
University of Central Florida University of Central Florida

STARS STARS

HIM 1990-2015

2014

Computation of Boolean Formulas Using Sneak Paths in Crossbar Computation of Boolean Formulas Using Sneak Paths in Crossbar

Computing Computing

Alvaro Velasquez
University of Central Florida

 Part of the Computer Sciences Commons

Find similar works at: https://stars.library.ucf.edu/honorstheses1990-2015

University of Central Florida Libraries http://library.ucf.edu

This Open Access is brought to you for free and open access by STARS. It has been accepted for inclusion in HIM

1990-2015 by an authorized administrator of STARS. For more information, please contact STARS@ucf.edu.

Recommended Citation Recommended Citation
Velasquez, Alvaro, "Computation of Boolean Formulas Using Sneak Paths in Crossbar Computing" (2014).
HIM 1990-2015. 1832.
https://stars.library.ucf.edu/honorstheses1990-2015/1832

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/honorstheses1990-2015
http://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Fhonorstheses1990-2015%2F1832&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/honorstheses1990-2015
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/honorstheses1990-2015/1832?utm_source=stars.library.ucf.edu%2Fhonorstheses1990-2015%2F1832&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

COMPUTATION OF BOOLEAN FORMULAS USING SNEAK PATHS IN CROSSBAR
COMPUTING

by

ALVARO VELASQUEZ

A thesis submitted in partial fulfilment of the requirements
for the degree of Honors in the Major, B.S.

in the Department of Electrical Engineering and Computer Science
in the College of Engineering and Computer Science

at the University of Central Florida

Spring Term
2014

Advisor: Sumit Kumar Jha

c© 2014 Velasquez and Jha

ii

ABSTRACT

Memristor-based nano-crossbar computing is a revolutionary computing paradigm that does away

with the traditional Von Neumann architectural separation of memory and computation units.

The computation of Boolean formulas using memristor circuits has been a subject of several re-

cent investigations. Crossbar computing, in general, has also been a topic of active interest, but

sneak paths have posed a hurdle in the design of pervasive general-purpose crossbar computing

paradigms. In this paper, we demonstrate that sneak paths in nano-crossbar computing can be ex-

ploited to design a Boolean-formula evaluation strategy. We demonstrate our approach on a simple

Boolean formula and a 1-bit addition circuit. We also conjecture that our nano-crossbar design

will be an effective approach for synthesizing high-performance customized arithmetic and logic

circuits.

iii

Contents

Chapter 1: Introduction . 1

Chapter 2: Crossbar Computing . 3

Memristors . 3

Crossbars . 5

Sneak Paths: A Problem . 7

Chapter 3: Crossbar Design For Evaluation of Boolean Formulas 9

NNF: Negation Normal Form . 9

Sneak Paths: A Tool . 10

Crossbar Design to Evaluate NNFs . 12

Chapter 4: Experiments . 16

Example Boolean formula . 16

1-bit addition circuit . 17

Chapter 5: Conclusion and Future Work . 19

Bibliography . 20

iv

Chapter 1: Introduction

In 1971, Leon Chua postulated the existence of a new circuit element. The three basic two-terminal

circuit elements then known connect pairs of the four circuit variables: current i, voltage v, charge

q, and magnetic flux φ. Five relationships combining these variables were known: the definition

of current, the definition of voltage from the induction law of Faraday, and the three axiomatic

definitions of the known circuit elements. Completeness required, Chua argued, a sixth relation-

ship, which would define the missing circuit element, see Figure 1. He called this missing element

the memristor, a contraction of memory and resistor, for its behavior was somewhat like that of a

nonlinear resistor with memory. Not until 2008 was it physically realized by Stanley Williams and

his team at HP Labs [8].

Since then, much research has sought to exploit its properties, from a quest for memristive mem-

ories, to memristive devices for neuromorphic computing, to computational logic that uses mem-

ristors as logic gates. The focus of this paper is the evaluation of Boolean formulas, which has

garnered some recent attention, and is an enabling technology for synthesizing high-performance,

low-power arithmetic and logic circuits.

