
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations

2011

The Power Of Quantum Walk Insights, Implementation, And The Power Of Quantum Walk Insights, Implementation, And

Applications Applications

Chen Fu Chiang
University of Central Florida

 Part of the Computer Sciences Commons, and the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations by an authorized administrator of STARS. For more information,

please contact STARS@ucf.edu.

STARS Citation STARS Citation
Chiang, Chen Fu, "The Power Of Quantum Walk Insights, Implementation, And Applications" (2011).
Electronic Theses and Dissertations. 1833.
https://stars.library.ucf.edu/etd/1833

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
https://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Fetd%2F1833&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Fetd%2F1833&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/1833?utm_source=stars.library.ucf.edu%2Fetd%2F1833&utm_medium=PDF&utm_campaign=PDFCoverPages

The Power of Quantum Walk:
Insights, Implementation, and Applications

by

Chen-Fu Chiang
B.S. Computer Science, University of Central Florida, 2002

M.S.E. Computer and Information Science, University of Pennsylvania, 2003

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in the Department of Electrical Engineering and Computer Science
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Fall Term
2011

Major Professor:
Pawel Wocjan

c© 2011 Chen-Fu Chiang

ii

ABSTRACT

In this thesis, I investigate quantum walks in quantum computing from three aspects:

the insights, the implementation, and the applications. Quantum walks are the quantum

analogue of classical random walks. For the insights of quantum walks, I list and explain

the required components for quantizing a classical random walk into a quantum walk. The

components are, for instance, Markov chains, quantum phase estimation, and quantum spec-

trum theorem. I then demonstrate how the product of two reflections in the walk operator

provides a quadratic speed-up, in comparison to the classical counterpart.

For the implementation of quantum walks, I show the construction of an efficient circuit

for realizing one single step of the quantum walk operator. Furthermore, I devise a more suc-

cinct circuit to approximately implement quantum phase estimation with constant precision

controlled phase shift operators. From an implementation perspective, efficient circuits are

always desirable because the realization of a phase shift operator with high precision would

be a costly task and a critical obstacle.

For the applications of quantum walks, I apply the quantum walk technique along with

other fundamental quantum techniques, such as phase estimation, to solve the partition

function problem. However, there might be some scenario in which the speed-up of spectral

gap is insignificant. In a situation like that that, I provide an amplitude amplification-based

iii

approach to prepare the thermal Gibbs state. Such an approach is useful when the spectral

gap is extremely small. Finally, I further investigate and explore the effect of noise (pertur-

bation) on the performance of quantum walks.

Thesis Supervisor: Pawel M. Wocjan

Title: Associate Professor of Electrical Engineering and Computer Science

iv

To those wonderful people that appear in my journey to help me when I need it.

For William, Viba and Baiv: Thank you for being there all these years.

v

ACKNOWLEDGMENTS

I gratefully acknowledge the support of National Science Foundation grants CCF-0726771

and CCF-0746600 for my graduate study. I must express my sincere thanks to my advisor:

Dr. Pawel Wocjan, for he guided me into the quantum computing research that has fasci-

nated me throughout the years. His continuous support and his enthusiasm for research are

among the motivations that make my choice of quantum research more worthwhile.

In summers of 2007, 2008 and 2009, I had the opportunity to participate in the Canadian

summer school of quantum information program. Through this program, I had the chance

to learn various topics in quantum computing, either theoretical or experimental. This great

experience provided me the motivation and enthusiasm to study quantum computing. I must

thank the higher education institutes in Canada for their dedication to quantum information

science and their hospitality in welcoming researchers from all over the world, regardless of

their nationality. In the meantime, I must also thank Dr. Michele Mosca from the Institute

of Quantum Computing (IQC) for giving me the opportunity for a long visit in 2010. It was

then that I felt the devotion people have in IQC for quantum research and saw the rigor it

takes to conduct research in this field.

I want to thank my family members, especially my father who passed away in September

2008, for their understanding and the sacrifices they made so that I could study in the

United States. Furthermore, I want to express my appreciation to the coauthors of my

vi

publications: Dr. Anura Abeyesingh, Dr. Daniel Nagaj and Hamed Ahmadi. Their constant

encouragement and guidance enriched my research and benefited my research skills. At last,

but not at least, I must thank the department of computer science at the University of

Central Florida (UCF) for providing me the environment and facility to do research and

pursue my Ph.D.

vii

TABLE OF CONTENTS

LIST OF FIGURES . xiv

LIST OF TABLES . xvii

CHAPTER 1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Outline and Summary of Results . 4

CHAPTER 2 PRELIMINARIES . 10

2.1 Introduction to Computation . 11

2.2 The Circuit Model of Computation . 12

2.2.1 Quantifying Computational Resources 14

2.3 Quantum Computation . 16

2.3.1 Quantum Circuit Model . 17

2.3.2 Single Qubit Operation and Controlled Operations 17

2.3.3 Universal Sets of Quantum Gates and N-Qubit Operation . 19

viii

2.4 Classical Markov Chains . 22

2.4.1 Irreducibility and Aperiodicity 23

2.4.2 Stationary Distributions, Spectral Gap and Convergence . . 24

2.4.3 Hitting Time . 26

CHAPTER 3 INSIGHTS . 28

3.1 Phase Estimation . 28

3.2 Product of Two Reflections . 33

3.3 Quantization of Classical Random Walk 36

3.4 Spectrum of the Product of Two Reflections 38

CHAPTER 4 EFFICIENT CIRCUIT FOR PHASE ESTIMATION 42

4.1 Quantum Phase Estimation Algorithms 44

4.1.1 Kitaev’s Original Approach . 44

4.1.2 Approach Based on QFT . 52

4.1.3 Approach Based on AQFT . 55

ix

4.2 New Approach with Constant Degree Phase Shift Operators . . . 56

4.3 Discussion . 60

CHAPTER 5 EFFICIENT CIRCUIT FOR QUANTUM WALKS 62

5.1 Introduction . 63

5.2 Alternative Ways of Implementing the Quantum Update 65

5.3 Overview of the Efficient Circuit Structure 68

5.4 Preparing Superpositions à la Grover and Rudolph 69

5.4.1 A Nonuniform Case . 71

5.4.2 Precision Requirements . 72

5.5 Discussion . 73

CHAPTER 6 ESTIMATING PARTITION FUNCTION 75

6.1 Structure of the Classical Approach 81

6.2 Structure of Our Quantum Approach 84

6.2.1 Overview . 84

x

6.2.2 Perfect Case . 86

6.2.3 Quantum FPRAS . 93

6.3 Discussion . 97

CHAPTER 7 PREPARING THERMAL GIBBS STATE 100

7.1 Quantum Algorithm – Idealized Setting 103

7.2 Analysis for Imperfect Setting . 106

7.2.1 Analysis of Simulation Error . 106

7.2.2 Analysis of Errors in Phase Estimation 108

7.3 Discussion . 113

CHAPTER 8 THEORY OF PERTURBED QUANTUM WALK 115

8.1 Classical Spectral Gap Perturbation 116

8.2 Hitting Time of Markov Chain Based Walks 119

8.2.1 Classical Hitting Time . 121

8.2.2 Delayed Perturbed Hitting Time 122

xi

8.2.3 Upper Bound for Perturbed Quantum Hitting Time 123

8.2.4 Quantum Hitting Time Based on MNRS Algorithm 125

8.2.5 Delayed Perturbed Quantum Hitting Time 127

8.3 Sample Perturbation . 129

8.4 Discussion . 131

CHAPTER 9 CONCLUSION . 134

9.1 Graph Problems . 134

9.2 The Ising Model . 135

9.3 Black-box Hamiltonian Simulation and Unitary Implementation . 136

9.4 Perturbation Theory . 137

APPENDIX A QUANTUM WALK UPDATE 139

A.1 Quantum Walks from Classical Markov Chains 140

APPENDIX B IMPLEMENTATION OF QUANTUM WALK 142

B.1 Additional Details for the Efficient Quantum Update Circuit . . . 143

xii

B.2 Preparation . 143

B.3 Determining the Rotation Angles . 144

B.4 Creating Superpositions and Mapping 146

B.5 The Required Resources . 147

B.6 Approximating the Permanent . 148

APPENDIX C GLOSSARY OF NOTATIONS 152

LIST OF REFERENCES . 156

xiii

LIST OF FIGURES

Figure 1.1 My Research Scope . 3

Figure 2.1 A Simple Circuit Diagram . 12

Figure 2.2 A Toffoli Gate . 13

Figure 2.3 A Circuit of Depth 3, Space 4, and Size 5 14

Figure 2.4 A Simple CNOT Gate . 16

Figure 2.5 A Circuit That Tests Bit-wise Equality 17

Figure 2.6 A Simple Controlled-U Gate . 19

Figure 3.1 Standard Quantum Phase Estimation 29

Figure 3.2 The Full-fledged Inverse QFT . 30

Figure 3.3 The Illustration of Inverse QFT When t = 3 31

Figure 3.4 The Process to Obtain the Least Significant Bit x3 31

Figure 3.5 The Process to Obtain the Middle Bit x2 32

xiv

Figure 3.6 The Process to Obtain the Most Significant Bit x1 32

Figure 3.7 From A Random Walk to Spectrum Theorem for Quantum Walk

. 41

Figure 4.1 Required Precision at the Bottom: 20, 2logn and 2n 44

Figure 4.2 Hadamard Test with Extra Phase Shift Operator 45

Figure 4.3 Standard Quantum Phase Estimation 52

Figure 4.4 3-qubit Inverse QFT Where 1 ≤ i ≤ 3, |yi〉 = 1√
2
(|0〉+e2πi(0.xi...x3) |1〉) 54

Figure 4.5 Quantum Circuit for AQFT . 55

Figure 4.6 QPE with Only Two Controlled Phase Shift Operations 57

Figure 4.7 Required Trials Comparison between ours and Kitaev’s 59

Figure 4.8 With Variable Reset Bit Chosen, Our Approach Bridges the Gap 61

Figure 5.1 The Scheme for Preparing the Superposition in log d Rounds . 69

Figure 6.1 Structure of the Quantum Algorithm 85

Figure 6.2 A Basic Phase Estimation Circuit with t Ancilla Qubits 90

xv

Figure B.1 The Determine Angle Circuit DAC 144

Figure B.2 The Circuit SC Handling Special Cases 145

Figure B.3 Creating the Superposition for d = 4 149

xvi

LIST OF TABLES

Table 4.1 Required Trials by Using Chernoff’s Bound 60

Table B.1 Required Numbers of Qubits . 147

xvii

CHAPTER 1
INTRODUCTION

1.1 Motivation

The modern computer is ubiquitous in our daily life. We probably can describe a computer

from our knowledge based on its physical traits and internal components. However, such a

description is restricted due to the limitation of current technology. From a more general

viewpoint, a computer is a physical device that is capable of executing algorithms with much

stronger computation ability than human beings. Such a description gives us the flexibility

to define a computer more appropriately. An algorithm is a well-defined procedure with a

finite description for solving some specific problems. To be exact, the process of executing

an algorithm is an information-processing task.

For various hard problems, the hardness comes from the fact that the required com-

putational resources, space and time, are overwhelming. For instance, the RSA problem

is based on the hardness of factoring large numbers. By augmenting the input size of the

problem, RSA would withstand attacks from bigger and faster computers because the re-

quired computational resources grow exponentially for a classical computer. In 1994, Shor

invented a polynomial time algorithm for the factorization problem but the invention is

based on the computational capability of a quantum computer. But what is a quantum

computer? Devices that perform quantum information processing are known as quantum

computers. Quantum information processing is the outcome of using quantum mechanical

1

systems. Quantum mechanics is a mathematical framework for the development of physical

theories.

In the classical computing regime, the Markov Chain Monte Carlo (MCMC) method

and random walks are centerpieces of many efficient classical algorithms. It allows us to

approximately sample from a particular distribution π over a large state space Ω. Sampling

from stationary distributions of Markov chains combined with the simulated annealing is

the core of many clever classical approximation algorithms. For instance, approximating

the volume of convex bodies [LV06], approximating the permanent of a non-negative matrix

[JSV04], and the partition function of statistical physics models such as the Ising model

[JS93] and the Potts model [BSVV08]. In addition, one can also use random walks to search

for the marked state in the Markov chain, in which the hitting time is of interest. It is

because hitting time indicates the time it requires to find the marked state. Given the

promise of computational power of a quantum computer, the quantization of random walk

into quantum walk was thus born. As expected and verified, quantum walk renders the

solution more efficiently than its classical counterpart.

I ask and answer questions about the power of quantum walk by examining the essential

ingredients of the walk, showing how to construct an efficient quantum circuit to simulate

the quantum walk operator, and designing effective quantum walk based algorithms to solve

problems that are classically considered hard. From a top level, Figure 1.1 depicts the

scope of my research and illustrates the connections between my work and the fundamental

quantum algorithm techniques.

2

Figure 1.1: My Research Scope

3

1.2 Outline and Summary of Results

The content of this dissertation revolves around the discrete time quantum walk. To present

this technique in a more pedagogical manner, we divide the dissertation into three parts –

Basics and the Insights, Quantum Circuit: Implementation, and Quantum Walk Applica-

tions.

We outline and summarize the main results of each chapter and list them as follows:

Part I : Basics and the Insights

Chapter 2

We present some fundamental notions, such as circuit models and complexity, of classical

computation and quantum computation that will form the basis for much of what follows

in the remaining chapters. We also present important properties, such as the convergence

rate and the stationary distribution, in classical Markov chains that later we can compare

to justify the the improvement gained from quantum walk.

Chapter 3

In this chapter, we present the main ingredients in quantizing a quantum walk: the product

of two reflections based on the given Markov transition matrix, the spectrum of this product,

and the phase estimation technique. The core contribution from the quantum walk is the

quadratic speedup that was made possible by the spectrum property of the walk operator

4

and the use of phase estimation.

Part II : Quantum Circuit - Implementation

Chapter 4

While Quantum phase estimation (QPE) is at the core of many quantum algorithms known to

date, its physical implementation (algorithms based on quantum Fourier transform (QFT))

is highly constrained by the requirement of high-precision controlled phase shift operators,

which remain difficult to realize. In this chapter, we introduce an alternative approach

to approximately implement QPE with arbitrary constant-precision controlled phase shift

operators.

The new quantum algorithm bridges the gap between QPE algorithms based on QFT

and Kitaev’s original approach. For approximating the eigenphase precise to the nth bit,

Kitaev’s original approach does not require any controlled phase shift operator. In contrast,

QPE algorithms based on QFT or approximate QFT require controlled phase shift operators

with precision of at least π/2n. The new approach fills the gap and requires only arbitrary

constant-precision controlled phase shift operators. From a physical implementation view-

point, the new algorithm outperforms Kitaev’s approach.

Chapter 5

We present an efficient general method for realizing a quantum walk operator correspond-

ing to an arbitrary sparse classical random walk. Our approach is based on Grover and

5

Rudolph’s method for preparing coherent versions of efficiently integrable probability distri-

butions [GR02]. This method is intended for use in quantum walk algorithms with polyno-

mial speedups, whose complexity is usually measured in terms of how many times we have

to apply a step of a quantum walk [SZE04], compared to the number of necessary classi-

cal Markov chain steps. We consider a finer notion of complexity including the number of

elementary gates it takes to implement each step of the quantum walk with some desired

accuracy. The difference in complexity for various implementation approaches is that our

method scales linearly in the sparsity parameter and poly-logarithmically with the inverse

of the desired precision. The best previously known general methods either scale quadrat-

ically in the sparsity parameter, or polynomially in the inverse precision. Our approach is

especially relevant for implementing quantum walks corresponding to classical random walks

like those used in the classical algorithms for approximating permanents [JSV04, BSVV08]

and sampling from binary contingency tables [BSSV06]. In those algorithms, the sparsity

parameter grows with the problem size, while maintaining high precision.

Part III : Quantum Walk Applications

Chapter 6

We present a quantum algorithm based on classical fully polynomial randomized approxima-

tion schemes (FPRAS) for estimating partition functions that combine simulated annealing

with the Monte-Carlo Markov Chain method and use non-adaptive cooling schedules. We

achieve a twofold polynomial improvement in time complexity: a quadratic reduction with

6

respect to the spectral gap of the underlying Markov chains and a quadratic reduction with

respect to the parameter characterizing the desired accuracy of the estimate output by the

FPRAS. Both reductions are intimately related and cannot be achieved separately.

First, we use Grover’s fixed point search, quantum walks and phase estimation to effi-

ciently prepare approximate coherent encodings of stationary distributions of the Markov

chains. The speed-up we obtain in this way is due to the quadratic relation between the

spectral and phase gaps of classical and quantum walks. The second speed-up with respect

to accuracy comes from generalized quantum counting, used instead of classical sampling to

estimate expected values of quantum observables.

Chapter 7

While quantum walks may have many useful applications, there may be a situation in which

the spectral gap of the corresponding transition matrix P is extremely small. The quadratic

speed-up might remain insignificant. In a situation such as this, we can use techniques

like amplitude amplification. In a recent work [PW09], Poulin and Wocjan presented a

quantum algorithm for preparing thermal Gibbs states of interacting quantum systems. This

algorithm is based on Grover’s technique for quantum state engineering, and its running time

is dominated by the factor
√
D/Zβ, where D and Zβ denote the dimension of the quantum

system and its partition function at inverse temperature β, respectively.

We present here a modified algorithm and a more detailed analysis of the errors that

arise due to imperfect simulation of Hamiltonian time evolutions and limited performance

7

of phase estimation (finite accuracy and nonzero probability of failure). This modification

together with the tighter analysis allows us to prove a better running time by the effect

of these sources of error on the overall complexity. We think that the ideas underlying of

our new analysis could also be used to prove a better performance of quantum Metropolis

sampling by Temme et al. [TOVPV09].

Chapter 8

The hitting time is the required minimum time for a Markov chain-based walk (classical

or quantum) to reach a target state in the state space. We investigate the effect of the

perturbation on the hitting time of a quantum walk. We obtain an upper bound for the

perturbed quantum walk hitting time by applying Szegedy’s work and the perturbation

bounds with Weyl’s perturbation theorem on classical matrix. Based on the definition of

quantum hitting time given in MNRS algorithm, we further compute the delayed perturbed

hitting time (DPHT) and delayed perturbed quantum hitting time (DPQHT). We show that

the upper bound for DPQHT is actually greater than the difference between the square root

of the upper bound for a perturbed random walk and the square root of the lower bound for

a random walk.

Based on an efficient quantum sample preparation approach invented in speed-up via

quantum sampling and the perturbation bounds for stationary distribution for classical ma-

trix, we find an upper bound for the total variation distance between the prepared quantum

8

sample and the true quantum sample.

Chapter 9

The quantum walk is a useful technique that can be used to solve various problems [AMB04,

CCDFGS03, CSV07, MSS05, WCNA09, KMOR10]. For some oracular problems, quantum

walks render exponential speedups over its classical counterparts [CCDFGS03, CSV07]. For

some other problems, such as NAND tree evaluation problem [FGG08] and the triangle find-

ing problem [MSS05], quantum walks render polynomial speedup over classical algorithms.

In this chapter, we will discuss possible problems for future study. Some of the problems

have been tried quantumly, but there may be space left for improvement. Some of the prob-

lems have been tried out via classical random walk, but there is no quantum version yet. It

would be of interest to many to investigate the possible speed-up (exponential, polynomial

or none) that quantum walks can provide for those problems.

9

CHAPTER 2
PRELIMINARIES

In this chapter, a collection of common notations, definitions and theorems in quantum com-

puting and classical computation is presented. The collection contains the introductions to

classical computation, quantum computation, and the classical Markov chains. For classical

computation, the core presentation covers the classical complexity quantifying approach and

the classical circuit model. For quantum computation, the core presentation covers reversible

computation, quantum circuit model, qubit operations and quantum complexity. For clas-

sical Markov chains, we introduce the necessary properties for a Markov chain to converge

to a stationary distribution. To do so, we have this part of presentation cover definitions of

required properties, such as irreducibility, aperiodicity and spectral gap.

These techniques and notations are useful for understanding the materials presented in

later chapters. As we will, from time to time, discuss the complexity of algorithms, it is im-

portant to know the approach to quantify the complexity of a given algorithm. Furthermore,

the complexity of an algorithm is a standard method for measuring the performance of an

algorithm. This provides theorists the measure when comparing algorithms, that solve the

same problem, in terms of their performance.

For each quantum algorithm, there exists an equivalent corresponding quantum circuit

performing the computation that the quantum algorithm intends. Hence, it is important to

10

understand the quantum circuit model and the qubit operation inside the circuit.

For providing a thorough background in the preliminary, I consult various sources [KLM07,

NC00, LPW09, GOL10] extensively for the fundamental materials. These references sub-

stantially contribute to the composition and the structure of the preliminaries.

2.1 Introduction to Computation

From a general viewpoint, a computation can be thought of as a process that modifies a

relatively large environment through repeated applications of a simple and predetermined

rule. Although the effect after each application of the rule is limited, the accumulated

effect after many applications of the rule may be relatively, or maybe extremely, complex.

What is of interest is the transformation of the environment effected by the computation. In

computer science, it is common to encode the initial environment into binary strings and offer

the binary string to the computation mechanism, the Turing Machine for instance, to execute

the simple and predetermined rule. The result, or the end environment, is also rendered in

the string format when the computation halts. In another word, the computation behaves

like a function (can be partial) that maps from inputs to outputs, and such a mapping can

be considered as solving a problem by using repeated applications of the rule, such as the

transition function δ in the Turing Machine. We refer interested readers to the references

[GOL08, GOL10] for the Turing Machine model of computation.

11

2.2 The Circuit Model of Computation

Circuits are networks composed of wires and gates. The wires carry bit values from the

left through gates that perform some simple operations on the bits. The output after the

operations from the gates will be delivered from the right to the output wires. A circuit Cn

has n wires and an illustration of C6 is shown in Figure 2.2. As seen in the figure, the wires

carry the value of the bits, and the blocks G1, G2 are gates. The input bits are i1, i2, i3, i4, i5

and the output bits are o1, o2, o3, o4, o5. A family of circuits is a set of circuits {Cn|n ∈ cZ}.

We say the family is uniform if each Cn can be easily constructed. The reason for uniformity

is to provide equal computation power in the definition of the circuits themselves. One

important notion in circuits is universality. It is a set of different elementary gates that can

be used to construct a circuit for any desired computation.

Definition 1. [KLM07] For classical computation, a set of gates is universal if, for any

positive integers n,m and a function f : {0, 1}n → {0, 1}m, a circuit can be constructed for

computing f using only gates from that set.

i1

G1

o1

i2 o2

i3

G2

o3

i4 o4

i5 o5

Figure 2.1: A Simple Circuit Diagram

12

A well-known universal set of gates for the classical computation is {NAND, FANOUT}.

However, if being restricted to reversible gates, we would need more than just one-bit and

two-bit gates. The Toffoli gate (see Figure 2.2) is a reversible three-bit gate that flips the

value of the third bit when the first two bits are both 1. The Toffoli gate is universal when

we are allowed to add ancillary bits to the circuit that can be initialized to either 0 or 1 as

required.

|x〉 • |x〉
|y〉 • |y〉
|z〉 �������� |z ⊕ (x ∧ y)〉

Figure 2.2: A Toffoli Gate

When we are given a circuit to perform certain types of computation task, it is natural to

ask how good this circuit is. There might be several approaches to tackle the problem. That

is why we need a way to quantify the required source to finish the computation task. The

complexity of a circuit Cn can be considered based on the time or the space that the circuit

Cn uses to complete the computation. One simple quantification would be the measure of

the number of gates used in the circuit Cn. A second approach would be the depth of the

circuit. This approach divides the circuit into a sequence of discrete time-slices and each

time-slice is the time required by an application of a gate. Finally, the third approach would

be the measure of space. This is the total number of wires required in the circuit. A good

example is illustrated in Figure 2.3. In general, unless otherwise specified, the complexity of

a circuit often refers to the depth of the circuit.

13

G1
G3

G5
G4

G2

Figure 2.3: A Circuit of Depth 3, Space 4, and Size 5

2.2.1 Quantifying Computational Resources

Different models of computation lead to different resource requirements for computation. It is

desirable to have a universal approach to quantify resource requirements that is independent

of relatively trivial changes in the computational models. In the previous section we introduce

how to count the required sources for a given circuit in terms of either depth, space or gates.

Consider the case when the circuit is very complex and the required resources might be

polynomial (or exponential) with respect to the input size of the problem. One well-known

tool is asymptotic notation, which summarizes the essential behavior of a function. This

asymptotic approach associates with three major notions – the big-O, the big-Ω and the

big-Θ.

The big-O notation is used to bound the behavior of a function from the above. Suppose

we have two functions, f(n) and g(n), that take on non-negative integers as the domain.

We say g(n) sets the upper bound on f(n) if f(n) ≤ cg(n) for some constant c and large

n. Big-O notation is useful for learning the worst-case behavior of an algorithm. Similarly,

the big-Ω notation is used to bound the function from below. We say g(n) sets the lower

14

bound on f(n) if cg(n) ≤ f(n) for some constant and large n in the domain. Finally, the

big-Θ notation indicates that f(n) behaves the same as g(n) asymptotically, up to some

unimportant factors. That is to say when f(n) is Θ(g(n)), it means Ω(f(n)) = c1(g(n)) ≤

f(n) ≤ c2(g(n)) = O(f(n)) where c1 and c2 are some constants.

Let us consider an example to demonstrate the notation more explicitly. Let f(n) =

5n2 + 10n + 2 and since n3 ≥ 5n2 + 10n + 2 for large n, we can say f(n) is bounded from

above by n3 (not a very tight bound though). On the other hand, it is clear that the function

f(n) is Ω(n2).

With this asymptotic notation, we can classify problems into different categories. Com-

putational complexity theory classifies the hardness of various computational problems. It

determines the complexity of any well-defined task. Each classification represents a compu-

tational class. A computational class is a collection of computational problems that share

some common features in terms of the required computational resources, such as time or

space. An additional goal of complexity theory is the study of the relations between vari-

ous computational classes. Interestingly, complexity theory has been more successful in the

later (the study of the relations among the classes) than in the former (determination of the

complexity of a well-defined task).

15

2.3 Quantum Computation

The theory of quantum computing is related to reversible computation. Reversible comput-

ing means that we can uniquely recover the input when given the output. For instance, a

CNOT (Controlled NOT) is reversible (see Figure 2.4). We can uniquely determine x, y by

running CNOT gate again on the output x and y ⊕ x.

|x〉 • |x〉
|y〉 �������� |y ⊕ x〉

Figure 2.4: A Simple CNOT Gate

Definition 2. An operator U is called unitary if U † = U−1, where U−1 is the inverse of U .

In the standard matrix representation, the matrix for U † is the complex conjugate trans-

pose of the matrix for U . In quantum computation, allowed operations are unitary matrices,

which perfectly reserve the Euclidean norm of the input. Consequently, since a unitary

operation can be undone by running the unitary backwards, quantum computations are re-

versible. The reversible property of a unitary operator can be further applied to a broader

scale: the circuit. When we are given the output, we can run the circuit backwards to obtain

the unique input.

16

2.3.1 Quantum Circuit Model

One of the most commonly used computational models for quantum computing is the quan-

tum circuit model. The term quantum circuit refers to an acyclic network of quantum gates

connected by wires. Similar to the classical circuit model in terms of the presentation format,

the quantum circuit is also read from left to right as shown in Figure 2.5. |wi〉 and |zi〉 are

equal iff |φ〉 = |1〉. The first gate is Toffoli controlled by 0 and the second gate is the regular

Toffoli gate. Each line in the circuit represents a wire in the quantum circuit. The wire

is not necessarily a physical wire; it might represent the passage of time or just a physical

particle, such photon or electron, moving from one location to another through space.

|0〉 �������� �������� |φ〉
|wi〉 �������� • |wi〉
|zi〉 �������� • |zi〉

Figure 2.5: A Circuit That Tests Bit-wise Equality

2.3.2 Single Qubit Operation and Controlled Operations

A single qubit is a vector |ψ〉 = a|0〉 + b|1〉 described by two complex numbers satisfying

|a|2+ |b|2 = 1. Since quantum computation is reversible, it is necessary for the operations on

qubits to be unitary (that preserves the norm) and they can be described by a 2× 2 matrix.

