited dominant frequencies closely corresponding to the 

movement frequencies of the electrodes themselves, reinforcing that the top side of a dual-sided 

electrode can effectively isolate the motion artifact produced by movement of the platform on 

which the electrodes sit (Li, 2022). 

Therefore, given that previous research has suggested that dual-sided EEG electrodes are 

effective for 1) recording isolated head movement-induced motion artifact and 2) improving the 

outcome reliability of offline signal processing techniques like sliding window spectral subtraction 

and independent component analysis, using this novel hardware approach to record isolated cable 

sway-induced motion artifact may potentially be more effective for minimizing its effects on EEG 

signal quality and may even inform the development of real-time artifact reduction methods (Li, 

2022; Nordin et al., 2018; Richer et al., 2020). However, it is first necessary to determine whether 

cable sway can produce motion artifacts that can be captured and isolated by dual-sided EEG 

electrodes, regardless of how the cables move. This may require expanding beyond the controlled 

cable sway produced by controlled sinusoidal motion in previous research and using other periodic 

motions to produce different variations of controlled cable sway. 
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The purpose of this thesis was to produce motion artifacts in dual-sided EEG resembling 

specific waveforms used to control cable sway. I used a custom electrode-conductive surface 

interface and a robotic arm with a cable holding attachment to record EEG signals under several 

different controlled cable sway conditions. These conditions involved performing the waveform 

motions with different levels of cable support. I hypothesized that 1) the signals recorded from 

both sides of a dual-sided EEG electrode would have a high correlation with each other across all 

waveform motions, 2) the signal from the top side of the electrode would have a high correlation 

with each type of waveform motion, 3) the signal from the bottom side of the electrode would have 

a high correlation with each type of waveform motion, and 4) less cable support during controlled 

motion, and thus more unconstrained cable sway, would result in lower values for these 

correlations compared to constrained cable sway from more cable support. 
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CHAPTER 2: METHODOLOGY 

Testing Setup 

I placed one dual-sided EEG electrode, a common mode sense (CMS) reference electrode, 

and a driven right leg (DRL) reference electrode in a 3D printed electrode holder. The electrode 

holder contained three wells: one for the CMS electrode, another for the DRL electrode, and a third 

for the dual-sided electrode, which from this point forward will be referred to as the C18 electrode 

in accordance with the identification and numbering system of the EEG ribbon cable strip that was 

used (Fig. 1A). The unused electrodes were bundled together in small drawstring nylon bags and 

bound to the cables to prevent them from behaving as a separate component with the potential to 

interfere with cable sway. A conductive fabric incorporated into the top and middle frames of the 

holder made contact with the top and bottom sides of the three electrodes (Fig. 1B). In contrast 

with the structure used by Li (2022), which served exclusively to house the conductive fabric while 

a separate structure was used to hold the electrodes as they were moved, allowing translation of 

the electrodes in different directions between the two layers, I designed the electrode holder to 

minimize electrode movement relative to the conductive fabric layers to control any impact of this 

movement on the EEG signal. I accomplished this by adding a static platform centered between 

the electrode wells in the middle frame of the structure with an electrode well incorporated into 

the platform. As an additional precaution against electrode movement, the electrode holder itself 

was fixed to a motionless, flat surface. The electrodes were connected to two analog-to-digital 

(AD) converter boxes connected to each other in a linear series (ActiveTwo, BioSemi B.V., 

Amsterdam, the Netherlands), allowing for the EEG signals from both sides of the electrode to be 

synchronously recorded at 512 Hz. 
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Figure 1: 3D-printed electrode holder. (A) An isometric view of the electrode holder’s 3D structure. 

The bottom ring-like frame served as the base and was connected to the middle frame. The middle frame 

included three rigid, static platforms with electrode wells. The two wells on the sides were used to insert 

the CMS and DRL reference electrodes, while the center well was used to insert the C18 electrode. (B) 

The electrode holder with conductive fabric layers included. Bolts were used to fasten the middle and top 

frames to smaller, ring-like components, allowing the fabric pieces to be held in place and thereby 

creating an electrode-conductive surface interface. 

 

To evaluate how constrained cable sway and unconstrained cable sway affect the 

generation of motion artifact, I assembled two benchtop testing setups with different levels of cable 

support. In the first testing setup, which from this point forward will be referred to as the 

Constrained setup, the cables were supported at three different points along their collective length. 

