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A polymer-stabilized blue phase liquid crystal �BPLC� composite with a large Kerr constant �K
�13.7 nm /V2� is developed and its electro-optic properties characterized. In addition to the
reduced operating voltage, this BPLC also exhibits a fast response time ��1 ms�, high contrast ratio
��1000:1�, and relatively small hysteresis ��6%�. It will undoubtedly accelerate the emergence of
BPLC for next-generation display and photonic devices. © 2011 American Institute of Physics.
�doi:10.1063/1.3559614�

Polymer-stabilized blue phase liquid crystal �BPLC�
�Refs. 1–3� is emerging as next-generation display technol-
ogy because it exhibits some very attractive features such as:
�1� submillisecond gray-to-gray response time,4 �2� no need
for surface alignment layer, �3� optically isotropic dark state
for wide and symmetric viewing angle, and �4� cell gap in-
sensitivity if an in-plane-switching �IPS� cell is employed.5

However, high operating voltage, low contrast ratio due to
residual birefringence, and hysteresis still hinder its wide-
spread applications.6,7 To reduce operating voltage, two ap-
proaches are commonly practiced: to develop BPLC materi-
als with a large Kerr constant �K�, and to use narrow
electrode gap or protrusion electrode for generating strong
and deep-penetrating electric fields.8–11 Most of the BPLC
materials developed so far have a K value ranging from
0.4–4 nm /V2.12 The corresponding operating voltage is
over 100 V, which is too high to be driven by amorphous-
silicon thin-film transistors �a-Si TFTs�. There is an urgent
need to develop BPLC materials with larger Kerr constant in
order to lower the operating voltage.

For a given pitch length, the Kerr constant of a BPLC is
primarily determined by the product of birefringence ��n�
and dielectric anisotropy ���� of the host nematic LC.13 An-
other critical LC requirement for TFT addressing is high re-
sistivity in order to avoid image flickering. To achieve high
resistivity, fluorinated compounds are commonly used. The
UV-stable wide nematic range fluoro mixtures usually have
�n�0.25, depending on the molecular conjugation length.
Therefore, an alternative approach is to increase ��.

In this paper, we report a BPLC material, designated as
JC-BP01M, with �n�0.17 and ���94. Its corresponding
Kerr constant is K�13.7 nm /V2 at �=633 nm, which
is 3�–10� higher than that reported previously. In addi-
tion to reduced on-state voltage ��48 V�, JC-BP01M also
exhibits a fast response time ��1 ms�, high contrast ratio
��1000:1�, and relatively low hysteresis ��6%�.

Macroscopically, BPLC is an isotropic Kerr medium
when there is no external electric field �E� present. As E
increases, the BPLC becomes anisotropic along the electric
field direction. The induced birefringence is related to E,
wavelength �, and Kerr constant K as:

�nind = �KE2. �1�

However, Eq. �1� is valid only when the electric field is
weak. As E keeps increasing, the induced birefringence will
gradually saturate as described by the extended Kerr effect
model14

�nind = �ns�1 − exp�− �E/Es�2�� , �2�

where �ns denotes the saturated induced birefringence and
Es the saturation electric field. In the weak field region �E
�Es�, we can expand Eq. �2� and deduce the Kerr constant
as:

K 	 �ns/��Es
2� . �3�

From Eq. �3�, high �ns and low Es play equally important
roles for enhancing Kerr constant. Roughly speaking, �ns
governs the optical property �e.g., phase change� while Es
determines the electric property �operating voltage� of a
BPLC material.

In our experiment, we injected JC-BP01M into an IPS
cell with cell gap 7.5 	m, indium tin oxide electrode width
10 	m and electrode gap 10 	m. We then heated the cell
from chiral nematic phase to blue phase with the temperature
slightly higher than the BP-I transition temperature. We held
the temperature there for 1 min and then conducted UV cur-
ing �intensity �20 mW /cm2 and ��365 nm�. After poly-
merization, the clearing temperature of the BPLC composite

a�Electronic mail: swu@mail.ucf.edu.

FIG. 1. �Color online� Measured VT curves of the IPS BPLC cell at el-
evated temperatures. Electrode width=10 	m, electrode gap=10 	m, and
cell gap=7.5 	m. �=633 nm.
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was measured to be Tc�70 °C. For a transmissive display,
the BPLC device should have no reflection in the visible
region. Thus, we designed our cholesteric pitch to be
�200 nm so the Bragg reflection occurs at �350 nm.

We measured the voltage-dependent transmittance �VT�
of our IPS cell with a He–Ne laser ��=633 nm�. Figure 1
shows the normalized VT curves from 15 to 65 °C. As the
temperature increases, the on-state voltage �Von� increases.
We fitted the VT curves shown in Fig. 1 with the extended
Kerr effect model �Eqs. �2� and �3�� at each temperature and
obtained the K values as plotted in Fig. 2. The temperature-
dependent Kerr constant is linearly proportional to the recip-
rocal temperature �1 /T� as:15

K = 
 · 
 1

T
−

1

Tc
� . �4�

Here, 
 is the proportionality constant and Tc is the clearing
point. To fit the experimental data with Eq. �4�, we used Tc
=343.15 K �70 °C� and obtained 
=2.644�10−5 m K /V2.

