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ABSTRACT

In this thesis, we document the progress in the estimation and control design of a smart

assistive robot arm that can provide assistance during activities of daily living to the elderly

and/or users with disabilities. Interaction with the environment is made challenging by the

kinematic uncertainty in the robot, imperfect sensor calibration, limited view of angle as

well as the fact that most activities of daily living are generally required to be performed in

unstructured environments.

For monocular visual systems, range (or depth) information is always crucial for target mod-

eling and system control design. In the first part of my thesis, a novel and effective method is

developed to estimate the range information in perspective vision systems by observing the

2-D image information and known motion parameters. We have considered the presence of

noise in the image space measurements and kinematic uncertainty in the motion parameters.

Simulation and experiment results show the advantage of our algorithm in comparison with

other approaches.

In the second part of the thesis, Lyapunov-based design techniques are utilized to propose a

2.5D visual servoing controller which stabilizes the robot end-effector pose while satisfying

practical constraints on the sensing and the actuation. First, a nominal feedback controller

is introduced which is then modified through an optimization-based approach in order to
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satisfy the constraints related to limited camera field-of-view and size of actuation. In the

absence of actuator constraints, the proposed control law yields semi-global asymptotic (ex-

ponential) stability. When actuator constraints are introduced, the result is local asymptotic

stability with known bounds on the region of attraction. Simulation and experimental results

demonstrate the effectiveness of the proposed control methodology.
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CHAPTER 1

INTRODUCTION

In this part of the thesis, we have proposed a new method to estimate the range information

by using a modified particle filter (PF) algorithm. The motivation for using a particle

filter based approach is the presence of both additive and non-additive uncertainty in the

motion model which may not lend itself to a Kalman filter or EKF approach. This modified

particle filter algorithm introduces a two-level coarse and fine filtering approach which is

designed to be computationally efficient. In our system model, we not only consider the noise

signal in image space but also the kinematic uncertainty in the motion parameters which

is substantial when working with practical robots that have gearing and transmission. In

contrast to small noise signal in the image plane in previous works, we introduce a larger noise

signal to simulate feature point mismatching and other extreme situations. Simulation and

experimental results show the strong performance of the proposed algorithm in comparison

with standard particle filter and control theoretic techniques.

The work in this part of the thesis aims to design a control strategy based on HVS

that utilizes a Lyapunov-based design approach to guarantee stability – concurrently, robust

performance is ensured by employing an optimization approach that minimizes deviation of
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the controller from a nominal design while enforcing motion constraints related to the size

of the sensor and the finite actuation velocity at the end-effector. The amalgamation of

the Lyapunov based design process along with the optimization strategy leads to a simple

feedback controller in which the size of the various components of the inputs (i.e., end-effector

velocities) are adjusted in an on-line fashion based on the constraints. The stability result

achieved is semi-global asymptotic (exponential) regulation when the size of the actuation

velocity is not constrained. When finite actuation is considered, the stability result is local

asymptotic stability with the ability to explicitly compute an upperbound on the size of the

region of convergence.
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CHAPTER 2

BACKGROUND

Range estimation in monocular vision system is a popular topic in the field of robotics and

machine vision. For example, in visual servoing problems, unavailability or imprecision of

range information could lead to possible failure of the visual servoing. In position-based

visual servoing (PBVS), we use feature information from the image to estimate the position

of the target in the camera coordinates. Then, this estimated position is used to compute

error between the current and desired camera position in the world coordinates (or task

space) [1]. So, it needs both image information and range information to reconstruct 3-D

model for the target. For image-based visual servoing (IBVS), although the control law is

designed in the image space, the measurements needed are purely feature point positions in

the image plane. We still need an estimation of range information for correctly calculating

the interaction matrix, which is also referred to as the image Jacobian. The most common

way is using a constant value in the control design. But there is no guarantee for global

stability in IBVS. In hybrid visual servoing, taking 2.5-D visual servoing as example, the

control is designed in both image space and task space. Although, by introducing extended

image coordinates, we don’t need to directly calculate range information, the estimation of
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unknown depth value d* is still needed in the control design. In [2], a stability bound was

set for estimation error in the 2.5-D visual servoing system. Feature points may be out of

field of view due to the bad estimation of range information too, which means the control

loop is no longer closed. But for the most commonly used 2-D monocular visual servoing

system, the range/depth information is unattainable in a single frame. So, an estimation

algorithm for range information is essential.

In the last decade, numerous works have addressed the range estimation problem in

different systems and fields. It is a classic problem in machine vision and other engineering

fields. To solve this problem, extended Kalman filter (EKF) has been used early on by

Matthies [3], Sridhar [4, 5, 6], and Hung [7]. Later on, some of the researchers tried to

solve this problem by using state observer. Jankovic and Ghosh proposed a new recursive

formulation named identifier based observer (IBO) in [8]. The proposed nonlinear filter (IBO)

is based on a parameter identifier considered in model reference adaptive systems. Chen

and Kano proposed another nonlinear observer combining sliding-mode method, adaptive

method, and discontinuous observer techniques in [9], and tested it both on motion parameter

invariant and variant systems. Dixon et al. designed a fourth-order observer [10], which

can exactly determine the depth information rather than the approximately determined

solution of [9]. In [11], Karagiannis and Astolfi designed a reduced-order nonlinear observer

for perspective system. It is considerably simpler to implement because it is a first-order

system with only one parameter. In recent years, particle filter approach has been used

to solve position estimation problem. Recently, Davison et al. have introduced a depth
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parameterization method to deal with low parallax in case of feature initialization and distant

feature points in monocular SLAM system with EKF framework [12, 13, 14, 15]. In [16],

Pupilli and Calway concentrated on estimating camera position by using particle filter. In

comparison with SLAM, our problem is more concentrating on precisely estimating range

information. In [17], a Gaussian probabilistic model has been proposed to estimate depth

information of the feature points.

During the last decade, visual servoing for robots has been investigated by many re-

searchers because robots may have to deal with extrinsic uncertainties such as unstructured

and/or dynamic environments, or intrinsic limitations that emanate from the design and

construction of the robot. Intrinsic limitations such as kinematic uncertainties are common

issues for many mobile, lightweight robots that pervade our lives and interact with and/or

share their habitat with humans. Specifically, researchers have conducted extensive studies

on eye-in-hand configured camera systems in which visual servoing is performed by a camera

held by the robot end-effector. This configuration allows the robot to have visibility in a

neighborhood of the end effector, i.e., the robot senses the environment around where it

needs to act. However, a disadvantage is that sensor and actuator constraints – specifi-

cally, limited field-of-view (FOV) of the camera as well as finite actuation available at the

end-effector – can lead to end-effector motions that can cause a target to exit the camera’s

sensing domain, thereby, leading to loss of feedback which can result in controller failure.

