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ABSTRACT 

We report a mechanism based screening technique to rapidly identify eukaryotic topoisomerase I 

targeting agents. The method is based on genetic tagging of topoisomerase I to immobilize the 

enzyme on a solid surface in a microtiter well format. DNA is added to the wells and retained 

DNA is detected by Picogreen fluorescence. Compounds that result in an increase in Picogreen 

staining represent potential topoisomerase interfacial poisons while those that reduce 

fluorescence report catalytic inhibitors; therefore, the solid phase assay represents a „bimodal‟ 

readout that reveals mechanisms of action. The method has been demonstrated to work with 

known interfacial poisons and catalytic inhibitors.  In addition to specific topoisomerase 

targeting drugs, the method also weakly detects other relevant anticancer agents, such as potent 

DNA alkylating and intercalating compounds; therefore, topoisomerase I HTS represents an 

excellent tool for searching and identifying novel genotoxic agents. This method is rapid, robust, 

economical and scalable for large library screens.  
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CHAPTER ONE: INTRODUCTION: 

General Introduction 

The double helical structure of the DNA as postulated by Watson and Crick in 1953 

promotes genome stability by base stacking and hydrogen bonding. Though DNA is conceived in 

the one dimensional array it is present, expressed and functions in a three dimensional crowded 

cellular environment [1]. The semi-conservative model of DNA replication produces constraints 

on the topology of the parental DNA duplex [2]. DNA topology includes the supercoiling, 

interlocking of chains, catenanes and knots. In order to comprehend the topology of the DNA it 

is essential that one fully understand the concepts of (a) Linking Number, L; (b) Twist, T; (c) 

Writhing Number, W. Linking number is defined as a topological property of the DNA and is 

always an integer which gives the number of times one strand intersects with the other. Tw and 

Wr are given either a positive or negative sign. The sign is predicted depending on the 

conformation of the DNA, if for example the DNA is wound in the direction of helix it is 

positive supercoiling where the bases are held tightly and is difficult to separate them. If the 

supercoiling tends to unwind the right handed double helix then it is said to be negative 

supercoiling [3]. Linking number is an invariant value that cannot be changed without breaking 

either one of the strands followed by resealing [2]. Twist represents the helical turns around the 

central axis and corresponds to the Tw angle between base pairs in a DNA molecule. Writhing is 

the property of the double helix to form loops and coils when twisted around itself or around 

protein complexes as in nucleosomes.  It is also a measure of superhelicity. When the DNA 

undergoes elastic deformations the linking number remains constant while Wr and Tw changes 
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in such a way that their sum is constant and equal to linking number. The mathematical 

expression describing the relationship between them would be Lk= Tw + Wr [1, 4-7].  

It has been well established that various cellular processes such as transcription, 

replication, recombination, chromosome segregation and mitosis alter the dynamics of the 

template DNA producing overwinding (positive supercoiling), knots and catenanes. This has to 

be resolved for the survival of the cell and this is performed by the ubiquitous enzyme 

Topoisomerase [2, 8-12]. Topoisomerase action results in the formation of relaxed DNA, 

thermodynamically lowering the free energy state of the DNA which favors the separation of the 

two strands of the DNA [13]. All topoisomerases performs this by unique transesterification 

reaction using the tyrosine residue to create a transient nick on one or both the strands of the 

DNA and preserving the energy from the cleaved phosphodiester bond by forming covalent 

protein DNA complex. This reversible intermediate is known as the cleavage complex [14-16]. 

The enzyme then causes a controlled swivel like movement followed by religation of the strands. 

Topo mutants have shown growth arrests and impaired chromosome stability [17, 18]. 

Topoisomerase has been classified depending on their structural domains and mechanism of 

action. Topo I cleaves single strand DNA and catalyzes the relegation process, while Topo II 

introduces double strand breaks and passes the other segment. These enzymes are highly 

efficient in manipulating the DNA with very high fidelity utilizing either the energy stored in 

supercoiled DNA or by hydrolysis of ATP[17]. 
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Type I Topoisomerase: 

Topo I enzymes cleave one strand of DNA in an ATP independent manner. The uncoiling 

is driven by the torque in the DNA and hence the processivity of the enzyme decreases with the 

relaxation of the DNA. Based on the biochemical complexity and diversity of topo I catalyzed 

reaction and comprehensive structural analyses has facilitated further classification of topo I into 

IA and IB sub-families. 

