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ABSTRACT 

 The goal of this dissertation was to bridge the gap between perceptual learning theory and 

training application. Visual perceptual skill has been a vexing topic in training science for 

decades. In complex task domains, from aviation to medicine, visual perception is critical to task 

success. Despite this, little, if any, emphasis is dedicated to developing perceptual skills through 

training. Much of this may be attributed to the perceived inefficiency of perceptual training. 

Recent applied research in perceptual training with discrimination training, however, holds 

promise for improved perceptual training efficiency. As with all applied research, it is important 

to root application in solid theoretical bases. In perceptual learning, the challenge is connecting 

the basic science to more complex task environments. Using a common aviation task as an 

applied context, participants were assigned to a perceptual training condition based on variation 

of image complexity and training type. Following the training, participants were tested for 

transfer of skill. This was intended to help to ground a potentially useful method of perceptual 

training in a model category learning, while offering qualitative testing of model fit in 

increasingly complex visual environments. Two hundred and thirty-one participants completed 

the computer based training module. Results indicate that predictions of a model of category 

learning largely extend into more complex training stimuli, suggesting utility of the model in 

more applied contexts. Although both training method conditions showed improvement across 

training blocks, the discrimination training condition did not transfer to the post training transfer 

tasks. Lack of adequate contextual information related to the transfer task in training was 

attributed to this outcome. Further analysis of the exposure training condition showed that 
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individuals training with simple stimuli performed as well as individuals training on more 

complex stimuli in a complex transfer task. On the other hand, individuals in the more complex 

training conditions were less accurate when presented with a simpler representation of the task in 

transfer. This suggests training benefit to isolating essential task cues from irrelevant information 

in perceptual judgment tasks. In all, the study provided an informative look at both the theory 

and application associated with perceptual category learning. Ultimately, this research can help 

inform future research and training development in domains where perceptual judgment is 

critical for success.       
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CHAPTER 1: INTRODUCTION  

Statement of Problem 

The acquisition of visual perceptual skill is no trivial matter.  In complex task domains, 

rapid and precise visual perception can often mean the difference between success and failure, 

and in some cases, between life and death. On the battlefield, a forward observer’s visual 

perceptions walk the line of successful engagement of the enemy and the disastrous 

consequences of collateral damage. In medicine, the ability to perceive irregularities on a body 

scan (e.g., PET, CT, MRI) can lead to early detection and treatment of life-threatening diseases. 

An airline pilot’s accurate perception of the environment out-of-the-cockpit can separate 

between stable and unstable flight conditions.  Moreover, an individual’s reliance on visual 

perception in these domains can be complicated by naturally occurring stimulus distinctions at or 

near the signal-to-noise threshold (e.g., identifying miniscule abnormalities on a cancer screening 

X-ray), purposeful attempts to deceive the perceptual system (e.g., camouflaged targets in 

military domains or hidden contraband in luggage), or even instances where human perception is 

simply not well adapted to the task environment (e.g., pilot judgments based on perceptions at 

oblique aerial viewpoints at large distances or making time-to-contact judgments while driving a 

car at high speeds).  

Within these visually complex task domains, successful perceptual performance is 

predicated on the ability to recognize critical cue features in the task environment while ignoring 
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the myriad of features that are either irrelevant or even distracting. In stimulus-rich visual 

environments, task domain experts can perceive critical variations that would otherwise remain 

imperceptible to the untrained eye (Klein & Hoffman, 1992). This expert capacity to perceive is 

attributable to the ability to discriminate between fine-grained cue details. Development of these 

fine-grained perceptual skills is a matter of interest in both the scientific and training 

development communities. Researchers continue to debate the duration necessary and the 

machinations underlying the process of perceptual learning in the hopes of unlocking a universal 

remedy of training. Unfortunately, the complexity of perceptual processes, and by virtue, 

perceptual learning, has proven a more difficult landscape to navigate as no such panacea has yet 

been identified. 

Beyond suggesting prolonged and repeated exposure to relevant stimuli, there have been 

few suggestions for how best to train perceptual skill. Most task domains within which 

perceptual training would best apply involve visually complex environments, rich with both 

relevant and irrelevant stimuli. Attempts to expose trainees to even a representative sample of 

possible contexts they may encounter would be a mammoth undertaking. Provided that time and 

resources are at a premium in most industries, perceptual training is often overlooked or 

underutilized in favor of more efficiently trained topics like procedural skill or declarative 

knowledge. With respect to perceptual training, however, one suggested method of improving 

efficiency is discrimination training (Cooper & Podgorny, 1976). By asking individuals to 

actively discriminate between two relevant stimuli, theorists posit a more robust perceptual 
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learning experience than exposure alone provides. Discrimination training has been met with 

promising results in the context of a visual search paradigm (Doane, Alderton, Sohn, & 

Pellegrino, 1996; Doane, Sohn, & Schreiber, 1999). However, in many complex task domains, 

the essence of visual search, identifying the presence or absence of a cue in the environment, is 

simply not sufficient to ensure task success. Instead, perceptual judgments are made based not 

only on the presence or absence of cues, but also on the degree to which they fit into relevant 

categories for task completion. Further exploration of discrimination training utility in complex 

domains can provide insight into the scope within which perceptual discrimination learning is 

most effective.   

Purpose of Study 

Practically speaking, industry training developers have two competing goals, 

maximization of task learning and minimization of time to accomplish mastery or a 

predetermined level of proficiency. In complex visual task domains, these needs have rendered 

traditional perceptual training methods like exposure training ineffective.  Discrimination 

training, however, may be an alternative method of perceptual training that adheres more closely 

to training developer needs. At the same time, to keep training development firmly grounded in 

science it is important to be able to base the outcomes of discrimination training on relevant 

theory. Although there have been instances where discrimination training has been applied in 

complex task domains (Fiore, Scielzo, Jentsch, & Howard, 2006), to date, there has been no 
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attempt to validate discrimination training to formal models of category learning in the context of 

perceptual judgment tasks. 

The purpose of this dissertation was to validate discrimination training in a complex task 

domain with a model of category learning. Provided that most models of category learning have 

been validated using simple stimuli, an attempt to validate discrimination training in a complex 

task domain with a model of category learning served two major purposes: (a) to validate a 

potentially efficient perceptual training technique, i.e., discrimination training, for a more 

complex perceptual task, and (b) to test and extend a relevant model of perceptual, category 

learning in a more applied context, i.e., visual approaches in aviation. Pursuing both purposes 

served to enhance our understanding of perceptual category learning, and in turn, further identify 

the scope of utility that perceptual training may hold in complex task domains.  
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CHAPTER 2: LITERATURE REVIEW 

The adage that practice makes perfect echoes throughout nearly every fathomable context 

of learning science. Successful performers in domains as disparate as athletics (Kalinowski, 

1985), music (Gruson, 1988), writing (Scardamalia & Bereiter, 1991), and wine tasting (Melcher 

& Schooler, 1996) all achieve success through repeated practice of critical skills in their 

respective disciplines. In fact, there is little, if any, scientific argument against the merits of 

practice on performance improvement. Through deliberate practice, individuals develop the 

ability to recognize relevant cues, discriminate fine task distinctions, anticipate future states of 

the task environment, and generate strategies for task completion. Klein and Hoffman (1992) 

advocated that development of these perceptual-cognitive skills helps distinguish expert and 

novice performers. Research, however, suggests that even with deliberate practice, individuals 

require somewhere in the range of a decade to achieve a true expert level of performance (Chase 

& Simon, 1973; Ericsson, Krampe, & Tesch-Romer, 1993).  

In domains like the ones listed in the above paragraph, expertise is often a selection 

criterion. That is, entry into these domains is often predicated on demonstration of expert skill. 

Individuals striving to get into these fields spend considerable time practicing the skills 

necessary to succeed. As a result, the workforce in these domains is comprised of top performers 

with substantial prior exposure to relevant tasks. Training professionals in these domains have 

the benefit of working with individuals who have already contributed a large portion of the time 

commitment necessary for achieving expertise. Unfortunately, task domains that have less 
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selective membership requirements cannot rely on extensive prior task experience when 

considering training. In contexts involving complex task environments (e.g., aviation, military, 

etc.) this presents a challenge. Due to limited resources for training and the extensive time 

required for gaining perceptual-cognitive expertise, training in complex task environments often 

focuses on more practical procedural skill development. Although this training generally 

prepares trainees for the standard procedure of the task, it leaves the perceptual-cognitive skill 

development to on-the-job-training or experience. According to those who subscribe to the 

deliberate practice method for expert development, however, on-the-job experience is simply not 

sufficient for producing expertise (Ericsson, Krampe, & Tesch-Romer, 1993).  

Training perceptual-cognitive skills has long been overlooked, in part, because of the 

perceived inefficiency associated with it, but also due to a lack of understanding of the 

underlying nature of perceptual learning. Recent contributions to the perceptual learning 

literature both in terms of theory and methodology have reinvigorated the discussion on the 

potential benefits of perceptual training. There still remains a gap between the practical 

application and theoretical mechanisms suggested to drive perceptual learning however. The 

research discussed in this document aimed to bridge some of the gap between theory and 

application of perceptual learning research by couching an applied perceptual training method in 

a computational model of category learning. 
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Perceptual Learning 

Historically speaking, the study of perception in psychology can be traced back to the 

earliest days of the field. From Wilhelm Wundt, to Gestalt theory, to modern day investigations 

of perceptual differences between real and virtual worlds, perception has maintained a long and 

continual presence in psychological research. Considering this long-standing history, it is 

surprising how relatively little is known about how perceptual ability develops. In the early 

1960s, James Drever (1960) and Eleanor Gibson (1963) published reviews of perceptual learning 

that helped ignite discussion of what constitutes perceptual learning. The Gibsonian ecological 

perspective states that perceptual learning is “any relatively permanent and consistent change in 

the perception of a stimulus array, following practice or experience with this array” (1963, p. 

29). This principally bottom-up perspective of perceptual learning still has many advocates; 

however, it neglects to acknowledge top-down cognitive processes that impact perceptual 

learning. In some circles, the mere suggestion that cognitive processes be included in a “true” 

definition of perceptual learning would cause uproar however. In fact, it is easy to get tangled 

within the web of semantic definitions that theorists have developed to explain and separate 

perceptual and cognitive learning. In contrast to this line of reasoning, Goldstone and Barsalou 

(1998) argued that perception and conception are inextricably linked and therefore should not be 

explicitly isolated.   