Several innovative approach has been suggested by researchers to alleviate the limited

FOV issues with traditional position-based visual servoing (PBVS) and image-based visual
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servoing (IBVS) [24][25]. In [26], a partitioned approach to IBVS control is adopted by

decoupling approach-axis rotational and translational components of the control from the

remaining degrees of freedom, while a potential function that repels feature points from the

boundary of the image plane is utilized to guarantee that all features remain in the image

throughout the entire trajectory. In [27], a path-following IBVS controller is developed

that utilizes a potential function to incorporate motion constraints. In [28], [29], and [30],

researchers employ a specialized potential function, namely navigation function, to drive the

robot arm to the desired configuration while keeping the feature points in the field of view.

In [31], a novel qualitative visual servoing scheme is proposed and integrated into the classic

IBVS control law to solve the FOV problem. In [32], using PBVS, an approach powered

by iterative computation of motion trajectory has been adopted to resolve the visibility

issue. In [33], circular-like rotation and translation trajectories are designed to ensure shorter

displacements while ensuring visibility. A modified invariant visual servoing scheme driven

by visibility changes of features and a smooth task function has been described in [34]. In

[35], a PBVS controller coupled with path planning in the image space was utilized to keep

the object in the field of view.

Recently, a path planning method for visual servoing under the visibility constraint has

been formulated as a convex optimization problem in [36]. This was followed in [37] by

introduction of a boosting algorithm which integrates IBVS and PBVS controls. Other

methods have also been proposed that rely on switching techniques. In [38], switching is

between PBVS and backward motion of the camera. In [39], the control switches to PBVS
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from IBVS when the configuration is close to an image singularity or a local minimum. To

the best of our knowledge, detailed stability analysis for multiple switchings between IBVS

and PBVS was carried out for the first time in [40]. The results achieved were: (a) local

asymptotic stability with an unknown region of convergence, and (b) local stability of the

pose and image errors in a well defined neighborhood of the origin. As pointed out in [40],

any control strategy that relies upon IBVS is hampered by the presence of local minima and

singularities – thus, the best result obtainable is local asymptotic stability.

Another approaches to counter the problems with IBVS and PBVS have been through

the use of hybrid visual servoing (HVS) techniques that combine 2D (pixel-space) and 3D

(task-space) feedback to guarantee stability in a large-signal sense [41, 42, 43, 44, 45]. While

HVS (also known as 2.5D servoing) techniques generate intuitive motions in the task and

pixel space, they still remain highly susceptible to objects exiting the camera FOV due to

lack of coordination between the rotational and translational variables, e.g., rotations of the

in-hand camera, especially when the end-effector is close to the object, can result in large

pixel errors and consequently loss of object in the visible cone if the translation velocity

cannot catch up due to, say, actuation size limitations. In order to combine the advantages

of the global stability of HVS along with the effectiveness of the switching approaches against

limited FOV, a region-based scheme was proposed in [46] in order to switch between HVS

control and pure translatory motion; however, the stability was not guaranteed through a

rigorous analysis.
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CHAPTER 3

PROBLEM STATEMENT

For a monocular vision system, we can observe a set of 2-D feature points in the image

plane from a CCD camera across frames. Besides the image measurements, we also compute

the required motion parameters (e.g., linear and/or angular velocity) across frames. Our

goal is to estimate the range information (i.e., depth in 3-D space) of these feature points to

reconstruct the 3-D position of the feature points in the camera coordinates using a sequence

of observations.

The research objective is to drive the 6-DOF robot end-effector pose (and consequently

the pose of the in-hand camera) to a setpoint while utilizing measurements of feature lo-

cations extracted from a video stream. The challenge is to rigorously ensure stability and

convergence of the end-effector pose while considering limitations on the size of the video

sensor as well as the size of the kinematic input, i.e., the end-effector velocity vector. We

note here that the end-effector velocity vector is amplitude limited for safety reasons in many

applications where the robot’s work space is in close proximity with a human, e.g., an assis-

tive robot mounted on the size of a patient’s wheelchair. We also assume that the limits on

the sensor size and the actuation are known apriori.
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CHAPTER 4

METHODOLOGY

4.1 Particle Filter Based Range Estimation

4.1.1 System Model

In this section, a state vector is defined as the unknown 3-D position of the observed 2-D

feature point and it is represented as

x (t) = [X (t) , Y (t) , Z (t)]T (4.1)

Then, an observed 2-D feature point is represented as a projection as follows

y(t) = [y1 (t) , y2 (t)]T = [
X (t)

Z (t)
,
Y (t)

Z (t)
]T (4.2)

Projected representation of feature point requires knowledge of camera’s internal param-

eters, i.e., the initial measurement of feature point in the pixel coordinates is defined as

follows

p (t) = [u (t) , v (t) , 1]T (4.3)

where u(t) and v(t) stand for location of feature point in the image plane in x and y di-

rections, respectively. From initial measurement, an observation vector in the homogeneous
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coordinates can be computed using

[y1 (t) , y2 (t) , 1]T = A−1 ∗ p (t) (4.4)

where A is a 3×3 constant, known, and invertible intrinsic camera calibration matrix [2].The

aforementioned state and observation vectors are used to formulate a system model as follows

ẋt = ft (xt, θt, vt)

yt = ht (xt, nt)

(4.5)

where xt denotes the unknown state vector, θt is the known motion parameters to system,

yt is the observation, while vt and nt represent the uncertainty in motion parameters and

the image measurement, respectively. Generally, the system can be modeled as a linear or

nonlinear setup. In this problem, the unknown state vector is the 3-D position of the feature

point in the camera coordinates, the motion parameters are the translational and rotational

velocity vectors, while the observation is the 2-D position of the feature point in the current

scene.