Figure 1.1: Relations between different elements and physical properties of circuits.

Space limitations preclude an exhaustive survey of the literature on memristive evaluation of Boolean

1

formulas. We consider briefly some representative work in this area. Borghetti, Snider et al. use

two memristors to compute material implication, a fundamental operation in Boolean logic [2].

They leverage this design to synthesize the universal nand gate using three memristors and three

time steps, one initialization step and two implication steps. Gale, de Lacy Costello et al. use a

single memristor, through which two pulses pass sequentially, with the second being sent before

the current spike generated by the first stabilizes [4]. The logical value true is obtained when the

current spike goes past a threshold. These designs have two fundamental problems. First, they

use a few memristors interacting with other non-memristive circuit elements. It is difficult to put

such a heterogeneous mixture of circuit elements on the same hybrid chip. Second, they rely on

a sequence of correctly timed inputs, requiring a global clock. Such synchronous extreme-scale

circuits are notoriously difficult to design.

For purposes of fabrication, rather than using a few individual memristors, it is more natural to

organize sets of them into crossbar networks. However, if the design or application requires that

memristors be addressed individually, then the sneak-path problem arises: current flows through

unknown paths in parallel to the memristor, which prevents a correct detection of its resistance

or flow of current through it. Much research is being devoted to overcoming this problem. The

proposed solutions often unavoidably increase the complexity of the fabrication process.

The evaluation of Boolean formulas forms the base of much of computing, including logical and

arithmetic calculations. We propose an efficient and low-energy method that exploits asynchronous

memristor-based crossbars circuits that use sneak paths as a first-class design primitive. In Section

2 we present a brief background on crossbar computing, and define formal concepts to describe

it, which we use in Section 3 to present a crossbar design for the evaluation of Boolean formulas

in negation normal form. Section 4 describes experiments in which this evaluation approach is

applied to arithmetic circuits for addition. Concluding remarks follow in Section 5.

2

Chapter 2: Crossbar Computing

Memristors

The stipulated memristor furnished the missing functional relation among the circuit variables,

relating magnetic flux φ and charge q: dφ = Mdq. Since dφ = v dt and dq = i dt, the function M

defining the memristor may be expressed equivalently as v = Mi, which when linear is identical

with resistanceR, but when nonlinear and a function of the state of the memristor is a new property.

The HP Labs team developed a nanoscale current-controlled memristor, which is defined by:

v = R(w) i
dw

dt
= i

where R(w) is a generalized resistance that depends on an internal state variable w that is propor-

tional to charge. The memristor consists of a thin semiconductor film of thickness d between two

metal contacts. The film has two regions: a doped region, with a high concentration of dopants,

and an undoped region, with a nearly zero concentration of dopants. Applying an external bias v(t)

causes the charged dopants to drift, and the boundary between the regions moves. A memristor

with a doped region of length d has low resistance, Ron; while one with an undoped region of

length d has the much higher resistance Roff . A memristor can be viewed as two variable resistors

connected in series [8][9]:

v(t) =

[
w(t)

d
Ron +

(
1− w(t)

d

)
Roff

]
i(t)

where the charge-dependent state variable w(t) is the width of the doped region of the memristor.

For the case of ohmic electronic conduction and linear ionic drift in a uniform field with average

ion mobility µ, [8] defines

w(t) = µ
Ron

d
q(t).

3

For Ron � Roff , a simple analysis leads to the first definition of memristance in terms of the

material and geometrical properties of the memristor:

M(q) ≡ dφ

dq
= Roff

(
1− µRon

d2
q

)
.

We define a memristor by its physical parameters as follows:

Definition 1 MEMRISTOR A memristor is a 4-tuple M ≡ (Roff , Ron, d, µ), where Roff is the

resistance of the fully turned-off memristor, Ron is the resistance of the fully turned-on memristor,

with Ron � Roff , and d and µ are the width and the average ionic mobility of the memristor.