The most important (and common) single qubit operators are the Identity matrix, the Pauli

matrices:

17

X ≡




0 1

1 0


 ; Y ≡




0 −i

i 0


 ; Z ≡




1 0

0 −1


 ; I ≡




1 0

0 1


 , (2.1)

and the Hadamard gate (H), phase gate (S) and π/8 gate (T):

H ≡ 1√
2




1 1

1 −1


 ; S ≡




1 0

0 i


 ; T ≡




1 0

0 exp(iπ/8)


 . (2.2)

For instance, when operator X acts on the state |ψ〉, we would get X|ψ〉 = b|0〉 + a|1〉.

When the Hadamard operator acts on |ψ〉, we have H|ψ〉 = a+b√
2
|0〉+ a−b√

2
|1〉.

The prototypical controlled operation is controlled-NOT, as seen in Fig 2.4. Since it only

flips the target bit when the control bit is 1, in computational basis we can interpret such

an action as

CNOT = |0〉〈0| ⊗ I + |1〉〈1| ⊗X. (2.3)

Similarly, suppose U is an unitary operator that acts on one single qubit, then we can

perform controlled-U operation with a control bit and a target bit. The controlled-U pre-

sented by the quantum circuit is shown at Fig 2.6. The top line is the control qubit and the

bottom line is the target qubit. When the top qubit |a〉 is |1〉, U is applied to the target

qubit |b〉, otherwise left alone. The matrix presentation of the controlled-U can be written

as follows: controlled-U = |0〉〈0| ⊗ I + |1〉〈1| ⊗ U .

18

|a〉 • |a〉
|b〉 U Ua|b〉

Figure 2.6: A Simple Controlled-U Gate

2.3.3 Universal Sets of Quantum Gates and N-Qubit Operation

The quantum gates we have seen so far are either 1-qubit or 2-qubit operators. An efficient

quantum algorithm would, in most cases, require more complicated unitary operators acting

on n-qubits. To implement n-qubit operators, we need to construct them by using the

elementary gates from the universal set. The following definitions and theorems show that

n-qubit operators can be efficiently simulated by 1-qubit and 2-qubit operators.

When the Pauli matrices are exponentiated, they become three useful classes of unitary

matrices: the rotation operators Rx, Rz and Rz. They are defined as follows:

Rx(θ) ≡ e
−iθX

2 , Ry(θ) ≡ e
−iθY

2 , Rz(θ) ≡ e
−iθZ

2 (2.4)

The following theorem tells us that any arbitrary 1-qubit unitary gate can be decomposed

into a sequence of one rotation around the y-axis and two rotations around the z-axis along

with some phase factor.

Theorem 1. Suppose U is a 1-qubit unitary gate. Then there exist real numbers, α, β, γ,

and δ such that

U = eiαRz(β)Ry(γ)Rz(δ). (2.5)

19

Definition 3. A set of gates is said to be universal if, for any integer n ≥ 1, any n-qubit

operator can be approximated to arbitrary accuracy by a quantum circuit using only gates

from that set.

Definition 4. A 2-qubit gate is said to be an entangling gate 1 if, for some input product

state |ψ〉|φ〉, the output of the gate is not a product state.

Theorem 2. A set composed of any 2-qubit entangling gate, together with all 1-qubit gates,

is universal.

An entangling 2-qubit gate with all 1-qubit gates enables us to implement an arbitrary

n-qubit unitary exactly. However, a major drawback is that the universal sets of gates are

infinite and that would not be helpful when it comes to implementation. We can start off

the task of finding a finite universal set by searching for a finite set of 1-qubit gates that we

can use to approximate an arbitrary 1-qubit gate to any desired accuracy.

Definition 5. A set of gates is said to be universal for 1-qubit gates if any 1-qubit unitary

gate can be approximated to arbitrary accuracy by a quantum circuit using only gates from

that set.

Theorem 3. If a set of two 1-qubit ̺ = {Rl(β), Rm(γ)} satisfies the conditions

(I) l and m are non-parallel axes of the Bloch sphere and

(II) β, γ ∈ [0, 2π) are real numbers such that β
π
and γ

π
are not rational

then ̺ is universal for 1-qubit gates.

1It is clear that CNOT gate is an entangling gate, simply let |ψ〉 = 1√
2
(|0〉+ |1〉) and |φ〉 = |0〉

20

Theorem 4. The set {CNOT,H, T} is a universal set of gates.

Theorem 4 guarantees us that we can approximate any n-qubit unitary U implemented

in an arbitrary quantum algorithm. We are interested in devising an efficient approach to

approximate U by using only a polynomial number of gates from the universal set. The

polynomial term here means polynomial in 1/ǫ and in the number of qubits n where ǫ is

the desired precision of the approximated U . The Solovay-Kitaev theorem has the answer

to this question.

Theorem 5. If ̺ is a finite set of 1-qubit gates satisfying the conditions in Theorem 3 and

(III) for any gate g ∈ ̺, its inverse g−1 can be implemented exactly by a finite sequence of

gates in ̺, then any 1-qubit gate can be approximated with error at most ǫ using O(logc(1/ǫ))

gates from ̺, where c is a positive constant.

The decomposition of U with gates from the universal set is a two-fold process. The

first step is to decompose U into two-level unitary matrices. A two-level unitary matrix

acts non-trivially only on two-or-fewer vector components. The second step is to efficiently

approximate two-level matrices by using gates from the finite universal set.

Theorem 6. For an arbitrary d× d unitary matrix U , it can be written as

U = V1V2 . . . Vk, (2.6)

where matrices Vi are two-level unitary matrices and k ≤ (d−1)+(d−2)+..+1 = d(d−1)/2.

21

Suppose the unitary U consists of several CNOT gates and m 1-qubit gates after the first

step of decomposition. If we want to approximate U with precision ǫ, by Solovay-Kitaev’s

theorem the approximation of those gates would require at most

O(m logc
m

ǫ
) (2.7)

gates from the universal set {CNOT,H, T}. This is only a poly-logarithmic increase over

the size of the original circuit.

2.4 Classical Markov Chains

For many tasks, such as simulated annealing [KGV83, CER85], computing the volume of

convex bodies [LV06] and approximating the permanent of a matrix [JSV04, BSVV08] (see

references in [WCNA09] for more), the best approaches known today are randomized algo-

rithms based on Markov chains (random walks) and sampling.

A classical Markov chain is a random process that moves among the elements in the

state space Ω. The movement of the process occurs in this manner: when a x ∈ Ω, the next

position is chosen basing on a fixed probability distribution P (x, ·) where P (x, ·) is the x-th

row of transition (stochastic) matrix P . A matrix is recognized as transition (stochastic)

matrix when the entries of each row of the matrix sum up to 1.

22

To be more exact, the moves based on the above manner can be viewed as a series

of random variables X = (X0, X1, . . .). X is considered the Markov chain with transition

matrix P and state space Ω. Markov chain holds the Markov Property, namely that, given

the current state, the future and the past states are independent. Formally that

Pr(Xt = xt|X0 = x0, X1 = x1, . . . , Xt−1 = xt−1) = Pr(Xt = xt|Xt−1 = xt−1). (2.8)

Because of this property, it is sufficient to use an |Ω| × |Ω| transition matrix P to describe

the moves of the Markov chain. When the state space Ω is finite, the corresponding Markov

chain is finite.

Definition 6. An n× n transition matrix P is stochastic if P only has non-negative entries

such that the sum of entries of each row (column) is 1. It is called row-wise (column-wise)

stochastic. A doubly stochastic matrix is when P is both row-wise and column-wise stochastic.

2.4.1 Irreducibility and Aperiodicity

To analyze the long-term behaviour of a Markov chain, it is important to classify its states.

For a finite Markov chain, this is equivalent to examining the structure connectivity of the

corresponding directed graph of the Markov chain.

Definition 7. State i is accessible from state j if for some integer n ≥ o P n(x, y) > 0.

When two states are accessible from each other, we say they commute and they belong to the

same communicating class.

23

Definition 8. A Markov chain is irreducible if all states belong to one communicating class.

This means it is possible to get from any state to any other state using a sequence of

positive transition probability.

Definition 9. For any starting state x, let τ(x) := {t ≥ 1 : P t(x, x) > 0} be the set of times

when the chain re-visit state x. The period of x is defined as the greatest common divisor of

τ(x).

Definition 10. A Markov chain is aperiodic when all states has period 1.

The importance for a matrix P to be aperiodic and irreducible leads to the following two

propositions.

Proposition 1. If P is aperiodic and irreducible, then there is an integer r such that

P r(x, y) > 0 for all x, y ∈ Ω.

Proposition 2. [LPW09] If P is the transition matrix of an irreducible markov chain, then

there exists a probability distribution π on Ω such that π = πP and π(x) > 0 for all x ∈ Ω.

2.4.2 Stationary Distributions, Spectral Gap and Convergence

Definition 11. A distribution π (row vector) on Ω satisfying

πP = π, (2.9)

24

is the stationary distribution of row-wise stochastic matrix P . Similarly, if π is stationary

distribution of a column-wise stochastic matrix P , then Pπ = π where π is a column vector.

Fact 1. Let P be the transition matrix of a finite Markov chain. (i) If λ is an eigenvalue of

P , the |λ| ≤ 1. (ii) If P is irreducible and aperiodic, then −1 is not an eigenvalue of P .

Definition 12. Suppose P is an n× n transition matrix with eigenvalues

− 1 ≤ λn(P) ≤ . . . ≤ λ1(P) = 1. (2.10)

Define

λ⋆ = max{|λi(P)| : λi(P) 6= 1}. (2.11)

The difference δ = 1− λ⋆ is the spectral gap.

When P is aperiodic and irreducible, Fact 1 implies δ > 0.

Theorem 7. (Convergence Theorem)[LPW09] Suppose that an N × N matrix P is irre-

ducible and aperodic, with stationary distribution π. Then there exist constants α ∈ (0, 1)

and C > 0 such that

max
x∈Ω

‖|P t(x, ·)− π‖| ≤ Cαt (2.12)

Given a stochastic n×n matrix P that is irreducible and aperiodic, the time for any arbitrary

starting state |φ〉 to converge to the stationary distribution |π〉 of P is proportional to 1/δ.

25

2.4.3 Hitting Time

For the purpose of being complete, we adopt several important terms [MNRS09] that we use

frequently in our context.

Let P be a reversible and ergodic transition matrix with state space Ω. Assume the

Markov chain (X1, . . . , Xn) under discussion has a finite state space Ω and transition matrix

P . We define the following:

Definition 13. For z ∈ Ω, denote the hitting time for z

τz := HT (P, z) = min{t ≥ 1 : Xt = z}. (2.13)

τz is the expected number of transition matrix P invocations to reach the state z when started

in the initial distribution π.

Let π be the stationary distribution of P . Let P−z be an (n− 1)× (n− 1) matrix where

the column and row indexed by z are removed. In the same manner, v−z denotes the vector

v with the z-coordinate eliminated. The z-hitting time of P can then be computed via the

formula [MNRS09] HT (P, z) = π†
−z(I−P−z)

−1u−z, where u is an all-ones vector. It is known

that

π†
−z(I − P−z)

−1u−z =
√
π−z

†(I − S−z)
−1√π−z (2.14)

where S−z =
√∏

−zP−z
√∏

−z
−1

with
∏

−z = diag(πi)i 6=x and
√
π−z is the entry-wise square

root of π−z. Let {vj : j ≤ n − 1} be the set of normalized eigenvectors of S−z where the

eigenvalue of vj is λj = cos θj with 0 ≤ θj ≤ π/2. After reordering the eigenvalues, we have

26

1 ≥ λ1 ≥ . . . ≥ λn−1 ≥ 0. We can express
√
π−z =

∑
j νjvj in the eigenbasis of S−z, then

the x-hitting time satisfies:

HT (P, x) =
∑

j

ν2j
1− λj

(2.15)

27

CHAPTER 3
INSIGHTS

Current research in quantum walks has two distinct models: the discrete-time step quantum

walk and the continuous time evolution quantum walk. In this work, we will focus on the

discrete-time quantum walk. The discrete time quantum walk is a tool for generalizing clas-

sical discrete Markov chains [AAKV01]. The discrete time quantum walk can be considered

as a sequence of of unitary operations where each operation has a non-zero transition ampli-

tude only between adjacent vertices of the graph. Classically such a graph can be presented

by an adjacency matrix with entries associated the transition probability as discussed in

previous chapter.

In this chapter, we present the main ingredients in quantizing a quantum walk: quantum

phase estimation (QPE), the product of two reflections based on the given Markov transition

matrix and the spectrum of the product of two reflections. The core contribution of quantum

walks is the quadratic speedup. It is made possible due to the spectrum gap of the walk

operator and the application of phase estimation.

3.1 Phase Estimation

Quantum phase estimation (QPE) is a key tool in many important quantum algorithms,

such as order finding and quantum walks. QPE approximates the phase of a given unitary

28

|0〉 H •

QFT†
... · · ·

|0〉 H •

|0〉 H •

|u〉 U20 U21 U2t−1

Figure 3.1: Standard Quantum Phase Estimation

operator. QPE based on quantum Fourier transform (QFT) is a standard approach used for

such a task. The structure of this approach is depicted at Figure 3.1. A formal statement

of the problem is as follows:

Problem. Assume U is a unitary matrix with eigenvalue e2πiϕ and the corresponding eigen-

vector |u〉. The goal is to find ϕ̃ precise to the n-th bit such that

Pr(|ϕ̃− ϕ| < 1

2n
) > 1− ǫ.

Here ϕ = 0.x1 . . . xn . . . is in binary representation.

The standard QPE algorithm requires two registers and contains two stages. The first

register is prepared as a composition of t qubits initialized in the state |0〉. The second

register is initially prepared in the state |u〉.

Theorem 8. [NC00] To successfully obtain the eigenphase ϕ accurate to n-th bit (precision

of 1/2n) with probability success at least 1− ǫ, we need to choose

t = n+ ⌈log(2 + 1

2ǫ
)⌉.

The number of invocations of the unitary U for this algorithm is 2t − 1.

29

|yt〉 H • • · · · • |xt〉

|yt−1〉 R†
2 H • · · · • |xt−1〉

|yt−2〉 R†
3 R†

2 H · · · · · · |xt−2〉
... · · · · · · · · · •

|y1〉 · · · R†
t R†

t−1 · · · R†
2 H |x1〉

Figure 3.2: The Full-fledged Inverse QFT

In the first stage, known as the phase kick-back stage, the algorithm prepares a uniform

superposition over all possible states and then applies the controlled-U2k operations where

0 ≤ k ≤ t− 1. To sharpen our intuition about why QPE works, suppose ϕ is of exactly of t

bits in binary presentation. Consequently, the state of the system for the first register after

the first stage will be

1√
2t

(|0〉+ e2πi0.xt |1〉)(|0〉+ |e2πi0.xt−1xt|1〉) . . . (|0〉+ e2πi0.x1x2...xt |1〉) (3.1)

= |yt〉 ⊗ |yt−1〉 ⊗ . . .⊗ |y1〉 (3.2)

=
1

2t/2

2t−1∑

k=0

e2πiϕk|k〉. (3.3)

The second stage, known as inverse QFT, in the QPE algorithm is the QFT † operation.

The structure of the inverse Fourier transform is depicted at Figure 3.2. The rotation

operator Rk and the state |yi〉 mentioned above are as follows:

R†
k ≡




1 0

0 e−2πi/2k


 , |yi〉 =

1√
2
(|0〉+ e2πi(0.xi...xt) |1〉).

30

|0〉+e2πi0.x3 |1〉√
2

H • • |x3〉

|0〉+e2πi0.x2x3 |1〉√
2

R†
2 H • |x2〉

|0〉+e2πi0.x1x2x3 |1〉√
2

R†
3 R†

2 H |x1〉

_ _ _�

�

�

�

�

�
_ _ _

_ _ _ _ _ _�
�
�
�
�
�

�
�
�
�
�
�

_ _ _ _ _ _

_ _ _ _ _ _ _ _ _�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

_ _ _ _ _ _ _ _ _

Figure 3.3: The Illustration of Inverse QFT When t = 3

Starting from the least significant bit, we apply the Hadamard operation to obtain the correct

least significant bit xt. To give readers a more clear idea, let us consider the case when t = 3

to illustrate how it works.

The first step is to recover the least significant bit correctly. In order to do so, we apply the

Hadamard gate.

|0〉+e2πi0.x3 |1〉√
2

H

_ _ _�

�

�

�

�

�
_ _ _

Figure 3.4: The Process to Obtain the Least Significant Bit x3

By simple computation, we see that x3 is obtained.

|0〉+ e2πi0.x3 |1〉√
2

=
|0〉+ (−1)x3|1〉√

2

H−→ |x3〉 (3.4)

31

The second step is to recover the middle bit. We need to use the result, x3, from previous

step to do a controlled shift operation to reset the phase.

|x3〉 •
|0〉+e2πi0.x2x3 |1〉√

2
R†

2 H

_ _ _ _ _ _ _�
�
�

�
�

�
�
�

�
�

_ _ _ _ _ _ _

Figure 3.5: The Process to Obtain the Middle Bit x2

Once the phase is properly reset, we can apply the Hadamard gate to obtain x2 correctly.

|x3〉 ⊗
|0〉+ e2πi0.x2x3|1〉√

2

ctrl R†
2−−−−→ |x3〉 ⊗

|0〉+ e2πi0.x20|1〉√
2

I⊗H−−→ |x3〉 ⊗ |x2〉 (3.5)

|x3〉 •
|x2〉 •

|0〉+e0.x1x2x3 |1〉√
2

R†
3 R†

2 H

_ _ _ _ _ _ _ _ _ _�

�

�

�

�

�

�

�

�

�

�

�
_ _ _ _ _ _ _ _ _ _

Figure 3.6: The Process to Obtain the Most Significant Bit x1

When x3 and x2 are properly reset, we can obtain x1. Then we successfully recover the

eigenphase 0.x1x2x3.

|x3〉 ⊗ |x2〉 ⊗
|0〉+ e2πi0.x1x2x3 |1〉√

2

ctrl R†
3−−−−→ |x3〉 ⊗ |x2〉 ⊗

|0〉+ e2πi0.x1x20|1〉√
2

ctrl R†
2−−−−→ |x3〉 ⊗ |x2〉 ⊗

|0〉+ e2πi0.x100|1〉√
2

I⊗I⊗H−−−−→ |x3〉 ⊗ |x2〉 ⊗ |x1〉

32

We can generalize this idea by letting t be any arbitrary positive integer greater than

3. By using the previously determined bits xk+2, . . . , xt and the action of corresponding

controlled phase shift operators, we have

|0〉+ e2πi0.xk+10...0 |1〉√
2

=
|0〉+ (−1)xk+1 |1〉√

2
. (3.6)

By applying a Hadamard gate to the state above, we obtain |xk+1〉 at step k. Therefore, we

can consider the inverse Fourier transform as a series of Hadamard tests. If ϕ has an exact

binary representation, the success probability at each step is 1. In the case that ϕ cannot

be exactly expressed in binary fraction, the success probability P of the post-measurement

state, at step k, is

P = cos2(πθ) for |θ| < 1

2k+1
(3.7)

Therefore, the success probability increases as we proceed. The following theorem gives us

the success probability of the QFT algorithm.

Theorem 9 ([KLM07]). If x
2n

≤ ϕ ≤ x+1
2n

, then the phase estimation algorithm returns one

of x or x+ 1 with probability at least 8
π2 .

3.2 Product of Two Reflections

In [SZE04], Szegedy defined a quantum walk as a quantum analog of a random walk of a

classical Markov chain. Let P be the underlying stochastic matrix for the classical random

walk. Denote pxy as the probability of moving from state x to state y. Since each step of the

33

quantum walk must be unitary, it is convenient to define the quantum walk on a quantum

system with two registers H = HL ⊗HR. The quantum update rule, defined in [MNRS07],

is a unitary transformation U , based on a transition matrix P , that acts as

U |x〉L |0〉R = |x〉L
∑

y

√
pxy |y〉R (3.8)

on inputs of the form |x〉L |0〉R for all x ∈ Ω. (Its action on inputs |x〉L |y 6= 0〉R can be

chosen arbitrarily.) For details, please refer to Appendix A.1. Using such U , we define two

subspaces of H. First,

A = span{U |x〉L |0〉R} (3.9)

is the span of all vectors we get from acting with U on |x〉L |0〉R for all x ∈ Ω, and second,

the subspace B = SA is the subspace we get by swapping the two registers of A. Using the

quantum update, we can implement a reflection about the subspace A as

RefA = U (2 |0〉 〈0|R − I)U †. (3.10)

Szegedy defined a step of the quantum walk as the walk operator W

W = RefB · RefA, (3.11)

a composition of the two reflections about A and B. This operation is unitary, and the state

|ψπ〉 =
∑

x

∑

y

√
πxy |x〉1 |y〉2 , (3.12)

where π is the stationary distribution of P , is an eigenvector ofW with eigenvalue 1. Szegedy

[SZE04] proved1 that when we parametrize the eigenvalues ofW as eiπθi , the second smallest

1Nagaj et al. give a simpler way to prove this relationship using Jordan’s lemma in [NWZ09].

34

phase θ1 (after θ0 = 0) is related to the second largest eigenvalue λ1 of P as |θ1| >
√
1− λ1.

This can be viewed as a square-root relationship ∆ >
√
δ between the phase gap ∆ = |θ1−θ0|

of the unitary operator W and the spectral gap δ = |λ0 − λ1| of P . This relationship is at

the heart of the quantum speedups of quantum walk-based algorithms over their classical

counterparts.

Many recent quantum walk algorithms for searching [MNRS07, AMB04, AMB04a, MSS05],

evaluating formulas and span programs [RS08, ACRSZ07, FGG08], quantum simulated an-

nealing [SBBK08], quantum sampling [RIC07a, WA08] and approximating partition func-

tions based on classical Markov chains [WCNA09] can be viewed in Szegedy’s generalized

quantum walk model. For all these algorithms, an essential step in implementing the quan-

tum walk W is the ability to implement the quantum update rule (3.8). For the basic

search-like and combinatorial algorithms with low-degree underlying graphs, an efficient

implementation of the corresponding quantum walks is straightforward. However, for com-

plicated transition schemes coming from Markov chains like those for simulated annealing or

for approximating partition functions of the Potts model, the situation is not so clear-cut.

The standard polynomial speed-ups of these quantum algorithms are viewed in terms of how

many times we have to apply the quantum walk operator versus the number of times we

have to apply one step of the classical random walk (Markov chain). However, a finer notion

of complexity including the number of elementary gates it takes to implement each step of

the quantum walk is needed here. Our work addresses the question of whether it is possible

35

to apply the steps of these quantum walk-based algorithms efficiently enough so as not to

destroy the polynomial speedups.

3.3 Quantization of Classical Random Walk

For better understanding the behaviour of a discrete-time quantum walk, it is crucial to

compute the spectral decomposition of the walk operator. For the remainder of this chapter,

let us assume P is column-wise stochastic. A discrete-time classical random walk on an N

vertices graph is presented by an N ×N transition matrix P . We introduce the state

|ψj〉 =
N∑

k=1

√
Pkj |j〉 |k〉 (3.13)

for j = 1, . . .N . The above state is normalized because P is stochastic. Now let Π denote

the projection onto {|ψj〉 : j = 1, . . . , N} where

Π =

N∑

j=1

|ψj〉 〈ψj | . (3.14)

Let S be the operator that swaps two registers and it is defined as

S =
N∑

j,k=1

|j, k〉 〈k, j| . (3.15)

We can define a single step of the quantum walk operator as

U = S(2Π− I). (3.16)

36

Theorem 10. [AC781] Given an N ×N stochastic matrix P, let {|λ〉} be a complete set of

orthonormal eigenvectors of an N × N discriminant matrix D where Djk =
√
PjkPkj with

eigenvalues {λ}. Then the eigenvalues of the discrete-time quantum walk U = S(2Π − I)

corresponding P are ±1 and e±iarccosλ.

Proof. Define an isometry

T =
N∑

j=1

|ψj〉 〈j| (3.17)

that maps a state in Cn to Cn ⊗ Cn. We notice that

TT † =
N∑

j,k=1

|ψj〉 〈j| k〉 〈ψk| = Π (3.18)

T †T =

N∑

j,k=1

|j〉 〈ψj |ψk〉 〈k| =
∑

j,k,l,m

√
PljPmk |j〉 〈j, l| k,m〉 〈k| (3.19)

=
N∑

j,l=1

Plj |j〉 〈j| = I (3.20)

T †ST =

N∑

j,k=1

|j〉 〈ψj |S |ψk〉 〈k| =
∑

j,k,l,m

√
PljPmk|j〉〈j, l|(

∑

s,t

|s, t〉〈t, s|)|k,m〉〈k|(3.21)

=
N∑

j,k=1

√
PkjPjk|j〉〈k| = D. (3.22)

Let |λ̃〉 = T |λ〉. We apply U to |λ̃〉 to get

U |λ̃〉 = S(2TT † − I)T |λ〉 = (2ST − ST)|λ〉 = S|λ̃〉. (3.23)

Then we apply U to S|λ̃〉 to get

US|λ̃〉 = S(2TT † − I)ST |λ〉 = (2STD − T)|λ〉 = 2λS|λ̃〉 − |λ̃〉 (3.24)

37

It is clear that the subspace {|λ̃〉, S|λ̃〉} is invariant under U and that allows us to derive

eigenvector within this subspace. Let |µ〉 = |λ̃〉 − µS|µ〉 be an eigenvector of U . We obtain

the following

U |µ〉 = S|λ̃〉 − µ(2λS|λ̃〉 − |λ̃〉)

= µ|λ̃〉+ (1− 2λµ)S|λ̃〉

With the equation −µ2 = −2λµ being satisfied, we have µ as the corresponding eigenvalue

for |µ〉. It means µ = λ± i
√
1− λ2 = e±iarccosλ.

3.4 Spectrum of the Product of Two Reflections

Let the subset M be the set of marked elements that we are searching for. We can modify

the original transition matrix P into P̃ in the following manner:

P̃jk =





1 k ∈M and j = k

0 k ∈M and j 6= k

Pjk k 6∈M

We can view P̃ in block structure as follows:

P̃ =




PM 0

Q I


 . (3.25)

38

When starting from a uniform distribution over unmarked elements, the probability of

not reaching a marked element after t steps would be

1

N − |M |
∑

j,k 6∈M
[P t
M] ≤ ‖PM‖t.

Let ‖PM‖ = 1−∆ then the probability of reaching a marked element after t steps is at least

1− (1−∆)t. When t = O(1/∆) = O(1
1−‖PM‖) is chosen, the probability of reaching a marked

element approaches Ω(1).

Lemma 1. [SZE04] If the second largest eigenvalue of P (in absolute value) is at most 1− δ

and |M | ≤ ǫN , then ‖PM‖ ≤ 1− δǫ/2.

Proof. Let |v〉 ∈ RN−|M | be the principal eigenvector of PM . Let |w〉 ∈ RN be the vector

obtained by padding |v〉 with 0’s for marked elements. Because P is symmetric, the uniform

vector |V 〉 = 1√
N

∑
j |j〉 is its eigenvector corresponding to eigenvalue 1.