A state space model, which models the time evolution of the system, is described in the

form of differential or difference equation. As shown in [9], a deterministic general affine

model for our system can be described as
Ẋ (t)

Ẏ (t)

Ż (t)

 =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 ∗

X (t)

Y (t)

Z (t)

+


b1

b2

b3

 (4.6)

where aij(t) and bi(t) are known motion parameters. Frequently, motion parameters show

variations for a variety of reasons [21]. Among them, kinematic uncertainty caused by gearing
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and transmission of the robot system mostly affects state space model, so we can represent

a more general probabilistic state space model as follows
Ẋ (t)

Ẏ (t)

Ż (t)

 =


ā11 ā12 ā13

ā21 ā22 ā23

ā31 ā32 ā33

 ∗

X (t)

Y (t)

Z (t)

+


b̄1

b̄2

b̄3

 (4.7)

where the noise signal is represented by additive noise signals in the parameters aij(t) and

bi(t), which are defined as

āij = aij + va,ij

b̄ij = bij + vb,ij

(4.8)

An observation model is defined by the property of the physical system. In this problem, an

observation model is formed as a perspective vision system [9] and is defined as

y1(t)
y2(t)

 =


1

Z(t)
0 0

0
1

Z(t)
0

 ∗

X(t)

Y (t)

Z(t)

+ nt (4.9)

where nt is additive measurement error vector. This error is caused by multiple reasons such

as quantization errors, incorrect detection of feature point, and mismatched feature point

with reference template image. Although quantization errors can be modeled as a uniformly

distributed random signal, the error caused by mismatched feature points is dominant –

these feature point mismatches can be adequately modeled using a Gaussian distribution,

nt, which is assumed to be Gaussian random variable with known mean and variance. We
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note here that the non-additive nature of noise in (4.7) (i.e., uncertainty is multiplied with

state) motivates us to pursue a particle filter approach in lieu of the commonly employed

Extended Kalman Filter (EKF) approach. More specifically, we are suggesting that this

nonlinearity may result in the evolving probability distribution for the state vector to be not

Gaussian even if the underlying uncertainty vectors are Gaussian.

4.1.2 Two-level Particle Filter Approach

As previously stated, we adopt a particle filter approach to estimate the range information.

Fundamentally, the particle filter (PF) algorithm is a Bayesian estimation of states of a given

system where the posterior probabilistic density function (pdf) of the state is updated by a

Monte Carlo method [19]. In the particle filter approach, a prior pdf can be represented by

a set of random samples (i.e., particles) as

p (x0:t|y1:t) ≈
N∑
i=1

witδ(x0:t − xi0:t) (4.10)

In this range estimation problem, particles are considered as a set of 3-D points in the

camera coordinates. Here, xit denotes the i-th particle at time t while wit is an associated

important weight of this particle. Also, yt stands for observation at time t. The PF algo-

rithm consists of two steps, namely, ‘prediction’ and ‘update’ [18]. Given the probability

p(xt−1|y1:t−1) based on all the available observations from time 1 to time t−1, the prediction
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step is performed using the evolution function to predict the prior pdf at time t as

p(xt|y1:t−1) =

∫
p(xt|xt−1, θt−1)p(xt−1|y1:t−1)dxt−1 (4.11)

Then, the state xt can be updated using Bayes rule with the predicted prior pdf and current

observation of the feature points in the image plane as

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)
(4.12)

Throughout this part of thesis, a basic procedure for PF described in [18] is followed with

our modification. An observation vector yt is defined in the homogenous coordinates which

arises from the projection of 3-D point in the camera coordinates. In view of this perspective

projection, each observation vector can be mapped to 3-D line, not a 3-D point in the camera

coordinates. Thus, it is easy to see that the homogeneous coordinates from projection of 3-D

points experience a ‘projection ambiguity’ phenomenon. Fig. 4.1 shows a consequence of the

projection ambiguity phenomenon in our experiment. Trajectory A shows the projection of

the true state in the image space – the initial 3-D coordinates in camera-space for this point

are xa =

[
87, 41, 305

]T
. Trajectories B and C represent the projections of two particles

initialized at xb =

[
100, 47, 350

]T
and xc =

[
90, 43, 305

]T
. All three particles are

driven by the same evolution model. It’s clear to see that all three projected trajectories

twist with each other between “Marker 1” and “Marker 2”. Although particle C is much

closer to the true state than particle B in the 3-D coordinates, the algorithm can only update

according to the ambiguous 2-D projection. Thus, the estimation will initially be poor since

both particles B and C will evolve with similar weights owing to their projections being

13
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Figure 4.1: Projection ambiguity phenomenon

similar. We remark here that the above situation does not imply that the ordinary PF

algorithm is unable to resolve this projective ambiguity. i.e., modulo a singular feature point

located at the so-called focus of expansion, the system is observable.

Another drawback of the particle filter approach is that a large number of particles are

needed to estimate high-dimensional states, which implies very low computation efficiency in

high order system and poor performance for on-line estimation problem [22]. For example, if

we draw N samples in each dimension of 3-D space, the total number of the particles will be

N3. The corresponding computation complexity is O(N3). Fig. 4.2 shows the relationship

between the number of particles and estimation result. Thus, the standard PF method meets

a dilemma in solving range estimation problem for perspective systems. To represent the

posterior pdf p(xt|y0:t) in a 3-D space and estimate it precisely, a large number of particles
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are needed. However, it means we expect to see lower computation efficiency. Our goal in

this work is to find a modified algorithm that leads to efficient estimation.

As a remedy for the above issues, we propose a two-level approach. The coarse-level is a

1-D (Z axis) PF to coarsely estimate the depth of the feature points. Based on the result from

the coarse-level, a 3-D fine-level particle filter was formed in a small region with relatively

small number of particles. The employment of the coarse-level particle filter allows us to

reduce the number of particles while the fine-level particle set helps to achieve a satisfactory

estimation result. Fig. 4.3 shows that by using the two-level PF as described, the importance

weight of the incorrect particle (from the discussion above) drops much more quickly than

the conventional PF approach [18] which implies that the proposed approach allows for

faster ambiguity resolution. In the next section, we will demonstrate that our modified PF

can converge faster with a small number of particles. To achieve the best estimation result

for the coarse-level particle filter, firstly, coarse-level particles x1,i0 are generated from the

observations y1 and y2 in the first frame (see (4.4)) by considering a uniform distribution of

Zi
0 as

Zi
0 ∼ U(Zmin,Zmax)

x1,i0 = [y1Z
i
0, y2Z

i
0, Z

i
0], for i = 1, 2, ...N

(4.13)

By choosing the coarse level particles along the homogeneous line, whose projection on

the image plane is

[
y1 y2

]
, the coarse-level PF will give us a coarsely estimated range

information. Since all coarse level particles are equally likely distributed, the fine-level

particles are initially drawn around any randomly chosen coarse level particle. At succeeding
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frames after the first, fine level particles need to be reinitialized under the following condition.

If there is a change in the index of the coarse level particle with the highest weight between

the current and the previous frames, a reset is triggered and fine-level particles are uniformly

drawn from a region around this coarse-level particle with the highest importance weight.