Table 1: Classification of Topoisomerase family  

 TOPOISOMERASE FAMILY 

IA IB IIA IIB 

 

Catalytic domains 

Mechanistic 

properties 

Metal dependent? 

ATP dependent? 

DNA cleavage 

Cleavage polarity 

 

Toprim/CAP 

 

 

Yes 

No 

Single strand 

5‟ 

 

IB/Int 

 

 

No 

No 

Single strand 

3‟ 

 

Toprim/CAP 

 

 

Yes 

Yes 

Double strand 

5‟ 

 

Toprim/CAP 

 

 

Yes 

Yes 

Double strand 

5‟ 

 

Table adapted from [17]. 

Topo IA: 

Type IA enzymes were first discovered by Wang in 1971, catalyze the relaxation of 

negatively supercoiled DNA generated by processes such as transcription and chromatin 
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remodeling by altering the linking number in steps of one [19]. Positively supercoiled DNA or 

relaxed DNA are not substrates for type IA presumably because of the absence of single stranded 

regions in these structures. E.coli topo I and topo III, yeast DNA topo III, mammalian DNA topo 

III  and III, eubacterial and archaeal reverse DNA gyrase are few examples of single chain 

monomeric type IA topoisomerase [20]. The ability of these enzymes to make single strand 

break in the absence of energy cofactor and attach to the 5‟ end of the broken strand has 

classified them as IA. However they slightly differ in the reactions they catalyze such as bacterial 

topo I are involved in relaxing supercoiled DNA while topo III plays an important role in 

decatenation process. Reverse gyrase is exceptional from other type IA in its requirement for 

ATP to positively supercoil the DNA of hyperthermophiles. It does so to protect the genome of 

bacteria thriving in very high temperature [21, 22].  

The flattened toroidal structure of topo I has four distinct domains: Domain I consisting 

of the / “Rossmann-fold” similar to those found in the nucleotide binding proteins that 

catalyze the phosphodiester reactions, domain II consisting of small  barrel sheets, and domains 

III and IV made up of the  helical structures [23]. Michel Duguet identified that topo IA family 

fold into a horse-shoe shaped structure with a positively charged central hole that accommodates 

the DNA which he describes as the „topofold‟ [24]. Domains I and IV forms the base of a ring-

clamp and is attached to the mobile arch formed by domains II and III. The base harbors the 

CAP (catabolite activator protein) domain for nucleotide binding and the „toprim‟ domain helps 

in strand rejoining [25].  The active site (Tyr 319) residue resides deeply buried in the domain III 

and interacts with other conserved residues. The close proximity of the acidic residues co-

ordinate Mg2+ to assist in catalysis similar to those found in the klenow fragment. Though Mg is 
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not required for activity it increases the kinetics of the reaction [26]. In the case of reverse gyrase 

an additional helicase domain consisting of RecA folds (binds to ATP) and latch domain is found 

[27]. 

Figure 1: Structure and mechanism of Topo IA 

A. Overall structure of E. coli topo III bound to the DNA. The different structural domains are 

indicated in different colors. B. Crystal structure of E.coli topo I illustrating the enzyme bridge 

mechanism of topo I [17]. 

Type IA and II vary in their ability to cleave either single or double strands of DNA; 

however both of them use the “enzyme bridge mechanism”. In which a nick is created in the 

strand the gap is opened between them and allows the second DNA strand or duplex segment to 

pass through it [23]. The interface of domain III and I forms a gating system to regulate the 

passage of the DNA strands. Following cleavage the 5‟ of the broken strand remains attached to 
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the active site and the other end remains non-covalently tethered. The second intact strand or 

duplex is transported across the bridge. Following the entry of the segment into the central hole 

of the N-terminal fragment, the broken strand is rejoined and the second strand exits without 

passing through the rejoined strand [17, 19, 23, 28-31]. 

 

 

 

 

 

 

 

 

Figure 2: Structure of Topo IB 

A 2.8 A resolution of the 70kDa form of the human topoisomerase I in a non covalent complex 

with the DNA [32] 
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Topo IB: 

Type IB structurally differ from IA in that they catalyze the relaxation of both negatively 

and positively supercoiled DNA altering the linking number by up to five turns per reaction 

cycle. They are 80-110kDa in size and are mostly found in eukaryotic cells, with one exception 

being vaccinia virus. Topo IB cleave single strand of DNA in the absence of any metal cation or 

energy cofactor and covalently attaches to the 3‟ end of the DNA [28, 32]. They share structural 

similarities with tyrosine recombinases and integrases catalytic domain. They also perform 

similar functions except for the fact topo IB exists in monomeric form cleaving single strand and 

has additional domains that help in rotating the DNA [33].  Human topoI, vaccinia topo I and 

hyperthermophilic eubacterial DNA topoV belong to topo IB family [20]. Its role has been found 

essential in processes such as transcription and mitrocondrial replication. 