At the first point, which was located close to the elevated platform holding the AD converter boxes, 

I suspended the cables using a thin rope that I then tied to a metal bar behind the elevated platform. 

I created the second support point by laying the cables over a custom-designed rack fixed to a 

plyometric box. For the third point, I inserted the cables through a 3D printed cable holder attached 

to a desktop-grade robotic arm (DOBOT Magician Lite, Shenzhen Yuejiang Technology, 

(A) (B) 
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Shenzhen, China) placed on top of the same plyometric box as the custom-designed rack (Fig. 2). 

The cable configuration resulting from this level of physical support isolated controlled cable sway 

to only a short length of the cables situated between the cable holder and electrode holder. This 

was done to ensure that the robotic arm produced constrained sway in the cables. In the second 

testing setup, which from this point forward will be referred to as the Unconstrained setup, the 

cables were supported at only one point: the location where they were inserted in the cable holder. 

Additionally, I placed the robotic arm closer to the AD converter boxes, positioned it perpendicular 

to the orientation of the cables, removed the custom-designed rack, and fixed the electrode holder 

to a shorter plyometric box. The length of cables previously supported by the custom-designed 

rack was allowed to hang freely, resulting in the entire cable length having a J-shape due to the 

weight of the bound bundle of unused electrodes (Fig. 3). I expected that the cable configuration 

resulting from this limited physical support would allow unconstrained cable sway upstream of 

the electrodes when the robotic arm performed controlled motions at the support point. 
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Figure 2: Schematic of the Constrained setup. The AD converter boxes were placed on an elevated 

platform suspended from the ceiling (upper left). The electrodes were connected to the electrode holder 

placed on a plyometric box (far right). The cables were inserted in the cable holder attached to the robotic 

arm (far right). The robotic arm was placed close to the electrode holder and the cables were supported at 

two additional points: the custom rack positioned over the robotic arm and the suspension provided by the 

thin rope. 
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Figure 3: Schematic of the Unconstrained setup. The electrodes were connected to the electrode holder 

placed on a shorter plyometric box (far right). The robotic arm was placed closer to the AD converter 

boxes (left). The custom rack and thin rope were removed, allowing the cables to hang freely between the 

cable holder and the electrode holder. The dark, oval-shaped object represents the bound bundle of unused 

electrodes (lower middle). 

 

For both testing setups, I programmed the robotic arm to move the cables with one of three 

controlled, periodic motions, each resembling a different waveform: sinusoidal, square, and 

sawtooth (Fig. 4). To track controlled cable sway, I attached three passive reflective markers on 

the top surface of the cable holder and recorded the marker movements using a motion capture 

system (OptiTrack, NaturalPoint Inc., Corvallis, OR, USA, 13 Prime13W cameras and 9 Prime13 

cameras) with a sampling frequency of 240 Hz. The location on the cable holder that I selected for 
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marker placement was assumed to approximate the movement of the cables inserted in the cable 

holder. The robotic arm performed all waveform motions in a side-to-side direction perpendicular 

to the orientation of the cables (Fig. 2, Fig. 3). 

 

 
 

Figure 4: The different waveforms programmed into the robotic arm to move the cables with 

different controlled motions. From top to bottom, the sinusoidal, square, and sawtooth waveforms. 

 

Protocol 

I programmed the robotic arm to perform each waveform motion – sinusoidal, square, and 

sawtooth – with a displacement magnitude of 2 cm. The sinusoidal motion was performed with a 

frequency of 1 Hz, the square motion with a frequency of 0.5 Hz, and the sawtooth motion with a 

frequency of 0.5 Hz. All data were recorded in one day divided into two (2) experimental blocks: 

the first block in the Constrained setup, followed by the second block in the Unconstrained setup. 

Each block consisted of three (3) trials, one (1) trial for each of the waveform motions, in an order 

that was randomized (Fig. 5). A trial consisted of 60 movement cycles. For the duration of each 
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trial, I simultaneously recorded motion capture and collected EEG signals from both sides of the 

C18 electrode. With the completion of both blocks, I effectively completed two (2) trials for each 

waveform motion and three (3) trials for each testing setup. In total, I collected data for six (6) 

unique condition combinations. 