Note that the q-dependent term in the definition of the memristor, which makes its memristance

nonlinear, becomes larger as the memristor width d becomes smaller. Thus, this term becomes more

critical in understanding the behavior of electronic devices as they shrink to the nanoscale. Also,

at this scale, small voltages can yield very large electric fields, which can produce nonlinearities in

ionic transport. These affect the rate of change of state variable w as it approaches boundaries 0

and d. This phenomenon is called the nonlinear dopant drift.

Various window functions f have been proposed to model it [8, 1, 5, 7, 6]. Strukov et al. proposed

the first: f(w) = w(d−w)/d2 [8]. Letting x = w/d ∈ [0, 1], it can be rewritten as f(x) = x− x2.

More recently, Prodomakis et al. have proposed f(x) = 1−[(x−0.5)2+0.75]p, where p is a control

parameter that can take any positive real number. It is scalable, which means that 0 ≤ fmax(x) ≤ 1,

and can be adjusted to fit experimental observations.

We define the dynamics of a memristor as follows:

Definition 2 DYNAMICAL MODEL OF A MEMRISTOR The evolution of a memristor M is de-

scribed by a 3-tuple D(M) ≡ (f, v, w), where f is a window function, v(t) is the voltage applied

across the two-terminal memristor at time t, and w(t) is the width of the doped region of memristor

M at time t.

4

Taking into account the nonlinear dopant drift, the width of the doped region of the memristor

changes as follows:

δw(t) = µ
Ron

d

 v(t)δt
w(t)
d
Ron +

(
1− w(t)

d

)
Roff

 f (w(t)

d

)
.

We exploit the behavior of memristors to define the state space that will allow us to compute with

memristors. Assuming Ron � Roff , a sequence of resistance values or digitization schedule:

Ron ≡ R0 < · · · < Rn−2 < Roff ≡ Rn−1, for n ≥ 2, serves to define a corresponding set of states.

Let ∆Ri = Ri+1 − Ri, for 0 < i ≤ n − 1. Each state is a range of resistance values defined as

follows:

s0 =

[
R0, R0 +

∆R1

2

]
sn−1 =

[
Rn−2 +

∆Rn−1

2
, Rn−2

]

si =

[
Ri−1 +

∆Ri

2
, Ri +

Ri+1

2

]
, for 0 < i < n− 1.

In this paper, we focus on memristors with three states: ON, OFF, UNDECIDED. The ON state

will be used to guide the current through the sneak path, while the OFF state will be used to

prevent current from flowing through multiple paths. The UNDECIDED state will be used to robustly

separate the ON state from the OFF state. In the rest of the paper, we do not belabor the separation

of the ON and OFF states by the UNDECIDED state, but we note here that this separation is important

for robust evaluation of Boolean formulas.

Crossbars

It is natural to organize sets of memristors into crossbar networks: a top set of parallel nanowire

electrodes, a bottom set of parallel nanowire electrodes perpendicular to the top one, and a memris-

tor at each crosspoint, see Figure 2. The memristor models presented above induce corresponding

models for crossbars. They lay the foundation for our approach to crossbar computing.

5

Figure 2.1: Memristor crossbar.

The physical description of a crossbar is given by:

Definition 3 CROSSBAR A (memristor-based) crossbar is a 3-tuple C = (M,X,Y) where

1. M =

Mm,1 M1,2 ... Mm,n

...
...

M1,1 Mm,2 ... M1,n

 is a two-dimensional array of memristors with m rows and n

columns;

2. X = (X1, . . . , Xn) is the vector of X-crossbars (or nanowires); crossbar Xj provides the

same input to every memristor in column j.

3. Y = (Y1, . . . , Ym) is the vector of Y-crossbars (or nanowires); crossbar Yi provides the same

input to every memristor in row i.