The crystal structure of topo IB consists of four major domains: N-terminal domain 

(~24kDa), core domain (~54kDa), Linker domain (~3kDa) and C-terminal domain (~10kDa). 

The N-terminal unconserved domain is protease sensitive, is highly charged and does not play a 

role in the relaxation of DNA. It has the nuclear localization signals and interacts with a number 

of other cellular proteins especially with rDNA and organelle responsible for the synthesis of 

ribosome [34]. Despite the linker domains potential role in DNA binding, it is dispensable for 

topo activity. The core domain is further divided in to three subdomains based on the structural 

organization designated as I, II and III. The core domain and the C-terminal domain are the 

highly conserved catalytically active domain and executes the cleavage, relegation 

transesterification reactions [35] 
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The human topo IB is a bi-lobed structure that looks similar to a hand encompassing the 

DNA structure. Subdomain I and II consists of two unique helices termed as the “nose cone”. 

They make up the upper region of the lobe or “cap” of the enzyme, while subdomain III and C-

terminal domain forms the lower region. The cap and base interact with each other via two 

opposing loops referred to as the „lips‟ which is the only point of contact and is made up of only 

6 amino acids and one salt bridge. The opening and closing of the clamp is facilitated by a hinge 

[36]. The C-terminal domain is the catalytically active domain and consists of 5 conserved 

residues: two arginine residues (Arg488 and Arg590), a lysine (Lys532), a histidine residue (His 

632) and the Tyr723. Upon binding to the DNA, four of the conserved residues in the active site 

acts to position the nucleophilic Tyr723 to attack the scissile phosphate. This leads to the 

formation of covalent topoisomerase-DNA complex referred to as the “cleavage complex”. The 

tetrad helps in stabilization of the transition state. The Lys532 and Arg488 have been implicated 

in a “proton relay” mechanism, co operating both in deprotonation of Tyr 723 for attack and in 

protonation of the 5‟ OH group of the non-bridging oxygen. Subsequently the second 

nucleophilic attack by the 5‟OH relieves the enzyme and reseals the nicked DNA producing a 

relaxed DNA helix. Thus the constellation of residues helps in coupling the relaxation providing 

a flexible conformation to the enzyme [17, 32, 37-39].  

A „controlled rotation‟ mechanism has been proposed to explain the relaxation of DNA 

by topo IB changing the linking number more than one. In this, the lower part of the cleaved 

strand rotates over the intact strand. The cap along with the linker region influence rotation by 

interacting with the downstream region of the DNA and are maintained in the closed state to 

prevent extensive rotation of the DNA strand. The relaxation of the DNA is governed by the 
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friction caused by interaction of the DNA with the protein and the torque stored in the 

supercoiled DNA. The number of supercoils released by the enzyme follows an exponential 

distribution i.e. more the twists, greater the number of released supercoils [40-42] . 

 

Figure 3: Mechanism of action of Topo IB 

Figure adapted from  [43] 
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Topoisomerase as anti-cancer targets 

Topoisomerases are essential for the survival of various cellular organisms which helps 

maintain the integrity and the structure of the DNA. Topo I is found to be heavily enriched in the 

nucleolus of the transcriptionally active cell due to high rate of processes such as replication and 

transcription taking place at those sites. Topo I is found to be catalytically inactive in dormant 

cells. Through its effect on DNA supercoiling, topo I is involved in gene regulation by 

discriminating the promoter regions to be transcribed [44]. The critical feature common to all 

topoisomerase is the formation of the “covalent cleavage complex” during strand passage event. 