 

 
 

Figure 5: Flowchart summarizing the recording protocol. After completing the trials for the waveform 

motions, the Constrained setup was changed to the Unconstrained setup, as indicated by the green arrow, 

and the process was repeated. The order of the waveform motions was randomized for each block. 
 

Data Analysis 

All data were analyzed in MATLAB (version 9.11, R2021b, MathWorks Inc., Natick, MA, 

USA). Given the differences in shape and frequency between the waveform motions, I developed 

three different signal processing approaches for the motion capture marker tracking data and 

applied them based on the specific waveform motion during which the trial data was collected.  

For the sinusoidal motion, I low-pass filtered the tracking data using a fourth-order Butterworth 
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filter with a 12 Hz cutoff frequency. For the square motion, I low-pass filtered the tracking data 

using a sixth-order Butterworth filter with a 5 Hz cutoff frequency. Finally, for the sawtooth 

motion, I low-pass filtered the tracking data using a seventh-order Butterworth filter with a 5 Hz 

cutoff frequency. I then determined the start and end points of controlled cable sway as well as the 

start and end points of each movement cycle to visualize the 60 total movement cycles only. With 

this extracted data, I normalized the amplitude of cable sway by dividing the amplitudes of the 60 

total movement cycles by the maximum peak-to-peak amplitude, and then used the middle 30 

movement cycles for additional analyses (Li, 2022). Given their different scales and units, I 

performed normalization of both the motion capture marker tracking data and the EEG signal data 

to place them on the same scale, thereby making their ranges comparable and facilitating visual 

distinction of their different magnitudes (Javaheri et al., 2014; Singh & Singh, 2020). 

Additionally, for each trial, I separated out the top and bottom electrode EEG, bandpass 

filtered each signal from 0.5 to 59 Hz and removed line noise. Similar to the normalization 

procedure for cable sway amplitude, for each separated signal, I normalized the amplitude by 

dividing it by the maximum peak-to-peak amplitude (Li, 2022). In each normalized signal, I 

identified when controlled cable sway started and ended by analyzing the event latency indicating 

when the motion capture recording started, using the EEG sampling rate to convert the cable sway 

start and end points in the respective marker tracking data to time points in the EEG signal data, 

and defining these time points relative to the motion capture recording start time. Subsequently, I 

determined the set of EEG data points that coincided with the middle 30 movement cycles and 

divided the set into 30 segments with lengths that matched the movement cycle lengths. 

I used all three extracted data sets to calculate the correlation between 1) cable sway and 

EEG from the bottom electrode, 2) cable sway and EEG from the top electrode, and 3) EEG from 
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both the top and bottom electrodes for the given trial. I then performed the Fisher Z transformation 

on the correlation values (Li, 2022). To visualize and evaluate the movement cycle trajectory for 

each condition combination, the normalized marker trajectories of the middle 30 movement cycles 

were averaged and plotted against cycle length. I also performed a similar procedure on the middle 

30 segments from the respective top electrode EEG and bottom electrode EEG to visualize the two 

signals and look for any apparent trends or changes. 

 

Statistical Analysis 

I conducted statistical analysis using SPSS (version 29) and specified a significance level 

of 0.05. First, I calculated studentized residuals to detect the presence of any outliers in each data 

set. Outliers that were greater than  3 standard deviations from the mean of each data set were 

removed. I then assessed the assumptions of distribution normality and sphericity with Shapiro-

Wilk’s test and Mauchly’s test, respectively. For any violations of the sphericity assumption, I 

applied the Greenhouse-Geisser correction to adjust the degrees of freedom for the subsequent 

analysis. 

To evaluate the effects of waveform motion and testing setup on the generation of cable 

sway-induced motion artifact and whether or not they interact with each other, I conducted a two-

way repeated measures analysis of variance (ANOVA) on each of the three outcome measures 

mentioned in the previous subsection (see Data Analysis, p. 8) after applying Z transformations, 

specifying waveform motion and testing setup as the within-subjects factors (Laerd Statistics, 

2015). At each level of the analysis, I used the output p-values to interpret the results. I started by 

determining whether there was a statistically significant two-way interaction between the two 

factors. When a statistically significant two-way interaction was absent, I proceeded with 
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determining if there were any statistically significant main effects. Regardless of whether or not 

the main effects were found to be statistically significant, I proceeded with conducting a post hoc 

test on each main effect, specifically pairwise comparisons using the Bonferroni adjustment, and 

then concluded the analysis. 
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CHAPTER 3: RESULTS 