‖PM‖2 ≤ ‖P |w〉‖2 = |〈V |w〉|2 +
∑

λ6=1

λ2|〈λ|w〉|2 (3.26)

≤ |〈V |w〉|2 + (1− δ)
∑

λ6=1

|〈λ|w〉|2 (3.27)

= 1− δ(1− |〈V |w〉|2) (3.28)

as P = |V 〉〈V |+
∑

λ6=1 λ|λ〉〈λ| and I = |V 〉〈V |+
∑

λ6=1 |λ〉〈λ|.

By Cauchy-Schwarze inequality,

|〈V |w〉|2 = |〈V |ΠV \M |w〉|2 ≤ ‖ΠV \M |V 〉‖2 · ‖|w〉‖2 = 1− ǫ, (3.29)

thus ‖PM‖ ≤
√
1− δǫ ≤ 1− δǫ/2

39

By the definition of discriminant matrix, we have D =




PM 0

0 I


. Clearly the eigen-

values of D is the union of the eigenvalues of PM and 1 (from I). Since ‖PM‖ ≤ 1 − δǫ/2,

then spectral gap of D is greater than δǫ/2.

Let |ψ〉 = 1√
N−|M |

∑ |ψj〉 be the initial input state. It can be easily prepared from the

state 1√
N

∑
|ψj〉. Based on the cardinality of the marked elements set M , we have the fol-

lowing:

Case I: |M | = 0.

We have P̃ = P and |ψ〉 = 1√
N

∑ |ψj〉. The phase estimation would yield phase 0 as |ψ〉 is

eigenvector of U with eigenvalue 1. QPE would always return 0 for the eigenphase.

Case II: |M | > 0.

From the spectrum theorem of quantum walk 10 the eigenvalues of U are ±1 and λ ±

i
√
1− λ2 = eiarcosλ where λ runs over the eigenvalues of PM . To detect the existence of

marked elements, that is to find an eigephase other than 0, we need to have QPE precision

up to O(minλ arccosλ). And since arccosλ ≥
√
1− λ, precision up to

√
1− ‖PM‖ is suffi-

cient. By lemma 1, we know O(1√
δǫ
) invocations of the walk operator U is required.

To summarize the quantization process of classical transition matrix P to the correspond-

ing quantum walk operator U , we can visualize the process in the following diagram:

40

Figure 3.7: From A Random Walk to Spectrum Theorem for Quantum Walk

41

CHAPTER 4
EFFICIENT CIRCUIT FOR PHASE ESTIMATION

Quantum Phase Estimation (QPE) plays a core role in many quantum algorithms [HAL02,

SHO94, SHO05, SZE04, WCNA09]. Some interesting algebraic and theoretic problems can

be addressed by QPE, such as prime factorization [SHO94], discrete-log finding [SHO05],

and order finding.

Problem. [Phase Estimation] Let U be a unitary matrix with eigenvalue e2πiϕ and cor-

responding eigenvector |u〉. Assume only a single copy of |u〉 is available, the goal is to find

ϕ̃ such that

Pr(|ϕ̃− ϕ| < 1

2n
) > 1− c, (4.1)

where c is a constant less than 1
2
.

In this chapter we investigate a more general approach for the QPE algorithm. This ap-

proach completes the transition from Kitaev’s original approach that requires no controlled

phase shift operators to QPE with approximate quantum Fourier transform (AQFT). The

standard QPE algorithm utilizes the complete version of the inverse QFT. The disadvan-

tage of the standard phase estimation algorithm is the high degree of phase shift operators

required. Since implementing exponentially small phase shift operators is costly or physi-

cally not feasible, we need an alternative way to use lower precision operators. This was

the motivation for AQFT being introduced — for lowering the cost of implementation while

preserving high success probability.

42

In AQFT the number of required phase shift operators drops significantly with the cost

of lower success probability. Such compromise demands repeating the process extra times

to achieve the final result. The QPE algorithm has a success probability of at least 8
π2

[KLM07]. Phase estimation using AQFT instead, with phase shift operators up to degree m

where m > log2(n) + 2, has success probability at least 4
π2 − 1

4n
[BEST96, CHE04].

On the other hand, Kitaev’s original approach requires only the first phase shift operator

(as a single qubit gate not controlled). Comparing the existing methods, there is a gap

between Kitaev’s original approach and QPE with AQFT in terms of the degree of phase

shift operators needed. In this chapter our goal is to fill this gap and introduce a more

general phase estimation algorithm such that it is possible to realize a phase estimation

algorithm with any degree of phase shift operators in hand. In physical implementation of

the phase estimation algorithm the depth of the circuit should be small to avoid decoherence.

Also, higher degree phase shift operators are costly to implement and in many cases it is not

physically feasible.

We can visualize the precision gap in Figure 4.1. Our goal is to fill the gap by using lower

precision (or constant precision) shift operators while preserving the depth of the circuit and

success probability.

In this chapter, we assume only one copy of the eigenvector |u〉 is available. This implies

a restriction on the use of controlled-U gates that all controlled-U gates should be applied on

one register. Thus, the entire process is a single circuit that can not be divided into parallel

processes. Due to results by Griffiths and Niu, who introduced semi-classical quantum

43

Figure 4.1: Required Precision at the Bottom: 20, 2logn and 2n

Fourier transform [GN96], quantum circuits implementing different approaches discussed in

this chapter would require the same number of qubits.

The structure of this chapter is organized as follows. In Sec. 4.1 we give a brief overview

on existing approaches, such as Kitaev’s original algorithm and standard phase estimation

algorithm based on QFT and AQFT. In Sec. 4.2 we introduce our new approach and dis-

cuss the requirements to achieve the same performance output (success probability) as the

methods above. Finally, we make our conclusion and compare with other methods.

4.1 Quantum Phase Estimation Algorithms

4.1.1 Kitaev’s Original Approach

Kitaev’s original approach is one of the first quantum algorithms for estimating the phase of a

unitary matrix [KSV02]. Let U be a unitary matrix with eigenvalue e2πiϕ and corresponding

44

|0〉 H K • H
NM

|u〉 U2k−1 |u〉

Figure 4.2: Hadamard Test with Extra Phase Shift Operator

eigenvector |u〉 such that

U |u〉 = e2πiϕ |u〉 . (4.2)

In this approach, a series of Hadamard tests are performed. In each test the phase 2k−1ϕ

(1 ≤ k ≤ n) will be computed up to precision 1/16. Assume an n-bit approximation is

desired. Starting from k = n, in each step the kth bit position is determined consistently

from the results of previous steps.

For the kth bit position, we perform the Hadamard test depicted in Figure 4.2, where

the gate K = I2. Denote ϕk = 2k−1ϕ, the probability of the post measurement state is

Pr(0|k) = 1 + cos(2πϕk)

2
, Pr(1|k) = 1− cos(2πϕk)

2
. (4.3)

In order to recover ϕk, we obtain more precise estimates with higher probabilities by iterating

the process. But this does not allow us to distinguish between ϕk and −ϕk. This can be

solved by the same Hadamard test in Figure 4.2, but instead we use the gate

K =




1 0

0 i


 . (4.4)

The probabilities of the post-measurement states based on the modified Hadamard test

become

45

Pr(0|k) = 1− sin(2πϕk)

2
, Pr(1|k) = 1 + sin(2πϕk)

2
. (4.5)

Hence, we have enough information to recover ϕk from the estimates of the probabilities.

In Kitaev’s original approach, after performing the Hadamard tests, some classical post

processing is also necessary. Suppose ϕ = 0.x1x2 . . . xn is an exact n-bit. If we are able to

determine the values of ϕ, 2ϕ, . . . , 2n−1ϕ with some constant-precision (1/16 to be exact),

then we can determine ϕ with precision 1/2n efficiently [KIT95, KSV02].

Starting with ϕn we increase the precision of the estimated fraction as we proceed toward

ϕ1. The approximated values of ϕk (k = n, . . . , 1) will allow us to make the right choices.

For k = 1, . . . , n the value of ϕk is replaced by βk, where βk is the closest number chosen

from the set {0
8
, 1
8
, 2
8
, 3
8
, 4
8
, 5
8
, 6
8
, 7
8
} such that

|ϕk − βk|mod 1 <
1

8
. (4.6)

The result follows by a simple iteration. Let βn = 0.xnxn+1xn+2 and proceed by the

following iteration:

xk =





0 if 0.0xk+1xk+2 − βk|mod 1 < 1/4

1 if 0.1xk+1xk+2 − βk|mod 1 < 1/4

(4.7)

for k = n− 1, . . . , 1. By using simple induction, the result satisfies the following inequality:

|0.x1x2 . . . xn+2 − ϕ|mod 1 < 2−(n+2). (4.8)

46

In Eq. 4.6, we do not have the exact value of ϕk. So, we have to estimate this value and

use the estimate to find βk. Let ϕ̃k be the estimated value and

ǫ = |ϕ̃k − ϕk|mod 1 (4.9)

be the estimation error. Now we use the estimate to find the closest βk. Since we know the

exact binary representation of the estimate ϕ̃k, we can choose βk such that

|ϕ̃k − βk|mod 1 ≤
1

16
. (4.10)

By the triangle inequality we have,

|ϕk − βk|mod 1 ≤ |ϕ̃k − ϕk|mod 1 + |ϕ̃k − βk|mod 1 ≤ ǫ+
1

16
. (4.11)

To satisfy Eq. 4.6, we need to have ǫ < 1/16, which implies

|ϕ̃k − ϕk|mod 1 <
1

16
. (4.12)

Therefore, it is required for the phase to be estimated with precision 1/16 at each stage.

In the first Hadamard test (Eq. 4.3), in order to estimate Pr(1|k) an iteration of Hadamard

tests should be applied to obtain the required precision of 1/16 for ϕk. This is done by

counting the number of states |1〉 in the post measurement state and dividing that number

by the total number of iterations performed.

The Hadamard test outputs |0〉 or |1〉 with a fixed probability. We can model an iteration

of Hadamard tests as Bernoulli trials with success probability (obtaining |1〉) being pk. The

best estimate for the probability of obtaining the post measurement state |1〉 with t samples

47

is

p̃k =
h

t
, (4.13)

where h is the number of ones in t trials. This can be proved by Maximum Likelihood

Estimation (MLE) methods [HS98].

In order to find sin(2πϕk) and cos(2πϕk), we can use estimates of probabilities in Eq. 4.3

and EQ. 4.5. Let sk be the estimate of sin(2πϕk) and tk the estimate of cos(2πϕk). It is

clear that if

|p̃k − pk| < ǫ0, (4.14)

then

|sk − sin(2πϕk)| < 2ǫ0, |tk − cos(2πϕk)| < 2ǫ0. (4.15)

Since the inverse tangent function is more robust to error than the inverse sine or cosine

functions, we use

ϕ̃k =
1

2π
arctan

(
sk
tk

)
(4.16)

as the estimation of ϕk. By Eq. 4.12 we should have

∣∣∣∣ϕk −
1

2π
arctan

(
sk
tk

)∣∣∣∣
mod 1

<
1

16
. (4.17)

The inverse tangent function can not distinguish between the two values ϕk and ϕk±1/2.

However, because we find estimates of the sine and cosine functions as well, it is easy to

determine the correct value. The inverse tangent function is most susceptible to error when

ϕk is in the neighborhood of zero and the reason is that the derivative is maximized at zero.

48

Thus, if

|sk − sin(2πϕk)| = ǫ1 and |tk − cos(2πϕk)| = ǫ2, (4.18)

considering the case where ϕk = 0, then we have

1

2π

∣∣∣∣arctan
(

ǫ1
1± ǫ2

)∣∣∣∣ <
1

16
. (4.19)

By simplifying the above inequality, we have

∣∣∣∣
ǫ1

1± ǫ2

∣∣∣∣ < tan(
π

8
). (4.20)

With the following upper bounds for ǫ1 and ǫ2, the inequality above is always satisfied when

|ǫ1| < 1− 1√
2

and |ǫ2| < 1− 1√
2
. (4.21)

Therefore, in order to estimate the phase ϕk with precision 1/16, the probabilities in

Eq. 4.3 and Eq. 4.5 should be estimated with error at most (2−
√
2)/4 which is approximately

0.1464. In other words, it is necessary to find the estimate of Pr(1|k) such that

∣∣∣∣Pr(1|k)−
h

t

∣∣∣∣ <
2−

√
2

4
≈ 0.1464. (4.22)

There are different ways we can guarantee an error bound with constant probability. The

first method, used in [KSV02], is based on the Chernoff bound. Let X1, . . . , Xm be Bernoulli

random variables. By Chernoff’s bound we have

Pr

(∣∣∣∣∣
1

m

m∑

i=0

Xi − pk

∣∣∣∣∣ ≥ δ

)
≤ 2e−2δ2m, (4.23)

where in our case the estimate is p̃k =
1
m

∑m
i=0Xi. Since we need an accuracy up to 0.1464,

we get

Pr (|p̃k − pk| > 0.1464) < 2e−(0.0429)m. (4.24)

49

In order to obtain

Pr (|p̃k − pk| < 0.1464) > 1− ε

2
, (4.25)

a minimum of m1 trials is sufficient when

m1 ≈ 24 ln
4

ε

≈ 33 + 24 ln
1

ε
(4.26)

This is the number of trials for each Hadamard test, as we have two Hadamard tests at

each stage. Therefore, in order to have

Pr

(
|ϕ̃k − ϕk| <

1

16

)
> 1− ε. (4.27)

we require a minimum of

m = 2m1

≈ 47 ln
4

ε

≈ 66 + 47 ln
1

ε
(4.28)

many trials.

In the analysis above, we used the Chernoff bound, which is not a tight bound. If we want

to obtain the result with a high probability, we need to apply a large number of Hadamard

tests. In this case, we can use an alternative method to analyze the process by employing

methods of statistics [SIV96].

Iterations of Hadamard tests have a binomial distribution which can be approximated by

a normal distribution. This is a good approximation when p is close to 1/2 or mp > 10 and

50

m(1 − p) > 10, where m is the number of iterations and p the success probability. In other

words, if we see 10 successes and 10 failures in our process, we can use this approximation

to obtain a better bound.

In Kitaev’s algorithm each Hadamard test has to be repeated a sufficient number of

times to achieve the required accuracy with high probability. Because only one copy of |u〉

is available, all controlled-U gates have to be applied to one register. Therefore, all the

Hadamard tests have to be performed in sequence, instead of parallel, during one run of the

circuit. A good example for this case is the order finding algorithm. We refer the reader to

[NC00] for more details.

In Kitaev’s approach, there are n different Hadamard tests that should be performed.

Thus, if the probability of error in each Hadamard test is ε0, by applying the union bound,

the error probability of the entire process is ε = nε0. Therefore, in order to obtain

Pr(|ϕ− ϕ̃| < 1

2n
) > 1− ε, (4.29)

for approximating each bit we need m trials where

m = 47 ln
4n

ε
. (4.30)

Since all of these trials have to be done in one circuit, the circuit consists of mn Hadamard

tests. Therefore the circuit involves mn controlled-U2k operations. As a result, if a constant

success probability is desired, the depth of the circuit will be O(n logn).

51

|0〉 H •

QFT†
... · · ·

|0〉 H •

|0〉 H •

|u〉 U20 U21 U2n−1

Figure 4.3: Standard Quantum Phase Estimation

4.1.2 Approach Based on QFT

One of the standard methods to approximate the phase of a unitary matrix is QPE based

on QFT. The structure of this method is depicted at Figure 4.3. The QPE algorithm

requires two registers and contains two stages. If an n-bit approximation of the phase ϕ

is desired, then the first register is prepared as a composition of n qubits initialized in the

state |0〉. The second register is initially prepared in the state |u〉. The first stage prepares

a uniform superposition over all possible states and then applies controlled-U2k operations.

Consequently, the state will become

1

2n/2

2n−1∑

k=0

e2πiϕk|k〉. (4.31)

The second stage in the QPE algorithm is the QFT† operation.

There are different ways to interpret the inverse Fourier transform. In the QPE algorithm,

the post-measurement state of each qubit in the first register represents a bit in the final

approximated binary fraction of the phase. Therefore, we can consider computing each bit

as a step. The inverse Fourier transform can be interpreted such that at each step (starting

52

from the least significant bit), using the information from previous steps, it transforms the

state

1√
2
(|0〉+ e2πi2

kϕ |1〉) (4.32)

to get closer to one of the states

1√
2
(|0〉+ e2πi0.0 |1〉) =

1√
2
(|0〉+ |1〉)

or

1√
2
(|0〉+ e2πi0.1 |1〉) =

1√
2
(|0〉 − |1〉). (4.33)

Assume we are at step k in the first stage. By applying controlled-U2k operators due to

phase kick back, we obtain the state

|0〉+ e2πi0.xk+1xk+2...xn |1〉√
2

. (4.34)

Shown in Figure 4.4, each step (dashed-line box) uses the result of previous steps, where

phase shift operators are defined as

Rk ≡




1 0

0 e2πi/2
k


 (4.35)

for 2 ≤ k ≤ n.

By using the previously determined bits xk+2, . . . , xn and the action of corresponding

controlled phase shift operators (as depicted in Figure 4.4) the state in Eq. 4.34 becomes

|0〉+ e2πi0.xk+10...0 |1〉√
2

=
|0〉+ (−1)xk+1 |1〉√

2
. (4.36)

53

|y3〉 H • • |x3〉

|y2〉 R−1
2 H • |x2〉

|y1〉 R−1
3 R−1

2 H |x1〉

_ _ _�

�

�

�

�

�
_ _ _

_ _ _ _ _ _ _�

�

�

�

�

�

�

�

�

�
_ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

_ _ _ _ _ _ _ _ _ _

Figure 4.4: 3-qubit Inverse QFT Where 1 ≤ i ≤ 3, |yi〉 = 1√
2
(|0〉+ e2πi(0.xi...x3) |1〉)

Thus, by applying a Hadamard gate to the state above we obtain |xk+1〉. Therefore, we can

consider the inverse Fourier transform as a series of Hadamard tests.

If ϕ has an exact n-bit binary representation the success probability at each step is 1.

While, in the case that ϕ cannot be exactly expressed in n-bit binary fraction, the success

probability P of the post-measurement state, at step k, is

P = cos2(πθ) for |θ| < 1

2k+1
(4.37)

Detailed analysis obtaining similar probabilities are given in Sec. 4.2.

Therefore, the success probability increases as we proceed. The following theorem gives

us the success probability of the QFT algorithm.

Theorem 11 ([KLM07]). If x
2n

≤ ϕ ≤ x+1
2n

, then the phase estimation algorithm returns one

of x or x+ 1 with probability at least 8
π2 .

54

|x1〉 H R2 · · · Rm−1 Rm |y1〉

|x2〉 • H · · · Rm−1 Rm |y2〉
... · · · • · · ·... • · · · • · · ·... · · · • · · ·

|xn−1〉 · · · H R2 |yn−1〉

|xn〉 · · · • H |yn〉

Figure 4.5: Quantum Circuit for AQFT

4.1.3 Approach Based on AQFT

AQFT was first introduced by Barenco, et al [BEST96]. It has an advantage in algorithms

that involve periodicity estimation. Its structure is similar to regular QFT but differs by

eliminating higher precision phase shift operators. The circuit of AQFT is shown in Fig-

ure 4.5. At the RHS of the circuit, for n−m < i ≤ n

|yi〉 =
1√
2
(|0〉+ e2πi(0.xi...xn) |1〉) (4.38)

and for 1 < i ≤ n−m,

|yi〉 =
1√
2
(|0〉+ e2πi(0.xi...xi+m−1) |1〉). (4.39)

Let 0.x1x2 . . . xn be the binary representation of eigenphase ϕ. For estimating each xp,

where 1 ≤ p ≤ n, AQFTm requires at most m phase shift operations. Here m is defined as

the degree of the AQFTm.

Therefore, phase shift operations in AQFTm requires precision up to e2πi/2
m

. The prob-

ability P of gaining an accurate output using AQFTm, when m ≥ log2 n + 2, is at least

55

[BEST96]

P ≥ 8

π2
(sin2(

π

4

m

n
)). (4.40)

The accuracy of AQFTm approaches the lower bound for the accuracy of the full QFT,

which is 8
π2 . A better lower bound is also achieved by Cheung in [CHE04]

P ≥ 4

π2
− 1

4n
. (4.41)

Moreover, this indicates that the logarithmic-depth AQFT provides an alternative ap-

proach to replace the regular QFT in many quantum algorithms. The total number of the

phase shift operator invocations in AQFTm is O(n log2 n), instead of O(n2) in the QFT. The

phase shift operator precision requirement is only up to e2πi/4n, instead of e2πi/2
n

.

By using the AQFT instead of the QFT we trade off smaller success probability with

smaller degrees of phase shift operators and a shorter circuit.

4.2 New Approach with Constant Degree Phase Shift Operators

In this section we introduce our new approach for QPE. Our approach draws a trade-off

between the highest degree of phase shift operators being used and the depth of the circuit.

As a result, when smaller degrees of phase shift operators are used, the depth of the circuit

increases and vice versa.

As pointed out in Sec. 4.1.2, by using information of previous qubits, the full-fledged

inverse QFT transforms the phase such that the phase of the corresponding qubit gets closer

56

|yn〉 H • • |xn〉

|yn−1〉 R−1
2 H • • |xn−1〉

|yn−2〉 R−1
3 R−1

2 H • |xn−2〉

|yn−3〉 R−1
3 R−1

2 H |xn−3〉
... · · · • · · · •

|y1〉 R−1
3 R−1

2 H |x1〉

Figure 4.6: QPE with Only Two Controlled Phase Shift Operations

to one of the states |+〉 or |−〉. For our approach, we first consider the case where only the

controlled phase shifts operators R2 and R3 are used (Eq. 4.35). In this case, we only use

the information of the two previous qubits (see Figure 4.6). In such a setting, we show that

it is possible to perform the QPE algorithm with arbitrary success probability.

The first stage of our algorithm is similar to the first stage of QPE based on QFT. Assume

the phase is ϕ = 0.x1x2x3 . . . with an infinite binary representation. At step k, the phase

after the action of the controlled gate U2k is 2kϕ = 0.xk+1xk+2 . . . and the corresponding

state is

|ψk〉 =
1√
2
(|0〉+ e2πi2

kϕ |1〉). (4.42)

By applying controlled phase shift operators R2 (controlled by the (k − 1)th qubit) and

R3 (controlled by the (k − 2)th qubit) to the state above, we obtain

∣∣∣ψ̃k
〉
=

1√
2
(|0〉+ e2πiϕ̃ |1〉), (4.43)

where

ϕ̃ = 0.xk+100xk+4 (4.44)

57

It is easy to see that

|ϕ̃− 0.xk+1| <
1

8
. (4.45)

Hence, we can express

ϕ̃ = 0.xk+1 + θ (4.46)

where |θ| < 1
8
. Therefore, the state

∣∣∣ψ̃k
〉
can be rewritten as

∣∣∣ψ̃k
〉
=

1√
2
(|0〉+ e2πi(0.xk+1+θ) |1〉). (4.47)

In order to approximate the phase ϕ at this stage (kth step), we need to find the value

of xk+1 by measuring the kth qubit. In this regard, we first apply a Hadamard gate before

the measurement to the state
∣∣∣ψ̃k
〉
. The post-measurement state will determine the value

of xk+1 correctly with high probability. The post measurement probabilities of achieving |0〉

or |1〉 in the case where xk+1 = 0 is

Pr(0|k) = cos2(πθ)

Pr(1|k) = sin2(πθ). (4.48)

Therefore,

Pr(0|k) ≥ cos2(
π

8
) ≈ 0.85

Pr(1|k) ≤ sin2(
π

8
) ≈ 0.15 (4.49)

In the case where xk+1 = 1, the success probability is similar.

By iterating this process a sufficient number of times and then letting the majority decide,

we can achieve any desired accuracy. The analysis is similar to Sec. 4.1.1. In this case, all we

58

require is to find the majority. Therefore, by a simple application of the Chernoff’s bound

Pr

(
1

m

m∑

i=0

Xi ≤
1

2

)
≤ e−2m(p− 1

2
)2 , (4.50)

where in this case p = cos2(π/8). It is easy to see that if a success probability of 1 − ε is

required, then we need at least

m = 4 ln(
1

ε
) (4.51)

many trials for approximating each bit.

By comparing Eq. 4.30 and Eq. 4.51 (Table 4.1), we see that while preserving the success

probability, our new algorithm differs by a constant and scales about 12 times better than

Kitaev’s original approach in terms of the number of Hadamard tests required (Figure 4.7).

In physical implementations this is very important, especially in the case where only one

copy of the eigenvector |u〉 is available and all Hadamard tests should be performed during

one run of the circuit.

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

200

250

Success Probability

R
eq

ui
re

d
T

ri
al

s

Constant Presicion

Kitaev's Original
Approach

Figure 4.7: Required Trials Comparison between ours and Kitaev’s

59

4.3 Discussion

In the algorithm introduced above, only phase shift operators R2 and R3 are used. When

higher phase shift operators are used in our algorithm, the success probability of each

Hadamard test will increase. As a result, fewer trials are required in order to achieve similar

success probabilities. As pointed out in Sec. 4.1.3, the QPE based on AQFT requires phase

shift operators of degree at least 2 + log n. With this precision of phase shift operators in

hand, the success probability at each step would be high enough such that there is no need

to iterate each step. In such scenario, one trial is sufficient to achieve an overall success

probability of a constant.

Table 4.1: Required Trials by Using Chernoff’s Bound

Success Kitaev’s Constant

Probability Original Approach Precision

0.50000 98 3

0.68269 120 5

0.95450 211 13

0.99730 344 24

0.99993 515 39

Recall the phase estimation problem stated in the introduction. If a constant success

probability greater than 1
2
is required, the depth of the circuit for all the methods mentioned

60

in this chapter (except the QPE based on full fledged QFT, which is O(n2)), would be

O(n logn) (assuming the cost of implementing the controlled-U2k gates are all the same).

This means the depth of the circuits differ only by a constant. However, the disadvantage

of Kitaev’s original approach to our new approach is the large number of Hadamard tests

required for each bit in the approximated fraction.

Therefore, the new method introduced in this chapter provides the flexibility of using any

available degree of controlled phase shift operators while preserving the success probability

and the length of the circuit up to a constant. The gap is thus filled by using lower precision

(or constant precision) shift operators while the depth of the circuit and success probability

are preserved as shown in Figure 4.8.

Figure 4.8: With Variable Reset Bit Chosen, Our Approach Bridges the Gap

61

CHAPTER 5
EFFICIENT CIRCUIT FOR QUANTUM WALKS

For many tasks, such as simulated annealing [KGV83, CER85], computing the volume of

convex bodies [LV06] and approximating the permanent of a matrix [JSV04, BSVV08] (see

references in [WCNA09] for more), the best approaches known today are randomized algo-

rithms based on Markov chains (random walks) and sampling. Since quantum walk provides

quadratic speed-up over its classical counter part, it is natural to devise a circuit implement-

ing the quantum walk operator.

We present an efficient general method for realizing a quantum walk operator corre-

sponding to an arbitrary sparse classical random walk. Our approach is based on Grover

and Rudolph’s method for preparing coherent versions of efficiently integrable probability

distributions [GR02]. This method is intended for use in quantum walk algorithms with

polynomial speedups, whose complexity is usually measured in terms of how many times

we have to apply a step of a quantum walk [SZE04], compared to the number of necessary

classical Markov chain steps. We consider a finer notion of complexity including the number

of elementary gates it takes to implement each step of the quantum walk with some desired

accuracy. The difference in complexity for various implementation approaches is that our

method scales linearly in the sparsity parameter and poly-logarithmically with the inverse

of the desired precision. The best previously known general methods either scale quadrat-

ically in the sparsity parameter, or polynomially in the inverse precision. Our approach is

especially relevant for implementing quantum walks corresponding to classical random walks

62

like those used in the classical algorithms for approximating permanents [JSV04, BSVV08]

and sampling from binary contingency tables [BSSV06]. In those algorithms, the sparsity

parameter grows with the problem size, while maintaining high precision is required.