From Fig. 2, JC-BP01M has a Kerr constant K
�13.7 nm /V2 at 20 °C, which corresponds to Von
�48Vrms �at �=633 nm� in our IPS cell. For a green wave-
length at �=550 nm, the Von is estimated to be �43Vrms. If
we employ JC-BP01M in a cell with protruded electrodes,8

the operating voltage would drop to below 10V. This will
enable BPLC to be driven by a-Si TFT which will accelerate
the emergence of BPLC for display and photonics
applications.16,17

By fitting the VT curves shown in Fig. 1 with extended
Kerr effect, we also obtained �ns at different temperatures.
Results are plotted in Fig. 3, in which we find that �ns de-
creases gradually as the temperature increases18

�ns = ��ns�o�1 − T/Tc��, �5�

where ��ns�o is the extrapolated induced birefringence at
T=0 K and the exponent � is a material constant. Equation
�5� works well as long as the temperature is not too
close �within 1 °C� to the clearing point. From the fitting
curve shown in Fig. 3, we find ��ns�o=0.232 and �=0.25.
For many nematic LC materials studied, � is around
0.19–0.26.19,20 A larger � implies to a smaller order param-
eter.

Kerr constant affects the on-state voltage of the BPLC
cell. From Fig. 1, we obtain the on-state voltage at different
temperatures and then plot Von against 1 /�K in Fig. 4. Our
previous simulation results predict the following relationship
between on-state voltage and Kerr constant8

Von = A/�K . �6�

In Eq. �6�, A is a device parameter which is affected by the
electrode configuration. The model fits well as the straight
line shows in Fig. 4. From the slope, we find A
=5.92 	m1/2. This result agrees well with the same IPS
structure but with a low-K BPLC material, in which A
=6.07 	m1/2.15 From Eq. �6�, both device configuration
�thru A� and large-K material play important roles for lower-
ing the operating voltage.

Fast response time is one of the most attractive features
of BPLC since it helps to reduce motion blur and enables
color-sequential display while minimizing color breakup. We
measured the decay time of our IPS cell from 12.5 to 65 °C,
and results are plotted in Fig. 5. The decay time �90%–10%
transmittance change� decreases as the temperature in-
creases, and reaches �1 ms at �30 °C. We use the follow-
ing equation to fit the experimental data:15

� 	 B ·
exp�Ea/KBT�
�1 − T/Tc�� , �7�

where B is the proportionality constant, Ea is the activation
energy of molecular rotation, and KB is the Boltzmann con-
stant. While deriving Eq. �7�, we have assumed the pitch
length is insensitive to the temperature. This assumption is
validated by our experimental observation. In our polymer-
stabilized BPLC cell, the reflection wavelength does not
change noticeably with the temperature. This is because the
BPLC lattice structure is stabilized by the polymer networks.

FIG. 2. �Color online� Linear fit of the Kerr constant with the reciprocal of
temperature according to Eq. �4�. T: Kelvin temperature. The fitting param-
eter is 
=2.644�10−5 m K /V2.

FIG. 3. �Color online� Temperature dependent saturated induced birefrin-
gence. Open circles are experimental data and solid line represents fitting
using Eq. �5� with ��ns�o=0.232 and �=0.25.

FIG. 4. �Color online� Linear fit of Von vs 1 /�K according to Eq. �6� with
A=5.92 	m1/2. �=633 nm.

081109-2 Rao et al. Appl. Phys. Lett. 98, 081109 �2011�



Through fitting, we find B=4.05�10−12 ms and Ea
=687.75 meV. The fairly large Ea results from the increased
viscosity of the huge �� nematic host and chiral dopant.21

From Fig. 5, as the temperature increases by �10 °C, the
response time decreases by �2�. This changing rate is �2
� faster than a typical nematic because of the higher Ea of
our BPLC.

Polymer-stabilized LCs often exhibit memory effect,
also known as hysteresis, which affects the accuracy of gray-
scale control and should be minimized.7 We have measured
the VT curves of our sample for two cycles of ascending and
descending voltage scans at 25 °C and �=633 nm. Hyster-
esis is defined as the voltage difference at half-maximum
transmittance between voltage-up and -down scans. From the
experiment, we found the hysteresis of our sample is �V
�3Vrms and the ratio of �V /Vp is �6%. Moreover, the mea-
sured VT curves are quite repeatable, indicating that the re-
sidual birefringence of our sample is negligible. The mea-
sured contrast ratio exceeds 1000:1. To further suppress
hysteresis, uniform UV exposure, controlling the curing tem-
perature, or slightly increasing the operation temperature will
be helpful.7

In conclusion, we have demonstrated a polymer-
stabilized BPLC mixture with a large Kerr constant K
�13.7 nm /V2 at 20 °C and �=633 nm. The corresponding

on-state voltage is �48Vrms in an IPS cell with 10 	m elec-
trode width and 10 	m electrode gap. If we use this material
in a protrusion electrode cell, the operating voltage would
be reduced to �10 V. The slightly slower response time
��1 ms� is because JC-BP01M has a relatively high viscos-
ity due to its huge ��. The device contrast ratio exceeds
1000:1 and the hysteresis is �6%. Potential application of
this mixture for next-generation display and photonic devices
is foreseeable.

The UCF group is indebted to ITRI �Taiwan� and AU
Optronics for financial supports.
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