Under normal physiological state these complexes are transitory intermediates and present in low 

concentrations which are tolerated by the cell. However events that significantly increases their 

concentration results in failure to complete the reaction cycle and discontinuity in the 

DNA/RNA, which imposes deleterious effect on the cell if not repaired efficiently [45]. It is 

speculated that the healthy cells in response to DNA lesions employ Tdp1 and SSBR to remove 

the peptide bound to the DNA followed by ubiquitination and degradation by the 26S 

proteosome [46]. This is not the case in most of the cancerous cells which have elevated levels of 

topo I and are defective in their repair mechanism increasing their responsiveness to treatments 

[47, 48]. The chromosomal insults and induction of recombination/ repair pathway triggers 

chromosomal translocations and mutations. Significant accumulation of these aberration results 

in the nucleolar disruption and stabilization of p53 in the nucleus leading to cell cycle arrest and 

apoptosis [49-51]. 
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The Topoisomerase inhibitors have gained wide clinical significance as anti bacterial and 

anticancer therapeutics. Drugs targeting topo I may act by two non-mutually exclusive 

mechanisms; i) Drugs can act by impairing the religation of the cleaved strand. These drugs are 

known as the „interfactial poisons (IFP)‟, due to their mechanism that stabilizes and increases the 

ternary complex by altering topo-DNA interaction and generates strand breaks inducing lethal 

events[1]. ii) Drugs that do not stabilize the cleavage complex but rather inhibit the catalytic 

activity of strand passing by topoI are known as „inhibitors‟ [45]. There are a large number of 

topo I interfacial poisons IFP, including camptothecin, indolarbazoles, NSC314622, 

indenoisoquinolines, among many others [52]. Hypersensitivity of the cells to the poisons 

increases with overexpression of topoisomerase, while reduction leads to drug resistance. 

Conversely decreased concentration of topo I in the cell increases sensitivity to inhibitors. This 

leads to lack of interaction between the enzyme and drug and hence diminishes the antitumor 

effects [53, 54].  

Camptothecin: 

Camptothecin is a plant alkaloid isolated from the stem wood of the Chinese tree 

Camptotheca acuminata. It possesses a novel ring system exhibits potent antileukemic and 

antitumor activities in animals [55]. Interestingly CPT by itself does not cleave DNA rather 

interferes with the breakage-reunion reaction of topo I, trapping the cleavage complex indicating 

that the drug mediated toxicity is mediated through topo I [56]. Strucuture activity study of 

camptothecin on topo I revealed that drugs with this symmetry inhibit relaxation binding to the 

minor groove of the DNA causing bending of the DNA helical axis preventing ligation of the 
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broken ends. This produces nicked open circles which is reversible upon removal of the drug 

unless otherwise it collides with the replication machinery. Camptothecin is known to inhibit 

both the RNA and DNA synthesis. The inhibition of RNA synthesis and fragmentation of 

chromosomal DNA can be rapidly reversed upon removal of the drug. On the other hand, the 

inhibition of DNA synthesis is only partially reversed. [57-61].The cytotoxicity of camptothecin 

is S-phase specific and results when the trapped cleavage complex is traversed by the 

replicationary machinery or helicases [60, 62]. Drug induced DNA damage triggers the 

conjugation of topo I with SUMO, a ubiquitin like protein by UBC9 and downregulation of topo 

I [63, 64]. Ubiquitinated proteins are then targeted to destruction by the 26S proteosome [65]. 

Despite the impressive efficacy of CPT there are certain limitations associated with their 

clinical application. The biological activity of CPT depends on the chemical reactivity of the 

closed lactone ring structure which is poorly soluble. Nevertheless, the hydrolysis of CPT in the 

plasma pH (neutral pH) and association with the human serum albumin shifts the equilibrium 

producing the water soluble E ring opened carboxylate form which is less potent than the lactone 

form [66]. Drug resistance in cancer cells may be due to overexpression of MDR, reduced levels 

of topo I, long cell cycle time, drug resistant mutant topoisomerase and altered DNA repair 

function [67]. Restriction of the use of CPT has led to the development of various analogues of 

CPT. 

Currently available techniques: 

In particular, there is a pressing need for a high throughput screening platform to identify 

new topo I drugs and characterize the nature of the drug action (IFP versus CIC). While some 
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methods exist that can achieve this goal (i.e., agarose gel electrophoresis, SDS-K
+
, ICE 

Bioassay) [68-70], such methods are not readily HTS adaptable and are not easily scalable. 

Several new assays have been proposed to improve our ability to find new topoisomerase active 

agents, such as the triplex formation assays, dual color fluorescence spectroscopy and Surface 

Plasmon Resonance approaches; however, these methods are technically complex and often 

laborious or indirect assays [71-73]. Widespread use of these techniques has been hampered by 

these rate limiting aspects. We report a very simple method for HTS to identify topo I targeting 

agents. The technique involves the binding of His-tagged topo I protein to microtiter plates under 

conditions that preserve enzyme activity. DNA substrate is added and a sensitive DNA dye is 

used to monitor retention. Reconstruction experiments reveal that topo poisons yield an elevated 

fluorescent readout, while catalytic inhibitors yield a repressed fluorescent signature relative. 