We make explicit the size of a matrix M with m rows and n columns by writing Mm,n. Similarly,

to make explicit the length of a vector V, we write Vm, or either Vm,1 or V1,m.

The dynamics of a crossbar are defined by the following model:

Definition 4 DYNAMICAL MODEL OF A CROSSBAR Given a crossbar C ≡ (Mm,n,Xn,Ym). The

evolution of C is described by the 4-tuple D(C) ≡ (Fm,n,Vn
X,Vm

Y ,Wm,n), where

6

1. Fm,n consists of the window functions for the memristors in Mm,n, such that Fi,j is the window

function for memristor Mi,j;

2. Vn
X(t) consists of the voltages that are applied to the X-crossbars, such that voltage VXi is

applied to crossbar Xi at time t;

3. Vm
Y (t) consists of the voltages that are applied to the Y-crossbars, such that voltage VYi is

applied to crossbar Yi at time t; and

4. Wm,n(t) consists of widths of the doped regions of the memristors in Mm,n at time t, which

depend on the difference of the voltages applied to the X- and Y-crossbars at time t. Without

loss of generality, the width of Mi,j at time t is given by:

δWi,j(t) = µ
Ron
d

 (VYi(t)− VXj (t))δt

Wi,j(t)
d Ron +

(
1−Wi,j(t)

d

)
Roff

f(Wi,j(t)

d

)

Sneak Paths: A Problem

Sneak paths are interconnected nanowires through which current flows in crossbars, which in some

applications are undesirable. They pose a problem when it is necessary to determine the resistance

or the current flowing through an individual memristor. If this memristor is in the high-resistance

state, sneak paths provide alternate paths for current to flow between the electrodes the memristor

joins. In these applications, they are determined by often unknown series of low-resistance memris-

tors. Thus, they act as unknown resistances in parallel with one of the memristors of interest. The

result is that the memristor in high-resistance state appears erroneously to be in the low-resistance

state.

A sneak path is a path that connects the row- and column-electrodes of a memristor in high-

resistance state, and whose remaining segments are determined by memristors in low-resistance

states [3]: There is a sneak path of length 2(k+ 1) relative to position (i, j) in memory array Mm,n

if Mi,j is in a state with resistance Roff and there exist 2k positive integers 1 ≤ r1, . . . , rk ≤ m and

7

1 ≤ c1, . . . , ck ≤ n such that memristors Mi,c1 , Mr1,c1 , Mr1,c2 , . . . , Mri−1,ci , Mri,ci , Mri,ci+1
, . . . ,

Mrk−1,ck , Mrk,ck , Mrk,j are in a state with resistance Ron. Considering only the physical character-

istics of such a path, a sneak path is one through which a significant amount of current flows. In the

next chapter we design crossbars that induce a slight variation of these paths to evaluate Boolean

expressions.

8

Chapter 3: Crossbar Design For Evaluation of Boolean Formulas

This chapter describes how some crossbar designs very naturally encode Boolean formulas, and

how to use sneak paths to compute their value.

NNF: Negation Normal Form

An n-ary Boolean function maps an n-tuple of Boolean values to a Boolean value. It can be defined

by a truth table of 2n rows, one for each possible value an n-tuple may take. Alternatively and more

concisely, it can be defined in terms of a few Boolean operators or connectives. A set of Boolean

connectives is complete if every Boolean function can be defined by an expression that uses only the

connectives in that set. The set consisting of the ¬ (negation), ∧ (conjunction), and ∨ (disjunction)

connectives is complete. So any Boolean function can be defined by a well-formed formula (wff)

constructed as follows: (i) a Boolean (propositional) variable p is a wff; (ii) if φ is a wff, ¬φ is a

wff; (iii) if φ1 and φ2 are wffs, φ1 ∧ φ2 is a wff, and (iv) if φ1 and φ2 are wffs, φ1 ∨ φ2 a wff.