In our case, we define this region as a cuboid in the camera coordinates centered at x1,maxt

(which is defined as the coarse particle with the highest weight). The size of this cuboid

is dependent on the noise signal in the image plane, kinematic uncertainty in the motion

parameters, and the estimation precision of the coarse-level filter.

In both coarse and fine-particle filter algorithm, assuming that we have a posterior pdf

p(xt−1|y0:t−1) of the state at time t−1, the first step is to draw samples from the importance

function as

p(xt|xt−1, θt−1) (4.14)

where θt−1 represents the motion parameters (4.5) of the system. Thus, in this implemen-

tation, the prior is being utilized as the importance function from which it is easy to draw

samples. As we have shown in (4.8), the noise signal from kinematic uncertainty affects

motion parameters of the state space model. In the literature, this noise signal va and vb

can be modeled using a Gaussian distribution with zero mean as

va,ij ∼ N(0, (ka ∗ aij)2)

vb,i ∼ N(0, (kb ∗ bi)2)
(4.15)

where the variance of this uncertainty is a function of motion parameters of the state space

model in (4.7) – here, ka, for example, represents the percentage noise in the signal. In
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consideration of this noise signal, the final motion parameters can be represented as

āij ∼ N(aij, (ka ∗ aij)2)

b̄i ∼ N(bi, (kb ∗ bi)2)
(4.16)

Next, the prior pdf of particle filters can be generated using (4.7)

In the update step, the predicted prior pdf of previous step is corrected via measurements.

To this end, the important weights of the particles in the prior distribution will be updated

based on the current observation through following equation

w̄it ∝ p(yt|xit)wit−1 (4.17)

where p(yt|xt) is defined as observer posterior [18] which can be derived from observation

model (see (4.9)). As similarly done for the uncertainties in the motion parameters, nt

is assumed to be a Gaussian random signal with known mean and variance. To get the

analytical form of the observer posterior, the image measurement error nt is defined by the

following form

p(nt) =
1

(2π) |K|1/2
exp

(
−1

2
nTt K

−1nt

)
(4.18)

Furthermore, without loss of generality, it is assumed that the error distribution of each

dimension of the image plane shows probabilistically independent behavior. Hence, the

covariance matrix K is defined as

K =

σ2
x 0

0 σ2
y

 (4.19)

Based on the probabilistic distribution (4.18), the observer posterior can be defined as

p(yt|xit) =
1

2π|K|1/2
exp

(
−1

2

(
y − ht

(
xit
))T

K−1
(
y − ht

(
xit
)))

(4.20)
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Figure 4.4: Performance comparison between the coarse and fine-level filter

At time t, the associated weights of the updated particles are normalized using

wit =
w̄it
N∑
i=1

w̄it

(4.21)

Both coarse and fine-level particle sets will be updated until the end of the estimation process.

Thus, time coherency is maintained for both the filters throughout the entire process – the

only exception to this is when the fine particle filter gets reinitialized as described above. Fig.

4.4 shows a simulation example showing the time evolution of the coarse and fine filters. The

dash-dot line shows the coarsely estimated depth. By sampling around this coarse result,

fine-level particle filter (solid line) compensates the error, and eventually approaches the true

state.
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4.1.3 Two-Level Particle Filter Framework

Based on the aforementioned analysis, we propose a particle filter framework for range esti-

mation as follows:

1) Initialization:

Draw particles for set x1,i, x2,i as Fig. 4.2.

2) Prediction:

For i = 1, . . . , N1 and j = 1, . . . , N2, draw particles via

x1,it ∼ p(x1t |x1t−1, θt−1) (4.22)

x2,jt ∼ p(x2t |x2t−1, θt−1) (4.23)

3) Update:

For i = 1, . . . , N1 and j = 1, . . . , N2, compute

w1,i
t = p(yt|x1t−1)w

1,i
t−1 (4.24)

w2,j
t = p(yt|x2t−1)w

2,j
t−1 (4.25)

4) Fine Level Particle Reinitialization
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Find imax in the coarse-level in the current frame, if imax not equal to imax in last frame,

reset fine-level particles.

5) Resampling

Both coarse and fine-level particles are resampled whenever degeneracy phenomenon is

detected [18].

4.1.4 Simulation and Experiment Results

Prior to experiment, we implemented the proposed algorithm using MATLABTM and rel-

evant toolboxes in standard Windows XP operating system on Intel PentiumTM IV 4GHz,

1GB memory configured system. In the simulation, the sampling frequency of modified

particle filter algorithm is set to 25[Hz]. The number of particles in coarse-level is N1 = 50

while the number of particles in fine-level is N2 = 343. We chose two different observer-based

range estimation approaches available in literature, namely, the fourth-order observer of [10]

and the reduced-order observer of [11], and compare our results with them in the simulation

environment. The following motion model is chosen in consideration of its use in many other

relevant works [9, 10, 11]
Ẋ (t)

Ẏ (t)

Ż (t)

 =


−0.2 0.4 −0.6

0.1 −0.2 0.3

0.3 −0.4 0.4

 ∗

X (t)

Y (t)

Z (t)

+


0.5

0.25

0.3

 (4.26)
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Figure 4.5: Comparison with observers in [10] and [11]

Here, the initial condition of the state is given as

[X (0) , Y (0) , Z (0)]T = [1, 1.5, 2.5]T (4.27)

To generate the results shown below, λ is set equal to 20 for the method in [11] while all the

parameters in [10] are utilized as reported therein.

With 1% image measurement error and no kinematic uncertainty, all the methods show

satisfactory convergence in estimation of range information as shown in Fig. 4.5. (Starred

line: the proposed algorithm; Dash-dot line: fourth-order observer [10]; Solid line: reduced-

order observer [11]. No kinematic uncertainty is considered. Only 1% image measurement

error is considered. ka = kb = 0.00, σx = σy = 0.01). The proposed algorithm has the

fastest convergence; moreover, the observer based methods show noisy performance. Next,

we performed a comparison when 10% kinematic uncertainty is present along with higher

percentage of image measurement error (5%). The reduced-order observer [11] shows very
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unreliable performance as shown in Fig. 4.6 (Starred line: the proposed algorithm; Dash-

dot line: fourth-order observer [10]; Solid line: reduced-order observer [11]. 10% kinematic

uncertainty and 5% image measurement errors are considered. ka = kb = 0.10, σx = σy =

0.05). Furthermore, smaller transient error and faster convergence rate for the two-level PF

compared to the scheme in [10] implies that the proposed method is more feasible even under

non-ideal conditions.