Cable Sway and EEG Observations 

Each of the non-normalized movement cycle trajectories in both testing setups exhibited 

full displacement magnitudes of approximately 20 mm (= 2 cm). In the Constrained setup, the 

magnitude of the difference between both peaks during the sinusoidal motion was 21.822  0.003 

mm, the magnitude of the difference between both peaks during the square motion was 21.807  

0.002 mm, and the magnitude of the peak during the sawtooth motion was 21.752  0.005 mm. In 

the Unconstrained setup, the displacement magnitude during the sinusoidal motion was 19.361  

0.018 mm, the displacement magnitude during the square motion was 19.285  0.004 mm, and the 

displacement magnitude during the sawtooth motion was 19.299  0.016 mm (Fig. 6A, Fig. 7A). 

Additionally, the average signal amplitudes of the corresponding non-normalized top and bottom 

EEG signals appeared to randomly fluctuate between -0.5 and 0.5 μV, with respective standard 

deviations that appeared to be much greater in comparison, as shown by the sizes of the shaded 

regions encompassing the average signal amplitude lines (Fig. 6B, Fig. 7B). 
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Figure 6: Non-normalized movement cycle trajectories and EEG signals resulting from controlled 

cable sway in Constrained setup. From left to right, (A) the movement cycle trajectory (in terms of 

position in the motion capture coordinate system (MCS)) and resulting full displacement magnitude 

(mean  std) for the sinusoidal, square, and sawtooth motions, and (B) the top and bottom EEG signals 

corresponding to the sinusoidal, square, and sawtooth movement cycle trajectories. The blue line and 

surrounding shading represent the mean and standard deviation of the signal amplitude from the bottom 

electrode, while the red line and surrounding shading represent the mean and standard deviation of the 

signal amplitude from the top electrode. 
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Figure 7: Non-normalized movement cycle trajectories and EEG signals resulting from controlled 

cable sway in Unconstrained setup. From left to right, (A) the movement cycle trajectory (in terms of 

position in the motion capture coordinate system (MCS)) and resulting full displacement magnitude 

(mean  std) for the sinusoidal, square, and sawtooth motions, and (B) the top and bottom EEG signals 

corresponding to the sinusoidal, square, and sawtooth movement cycle trajectories. The blue line and 

surrounding shading represent the mean and standard deviation of the signal amplitude from the bottom 

electrode, while the red line and surrounding shading represent the mean and standard deviation of the 

signal amplitude from the top electrode. 
 

With respect to shape, each resulting normalized movement cycle trajectory closely 

resembled the respective waveform programmed into the robotic arm to perform controlled 

motion, with slight differences in feature sharpness as compared to their ideal counterparts. The 

movement cycle trajectory produced by the square motion had rising and falling edges that were 

not instantaneous, as shown by their respective non-zero rise and fall times. The movement cycle 

trajectory produced by the sawtooth motion had a rising edge with a non-zero rise time and a 

negative ramp that was not linear (Fig. 4, Fig. 8A, Fig. 9A). Across all condition combinations, 

the normalized top and bottom EEG signals did not show any noticeable shapes or trends (Fig. 8B, 
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Fig. 9B). This was further reflected in the low correlation between top and bottom EEG (-0.005  

0.122, -0.012  0.115, 0.027  0.139 for sinusoidal, square, and sawtooth motions, respectively, in 

the Constrained setup; 0.017  0.142, 0.008  0.112, 0.030  0.105 for sinusoidal, square, and 

sawtooth motions, respectively, in the Unconstrained setup), low correlation between cable sway 

and bottom EEG (-0.019  0.256, 0.058  0.238, -0.002  0.208 for sinusoidal, square, and 

sawtooth motions, respectively, in the Constrained setup; 0.022  0.281, 0.015  0.190, -0.005  

0.216 for sinusoidal, square, and sawtooth motions, respectively, in the Unconstrained setup) and 

low correlation between cable sway and top EEG (-0.111  0.313, -0.122  0.223, -0.091  0.281 

for sinusoidal, square, and sawtooth motions, respectively, in the Constrained setup; 0.032  0.261, 

0.005  0.198, -0.011  0.278 for sinusoidal, square, and sawtooth motions, respectively, in the 