Goldstone’s (1998) definition of perceptual learning suggests that enduring changes to 

the perceptual system facilitate one’s ability to respond to the environment; that perceptual 

learning helps tailor information gathering processes to the way the information is used. This 



 

8 

 

definition supports the notion of an interactive symbiosis between perceptual and cognitive 

mechanisms. Taken further, Hoffman and Fiore (2007) suggest that beyond perception of cues, 

meaningful integration must take place to elicit perceptual learning. 

Mechanisms of Perceptual Learning  

  Based on the preceding definition of perceptual learning, the discussion should 

necessarily turn to perceptual-cognitive processes that underlie perceptual learning. While the 

logical assertion is that there are multiple processes involved in perceptual learning, the 

challenge is identifying what these processes are and how each impacts perceptual skill 

development. Goldstone (1998) identified four mechanisms (i.e., attentional weighting, 

imprinting, differentiation, and unitization) that cut across the broad landscape of perceptual 

learning. Although it would be premature to label these as the comprehensive list of mechanisms, 

each offers rational explanations for separate and sometimes related aspects of the perceptual 

learning process. Taken together, these four mechanisms help provide a solid theoretical base 

with which to further explore methods of perceptual training.  

Attention Weighting 

There is nothing ambiguous about viewing simple one-dimensional stimuli. Making 

determinations based on perceived differences is straight forward; either the dimension changed 

or it did not. Unfortunately, in our daily lives, there are few, if any, simple one-dimensional 

stimuli of which to draw useful information. Instead, everything around us is comprised of 

combinations of multiple dimensions which provide varying degrees of useful information. 
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Attentional weighting, therefore, refers to the ability of individuals to attend to the relevant 

information in the environment. In terms of perceptual learning, attention weighting implies that 

over time, individuals learn to shift attention to relevant cues in the environment (Nosofsky, 

1986). Livingston and Andrews (1995) demonstrated this by illustrating the tendency to 

emphasize cues that reliably predict category distinction during category learning. In contrast to 

identifying relevant cues, attention weighting is equally impacted by the ability to ignore 

irrelevant cues in the environment (Haider & Frensch, 1996). Any adjustments to attentional 

weights can be thought of as changes to a multidimensional similarity space (Livingston, 

Andrews, & Harnad, 1998). This has profound implications for categorical perception which will 

be discussed more prominently later in this dissertation.  

Imprinting 

 Past experience is a critical element of perceptual learning in any context. One 

mechanism through which past experience is manifest in perceptual learning is imprinting. 

Imprinting involves the development of internal detectors for stimuli in the environment 

(Goldstone, 2003). One of the key points of discussion on imprinting is what precisely is 

imprinted on the detectors. Using a dot numerosity task, Palmeri (1997) for example, found that 

individuals developed automaticity on dot patterns which they had been exposed to in training, 

but not for similar patterns with additional dots. The findings taken further, suggest that there are 

receptors which imprint whole stimuli. Whole stimuli imprinting supports exemplar based 

models of category learning (Nosofsky, 1986) which will be expanded upon later in this chapter. 
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 In addition to whole stimuli imprinting, studies have provided evidence that imprinting 

may also occur on parts of stimuli or patterns within a set of multiple stimuli. Research suggests 

that in some instances, individuals get better at categorizing stimuli when specific diagnostic 

features of the stimuli are learned (Schyns & Rodet, 1997). On the other end of the spectrum, 

there is also research suggesting that imprinting occurs at a more abstract, spatially organized 

level (Goldstone, 1998). Despite the diverging evidence of these studies, overall, the idea of 

imprinting implies that there are internal detection mechanisms which are shaped by experience 

that help optimize processing of repeated stimuli. This line of reasoning closely resembles 

neurological studies that suggest that a cascading hierarchy of receptors at the cortical level 

drives perception. Early perceptual processing begins with simple stimulus cell receptors (i.e., 

line segment) and triggers receptor stimulation progressing to more complex combinations of 

features (i.e., faces) (Ahissar, Nahum, Nelken, & Hochstein, 2009).     

Differentiation 

 In perceptual learning, the ability to distinguish among task relevant stimuli can be 

invaluable. The ability to make fine distinctions between stimuli that are seemingly alike to the 

untrained eye separates expert and novice performers (Hoffman & Fiore, 2007). Differentiation 

is based on the notion that we learn to perceive as a function of enhanced perceptual precision 

over time (E. J. Gibson, 1963). Perceptual qualities, features, and dimensions become more 

distinguishable as perceptual learning occurs. Essentially, the world around us becomes richer 

with perceptual properties as objects get more distinctive (Gibson & Gibson, 1955). As a 

perceptual learning mechanism, differentiation can be thought of as an outcome of the previously 
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mentioned mechanisms. Improved ability to differentiate stimuli is both a function of knowing 

the critical features to attend in the environment (attentional weighting), and through repeated 

practice (imprinting) with relevant stimuli. 

Like the previous mechanisms discussed, differentiation can be thought of at different 

levels of perceptual abstraction. Using simple perceptual stimuli, differentiation can be thought 

of as identifying whether a distinguishing feature is present or absent from a stimulus. In many 

cases, these simple perceptual differentiation tasks are broken down at the cellular receptor level 

where differentiation is mostly found to be highly task specific (Fahle & Edelman, 1993). In 

more practical perceptual applications however, tasks are comprised of much more complex 

stimuli in which differentiation involves combinations of multiple features, increasing specificity 

on category and perceptual dimensions (Goldstone, 1998). Further, the spectrum of possible 

perceptual encounters is not only large, but also varies in occurrence. As a result, the 

differentiation mechanism, at more complex levels of application, has the dual purpose of 

reinforcing the separation between commonly occurring stimuli, and developing strategies for 

correctly distinguishing rare or unexpected stimuli that may be difficult to discern from common 

stimuli.                  

Unitization 

Up to this point, the focus of the perceptual mechanism discussed in this paper has been 

primarily on the deconstruction of relevant stimuli into parts. There is little argument that in 

order to perceive at an expert level, attention weighting, imprinting, and differentiation of fine 
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grained stimulus characteristics is important. Unitization, however, is a mechanism of perceptual 

learning which on the surface seems to suggest the development of an opposite skill. Unitization 

involves the process of constructing a single functional representation of a complex 

configuration (Goldstone, 1998). Instead of breaking stimuli into parts, unitization suggests that 

a representative whole is created out of the sum of perceptual parts. Gauthier and Tarr (1997) 

supported this by examining the effect of prolonged exposure to complex novel stimuli. Their 

findings suggest that exposure leads to the development of viewpoint-specific representations of 

stimuli. In line with this, Czerwinski, Lightfoot, and Shiffrin (1992) described the unitization 

process in terms of chunking visual features together. Developing unitized representations is 

especially helpful for task stimuli which have commonly occurring features that, when 

combined, consistently require the same response.     

Summary 

To gain a better understanding of perceptual learning, it is important to consider the 

underlying mechanisms which drive perceptual skill development. The four mechanisms 

discussed do not necessarily constitute a comprehensive list of mechanisms, but provide an 

informed point of reference to guide the discussion toward training theory and methodology. 

Among these mechanisms, there are obviously overlaps which make it difficult to proclaim one 

more impactful than others. Instead, the implication is that the task itself serves as the conduit 

through which appropriate mechanisms are employed in a perceptual task. Overall, the 

mechanisms described can be thought of as residing on a continuum of feature specificity. This is 

illustrated in the general propensity for these mechanisms to support either the breakdown of 
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stimuli into parts or integration of features into a whole to demarcate perceptual skill 

development. The implications of the distinction of mechanisms again make it difficult to 

generate a panacea recommendation for training perceptual skill, but provide an informative look 

at mechanisms to consider when developing training.  

Perceptual Judgment 

Since the discussion of perceptual learning inhabits the often debated gray area between 

perception and cognition, there is no definitive evidence for where perceptual learning begins or 

ends.  As a result, perceptual skill can be manifest in a number of different relevant perceptual 

tasks depending on how it is interpreted. This is evident in the distinction between visual search 

and perceptual judgment tasks. Visual search is characterized as a process in which decision 

outcomes are based on identifying the presence or absence of target stimuli. There is little 

argument that perceptual processes influence the ability to perform visual search. Perceptual 

judgments, on the other hand, also occur when presence or absence is not the determining factor 

of the task. Perceptual judgment can be thought of as a judgment of the magnitude of states (e.g., 

size, distance, weight, orientation) of perceptual stimuli that are present in the environment 

(Tajfel, 1957). Perceptual judgment is less contingent on whether something is perceived and 

more contingent on how it is perceived. As a result, the argument can be made that perceptual 

judgment is more cognitive than perceptual in nature.  In fact, perceptual judgment is often 

equated with the ability to categorize stimuli along relevant dimensions. That is, perceptual 

judgment skill is not necessarily contingent on deriving precise estimates of a stimuli state, but 

rather hinges on being able to accurately assign stimuli to categories which inform task decision 
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making. For instance, a pilot does not need to calculate distance/altitude measurements to within 

a few meters of accuracy when making a perceptual judgment during a visual approach to land. 

Instead, a pilot should be able to recognize states of being too high or too low for stable approach 

accurately enough to maintain a safe descent path.  Although the more liberally defined concept 

of perceptual learning which this dissertation uses could certainly include category learning, 

categorization has largely emerged as a separate field from perception (Op de Beeck, Wagemans, 

& Vogels, 2003). Provided that there are similarities in the perceptual processes that contribute 

to both visual search and perceptual judgment, it is logical that some of the training requirements 

to achieve skill in both may also be shared. The following section of this chapter further explores 

category learning. Offering evidence for the linkages between perceptual learning and category 

learning strengthens the assertion that perceptual training has utility in perceptual judgment 

tasks.  

Category Learning 

 Humans have the propensity to sort the vast array of information that surrounds them. 

The process of sorting information can yield a wide range of physical (e.g., large, round), 

functional (e.g., sharp, slow), and intangible (e.g., angry, good) labels of the world. This process 

of categorization can be thought of as a way to organize information into more manageable 

pieces of information. Although categorization and perception are often discussed as separate 

processes, research supports the idea that these processes interact (Op de Beeck, Wagemans, & 

Vogels, 2003). In relation to perception, there is evidence that categorization leads to sensitized 

response to category-relevant dimensions, de-emphasis of category irrelevant variations, and 
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selective sensitization of relevant dimensions at category boundaries (Goldstone, 2003). Due to 

the influence of categories on perceptual processes, it is reasonable to surmise that category 

learning can lead to improved performance of perceptual judgment tasks. 