For obtaining experimental results, we gathered a set of 640 × 480 image sequences at

30[Hz]. Stereo images were captured using a pair of Point-Grey Dragonfly2 cameras and

SIFT features were matched between the stereo pairs in order to determine the ground truth

depth information. Camera velocities were obtained using the measured motion of the robot

end-effector.
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Coarse-level particle set was chosen to contain 41 samples; fine-level particle set contained

176 samples. We compared the performance between the proposed method and the PF

approach in [18] at first. We also compare the performance of fourth-order observer [10] and

our two-level approach with the experimental data gathered from our system. Fig. 4.7-(a)

shows the 2D trajectory (white) of feature point in the image plane, which is obtained from

our CCD camera and a standard feature detector – this is used as measurement in the update

step 4.17. Fig. 4.7-(b) shows the corresponding 3D trajectory of camera motion measured

by the encoders in the links of the robot. This motion of the camera is used to obtain

the velocities bi(t) used in (4.14) (see Fig. 4.7-(c) for a plot of these velocities). Fig. 4.8

depicts the experimental depth estimation result comparing the PF in [18] with our method.

The proposed algorithm performs better than the PF approach [18] in view of convergence

rate while the steady-state estimation error is nearly the same. We note here that the total

number of particles employed for the proposed algorithm is 217 but is 2009 for the method

in [18]. Fig. 4.9 shows the comparison between the observer based estimator in [10] and the

proposed approach. It can be seen that the design from [10] cannot obtain convergence. It

is especially vulnerable when there is a change in end-effector velocity (around t = 1[s] in

the middle curve on Fig. 4.7-(c)). While it is possible to choose a bigger gain as noted in

[10] to obtain theoretical asymptotic stability, this leads to poor overall stability and results

in large oscillations in the range estimate. The result shown in Fig. 4.9 was the best that we

could obtain after a long period of tuning a large number of gains through trial and error.
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Figure 4.8: Comparison between the proposed method and particle filter approach in [18]

In comparison, the proposed approach shows rapid convergence and is not overly restrictive

in terms of end-effector motion or implementation.

Both simulation and experimental results show that our proposed method outperforms

the standard PF in [18] and observer based estimators proposed in [10] and [11]. Firstly, our

method is very robust for the system with large image space and kinematic uncertainty. Sec-

ondly, in comparison with state observer where motion parameters are required to have some
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Figure 4.9: Comparison between the proposed method and observer in [10]

level of differentiability, the two-level PF approach can still work when motion parameters

are non-smooth or even discontinuous. The performance and stability of the fourth-order

state observer also greatly relies on the observer gains. It was hard to find a set of gains

for the observer to work in all situations. Moreover, the state observers that we tested,

to varying degrees, were susceptible to noise – the result of reduced order observer in [11]

(while very simple to implement) was the most susceptible. All these requirements greatly

restrict the application of state observers. Thirdly, comparing with standard PF in [18], our

method can achieve nearly the same estimation result with smaller number of particles – a

10 fold decrease in the number of particles was achieved as discussed previously. Finally,

an advantage of this approach over EKF based approaches is that it can cope with both

nonlinear and non-Gaussian problems because it is derived from standard PF. In this work,

the proposed method is presented as an estimation of range information for only one feature
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point. Without loss of generality, this scheme could be easily extended to multiple feature

points. Using three or more non-collinear 3D points, a target plane might be recovered and

corresponding range information could be estimated.

4.2 Lyapunov-based Stable Visual Servoing Design

4.2.1 System Model

To setup the problem, one can begin by referring to Fig. 4.10 where a reference plane π

is considered with four feature points denoted by Oi ∀i = 1, 2, 3, 4 – here, no three of

the coplanar feature points are considered to be collinear. It is noted that the classic eight-

points algorithm or the Virtual Parallax method [47] can be utilized if four coplanar target

points are not available, therefore, the reference plane π can denote a real or virtual plane

associated with a target. The 3D position of the ith feature point m̄i ∈ R3×1 in the current

camera coordinates F and m̄∗i ∈ R3×1 in the desired camera coordinates F∗, respectively,

are expressed as follows

m̄i =

[
Xi Yi Zi

]T
, m̄∗i =

[
X∗i Y ∗i Z∗i

]T
. (4.28)

The time derivative of m̄i can be written as follows [42]

˙̄mi = −vc + [m̄i]×ωc (4.29)
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where vc ∈ R3×1 and ωc ∈ R3×1 denote camera linear and angular velocities, while the

notation [ζ]× represents the skew-symmetric matrix associated with a vector ζ. One can also

define the normalized coordinates mi and m∗i for the target points m̄i and m̄∗i , respectively,

in the following manner

mi =
m̄i

Zi
=

[
Xi

Zi

Yi
Zi

1

]T
, m∗i =

m̄∗i
Z∗i

=

[
X∗i
Z∗i

Y ∗i
Z∗i

1

]T
. (4.30)

Here, the normalized coordinates mi can be obtained through the pixel coordinates pi =[
ui vi 1

]T
∈ R3×1 and the global invertible transformation pi = Ami where A ∈ R3×3

is a known, invertible, intrinsic camera calibration matrix – thus, mi is considered known

given measurements for the corresponding pi. Furthermore, one can define the extended

image coordinates me,i ∈ R3×1 and m∗e,i ∈ R3×1 as follows [42]

me,i ,

[
Xi

Zi

Yi
Zi

log (Zi)

]T
, m∗e,i ,

[
X∗i
Z∗i

Y ∗i
Z∗i

log (Z∗i )

]T
. (4.31)

Note that the first two elements in me,i and m∗e,i are the same as the ones in mi and m∗i , which

can be directly obtained from current and desired frame. After taking the time derivative of

me,i along the dynamics of (4.29), the open-loop dynamics of the extended image coordinates

for the ith feature point can be obtained as follows

ṁe,i = − 1

Zi
Li
v

˙̄mi =

[
1

Zi
Li
v Li

c

]
τ c (4.32)
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where τ c =

[
vTc ωTc

]T
∈ R6×1 while Li

v (me,i) ∈ R3×3 and Li
c (me,i) ∈ R3×3 are defined as

follows

Li
v =


−1 0 me,i,1

0 −1 me,i,2

0 0 −1

 , Li
c =


me,i,1me,i,2 −1−m2

e,i,1 me,i,2

1 +m2
e,i,2 −me,i,1me,i,2 −me,i,1

−me,i,2 me,i,1 0

 (4.33)

where me,i,j denotes the jth element in me,i. For the technical details of (4.32) and (4.33),

the reader is referred to [42]. Also note that Zi = γi2d
∗ where d∗ denotes a fixed distance

to the plane π from the desired camera position; the ratio γi2 , Zi/d
∗ can be computed via

decomposition of a Euclidean homography [42]. Furthermore, given the ith feature point,

the translational error ev =

[
ev,1 ev,2 ev,3

]T
∈ R3×1, which is used for quantifying the

position mismatch of a feature point between coordinates F and F∗, is defined as follows

ev , me,i −m∗e,i (4.34)

where me,i and m∗e,i have been defined previously in (4.31). Here ev,1 (t) and ev,2 (t) are

clearly measurable from the description above, and the depth error ev,3 (t) , log