Unconstrained setup)  (Fig. 8C - E, Fig. 9C - E). 
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Figure 8: Normalized movement cycle trajectories and EEG signals resulting from controlled cable 

sway in Constrained setup. From left to right, (A) the movement cycle trajectory for the sinusoidal, 

square, and sawtooth motions, (B) the top and bottom EEG signals corresponding to the sinusoidal, 

square, and sawtooth movement cycle trajectories, (C) the Z-transformed correlation values (mean  std) 

for the top and bottom EEG correlation outcome measure, (D) the Z-transformed correlation values (mean 

 std) for the cable sway and bottom EEG correlation outcome measure, and (E) the Z-transformed 

correlation values (mean  std) for the cable sway and top EEG correlation outcome measure.  
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Figure 9: Normalized movement cycle trajectories and EEG signals resulting from controlled cable 

sway in Unconstrained setup. From left to right, (A) the movement cycle trajectory for the sinusoidal, 

square, and sawtooth motions, (B) the top and bottom EEG signals corresponding to the sinusoidal, 

square, and sawtooth movement cycle trajectories, (C) the Z-transformed correlation values (mean  std) 

for the top and bottom EEG correlation outcome measure, (D) the Z-transformed correlation values (mean 

 std) for the cable sway and bottom EEG correlation outcome measure, and (E) the Z-transformed 

correlation values (mean  std) for the cable sway and top EEG correlation outcome measure. 

 

Assumption Test Outcomes and Interaction Effects 

No outliers were detected in any of the outcome measure data sets, as all studentized 

residuals were less than ±3 standard deviations from the mean of their respective data set. For the 

cable sway and bottom EEG correlation outcome measure, correlation values were normally 

distributed for all condition combinations (Shapiro-Wilk’s test p’s > 0.05). For the cable sway and 
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top EEG correlation outcome measure, correlation values were normally distributed for all 

condition combinations except sawtooth motion in the Unconstrained setup (Shapiro-Wilk’s test p 

= 0.021), while for the top and bottom EEG correlation outcome measure, correlation values were 

normally distributed for all condition combinations except sawtooth motion in the Constrained 

setup (Shapiro-Wilk’s test p = 0.013). Neither the cable sway and bottom EEG correlation outcome 

measure nor the cable sway and top EEG correlation outcome measure violated the assumption of 

sphericity (2’s = 0.363-5.162, p’s > 0.05). However, the top and bottom EEG correlation outcome 

measure did violate the assumption of sphericity (2 = 6.293, p = 0.043), and a Greenhouse-Geisser 

correction was applied that estimated an epsilon (ε) value of 0.832. Waveform motion and testing 

setup did not have a statistically significant two-way interaction for any of the outcome measures 

(F’s (2, 58) = 0.240-0.479, p’s > 0.05; Greenhouse-Geisser corrected F (1.665, 48.282) = 0.119, p 

> 0.05). 

 

Effects of Waveform Motion 

Waveform motion did not have a statistically significant main effect for any of the outcome 

measures (F’s (2, 58) = 0.083-0.954, p’s > 0.05). This was further reflected by a lack of statistically 

significant differences between the mean correlations of the three waveform motions (pairwise 

comparison p’s > 0.05) (Fig. 10). 
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Figure 10: Average correlations between cable sway and bottom EEG, cable sway and top EEG, 

and top and bottom EEG during the sinusoidal, square, and sawtooth motions. Error bars represent 

the 95% confidence interval for each average. The differences in average correlation across the three 

waveform motions were not statistically significant for any of the outcome measures (p’s > 0.05). 

 

Effects of Testing Setup 

 For the cable sway and bottom EEG correlation outcome measure, as well as the top and 

bottom EEG correlation outcome measure, testing setup did not have a statistically significant 

main effect (F’s (1, 29) = 0.003-0.615, p’s > 0.05). As such, there was no statistically significant 

difference between the mean correlations of the two testing setups for either outcome measure 

(pairwise comparison p’s > 0.05). However, for the cable sway and top EEG correlation outcome 

measure, testing setup did have a statistically significant main effect (F (1, 29) = 9.323, p < 0.05). 