Our method to evaluate Boolean formulas requires the formulas to be in negation normal form

(NFF), which is defined by a slight change to these rules. The negation connective may not be

applied to an arbitrary wff, but only to a propositional variable. A formula is in negation normal

form if it is constructed as follows: (i) a literal, that is, a propositional variable p or ¬p, is in NNF,

(ii) if φ1 and φ2 are in NNF, φ1∧φ2 is in NNF, and (iii) if φ1 and φ2 are in NNF, φ1∨φ2 is in NNF.

Any wff constructed using only connectives ¬, ∧ and ∨ can be transformed into an equivalent

formula in negation normal form by repeatedly applying the De Morgan Laws: ¬(p∧q) ≡ ¬p∨¬q,

and ¬(p∨ q) ≡ ¬p∧¬q, and simplifying ¬¬p to p. Thus, the method presented below can be used

to evaluate any Boolean function.

9

Sneak Paths: A Tool

Some crossbar designs very naturally can encode a Boolean formula in negation normal form. The

next section will describe them, and how to direct the flow of current so as to indicate the value

of the formula. Sneak paths are nanowires connected by low-resistance memristors through which

significant current flows. They are undesirable in applications such as memristor-based memories

because the actual paths and currents through them are unknown, and the path of interest is one

through a single memristor. The flow of current used to evaluate a Boolean formula is determined

physically in the same way, but it is the flow of interest, and by design each segment of the path

advances the evaluation of the formula. This section presents some basic ideas useful in describing

the evaluation method.

The state of a crossbar depends on the states of its memristors, and its X- and Y-crossbars. We

introduce abstract models for these, which help us to reason formally about our paths of interest:

those determined by memristors in low-resistance states.

As Figure 2 shows, a memristor in a crossbar joins two nanowires that are in different planes, and

perpendicular to each other. In our abstraction, a nanowire (X- or Y-crossbar) may be in one of

two states: flow and no-flow, which indicate whether current is flowing through it. Abstractly,

a memristor is an operator that may change the states of the nanowires it joins. A memristor in a

high-resistance state, denotedMoff , allows no current through it. The states of its nanowires cannot

change, and thus Moff acts as an identity operator. A memristor in a low-resistance state, denoted

Mon, allows current to flow through it. If its two nanowires are in the same state, the Mon operator

preserves their states. When they are in different states, Mon takes the nanowire in no-flow state to

the flow state.

Graphically, let � represent Mon, and ⊗ represent Moff , and let � represent the flow state of a

nanowire, and ∗ represent the no-flow state. A 2-dimensional abstract view of a memristor and the

nanowires it joins has the memristor in the center, the state of one nanowire above and below it,

10

and the state of the other to its left and right. Then the definitions of the memristor operations �

and ⊗ become:

∗
∗�∗
∗
⇒
∗
∗�∗
∗

∗
���
∗
⇒

�
���

�

�
∗�∗
�
⇒

�
���

�

�
���

�
⇒

�
���

�

∗
∗⊗∗
∗
⇒
∗
∗⊗∗
∗

∗
�⊗�
∗
⇒

∗
�⊗�
∗

�
∗⊗∗
�
⇒

�
∗⊗∗
�

�
�⊗�

�
⇒

�
�⊗�

�

The physical sharing of nanowires in a row and in a column of a crossbar leads naturally to hori-

zontal and vertical composition of memristor operations. We adopt a simpler notation to denote the

state of a segment of a row or column of a crossbar. For example, for neighboring memristors in

states Moff and Mon, we write:

� ∗
�⊗��

� ∗
≡

�
�⊗�

�

∗
���
∗

Sneak paths are determined by a set ofMon memristors. Consider now memristor-row and -column

segments that are operations to construct sneak paths. Let a subscripted s denote the state of a

nanowire. It follows from the definitions of the ⊗ and � operations that current flowing through a

row may be directed to a column without current by the following operations:

r2c.r
s1 . . . sn ∗

�⊗ . . . ⊗��
s1 . . . sn ∗

⇒
s1 . . . sn �

�⊗ . . . ⊗��
s1 . . . sn �

r2c.c

∗
sm⊗sm...