(
Zi
Z∗i

)
can

be computed as follows [42]

Zi
Z∗i

=
(1 + nTxf )n

∗Tm∗i
nTmi

. (4.35)

where n , Rn
∗∈ R3×1 while n∗ ∈ R3×1 is the unit vector normal to plane π expressed in F∗

and R ∈ R3×3 is the rotation matrix between coordinates F and F∗. xf ∈ R3×1 represents a

scaled translational error. The rotation matrix R, the normal n∗, and the scaled translation

xf can be obtained from the aforementioned homography decomposition. The orientation
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Figure 4.10: Coordinate frame relationships between the reference plane and the in-hand

camera at the current and reference locations [44]

error between F and F∗ can be rewritten as follows

eω= uθ (4.36)

where u ∈ R3×1 represents a rotation axis and θ denotes the rotation angle about u. The

reader is referred to [23] and [49] for details on how to obtain u and θ given the rotation

matrix R.

4.2.2 Control Design

Based on the definitions in (4.32), (4.34), and the time derivative of (4.34) and (4.36), the

dynamics of the open-loop translation and rotation errors can be expressed as follows [48]

ėv =
1

γi2d
∗L

i
vvc + Li

cωc, ėω = Lωωc (4.37)
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where Lω ∈ R3×3 is given as follows [42]

Lω = I3 −
θ

2
[u]× +

(
1− sinc (θ)

sinc2
(
θ
2

)) [u]2× . (4.38)

Based on the open-loop dynamics of (4.37) and the ensuing stability analysis, one can design

a nominal feedback controller τ c in the following manner

τ c = Li
τKτz (4.39)

where z ,

[
eTv eTω

]T
∈ R6×1 is the composite error signal while Li

τ and Kτ can be defined

as follows

Li
τ =

−γi2 (Li
v)
−1

03×3

03×3 −I3×3

 ∈ R6×6, Kτ =

 Kv 03×3

03×3 Kω

 ∈ R6×6

where Kv ∈ R3×3 and Kω ∈ R3×3 are constant, diagonal, positive gain matrices for which

the bounds can be chosen to satisfy certain stability and performance criteria.

Motivated by the desire to dynamically modify the size of the control inputs based on

sensor and actuator constraints, one can define diagonal weight matrices Wv ∈ R3×3 and

Wω ∈ R3×3 and utilize those in order to obtain a modified controller as follows

τ c= Li
τKτWcz, Wc =

 Wv 03×3

03×3 Wω

 ∈ R6×6. (4.40)

After substituting (4.40) into (4.37), the closed-loop dynamics for the position and orienta-

tion errors can be obtained as follows

ėv = − 1

d∗
KvWvev−Li

cKωWωeω, ėω= −LωKωWωeω. (4.41)
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To facilitate further analysis, we define wc ∈ R6×1 as an auxiliary gain vector consisting of

the diagonal entries of Wc such that Wc = diag{wc} ∈ R6×6. Furthermore, we define Z =

diag{z} ∈ R6×6 such that Wcz = Zwc. Based upon these definitions as well as the controller

definition given in (4.40), the closed-loop dynamics of the extended image coordinates for

the kth feature point can be succinctly obtained as follows

ṁe,k =

[
1

γk2d
∗L

k
v Lk

c

]
Li
τKτZwc = Am,kwc (4.42)

where we have utilized (4.32) and the fact that Zk = γk2d
∗. In (4.42) above, Am,k ,[

1

γk2d
∗L

k
v Lk

c

]
Li
τKτZ ∈ R3×6 is considered to be measurable; specifically, it is assumed

that the constant d∗ can be computed apriori offline or estimated online using standard depth

estimation techniques, e.g., [50]. Given a feature point me,k that lies on the jth edge of the

sensor boundary represented by a normal nj (positive pointing outwards), one can utilize

the dynamics of (4.42) to obtain the following dynamic constraint for the feature staying

within the boundary

nTj ṁe,k ≤ 0⇒ nTj Am,kwc ≤ 0 (4.43)

where nj ∈ R3×1 is a normal vector in homogeneous coordinates whose third element is always

0 since we are only interested in the dynamics of the first two components of me,k. Given

a set of Nf such feature points lying on sensor boundaries, the constraint represented by

(4.43) can be stacked for each of these feature points to obtain a set of inequality constraints

as follows

Bwc ≤ 0Nf×1 (4.44)
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where B ∈ RNf×6. Motivated by the ensuing stability analysis and the desire to introduce

actuation constraints, one can bound the auxiliary gain vector wc as follows

εu≥ wc≥ εl (4.45)

where εu, εl ∈ R6×1 represent constant upper and lower bounds for the auxiliary gain vector

wc. Furthermore, based on our desire to follow the nominal controller as allowed by the

constraints (4.44) and (4.45), we define a cost function as follows

J ,
1

2

(
wc − I6×1

)T (
wc − I6×1

)
. (4.46)

Given the constraints and the cost function represented by (4.44), (4.45), and (4.46) above,

the weight optimization problem can be expressed in a standard quadratic programming

form as follows

min
1

2
xTx, s.t.


Bx ≤ b,

ub≥ x ≥ lb.

(4.47)

where x , wc − I6×1, b , −B · I6×1, ub= εu−I6×1, and lb= εl−I6×1.