5.1 Introduction

In Section 5.2, we review the recent alternative approaches to the implementation of U , such

as those relying on efficient simulation of sparse Hamiltonians [BACS07]. We find that they

either scale quadratically in the sparsity parameter d, or polynomially in 1
ǫ
, where ǫ is the

allowed error in the implementation of U . When there is only a small number of neighbors

connected to each state x, or we do not need to use many steps of the quantum walk so that we

can tolerate more implementation error, one could use these methods. However, the subtle

algorithms like [WCNA09] require many precise uses of U which couple many (a number

growing with the system size) neighboring states. In Appendix B.6 we show a particular

example (a first step towards a possible future quantum version of the classical algorithm

for approximating the permanent [JSV04, BSVV08]), where the alternative approaches to U

destroy the polynomial speedup of the quantum algorithm. This is why we developed our

new method, scaling linearly in the sparsity parameter d and polynomially in log 1
ǫ
.

Our general approach to the implementation of quantum walks based on sparse classical

Markov chains is based on Grover and Rudolph’s method of preparing states corresponding

to efficiently integrable probability distributions [GR02]. In our case, the quantum samples

63

we need to prepare correspond to probability distributions that are supported on at most d

states of E , which implies that they are efficiently integrable. Thus, we can use the method

[GR02] to obtain an efficient circuit for the quantum update. The basic trick underlying

Grover and Rudolph’s method, preparing superpositions by subsequent rotations, was first

proposed by Zalka [ZAL98]. Note that Childs [AC08], investigating the relationship between

continuous-time [FG98] and discrete-time [KEM03] quantum walks, also proposed to use

[GR02], also for some quantum walks with non-sparse underlying graphs.

This is our main result about the quantum update rule U , the essential ingredient in

the implementation of the quantum walk defined as the quantum analogue of the original

Markov chain:

Theorem 12. (An Efficient Quantum Update Rule) Consider a reversible Markov chain on

the state space E , with |E| = 2m, with a transition matrix P = (pxy)x,y∈E . Assume that

1. there are at most d possible transitions from each state (P is sparse),

2. the transition probabilities pxy are given with t-bit precision, with t = Ω
(
log 1

ǫ
+ log d

)
,

3. we have access to a reversible circuit returning the list of (at most d) neighbors of the

state x (according to P), which can be turned into an efficient quantum circuit N :

N |x〉 |0〉 · · · |0〉 = |x〉 |yx0 〉 · · ·
∣∣yxd−1

〉
, (5.1)

64

4. we have access to a reversible circuit which can be turned into an efficient quantum

circuit T acting as

T |x〉 |0〉 · · · |0〉 = |x〉
∣∣pxyx0

〉
· · ·
∣∣∣pxyx

d−1

〉
. (5.2)

Then there exists an efficient quantum circuit Ũ simulating the quantum update rule

U |x〉 |0〉 = |x〉
∑

y

√
pxy |y〉 , (5.3)

where the sum over y is over the neighbors of x, and pxy are the elements of P , with precision

∥∥∥
(
U − Ũ

)
|x〉 ⊗ |0〉

∥∥∥ ≤ ǫ (5.4)

for all x ∈ E , with required resources scaling linearly in m, polynomially in log 1
ǫ
and linearly

in d (with an additional poly(log d) factor).

In Section 5.2, we describe the alternative approaches one could take to implement the

quantum update and discuss their efficiency. In Section 5.3 we present our algorithm based

on Grover & Rudolph’s state preparation method. We conclude our discussion in Section

7.3. In Appendix B.1, we give an example where our approach is better than the alternative

methods, and finally, we present the remaining details for the quantum update circuit, its

required resources, and its implementation in Appendix B.1.

5.2 Alternative Ways of Implementing the Quantum Update

Before we give our efficient method, we review the alternative approaches in more detail.

We know of three other ways how one could think of implementing the quantum update.

65

The first two are based on techniques for simulating Hamiltonian time evolutions, while the

third uses a novel technique for implementing combinatorially block-diagonal unitaries.

The first method is to directly realize the reflection RefA as exp(−iΠAτ) for time τ = π
2
,

where the projector ΠA onto the subspace A turns out to be a sparse Hamiltonian. Observe

that the projector

ΠA =
∑

x∈E
|x〉〈x| ⊗

∑

y,y′∈E

√
pxy

√
pxy′|y〉〈y′|

is a sparse Hamiltonian provided that P is sparse. Thus, we can approximately implement

the reflection RefA by simulating the time evolution according to H = ΠA for the time

τ = π
2
. The same methods apply to the reflection RefB, so we can approximately implement

the quantum walk W (P), which is a product of these two reflections. The requirements of

this method scale polynomially in 1
ǫ
, where ǫ is the desired accuracy of the unitary quantum

update. Moreover, the number of gates used in each U scales at least linearly with d and m.

The second approach is to apply novel general techniques for implementing arbitrary

row-and-column-sparse unitaries, due to Childs [AC09] and Jordan and Wocjan [JW09].

Similarly to the first method, it relies on simulating a sparse Hamiltonian for a particular

time. However, the complexity of this method again scales polynomially in 1
ǫ
(and linearly

in d and m).

The third alternative is to utilize techniques for implementing combinatorially block-

diagonal unitary matrices. A (unitary) matrix M is called combinatorially block-diagonal if

66

there exists a permutation matrix P (i.e., a unitary matrix with entries 0 and 1) such that

PMP−1 =
B⊕

b=1

Mb

and the sizes of the blocks Mb are bounded from above by some small d. The method works

as follows: each x ∈ E can be represented by the pair {b(x), p(x)}, where b(x) denotes the

block number of x and p(x) denotes the position of x inside the block b(x). The unitary M

can then be realized by

1. the basis change |x〉 7→ |b(x)〉 ⊗ |p(x)〉,

2. the controlled operation
∑B

b=1 |b〉〈b| ⊗Mb , and

3. the basis change |b(x)〉 ⊗ |p(x)〉 7→ |x〉.

The transformations Mb can be implemented using O(d2) elementary gates based on the

decomposition of unitaries into a product of two-level matrices [RZBB94]. The special case

d = 2 is worked out in the paper by Aharonov and Ta-Shma [AT03]. The reflection RefA =

2ΠA − I then has the form

RefA =
∑

x∈E
|x〉〈x| ⊗

(
∑

y,y′∈E

√
pxy

√
pxy′|y〉〈y′| − δy,y′

)
,

where δy,y′ = 1 for y = y′ and 0 otherwise. Viewed in this form, we see that RefA is a

combinatorially block-diagonal unitary matrix, with a block decomposition with respect to

the ‘macro’ coordinate x. Inside each ‘macro’ block labeled by x, we obtain a ‘micro’ block

of size d corresponding to all y with pxy > 0 and many ‘micro’ blocks of size 1 corresponding

to all y with pxy = 0 after a simple permutation of the rows and columns. The disadvantage

67

of this way of implementing quantum walks is that its complexity scales quadratically with

d (and linearly in m and log 1
ǫ
), the maximum number of neighbors for each state x.

In the next Section, we show how to implement the quantum update rule by a circuit

with the number of operations scaling linearly with the sparsity parameter d (with additional

poly(log d) factors), linearly in m = log |E| and polynomially in log 1
ǫ
.

5.3 Overview of the Efficient Circuit Structure

Our efficient circuit for the Quantum Update Rule

U |x〉L |0〉R = |x〉L
d−1∑

i=0

√
pxyxi |y

x
i 〉R (5.5)

works in the following way:

1. Looking at x in the ‘left’ register, put a list of its (at most d) neighbors yxi into an extra

register and the corresponding transition probabilities pxyxi into another extra register.

2. Using the list of probabilities, prepare the superposition

d−1∑

i=0

√
pxyxi |i〉S (5.6)

in an extra ‘superposition’ register S.

3. Using the list of neighbors, put
∑d−1

i=0
√
pxyxi |yxi 〉R |i〉S in the registers R and S.

4. Clean up the S register using the list of neighbors of x and uncompute the transition

probability list and the neighbor list.

68

Figure 5.1: The Scheme for Preparing the Superposition in log d Rounds

We already assumed we can implement Step 1 of this algorithm efficiently. The second,

crucial step is described in Section 5.4. Additional details for steps 3 and 4 are spelled out

in Appendix B.1. Finally, the cleanup step 4 is possible because of the unitarity of step 1.

5.4 Preparing Superpositions à la Grover and Rudolph

The main difficulty is the efficient preparation of (5.6). We start with a list of transition

probabilities {pxyxi , 0 ≤ i ≤ d− 1} with the normalization property
∑d−1

i=0 pxyxi = 1. Our

approach is an application of the powerful general procedure of [GR02]. The idea is to build

the superposition up in log d rounds of doubling the number of terms in the superposition

(see Figure 5.1). Each round involves one of the qubits in the register S, to which we apply

a rotation depending on the state of qubits which we have already touched.

For simplicity, let us first assume all points x have exactly d neighbors and that all

transition probabilities pxyxi are nonzero, and deal with the general case in Section 5.4.1.

69

To clean up the notation, denote qi = pxyxi . Working up from the last row in Figure 5.1

where q
(log d)
i = qi, we first compute the d − 1 numbers q

(k)
i for i = 0, . . . , 2k − 1 and k =

0, . . . , (log d)− 1 from

q
(k−1)
i = q

(k)
2i + q

(k)
2i+1. (5.7)

The transition probabilities sum to 1, so we end with q
(0)
0 = 1 at the top.

Our goal is to prepare |ψlog d〉 =
∑d−1

i=0

√
qi |i〉. We start with log d qubits in the state

|ψ0〉 = |0〉1 |0〉2 · · · |0〉log d . (5.8)

In the first round we prepare

|ψ1〉 =
(√

q
(1)
0 |0〉1 +

√
q
(1)
1 |1〉1

)
|0〉2 · · · |0〉log d (5.9)

by applying a rotation to the first qubit. A rotation

R(θ) =




cos θ − sin θ

sin θ cos θ


 , (5.10)

by θ
(1)
0 = cos−1

√
q
(1)
0 does this job. In the second round, we apply a rotation to the second

qubit. However, the amount of rotation now has to depend on the state of the first qubit.

When the first qubit is |0〉, we apply a rotation by

θ
(2)
0 = cos−1

√√√√q
(2)
0

q
(1)
0

, (5.11)

Analogously, when the first qubit is |1〉, we choose

θ
(2)
1 = cos−1

√√√√q
(2)
2

q
(1)
1

. (5.12)

70

Observe that the second round turns (5.9) into

|ψ2〉 =
(√

q
(2)
0 |00〉1,2 +

√
q
(2)
1 |01〉1,2 +

√
q
(2)
2 |10〉1,2 +

√
q
(2)
3 |11〉1,2

)
|0〉3 · · · |0〉log d . (5.13)

Let us generalize this procedure. Before the j-th round, the qubits j and higher are still in

the state |0〉, while the first j − 1 qubits tell us where in the tree (see Figure 5.1) we are. In

round j, we thus need to rotate the j-th qubit by

θ
(j)
i = cos−1

√√√√ q
(j)
2i

q
(j−1)
i

, (5.14)

depending on the state |i〉 which is encoded in binary in the first j − 1 qubits of the ‘super-

position’ register S.

Applying log d rounds of this procedure results in preparing the desired superposition

(5.6), with the states |i〉 encoded in binary in the log d qubits.

5.4.1 A Nonuniform Case

In Section 5.4, we assumed each x had exactly d neighbors it could transition to. To deal

with having fewer neighbors (and zero transition probabilities), we only need to add an extra

‘flag’ register Fi for each of the d neighbors yxi in the neighbor list. This ‘flag’ will be 0 if the

transition probability pxyxi is zero. Conditioning the operations in steps 2-4 of our algorithm

(see Section 5.3) on these ‘flag’ registers will deal with the nonuniform case as well.

71

5.4.2 Precision Requirements

We assumed that each of the probabilities pxyxi was given with t-bit precision. Our goal was

to produce a quantum sample (5.6) whose amplitudes would be precise to t bits as well. Let

us investigate how much precision we need in our circuit to achieve this.

For any x, the imperfections in qlog di = pxyxi (see Section 5.4) come from the log d rotations

by imperfectly calculated angles θ. The argument of the inverse cosine in (5.14)

a
(j)
i =

√√√√ q
(j)
2i

q
(j−1)
i

(5.15)

obeys 0 ≤ a
(j)
i ≤ 1. The errors in the rotations are the largest for a

(j)
i close to 0 or 1 (i.e.

when the θ’s are close to π
2
or 0). To get a better handle on these errors, we introduce extra

flag qubits signaling a
(j)
i = 0 or a

(j)
i = 1 (see Appendix B.1 for details). In these two special

cases, the rotation by θ becomes an identity or a simple bit flip. On the other hand, because

the q’s are given with t bits, for a’s bounded away from 0 and 1, we have

√
2−t

1
≤ a ≤

√
1− 2−t

1
. (5.16)

We choose to use an n-bit precision circuit for computing the a’s, guaranteeing that |ã−a| ≤

2−n. Using the Taylor expansion, we bound the errors on the angles θ:

|θ̃ − θ| = | cos−1 ã− cos−1 a| =
∣∣∣∣(ã− a)

d cos−1 a

da
+ . . .

∣∣∣∣ ≤ c1
2−n√
1− a2

≤ c12
−n+ t

2 , (5.17)

because a is bounded away from 1 as (5.16).

72

Each amplitude in (5.6) comes from multiplying out log d terms of the form cos θji or

sin θji . For our range of θ’s, the error in each sine or cosine is upper bounded by

| sin θ̃ − sin θ| ≤ |θ̃ − θ|, | cos θ̃ − cos θ| ≤ |θ̃ − θ|. (5.18)

Therefore, the final error in each final amplitude is upper bounded by

∆i =
∣∣∣
√
q̃i −

√
qi

∣∣∣ ≤ c1(log d)2
−n+ t

2 . (5.19)

Note that the factor log d is small. Therefore, to ensure t-bit precision for the final ampli-

tudes, it is enough to work with n = 3
2
t + Ω(1) bits of precision during the computation of

the θ’s. We conclude that our circuit can be implemented efficiently and keep the required

precision.

5.5 Discussion

The problem of constructing explicit efficient quantum circuits for implementing arbitrary

sparse quantum walks has not been considered in detail in the literature so far. We were

interested in an efficient implementation of a step of a quantum walk and finding one with a

favorable scaling of the number of required operations with d (the sparsity parameter) and

the accuracy parameter 1
ǫ
. Its intended use are algorithms based on quantum walks with

polynomial speedups over their classical Markov Chain counterparts.

73

We showed how to efficiently implement a general1 quantum walk W (P) derived from an

arbitrary sparse classical random walk P = (pxy)x,y∈E . We constructed a quantum circuit

Ũ that approximately implements the quantum update rule (5.3) with circuit complexity

scaling only linearly (with additional logarithmic factors) in d, the degree of sparseness of P ,

linearly in m = log |E| and polynomially in log 1
ǫ
, where ǫ denotes the desired approximation

accuracy (5.4).

It has been known that quantum walks could be implemented using techniques for simu-

lating Hamiltonian time evolutions. However, the complexity would grow polynomially in 1
ǫ

if we were to rely on simulating Hamiltonian dynamics (see Section 5.2). This would be fatal

for quantum algorithms such as the one for estimating partition functions in [WCNA09] or

future algorithms for approximating the permanent, losing the polynomial quantum speed-

ups over their classical counterparts. An alternative for implementing quantum walks whose

running complexity scales logarithmically in 1
ǫ
exists. It relies on the implementation of

combinatorially block-diagonal unitaries. However, its running time grows quadratically in

d (see Section 5.2). When the sparsity of the walk d grows with the system size n, this

brings an extra factor of n to the complexity of the algorithms, destroying or decreasing its

polynomial speedup. This is true e.g.for the example given in Appendix B.6. Therefore, our

approach to the quantum update is again more suitable for this task.

1Of course, much more efficient approaches exist for specific walks (e.g. those on regular, constant-degree
graphs).

74

CHAPTER 6
ESTIMATING PARTITION FUNCTION

We present a quantum algorithm based on classical fully polynomial randomized approxima-

tion schemes (FPRAS) for estimating partition functions that combine simulated annealing

with the Monte-Carlo Markov Chain method and use non-adaptive cooling schedules. We

achieve a twofold polynomial improvement in time complexity: a quadratic reduction with

respect to the spectral gap of the underlying Markov chains and a quadratic reduction with

respect to the parameter characterizing the desired accuracy of the estimate output by the

FPRAS. Both reductions are intimately related and cannot be achieved separately.

First, we use Grover’s fixed point search, quantum walks and phase estimation to effi-

ciently prepare approximate coherent encodings of stationary distributions of the Markov

chains. The speed-up we obtain in this way is due to the quadratic relation between the

spectral and phase gaps of classical and quantum walks. The second speed-up with respect

to accuracy comes from generalized quantum counting, used instead of classical sampling to

estimate expected values of quantum observables.

Quantization of classical Markov chains has been crucial in the design of efficient quantum

algorithms for a wide range of search problems that outperform their classical counterparts.

We refer the reader to the survey article [SAN08] for a detailed account of the rapidly grow-

ing collection of quantum-walk-based search algorithms. In this context, we also point to

the work [SBBK08], where the authors apply quantized Markov chains to speed up search

75

algorithms based on simulated annealing for finding low-energy states of (classical) Hamil-

tonians.

In this chapter, we extend the scope of use of quantized Markov chains beyond search

problems. We show how to employ them to speed up fully polynomial-time randomized

approximation schemes for partition functions, based on simulated annealing and the Monte

Carlo Markov Chain (MCMC) method. To achieve this improvement, we rely on Szegedy’s

general method to quantize classical Markov chains [SZE04, MNRS07]. This method gives

us a unitary quantum walk operator W (P) corresponding to one update step of the classical

Markov chain P . The complexity of the classical algorithms we are speeding up is measured

in the number of Markov chain invocations. Similarly, we express the complexity of our

quantum algorithm as the number of times we have to apply a quantum walk operator.

As shown in [CNW10], in the circuit model of quantum computation, this operator can be

implemented precisely and efficiently.

Sampling from stationary distributions of Markov chains combined with simulated an-

nealing is at the heart of many clever classical approximation algorithms. Notable examples

include the algorithm for approximating the volume of convex bodies [LV06], the permanent

of a non-negative matrix [JSV04], and the partition function of statistical physics models

such as the Ising model [JS93] and the Potts model [BSVV08]. Each of these algorithms is a

fully polynomial randomized approximation scheme (FPRAS), outputting a random number

Ẑ within a factor of (1± ǫ) of the real value Z, with probability greater than 3
4
, i.e.

Pr
[
(1− ǫ)Z ≤ Ẑ ≤ (1 + ǫ)Z

]
≥ 3

4
, (6.1)

76

in a number of steps polynomial in 1/ǫ and the problem size.

We show how to use a quantum computer to speed up a class of FPRAS for estimating

partition functions that rely on simulated annealing and the Monte Carlo Markov Chain

method (e.g. [JS93, BSVV08]). Let us start with an outline of these classical algorithms.

Consider a physical system with state space Ω and an energy function E : Ω → R, assigning

each state σ ∈ Ω an energy E(σ). The task is to estimate the Gibbs partition function

Z(T) =
∑

σ∈Ω
e−

E(σ)
kT (6.2)

at a desired (usually very low) temperature TF . We would like to know the value of Z at

zero temperature because it is equal to the number of the system configurations with zero

energy1, and this could be a hard counting problem.

The partition function Z(T) encodes the thermodynamical properties of the system in

equilibrium at temperature T , where the probability of finding the system in state σ is given

by the Boltzmann distribution

πi(σ) =
1

Z(T)
e−

E(σ)
kT . (6.3)

It is hard to estimate Z(T) directly. The schemes we want to speed up use the following

trick. Consider a sequence of decreasing temperatures T0 ≥ T1 ≥ · · · ≥ Tℓ, where T0 is a

very high starting temperature and Tℓ = TF is the desired final temperature. Then, Z(TF)

1This relationship is used e.g. in the algorithm [JSV04] for approximating the permanent of a non-
negative matrix – one can find the value of the permanent by counting the number of perfect matchings of
a particular bipartite graph, which in turn is equal to the zero-temperature partition function of a certain
spin system.

77

can be expressed as a telescoping product

Z(TF) = Z0
Z1

Z0
· · · Zℓ−1

Zℓ−2

Zℓ
Zℓ−1

= Z0 (α0α1 · · ·αℓ−2αℓ−1)︸ ︷︷ ︸
α

, (6.4)

where Zi = Z(Ti) stands for the Gibbs partition function at temperature Ti and αi = Zi+1/Zi.

It is easy to calculate the partition function Z0 = Z(T0) at high temperature. Next, for each

i, we can estimate the ratio αi by sampling from a distribution that is sufficiently close to

the Boltzmann distribution πi (6.3) at temperature Ti (see Section 6.1 for more detail). This

is possible by using a rapidly-mixing Markov chain Pi whose stationary distribution is equal

to the Boltzmann distribution πi.

To be efficient, these classical schemes require that

1. we use a cooling schedule such that the resulting ratios αi = Z(Ti+1)/Z(Ti) are lower

bounded by a constant c−1 (to simplify the presentation, we use c = 2 from now on),

2. the spectral gaps of the Markov chains Pi are bounded from below by δ.

The time complexity of such FPRAS, i.e., the number of times we have to invoke an update

step for a Markov chain from {P1, . . . , Pℓ−1}, is

Õ

(
ℓ2

δ · ǫ2
)
, (6.5)

where Õ means up to logarithmic factors.

Our main result is a general method for ‘quantizing’ such algorithms. Note that the

method we present in this chapter does not yet allow us to speed up the more complicated

78

classical algorithm for the permanent (which requires to sample from the stationary distri-

butions of the previously used Markov chains to decide which Markov chain to use next).

Together with the algorithms using adaptive cooling schedules, it is a direction for further

research.

Theorem 13. Consider a classical FPRAS for approximating the Gibbs partition function

of a physical system at temperature TF , satisfying the above conditions. Then, there exists a

fully polynomial quantum approximation scheme that uses

Õ

(
ℓ2√
δ · ǫ

)
(6.6)

applications of a controlled version of a quantum walk operator from {W (P1), . . . ,W (Pℓ−1)}.

The reduction in complexity for our quantum algorithm (in comparison to the classical

FPRAS) is twofold. First, we reduce the factor 1/δ to 1/
√
δ by using quantum walks instead

of classical Markov chains, and utilizing the quadratic relation between spectral and phase

gaps. As observed in [MNRS07], this relation is at the heart of many quantum search

algorithms based on quantum walks (see e.g. [SAN08] for an overview of such quantum

algorithms). Second, we speed up the way to determine the ratios αi by using the quantum

phase estimation algorithm in a novel way. This results in the reduction of the factor 1/ǫ2

to 1/ǫ.

The quantum algorithm we present builds upon the previous work [WA08], where Wocjan

and Abeyesinghe have shown how to use quantum walks to approximately prepare coherent

79

encodings

|πi〉 =
∑

σ∈Ω

√
πi(σ) |σ〉 (6.7)

of stationary distributions πi of Markov chains Pi, provided that the Markov chains are

slowly-varying. Recall that a sequence of Markov chains is called slowly-varying if the sta-

tionary distributions of two adjacent chains are sufficiently close to each other. As we will

see later, this condition is automatically satisfied for Markov chains that are used in FPRAS

for approximating partition functions.

Note that our objective of approximately preparing coherent encodings of stationary

distributions is different from the objective in [RIC07], where the author seeks to speed up

the process of approximately preparing density operators encoding stationary distributions.

For our purposes, we have to work with coherent encodings because otherwise we could not

achieve the second reduction from 1/ǫ2 to 1/ǫ.

This chapter is organized as follows. In Section 6.1 we review the classical FPRAS in

more detail. We present our quantum algorithm in two steps. First, in Section 6.2.2 we

explain how our quantum algorithm works, assuming that we can perfectly and efficiently

prepare coherent encodings of the distributions (6.3). Then, in Section 6.2.3 we describe the

full quantum algorithm, dropping the assumption of Section 6.2.2 and using approximate

procedures for quantum sample preparation and readout, which are based on the quantum

walks. We perform a detailed analysis of accumulation of error due to the approximation

procedures and show that the success probability remains high, establishing Theorem 13.

80

Finally, in Section 6.3 we conclude with a discussion of open questions, the connection of

our algorithm to simulated annealing, and the directions for future research.

6.1 Structure of the Classical Approach

Here we describe the classical approximation schemes in more detail, following closely the

presentation in [BSVV08, Section 2.1]. Choosing a sequence of temperatures T0 ≥ T1 ≥

· · · ≥ Tℓ starting with T0 = ∞, and ending with the desired final (low) temperature Tℓ = TF ,

we can express the Gibbs partition function (6.2) as a telescoping product (6.4). At T0 = ∞,

the partition function Z0 is equal to

Z0 = |Ω|, (6.8)

the size of the state space. On the other hand, for each i = 0, . . . , ℓ− 1, we can estimate the

ratio

αi =
Zi+1

Zi
(6.9)

in (6.4) as follows. Let Xisimπi denote a random state chosen according to the Boltzmann

distribution πi, i.e.,

Pr(Xi = σ) = πi(σ) . (6.10)

Define a new random variable Yi by

Yi = e−(βi+1−βi)E(Xi), (6.11)

81

where βi = (kTi)
−1 is the inverse temperature (k is the Boltzmann constant). This Yi is an

unbiased estimator for αi since

E (Yi) =
∑

σ∈Ω
πi(σ) e

−(βi+1−βi)E(σ) (6.12)

=
∑

σ∈Ω

e−βiE(σ)

Zi
e−(βi+1−βi)E(σ) (6.13)

=
∑

σ∈Ω

e−βi+1 E(σ)

Zi
=
Zi+1

Zi
= αi. (6.14)

Assume now that we have an algorithm for generating states Xi according to πi. We draw

m := 64ℓ/ǫ2 (6.15)

samples of Xi and take the mean Y i of their corresponding estimators Yi. Then, the mean

Y i satisfies

Var
(
Y i

)
(
E
(
Y i

))2 =
ǫ2

64ℓ

Var (Yi)

(E (Yi))
2 ≤ ǫ2

16ℓ
. (6.16)

(We have used the assumption 1
2
≤ αi ≤ 1.) We can now compose such estimates of αi.

Define a new random variable Y by

Y = Y ℓ−1Y ℓ−2 · · ·Y 0 (6.17)

Since all Y i are independent, we have

E
(
Y
)

= E (Yℓ−1)E (Yℓ−2) · · ·E (Y0)

= αℓ−1αℓ−2 · · ·α0 = α, (6.18)

82

Moreover, Y has the property

Var
(
Y
)

(
E
(
Y
))2

=
E
(
Y

2

ℓ−1

)
· · ·E

(
Y

2

0

)
− E

(
Y ℓ−1

)2 · · ·E
(
Y 0

)2

E
(
Y ℓ−1

)2 · · ·E
(
Y 0

)2

=

(
1 +

Var
(
Y ℓ−1

)
(
E
(
Y ℓ−1

))2

)
· · ·
(
1 +

Var
(
Y 0

)
(
E
(
Y 0

))2

)
− 1

≤
(
eǫ

2/16ℓ
)ℓ

− 1

≤ ǫ2/8 , (6.19)

where we used 1 + x ≤ ex (true for all x) and ex − 1 ≤ 2x (true for all x ∈ [0, 1]) in the

last two steps, respectively. Chebyshev’s inequality now implies that the value of Y is in the

interval [(1− ǫ)α, (1 + ǫ)α] with probability at least 7
8
.