Although not clearly apparent from a visual comparison, the difference between the mean 

correlations of the two testing setups was statistically significant (pairwise comparison p < 0.05) 

(Fig. 11). 
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Figure 11: Average correlations between cable sway and bottom EEG, cable sway and top EEG, and 

top and bottom EEG in the Constrained and Unconstrained setups. Error bars represent the 95% 

confidence interval for each average. The difference in average correlation across the two setups was 

statistically significant for the cable sway and top EEG correlation outcome measure. The * symbol 

represents p < 0.05. The difference in average correlation across the two setups was not statistically 

significant for the cable sway and bottom EEG correlation outcome measure and the top and bottom EEG 

correlation outcome measure (p’s > 0.05). 

 

 

 

 

 

 

 

 

 

 



25 
 

CHAPTER 4: DISCUSSION 

I aimed to demonstrate that controlled cable sway in a benchtop setting could generate 

motion artifacts resembling specific waveforms in EEG signals collected with dual-sided 

electrodes. Cable sway and bottom EEG correlation, cable sway and top EEG correlation, and top 

and bottom EEG correlation randomly alternated from negative to positive across all waveform 

motions in both testing setups. Overall, the correlation outcome measures were low in magnitude 

for all controlled cable sway conditions. 

Waveform motion did not affect the correlation between cable sway and bottom EEG, 

between cable sway and bottom EEG, or between top and bottom EEG. Additionally, the average 

cable sway and bottom EEG correlation, average cable sway and top EEG correlation, and average 

top and bottom EEG correlation were considerably low across all waveform motions irrespective 

of testing setup, deviating only slightly from zero. These results did not support our hypotheses 

that these three correlations would be high for each waveform motion. 

Although unconstrained cable sway upstream of the electrodes – but not at the cable holder 

– was visually observed during each of the waveform motions in the Unconstrained setup, I 

inspected the EEG signal as it was recorded and did not notice any distinct shapes or trends 

reflective of motion artifacts. The average top and bottom EEG correlation in the Unconstrained 

setup was higher in magnitude than that in the Constrained setup. However, this difference was 

not statistically significant, indicating that the unconstrained cable sway produced in the 

Unconstrained setup did not do much to significantly increase correlation compared to constrained 

cable sway produced in the Constrained setup. Additionally, while the magnitude of the average 

cable sway and bottom EEG correlation was lower in the Unconstrained setup, this difference was 
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also not statistically significant. In contrast, a statistically significant difference was found in 

average cable sway and top EEG correlation, with lower magnitudes in the Unconstrained setup. 

Collectively, these results did not fully support the hypothesis that unconstrained cable sway would 

consistently yield lower correlation magnitudes compared to constrained cable sway across all 

outcome measures. 

While this investigation did not yield many statistically significant results in terms of the 

outcome measures that I chose to evaluate, it is important to acknowledge its limitations. One 

limitation was the robotic arm, as it exhibited a tradeoff between displacement magnitude and 

movement frequency, such that for every increase in displacement magnitude there was a decrease 

in movement frequency. This made it difficult to perform the three different waveform motions at 

the same frequency and displacement magnitude. Consequently, I decided to control displacement 

magnitude only. I made this methodology decision prior to data collection with the expectation 

that the top and bottom EEG signals would resemble the specific waveforms programmed to 

produce controlled cable sway, similar to what has been observed in top and bottom EEG signals 

during controlled dual-sided electrode movement, where they closely resembled the sinusoidal 

motion programmed to move the electrodes in a couple of different directions (Li, 2022). 

Additionally, I expected that keeping the displacement magnitude consistent across the different 

waveforms would facilitate comparison of the corresponding EEG signals. While the frequency of 

electrode movement did have an effect on correlation between movement and the corresponding 

top and bottom EEG signals in the study performed by Li (2022), there was no visibly apparent 

pattern or trend in these correlations as frequency increased, so the strength of this effect remains 

unknown. Hence, for the purpose of this investigation, I assumed the frequency of controlled cable 

sway to have a negligible effect and instead prioritized displacement magnitude to focus more on 
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the signal waveforms that I expected to generate. Another limitation of this investigation was our 

use of conductive fabric to create a conductive interface with the electrodes. While conductive 

fabric was more practical for integration into our electrode holder, its electrical properties fail to 

mimic those of human skin (Li, 2022). Additional research may be needed that combines the dual 

conductive fabric layer approach with a material that more closely matches the electrical properties 

of human skin, such as ballistics gel, to allow benchtop studies of controlled cable sway to be more 

generalizable to human EEG (Owda & Casson, 2020). 