...
...

s1⊗ s1
���
∗

⇒

�
sm⊗sm...

...
...

s1⊗ s1
���

�

.

Similarly, current flowing through a column may be directed to a row without current by the fol-

lowing operations:

11

c2r.r
� s1 . . . sn
∗�⊗ . . . ⊗∗

� s1 . . . sn
⇒

� s1 . . . sn
��⊗ . . . ⊗�

� s1 . . . sn

c2r.c

�
∗ � ∗
sm⊗sm...

...
...

s1⊗ s1
�

⇒

�
���
sm⊗sm...

...
...

s1⊗ s1
�

.

As with operations � and ⊗, these operations never take a nanowire from state � to state ∗. Below

we will omit the s states for greater visual simplicity.

One other useful operation in this abstraction is an array of memristors in state ⊗: it is an identity

operation on the set of nanowires it intersects. We will denote an m by n array by ⊗m,n.

These operations serve to construct sneak paths, and it is a sneak path that is used to evaluate a

Boolean formula.

Crossbar Design to Evaluate NNFs

Every Boolean function can be defined by a Boolean formula in negation normal form. This section

specifies crossbar states that can be used to evaluate such formulas using sneak paths.

Let φ be a Boolean formula in negation normal form. We define an array of memristors Mφ as

follows.

l: For φ = l, a literal, let # = � if l is true, and # = ⊗ if false. Then

Ml =
�
#

12

c: For φ = φ1 ∧ φ2 the array has m1 +m2 − 1 rows and n1 + n2 columns, and is defined by:

Mφ1∧φ2 =

m1+m2−1

⊗m2−1,n1 Mm2,n2

φ2

m1

Mm1,n1

φ1
⊗m1−1,n2

1

d: For φ = φ1 ∨ φ2 the array has m1 +m2 rows and n1 + n2 + 2 columns, and is defined by:

Mφ1∨φ2 =

⊗m2−1,n1+1

�⊗⊗⊗· · ·⊗⊗⊗
Mm2,n2

φ2

�
⊗...
⊗

⊗
...
⊗
�

Mm1,n1

φ1

⊗⊗⊗⊗ · · · ⊗⊗⊗�
⊗m1−1,n2+1

The memristor array Mφ is an operator on the nanowires it intersects. To compute the value of φ,

denoted v(φ), it must be applied to a set of nanowires in which only the first (or bottom) row is in

state �, and all the others are in the ∗.

We prove that given a crossbar in the state just described, which is induced by the formula φ, there

exists a sneak path that takes current from the first (or bottom) row to the last (or top) row if and

only if the value of φ is true.

Theorem 1 CROSSBAR COMPUTATION OF NNFS

∗ · · · ∗

∗...
∗
�

Mφ

�
∗...
∗
�

∗ · · · ∗

⇒

∗ · · · ∗

�...
∗
�

Mφ

�
�...
∗
�

∗· · ·∗

iff v(φ) = true

13

Proof. The proof is by structural induction on the negation normal form φ. We prove that given

a crossbar state in which only the nanowire in the first row is in state �, a memristor array Mφ

creates a sneak path that takes the nanowire in the last row to state �, if and only if v(φ) = true.

Base case: literal. φ ≡ l. Assume the row 1 nanowire is in state �, and the rest in state ∗. (i) For

v(l) = true, the � in row 1 takes (the nanowire in) column 1 to state �, and the � in row 2 takes

row 2 to state �. (ii) For v(l) = false, the ⊗ in row 1 preserves the ∗ state of column 1, and the �

in row 2 preserves the ∗ state of row 2.

Inductive step: conjunction. φ ≡ φ1 ∧ φ2. Assume row 1 is in state �, and the rest of the

nanowires are in state ∗. The required initial state for the nanowires of Mφ1 follows immediately.