Of course, we are not able to obtain perfect samples Xi from πi. Assume now that we

have X ′
i that are from a distribution with a variation distance from πi smaller than

d := ǫ2/(512ℓ2). (6.20)

Let Y
′
be defined as Y as above, but instead of Xi we use X ′

i. Then, with probability at

least 7
8
, we have Y = Y

′
. To derive this, observe that the algorithm can be thought to first

take a sample from a product probability distribution π on the (mℓ)-fold direct product of

Ω. We denote the probability distribution in the case of imperfect samples by π′. The total

variation distance between π and π′ is then bounded from above by

d ·m · ℓ = ǫ2

512ℓ2
· 64ℓ
ǫ2

· ℓ = 1

8
. (6.21)

83

Therefore, Y
′
is in the interval [(1− ǫ)E (Y) , (1 + ǫ)E (Y)] with probability at least 3

4
.

We obtain the samples X ′
i by applying Markov chains Pi whose limiting distributions are

equal to πi. Constructing such rapidly-mixing Markov chains is a hard task, but it has been

done for the Ising model [JS93] and the Potts model [BSVV08].

6.2 Structure of Our Quantum Approach

6.2.1 Overview

The classical FPRAS we described in Section 6.1 consists of

1. preparing many samples from a distribution close to πi by letting a suitable Markov

chain mix,

2. using these samples to approximate the ratios αi in (6.4), and

3. composing these estimates of αi into an estimate of the partition function.

We build our quantum algorithm on this scheme, with two novel quantum ingredients. First,

instead of letting a Markov chain Pi mix towards its stationary distribution πi, we choose to

approximately prepare the state |πi〉 =
∑

σ

√
πi(σ) |σ〉, a coherent encoding of the Boltzmann

distribution. We use a preparation method [WA08] based on Grover’s π
3
-fixed-point search

[GRO05], efficiently driving the state |π0〉 towards the desired state |πi〉 through a sequence

of intermediate states.

84

Figure 6.1: Structure of the Quantum Algorithm

Second, instead of using classical samples from the distribution πi, we approximate αi by

phase-estimation of a certain unitary on the state |πi〉. This is a new concept, going beyond

the previous work [WA08]. This phase-estimation subroutine can be efficiently (albeit only

approximately) applied by utilizing quantum walks.

The structure of our algorithm is depicted in Fig. 6.1. It consists of successive approx-

imate preparations of |πi〉 followed by a quantum circuit outputting a good approximation

to αi (with high probability). Our main result is the construction of a fast quantum version

of a class of classical algorithms, summed in Theorem 13.

We arrive at our quantum algorithm in two steps. First, in Section 6.2.2, we explain how

to quantize the the classical algorithm in the perfect case, assuming that we can take perfect

samples Xi from πi. Then, in Section 6.2.3 we release this assumption and describe the full

quantum algorithm.

85

6.2.2 Perfect Case

To estimate the ratios αi in (6.4), the classical algorithm generates random states Xi from πi

and computes the mean Y i of the random variables Yi. The process of generating a random

state Xi from πi is equivalent to preparing the mixed state

ρi =
∑

σ∈Ω
πi(σ)|σ〉〈σ| . (6.22)

Instead of this, we choose to prepare the pure states

|πi〉 =
∑

σ∈Ω

√
πi(σ)|σ〉 . (6.23)

We call these states quantum samples since they coherently encode the probability distribu-

tions πi. In this Section, we assume that we can prepare these exactly and efficiently.

The random variable Yi can be interpreted as the outcome of the measurement of the

observable

Ai =
∑

σ∈Ω
yi(σ)|σ〉〈σ| (6.24)

in the state ρi, where

yi(σ) = e−(βi+1−βi)E(σ) . (6.25)

With this interpretation in mind, we see that to estimate αi classically, we need to esti-

mate the expected value Tr(Aiρi) by repeating the above measurement several times and

outputting the mean of the outcomes.

We now explain how to quantize this process. We add an ancilla qubit to our quantum

system in which the quantum samples |πi〉 live. For each i = 0, . . . , ℓ − 1, we define the

86

unitary

Vi =
∑

σ∈Ω
|σ〉 〈σ| ⊗




√
yi(σ)

√
1− yi(σ)

−
√

1− yi(σ)
√
yi(σ)


 . (6.26)

This Vi can be efficiently implemented, it is a rotation on the extra qubit controlled by the

state of the first tensor component. Let us label

|ψi〉 = Vi
(
|πi〉 ⊗ |0〉

)
. (6.27)

Consider now the expected value of the projector

P = I⊗ |0〉 〈0| (6.28)

in the state |ψi〉. We find

〈ψi|P |ψi〉 = 〈πi|Ai|πi〉 = αi . (6.29)

We now show how to speed up the process of estimating αi with a method that generalizes

quantum counting [BHT98]. As noted in the beginning of this Section, we assume efficient

preparation of |πi〉, which in turn implies that we can efficiently implement the reflections

Ri = 2|πi〉〈πi| − I . (6.30)

The result of this Section, the existence of a quantum FPRAS for estimating the partition

function assuming efficient and perfect preparation of |πi〉, is summed in Theorem 14:

Theorem 14. There is a fully polynomial quantum approximation scheme A for the partition

function Z. Its output Q satisfies

Pr
[
(1− ǫ)Z ≤ Q ≤ (1 + ǫ)Z

]
≥ 3

4
. (6.31)

87

For each i = 0, . . . , ℓ− 1, the scheme A uses

O (log ℓ) (6.32)

perfectly prepared quantum samples |πi〉, and applies the controlled-Ri operator

O

(
ℓ

ǫ
log ℓ

)
(6.33)

times, where Ri is as in (6.30).

To prove Theorem 14, we need the following three technical results.

Lemma 2 (Quantum ratio estimation). Let ǫpe ∈ (0, 1). For each i = 0, . . . , ℓ − 1 there

exists a quantum approximation scheme A′
i for αi. Its output Q′

i satisfies

Pr
[
(1− ǫpe)αi ≤ Q′

i ≤ (1 + ǫpe)αi
]
≥ 7

8
. (6.34)

The scheme A′
i requires one copy of the quantum sample |πi〉 and invokes the controlled-Ri

operator O
(
ǫ−1
pe

)
times, where Ri is as in (6.30).

Proof. Let

G = (2 |ψi〉 〈ψi| − I) (2P − I) . (6.35)

Define the basis states

|γ1〉 =
(I− P) |ψi〉√

1− αi
, and |γ2〉 =

P |ψi〉√
αi

. (6.36)

Restricted to the plane spanned by |γ1〉 and |γ2〉, G acts as a rotation

G
∣∣
{|γ1〉,|γ2〉} =




cos θ sin θ

− sin θ cos θ


 , (6.37)

88

where θ ∈ [0, π
2
] satisfies

cos θ = 2αi − 1. (6.38)

The eigenvectors and eigenvalues of G are

|G±〉 =
1√
2




1

±i


 , λ± = e±iθ . (6.39)

We do not have direct access to one of these eigenvectors, as the state |ψi〉 is in a superposition

of |G+〉 and |G−〉. Thus, when we apply the phase estimation circuit for the unitary G to the

state |ψi〉, we will sometimes obtain an estimate of θ, and sometimes an estimate of 2π − θ.

However, this is not a problem since both θ and 2π − θ plugged into (6.38) yield the same

result for αi.

We require that the estimate θ′ satisfies

|θ′ − θ| ≤ 2ǫpe αi ≤ ǫpe (6.40)

with probability at least 7
8
. Using the phase estimation circuit in [NC00], this means that θ′

2π

has to be an na = log 2π
ǫpe

bit approximation of the phase and the failure probability pf has

to be less than 1
8
. To achieve this, it suffices to use a phase estimation circuit (see Fig. 6.2)

with

t = log
2π

ǫpe
+ log

(
2 +

1

2 pf

)
= O

(
log ǫ−1

pe

)

ancilla qubits. This circuit invokes the controlled-G operation O(2t) = O
(
ǫ−1
pe

)
times.

Let α′
i denote the value we compute from the estimate θ′. We have

|αi − α′
i| =

1

2
|cos θ − cos θ′| ≤ 1

2
|θ − θ′| ≤ ǫpe αi , (6.41)

89

|0〉 H •

DFT
†

.

.

.
· · ·

|0〉 H •

|0〉 H •

|ψ〉 G2
0

G2
1

G2
t−1

Figure 6.2: A Basic Phase Estimation Circuit with t Ancilla Qubits

showing that the estimate α′
i is within ±ǫpeαi of the exact value αi with probability at least 7

8
.

This completes the proof that the random variable Q′
i corresponding to the output satisfies

the desired properties on estimation accuracy and success probability.

We can boost the success probability of the above quantum approximation scheme for the

ratio αi by applying the powering lemma from [JVV86], which we state here for completeness:

Lemma 3 (Powering lemma for approximation schemes). Let B′ be a (classical or quantum)

approximation scheme whose estimate W ′ is within ±ǫpeq to some value q with probability

1
2
+ Ω(1). Then, there is an approximation scheme B whose estimate W satisfies

Pr
[
(1− ǫpe)q ≤W ≤ (1 + ǫpe)q

]
≥ 1− δboost . (6.42)

It invokes the scheme B′ as a subroutine O
(
log δ−1

boost

)
times.

With the help of Lemma 3, we now have the constituents required to compose the indi-

vidual estimates of αi into an approximation for the partition function (6.4).

90

Lemma 4. Let ǫ > 0. Assume we have approximation schemes A0,A1, . . . ,Aℓ−1 such that

their estimates Q0, Q1, . . . , Qℓ−1 satisfy

Pr
[(

1− ǫ

2ℓ

)
αi ≤ Qi ≤

(
1 +

ǫ

2ℓ

)
αi

]
≥ 1− 1

4ℓ
. (6.43)

Then, there is a simple approximation scheme A for the product α = α0α1 · · ·αℓ−1. The

result Q = Q0Q1 · · ·Qℓ−1 satisfies

Pr
[
(1− ǫ)α ≤ Q ≤ (1 + ǫ)α

]
≥ 3

4
. (6.44)

Proof. For each i = 0, . . . , ℓ − 1, the failure probability for estimating αi is smaller than

1/(4ℓ). The union bound implies that the overall failure probability is smaller than 1/4,

proving the lower bound 3
4
on the success probability in (6.44).

To obtain the upper bound on the deviation, we now assume that each Qi takes the

upper bound value. We have

Q− α

α
≤

ℓ−1∏

i=0

(
1 +

ǫ

2ℓ

)
− 1 =

(
1 +

ǫ

2ℓ

)ℓ
− 1

≤ eǫ/2 − 1 ≤ ǫ ,

where we have used 1 + x ≤ ex ≤ 1+ 2x, which is true for all x ∈ [0, 1]. Thus, in the case of

success, we have Q ≤ (1 + ǫ)α.

To obtain the lower bound on the deviation, we assume that each Qi takes its lower

bound value. We have

α−Q

α
≤ 1−

ℓ−1∏

i=0

(
1− ǫ

2ℓ

)
≤

ℓ−1∑

i=0

ǫ

2ℓ
≤ ǫ , (6.45)

91

where we have used |
∏

i xi −
∏

i yi| ≤
∑

i |xi − yi|, true for arbitrary xi, yi ∈ [0, 1]. Thus, in

the case of success, we have (1− ǫ)α ≤ Q.

We are now ready to prove Theorem 14:

Proof of Theorem 14. For each i = 0, . . . , ℓ− 1, we can apply Lemma 2 with the state |ψi〉

(6.27) and the projector P (6.28). This gives us a quantum approximation scheme for αi.

Note that to prepare |ψi〉, it suffices to prepare |πi〉 once. Also, to realize a controlled

reflection around |ψi〉, it suffices to invoke the controlled reflection around |πi〉 once.

We now use the reflection 2|ψi〉〈ψi| − I and set ǫpe = ǫ/(2ℓ) in Lemma 2. With these

settings, we can apply Lemma 3 to the resulting approximation scheme for αi with δboost =

1/(4ℓ). This gives us approximation schemes Ai outputting Qi with high precision and

probability of success that can be used in Lemma 4. The composite result Q = Q0 · · ·Qℓ−1

is thus an approximation for α = α0 · · ·αℓ−1 with the property

Pr
[
(1− ǫ)α ≤ Q ≤ (1 + ǫ)α

]
≥ 3

4
. (6.46)

Finally, we obtain the estimate for Z by multiplying Q with Z0. Let us summarize the costs

from Lemmas 2-4. For each i = 0, . . . , ℓ− 1, this scheme uses log δ−1
boost = O(log ℓ) copies of

the state |πi〉, and invokes
(
log δ−1

boost

)
ǫ−1
pe = O

(
ℓ
ǫ
log ℓ

)
reflections around |πi〉.

92

6.2.3 Quantum FPRAS

In the previous Section we have assumed that we can prepare the quantum samples |πi〉

and implement the controlled reflections Ri = 2|πi〉〈πi| − I about these states perfectly and

efficiently. We now release these assumptions and show how to approximately accomplish

both tasks with the help of quantum walks operators. We then show that the errors arising

from these approximate procedures do not significantly decrease the success probability of

the algorithm. This will wrap up the proof of our main result, Theorem 13.

In [WA08], Wocjan and Abeyesinghe show how to approximately prepare quantum sam-

ples |πi〉 of stationary distributions of slowly-varying Markov chains. Using the fact that the

consecutive states |πi〉 and |πi+1〉 are close, we utilize Grover’s π
3
fixed-point search [GRO05]

to drive the starting state |π0〉 towards the desired state |πi〉 through multiple intermediate

steps. Moreover, to be able to perform this kind of Grover search, we have to be able to apply

selective phase shifts of the form Si = ω|πi〉〈πi|+ (I− |πi〉〈πi|) for ω = eiπ/3 and ω = e−iπ/3.

This is another assumption of Section 6.2.2 that we have to drop here. Nevertheless, an

efficient way to apply these phase shifts approximately, based on quantum walks and phase

estimation, exists [WA08].

Our task is to show that the approximation scheme from Lemma 2 works even with

approximate input states and using only approximate reflections about the states |πi〉. Let

us start with addressing the approximate state preparation. To be able to use the results of

[WA08], we first have to establish an important condition. For their method to be efficient,

93

the overlap of two consecutive quantum samples |πi〉 and |πi+1〉 has to be large. This is

satisfied when αi = Zi+1/Zi is bounded from below by 1
2
, since

|〈πi|πi+1〉|2 =

∣∣∣∣∣
∑

σ∈Ω

√
e−βiE(σ) e−βi+1E(σ)

√
ZiZi+1

∣∣∣∣∣

2

≥
∣∣∣∣∣

∑
σ∈Ω e−βi+1E(σ)

√
2Zi+1

√
Zi+1

∣∣∣∣∣

2

=
1

2
.

The following lemma then directly follows from the arguments used in [WA08, Theorem 2].

Lemma 5. For ǫS > 0 arbitrary and each i = 1, . . . , ℓ − 1, there is a quantum method

preparing a state |π̃i〉 with

‖|π̃i〉 − |πi〉|0〉⊗a‖ ≤ ǫS , (6.47)

where a = O
(

ℓ
ǫS

√
δ

)
is the number of ancilla qubits. The method invokes a controlled version

of a walk operator from the set {W (P1), . . . ,W (Pℓ−1)}

O

(
ℓ√
δ
log2

ℓ

ǫS

)
. (6.48)

times.

We choose the preparation method from Lemma 5 with ǫS = 1
32
. The cost for this

precision ǫS is

O

(
ℓ√
δ
log2 ℓ

)
(6.49)

applications of the quantum walk operator. Recall that when we used Lemma 2 in Section

6.2.2 with the state |ψi〉 (coming from the perfect quantum sample |πi〉) as input, the success

probability of the resulting scheme was greater than 7
8
. We now use the method given in

94

Lemma 2 on the approximate input |ψ̃i〉 = Vi(|π̃i〉 ⊗ |0〉). With our chosen precision for

preparing |π̃i〉, the success probability of the approximation scheme of Lemma 2 cannot

decrease by more than 2 · 1
32
.

The second assumption of Lemma 2 we need to drop is the ability to perfectly implement

the reflections Ri = 2|πi〉〈πi| − I. We now show how to approximately implement these

reflections. The following lemma follows directly from the arguments in [WA08, Lemma 2

and Corollary 2].

Lemma 6. For ǫR > 0 arbitrary and each i = 1, . . . , ℓ−1, there is an approximate reflection

R̃i such that

R̃i

(
|ϕ〉 ⊗ |0〉⊗b

)
=
(
Ri|ϕ〉

)
⊗ |0〉⊗b + |ξ〉 (6.50)

where |ϕ〉 is an arbitrary state, b = O
(
log ǫ−1

R log 1√
δ

)
is the number of ancilla qubits, and

|ξ〉 is some error vector with ‖|ξ〉‖ ≤ ǫR. It invokes the controlled version of a walk operator

from {W (P1), . . . ,W (Pℓ−1)}

O

(
1√
δ
log

1

ǫR

)
(6.51)

times.

Recall that in Lemma 2, the controlled reflection Ri is invoked O(1/ǫpe) times. We now

run this approximation scheme with R̃i instead of Ri. The norm of the accumulated error

vector is

O

(
1

ǫpe

)
· ǫR. (6.52)

95

We choose

ǫR = Ω(ǫpe) (6.53)

to bound the norm of the accumulated error from above by 1
32
. The success probability can

then decrease by at most 2 · 1
32
.

Combining these arguments establishes a variant of Lemma 2 without the unnecessary

assumptions of Section 6.2.2:

Lemma 7. Let ǫpe ∈ (0, 1). For each i = 0, . . . , ℓ− 1, there exists a quantum approximation

scheme A′′
i for αi. Its estimate Q′′

i satisfies

Pr
[
(1− ǫpe)αi ≤ Q′′

i ≤ (1 + ǫpe)αi
]
≥ 3

4
. (6.54)

This scheme invokes the controlled version of a walk operator from {W (P1), . . . ,Wℓ−1}

O

(
ℓ√
δ
log2 ℓ+

1

ǫpe
√
δ
log ǫ−1

pe

)
. (6.55)

Proof. The success probability of the scheme in Lemma 2 was greater than 7
8
. Both the ap-

proximate state preparation and using approximate reflections reduce the overall probability

of success by at most 1
16
. Thus the probability of success of the method given in Lemma 2

after dropping the unnecessary assumptions is at least 3
4
.

We can finally complete the proof of Theorem 13 by following the procedure that led to

the proof of Theorem 14 in Section 6.2.2.

Proof of Theorem 14. For each i = 0, . . . , ℓ − 1, we proceed as follows. We use the ap-

proximation scheme A′′
i from Lemma 7 with precision ǫpe = ǫ/(2ℓ). We then boost the

96

success probability of each A′′
i to 1 − 1

4ℓ
by applying the powering lemma (Lemma 3) with

δboost = 1/(4ℓ). This step increases the cost in (6.55) by the factor O(log ℓ). This resulting

scheme Ai now satisfies the properties required for Lemma 4. We can thus use it to obtain

a composite approximation scheme whose output satisfies

Pr
[
(1− ǫ)Z ≤ Q ≤ (1 + ǫ)Z

]
≥ 3

4
. (6.56)

The resulting cost of this scheme (the number of times we have to invoke the controlled

quantum walk operators) is

O

(
ℓ2√
δ
log3 ℓ+

ℓ2

ǫ
√
δ
(log ℓ)

(
log ℓ+ log ǫ−1

))

= Õ

(
ℓ2

ǫ
√
δ

)
. (6.57)

6.3 Discussion

We have shown that in the quantum circuit model, we can speed up a class of classical

FPRAS for approximating partition functions, as measured in the number of times we have

to invoke2 a step of a quantum walk (instead of classical Markov chains). We obtained two

reductions in complexity: 1/δ → 1/
√
δ and 1/ǫ2 → 1/ǫ. These two reductions are intimately

related; they cannot occur separately. If we used quantum samples merely to obtain classical

samples (i.e., if we tried to estimate the ratios without phase estimation), then this would

2When the classical Markov chains can be implemented efficiently, each step of the corresponding quantum
walks can also be applied efficiently and precisely, as shown e.g. in [CNW10].

97

lead to O(ℓ3) dependence (for ǫ ∝ ℓ−1). This is because we would have to take O(ℓ
ǫ2
) classical

samples for each i and producing a quantum sample costs at least O(ℓ). The advantage of

our approximation procedure based on quantum phase estimation is that it requires only

one quantum sample (or more precisely, log ℓ, after using the powering lemma to boost the

success probability). We cannot obtain the second speed-up without using quantum samples

(as mentioned in the introduction, this prevents us from using a procedure such as [RIC07]

that prepares density operators encoding stationary distributions). Also, the arguments

employed in the error analysis in the quantum case are quite different from those in the

classical error analysis.

Each classical FPRAS we speed up uses the telescoping trick (6.4), a particular cooling

schedule (decreasing sequence of temperatures), and slowly-varying Markov chains which

mix rapidly, with stationary distributions equal to the Boltzmann distributions at the inter-

mediate temperatures. The classical FPRAS is useful only when we have the Markov chains

with the required properties. Moreover, the cooling schedules need to be such that the ratios

αi (6.9) are lower bounded by some c−1. In [SVV07], the authors show that it is possible to

use a cooling schedule T0 = ∞ > T ′
1 > . . . > T ′

ℓ′−1 = TF for estimating the partition function

Z(TF) as long as for each i,

E (Y 2
i)(

E (Yi)
)2 ≤ b, (6.58)

where b is some constant. Such a cooling schedule is called a Chebyshev cooling schedule.

Note that the above condition is automatically satisfied in the situation we consider in this

chapter, but not vice versa (recall that we assume that we have a cooling schedule such

98

that E (Yi) is bounded from below by a constant for each i; we set it to 1
2
for simplicity

of presentation). The advantage of Chebyshev cooling schedules is that they are provably

shorter. The authors present an adaptive algorithm for constructing Chebyshev cooling

schedule. We plan to explore if it is possible to speed up this process. But even if this is

possible, a potential obstacle remains. It is not clear whether we can still obtain the reduction

from 1
ǫ2

to 1
ǫ
when we only know that the condition (6.58) is satisfied. It seems that the

condition E (Yi) > c−1 with c some constant is absolutely necessary for phase estimation to

yield the quadratic speed-up with respect to the accuracy parameter ǫ.

The combination of simulated annealing and the Monte Carlo Markov Chain method

used in approximating partition functions is the central piece of the best currently known

algorithm for estimating permanents with non-negative entries [BSVV08]. We therefore

plan to explore where our techniques can be used to speed up this breakthrough classical

algorithm.

99

CHAPTER 7
PREPARING THERMAL GIBBS STATE

While quantum walk may have lots of useful applications, there may be a situation in which

the spectral gap of the corresponding transition matrix P is extremely small. The quadratic

speed-up might remain insignificant. In a situation such as this, we can use techniques like

amplitude amplification.

The ability to efficiently prepare thermal Gibbs states of arbitrary quantum systems at

arbitrary temperatures on a quantum computer would lead to a multitude of applications in

condensed matter, quantum chemistry and high energy physics [PW09, TOVPV09, TD00].

For example, we could estimate partition and correlation functions of fermionic and frus-

trated systems. For these systems, the approach of first applying the “quantum-to classical

map” [SUZ88] and then using the classical Monte Carlo method fails because the mapping

does not conserve the positivity of statistical weights.

We consider an arbitrary Hamiltonian H with spectral decomposition

H =
D∑

a=1

Ea|ψa〉〈ψa| . (7.1)

The thermal Gibbs state of the system at inverse temperature β is given by

ρβ :=
∑

a

e−βEa

Zβ

|ψa〉〈ψa| (7.2)

where Zβ :=
∑

a e
−βEa denotes the partition function.

The formal definition of preparing thermal Gibbs states is as follows:

100

Problem (Thermalizing quantum states). Let H be a Hamiltonian, β an inverse temperature

and ǫ ∈ (0, 1) a parameter describing the desired accuracy. We consider the problem to

prepare a state ρ̃β that is ǫ-close to the thermal Gibbs state ρβ with respect to trace distance1,

i.e.,

‖ρβ − ρ̃β‖tr ≤ ǫ. (7.3)

We refer to the process of preparing such state as thermalizing the quantum system. We

seek to determine efficient quantum circuits that realize such thermalizing process.

We assume that the energies satisfy Ea ∈ [0, π
4
]. If we initially only know that the

spectrum of the Hamiltonian H is contained in the interval [ℓ, u], then the shifted and

rescaled Hamiltonian 4(H − ℓI)/(π(u − ℓ)) satisfies the condition of this assumption. The

thermal Gibbs state is invariant under shifting of the spectrum. Thus, we have to rescale

the inverse temperature by multiplying it by u− ℓ when working with the new Hamiltonian.

There are two types of quantum algorithms for preparing thermal Gibbs states. The

first is a generalization of the Metropolis algorithm. The Metropolis algorithm [MRRTT53]

can be applied to the special case of classical systems, i.e., systems whose Hamiltonian

H =
∑

aEa|a〉〈a| is diagonal in the computational basis. It offers great flexibility for con-

structing Markov chains whose limiting distributions are equal to the desired thermal Gibbs

distributions. The number of times we have to apply the Markov chain scales like 1/δ,

where δ is its spectral gap. Bounding the spectral gap from below for arbitrary systems and

1Recall that the trace distance is defined to be 1

2
tr
√
XX†, where X = ρβ − ρ̃β.

101

neighborhood structures is very difficult. However, it is possible to prove that the gap is

sufficiently large for many practically relevant cases.

Recently, Temme et al. presented an extension of the Metropolis algorithm to quantum

sytems [TOVPV09]. Their quantum Metropolis sampling makes it possible to implement

quantum maps such that their fixed-points are approximately equal to the desired ther-

mal Gibbs states. Analogously to classical case, the number of time we have to apply

the quantum map depends on its spectral gap. The difficulty of bounding the gap from

below remains for general systems and neighborhood structures. However, numerical ex-

periments in [TOVPV09] show that the gap scales like 1/N for the spin-chain Hamiltonian

H =
∑

kXkXk+1 + YkYk+1 + gZk on N spins.

The second type of algorithm is due to Poulin and Wocjan [PW09]. This algorithm

behaves like a Las Vegas algorithm, i.e., it always produces a correct output ρ̃ satisfying the

requirements of the problem definition. The time it takes this algorithm to terminate is a

random variable. However, we can bound the expected value. It is dominated by the factor

√
D/Zβ. This square root term occurs because this algorithm is based on an extension of

Grover’s state engineering technique.

Once the Grover sampling has terminated we know that we have prepared a state that is

close to the desired thermal Gibbs state. In contrast, we can only guarantee that quantum

Metropolis sampling yields a good approximation if we have a lower bound on the spectral

gap. But, of course, quantum Metropolis sampling has the potential to outperform the

Grover sampling for certain quantum systems.

102

We modify this Grover sampling and analyze the errors that arise due to imperfect sim-

ulation of Hamiltonian time evolutions and limited performance of phase estimation (finite

accuracy and nonzero probability of failure) in more detail. This modification together with

the tighter analysis allows us to prove a better running time. We show that expressing the

effect of these sources of error on the overall complexity is smaller than in the original al-

gorithm. We also think that the ideas underlying of our new analysis could also be used to

prove a better performance of the above quantum Metropolis sampling.

This chapter is organized as follows. In section 7.1 we present the structure of the

algorithm. We identify three sources of errors that arise due to (i) imperfect simulation

of Hamiltonian time evolution, (ii) limited precision of phase estimation, and (iii) non-

zero failure probability of phase estimation. In section 7.2.1 and 7.2.2 we analyze how the

complexity increases when we seek to keep the errors small. Finally, we make our conclusion

in Section 7.3.

7.1 Quantum Algorithm – Idealized Setting

To better explain the intuition behind the quantum algorithm, we first ignore all sources

of error. We assume that the unitary U = exp(2πiH) can be implemented perfectly and

efficiently. The eigenvalues Ea of H correspond to the eigenphases Ea of U , using the

convention that the phase of e2πiEa is Ea. We assume that phase estimation (PE) makes

it possible to perfectly resolve the eigenphases, i.e., there is an efficient quantum circuit

103

mapping |ψa〉 ⊗ |00 . . . 0〉 onto |ψa〉 ⊗ |Ea〉 (this is the case as long as the energy Ea can be

written as binary fractions). The realistic case is analyzed in detail in the following section.