 In general, the process of category learning is most closely linked to perceptual 

differentiation. Categories are formed by perceived differences of dimensions of stimuli. 

Category learning can take place in novel tasks where the formation of new categories occur, or 

in more familiar tasks where categories are tuned to fine details that are imperceptible to less 

trained individuals. Each category can be comprised of separable dimensions (e.g., size and 

color), where dimension variation can be easily separated from others, and integral dimensions 

(e.g., saturations and brightness) where variation between dimensions are fused (Op de Beeck, 

Wagemans, & Vogels, 2003). These dimension characteristics often influence the complexity of 

categorization. Whereas stimuli comprised of separable dimensions can be attended selectively, 

integral dimensions are less easily attended in isolation. This may suggest that stimuli with 

highly separable dimensions are processed into categories by breaking dimensional features into 

parts (i.e., selective attention, differentiation). Along the same line of thinking, stimuli with 

highly integral dimensions may be processed into categories by combining dimensions into more 

holistic representations (i.e., unitization). These distinctions of category learning (i.e., task 

familiarity and dimension partition) are important considerations when determining the nature of 

category learning for specific tasks. 
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 The general conception of category learning is relatively straight-forward. Similar to 

perceptual learning, however, the underlying mechanisms that drive category learning are less 

easily identifiable. This has resulted in the development of numerous models that attempt to 

explain category learning. In the following section the discussion will turn to models of category 

learning. By first briefly describing the types of models that have been conceived, the discussion 

will naturally lead into a model for testing methods of perceptual training.   

Models of Category Learning 

There are two general types of models which are prevalent in psychological research, 

conceptual models and computational models. Conceptual models are representations of how 

topic-relevant concepts interrelate to form a psychological process. In complex multi-layered 

psychological processes, like category learning, where the concepts that make up the process are 

numerous and often a matter of debate, it is difficult to derive a comprehensive representation of 

the whole process. Due to the complicated nature of category learning, many researchers have 

turned to computational modeling to help explain behaviors associated with the construct 

(Kruschke, 2008). Computational models are helpful for modeling behavior where the number of 

relevant concepts is not as easily defined. In computational models, simulations of performance 

are generated to compare to real world data. This is accomplished through the development of, at 

times, complex mathematical equations which serve as a more abstract representation of 

mechanisms underlying the construct in question. Using this modeling technique, a number of 

different theories of category learning have emerged, including exemplar, rule-based, prototype, 

and boundary models (Kruschke, 2008). While each of these theoretical bases have produced 
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informative lines of research that have helped to advance understanding of category learning, 

two in particular, exemplar and rule-based models of category learning, are particularly well 

suited for explaining the perceptual learning mechanisms that occur in perceptual judgment 

tasks. As a result, these two types of models will be the focus of discussion. Both exemplar and 

rule-based theories of category learning can be considered single system theories. 

Exemplar Models of Category Learning   

In the late 1970s, Medin and Schaffer (1978) introduced a theory of category learning 

known as the context theory. The context theory served as a slight departure, at the time, from 

more prevalent prototype theories of categorization by suggesting that category judgments are 

made based on the similarity of stimuli to exemplars stored in memory. This theory served as the 

catalyst for the development of modern exemplar models of category learning such as the 

General Context Model (GCM; Nosofsky, 1986), Supervised and Unsupervised Stratified 

Adaptive Incrememental Network (SUSTAIN; Love, Medin, & Gureckis, 2004), and the 

Attention Learning Covering Map (ALCOVE; Kruschke, 1992). Similar to the concept of whole 

stimulus imprinting, exemplar models presume that all stimuli that an individual has been 

exposed to are stored as exemplars with category labels in multidimensional memory space 

(Ashby & Maddox, 2005). One argument against exemplar theories is that any one exemplar 

may fall into several different categories that are contingent on a different combination of 

features that make up the exemplar. In order to distinguish the appropriate category, attending to 

and ignoring features, which according to the theory, are not stored individually, is necessary. To 

address this, GCM includes a selective attention mechanism which allows for individuals to 
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direct focus to category relevant features within exemplars (Nosofsky, 1986). The GCM has 

been found to fit data in a wide variety of category learning contexts, but still lacks any type of 

mechanism for learning that occurs with repeated exemplar exposure. The ALCOVE model 

(Kruschke, 1992), which is a direct descendant of the GCM provides this learning mechanism. 

Similar to the concept of imprinting, exemplar theory is built on the notion that as 

exposure to stimuli increases, so does the amount of category learning. Exemplar models predict 

that optimal performance will eventually occur with exposure (Ashby & Maddox, 2005). In 

terms of training, this would most closely resemble the benefits of exposure training. Most critics 

of exemplar theory as a single system theory of category learning point to the fact that it does not 

do an effective job of accounting for the extrapolative nature of category learning. In exemplar 

theory, after each stimuli exposure, a memory store is created. The more times that exemplar is 

accessed (the stimulus is perceived), the more quickly and accurately that the exemplar can be 

categorized. This does not account for instances where novel stimuli are encountered. As a 

result, exemplar theory most closely resembles interpolated skill which is described in more 

detail later in this chapter.  

Rule-Based Models of Category Learning 

Rule-based models of category learning offer a slightly different perspective of category 

learning. Unlike exemplar theory where there are representation stores of every exposed 

stimulus, classic rule-based models of category learning instead are based on the premise that 

every category (not stimulus) is stored as a list of necessary and sufficient features (Smith & 
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Medin, 1981). These category feature lists are used as a comparison guide of stimulus features. 

Stimuli are categorized by how well their features match with task relevant category lists. That is 

to say that any stimulus may fall into a number of categories depending on the context in which 

it is being referenced. 

 Rule-based models offer an alternate viewpoint of category learning in which 

extrapolative skill, which is described in more detail later in the chapter, can be explained. Rules 

are not tethered to specific exemplar stores, but instead, are made up of relevant lists of features. 

In this respect, individuals can apply rules to stimuli which they have not previously been 

exposed. The feature list comparisons that make up rules are similar to the differentiation 

mechanisms described for perceptual learning above. 

As a stand-alone theory of category learning, the classic rule-based model holds up well 

in instances where conjunctive (i.e., “AND”) rules are sufficient for categorization (e.g., a 

stimulus is in category A because it is tall and wide; Ashby & Maddox, 2005). Unfortunately, in 

many complex domains, categories are not as simply explained as is the case with conjunctive 

rules. Disjunctive (i.e., “OR”) rules are based on the notion that categories could be made up of 

stimuli in which there is no uniform combination of features that predict category membership 

(e.g., a stimulus is in category A because it is tall and wide, or because it is short and narrow). In 

disjunctive rule categories, the presence or absence of a single feature cannot be used to guide 

category prediction. This makes the conception of the list of necessary and sufficient features 

more difficult to explain. Newer conceptions of rule-based category learning have incorporated 
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an exception learning mechanism to offset potential disjunctive category labels (e.g., RULEX; 

Nosofsky, Palmeri, & McKinley, 1994). In spite of this, the predominant modern viewpoint of 

rule generation as a single system explanation of category learning have been supplanted by the 

concept of category learning involving multiple systems. 

The ATRIUM Model 

 Although the range of single system models offers serviceable explanations of category 

learning while maintaining a certain degree of parsimony, none are without limitations to the 

categorization behavior they explain. In many cases, the shortcomings of one model are 

accounted for in another model. This suggests that perhaps the quest for parsimony is clouding 

the complexity of category learning. Instead of offering a single system explanation, more 

recently theorists have turned to combining models to explain category learning (Ashby & 

Maddox, 2005). Although these multi-system models are more complex, and require more 

complex computations, they are better able to explain disparate aspects of category learning. 

Exemplar and rule-based models alone are unable to provide a complete picture of category 

learning, in a multi-system model however, they are complementary. The strengths of one offer 

an explanation for the weaknesses of the other. This complementary relationship in combination 

with a semblance to the perceptual skills discussed earlier, suggest that a multi-system model of 

category learning may help to bridge the scientific gap between perceptual training methodology 

and learning associated with perceptual judgments. One such model is the Attention To Rules 

and Instances in a Unified Model (ATRIUM) as proposed by Erickson and Kruschke (1998). 
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  The ATRIUM model is a computational model which combines the thoroughly tested 

ALCOVE exemplar model with a rule-based module. The model is driven by five psychological 

principles: exemplar representation, rule representation, representational attention, dimensional 

attention, and error-driven learning (Erickson & Kruschke, 2001). These principles are housed in 

four components which comprise the ATRIUM model: a rule module, an exemplar module, a 

gating mechanism, and learning. In the following sections, a brief description of the components 

of the ATRIUM model will be explained in terms of these psychological principles.  

Rule module 

The rule module makes use of the rule representation and dimensional attention 

principles on which ATRIUM is based (Erickson & Kruschke, 2001). Under the rule module, 

stimuli are classified according to adherence to dimension specific rules in which stimuli fall. 

This can be thought of in the most basic conception in terms of boundaries. Each category is 

separated by a boundary that is determined by a combination of relevant dimensions; the 

dimensions, in turn, dictate category membership. Following this path, each dimension which 

impacts category membership can be separated by boundaries driven by the development of rules 

relevant to the dimension (e.g., long, short). Logically, as a stimulus gets closer to rule 

boundaries, the more difficult it may be for a rule to predict category membership and likewise 

up the hierarchy (near boundary categorizations are more difficult than far boundary 

categorizations).  
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The ATRIUM rule module is actually made up of multiple individual modules that are 

each specific to only one dimension of the stimuli. This dimension separation across modules 

allows for the rule module to make use of the principle of dimensional attention, by isolating and 

weighting category critical dimensions. Dimensional attention suggests that people learn to 

attend to relevant dimensions on the stimuli. That is to say that multi-dimensional stimulus may 

have rule nodes that are more predictive of category membership depending on the context. With 

multi-dimensional stimuli, different combinations of rules may yield different categorizations. 

As a result ATRIUM is set to learn multiple boundaries on a single dimension, depending on 

other dimension inputs.   