4.2.3 Stability Analysis

Theorem 1 Given the existence of a solution for the quadratic programming problem in

(4.47), the closed-loop error system described by (4.41) is semi-globally asymptotically (ex-

ponentially) stable under unconstrained actuation while the result is local asymptotic (expo-

nential) stability under constrained actuation.
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Proof. Let V (t, z) denote a non-negative Lyapunov candidate function defined as

V (t, z) =
1

2
eTv ev +

1

2
eTωeω =

1

2
‖z‖2 (4.48)

where z has been previously defined as z ,

[
eTv eTω

]T
. After differentiating (4.48) along

the dynamics of (4.41) and applying the fact that eTωLω = eTω , one can obtain

V̇ = −eTωKωWωeω − eTv Li
cKωWωeω −

eTv KvWvev
d∗

. (4.49)

After defining Li∗
c = Li

c

(
m∗e,i,1,m

∗
e,i,2

)
, it is easy to see that

∥∥Li
c−Li∗

c

∥∥ ≤ ρ (‖ev‖) (4.50)

where ρ (‖ev‖) denotes a globally invertible, nondecreasing function. By applying the in-

equality in (4.50), V̇ (t, z) can be upperbounded in the following manner

V̇ ≤ −KωW ω ‖eω‖
2 +KωW ω ‖Li∗

c ‖∞ ‖ev‖ ‖eω‖

− 1

d∗
KvW v ‖ev‖

2 +KωW ωρ (‖ev‖) ‖ev‖ ‖eω‖
(4.51)

where W v, W ω, W ω, Kv, Kω, and Kω are all constant scalars with following definitions:

W v = λmin {Wv}, W ω = λmin {Wω}, W ω = λmax {Wω}, Kv = λmin {Kv}, Kω = λmin {Kω},

and Kω = λmax {Kω}. Here we note that λmin {·} and λmax {·} denote the minimum and

maximum eigenvalues for a given matrix. By using the fact that ‖a‖ ‖b‖ ≤ ‖a‖2 + ‖b‖2, one

can further upperbound (4.51) as follows

V̇ ≤ −δ1 ‖ew‖2 − δ2 ‖ev‖2 (4.52)

where δ1 and δ2 are constants of analysis that are defined as follows

δ1,KωW ω −
(∥∥Li∗

c

∥∥2
∞ + 1

)
, δ2,

1

d∗
KvW v −K

2

ωW
2

ωρ
2 (‖ev‖)−K

2

ωW
2

ω. (4.53)
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By choosing

Kω > η1,
1

W ω

(∥∥Li∗
c

∥∥2
∞ + 1

)
, (4.54)

it is easy to see that that δ1 is positive where we have exploited the positive lower boundedness

of Wω given in (4.45). After choosing a large enough Kω to satisfy (4.54), it is obvious that

δ2 > 0 when the following condition is satisfied

‖ev‖ < η2,ρ
−1


√√√√√ 1

d∗
KvW v −K

2

ωW
2

ω

K
2

ωW
2

ω

 . (4.55)

where Kv also needs to be selected large enough to ensure that

Kv > η3,d
∗K

2

ωW
2

ω/W v (4.56)

such that the set {ev | ‖ev‖ < η2} is non-empty where the boundedness of the right hand

side of the above expression is ensured by the bounds on the weights given in (4.45). Thus,

the time derivative of V (t, z) can be upperbounded as

V̇ 6 −λ1 ‖z‖2 ∀ ‖z (0)‖ < η2 (4.57)

where λ1,min (δ1, δ2) is a positive constant scalar. Furthermore, we have utilized the fact

that ‖ev (0)‖ < ‖z (0)‖ by definition and that ‖z (t)‖ ≤ ‖z (0)‖ on account of V̇ (t, z) being

negative definite on the domain of interest. After exploiting the fact that ‖z‖2 =2V from

(4.48) and substituting in (4.57), one can solve the resulting differential inequality to obtain

the following expression for V (t, z)

V (t, z) 6 V (0, z (0)) exp (−2λ1t) ∀ ‖z (0)‖ < η2. (4.58)
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By again utilizing the fact ‖z‖2 =2V and noting that V (t, z) < V (0, z (0)) from (4.58), we

can develop following upper bound for the composite vector z(t) as

‖z (t)‖ 6 ‖z (0)‖ exp (−λ1t) ∀ ‖z (0)‖ < η2. (4.59)

In (4.59), since η2 can be made as large as possible by choosing Kv large enough, it is clear

to see that z (t) is semi-globally asymptotically (exponentially) stable. However, the gains

cannot be made arbitrarily large when considering actuator saturation, which we model as

follows

‖vc‖ ≤ vcb ‖ωc‖ ≤ ωcb

where vcb and ωcb stand for the finite bounds on the norm of control input signals vc and

ωc, respectively. From (4.59), we know that z ∈L∞ which implies that ev, eω∈L∞. Thus,

we can utilize (4.31), (4.34), and the definition of γi2 and Li
v to prove that γi2, (Li

v)
−1 ∈ L∞.

Assuming γi2

∥∥∥(Li
v)
−1
∥∥∥ ≤ ρ, ‖ωc‖ and ‖vc‖ can be upperbounded according to (4.40) as

‖vc‖ ≤ γi2

∥∥∥(Li
v)
−1
∥∥∥ ‖Kv‖ ‖Wv‖ ‖ev‖ ≤ ρKvW v ‖ev‖

‖ωc‖ ≤ ‖Kω‖ ‖Wω‖ ‖eω‖ ≤ KωW ω ‖eω‖
(4.60)

where W ω, Kω, W v, and Kv have been defined previously. Thus, (4.60) can be utilized to

prove that the actuator bounds can be satisfied as follows

‖vc‖ ≤ vcb ∀ ‖ev‖ <
vcb

ρKvW v

, ‖ωc‖ ≤ ωcb ∀ ‖eω‖ <
ωcb

KωW ω

. (4.61)

By employing the fact that ‖eω‖, ‖ev‖ < ‖z‖ and combining the results from (4.59) and

(4.61), one can obtain the following result

‖z (t)‖ 6 ‖z (0)‖ exp (−λ1t) ∀ ‖z (0)‖ < min

(
η2,

vcb

ρKvW v

,
ωcb

KωW ω

)
(4.62)
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which proves the local asymptotic (exponential) stability result for z under finite actuation

∀ t ≥ 0. It is clear to see that (4.54), (4.55), and (4.61) offer prescriptions for choosing the

bounds on the the auxiliary gain vector wc.

Remark 1 The above stability analysis for the modified control law is also valid under nom-

inal control by setting Wv = Wω = I3×3, i.e., in the absence of constraints, the semi-global

stability result stated in Theorem 1 holds under nominal control by choosing the control gains

to have bounds as follows

Kω > η̄1,
(∥∥Li∗

c

∥∥2
∞ + 1

)
, Kv > η̄3,d

∗K
2

ω. (4.63)

4.2.4 Results

In this section, the proposed control scheme was implemented using Simulink module in

MATLABTM 7.5. A simple target object containing four coplanar feature points located on

it was considered in the simulations while d∗ = 2 was assumed to be known. The control

gains Kv and Kω in (4.39) and (4.40) were chosen to be as follows

Kv = diag{0.5, 0.5, 0.5}, Kω = diag{0.5, 0.5, 0.5}.