The algorithm prepares a purified Gibbs state of the form

|β〉 =
D∑

a=1

√
e−βEa

Zβ
|ψa〉︸︷︷︸
A

⊗ |ϕa〉︸︷︷︸
B

⊗ |Ea〉︸︷︷︸
energy

⊗ |0〉︸︷︷︸
anc

. (7.4)

The states |ϕa〉 form an orthonormal basis on the D-dimensional subsystem B. The |Ea〉 are

computational basis states of the energy register, which consists of multiple qubits. These

basis states encode the eigenvalues Ea of the eigenvectors |ψa〉 of H . The ancilla register

consists of a single qubit. We obtain the thermal Gibbs state ρβ from |β〉 by tracing out the

subsystems B, energy, and anc (see eqn. (7.4))

ρβ = trĀ(|β〉〈β|) , (7.5)

where we use Ā to denote the collection of the above three subsystems (the complement of

A).

The algorithms consists of the following steps:

104

Algorithm 1 Thermal Gibbs State Preparation at Inverse Temperature β

Input: Prepare the maximally entangled state |ν〉 = 1√
D

∑
a |a〉|a〉 on the subsystem AB.

Step I: Run phase estimation of U on the A-part of |ν〉. Write the eigenphase into the

energy register.

Step II: Apply the controlled rotation R =
∑

E |E〉〈E| ⊗RE where

RE =




√
e−βE −

√
1− e−βE

√
1− e−βE

√
e−βE


 .

The control is the energy register and the target is the ancilla qubit that is initialized in |0〉.

Denote the resulting state by |Ψ〉.

Step III: Use a variant of Grover to project |Ψ〉 onto the subspace in which the ancilla qubit

is in |0〉. Denote the projector onto this subspace by Π0. The Grover iteration is given by

G = (2|Ψ〉〈Ψ| − I)(I − 2Π0) .

Output: The density matrix ρβ of final state |β〉 by tracing out Ā.

Let V be an arbitrary unitary. The maximally entangled state |ν〉 is invariant under the

action of V ⊗ V̄ , i.e., (V ⊗ V̄)|ν〉 = |ν〉. Consequently, we can rewrite |ν〉 as

|ν〉 = 1√
D

∑

a

|ψa〉 ⊗ |ϕa〉 (7.6)

by setting V =
∑

a |ψa〉〈a| and |ϕa〉 = V̄ |a〉. In step I, we obtain the state

|Φ〉 = 1√
D

∑

a

(
|ψa〉 ⊗ |ϕa〉

)
⊗ |Ea〉 ⊗ |0〉. (7.7)

105

In step II, we obtain the state

|Ψ〉 = 1√
D

∑

a

(
|ψa〉 ⊗ |ϕa〉

)
⊗ |Ea〉 ⊗

(√
e−βEa |0〉+

√
1− e−βEa|1〉

)
. (7.8)

Note that the desired purified Gibbs state |β〉 is equal to

Π0|Ψ〉
‖Π0|Ψ〉‖ , (7.9)

where ‖Π0|Ψ〉‖ =
√

Zβ

D
. We apply the variant of Grover algorithm [BBH96], which makes

it possible to prepare |β〉 with an expected number of Grover iterations O(1/‖Π0|ψ〉‖). It is

important that we do not need to know the overlap ‖Π0|Ψ〉‖. This shows that we obtain

|β〉 =
D∑

a

√
e−βEa

Zβ
|ψa〉 ⊗ |ϕa〉 ⊗ |Ea〉 ⊗ |0〉 (7.10)

in step III.

7.2 Analysis for Imperfect Setting

7.2.1 Analysis of Simulation Error

The first source of error is the inability to implement U = exp(2πiH) perfectly for general

H . Using techniques [BACS07, LLO96, ZAL98] for simulating Hamiltonian time evolutions,

we can only implement a unitary Usim with ‖U −Usim‖ ≤ ǫsim. The resources grow inversely

with the desired accuracy ǫsim.

To bound the error arising from imperfect simulation, we use the following result, which

follows the discussion in [PW09, Appendix A].

106

Lemma 8. Let H be a Hamiltonian whose eigenvalues are contained in the interval [0, π
4
].

Let U = exp(2πiH) and Usim be a unitary with ‖U − Usim‖ ≤ ǫsim. Then, there exists an

effective Hamiltonian Hsim such that Usim = exp(2πiHsim) and ‖H −Hsim‖ ≤ κǫsim where κ

is a constant.

Assume phase estimation could perfectly resolve the eigenphases of Usim. Then, if we ran

the algorithm using Usim instead of U , then we would prepare the thermal state with respect

to the effective Hamiltonian Hsim instead of H . Thus, it remains to determine how close the

corresponding thermal states are close to each other with respect to trace norm.

Lemma 9. Let H and Hsim be as above. Then, the corresponding thermal states

ρ :=
exp(−βH)

tr(exp(−βH))
and ρsim :=

exp(−βHsim)

tr(exp(−βHsim))
(7.11)

satisfy

‖ρ− ρsim‖tr ≤
ǫ

2
(7.12)

provided that ǫsim ≤ ǫ2/(8κβ).

Proof. The fidelity of ρ and ρsim is given by

F (ρ, ρsim) = tr
√√

ρ ρsim
√
ρ . (7.13)

Using [FG99, Proposition 4] we bound the trace distance between ρ and ρsim as follows

‖ρ− ρsim‖tr ≤
√

1− F (ρ, ρsim)
2 . (7.14)

The analysis in [PW09, Appendix C] shows that

F (ρ, ρsim) ≥ e−βκǫsim , (7.15)

107

and thus

‖ρ− ρsim‖tr ≤
√

1− e−2βκǫsim ≤
√
2βκǫsim ≤ ǫ

2
. (7.16)

The rightmost inequality follows from 1 + x ≤ ex for all x ∈ R.

From now on, we measure the complexity in terms of how many times we have to invoke

a controlled version of Usim. If we wish to determine the complexity in terms of elementary

gates, we have to look at the simulation technique more closely.

7.2.2 Analysis of Errors in Phase Estimation

We now show how to prepare a state ρ̃ such that ‖ρsim−ρ̃‖tr ≤ ǫ/2, implying that ‖ρ−ρ̃‖tr ≤ ǫ

as desired. We analyze the three phases of the algorithm.

7.2.2.1 Phase I

We need to run a special variant of phase estimation [NWZ09] of Usim on |ν〉. We briefly

explain how it works. To avoid new definitions, we use |ψa〉 and Ea to refer to the eigenvectors

and eigenphases of Usim, respectively.

The usual phase estimation algorithm consists of the following steps [KLM07]. The energy

register consists of n = ⌈log2(1/ǫprec)⌉ qubits. We apply the Hadamard transform to each

108

of the qubits of the energy register, the controlled-U2j

sim gates (controlled by the jth qubit of

the energy register) on the A-part of ν, and the inverse quantum Fourier transform F † on

the energy register. We measure the n qubits of the energy register in the computational

basis and interpret the outcome b ∈ [0, 2n − 1] as the binary fraction Êb := b/2n, which is

a very good estimate for Ea. More precisely, the probability of obtaining the estimate Êb is

given by

Pr(Ea, Êb) =
1

22n
sin2(π2n(Ea − Ê))

sin2(π(Ea − Êb))
. (7.17)

We use |Êb〉 to denote the computational basis state |b〉, which encodes the energy value

Êb. Let E
±
a denote the binary fractions that are closest to Ea, where we use the convention

E−
a ≤ Ea < E+

a . It follows that the probability of obtaining E+
a or E−

a is greater or equal

to 8
π2 ≥ 3

4
. Thus, the probability of failure, i.e., the probability of not obtaining one of the

closest n-bit fractions, is less than 1
4
.

To reduce the probability of failure to ǫfail, we repeat this quantum circuit k = ⌈log2(1/ǫfail)⌉

times, each time recording the estimate into a new energy register and adjoin a median reg-

ister that consists of n qubits. This yields the state |Υ〉

1√
D

∑

a

|ψa〉|ϕa〉⊗
(∑

b1

cEa,Êb1
|Êb1〉energy⊗. . .⊗

∑

bk

cEa,Êbk

|Êbk〉energy
)
⊗|0 . . . 0〉median⊗|0〉anc ,

(7.18)

where the amplitudes cEa,Êbℓ

satisfy |cEa,Êbℓ

|2 = Pr(Ea, Êbℓ) for ℓ = 1, . . . , k.

109

The median circuit determines the median of Êb1 , . . . , Êbk and writes it into the median

register. Reordering the registers, we may write the resulting states as

|Υ̃〉 = 1√
D

∑

a

|ψa〉|ϕa〉 ⊗
(
c±a |E±

a 〉median ⊗ |µ±
a 〉energy⊗n + |ξa〉median⊗energy⊗n

)
⊗ |0〉anc . (7.19)

where

• the states |µ±
a 〉 are supported only on the states |Êb1〉 ⊗ · · · ⊗ |Êbk〉 such

• that the median of Êb1 , . . . , Êbk is equal to E±
a , and

• the states |ξa〉 are orthogonal to |E±
a 〉 ⊗ |µ±

a 〉.

It follows from the analysis in [NWZ09, JVV86] that the amplitudes c±a satisfy

1− ǫfail ≤ |c+a |2 + |c−a |2 ≤ 1 , 0 < ‖|ξa〉‖2 ≤ ǫfail . (7.20)

This means that the probability of the median not being one of the closest binary fractions

E±
a to Ea is less than or equal to ǫfail. The advantage of combining phase estimation with the

powering technique for approximation algorithms is that we only need to invoke a controlled

version of Usim

⌈(1/ǫprec) log(1/ǫfail)⌉ (7.21)

instead of O((1/ǫprec)(1/ǫfail)) when using phase estimation alone [NC00].

To keep the notation simple, we use |E±
a 〉 to denote the tensor product |E±

a 〉 ⊗ |µ±
a 〉.

Using this convention, we write the state after step I (phase estimation) as

|Φ̃〉 = 1√
D

∑

a

|ψa〉|ϕa〉 ⊗ (c±a |E±
a 〉+ |ξa〉)⊗ |0〉 . (7.22)

110

7.2.2.2 Phase II

The R-operation is controlled by the energy value contained in the median register. After

step II, |Φ̃〉 evolves to the state

|Ψ̃〉 =
1√
D

∑

a

|ψa〉|ϕa〉 ⊗ c±a |E±
a 〉 ⊗

(√
e−βE

±
a |0〉+

√
1− e−βE

±
a |1〉

)

︸ ︷︷ ︸
|ψ〉

+ (7.23)

1√
D

∑

a

|ψa〉|ϕa〉 ⊗ R(|ξa〉 ⊗ |0〉)
︸ ︷︷ ︸

|ξ〉

. (7.24)

As a consequence of the property 〈ξ|ψ〉 = 0, we have

‖|ξ〉‖2 = 1

D

∑

a

〈ξa|ξa〉 ≤ ǫfail and 1− ǫfail ≤ ‖|ψ〉‖2 ≤ 1. (7.25)

7.2.2.3 Phase III

Let |β̃〉 be the state obtained by applying Grover’s algorithm to |Ψ̃〉, i.e.,

|β̃〉 = Π0|Ψ̃〉
‖Π0|Ψ̃〉‖

. (7.26)

Let ρ̃ be the reduced density operator of |β̃〉 over Ā. We need to bound ‖Π0|Ψ̃〉‖ from below

to obtain an upper bound on the expected number of Grover iterations. We also need to

show that ρ̃ is close to ρsim. This is done in the following lemma.

Lemma 10. Let ρ̃ = trĀ(|β̃〉〈β̃|). This density operator has the form

ρ̃ =
trĀ
(
Π0

∣∣ψ〉〈ψ|Π0

)

〈Ψ̃|Π0|Ψ̃〉
+

trĀ
(
Π0|ξ〉〈ξ|Π0

)

〈Ψ̃|Π0|Ψ̃〉
(7.27)

111

that satisfies

‖ρsim − ρ̃‖tr ≤ ‖ρsim − trĀ(Π0(|ψ〉〈ψ|)Π0)

〈Ψ̃|Π0|Ψ̃〉
‖tr + ‖trĀ(Π0(|ξ〉〈ξ|)Π0)

〈Ψ̃|Π0|Ψ̃〉
‖tr ≤ ǫ

4
+
ǫ

4
=
ǫ

2
, (7.28)

provided that ǫfail = e−β ǫ2 and ǫprec = ǫ/(32β).

Proof. Observe that the off-diagonal terms Π0(|ψ〉〈ξ| + |ξ〉〈ψ|)Π0 in
(
Π0|Ψ̃〉〈Ψ̃|Π0

)
vanish

when we trace |β̃〉 over Ā.

Set N := tr(Π0|Ψ̃〉〈Ψ̃|Π0) and define the operator

σ := trĀ(Π0|ψ〉〈ψ|Π0) =
1

D

∑

a

(|c+a |2e−βE
+
a + |c−a |2e−βE

−
a)|ψa〉〈ψa| . (7.29)

We can express N = tr(σ) + tr(Π0|ξ〉〈ξ|Π0). Since tr(Π0|ξ〉〈ξ|Π0) = 〈ξ|Π0|ξ〉 ≤ ‖ξ‖2 ≤ ǫfail,

by (7.25) we can bound N and σ’s trace as follows

(1− ǫfail)
Zβ

D
e−βǫprec ≤ tr(σ) ≤ Zβ

D
eβǫprec , (7.30)

(1− ǫfail)
Zβ

D
e−βǫprec ≤ N < ǫfail +

Zβ

D
eβǫprec. (7.31)

Because Ea ∈ [0, π
4
], we can bound the ratio Z(β)/D as follows

1 ≥ Z(β)/D ≥ e−β. (7.32)

By choosing the lower bound on N and the upper bound on ‖trĀ(Π0(|ξ〉〈ξ|)Π0)‖tr, we obtain

‖trĀ(Π0(|ξ〉〈ξ|)Π0)

N
‖tr ≤

ǫfail · eβǫprec
(1− ǫfail)

Zβ

D

≤ ǫ2 · eβǫprec
(1− ǫfail)

≤ 2ǫ2eβǫprec ≤ ǫ

4
.

The last inequality is obtained because ǫ is small and ex < 1 + 2x for x ∈ [0, 1]. The term

112

‖ρsim − trĀ(Π0(|ψ〉〈ψ|)Π0)

N
‖tr =

d∑

i=1

| e−βEi

∑
j e

−βEj
− tr(σ)

N
| ≤ ǫ

4
(7.33)

is still satisfied even when examining the following two extreme cases

(I) Lower bound on N and upper bound on tr(σ):
eβǫprec

(1− ǫfail)e−βǫprec
− 1 , (7.34)

(II) Upper bound on N and lower bound on tr(σ): 1− (1− ǫfail)e
−βǫprec)

D
Zβ
ǫfail + eβǫprec

. (7.35)

We know that

d∑

i=1

| e−βEi

∑
j e

−βEj
− tr(σ)

N
| ≤ max

{
eβǫprec

(1− ǫfail)e−βǫprec
− 1, 1− (1− ǫfail)e

−βǫprec)
D
Zβ
ǫfail + eβǫprec

}
. (7.36)

Because 1 + 2x > ex for ∀x ∈ (0, 1), we derive

eβǫprec

(1− ǫfail)e−βǫprec
− 1 ≤ 1 + ǫ

8

1− ǫfail
− 1 ≤ ǫ

4
. (7.37)

In the second case because 1 + x ≤ ex for ∀x ∈ R and 1 ≤ D/Z(β) ≤ eβ , we have

1− (1− ǫfail)e
−βǫprec)

D
Zβ
ǫfail + eβǫprec

≤ 1− e−βǫprec

ǫ2 + eβǫprec
≤ 1− 1− ǫ

16

ǫ2 + 1
≤ ǫ

4
(7.38)

for small ǫ.

7.3 Discussion

Theorem 15. Let H be a Hamiltonian, β an inverse temperature and ǫ ∈ (0, 1) a parameter

describing the desired accuracy. Let Usim be the Hamiltonian simulation such that ‖U −

113

Usim‖ ≤ ǫsim where U = exp(2πiH). Our algorithm prepares a state ρ̃β that is ǫ-close to the

thermal Gibbs state ρβ, i.e.,

‖ρβ − ρ̃β‖tr ≤ ǫ, (7.39)

provided that ǫsim ≤ ǫ2/(8βκ), ǫprec = ǫ/(32β) and ǫfail = e−βǫ2. The complexity of our

algorithm scales like

O
(√ D

Zβ

β

ǫ
(log

1

ǫ
+ β)

)
(7.40)

in terms of the number of invocations of the controlled-Usim operation.

Proof. The requirements for ǫsim, ǫprec and ǫfail are immediate by Lemma 9 and Lemma 10.

By (7.21) the cost for performing one Grover iteration scales as

O
(β
ǫ
(log

1

ǫ
+ β)

)
. (7.41)

The number of Grover iterations [BBH96] is determined by O(1
tr(σ)

) = O(
√

D
Zβ

) when using

the lower bound of tr(σ) in (7.30).

114

CHAPTER 8
THEORY OF PERTURBED QUANTUM WALK

Markov chains and random walks have been useful tools in classical computation. One can

use random walks to obtain the final stationary distribution of a Markov chain to sample

from. In such an application the time the Markov chain takes to converge, i.e., convergence

time, is of interest because shorter convergence time means lower cost in generating a sample.

Sampling from stationary distributions of Markov chains combined with simulated annealing

is the core of many clever classical approximation algorithms. For instance, approximating

the volume of convex bodies [LV06], approximating the permanent of a non-negative matrix

[JSV04], and the partition function of statistical physics models such as the Ising model

[JS93] and the Potts model [BSVV08]. In addition, one can also use the random walks to

search for the marked state, in which the hitting time is of interest because hitting time

indicates the time it requires to find the marked state.

In comparison to classical random walks, quantum walks provide a quadratic speed-up

in hitting time. Quantum walks have been applied to solving many interesting problems

[SAN08], such as searching problems, group commutativity, element distinctness, restricted

range associativity, triangle finding in a graph, and matrix product verification. Perturba-

tions of classical Markov chains are widely studied with respect to hitting time and stationary

distribution. Since a quantum system is susceptible to the environmental noise, we are in-

terested to know what effect perturbation has on currently existing quantum walk based

115

algorithms.

This chapter is organized as follows. In section 8.1 we present the deviation effect of

perturbation on the spectral gap of a classical Markov chain. In section 8.2 we discuss how

the hitting time would be affected because of the perturbation. We explore the upper bounds

for the perturbed hitting time quantumly and the time difference (delayed perturbed hitting

time) both quantumly and classically. In section 8.3 we investigate the effect of perturbation

on the quantum sample prepared by quantum walks. Finally in section 8.4, we make our

conclusion.

8.1 Classical Spectral Gap Perturbation

Given a stochastic symmetric matrix P ∈ Cn×n, we can quantize the Markov chain [SZE04].

P. Wocjan, D. Nagaj and I showed that the implementation of one step of a quantum walk

[CNW10] can be achieved efficiently. However, the above settings always are under the as-

sumption of perfect scenarios. In real life there are many sources of errors that would perturb

the process. Noise might be propagated along with the input source or might be introduced

during the process. Here we look solely at the noise that are introduced at the beginning of

the process.

116

The noise can be introduced due to the precision limitation and the noisy environment.

For instance, not all numbers have a perfect binary representation and the approximated

numbers would cause perturbation. Suppose our input decoding mechanism can always take

the input matrix and represent it in a symmetric transition matrix Q, where Q can be per-

fectly represented and this is the matrix closest to the original matrix P that the system can

prepare.

Let E be the noise that is introduced because of system’s precision limitation and the

environment, we can express the transition matrix as

Q = P + E. (8.1)

Classically, much research [IN09, CM01, GL96, PAR98, BF60, EI99] has focused on the

spectral gaps and stationary distributions of the matrices with perturbation. In a recent

work by Ipsen and Nadler [IN09] , they refined the perturbation bounds for eigenvalues of

Hermitians. Throughout the rest of the chapter, ‖ · ‖ always denotes the l2 norm, unless

otherwise specified. Based on their result, we summarized the following:

Corollary 1. Suppose P and Q ∈ Cn×n are Hermitian symmetric transition matrices with

respective eigenvalues

0 < λn−1(P) ≤ . . . ≤ λ0(P) = 1, 0 < λn−1(Q) ≤ . . . ≤ λ0(Q) = 1, (8.2)

117

and Q = P + E, then

max
0≤i≤n−1

|λi(P)− λi(Q)| ≤ ‖E‖. (8.3)

Furthermore, the spectral gap δ of P and the spectral gap ∆ of Q have the following relation-

ship

δ − ‖E‖ ≤ ∆ ≤ δ + ‖E‖. (8.4)

Proof. Eq. (8.3) is a direct result from the Weyl’s Perturbation Theorem. The Weyl’s Per-

turbation Theorem bounds the worst-case absolute error between the ith exact and the ith

perturbed eigenvalues of Hermitian matrices in terms of the l2 norm [GL96, PAR98]. And

since

1− λ1(P) = δ, 1− λ1(Q) = ∆,

by eq. (8.3) we have |δ − ∆| ≤ ‖E‖. Therefore, in general we can bound the perturbed

spectral gap ∆ as

δ − ‖E‖ ≤ ∆ ≤ δ + ‖E‖.

Generally speaking, the global norm of E might be very large when the dimensions

n >> 1 [JOH01]. However, in our case because E is the difference between two very close

stochastic symmetric matrices, its global norm would never become large.

118

8.2 Hitting Time of Markov Chain Based Walks

For the purpose of being complete, we need to cite several definitions and results used in the

MNRS algorithm [MNRS09] in this section. We recommend interested readers to reference

[MNRS09] for details.

Let P be a reversible and ergodic transition matrix with state space Ω and positive

eigenvalues. Suppose P is column-wise stochastic and |Ω| = n, then let the Markov chain

(X1, . . . , Xn) under discussion have a finite state space Ω and transition matrix P .

Definition 14. For x ∈ Ω, denote the hitting time for x

HT (P, x) = min{t ≥ 1 : Xt = x}. (8.5)

HT (P, x) is the expected number of transition matrix P invocations to reach the state x when

started in the initial distribution π.

Definition 15. For an n × n matrix P , P−x denotes the (n − 1) × (n − 1) matrix of P

where the row and column indexed by x are deleted. For a vector v, v−x is the vector that

omits the x-coordinate of v. Similarly, suppose {M} = {x1, . . . , xm}, then P−{M} denotes

the (n−m)× (n−m) matrix of P where the rows and columns indexed by x1, x2, . . . ,and xm

are deleted.

119

Definition 16. Denote the vector space H = C|Ω|×|Ω|. For a state |ψ〉 ∈ H, define Πψ =

|ψ〉〈ψ| as the orthogonal projector onto Span(|ψ〉). Let A = Span(|y〉|py〉 : y ∈ Ω) be the

vector subspace of H where

|py〉 =
∑

z∈Ω

√
pzy|z〉. (8.6)

A is spanned by a set of mutually orthogonal states {|ψi〉 : i = 1, 2 . . . , |Ω|}, then let

ΠA =
∑

iΠψi
. Similarly, A−x = Span{|y〉|py〉 : y ∈ Ω\{x}}.

Definition 17. The unitary operation W (P) = (S ·(2ΠA−I))2 defined on H is the quantum

analog of P . Similarly, the unitary operation W (P, x) = (S · (2ΠA−x
− I))2 defined on H is

the quantum analog of P−x. S is the swap operation defined by S|y〉|z〉 = |z〉|y〉.

Fact 2. [MNRS09, SZE04] Let x ∈ Ω and |µ〉 = |x〉|px〉. Let U2 = S(2ΠA − I) and

U1 = I−2|µ〉〈µ|. When P is reversible, then U2
2 = W (P) and (U2U1)

2 = (S(2ΠA−x
− I))2 =

W (P, x).

Proof. Since ΠA =
(∑|Ω|

y=1,y 6=x |y〉|py〉〈y|〈py|
)
+ |µ〉〈µ|, then we have

U2U1 = S(2ΠA − I)(I − 2|µ〉〈µ|)

= S(2ΠA − 2|µ〉〈µ| − I)

= S(2ΠA−x
− I)

120

8.2.1 Classical Hitting Time

By [MNRS09], the x-hitting time of P can be expressed as HT (P, x) = π†(I − P−x)
−1u−x,

where u is an all-ones vector. It is known that

π†
−x(I − P−x)

−1uz =
√
π−x

†(I − S−x)
−1√π−x (8.7)

where S−x =
√
Π−xP−x

√
Π−x

−1
with Π−x = diag(πi)i 6=x and

√
π−x is the entry-wise square

root of π−x. Let {vj : j ≤ n − 1} be the set of normalized eigenvectors of S−x where the

eigenvalue of vj is λj = cos θj with 0 ≤ θj < π/2. By reordering the eigenvalues, let us

assume that 1 > λ1 ≥ . . . ≥ λn−1 > 0. When
√
π−x =

∑
j νjvj is the decomposition of

√
π−x

in the eigenbasis of S−x, the x-hitting time satisfies

HT (P, x) =
∑

j

ν2j
1− λj

. (8.8)

In a similar manner, let S̃−x =
√
Π−xQ−x

√
Π−x

−1
for a perturbed matrix Q where Q =

P + E. Then the x-hitting time for Q satisfies

HT (Q, x) =
∑

j

ν̃2j

1− λ̃j
, (8.9)

where λ̃j are the eigenvalues of S̃−x and
√
π−x =

∑
j ν̃j ṽj is the decomposition of

√
π−x in

the eigenbasis, {ṽj}, of S̃−x.

Three simple facts can be observed from above description of classical hitting time.

Fact 3. S−x and P−x are similar, they have the same eigenvalues.

121

Fact 4. S̃−x and Q−x are similar, they have the same eigenvalues.

Fact 5. Since the entries of distribution π sum up to 1 , i.e.
∑

i(πi) = 1, then it is obvious

that
√
π−x

†√π−x =
∑

i(πi)i 6=x ≤ 1. Hence we know that
∑

i
ν2
i
=
∑

i
ν̃2
i
≤ 1.

8.2.2 Delayed Perturbed Hitting Time

In this subsection, we define the delayed perturbed hitting time and its upper bound as the

following.

Lemma 11. For a Markov transition matrix P with state space Ω and limiting distribution

π. Assume |Ω| = n and let |vi〉 be the eigenvector with corresponding eigenvalue λi of P−x.

Suppose the eigenvalues of P−x are ordered such that 1 > λ1 ≥ λ2 ≥ . . . ≥ λn−1 > 0. The

x-hitting time satisfies

HT (P, x) =
∑

j=1

ν2j
1− λj

where
√
π−x =

∑|Ω|−1
j=1 νj |vi〉. When given a perturbed matrix Q where ‖Q − P‖ ≤ ‖E‖,

denote the Delayed Perturbed Hitting Time (DPHT(P,Q,x)) that

DPHT (P,Q, x) = HT (Q, x)−HT (P, x).

DPHT (P,Q, x) can be bounded from above by

1

1− λ1 − ‖E‖2
− 1

1− λ1 + γ
(8.10)

122

where λ1 − λn−1 = γ.

Proof. Let the eigenvalues of Q−x be λ̃i. By the fact ‖Q−P‖ ≤ ‖E‖ and Weyl’s perturbation

theorem, we know that ‖Q−x − P−x‖ ≤ ‖E‖ and |λi − λ̃i| ≤ ‖E‖. The delayed hitting time

due to perturbation is thus

DPHT (P,Q, x) = HT (Q, x)−HT (P, x)

=
∑

i∈Ω

(ν̃2i
1− λ̃i

− ν2i
1− λi

)

≤
(∑

i∈Ω

ν̃2i
1− λ1 − ‖E‖

)
−
(∑

i∈Ω

ν2i
1− λn−1

)

≤
(1

1− λ1 − ‖E‖ − 1

1− λ1 + γ

)
, (8.11)

the last inequality is a result from Fact 5.