Exemplar Module 

The exemplar module, as mentioned above, is a complete replication of Kruschke’s 

ALCOVE model (1992). This module employs both the exemplar representation and the 

dimensional attention principles listed above (Erickson & Kruschke, 2001). Under the exemplar 

module, stimuli are classified according to similarity to stored exemplars which are members of 

relevant categories. Conceptually, this can be thought of in terms of nodes. There are a series of 

exemplar or category nodes which are activated by a set of dimensional nodes that are dictated 

by currently perceived stimuli. Similar to the rule module, dimension nodes serve to guide 

dimensional attention. Where the module differs in this respect, is that dimensional nodes are not 

separately activated by individual rules. Instead, each relevant exemplar node, which can be 

thought of as full representations of previously exposed stimuli, integrates all dimensional node 

information. Also, instead of the dimensions being parsed by rules, the exemplar module learns 
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which dimensions are more pertinent to the categorization task. This helps to focus dimensional 

attention on the most important dimensions of the overall stimuli for categorization. This 

dimensional stimulus input helps dictate which exemplar nodes are most similar to the stimuli. 

Based on the activated exemplar nodes, category nodes are, in turn, activated using the same 

principle of similarity. 

Gating Mechanism 

One of the challenges of combining multiple systems into one model is in determining 

the contribution of each system to the task. In ATRIUM, this is accomplished by linking the two 

modules with a mathematical gating mechanism (Erickson & Kruschke, 1998). The gating 

method capitalizes on the principle of representational attention. That is, people learn to use 

different representations (i.e., exemplar and rule) depending on how well suited each is to the 

particular stimuli (Erickson & Kruschke, 2001). One way of looking at this is that the previous 

modules serve to classify stimuli, whereas the gating mechanism serves to classify appropriate 

modules for optimal categorization.  

The gating mechanism in ATRIUM is based off of Jacobs, Jordan, Nowlan, and Hinton’s 

(1991) algorithm. Using this method, every stimulus used is processed by the rule module and 

exemplar module simultaneously. The contribution of each module is dependent upon the 

activation strength within each module. Activation depends on a combination of the stimulus 

proximity to rules or exemplars in space in addition to the level of learning that has occurred 
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(Erickson & Kruschke, 1998). The results of the gating mechanism result in a set of cost 

parameters that indicate the benefit of each module for classification of the particular stimuli.   

Learning 

No model of category learning is complete without the inclusion of the concept of 

learning itself. The final psychological principle at work in the ATRIUM model is the concept of 

error-driven learning. Error-driven learning is based on the idea that individuals learn from 

feedback received on incorrect responses to items (Erickson & Kruschke, 1998; Erickson & 

Kruschke, 2001). In the ATRIUM model, each module (including the gating mechanism) learns 

by incrementally adjusting behavior so that repeated presentation will increase the likelihood of a 

correct response. Learning is determined by the amount of feedback received in each module. 

Successful classification within one of the modules impacts the level of feedback that will be 

received in future instances. If a module performs more poorly, the feedback will decrease as the 

overall model attempts to optimize classification strategy. 

Summary of ATRIUM 

The ATRIUM model is comprised of a complex set of mathematical equations which 

offer a quantitative explanation for category learning. Despite the quantitative nature of 

ATRIUM, the conceptual underpinnings hold a number of parallels to some of the mechanisms 

discussed in regard to perceptual learning. The idea of complete stimulus storage that is 

strengthened by repeated exposure in the exemplar module closely resembles the mechanisms of 

imprinting and unitization as presented by Goldstone (1998). Likewise, the concept of 
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differentiation which suggests that perceptual learning involves breaking stimuli down into 

differential parts in order to identify them, closely adheres to the rule module which processes 

each dimension of a stimuli separately for categorization. Additionally, both the principles of 

representational and dimensional attention resemble the perceptual learning mechanism of 

attentional weighting. Provided that learning is the central tenant which drives both perceptual 

and category learning models, it is easy to see where there is great conceptual overlap. As a 

result, the ATRIUM model serves as a suitable theoretical framework from which attempts to 

test the effectiveness of a specific perceptual training technique.   

Effect of Stimulus Complexity on Model Fit 

To date, models of category learning have been tested using only simple stimuli and only 

using active exposure training method. While informative, applying the results of this research 

into the complexity of real world perceptual and category learning tasks is not clear cut. 

Although simplifying stimuli to more easily isolate behavior is a necessary step, it is rare that 

complex domains offer stimuli with as readily discernable dimensions. In addition to each 

relevant dimension of stimuli in complex environments, there are countless irrelevant cues that 

are not included in basic tests of category model fit.  

The current study therefore had two purposes: First, study how well the theory (i.e., the 

ATRIUM model) holds up in the face of increased stimulus complexity. Second, investigate 

discrimination training and compare it to the model. With respect to the former, I developed, an 

applied setting in which a target categorization task can closely resemble the previously used 
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simple categorization task (see Table 1). The visual approach task, in its simplest form, fulfilled 

this need. I then extended the stimulus environment to more realistic settings by step-by-step 

adding additional stimulus classes found in the real-world task. 

Table 1.Side-by-side comparison of original ATRIUM stimuli and simple stimuli used in the current study. 

Original ATRIUM Task Visual Approach Task 

Primary Cue (PC): Rectangle Height 

 

Secondary Cue (SC): Line Position 

 

Primary Cue (PC): Position of Runway Line 

 

Secondary Cue (SC): Color Combination of Dots 

Original 

Rule  

Original Atrium Stimuli Applied 

Task Rule 

Proposed Simple Task Stimuli 

If PC > 4.5 

then A 

9           

8           

7           

6           

5           

4           

3           

2           

1           

0           

           

 0 1 2 3 4 5 6 7 8 9 
 

If PC > 3° 

then A 

 

If PC < 4.5 

then  B 

9           

8           

7           

6           

5           

4           

3           

2           

1           

0           

           

 0 1 2 3 4 5 6 7 8 9 
 

If PC < 3° 

then B 

 

Original 

Rule 

Exception 

 Applied 

Task Rule 

Exception 
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If PC + SC = 

9 when PC = 

2 and SC = 7 

then EA 

9           

8           

7           

6           

5           

4           

3           

2           

1           

0           

           

 0 1 2 3 4 5 6 7 8 9 
 

If PC = 4.5° 

and SC = 

WWBB then 

EA 

 

If PC + SC = 

9 when PC = 

7 and SC =2 

then EB  

9           

8           

7           

6           

5           

4           

3           

2           

1           

0           

           

 0 1 2 3 4 5 6 7 8 9 
 

If PC = 1.5° 

and SC = 

BBRR then 

EB 

 

 

I expected that the data resulting from a test with the minimal stimulus equivalent of the 

visual approach task would produce similar response patterns to the original ATRIUM task, not 

just with respect to the percentage of correct responses, but also as a proportion of rule and 

exception responses. Including overall performance and rule/exception responses provides a way 

of studying the applicability of the ATRIUM model with respect to rule-based and exemplar-

based response strategies. To get the most representative picture of model fit, it is important to 

look to training performance to confirm that the appropriate category structures were learned, as 

well as transfer performance measures to gauge the extent that the skill applies to relevant tasks.  



 

28 

 

As discussed earlier, the ATRIUM model is based on the idea of both exemplar and rule-

based mechanisms impacting category learning. According to the model, the contribution of each 

mechanism is dictated by the activation strength produced by each stimulus. The result is a trade-

off system where when one mechanism has greater activation, it is more likely to be utilized to 

make category distinctions. In simple stimulus category learning tasks, early category learning is 

characterized by what is known as overgeneralization. Overgeneralization is the propensity to 

more frequently label items based on rules even in instances of rule exceptions. Over time, 

exemplar based processes become more influential as exemplar associations are strengthened. 

The result is an appropriate balance of rule based and exemplar based influence on category 

judgment. As such, it is logical to deduce that adding stimulus dimensions, regardless of their 

relevance to the task, will shift the response pattern. The process can be thought of in terms of 

attentional weighting, in which over the course of training irrelevant information will be learned 

to be suppressed. The resulting suggestion would be that the influence of rule-based mechanisms 

will be more pronounced for longer in training. As such the following hypotheses reflect the 

predicted shift based on level of training stimulus complexity.   

Hypothesis 1: As training stimulus complexity increases, ATRIUM model fit will hold, such that 

participants will rely more heavily on rule-based response strategies. 

Hypothesis 1a: As training stimulus complexity increases, participant reliance on rule-

based response strategies will increase such that overgeneralization will be evident in 

training for more trials than in simple stimulus conditions.   
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Hypothesis 1b: As training stimulus complexity increases, participant reliance on rule-

based response strategies will increase such that a lower proportion of exception training 

stimuli will be labeled correctly.  

Hypothesis 1c: As training stimulus complexity increases, participant reliance on rule-

based response strategies will increase such that less overall exception responses will be 

given in the transfer task. 

Hypothesis 1d: As complexity increases greater reliance on rule-based processes will 

impact dimensional attention in the transfer task such that a higher proportion of 

exception responses will occur on the primary (rule) dimension of exceptions than on the 

secondary (exception) dimension. 

Perceptual Training 

One of the ever-present challenges that exist in the research community is translating 

research findings into practical solutions in relevant work domains. Merely identifying 

underlying mechanisms of perceptual learning does not guarantee an effortless transition to 

practical implementation. Stating that one needs practice to develop perceptual mechanism skills 

is in many respects too general a distinction for an individual without intimate knowledge of 

training science. Before getting into a specific perceptual training method description, the 

conversation will turn to perceptual skill development. Providing insight into the process of 

perceptual and category learning from the previous sections in combination with a discussion of 
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the resulting skills that accompany these processes will help to direct conversation to perceptual 

training methodology.  

Perceptual Skill 

The goal of any training program is to produce outcome skills that improve task 

performance. Perceptual learning can be thought of as the process by which an outcome, 

perceptual skill, is shaped. Perceptual skill can manifest itself in a wide variety of resulting 

domain-specific task improvements. That is, perceptual skill development can improve the 

ability to spot a card-counter in a casino, hit a baseball, or land an aircraft. Despite the varying 

nature of perceptual skill across domains, these specific skills can be more generally categorized 

into two types of skill, interpolated and extrapolated skill. Posner and Keele (1968) were early 

proponents of this skill distinction, suggesting that the amount of variation in training stimuli 

will impact whether or not specific or generalized skill is developed.     