The method represents a dual readout that not only identifies topo I targeting agents, but also 

provides rapid insight on possible mechanisms. 
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CHAPTER TWO: MATERIALS AND METHODS 

Materials 

Anti-topoisomerase I monoclonal and polyclonal antibodies were provided by TopoGEN, 

Inc. (Port Orange, FL).  Supercoiled plasmid DNA containing the high affinity topo I 

hexadecameric recognition sequence (pHOT1) was from TopoGEN. The test compounds were 

provided by the Developmental Therapeutics Program from the National Cancer Institute as a 

plated diversity set, mechanistic set and approved oncology drug set. The nickel coated 96 well 

plates were from Fisher Thermoscientific. Nickel-NTA agarose affinity beads were from Qiagen 

and Picogreen was obtained from InVitrogen. 

Purification of human topoisomerase I 

Topo I was overexpressed as a His-tagged protein in Baculovirus. Experiments were 

performed with wild type (wt) and mutant (Y723F) proteins from commercial sources (kindly 

provided by TopoGEN, Inc., Port Orange, FL). Results were repeated with topo I purified as 

described by Stewart and Champoux [74].
 
 Active fractions were supplemented with 50 g/ml 

BSA prior to dialysis (enzyme purity was greater than 98% and was stored at 4
o
C for up to 6 

months without loss of activity). The purified fraction was free of topo II as determined by 

kDNA decatenation analyses and Western blot probing using anti-topo II polyclonal antibody 

(TopoGEN, Inc.). The final fraction was nuclease free based on incubation of pHOT1 with 

excess (>500 units) of topo I in the presence of 5 mM MgCl2. One unit of topo I will relax 

approximately 50% of pHOT substrate (100 ng input) in 30 min at 37
o
C. The final specific 
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activity of a typical preparation ranged between 0.5 to 5.0 x 10
6
 units per mg of protein (total 

yield of 2-2.5 mg). 

Plasmid relaxation and cleavage assays  

Topo I was assayed by relaxation of pHOT1 supercoiled DNA (form I). Reactions were 

carried out in TGS buffer (10mM Tris HCl (pH8.0), 1mM EDTA, 150mM NaCl, 5% glycerol, 

0.1% BSA and 0.1mM spermidine) and 100 ng (or 200 ng, where indicated) form I pHOT1 DNA 

for 30 min at 37
o
C, terminated with 5 uL of stop buffer (5% sarkosyl, 0.125% bromophenol blue, 

25% glycerol) and loaded onto a 1% agarose gel. The gels were run at 1.5-2 V/cm until the dye 

front was 75% down the gel, followed by staining for 30 min with 0.5 g/mL ethidium bromide 

(EB), destaining for 10 min in water and digital imaging using a Gel Doc system (Syngene). 

Cleavage reactions were performed as above in TGS buffer and after incubation at 37
o
C for 30 

min, they were terminated with SDS (1% vol/vol final) followed by digestion with 0.5 g/mL 

proteinase K (30 min 56
o
C). The DNA was extracted by Phenol:Chloroform precipitation, and 

following addition of 3M sodium acetate, pH 5.2 (0.1vol), 2 L of 20mg/mL glycogen, the DNA 

was ethanol precipitated. The pellet was washed with 100 L of 70% cold ethanol, air dried and 

then dissolved in 20 L of TE (10 mM Tris-HCl, pH 7.5, 1 mM EDTA) prior to electrophoresis 

in 1% agarose gels containing 0.5 g/mL ethidium bromide (gel and running buffer). Gels were 

destained in water for 10 min prior to photo documentation. 
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Solid phase assays 

A fixed number of topo I units (50 L final volume) were bound to nickel coated, 96 well 

plates for 2 h at room temperature. All plates are freshly prepared and used the same day; 

however, the enzyme bound plates can be stored at 4
o
C for 48 hr prior to use. The unbound 

enzyme was removed by aspirating off the initial binding solution followed by three washes (200 

L each) with cold PBS containing 0.05% Tween-20 (PBS-T). These conditions effectively 

remove all unbound topo I (Figure 2S). Topo I reactions were initiated by addition of a pre-mix 

solution of TGS and 100 ng of Form I pHOT1 DNA in the presence or absence of test or control 

drugs. Note that supercoiled (Form I) DNA substrate is ideal for screening CIC while linearized 

pHOT1 DNA is ideal for IFP screens; however, both CIC and IFP can be detected using the 