8.2.3 Upper Bound for Perturbed Quantum Hitting Time

Given two Hermitian stochastic matrices, P and Q, we explore the difference between walk

operators, W (P) and W (Q), with respect to their hitting time. Denote the set of marked

elements as |M |. Based on the result from Corollary 1, we have the following:

Corollary 2. Given two symmetric reversible ergodic transition matrices P and Q ∈ Cn×n,

where Q = P + E, let W (P) and W (Q) be quantum walks based on P and Q, respectively.

Let M be the set of marked elements in the state space. Denote QHT (P) as the hitting time

of walk W (P) and QHT (Q) as the hitting time of walk W (Q). Suppose |M | = ǫN . If the

123

second largest eigenvalues of P and Q are at most 1 − δ and 1 − ∆, respectively, then in

general

QHT (P) = O
(√ 1

δǫ

)
, QHT (Q) = O

(√ 1

(δ − ‖E‖)ǫ
)

(8.12)

where δ − ‖E‖ ≤ ∆ ≤ δ + ‖E‖.

Proof. Suppose the Markov chain P , Q and matrix E are in the following block structure

P =




P1 P2

P3 P4


 , Q =




Q1 Q2

Q3 Q4


 , E =




E1 E2

E3 E4


 (8.13)

where we order the elements such that the marked ones come last, i.e., P4, Q4 and E4 ∈

C|M |×|M |. The corresponding modified Markov chains [SZE04] would be

Q̃ =




Q1 0

Q3 I


 =




P1 + E1 0

P3 + E3 I


 . (8.14)

By [SZE04], we have QHT (P) = O(
√

1
1−‖P1‖) and QHT (Q) = O(

√
1

1−‖Q1‖). Since we

know

‖P1‖ ≤ 1− δǫ

2
and ‖Q1‖ ≤ 1− ∆ǫ

2
(8.15)

by [SZE04] and by Cauchy’s interlacing theorem we have ‖E‖ ≥ ‖E1‖ [BHA97, Cor.III.1.5],

we then obtain

‖Q1‖ ≤ min

{
‖P1‖+ ‖E‖, 1− (δ − ‖E‖)ǫ

2

}
(8.16)

as δ − ‖E‖ ≤ ∆ ≤ δ + ‖E‖. Therefore, the hitting times for P and Q are derived.

124

From the corollary above, it is clear that noise increases the quantum hitting time. By a

simple comparison with the classical hitting time, we have the following fact.

Fact 6. When given a perturbed quantum walk W (Q), where the magnitude of noise is

‖E‖, the quadratic speed-up gained from the quantum walk will be annihilated when ‖E‖ ≥

Ω(δ(1− δǫ)).

Proof. Given ‖E‖ = δ(1 − δǫ), then by collorary 2 we have QHT (Q) = O(
√

1
δ(1−(1−δǫ))ǫ) =

O(1
δǫ
).

8.2.4 Quantum Hitting Time Based on MNRS Algorithm

Let U = U2U1 be a unitary matrix with real entries. Let |µ〉 (see Fact 2) be the marked

element where U1 = I − 2|µ〉〈µ| and U2 is a real unitary matrix with a unique 1-eigenvalue

|φ〉. Similar to the classical case, let |φ〉−µ = |φ〉 − 〈φ|µ〉|µ〉.

The potential eigenvalues for U are then ±1 and conjugate complex numbers (eiαj , e−iαj).

Let |φ〉−µ be the input state for the phase estimation of U , then |φ〉−µ can be uniquely

decomposed in the eigenbasis of U as

|φ〉−µ = δ0|ω0〉+
∑

j

δj |ω±
j 〉+ δ−1|ω−1〉 (8.17)

125

where U |ω0〉 = |ω0〉, U |ω−1〉 = −|ω−1〉 and U |ωj〉 = e±iαj |ωj〉. Let QH be the random

variable which takes the value 1/αj with probability δ2j and the value 1/π with probability

δ2−1.

Definition 18. [MNRS09] The quantum |µ〉-hitting time of U2 is the expectation of QH,

that is

QHT (U2, |µ〉) = 2
∑

i

δ2j
αj

+
δ2−1

π
. (8.18)

Hence, in order to compute the quantum hitting time of U2, it is important to compute

the spectral decomposition of U . It is shown in the following theorem.

Theorem 16. [SZE04] Fix an n×n column-wise stochastic matrix P̃ 1, and let {|λ〉} denote

a complete set of orthonormal eigenvectors of the n×n matrix D with entries Djk =
√
P̃jkP̃kj

with eigenvalue {λ}. Then the eigenvalues of the discrete-time quantum walk U = S(2ΠA−I)

corresponding to P̃ are ±1 and λ± i
√
1− λ2 = e±iarccosλ 2.

Let the subset M be the set of marked elements that we are searching for. The discrete-

time quantum walk U−{M} = S(2ΠA−{M}
− I) satisfies the above theorem when we modify

the original transition matrix P into P̃ in the following manner:

P̃jk =





1 k ∈M and j = k

0 k ∈M and j 6= k

Pjk k 6∈M

1P̃ is the modified stochastic matrix of P defined in eq. 8.19
2Eigenvalues of D̃ in eq. 8.20 are exactly the eigenvalues of P̃−{M} and eigenvalue 1

126

We can view P̃ in block structure as follows:

P =




P−{M} P2

P3 P4


 −→ P̃ =




P−{M} 0

P3 I


 , (8.19)

then the corresponding discriminant matrix D̃ is

D̃ =




P−{M} 0

0 I


 . (8.20)

Fact 7. Now let us set M = {x}. Then ±1 and e±iαj are eigenvalues of U−x where λj are

the eigenvalues of P−x. Since λj = cos θj (see sect. 8.2.1), and by use of theorem 16, we

know that θj = αj.

Furthermore, by Fact 2 we know the unitary W (P, x) = U2
−x. The eigenvectors of U−x

remain the eigenvectors of W (P, x) but the eigenvalues of W (P, x) would be e2iαj . Given

|φ〉−µ as the input state, we run phase estimation ofW (P, x) and the corresponding quantum

hitting time would be

QHT (P, x) = 2
n−1∑

j=1

δ2j
2αj

=
n−1∑

j=1

δ2j
θj
, (8.21)

the term
δ2−1

π
in def. 18 disappears because the corresponding eigenphase becomes 0.

8.2.5 Delayed Perturbed Quantum Hitting Time

In this subsection, we define the Delayed Perturbed Quantum Hitting Time (DPQHT) and

its upper bound as the following.

127

Fact 8. [MNRS09] When P is an ergodic Markov transition with positive eigenvalues, then

the x-quantum hitting time for the unitary W (P, x) is

QHT (P, x) =
n−1∑

j=1

ν2j
θj

(8.22)

Proof. Since the length of the projection of |φ〉−u to the eigenspace corresponding to αj is

ν2j [MNRS09], then by eq. 8.21 we have the result as shown in eq. 8.22.

Lemma 12. Given QHT (P, x) and QHT (Q, x) with ‖P − Q‖ = ‖E‖, denote the Delayed

Perturbed Quantum Hitting Time DPQHT (P,Q, x) that

DPQHT (P,Q, x) = QHT (Q, x)−QHT (P, x).

By use of Fact 8, we have DPQHT (P,Q, x) bounded from above by

1√
1− λ1 − ‖E‖2

− 1

2
√
1− λ1 + γ

.

The eigenvalues of P−x are ordered such that 1 > λ1 ≥ λ2 ≥ . . . ≥ λn−1 > 0 and λ1−λn−1 =

γ.

Proof. Based on Fact 8, we have

DPQHT (P,Q, x) = QHT (Q, x)−QHT (P, x)

=
∑

i∈Ω

(ν̃2i
θ̃i

− ν2i
θi

)

≤
(∑

i∈Ω

ν̃2i
cos−1 λ̃1

)
−
(∑

i∈Ω

ν2i
cos−1 λn−1

)

≤ 1√
1− λ1 − ‖E‖

− 1

2
√
1− λ1 + γ

. (8.23)

128

The last inequality is a simple result from Fact 5 and the fact that 2
√
1− λ > cos−1 λ >

√
1− λ for all λ ∈ (0, 1).

8.3 Sample Perturbation

In this section we adapt the results from the work [CM01] to bound the stationary dis-

tribution π(Q) of a perturbed matrix Q with respect to the perturbation E and the true

stationary distribution π(P), i.e.,

Q · π(Q) = π(Q), P · π(P) = π(P). (8.24)

Let Ω be the state space and Ω′ = Ω ∪ {0}. The total variation distance between two

probability distributions over Ω is defined as

D(π(P), π(Q)) =
1

2

∑

x∈Ω
‖π(P)x − π(Q)x‖1 = max

S⊆Ω′
|π(P)S − π(Q)S|. (8.25)

Here π(P) denotes the stationary distribution of matrix P , π(P)x is the xth element of π(P)

and π(P)S denotes the sum of π(P)x where x ∈ S, i.e.,
∑

x∈S π(P)x = π(P)S.

In [CM01] it is assumed that the transition matrix is row-wise stochastic. Our matrix is

column-wise stochastic (see Eq. 8.24) but since it is symmetric, it is also row-stochastic.

By choosing condition number κ5 in [CM01], the ergodicity coefficient, using the lp norm, is

defined as

τp(P) = sup
‖v‖p=1,vT e=0

‖vTP‖p (8.26)

129

where e is a column vector of all ones. Since P is a stochastic matrix, the ergodic coefficient

satisfies 0 ≤ τ1(P) ≤ 1. In case of τ1(P) < 1, we have a perturbation bound in terms of the

ergodic coefficient of P :

D(π(P), π(Q)) =
1

2
‖π(P)− π(Q)‖1 ≤

1

2(1− (τ1(P)))
‖E‖∞. (8.27)

While there are several methods that make use of Szegedy’s quantum walk operators

to prepare quantum samples [WA08, SBB07, SBBK08], we choose [WA08] as the main ap-

proach to analyze as it leads to an overall speed-up in the general case. The other approaches

[SBB07, SBBK08] take advantage of the quantum Zeno effect but the problem is that the

quantum Zeno effect would result in an exponential slow-down in the general case.

The work by Wocjan and Abeyesinghe [WA08] showed an approach to prepare the co-

herent stationary distribution of a Markov Chain via a modified quantum walk and Grover’s

π
3
-amplitude amplification techniques. The theorem listed below is the main theorem in

Speed-up via Quantum Sampling. We refer the interested readers to [WA08] for details on

this algorithm for the construction techniques and the computational complexity.

Theorem 17 (Speed-up via quantum sampling [WA08]). Let Q0, Q1,, Qr = Q be a

sequence of classical Markov chains with stationary distributions π0, π1, . . . , πr and spectral

gap δ0, . . . , δr. Assume that the stationary distributions of adjacent Markov chains are close

to each other in the sense that |〈πi|πi+1〉|2 ≥ c where c is some constant, for i = 0, . . . , r−1..

Then for any η > 0, there is an efficient quantum sampling algorithm, making it possible to

130

sample according to a probability distribution π̃r that is close to πr with respect to the total

variation distance, i.e., D(π̃r, πr) ≤ η.

Based on the theorem above, we can immediately conclude the following corollary:

Corollary 3. When the coherent quantum sample based on the perturbed Markov chain is

prepared by using techniques of [WA08] with precision η, the total variation distance between

the prepared quantum sample π̃(Q) and the true quantum sample π(P) is less than η +

1
2(1−(τ1P))

‖E‖∞.

Proof. By Theorem 17 we can efficiently construct a quantum sample π̃(Q)r that is η close

to π(Q). Then by triangle inequality we obtain

D(π(P), π̃(Q)) ≤ D(π(P), π(Q)) +D(π(Q) + π̃(Q)) ≤ 1

2(1− (τ1P))
‖E‖∞ + η. (8.28)

8.4 Discussion

By quantizing a perturbed symmetric stochastic n × n matrix Q with noise E, we find an

upper bound for the perturbed quantum hitting time. We also show, in fact 6, the lower

bound for the magnitude of noise when the quadratic speed-up gained from the quantum

walk will be annihilated by the noise.

Furthermore we compute the upper bound for the delayed perturbed quantum hitting

time based on the definition of quantum hitting time. One cannot just directly apply

131

the square root speed-up from quantum walks to the delayed perturbed hitting time (see

eq. 8.11). If one does so, one would obtain an upper bound for DPQHT as

1√
1− λ1 − ‖E‖

− 1√
1− λ1 + γ

. (8.29)

It would be incorrect. The second term of eq. 8.29 should the the minimum of
∑

i∈Ω
ν2i

cos−1 λn−1
.

But in eq. 8.29, the second term was actually the maximum. Thus, it is clear that the upper

bound for DPQHT is actually greater than the difference between the square root of the

upper bound for a perturbed random walk and the square root of the lower bound for a

random walk.

In the meanwhile, we also showed that how the quantum sample prepared by using the

approach in [WA08] would fluctuate from the true quantum sample when perturbation is

present. The analysis is based on the assumption that we have a series of Markov chains

Q1, . . . , Qr = Q. Hence, we have

D(π(P), π̃(Q)) ≤ 1

2(1− (τ1P))
‖E‖∞ + η.

Intuitively from the analysis we can see that the total variation distance forD(π(Q̃), π(Q))

is simply additive and D(π(P), π(Q)) cannot be eliminated. However, if the matrix P = Qi

is inside the sequence Q1, . . . , Qr where 1 < i < r, can we invent a procedure to detect to

avoid such overshoot? Future study is to find the relation between quantum mixing time,

the time it takes to get η-close to the true stationary distribution, and the quantum hitting

time. Furthermore, another possible analysis approach would be to assume that we have a

132

series of Markov chains P1, . . . , Pr = P (without the noise). We can adapt the analysis in

[WA08] to study how the noise would affect (i) accuracy when blindly preparing the quan-

tum sample without acknowledging the existence of noise or (ii) complexity when the noise

is acknowledged and desired accuracy must be achieved.

133

CHAPTER 9
CONCLUSION

As shown in previous chapters, quantum walk is a useful technique that can be used to

solve various problems [AMB04, CCDFGS03, CSV07, MSS05, WCNA09, KMOR10]. For

some oracular problems, quantum walk renders exponential speedups over its classical coun-

terparts [CCDFGS03, CSV07]. For some other problems, such as NAND tree evaluation

problem [FGG08] and the triangle finding problem [MSS05], quantum walk renders polyno-

mial speedup over classical algorithms. In this chapter, we will discuss possible problems for

future study. Some of the problems have been tried quantumly, but there might be space

left for improvement. Some of the problems have been tried out via classical random walk,

but there are no quantum version of them yet. It would be of interest to researchers to

investigate the possible speed-up (exponential, polynomial or none) that quantum walk can

provide for those problems.

9.1 Graph Problems

Problem. Complexity of graph problems: Several graph problems, such as triangle

finding [MSS05] and matching finding in a bipartite graph, remain open in the query model

in terms of their complexity. By Turán’s theorem [Turan41], the n-vertex triangle-free graph

with the maximum number of edges is a complete bipartite graph that the numbers of vertices

on each side of the bipartition are as equal as possible. Hence, could there an improvement

134

on the query complexity O(N1.3) of the triangle algorithm [MSS05] to determine if a graph

is triangle-free? Furthermore, would it be possible to have a quantum algorithm that uses

only N2 queries for finding a matching in a bipartite graph G with N vertices on each side,

specified by N2 variables?

9.2 The Ising Model

As classical random walk also deals with many problems related to the Ising model, we would

also like to explore the possible advantage of applying quantum walk to those problems. But

before we go further, let us review this model.

The Ising model on a graph with vertex set V at inverse temperature β (see section 6.1).

A spin system is a probability distribution on Ω = {−1, 1}V , where V is the vertex set of a

graph G = (V,E). Let v be an arbitrary node in graph G, i.e. v ∈ V . The value σ(v) is the

spin at v, which can be 1 or -1. σ is the configuration that specifies the values of the nodes.

The nearest-neighbor Ising model defines the energy of a configuration that

E(σ) = −
∑

v,w∈V,vsimw
σ(v)σ(w). (9.1)

The probability distribution at inverse temperature β is thus

π(σ) =
e−βE(σ)

Z(β)
. (9.2)

Problem. Positive boundary conditions[LPW09]: Given the Ising model on the n× n

grid with the boundary forced to have all positive spins, it remains open for classical algo-

135

rithms to show the mixing time is at most polynomial in n at any temperature. Classically,

an upper bound on the relaxation time of en
1

2+ǫ
was obtained by Martinelli. Could we devise a

corresponding quantum walk that has at least a polynomial speedup in terms of the relaxation

time?

Problem. Ising on transitive graphs[LPW09]: For the Ising model on transitive graphs,

it remains open to show the relaxation time is of order n if and only if the mixing time is

of order n log n. It is known to be true for the two-dimensional torus. Will the quantum

algorithm hold a similar relation to the classical one, i.e. n and n log n, or will the quantum

speedup break the relation?

9.3 Black-box Hamiltonian Simulation and Unitary

Implementation

Simulation of Hamiltonian dynamics is one major application of quantum computation. By

the 2nd Postulate [NC00] of quantum mechanics, we know that the evolution of the state of

a closed quantum system is described by the Shrödinger equation

i~
d|ψ〉
dt

= H|ψ〉 (9.3)

where ~ is the Planck’s constant and H is a fixed Hermitian operator known as Hamiltonian

of the closed quantum system. Hence, Hamiltonian simulation is the basis for simulating

quantum systems.

136

A general approach [BC11] was considered to simulate Hamiltonian by using quantum

walks. The complexity of their approach scales linearly with respect to the sparseness D

and the evolution time t while other methods scales as D4 and superlinearly in t. The

corresponding N ×N unitary U , based on the Hamiltonian H , thus can be implemented by

using O(N
2
3 (log logN)

3
4) queries to the matrix elements, instead of N2.

Could there be an improvement on the query complexity of the unitary U implemen-

tation? Furthermore, can we simplify this proposed Hamiltonian simulation algorithm to

reach a tighter upper bound for the query complexity?

9.4 Perturbation Theory

Problem. Perturbed quantization: In our research, we discussed the effect of a given

perturbed classical Markov transition matrix on the quantum hitting time. This is under the

assumption that the quantization process itself is noise-free. In practice, it is more likely that

noise will also occur during the quantization process. If we have a higher degree of freedom

such that the quantization is allowed to have error Eq, what would the effect on the quantum

hitting time be? Will the DPQHT (delayed perturbed quantum hitting time) be a simple

additive result such that

DPQHT =
1√

1− λ1 − ‖E‖2 − ‖Eq‖2
− 1

2
√
1− λ1 + γ

(9.4)

137

(see lemma 12 at section 8.2.5 for details)? Or will the DPQHT have a much longer delayed

time?

138

APPENDIX A
QUANTUM WALK UPDATE

139

A.1 Quantum Walks from Classical Markov Chains

The class of classical approximation schemes that we speed up uses reversible, ergodic Markov

chains Pi with stationary distributions πi. Here we briefly review the quantum analogue of

a Markov chain, describing the quantum walk operator W corresponding to the classical

Markov Chain P .

In each step of a Markov chain P with state space Ω, the probability of a state x to

transition to another state y is given by the element pxy of the D × D transition matrix,

where D = |Ω|. Following Szegedy [SZE04], for each such Markov Chain, we can define its

quantum analogue. The Hilbert space on which this quantum operation acts is CD ⊗ CD,

with two CD registers. We start by defining the states

|px〉 =
∑

y∈Ω

√
pxy |y〉 . (A.1)

These states can be generated by a quantum update – any unitary U that satisfies

U |x〉 |0〉 = |x〉 |px〉 (A.2)

for some fixed state 0 ∈ Ω and all x ∈ Ω. The quantum analogue of a Markov chain is then

defined as follows.

Definition 19 (Quantum Walk). A quantum walk W (P) based on a classical reversible

Markov chain P is a unitary operation acting on the space CD ⊗ CD as

W (P) = RB · RA, (A.3)

140

where RB and RA are reflections about the spaces

A = span{|x〉 |0〉 : x ∈ Ω}, (A.4)

B = U †SUA, (A.5)

and S is a swap of the two registers.

This particular definition of the quantum walk is suitable for making some of the proofs

in [WA08] easier. It is equivalent to the standard definition of Szegedy [SZE04] up to

conjugation by U . Therefore, the spectral properties of our W and Szegedy’s quantum

walk are the same.

Let δ be the spectral gap of the classical Markov chain P . Let us write its eigenvalues as

µ0 = 1 and µj = cos(θj), for j = 1, . . . , D−1 and θj ∈
(
0, π

2

)
. According to Szegedy [SZE04],

on the space A+B, the eigenvalues of the quantum walkW (P) with nonzero imaginary part

are e±2iθj . The phase gap of the quantum walk W (P) is then defined as ∆ = 2θ1 (with θ1

the smallest of θj). When the Markov chain is ergodic and reversible, Szegedy proved that

∆ ≥ 2
√
δ, (A.6)

a quadratic relation between the phase gap ∆ of the quantum walk W (P) and the spectral

gap δ of the classical Markov chain P . This quadratic relation is behind the speed-up of

many of today’s quantum walk algorithms.

141

APPENDIX B
IMPLEMENTATION OF QUANTUM WALK

142

B.1 Additional Details for the Efficient Quantum Update Circuit

In this Appendix, we spell out additional details for our Quantum Update circuit as well as

draw the circuit out for a d = 4.

The state space of the classical Markov chain P is E , with |E| = 2m. The entries of P

are pxy, the transition probabilities from state x to state y. We assume that P is sparse, i.e.

that for each x ∈ E there are at most d neighbors yxi such that pxyxi > 0, and their number

is small, i.e. d ≪ 2m. Since d is a constant, we can assume without loss of generality that

d = 2r. We want to implement the quantum (5.3), where |x〉 ∈ C2m.

B.2 Preparation

Classically, our knowledge of P can be encoded into efficient reversible circuits outputting

the neighbors and transition probabilities for the point x. We will use quantum versions

N and T of these circuits, with the following properties. The neighbor circuit N acts on d

copies of C|E| and produces a list of neighbors of x as

N |x〉L |0〉
⊗d = |x〉L ⊗ |yx0 〉 · · ·

∣∣yxd−1

〉
. (B.1)

All the transition probabilities pxyxi are given with t-bit precision. The transition probability

circuit T acts on a register holding a state |x〉 and d copies of (C2)
⊗t
, producing a list of

143

|00〉flg

SC

• |φ〉flg

|c〉

θ

|c〉

|b〉 |b〉

|0〉 |θ〉

Figure B.1: The Determine Angle Circuit DAC

transition probabilities for neighbors of |x〉 as

T |x〉L |0〉
⊗d = |x〉L ⊗ |pxyx0 〉 · · · |pxyxd−1

〉. (B.2)

To simplify the notation, let us label qi = pxyx
i
. We now prepare all the terms q

(k)
i , filling

the tree in Figure (5.1). Starting from q
(log d)
i = qi, we use an adding circuit (ADD) doing

the operation q
(k−1)
i = q

(k)
2i + q

(k)
2i+1. The probability distribution {qi} is efficiently integrable,

so filling the tree of q
(k)
i is easy, and we can use Grover and Rudolph’s method [GR02] of

preparing quantum samples for such probability distributions.

B.3 Determining the Rotation Angles

After the preparation described in the previous Section, we need to compute the appropriate

rotation angles θ̃
(k)
i for Grover and Rudolph’s method. For this, we use the Determine Angle

144

|0〉

EQ

|0〉

|0〉flg1
|φ1〉flg1

|c〉

EQ

|c〉

|0〉flg2
|φ2〉flg2

|b〉 |b〉

Figure B.2: The Circuit SC Handling Special Cases

Circuit (DAC). This circuit produces

θ
(k)
i = cos−1

√√√√ q
(k)
2i

q
(k−1)
i

, (B.3)

while also handling the special cases q
(k)
2i = q

(k−1)
i and q

(k−1)
i = 0. For simplicity, let us label

b = q
(k−1)
i , c = q

(k)
2i . The DAC circuit first checks the special cases, and then, conditioned

on the state of the two two flag qubits, computes (B.3). We draw it in Figure B.1, with

the special case-analysing circuit SC given in Figure B.2. Here EQ is a subroutine testing

whether two qubits (in computational basis states) are the same. The first EQ tests the

states |0〉 and |c〉, while the second EQ runs the test on |c〉 and |b〉. We have the following

four scenarios depending on the flag qubits

00 the circuit θ computes normally ,

01, 11 the circuit θ does nothing (keeps angle = 0, as b = c) ,

10 the circuit θ outputs θ = π/2, as c = 0.

(B.4)

145

The third option corresponds to c = 0, when all the probability in the next layer of the

tree is concentrated in the right branch. We then simply flip the superposition qubit, using

θ = π
2
.

B.4 Creating Superpositions and Mapping

After the angle is determined, we apply the corresponding rotation to the appropriate qubit

in the superposition register S, as described in Section 5.4. We then uncompute the rotation

angle.

Once the final superposition is created in S, we invoke a mapping circuit M . This M

acts on the register holding the names of the d neighbors of x, the superposition register,

and the output register R. It takes yxj , the name of the j-th neighbor of x, and puts it into

the output register as

M |0〉R ⊗ |yx0 〉 ⊗ . . .⊗ |yxd−1〉 ⊗ |j〉S = |yxj 〉R ⊗ |yx0 〉 ⊗ . . .⊗ |yxd−1〉 ⊗ |j〉S. (B.5)

We can do this, because the names of the states in E are given as computational basis states.

The next step is to uncompute the label j in the last register with a cleaning circuit C as

C|yxi 〉R ⊗ |yx0〉 ⊗ . . .⊗ |yxd−1〉 ⊗ |j〉 =





|yxi 〉R ⊗ |yx0 〉 ⊗ . . .⊗ |yxd−1〉 ⊗ |j〉 if i 6= j

|yxi 〉R ⊗ |yx0 〉 ⊗ . . .⊗ |yxd−1〉 ⊗ |0〉 if i = j.

(B.6)

These two steps transferred the superposition from the register S (with r = log d qubits),

into the output register R (which has m qubits). The final step of our procedure is to

uncompute (clean up) the lists of neighbors and transition probabilities.

146

Table B.1: Required Numbers of Qubits

Register Type Required number of qubits

x (register L) m

y (register R) m

yxi (neighbor list) d×m

qi’s (probabilities) (2d− 2)× t

flag qubits 2

θ (rotation angle) n = 3t
2
+ Ω(1)

ancillae for computing θ aθ = poly(n) = poly(t)

superposition register S r = log d

B.5 The Required Resources

Let us count the number of qubits and operations required for our quantum update rule

U based on a d-sparse stochastic transition matrix P . The number of ancillae required is

Ω(dm + dt), where 2m is the size of the state space and t is the required precision of the

transition probabilities. Moreover, the required number of operations scales like Ω(d rmaθ),

where r = log d and aθ is the number of operations required to compute the angle θ with

n = Ω(t)-bit precision. Finally, when we have t-bit precision of the final amplitudes, the

precision of the unitary we applied is

∥∥∥
(
U − Ũ

)
|x〉 ⊗ |0〉

∥∥∥ ≤ ǫ, (B.7)

147

for any x ∈ E when t = Ω
(
log d+ log 1

ǫ

)
. The total number of operations in our circuit thus

scales like

Ω

(
md poly (log d) +md (log d) poly

(
log

1

ǫ

))
. (B.8)

Besides the registers for the input |x〉L and output |0〉R, we need d registers (with m

qubits) to hold the names of the neighbors of x, and 2d− 2 registers (with t qubits) to store

the transition probabilities qi. The DAC circuit requires two extra flag qubits and a register

with n = 3t
2
+Ω(1) qubits to store the angle θ. Computing the angle θ requires a circuit with

poly(n) qubits. Finally, the superposition register S holds r qubits. These requirements are

summed in Table B.1.