It should be noted that for the cable sway and top EEG correlation outcome measure, the 

lack of a statistically significant two-way interaction between waveform motion and testing setup, 

waveform motion not having a statistically significant main effect, and testing setup having a 

statistically significant main effect were likely not attributed to correlation data that were not 

completely normally distributed across all unique condition combinations. I accepted this violation 

of distribution normality and ran the ANOVA to completion given that correlation data for five out 

of six condition combinations were still normally distributed and that repeated measures ANOVA 

is considered generally robust to normality as long as the sample size is at least 30 per condition, 

which in our case was equivalent to the middle 30 movement cycles and coinciding 30 segments 

of EEG data used to calculate 30 correlation values for each condition combination (Oberfeld & 

Franke, 2013). Additionally, for the top and bottom EEG correlation outcome measure, the lack of 

a statistically significant two-way interaction between waveform motion and testing setup, as well 

as neither waveform motion nor testing setup having a statistically significant main effect were 

likely not attributed to correlation data that were not completely normally distributed across all 

unique condition combinations or the violation of the sphericity assumption. I accepted the 

violation of distribution normality and ran the ANOVA to completion following the same rationale 
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as that for the cable sway and top EEG correlation outcome measure. Also, because Mauchly’s test 

of sphericity is sensitive to deviations of normality, it was not surprising that the sphericity 

assumption was violated. However, our use of the Greenhouse-Geisser correction, which provides 

a more conservative measure of the extent of departure from sphericity, estimated an epsilon value 

that indicated that the violation of sphericity was not severe (Maxwell & Delaney, 2004; Oberfeld 

& Franke, 2013). Additionally, this adjustment produced F-statistics and p-values that were barely 

different from those produced without the adjustment, demonstrating that the violation of 

normality was minimal and supporting our decision to accept it. 

 Given the range of conditions under which I produced controlled cable sway, it is likely 

that the cables experienced varying degrees of mechanical deformation. Therefore, the findings of 

this investigation were unexpected considering that previous research has suggested that cable 

sway-induced motion artifact is generated by mechanical deformation and friction of the cables 

(Simakov & Webster, 2010; Symeonidou et al., 2018). However, the lack of significant findings 

does not necessarily reflect that controlled cable sway in a benchtop setting cannot produce specific 

motion artifacts resembling different waveforms. Although previous research has shown the 

generation of cable sway-induced motion artifact in conditions where controlled sinusoidal motion 

produced unconstrained cable sway, closer examination of the design of both of our testing setups 

revealed an interesting detail. As mentioned earlier in our methodology, I designed our electrode 

holder to minimize electrode movement relative to the conductive interface. However, previous 

studies did not appear to have sufficient controls for this specific movement. The instance of cable 

sway-induced motion artifact discussed by Webster (1984) was observed during human exercise, 

implying that the electrodes made contact with the skin, the latter of which deforms significantly 

during movement, inducing electrode movement even with good electrode-skin adhesion (Ershad 
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et al., 2023; Kim et al., 2022). While Symeonidou et al. (2018) used sports tape to secure the 

electrodes to the phantom head, the ballistics gel from which the head was made has a considerably 

low stiffness compared to the solid polylactic acid (PLA) that made up our electrode holder 

(Juliano et al., 2006; Vendland et al., 2019). Therefore, while the tape may have prevented the 

electrodes from being pulled out of the phantom head by the strain of the cables, it is likely that it 

did not prevent smaller electrode movements relative to their interface with the ballistics gel. In 

contrast, the higher stiffness of our electrode holder, combined with the tight fit of the electrodes 

in their wells and the relatively stationary well platforms, most likely contributed to eliminating 

electrode movement in all combinations of testing setup and waveform motion. According to Li 

(2022), controlled movement of dual-sided electrodes relative to a conductive interface can 

produce high correlation between top and bottom EEG, movement and top EEG, and movement 

and bottom EEG for different movement directions. Given that I replicated this conductive 

interface in our own investigation but made sure to eliminate electrode movement, our findings 

indicate that cable sway-induced motion artifact in EEG signals may arise not just from mechanical 

deformation of the cables, but also the simultaneous movement of the electrode itself, which alters 

the dynamics of the electrode-conductive surface interface. 
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