Interpolated Skill 

Repeated exposure to task relevant stimuli has long been recognized as a central tenet of 

perceptual learning. The result of repeated exposure to a consistent collection of stimuli leads to 

the development of interpolated skill. Interpolated skill also known as stimulus-specific skill, is 

closely associated with the concept of automaticity (Shiffrin & Schneider, 1977). That is, 

repeated exposure leads to strengthened association between stimuli and subsequent responses 

(Schneider & Detweiler, 1988). After enough exposure, individuals become able to quickly 

identify and extract meaningful information from stimuli to which they have been exposed 
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(Karni & Sagi, 1991). This is a particularly helpful skill in domains where there are consistently 

matched stimulus and response pairs (Logan, 1988). Because interpolated skill is very specific to 

the stimuli in which exposure has occurred, it is not particularly pliable to previously unexposed 

material. As task stimuli get more varied and complex, it is logical to deduce that it will take an 

extended amount of time to develop interpolated skill for all relevant stimuli.    

Extrapolated Skill 

 Whereas interpolated skill is specific to previously exposed perceptual stimuli, 

extrapolated skill is associated with how well an individual can apply what was learned to novel 

stimuli or different tasks. Instead of strengthening memory of specific instances, extrapolated 

skill involves developing strategies that generalize outside of just the exposed stimuli. Research 

provides evidence that rule based skills are impactful in simple problem solving tasks (Anderson, 

Fincham, & Douglass, 1997; Haider & Frensch, 1996). These have also been extended to simple 

perceptual learning tasks as well (Doane, Alderton, Sohn, & Pellegrino, 1996; Doane, Sohn, & 

Schreiber, 1999). Variation, as opposed to repetition, of training stimuli has been found to elicit 

development of extrapolated skill (Kerr & Booth, 1978). However, unlike interpolated skill, the 

manifestation of extrapolated skill may not occur immediately following training (Schmidt & 

Bjork, 1992). In spite of the initial short delay manifestation of extrapolated skill, in complex 

stimulus domains, it is reasonable to suggest extrapolated skill development will require less 

time intensive training to achieve proficiency.     

Summary 
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There is plenty of evidence that suggests that both interpolated and extrapolated skills are 

critical outcomes of perceptual learning. Using simple two-dimensional stimuli, Erickson and 

Kruschke (1998; 2001; 2002) have been able to better account for both interpolative and 

extrapolative skill development in categorization tasks, than single system models. Interpolated 

skill is specific to previously exposed stimuli, while extrapolated skill is applied more generally 

to both previously exposed and novel stimuli. The challenge of the training developer is 

determining what mix of skill is both practical and effective in training the perceptual skill 

desired. In domains with very predictable stimulus and response sets, interpolated skill can be 

quite useful. On the other hand, tasks involving ambiguously defined stimulus and response sets 

will be more suitably prepared with extrapolated skill. In all reality, most task domains do not 

fall neatly into one or the other category. Using aviation as an example, a pilot may experience 

countless visually normal approaches to a runway. The repeated exposure in practice itself likely 

serves to strengthen interpolated skill for identifying these normal conditions. In rare instances 

visual conditions can generate illusions that may cause abnormal conditions to appear normal. 

Due to the infrequency of occurrence, extrapolated skill will be more helpful to identify the 

illusion. Experts in these domains, should not only be able to react quickly to scenarios to which 

they have previously been exposed, but also effectively shift from interpolated to extrapolated 

skill response when unfamiliar events occur.        

Perceptual Training Method 

Perceptual training has been overlooked in many domains in which it could prove 

beneficial. This is probably attributable to a number of things, but the most prominent is 
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efficiency. Even in domains where perception plays an important role, the development of 

procedural skill yields more training gains more quickly, strictly speaking, in terms of cost 

benefit. Despite this, perceptual skill remains critical in a large number of task domains. Having 

provided insight into the process (perceptual learning) and outcome (perceptual skill) the 

discussion now turns to training method. 

 The core principle of perceptual training is exposure. In the training context, exposure is 

defined as presentation of task related stimuli with the intention of strengthening perceptual skill. 

Although in a controlled setting, the objectives of exposure are clear, exposure can also result 

from less structured on-the-job experiences as well. Whether recognizing auditory tones (Oakes, 

1955), identifying olfactory characteristics of wine (Wilson & Stevenson, 2003), or seeing small 

feature differences in difficult visual tasks (Biederman & Shiffrar, 1987), training these 

perceptual skills involves some level of exposing individuals to task critical stimuli. The concept 

of exposure follows closely with the notion of practice or experience-based learning described 

earlier in the paper. In fields where there are limited numbers of stimuli which will be 

encountered, repeated exposure can be helpful for imprinting relevant stimuli. Ultimately, this 

can lead to individuals developing what seems to be an almost automatic, unconscious reaction 

to stimuli presented (Shiffrin & Schneider, 1977). As mentioned previously, the practicality of 

exposure gets called into question as the complexity of the task increases. Although exposure 

training can conceivably elicit any one of the processes of perceptual learning, it is most closely 

linked to imprinting. In order for exposure to elicit learning gains associated with attentional 
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weighting or differentiation, individuals have to rely on previously stored information. The 

additional cognitive task of information retrieval logically would take more time. In addition, 

training to imprint every conceivable stimulus becomes an issue of time. In order to present 

perceptual training as a viable training option in complex task environments, training developers 

must look for ways to augment the benefits of exposure with other training techniques. One 

approach to this is to apply general techniques (i.e., feedback, difficulty manipulation, etc…) that 

have been found to enhance learning in other training contexts. Although utilizing these general 

training techniques can help to fine tune training, for perceptual training, it is perhaps more 

beneficial to look at ways to more directly tap into the mechanisms which underlie perceptual 

learning.  

Discrimination Training 

One method that has been suggested to augment exposure is discrimination training. 

Discrimination training is a more explicit form of eliciting the process of differentiation in 

perceptual learning. Other exposure-based training methods generally involve presentation of 

single stimuli, followed by individuals relying on previous memory of similar stimuli to 

determine the appropriate responses. The process of differentiation must occur with previously 

stored representations of similar stimuli. Discrimination training reduces the memory load 

requirements. Individuals are presented with two stimuli either simultaneously or in succession 

and asked to determine whether the critical stimuli are the same or different based on task 

relevant cues. Although the majority of research conducted using discrimination training has 

involved the use of simple stimuli (Doane, Alderton, Sohn, & Pellegrino, 1996; Fahle & 
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Edelman, 1993), the findings hold promise for the utilization in a more complex perceptual 

training environment. Researchers have been able to support the use of discrimination training 

for stimulus-specific (interpolated) skill (Karni & Sagi, 1991). In particular, the research by 

Karni and Sagi suggests that discrimination learning is impactful at the early cortical stages of 

visual processing. From the perspective of exposure training, the penchant for discrimination 

training to use two images instead of one image increases the rate at which individuals are 

exposed to task relevant stimuli. It is logical that this alone, may provide additional training 

benefit of single exposure training for the development of interpolated skill. Taken further, 

discrimination training has also been found to impact extrapolated skill as well. Using a series of 

basic shape comparisons, Doane and colleagues (Doane, Alderton, Sohn, & Pellegrino, 1996; 

Doane, Sohn, & Schreiber, 1999) found that discrimination training has implications for strategy 

development in addition to stimulus recognition. If individuals are provided feedback on each 

trial, they can adjust their response strategy based on inferences about how characteristics of the 

stimuli interact. This suggests that discrimination training not only provides additional exposure 

to images, but in addition provides direct experience differentiating critical perceptual features 

for the task. Through this, individuals are also able to make valuable cue comparisons which can 

lead to strengthened weighting of attention to relevant cues and improved ability to ignore 

irrelevant cues to the task. 

The model which the Doane et al. (1996; 1999) discrimination training research was 

based on is Fisher’s optimal feature model (Fisher & Young, 1987; Fisher & Tanner, 1992). This 
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is a model of visual search. Visual search, as described above, involves primarily determining 

the presence or absence of critical stimuli or cues in the environment. Building off of the work 

using simple stimuli, the discrimination training method has been found to enhance learning in 

more applied settings like security baggage screening (Fiore, Scielzo, Jentsch, & Howard, 2006). 

This task environment is still largely defined by visual search for objects in the environment.  

In domains like aviation, the perceptual task may be more driven by making a judgment 

about the current state of the aircraft in relation to the information present in the environment.  In 

complex task environments such as this, simply identifying if the cue is present or absent may 

not be sufficient for task completion. Instead, it might be more logical to think of the task as a 

categorization of the situation (e.g., too high, too low, etc…) which guides subsequent behavior. 

To insure that discrimination training provides the same learning gains in a perceptual judgment 

task as in visual search, the logical step is to apply discrimination training into a field that is 

characterized more by perceptual judgment. 

Effect of Training Method on Category Learning 

Training tasks associated with category learning are often a single exposure training task. 

As discussed above, exposure training provides a means for eliciting perceptual learning. In 

environments rife with relevant and irrelevant stimuli, limitations like the considerable time to 

reach an acceptable performance range as the number and complexity of stimuli increases, limits 

the training application of the finding (Table 2). Bearing this in mind, the second thrust of the 
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proposed study focuses on how training method influences the effectiveness of a perceptual 

training task in a transfer perceptual judgment task. 

Table 2.Strengths and weaknesses of single exposure and two image discrimination training perceptual training 

methods. 

 Single Exposure Two Image Discrimination 

Strengths - Resemblance to real world task  
- Single exposure facilitates imprinting of 

images 
- Repetition of images supports 

development of exemplar stores 
(interpolation) 

- Alternating between same and different 
image pairs facilitates attentional weighting to 
task relevant cues 

- Same stimulus pairs facilitate development of 
imprinting relevant cues 

- Different stimulus pairs facilitate 
differentiation of relevant cues 

- Variation of image pairs supports 
development of rules (extrapolation) 

- Greater number of images exposed in same 
training time 

Weaknesses - Greater amount of memory reference 
for differentiation 

- Greater amount of memory reference 
for attentional weighting 

- Less images exposed in same training 
time 

- Less variation between images in same 
training time limits development of rule 
development (extrapolation) 

- Less focal scan time per individual image 
slows development of exemplar stores 
(interpolation)  

- Changes nature of task (same/different vs. 
strict categorization) 

  

Practical relevance in the context of this study is best conceived as how well training 

adheres to training goals in an applied setting. In perceptual training especially, time to skill 

proficiency is of interest due to prior work suggesting that perceptual skill requires prolonged 

periods of exposure (Chase & Simon, 1973). In addition to, and in some respects more 

obviously, the overall performance gains of the training are also of interest in terms of 

practicality of training. This is even more important if the training is not a strict replication of the 

task environment. In these instances, it is important to address how the skill obtained in training 
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transfers to overall performance gains. Ultimately, the findings of practical relevance are of 

interest to practitioners interested in applying the research findings into the development of 

training methods. 