For Mφ2 , note that the only nanowire in common with Mφ1 is row m1. For the rest of its nanowires,

their initial ∗ state is preserved by the ⊗ arrays. Then by the induction hypothesis, Mφ1 creates a

sneak path that takes row m1 to state � iff v(φ1) = true. (i) For v(φ1) = false there is no sneak

path that takes row m1 to state �. So the required initial state for Mφ2 is not reached, and no sneak

path to the last row of Mφ1∧φ2 can be created. (ii) For v(φ1) = true there is a sneak path that takes

row m1 to state �. Then by the induction hypothesis, Mφ2 creates a sneak path that takes its last

row to state � iff v(φ2) = true. Thus, Mφ1∧φ2 creates a sneak path that takes its last row to state �

iff v(φ1) = true and v(φ2) = true.

Inductive step: disjunction. φ ≡ φ1 ∨ φ2. Assume row 1 is in state �, and the rest of the

nanowires are in state ∗. (i) We establish that the required state for the nanowires of Mφ1 holds.

The column segment to the left of Mφ1 preserves the initial state of its rows: � preserves state �,

and ⊗ preserves state ∗. Then by the induction hypothesis, Mφ1 creates a sneak path that takes its

last row to state � iff v(φ1) = true. By r2c.r, the row segment to the right of Mφ1’s last row takes

the last column of Mφ1∨φ2 to state �. Last, by c2r.c, the segment of this column above row m1

takes the last row of Mφ1∨φ2 to state �. (ii) We establish that the required state for the nanowires

of Mφ2 holds. By r2c.c, the column segment to the left of Mφ1 takes column 1 to state �. By c2r.r,

the row segment to the left of the first row of Mφ2 takes that row to state �. The ⊗ arrays preserve

14

the ∗ state of all the other nanowires. Then by the induction hypothesis, Mφ2 creates a sneak path

that takes the last row of Mφ1∨φ2 to state � iff v(φ2) = true. Thus, Mφ1∨φ2 creates a sneak path

that takes its last row to state � iff v(φ1) = true or v(φ2) = true.

15

Chapter 4: Experiments

We demonstrate our design on a small Boolean formula and a 1-bit addition circuit. Our experi-

ments are illustrative. We sketch the circuit designs, and verify that they function correctly.

+V
¬A

1 ¬B

1

¬C

1 1kΩ

Figure 4.1: The design of a memristor based nano-crossbar for computing the formula ¬A∧¬B ∧
¬C.

Example Boolean formula

We built a memristor-based crossbar model for the formula ¬A∧¬B∧¬C recognizing the pattern

“A=0, B=0, C=0”, in which we used 10,000 Ω as the turned-off resistance, and 1,000 Ω as the

turned-on resistance. Figure 3 shows the turned-on memristors green, and the turned-off memristors

black. The red curve shows the flow of the current through the only low-resistance path in the

crossbar when the memristors for ¬A, ¬B, and ¬C are turned-on. When any of these memristors

is turned-off, there is no low-resistance path from +V to ground in the crossbar.

Figure 4.2 shows the results of simulating this circuit using NGSPICE for two cases. For the only

case in which the formula is true, when ¬A, ¬B and ¬C are true, the current flowing through the

voltage source is of the order of 10−4 amperes. For the case when ¬A, ¬B and ¬C are false, and

hence the formula is false, the current flowing through the voltage source is less than 10−5.

16

Figure 4.2: Current through the voltage source for the crossbar ¬A∧¬B ∧¬C under two different
inputs.

1-bit addition circuit

Figure 4.3: The design of a nano-crossbar for computing the sum-bit of a 1-bit adder whose Boolean
formula is (A ∧ ¬B ∧ ¬C) ∨ (¬A ∧B ∧ ¬C) ∨ (¬A ∧ ¬B ∧ C) ∨ (A ∧B ∧ C)

The nano-crossbar design for the 1-bit adder is shown in Figure 5, and the results of its simulation

are presented in Table 1. Note that the measured voltage drop relates very well with the expected

logical sum of the 1-bit adder: a voltage drop in excess of 1 volt indicates the logical value true,

while a voltage drop below 0.5 volts indicates the logical value false.