To conclude, we draw out the superposition-creating part of the quantum update for

d = 4 in Figure B.3. The first two lines represent the superposition register S, in which we

prepare

|ϕ〉 =

√
q
(2)
0 |00〉+

√
q
(2)
1 |01〉+

√
q
(2)
2 |10〉+

√
q
(2)
3 |11〉 =

3∑

i=0

√
qi |i〉 . (B.9)

B.6 Approximating the Permanent

In this Appendix we present a particular example of a quantum algorithm with a polyno-

mial speedup over its classical counterpart, requiring our efficient approach to implementing

quantum walks. The example is a rather näıve quantization of the classical algorithm for

approximating the permanent of a matrix

per(A) =
∑

σ

n∏

i=1

ai,σ(i), (B.10)

148

Figure B.3: Creating the Superposition for d = 4

where σ runs all over the permutations of [1, . . . , n]. For a 0/1 matrix A, the perma-

nent of A is exactly the number of perfect matchings in the bipartite graph with bipar-

tite adjacency matrix A. A classical FPRAS (fully polynomial randomized approximation

scheme) [BSVV08] for this task involves taking O∗ (n7) steps of a Markov chain (here O∗

means up to logarithmic factors). It produces an approximation to the permanent within

[(1− η) per(A), (1 + η) per(A)] by using

1. ℓ = O∗(n) stages of simulated annealing,

2. at each stage, generating S = O∗ (n2) samples from a particular Markov chain,

3. T = O∗ (n4) Markov chain invocations to generate a sample from its approximate

steady state.

The failure probability of each stage is set to η̂ = o (1/m4) so that η = ℓη̂ is small. Hence,

the total complexity (number of Markov chain steps used) is ℓST = O∗ (n7).

149

The sparsity parameter d of the Markov chains involved scales with the problem size m.

Therefore, the dependence of the implementation of the corresponding quantum walk on d

becomes significant. Furthermore, because of the many stages of simulated annealing and

sampling, the error ǫ in implementation of each quantum walk operator needs to smaller

than one over the number of quantum walk steps involved.

The simplest quantized algorithm uses a quantum walk instead of the Markov Chain, and

requires O∗ (n5) steps of a quantum walk, as the mixing of the quantum walk requires only

√
T = O∗ (n2) steps. However, it is important to choose an efficient circuit to implement

each step of the quantum walk. A bad choice could destroy the speedup.

Let us compare what happens when this algorithms utilizes the different methods for

quantum walk implementation as subroutines, counting the number of required elementary

gates. Note that in this counting, all of the methods (classical and quantum) we will mention

share a common factor m (the log of the state space size). However, the scaling in d (the

sparsity parameter) and 1
ǫ
(precision) is what distinguishes them.

Let us look at the alternative approaches given in Section 5.2, and show that the small

n2 polynomial speedup is lost. The first two of these approaches scale with 1
ǫ
. This brings

an extra 1
ǫ
∝

√
T ∝ n2 factor to the complexity of the algorithm, destroying the speedup.

The third alternative uses O∗ (d2) elementary gates, adding an extra factor of d2 = n2,

again destroying the speedup. On the other hand, our method uses only O∗ (d) = n gates

(the scaling coming from precision requirements only adds logarithmic factors), and we thus

retain some of the quantum advantage.

150

This example was just an illustration of a scenario, where our efficient implementation

of a quantum walk (see Section 5.3) is necessary. However, we see its use in a future much

better quantum algorithm for approximating the permanent, using not only quantum walks,

but also quantizing the sampling/counting subroutine as in [WCNA09].

151

APPENDIX C
GLOSSARY OF NOTATIONS

152

Nomenclature

α0, α1, . . . Complex numbers: αj = Real(αj) + Img(αj)

α∗
0, α

∗
1, . . . Complex conjugates:: α∗

j = Real(αj) - Img(αj)

Cn n-dimensional vector space over the filed of complex numbers.

Hn n-dimensional Hilbert space.

δij Kronecker’s delta function

E[X] The expected value of the random variable X (discrete case):

E[X] =
∑n

i=1 xiPX(xi)

I, σx, σy, σz The identity and the Pauli matrices:

I ≡




1 0

0 1


 ; σx ≡




0 1

1 0


 ; σy ≡




0 −i

i 0


 ; σz ≡




1 0

0 −1




In The n× n identity matrix

R The field of real numbers

a ∈ Ω Element a in (belongs to) set Ω

AT Transpose of matrix Amn

153

A† Complex conjugation of matrix Amn. For instance, if

A =




α1

α2

α3



, then A† =

(
α∗
1 α∗

2 α∗
3

)

CNOT The controlled-NOT gate, its matrix representation is

CNOT =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




e = 2.718 . . . Euler’s number

eiα Euler’s formula: eiα = cosα + i sinα

H Hadamard gate or Hamiltonian for a quantum system

h Planck’s constant: h = 6.6262× Js

H, S, T The Hadamard (H), phase (S), and π/8 (T) matrices for one qubit gates:

H ≡ 1√
2




1 1

1 −1


 ; S ≡




1 0

0 i


 ; T ≡




1 0

0 exp(iπ/8)




HT (P, x) The expected number of transition matrix P invocations to reach the state x

when started in the initial distribution π

i =
√
−1 Imaginary number. Square root of -1.

PX(xi) The probability of obtaining xi for random variable X

154

V ar[X] The variance of the random variable X (discrete case):

V ar[X] =
∑n

i=1(xi − E[X])2PX(xi)

W (P) Quantum Walk operator based on a classical transition matrix P

FPRAS Fully Polynomial Randomized Approximation Scheme

155

LIST OF REFERENCES

[AAKV01] D. Aharonov, A. Ambainis, J. Kempe, and U. Vazirani, Quantum Walks on
Graph, Proceedings of ACM Symposium on Theory of Computing (STOC), pp. 50 - 59,
New York, NY, 2001

[AC08] A. Childs, On the Relationship between Continuous- and Discrete-time Quantum
Walk, Communications in Mathematical Physics, 2009

[AC09] A. Childs, Personal Communication, March 2009

[AC781] A. Childs, Lecture Notes on Quantum Algorithms,
http://www.math.uwaterloo.ca/ amchilds/teaching/w08/co781.html

[ACRSZ07] A. Ambainis, A. Childs, B. Reichardt, R. Špalek and S. Zhang, Any AND-OR
Formula of Size N Can Be Evaluated in Time N1/2+o(1) on A Quantum Computer, Proc
of 48th FOCS, pp. 363-372, 2007

[AKR05] A. Ambainis, J. Kempe and A. Rivosh, Coins Make Quantum Walks Faster, Pro-
ceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 1099 - 1108, 2005

[AMB04a] A. Ambainis , Search via Quantum Walk, ACM SIGACT News, Vol. 35 (2), 22,
2004

[AMB04] A. Ambainis, Quantum Walk Algorithm for Element Distinctness, Proceedings of
the 45th Annual IEEE Symposium on Foundations of Computer Science, pp. 22–31,
2004

[AT03] D. Aharonov and A. Ta-Shma, Adiabatic Quantum State Generation and Statistical
Zero Knowledge, Proc. of the 35th annual ACM symposium on Theory, pp. 20–29, 2003

[BACS07] D. Berry, G. Ahokas, R. Cleve and B. Sanders, Efficient Quantum Algorithms for
Simulating Sparse Hamiltonians, Communications in Mathematical Physics, vol. 270,
pp. 359–371, 2007

[BBCMW01] R. Beals, H. Buhrman, R. Cleve, M. Mosca, R. Wolf, Quantum lower bounds
by Polynomials, Journal of the ACM,, vol. 48, issue 4, pp. 778–797, 2001

[BBH96] M. Boyer, G. Brassard, P. Hoyer and Alain Tapp, Tight Bounds on Quantum
Searching, Fortschritte Der Physik, vol. 46(4-5), pp. 493 – 505, 1998

[BC11] D. Berry and A. Child, Black-box Hamiltonian Simulation and Unitary Implemen-
tation, eprint: arXiv:0910.4157v3

[BEST96] A. Barenco, A. Ekert, K. Suominen and P. Törmä, Approximate Quantum Fourier
Transform and Decoherence, vol. 54, issue 1, pp. 139 - 146, Phys. Rev. A, 1996

156

[BF60] F. Bauer and C. Fike, Norms and Exclusion Theorems, Numer. Math., vol. 2, pp. 137
- 141, 1960

[BKVPY81] M. Blum, R. Karp, O. Vornberger, C. Papadimitriou and M. Yannakakis, The
Complexity of Testing whether a Graph is a SuperConcentrator, Information Processing
Letters, vol. 13, No. 4,5, pp. 164–167, 1981

[BHA97] R. Bhatia, Matrix Analysis, Springer Verlag, New York, 1997

[BHT98] G. Brassard, P. Høyer, and A. Tapp, Quantum Counting, Proc. of 25th Inter-
national Colloquium on Automata, Languages and Programming, Lecture Notes in
Computer Science, vol. 1443, pp. 820–831, 1998

[BS08] S. Beigi and P. Shor, On the Complexity of Computing Zero-Error and Holevo Ca-
pacity of Quantum Channels, arXiv:abs/0709.2090

[BSSV06] I. Bezáková, A. Sinclair, D. Štefankovič and E. Vigoda, Negative Examples for
Sequential Importance Sampling of Binary Contingency Tables, Proc. of Algorithms –
ESA 2006, Lecture Notes in Computer Science,Springer Berlin/Heidelberg, vol. 4168,
pp. 0302-9743, 2006

[BSVV08] I. Bezáková, D. Štefankovič, V. Vazirani and E. Vigoda, Accelerating Simulated
Annealing for the Permanent and Combinatorial Counting Problems, SIAM Journal on
Computing, vol. 37, no. 5, pp. 1429–1454, 2008

[BT98] B. Boghosian and W. Taylor, Simulating Quantum Mechanics on a Quantum Com-
puter, Physica D, vol. 120, pp. 30 – 42, 1998

[CCDFGS03] A. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. Spielman,
Exponential Algorithmic Seedup by Quantum Walk, Proc. 35th ACM Symposium on
Theory of Computing, pp. 59–68, 2003

[CHE04] Donny Cheung, Improved Bounds for the Approximate QFT, arXiv: abs/quant-
ph/0403071, 2004

[CHI10] C. Chiang, Sensitivity of Quantum Walks with Perturbation, Proc. of the 10th Asian
Conference on Quantum Information Science, pp. 209-210, 2010

[CEMM98] R. Cleve, A. Ekert, C. Macchiavello and M. Mosca, Quantum Algorithms Revis-
ited, Proc. Royal Society A, vol. 454, no. 1969, pp. 339-354, 1998

[CER85] V. Černý, A thermodynamical Approach to the Traveling Salesman Problem: An Ef-
ficient Simulation Algorithm, Journal of Optimization Theory and Applications, vol. 45
, pp. 41–51, 1985

[CM01] G. Cho and C. Meyer, Comparison of Perturbation Bounds for the Stationary Dis-
tribution of a Markov Chain, Linear Algebra and Its Applications, vol. 335, issue 1-3,
pp. 137 - 150, 2001

157

[CNW10] C.-F. Chiang, D. Nagaj, P. Wocjan, Efficient Circuits for the Quantum Walks,
QIC vol. 10 no. 5&6 pp. 0420–0434, 2010

[CSV07] A. Childs, L. Schulman, and U. Vazirani, Quantum Algorithms for Hidden Non-
linear Structures, Proc. 48th IEEE Symposium on Foundations of Computer Science,
pp. 395–404, 2007

[CW00] R. Cleve and J. Watrous, Fast Parallel Circuits for the Quantum Fourier Transform,
IIII Symposium on Foundations of Computer Science, pp. 526 - 536, 2000

[CW10] C. Chiang and P. Wocjan, Quantum Algorithm for Preparing Thermal Gibbs States
- Detailed Analysis, NATO Science for Peace and Security Series - D: Information and
Communication Security, vol.26, pp. 138-147, 2010

[DFK91] M. Dyer, A. Frieze, and R. Kannan, A Random Polynomial-Time Algorithm for
Approximating the Body Volume of Convex Bodies, Journal of the ACM, vol. 38, no. 1,
pp. 1–17, 1991

[DLM92] P. Dagum, M. Luby, M. Mihail, Polytopes, Permanents and Graphs with Large
Factors, Theoretical Computer Science, vol. 102, issue 2, pp. 283–305, 1992

[EI99] S. Eisenstat and I. Ipsen, Three Absolute Perturbation Bounds for Matrix Eigenvalues
Imply Relative Bounds, SIAM Journal on Matrix Analysis and Applications, vol. 20 ,
issue 1, pp. 149 - 158, 1999

[FG98] E. Farhi, S. Gutmann, Quantum Computation and Decision Trees, Phys. Rev. A,
vol: 58 pp. 915-928, 1998

[FG99] C. Fuchs and J. Graaf, Cryptographic Distinguishability Measures for Quantum Me-
chanical States, IEEE Transactions on Information Theory, vol. 45, issue 4, pp. 1216–
1227, 1999

[FGG08] E. Farhi, S. Gutmann and S. Gutmann, A Quantum Algorithm for the Hamiltonian
NAND Tree, Theory of Computing, vol. 4, pp. 169–190, 2008

[GL96] G. Golub and C. Loan, Matrix Computations, 3rd ed., The Johns Hopkins University
Press, 1996

[GN96] R. Griffiths and C. Niu, Semiclassical Fourier Transform for Quantum Computation,
Physical Review Letters, vol. 76, no. 17, 1996

[GOL08] O. Goldreich, Computational Complexity. A Conceptional Perspective, Cambridge
University Press, 2008

[GOL10] O. Goldreich, P, NP, and NP-Completeness. The Basics of Computational Com-
plexity, Cambridge University Press, 2010

158

[GRO96] L. K. Grover A Fast Quantum Mechanical Algorithm for Database Search, Pro-
ceedings of the 28th Annual ACM Symposium on the Theory of Computing (STOC),
pp. 212 - 219, 1996

[GRO00] L. Grover, Rapid Sampling through Quantum Computing, Proc of the 32nd annual
ACM symposium on Theory of Computing, pp. 618–626, 2000

[GRO05] L. K. Grover A Different Kind of Quantum Search, arXiv:abs/quant-ph/0503205,
2005

[GR02] L. Grover, T. Rudolph, Creating Superpositions that Correspond to Efficiently Inte-
grable Probability Distributions, arXiv:abs/quant-ph/0208112, 2002.

[GS97] Ch. M. Grinstead, J. L. Snell, Introduction to Probability, American Mathematical
Society, 1997

[HAL35] P. Hall, On Representation of Subsets, Journal of the London Mathematical Society,
vol. 10 , pp. 26-30, 1935

[HAL02] S. Hallgren, Polynomial-time Quantum Algorithms for Pell’s Equation and the
Principal Ideal Problem. In Proceedings of the 34th ACM Symposium on Theory of
Computing, 2002

[HOY05] P. Hoyer, The phase matrix, Proc. of 16th International Symposium on Algorithms
and Computation, Lecture Notes on Computer Science, vol. 3827, pp. 308-317, 2005

[HS98] J. W. Harris and H. Stocker, Maximum Likelihood Method. Handbook of Mathematics
and Computational Science. New York, Springer-Verlag, pp. 824, 1998

[IN09] I. Ipsen and B. Nadler, Refined Perturbation Bounds for Eigenvalues of Hermitian
and Non-Hermitian Matrices, SIAM J. Matrix Anal. Appl., vol. 31, no. 1, pp. 40–53,
2009

[JER03] M. Jerrum, Counting, Sampling and Integrating: Algorithms and Complexity, Lec-
tures in Mathematics, Birkhäuser, 2003

[JOH01] I. Johnstone, On the Distribution of the Largest Eigenvalue in Principal Compo-
nents Analysis, Annals of Statistics, vol. 29, no. 2, pp. 295 - 327, 2001

[JS89] M. Jerrum and A. Sinclair, Approximating the Permanent, SIAM Journal on Com-
puting, vol. 18, pp. 1149–1178, 1989

[JS93] M. Jerrum and A. Sinclair, Polynomial-Time Approximation Algorithms for the Ising
Model, SIAM Journal on Computing, vol. 22, pp. 1087–1116, 1993.

[JSV04] M. Jerrum, A. Sinclair, and E. Vigoda, A Polynomial-Time Approximation Algo-
rithm for the Permanent of a Matrix Non-Negative Entries, Journal of the ACM, vol. 51,
issue 4, pp. 671–697, 2004

159

[JVV86] M. Jerrum, L. Valiant and V. Vazirani, Random Generation of Combinatorial
Structures from a Uniform Distribution, Theoretical Computer Science, vol. 43, issue
2-3, pp. 169–188, 1986

[JW09] S. Jordan, P. Wocjan, Efficient Quantum Circuits for Arbitrary Sparse Unitaries ,
arXiv:abs/0904.2211, 2009

[KEM03] J. Kempe, Quantum Random Walk Algorithms, Contemp. Phys., vol. 44, pp. 302-
327, 2003

[KGV83] S. Kirkpatrick, C. Gelatt and M. Vecchi, Optimization by Simulated Annealing,
Science, New Series, vol. 220, No.4598, pp. 671 - 680, 1983

[KIT95] A. Kitaev, Quantum Measurements and the Abelian Stabilizer Problem. Technical
Report, arXiv:quant-ph/9511026, 1995

[KLM07] P. Kaye, R. Laflamme and M. Mosca, An Introduction to Quantum Computing,
Oxford University Press, 2007

[KMOR10] H. Krovi, F. Magniez, M. Ozols, and J. Roland, Finding is as Easy as Detecting
for Quantum Walks. In 37th International Colloquium on Automata, Languages and
Programming (ICALP’10), Lecture Notes in Computer Science, Springer, vol. 6198,
pp. 540-551, 2010

[KSV02] A. Kitaev, A. Shen and M. Vyalyi, Classical and Quantum Computation, Graduate
Studies in Mathematics, American Mathematical Society, vol. 47, 2002

[LLO96] S. Lloyd, Universal Quantum Simulators, Science, vol. 273. no. 5278, pp. 1073 -
1078, 1996

[LPW09] D. Levin, Y. Peres and E. Wilmer, Markov Chains and Mixing Times, American
Mathematical Society, 2008

[LV06] L. Lovász and S. Vempala, Simulated Annealing in Convex Bodies and an O∗(n4)
Volume Algorithm, Journal of Computer and System Sciences, vol. 72, issue 2, pp.
392–417, 2006

[ME99] M. Mosca and A. Ekert, The Hidden Subgroup Problem and Eigenvalue Estimation
on a Quantum computer, arXiv: abs/quant-ph/9903071, 1999

[MRRTT53] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, Equation of
State Calculations by Fast Computing Machines, J. Chem. Phys., vol. 21, pp. 1087–1092,
1953

[MNRS07] F. Magniez, A. Nayak, J. Roland, and M. Santha, Search via Quantum Walk,
Proc. of the 39th Annual ACM Symposium on Theory of Computing, pp. 575–584, 2007

160

[MNRS09] F. Magniez, A. Nayak, P. Richter and M. Santha, On the Hitting Times of Quan-
tum versus Random Walks, Proc. of the twentieth annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 86 - 95, 2009

[MR95] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press,
1995

[MSS05] F. Magniez, M. Santha, M. Szegedy, Quantum Algorithms for the Triangle Problem,
Proc. of the 16th ACM-SIAM symposium on Discrete algorithms, 1109, 2005

[MU05] M. Mitzenmacher and E. Upfal, Probability and Computing – Randomized Algo-
rithms and Probabilistic Analysis, Cambridge University Press, 2005

[NC00] M. Nielsen and I. Chuang, Quantum Computation and Quantum Information, Cam-
bridge University Press, 2000

[NWZ09] D. Nagaj, P. Wocjan, Y. Zhang, Fast QMA Amplification, QIC vol. 9 no. 11&12
pp. 1053–1068, 2009

[PAR98] B. Parlett, The Symmetric Eigenvalue Problems, SIAM, Philadelphia, 1998

[PW09] D. Poulin and P. Wocjan, Thermalizing Quantum Systems and Evaluating Partition
Functions with a Quantum Computer, Physical Review Letter, vol. 103, pp. 220502, 2009

[RIC07] P. Richter, Almost Uniform Sampling via Quantum Walks, New Journal of Physics,
vol. 9, article 72, 2007

[RIC07a] P. Richter, Quantum Speed-Up of Classical Mixing Processes, Physical Review A,
vol. 76, 042306, 2007

[RS08] B. W. Reichardt, R. Špalek, Span-program-based quantum algorithm for evaluating
formulas, Proceedings of the 40th STOC, 103, 2008

[RZBB94] M. Reck, A. Zeilinger, H. Bernstein, P. Bertani, Experimental Realization of
Any Discrete Unitary Operator, Phys. Rev. Lett. vol. 73, no. 58, 1994

[SAN08] M. Santha, Quantum Walk Based Search Algorithms, Proc. of 5th Theory and Ap-
plications of Models of Computation (TAMC08), Lectures Notes on Computer Science,
vol. 4978, pp. 31–46, 2008

[SBB07] R. Somma, S. Boixo, and H. Barnum, Quantum Simulated Annealing,
arXiv:abs/0712.2008

[SBBK08] R. Somma, S. Boixo, H. Barnum, E. Knill, Quantum Simulations of Classical
Annealing Processes, Phys. Rev. Lett. vol. 101, pp. 130504, 2008

[SHO94] P. Shor, Algorithms for Quantum Computation: Discrete Logarithms and Factor-
ing. Proceedings of FOCS, pp. 124 - 134, 1994.

161

[SHO05] P. Shor, Polynomial-time Algorithms for Prime Factorization and Discrete Loga-
rithms on a Quantum Computer, SIAM Journal on Computing, 26(5):1484-1509, 2005

[SIN92] A. Sinclair, Algorithms for Generation & Counting – A Markov Chain Approach,
Birkhäuser, 1992

[SIP05] M. Sipser, Introduction to the Theory of Computation, PWS Publishing Company,
2005

[SIV96] D. Sivia, Data Analysis, a Bayesian Tutorial, Oxford University Press, 1996

[SUZ88] M. Suzuki, Quantum Monte Carlo Methods in Equilibrium and Nonequilibrium Sys-
tems Springer Series in Solid-State Science, vol. 74 1988

[SVV07] D. Štefankovič, S. Vempala, and E. Vigoda, Adaptive Simulated Annealing: A
Near-Optimal Connection between Sampling and Counting, Proc. of the 48th Annual
IEEE Symbosium on Foundations of Computer Science, pp. 183-193, 2007

[SZE04] M. Szegedy, Quantum Speed-up of Markov Chain Based Algorithms, Proc. of 45th
Annual IEEE Symposium on Foundations of Computer Science, pp. 32–41, 2004

[TD00] B. Terhal and D. DiVincenzo, Problem of equilibration and the Computation of
Correlation Functions on a Quantum Computer, Physical Review A, vol. 61, pp. 022301,
2000

[TOVPV09] K. Temme, T. Osborne, K. Vollbrecht, D. Poulin and F. VerstraeteK, Quantum
Metropolis Sampling, arXiv: abs/0911.3635, 2009

[Turan41] P. Turán, On An Extreme Problem in Graph Theory, Matematikai és Fizikai
Lapok, vol.48, pp. 436–452, 1941

[VAL79] L. G. Valiant, The Complexity of Computing the Permanent, Theoretical Computer
Science, vol. 8, pp. 189–201, 1979

[WA08] P. Wocjan and A. Abeyesinghe, Speed-up via Quantum Sampling, Physical Review
A, vol. 78, pp. 042336, 2008

[WCNA09] P. Wocjan, C. Chiang, D. Nagaj and A. Abeyesinghe, A Quantum Algorithm for
Approximating Partition Functions, Physical Review A, vol. 80, pp. 022340, 2009

[ZAL98] C. Zalka, Simulating Quantum Systems on a Quantum Computer, Proc. R. Soc.
London, Ser. A, vol. 454, no. 1969, pp. 313 – 322, 1998

162

	The Power Of Quantum Walk Insights, Implementation, And Applications
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1 INTRODUCTION
	1.1 Motivation
	1.2 Outline and Summary of Results

	CHAPTER 2 PRELIMINARIES
	2.1 Introduction to Computation
	2.2 The Circuit Model of Computation
	2.2.1 Quantifying Computational Resources

	2.3 Quantum Computation
	2.3.1 Quantum Circuit Model
	2.3.2 Single Qubit Operation and Controlled Operations
	2.3.3 Universal Sets of Quantum Gates and N-Qubit Operation

	2.4 Classical Markov Chains
	2.4.1 Irreducibility and Aperiodicity
	2.4.2 Stationary Distributions, Spectral Gap and Convergence
	2.4.3 Hitting Time

	CHAPTER 3 INSIGHTS
	3.1 Phase Estimation
	3.2 Product of Two Reflections
	3.3 Quantization of Classical Random Walk
	3.4 Spectrum of the Product of Two Reflections

	CHAPTER 4 EFFICIENT CIRCUIT FOR PHASE ESTIMATION
	4.1 Quantum Phase Estimation Algorithms
	4.1.1 Kitaev's Original Approach
	4.1.2 Approach Based on QFT
	4.1.3 Approach Based on AQFT

	4.2 New Approach with Constant Degree Phase Shift Operators
	4.3 Discussion

	CHAPTER 5 EFFICIENT CIRCUIT FOR QUANTUM WALKS
	5.1 Introduction
	5.2 Alternative Ways of Implementing the Quantum Update
	5.3 Overview of the Efficient Circuit Structure
	5.4 Preparing Superpositions à la Grover and Rudolph
	5.4.1 A Nonuniform Case
	5.4.2 Precision Requirements

	5.5 Discussion

	CHAPTER 6 ESTIMATING PARTITION FUNCTION
	6.1 Structure of the Classical Approach
	6.2 Structure of Our Quantum Approach
	6.2.1 Overview
	6.2.2 Perfect Case
	6.2.3 Quantum FPRAS

	6.3 Discussion

	CHAPTER 7 PREPARING THERMAL GIBBS STATE
	7.1 Quantum Algorithm – Idealized Setting
	7.2 Analysis for Imperfect Setting
	7.2.1 Analysis of Simulation Error
	7.2.2 Analysis of Errors in Phase Estimation

	7.3 Discussion

	CHAPTER 8 THEORY OF PERTURBED QUANTUM WALK
	8.1 Classical Spectral Gap Perturbation
	8.2 Hitting Time of Markov Chain Based Walks
	8.2.1 Classical Hitting Time
	8.2.2 Delayed Perturbed Hitting Time
	8.2.3 Upper Bound for Perturbed Quantum Hitting Time
	8.2.4 Quantum Hitting Time Based on MNRS Algorithm
	8.2.5 Delayed Perturbed Quantum Hitting Time

	8.3 Sample Perturbation
	8.4 Discussion

	CHAPTER 9 CONCLUSION
	9.1 Graph Problems
	9.2 The Ising Model
	9.3 Black-box Hamiltonian Simulation and Unitary Implementation
	9.4 Perturbation Theory

	APPENDIX A QUANTUM WALK UPDATE
	A.1 Quantum Walks from Classical Markov Chains

	APPENDIX B IMPLEMENTATION OF QUANTUM WALK
	B.1 Additional Details for the Efficient Quantum Update Circuit
	B.2 Preparation
	B.3 Determining the Rotation Angles
	B.4 Creating Superpositions and Mapping
	B.5 The Required Resources
	B.6 Approximating the Permanent

	APPENDIX C GLOSSARY OF NOTATIONS
	LIST OF REFERENCES