As emphasized earlier, the method in which perceptual stimuli are presented can have an 

impact on the development of interpolative and extrapolative skills. Although the research in this 

area has been primarily limited to studies involving visual search (Doane, Alderton, Sohn, & 

Pellegrino, 1996; Doane, Sohn, & Schreiber, 1999), the similarities between visual search-based 

perceptual learning and category learning suggest that these findings may translate into a 

perceptual judgment task in a complex environment. The single image exposure method of 

perceptual training which is commonly used in both visual search and category learning research 

parallels the concepts of imprinting as a perceptual learning mechanism and exemplar-based 

learning in a category learning sense. If these parallels hold up in an examination of training 

methods, one would expect to find that repeated single exposure to stimuli would result in 

noticeable performance improvements with images that participants have been previously 

exposed to. Performance would, however, suffer when transfer to previously unexposed items is 

introduced. A two-image discrimination method of perceptual training may serve to alleviate 

these extrapolation skill decrements. In addition, the increase in stimulus exposure per item (two 

instead of one) will lead to a reduced number of items required to achieve the same level of 

interpolated skill, thus reducing overall necessary training time requirements. By generating an 

active differentiation task (two images side-by-side), the exemplar/imprinting skill will still be 
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derived. In addition, though, rule development and testing which may help to extrapolate to 

previously unexposed stimuli should also take place. This will lead to an improvement in both 

interpolated and extrapolated stimuli in a transfer task. As such, the following hypotheses are put 

forth for the effect of training method on category learning. 

Hypothesis 2: Two-image discrimination training elicits explicit practice with both exemplar and 

rule-based categorization strategies such that it will result in better training outcomes than 

single exposure in the perceptual training task.  

Hypothesis 2a: By increasing the number of images per exposure, the discrimination 

training will result in reduced time to reach training proficiency. 

Hypothesis 2b: Two image discrimination training elicits explicit practice with both 

exemplar and rule-based categorization strategies such that overall accuracy will be 

better on the transfer task than in the single exposure training condition. 

 

Moderating Effect of Training Method on Training Stimulus Complexity 

 As evidenced by the previous hypotheses, both of the manipulations (complexity and 

training type) previously discussed should have important individual impact on training 

outcomes and model fit. Provided the previous assertions about the added benefit of 

discrimination training for training outcomes hold, it is reasonable to assert that this type of 

training will ameliorate perceptual training in any circumstance. When considering training 

complexity though, the observed effects of training method may be more pronounced as training 
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complexity increases. Considering that there are fewer varying visible cues in simple stimuli, 

there will be less information to suppress and subsequently less irrelevant variation between 

images. Following this line of reasoning, it is logical to think that the exemplar based 

associations will strengthen more quickly in the absence of additional information to suppress. In 

this case the benefits of discrimination training will be more noticeable when complexity 

increases. The following hypotheses reflect this logic. 

Hypothesis 3: Training method will have a moderating effect on perceptual training such that 

discrimination training will have a greater improvement of training effectiveness as training 

stimulus complexity increases.  

Hypothesis 3a: Two image discrimination training elicits explicit practice with both 

exemplar and rule-based categorization strategies such that the increased 

overgeneralization caused by increasing training stimulus complexity will be 

ameliorated. 

Hypothesis 3b: Two image discrimination training will produce better overall transfer 

task performance than single exposure training as complexity increases. 

 

Chapter Summary 

In this chapter, a theoretical base was provided for perceptual learning, category learning, 

and perceptual training. By drawing parallels between perceptual learning theory and the more 

cognitively driven category learning theory, the case for applying perceptual training techniques 
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into a perceptual judgment task seems logical. Investigating the impact of task complexity, will 

provide an important link between theory grounded in simple task learning and application into 

more complex real world tasks. In addition the investigation of training type will help further 

research involving techniques which may increase efficiency of the task. By investigating these 

factors in combination (Figure 1) an under-examined piece of the perceptual learning puzzle will 

be addressed.  
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Figure 1. Graphical representation of experimental comparisons. 
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CHAPTER 3: MATERIALS AND METHODS 

Participants 

A total of 244 undergraduates from an introductory course in psychology at the 

University of Central Florida participated in this study. Of them, 14 participants had to be 

excluded after data screening (see Results section). The resulting population was made up of 138 

women and 93 men. All participants were at least 18 years of age, and the median age for 

participants was 19 years. Although the overall stimuli were specifically geared toward a very 

particular aviation task which this population was likely not accustomed to, the goal was to study 

category learning rather than category representation. As such, category learning was best 

observed using populations previously unfamiliar to the categories, in a context free task, so that 

true learning could be observed (Ashby & Maddox, 2005).  

Design 

The goal of this study was to bridge the gap between an applied perceptual training task 

and a model of category learning. To accomplish this, the study manipulated two variables in a 

perceptual training task directly: (a) complexity and (b) training method. This led to a 4 (simple 

stimulus, target stimulus, proximal stimulus, full environment stimulus) x 2 (single exposure vs. 

discrimination image display method) between-subjects design. A no-training control group was 

also included in the design to provide baseline comparisons on the transfer task.  
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Experimental Task 

In aviation, the approach and landing remains one of the most difficult phases of flight. 

Analysis of aviation accident and incident data reveal that controlled flight into terrain (CFIT) 

remains one of the most prevalent causes of fatality (Darby, 2006; Shappell & Wiegmann, 2003). 

Although there are numerous factors that can influence a pilot’s decision process which can 

contribute to CFIT, the visual approach has consistently been identified as a specific maneuver 

that is difficult to train and can in some instances contribute to CFIT. The visual approach 

requires pilots to rely on their visual perception of the environment out-of-the-cockpit to keep 

safe separation from surrounding traffic and maintain a stable angle of approach (a.k.a., 

glideslope) to the landing surface. Perceptually, this requires a pilot to be able to recognize 

instances when they have deviated from recommended glideslope (i.e., am I too high or too low) 

or be aware of the perceptual differences they may encounter in non-standard approaches which 

operate outside of normal approach flight parameters. Unabated misperceptions in these 

instances can lead to unstable approaches which sometimes result in unsafe flying conditions, 

and in extremes can lead to CFIT. In terms of perceptual judgment, the visual approach offers a 

relevant task domain in which a replication of previous studies, which used simple stimuli to test 

the ATRIUM model, can be executed using a more applied task. The experimental task in this 

study was designed to closely resemble and in some respects mirror the design used in previous 

simple stimuli studies involving the ATRIUM model (Erickson & Kruschke, 1998). This was 

accomplished using a method in which there was a primary dimension in which a majority of 

items were categorized according to where it falls in relation to the rule boundary. A secondary 
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dimension was also presented in which, in select cases, the combination of primary and 

secondary dimension values generated an exception to the primary category rule. 

 

Figure 2. Sample static visual approach image. Generated using Microsoft Flight Simulator: X (Microsoft 2006). 

 

The task in this study required participants to make perceptual judgments of static images 

of visual approaches (Figure 2). Previous research using the visual approach task domain, have 

shown that non-pilot participants are capable of performing the task, also showing improvement 

on task performance (Curtis, Jentsch, & Maraj, 2009). The task goal was to accurately label 

displayed approaches into appropriate categories based on relevant cue dimensions in the 

environment.  In order to accurately accomplish this, participants should have attended to two 

relevant cue dimensions. The primary dimension for the task was based on an individual’s ability 

to judge differences in glideslopes. Glideslope was defined as the angle of descent resulting from 

the combination of altitude and ground distance from the landing surface (Figure 3). Generally in 
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aviation, a 3° glideslope is the recommended path of stable approach. Anything that falls above 

or below that path in normal circumstances could be labeled too high or too low. In its simplest 

conception, glideslope can be thought of as a distance judgment between two points in space 

(i.e., end of the runway and horizon). In normal flight operations, this dimension alone can be 

used to judge whether or not the approach is on a stable approach path. In non-standard 

approaches, the recommended glideslope may differ from 3°. In these cases a secondary source 

of information is necessary to accurately make perceptual judgments.  

 

Figure 3. Geometric properties of glideslope. 

  

The Precision Approach Path Indicator (PAPI) is a lighting system that provides a source 

of glideslope information to pilots. It is comprised of four lights which depending on the 

glideslope that an aircraft approaches will change combinations of red and white lights (Figure 

4). In a true replication of an aviation task the PAPI provides a strong external cue to aid pilot 
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decision making in a visual approach. However, to maintain the primary/secondary dimension 

distinctions that more closely matches the previous ATRIUM category learning research, a slight 

modification of the true PAPI lighting configuration was used as the secondary dimension. 

Despite the modification described in more detail in the following section, the underlying rules 

that govern these two dimensions were preserved to maintain face validity of the aviation task.  

 

Figure 4. Precision Approach Path Indicator lighting configuration. 

 

Category Labels 

Categories in which each visual approach image was labeled were based on the primary 

and secondary dimensions. In order to correctly label all images, participants had to attend to 

both. In order to preserve a context free task environment, category labels used in the task were 

nonsense words to reduce the potential for conceptual priming. The primary category distinction 

was made based on whether the visual approach image appeared above or below the primary 

dimension category boundary (3° glideslope). Within these two categories there were five 
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possible glideslope values that differed in half-degree (0.5°) increments. All items that were 

above the primary dimension boundary were labeled Spulch. Items that are below the primary 

dimension were labeled Trantac. 

The secondary, rule-exception, category labels were derived from a specific combination 

of primary and secondary values. As discussed above the secondary dimension was based on the 

PAPI decision aid common at many airports. To replicate the task from previous studies closely, 

yet maintain some level of face validity for the aviation task, the PAPI configurations were 

presented in a way that two of the four lights were blacked out and the remaining images were 

combinations of red and white lights commonly seen in an approach. The secondary dimension 

was comprised of 10 unique lighting combinations. In the training conditions, only two of these 

lighting conditions in combination with specific glideslope values produced the rule exception 

categories, non-standard steep or non-standard shallow approach. The non-standard steep item 

was labeled Yarp and the non-standard shallow approach item was labeled Peltonic. 