The lower and upper bounds εl and εu of the variable wc were selected as follows

εl =

[
0.1 0.1 0.1 0.1 0.1 0.1

]T
, εu =

[
1 1 1 1 1 1

]T
.
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Figure 4.11: Comparison between Nominal and Modified control laws during simulation

Fig. 4.11 depicts comparison between the nominal and modified control strategies in

simulation. From Fig. 4.11-(a), it is clear to see that the nominal feedback controller in

(4.39) was unable to keep all the feature points within the sensor boundary. On the other

hand, from Fig. 4.11-(b) it is straightforward to see that the modified controller could ensure

the visibility of the feature points by modifying the translation and rotation commands such

that the critical feature point on the boundary was restricted to move along the boundary

until such time as it was able to be driven to its setpoint (see Fig. 4.11-(c) for zoomed-in

view of trajectory of critical feature point.).

A real-time implementation of the proposed control algorithm was also tested on the

UCF-MANUS assistive robotic experimental testbed [51]. For obtaining experimental data,

a stream of 640×480 images was captured by using a Point-Grey Dragonfly2 camera mounted

on the gripper of the robot manipulator. Both the nominal and modified control algorithms

were implemented in an Intel Core2 Q9450 PC with 2.75GB RAM running Windows XP

operating system. In a discrete experimental implementation, it was imprudent to wait for
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the feature points to reach the sensor boundary before applying the modified controller –

the alternative chosen was to predict the one-step ahead position of any feature point given

the 2D feature point dynamics in (4.32) and the nominal control signal given by (4.39).

Thus, feature points prone to exiting were placed on the constraint stack. Furthermore,

in order to account for the uncertainty in depth estimation (in this experiment, d∗ = 100

[mm] was a coarse estimation used in the control design) as well as the imprecise prediction

of feature point locations due to uncertainty in the robot model and actuator dynamics, a

virtual FOV was created inside the actual FOV and was utilized in the optimization problem

formulated in (4.47). The space between the virtual FOV and actual FOV served as a buffer

which was needed in view of the aforementioned uncertainties as well as the fact that the

implementation for the vision based feedback system had a slow bandwidth (approximately

12.5 Hz) as compared to the low-level robot controller. Thus, this buffer circumvented a

practical problem of losing feature points over the implementation cycle because the feature

points that escaped the virtual FOV were still visible in the real FOV and could almost

always be retrieved by application of the proposed modified controller. In this experiment,

the size of virtual FOV was set at 480×360. Finally, the right hand sides of (4.43) and (4.44)

were chosen as a small negative number in the implementation instead of zero. Practically,

this means that feature points were not allowed to travel along the sensor boundary; instead,

the optimization caused them to be mildly pushed back inside once they were close to the

boundary – this was seen to lead to better outcomes for retaining the feature points within

the virtual FOV. It is to be noted that such a choice does not detract from the stability
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analysis. The control gains Kv and Kω in (4.39) and (4.40) were chosen as follows

Kv = diag{25, 25, 25}, Kω = diag{0.15, 0.15, 0.15}

while the lower and upper bounds εl and εu for the variable wc were selected as follows

εl =

[
0.1 0.1 0.1 0.02 0.02 0.02

]T
, εu =

[
1 1 1 0.8 0.8 0.8

]T
.

Motivated by [40], the proposed control algorithm was examined under two difficult tasks.

The first task involved both translational and rotational movements in all three axes. The

initial and goal frames are shown in Figs. 4.12-(a) and (b), respectively. The pixel-space

trajectories for 4 feature points under the modified and nominal control laws are presented

and compared in Figs. 4.12-(c) and (d), respectively. From the trajectories in Fig. 4.12-(c),

it’s straightforward to see that the modified control not only drove the feature points to the

desired position but also kept all feature points within the virtual FOV. However, under

nominal control, one feature point was driven out of actual FOV – Fig. 4.12-(d) shows the

pixel trajectories up to one frame prior to controller failure due to the feature point exiting

the FOV. The convergence of both translation and rotation errors, respectively, in Figs.

4.12-(e) and (f) clearly indicates the efficacy of the modified control law. In Fig. 4.12-(e),

the y-axis was dimensionless while it has the unit of degrees in Fig. 4.12-(f). Note that

the control objective was deemed to be achieved when all the error signals were within their

preset thresholds.

An example of large rotation about the optical axis is represented in Fig. 4.13, where the

initial and goal frames are shown in Figs. 4.13-(a) and (b), respectively. The trajectories
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Figure 4.12: Experimental Results for Large General Motion.
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Figure 4.13: Experimental Results for Large Rotation Motion.

under the modified and nominal control laws are presented and compared in Figs. 4.13-(c)

and (d), respectively. From the trajectories in Fig. 4.13-(c), one can easily see that under the

modified control, all feature points were kept within the virtual FOV although two of them

were initially located outside it. However, the nominal controller failed to keep the feature

points within the FOV due to large rotation movement resulting in controller failure. The

results shown in Figs. 4.13-(e) and (f) clearly indicates the convergence of the translation

and rotation error signals, respectively, under the modified control law.
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CHAPTER 5

CONCLUSIONS

In this work, we have proposed a two-level particle filter algorithm to solve the range esti-

mation for a single camera system. Compared with particle filter approach in [18] and other

observer methods, our proposed method has a faster convergence rate with smaller number

of particles. Simulation and experimental results strongly suggest that our proposed algo-

rithm can estimate the range information more precisely and converge well in the presence of

non-trivial image measurement error and kinematic uncertainties in the motion parameters.

In this work, we have proposed a visual servoing control law that utilizes a Lyapunov

based design method and constrained optimization to drive the robot pose to a setpoint

while retaining the target features in the image FOV. Motivated by the assistive robotic

application at hand as well as its applicability to other robot applications, both sensor and

actuator constraints have been considered. When constraints related only to the limited size

of the in-hand camera FOV were considered, the proposed control law yielded a semi-global

asymptotic stability result from Lyapunov analysis. However, when actuator constraints

were added, the result was local asymptotic stability with known bounds on the region of

attraction. The results obtained from simulation in MATLAB and experiments conducted
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on the UCF-MANUS assistive robotic testbed illustrate the efficacy of the proposed visual

servoing control strategy.
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