17

A B Cin Sum-Logical Sum-Voltage

0 0 0 0 0.35
0 1 0 1 1.14
1 0 0 1 1.2
1 1 0 0 0.36
0 0 1 1 1.21
0 1 1 0 0.36
1 0 1 0 0.36
1 1 1 1 1.36

Table 4.1: Peformance of a nano-crossbar implementation of the 1-bit adder.

18

Chapter 5: Conclusion and Future Work

We have proposed a design for the evaluation of Boolean formulas using memristor-based cross-

bars. Our approach is counterintuitive. It transfigures sneak paths, well-known as a problem, into

first-class design elements.

We will leverage this design to create a new algorithmic framework for constructing memristor-

based nano-crossbar circuits that can implement programs involving arithmetic and logical opera-

tions as well as randomized algorithms. The resulting computing architecture will have applications

in several important areas of computational data science and cyber-security, including extreme-

scale simulation of complex systems such as agent-based models, biochemical reactions and fluid

dynamics computations. By accelerating satisfiability solving, this research will also create new

avenues for accelerating other NP-hard problems.

19

Bibliography

[1] Zdeněk Biolek, Dalibor Biolek, and Viera Biolkova. Spice model of memristor with nonlinear

dopant drift. Radioengineering, 18(2):210–214, 2009.

[2] Julien Borghetti, Gregory S Snider, Philip J Kuekes, J Joshua Yang, Duncan R Stewart, and

R Stanley Williams. ‘memristive’switches enable ‘stateful’logic operations via material impli-

cation. Nature, 464(7290):873–876, 2010.

[3] Y. Cassuto, S. Kvatinsky, and E. Yaakobi. Sneak-path constraints in memristor crossbar arrays.

In Information Theory Proceedings (ISIT), 2013 IEEE International Symposium on, pages 156–

160, 2013.

[4] Ella Gale, Ben de Lacy Costello, and Andrew Adamatzky. Boolean logic gates from a sin-

gle memristor via low-level sequential logic. In Unconventional Computation and Natural

Computation, pages 79–89. Springer, 2013.

[5] Yogesh N Joglekar and Stephen J Wolf. The elusive memristor: properties of basic electrical

circuits. European Journal of Physics, 30(4):661, 2009.

[6] Themistoklis Prodromakis, Boon Pin Peh, Christos Papavassiliou, and Christofer Toumazou.

A versatile memristor model with nonlinear dopant kinetics. Electron Devices, IEEE Transac-

tions on, 58(9):3099–3105, 2011.

[7] Ádám Rák and György Cserey. Macromodeling of the memristor in spice. Computer-aided

design of integrated circuits and systems, IEEE Transactions on, 29(4):632–636, 2010.

[8] Dmitri B Strukov, Gregory S Snider, Duncan R Stewart, and R Stanley Williams. The missing

memristor found. Nature, 453(7191):80–83, 2008.

[9] Frank Y. Wang. Memristor for introductory physics. arXiv preprint, arXiv:0808.0286, 2008.

20

	Computation of Boolean Formulas Using Sneak Paths in Crossbar Computing
	Recommended Citation

	ABSTRACT
	Contents
	Chapter 1: Introduction
	Chapter 2: Crossbar Computing
	Memristors
	Crossbars
	Sneak Paths: A Problem

	Chapter 3: Crossbar Design For Evaluation of Boolean Formulas
	NNF: Negation Normal Form
	Sneak Paths: A Tool
	Crossbar Design to Evaluate NNFs

	Chapter 4: Experiments
	Example Boolean formula
	1-bit addition circuit

	Chapter 5: Conclusion and Future Work
	Bibliography