Apparatus 

Administration 

This study was administered on 17” wide screen laptop computers. All study materials 

were presented using MediaLab and Direct RT research software.    
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Stimuli 

All images were generated using images generated in Microsoft Flight Simulator X: 

Deluxe Edition (Microsoft, 2006), Team Performance Lab-Where Are You (TPL-WAY) 

software, and Adobe Photoshop. Microsoft flight simulator served as the platform from which 

the imagery was generated using still shots from visual approach conditions. In order to maintain 

image precision, the TPL-WAY software (Curtis, Schuster, Jentsch, Harper-Sciarini, and 

Swanson, 2008) was used to provide precise geo-global coordinates for aircraft positioning at 

real airport locations. In order to control airport and runway size in varying terrains in the 

complex stimuli condition, Adobe Photoshop was used to edit the still images created in 

Microsoft Flight Simulator. Additionally Adobe Photoshop was used to remove visual 

information from the images for the task isolation conditions.  

Table 3. Matrix of category structure for relevant task dimensions in the perceptual training task. Rows represent 

stimulus values along the primary dimension, change in glideslope. Columns represent stimulus values along the 

secondary dimension, PAPI configuration. Training stimulus is designated by a cell containing either an H or an L 

depending on which side of the primary category boundary the stimulus falls. The two exception categories are 

labeled EH and EL. 

G
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5.5   H     H   

5      H     

4.5 H  EH     H  H 

4     H      

3.5  H     H    

    1       2.5    L     L  

2      L     

1.5 L  L     EL  L 

1     L      

.5   L     L   

 WBWB BWWB WWBB BBWR BWBR WBRB WRBB BBRR BRRB BRBR 
PAPI Configuration 
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Training 

Training was comprised of a selection of 20 images from the matrix of possible primary 

and secondary cue dimension combinations (Table 3). Of these 20 images, 18 could be 

categorized in one of the primary category labels (9 as “high approach” and 9 as “low 

approach”); the remaining two images were exceptions to the primary rule that each had a 

category label (non-standard high or non-standard low). These 20 images were presented in 

multiple training blocks. Within each training block, all of the rule images were presented once. 

The items labeled EH and EL in the stimulus matrix represented exceptions to the primary 

categorization rule. These were presented three times in each training block. To assess the 

predictive effectiveness of the ATRIUM model of category learning to an applied task 

environment and to investigate the effectiveness of different image exposure methods, there were 

two manipulations to the training. 

Training Method 

The training method manipulation focused on the way in which the stimuli were 

displayed during training and the response task they were asked to perform. There were two 

conditions, single image exposure training and two image discrimination training. In addition to 

a difference in number of images exposed per training item, each condition asked participants to 

respond in different ways.   
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Single-Image Exposure 

In the single-image exposure condition, 24 training images were presented, one at a time, 

to the trainee within each training block. The order of presentation was randomized across all 

training blocks. The task in this condition was to categorize the displayed stimuli (spulch, 

trantac, yarp, peltonic) based on the critical cue dimensions that determined category 

membership. 

Two-Image Discrimination  

In the two-image discrimination condition, 24 side-by-side image pairs were presented to 

the participant. The task was to determine if the two images presented were the same or different 

based on critical cues which determine category membership in the environment. For this study, 

the discrimination task centered on training individuals to gauge differences in glideslope and 

lighting variations in the displayed visual approach image that dictated category membership. To 

prevent ceiling and floor effects for the task, the selected stimulus discriminations were 

counterbalanced for within category and between category distances. Larger differences within 

categories and smaller distances between categories were presumed to be harder to correctly 

discriminate. 

Image Complexity 

The second manipulation in this study was that of image complexity. To investigate the 

impact of irrelevant, but environmentally present, clutter on category learning, four training 

conditions were developed. Increase in task complexity across conditions was defined in terms of 



 

52 

 

the proximity and number of irrelevant stimulus manipulations to the task relevant stimuli (see 

Table 4). This provided a continuum from simple stimulus training where there were no 

irrelevant pieces of information displayed to full environment stimulus training in which the 

desired skill was embedded in a cluttered environment of varying irrelevant information that 

should have been suppressed to successfully complete the task. The following section provides a 

brief description of each.
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Table 4. Complexity manipulation table. Illustrates the irrelevant stimulus dimensions for each level of complexity. 

Complexity 

Condition 

Simple Stimulus Target Stimulus Proximal Stimulus Full Environment Stimulus 

Image sample 

    
Irrelevant cue  - N/A Runway Size 

- Long/Narrow Runway  

- Short/Wide Runway 

 

Runway size 

- Long/Narrow Runway  

- Short/Wide Runway 

Airport size (# of runways) 

- One runway airport 

- Multiple Runway Airport 

 

Runway size 

- Long/Narrow Runway  

- Short/Wide Runway 

Airport size (# of runways) 

- One runway airport 

- Multiple Runway Airport 

Terrain density 

- Desert terrain 

- City Terrain 
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Simple Stimulus Training 

The simple stimulus condition was intended to isolate the target skill from the 

environment. This provided practice without distraction from other stimuli in the environment. 

For this task, a simple stimulus consisted of an image of a vertical line which represented a very 

simple depiction of a runway, a series of four dots to the left of the vertical line, and a horizontal 

line that spanned the length of the image that represented the horizon line. No additional 

perceptual information was provided in this condition. By isolating the critical dimensions from 

a complex perceptual environment this condition represented a pure task isolation condition.  

Target Stimulus  

The target stimulus condition introduced an irrelevant dimension to the categorization 

task: runway size. While the dot configuration and horizon variables remained the same, the line 

representing the runway was replaced with an image of a runway which varied in size. This 

runway size manipulation was intended to replicate a commonly documented distraction pilots 

encounter when estimating glideslope in a visual approach known as form ratio. Form ratio was 

defined as the ratio of the length and width of a runway. In some cases where runways are at 

extreme dimensions (e.g. short/wide or long/narrow) pilots have a tendency to over or under 

estimate their position in space. The irrelevant dimension in this case was a direct manipulation 

of the appearance of one of the target dimensions in the categorization task. 
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Proximal Stimulus   

The proximal stimulus condition served to broaden the scope of visual clutter to features 

in the environment that were in close proximity to the target cues in the environment. In addition 

to the irrelevant manipulation of runway size, this condition presented additional irrelevant 

information of the airport surrounding the target runway. This manipulation was intended to 

replicate conditions where the size of the airport may impact the ability of a pilot to locate the 

appropriate landing surface. Small airports consisting of only one runway (the target runway) 

may have yielded far different results than a large airport with many runways running either in 

parallel or crossing each other. 

Full Environment Stimulus     

Building off of the proximal stimulus condition, the full environment stimulus condition 

included all irrelevant features previously discussed (i.e., runway size, airport size) in addition to 

broadening the terrain information to the entire image. This condition served to replicate the 

phenomena where the density of the surrounding environment terrain can influence how one 

perceives their position in space.  The full environment stimulus condition represented the 

opposite end of the spectrum from the task isolation condition. Whereas the simple stimulus 

training condition represented a full isolation of the target skill (visual glideslope estimation) the 

full environment stimulus condition represented the embedding of the target skill into an 

environment cluttered with visual information that should have been suppressed to effectively 

make perceptual judgments. 
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Control Group 

In order to provide a baseline for performance on the transfer task, a no training control 

conditions was also included. Participants in this condition received only pre-training which was 

necessary to provide relevant information on how to perform the transfer task. Participants in this 

condition were given the transfer tasks immediately following pre-training.   

Summary of Training 

The training task was designed to address the impact of training type and image 

complexity on response patterns and overall performance on a transfer categorization task. Given 

that there were a varied number of factors that impacted image content for individual training 

items, an effort was made to counterbalance each item variable. Participants were exposed 

equally to each variable instance in their respective training condition. Image variables like 

runway size, airport size, and terrain were all counterbalanced so that each occurred in as close to 

an equal number of condition appropriate items as possible across all training blocks. Due to 

anticipated response patterns of interest, a consistent but unequal number of items were selected 

on the primary (glideslope) and secondary (PAPI lighting) conditions (previously demonstrated 

in Table 3) for training. This intentional imbalance was intended to focus on the variable values 

that were anticipated to produce the most relevant response variance. Image sets were balanced 

across training blocks so that all participants in each training condition were exposed to the same 

images.     
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Measures 

Demographics 

The demographic questionnaire contained standard population demographics (e.g., 

gender, age, etc…), aviation experience, and video game experience questions. See Appendix A 

for the full questionnaire form.  

Spatial Orientation 

The Guilford-Zimmerman spatial orientation (Guilford & Zimmerman, 1948) measure 

was used for this study. This specific measure was chosen due to previous research that showed 

that this measure was predictive of performance on similar aviation training tasks (Curtis, 

Jentsch, & Maraj, 2009). See Appendix B for the measure. The spatial orientation measure was 

intended as a covariate in analysis. 

Skill Transfer  

To test the transfer impact of the training task, two skill transfer tasks were used. Both 

were 100-item single image categorization tests. Participants viewed a display in which a single 

image was shown and asked to categorize whether the image represented a too high, too low, 

non-standard steep or non-standard shallow approach based on the nonsense word labels 

associated with them. The first of the two transfer tasks was a simple stimulus transfer task. The 

images in this task were comprised of the entire pool of simple stimuli generated for the stimuli 

matrix listed in the design section of this paper. The second transfer was a suppression transfer 

task in which the images were comprised of items from the pool of possible full environment 

suppression images. The addition of irrelevant cue manipulations inflated the number of possible 
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variable combinations to 800. To maintain practicality of test time, using the same technique as 

described in the training section, a counterbalanced selection of 100 images from the full 

environment variable image pool were selected for use in the transfer test.  

Procedure 

Upon arrival, each participant was randomly assigned to one of two training method 

conditions and one of four complexity conditions or to a no training control group. Participants 

were seated in front of a laptop computer where they were asked to read and verbally agree for 

informed consent. After that, participants were asked to answer a series of demographic 

questions and completed a test of spatial ability. Prior to beginning the training participants 

received a brief description of the categorization task they were asked to perform and given a 

short test that indicated comprehension of the category labels. Participants then began the 

training. They received 16 blocks of a perceptual training task that matched the training method 

and complexity condition they were assigned. Each perceptual image comparison was presented 

for a maximum of 10 seconds, and knowledge of results feedback was provided following each 

response. In the training, participants were asked to categorize the pair of images by pressing 

designated keys on the keyboard. Failure to respond within 10 seconds resulted in an incorrect 

response. Participants were given a short break half way through the training blocks. At the end 

of the discrimination training, a skill transfer post-test consisting of 200 images was 

administered. At the conclusion of the post-test, participants were debriefed and dismissed. 
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CHAPTER 4: RESULTS 

For this study, analyses consisted of a series of mixed factorial ANOVAs based on 

hypothesized relationships for variables relevant to performance on the simple and complex 

transfer task. Descriptive statistics are presented first, and what follows is a more detailed 

description of the analyses for each hypothesis.  

Descriptive Data 

Prior to analysis, the data were screened. Participants with an average combined mean 

performance score of 25% or less for the final three training blocks (i.e., Block 14, 15 and 16) 

were excluded from analysis.  Only eight participants had to be excluded using this criterion, 

and, in each case, patterns of responses clearly indicated that these were participants who had 

stopped trying and instead were merely “clicking through” each stimulus. In addition, any 

participants who did not receive one of the performance measures, or had computer malfunctions 

during their training session were also excluded from analysis. Together, application of the two 

criteria resulted in the exclusion of a total of 13 participants from the final analysis. Among the 

remaining participants, the number of participants per condition was nearly evenly distributed 

(see Table 5).    

Within the population, only 14 participants reported having any flight experience, due to 

the low number of flight hours reported by these participants, no further distinction was made 

between experienced and inexperienced participants in this data set. Mean, standard deviation 

and inter-correlations between important variables are outlined in Table 6.
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Table 5. Population frequency for participant conditions 

Condition Simple Runway Airport Full Training Type N 

 

Exposure 25 26 25 25 101 

 

Discrimination 27 24 25 25 101 

 

Complexity Condition N 52 50 50 50 202 

 

Control Group 29 

 

Overall N 231 

 

Table 6. Means, standard deviations and inter-correlations of primary study variables. 

 

Exposu

re 

Means  

D

Discrim 

Means 

C

Control 

Means IC B1-O B1- E 

B1-

OG B16-O B16-E 

B16-

OG ST SE PCES SCES FT FE PCEF SCEF 

GZ-Spat. 

Ori. 

Image 

Complex. 

   -                

B1-Overall .388 
(.135) 

.587 
(.123) 

-- -.006 -               

B1-Exceptions .394 

(.249) 

.636 

(.209) 

-- .-.173* .729** -              

B1-Overgen .401 

(.236) 

.441 

(.298) 

-- .239** -.098 -.547** -             

B16-Overall .602 
(.189) 

.644 
(.131) 

-- -.158* .256** .323** -.049 -            

B16-

Exceptions 

.417 

(.319) 

.663 

(.209) 

-- -.186* .389** .421** -.095 .607** -           

B16-Overgen. .477 

(.297) 

.453 

(.339) 

-- .191** -.088 -.177* .151* -.299** -.734** -          

Simple 

Transfer 

.528 
(.247) 

.271 
(.151) 

.249 
(.121) 

-.048 -.305* -.122 -.032 .338** -.079 -.002 -         

Simple Except. 31.58 

(17.80) 

51.039 

(8.867) 

51.58 

(7.27) 

-.045 .349** .163* .037 -.356** .150* -.060 -.786** -        

Prim.Exc Simp .216 
(.191) 

.292 
(.199) 

.322 
(.177) 

-.066 .166* .061 .030 -.145* .065 -.037 -.058 .470** -       

Sec.Exc. Simp. .250 

(.200) 

.285 

(.183) 

.278 

(.198) 

.001 .160* .123 .016 .025 .251** -.178* -.263** .245** -.129* -      
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Full Transfer .605 

(.184) 

.345 

(.126) 

.379 

(.150) 

.120 -.249* -.194** .020 .316** -.132 .059 .597** -.673** -.220** -.111 -     

Full Except. 29.94 
(16.72) 

52.347 
(7.669) 

49.24 
(11.52) 

-.127 .402** .267** -.027 -.200** .227** -.047 -.559** .732** .370** .105 -.828** -    

Prim. Exc. Full .235 

(.192) 

.402 

(.227) 

.393 

(.235) 

-.023 .280** .139* .098 -.019 .207** -.072 -.244** .433** .367** .000 -.325** .650** -   

Sec. Exc Full .215 

(.152) 

.266 

(.159) 

.291 

(.166) 

-.199* .151* .177** -.099 .159* .308** -.170* -.134* .169* -.057 .509** -.283** .251** -.063 -  

Guilford-Zim. 

Spat. Ori 

19.17 
(8.91) 

21.21 
(10.17) 

-- .184** .189** .261** -.065 .135 .235** -.177* .051 .017 -.059 .144* .039 -.002 .139* .018 - 

Mean (SD)    

 

22.17 

(1.34) 

.49 

(.16) 

.51 

(.26) 

.42 

(.27) 

.62  

(.16) 

.54 

(.30) 

.46 

(.32) 

.38 

(.23) 

42.60 

(16.53) 

.26 

(.20) 

.27 

(.19) 

.46 

(.20) 

42.16 

(16.75) 

.33 

(.23) 

.25 

(.16) 

18.71 

(10.63) 

  *p < .05, **p < .01 

 

Note: Image Complexity is the between subjects manipulation of training image complexity. B1-Overall and B16- Overall represent the 

percentage of correct overall responses within a specific training block (i.e. B1= training block 1, B16= training block 16). B1-Exception and B16- 

Exception represent the percentage exception items that are correctly identified within a specific training block. B1-Overgen and B16-Overgen represent 

the percentage of exception items that are incorrectly labeled according to the corresponding rule. Simple Transfer and Full Transfer are the percentage 

of correct identified items for the respective transfer test. Simple Except and Full Except are the total number of exceptions responses for the respective 

transfer test. Prim Exec Simp and Prim Exec Full are the percentage of transfer task items that have the same primary task cue that are labeled as 

exceptions. Sec. Exc. Simp and Sec. Exc. Full are the percentage of transfer task items that have the same secondary task cue that are labeled as 

exceptions. Guilford-Zim. Spat. Orientation is the number of correct items identified on the Guilford-Zimmerman Spatial Orientation measure. Means 

and standard deviation are provided for the training type condition.
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Hypothesis 1a-d: Effects of Stimulus Complexity on Model Fit 

Hypothesis 1 proposed that as stimulus complexity increased, response patterns that 

predict fit in the ATRIUM model would hold. To compare model fit across conditions, four 

variables associated with response patterns that would predict model fit were tested: 

overgeneralization, exception response in transfer, correct exceptions in training, and transfer cue 

response pattern. Each sub-hypothesis represents analysis of these variables individually. Since 

previous tests of the ATRIUM model used exposure training, exposure and discrimination 

training conditions were analyzed separately.  This allowed tests of (a) whether the model held in 

a more complex replication and extension of the ATRIUM study to naturalistic stimuli, and (b) 

whether it would transfer to a training method previously untested with this model, under the 

same conditions. Since the discrimination training group performed equally poorly on the 

transfer tasks as a no training control group, caution was exercised in drawing conclusions in 

respect to training effectiveness response patterns that emerged from any measure using the 

transfer task in Hypothesis 1c and 1d. 

Hypothesis 1a: As training stimulus complexity increases, participant reliance on rule-

based response strategies will increase such that overgeneralization will be evident in 

training for more trials than in simple stimulus conditions.    

Exposure Condition.  Hypothesis 1a proposed to find a relationship between percentages 

of exception items in each training block that were overgeneralized. A mixed factorial ANOVA 

comparing overgeneralization scores across four complexity conditions and 16 training blocks 
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was conducted. A significant within-subjects effect was present for overgeneralization F (15, 

1455) = 3.021, p < .001, Partial Eta
2
 = .263, and a significant between-subjects effect for 

complexity F (3, 97) = 2.448, p = .068, Partial Eta
2
 = .070, were observed. There was no 

significant interaction observed for overgeneralization and complexity on the analysis.  Pairwise 

comparisons were conducted on Training Block 1 to test for initial differences between 

conditions. Pairwise comparisons were also conducted on Training Blocks 14, 15, and 16 to see 

if group differences emerged in the final training blocks. This rationale for comparison holds for 

all remaining hypotheses throughout the results section (i.e., Hypothesis 1c) which involve 

within subjects comparisons across training blocks. For Training Block 1, the percentage of 

overgeneralized exceptions in the simple image condition (M = .320, SD = .198) was 

significantly less than the proximal image condition (M = .447, SD = .203), and the full image 

conditions (M = .447, SD = .258).  

With respect to the final blocks of the training session, there were no significant 

differences for Training Block 14. In Block 15, the simple image condition (M = .340, SD = 

.345) had significantly less overgeneralized responses than the target image condition (M = .577, 

SD = .321), the proximal image condition (M = .513, SD = .220), and the full environment image 

condition (M = .527, SD = .271). Similarly, in Block 16, percentage of overgeneralization in the 

simple image condition (M = .327, SD = .328) was significantly less than in the target image 

condition (M = .564, SD = .306), in the proximal image condition (M = .507, SD = .212), and in 

the full environment image condition (M = .507, SD = .291). The differences between groups in 
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Block 1 suggest that the simple presence of distracting visual information may be enough to 

affect overgeneralization behavior. Similar patterns in the final training blocks, in spite of lack of 

significant differences between the three conditions that contained distracting information, 

largely support Hypothesis 1a. The pattern of responses across training Blocks 1, 14, 15, and 16 

(Figure 5), illustrates a trend of increasing overgeneralization in the three conditions which 

included distracting additional information.  

   

Figure 5. Percentage of overgeneralized responses for training Block 1, 14,15,and 16 by training image complexity 

condition for the exposure training condition. 

 

Discrimination Condition. Analysis of overgeneralization for the discrimination training 

condition produced a significant main effect for training image complexity F(3, 97) = 5.704, p < 

.01, Partial Eta
2 
= .150. Pairwise comparisons revealed that participants that were in the simple 
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Figure 13. Percentage of overgeneralized responses across training blocks by training image complexity condition 

for the exposure training condition. 

 

 

Figure 14. Percentage of correct exception responses across training block by image complexity training condition 

in exposure training condition. 
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