Form I DNA substrate albeit with less resolving power (see Fig.3S). Drugs were dissolved in 

DMSO and the final DMSO concentration in the reaction never exceeded 1% (assays tolerate up 

to 1% DMSO, however solvent controls should be included). Reactions were incubated for 1 hr 

at 37
o
C and terminated by the addition of 0.1 vol of 1% SDS (vol:vol) followed by a 5 min 

incubation at 37
o
C. The reaction mixture was next aspirated and washed three times with 200 L 

PBS-T. Picogreen (100 g/mL) was diluted in TE (1:400) and 200 l was added to each well 

followed by incubation in the dark for 5 min. The relative fluorescence was measured at 485nm 

excitation and 525nm emission wavelength using a Tecan Ultra plate reader (Tecan, US, 

Durham, NC).  
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Data and statistical analysis  

Z‟ factor analyses were performed to determine dynamic range and variability of the topo 

I HTS [75]. Z‟ values should exceed 0.5 for a functional and robust HTS assay based on  

    
                                                                        

                                   
 

 ( 1 ) 

HTS experiments were conducted and the data analyzed from 10 different experiments 

performed on different days with different operators and using different inputs of topo I as well 

as different lots of enzyme and CPT.  The drugs were diluted to a single concentration and HTS 

assay was done. The raw absorbance values were used to calculate % inhibition using the 

formulas 2, 3. 

                                
       

    
   

 ( 2 ) 

                                 
    

       
   

 ( 3 ) 

 

Drugs showing >50% inhibition were selected and further characterized by repeating the assay in 

triplicates. Statistical significance between groups was determined using Student‟s t test (two-

tailed) using GraphPad Prism version 5.0.  
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CHAPTER THREE: RESULTS 

Immobilization of Topo I on Beads or Solid Phase and Activity Recovery 

 His tagged topo I was affinity purified [74] and we consistently obtained high yields of 

intact topo I (mg) with total activity levels typically well over two million units at over 1500 

units/ul (Fig 4). The purified enzyme was capable of detecting topo I cleavage products both in 

the presence and absence of CPT (Fig. 4 and Fig. 9). The enzyme was bound to a nickel affinity 

beads (with a heterologous protein (bovine serum albumin) as a negative control) and assayed for 

enzymatic activity. The data show that bead bound topo I retained excellent CPT mediated DNA 

cleavage activity compared to solution-based reactions with a 20-30% reduction in overall 

efficiency (Fig. 5). To investigate topo I activity on a solid surface, the enzyme was bound to 

nickel coated microtiter plates. Reconstruction experiments on washing conditions establish that 

even with very high (>2000 units) input topo I, three washes were sufficient to remove unbound 

topo I and reduce activity to undetectable levels in the last wash (not shown but see Fig. 5). We 

next used the same lot of enzyme and put equivalent amounts of activity in the wells followed by 

addition of supercoiled DNA to assay topo I relaxation activity of the bound enzyme. Enzyme 

titrations were compared with liquid assays to determine the amount of topo I protein required to 

relax 50% of the Form I DNA substrate. The data reveal that in liquid phase (conventional topo I 

relaxations) ca. 7 ng of enzyme relaxes half of the substrate. In solid phase reactions (where topo 

I was bound, free enzyme washed out, followed by addition of Form I DNA to the wells) ca. 30-

36 ng of enzyme would relax 50% of the substrate (Fig. 6A). We suspect that most of the loss 

may be due to fixing the enzyme to a solid surface which either affects controlled rotational 

events [43] or limits diffusion rates and the ability to engage the DNA in a three dimensional 
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search. The latter prospect seems likely since we did not see large activity losses when binding 

topo I to an affinity bead (Fig. 5) which is free to move through the solution reaction. The loss of 

enzyme activity is offset by the relatively high yields of enzyme; therefore, it is not a rate-

limiting step in HTS operations in this system. To address this point, we next determined how 

much enzyme each well could accommodate at saturation. The wells were hydrated using a 

solution of PBS-T (PBS with and 0.05% Tween) producing stringent conditions for specific 

binding (however, these conditions are compatible with topo I activity, not shown). Different 

concentrations of enzyme were diluted into 50 l of PBS-T and added to each well followed by 

incubation for 2h at room temperature with mild shaking. Topo I binding was confirmed by 

ELISA using a mouse monoclonal primary antibody specific for topo I (Fig. 6B). Maximum 

protein binding was detected with 256-1024 units corresponding to 0.25 to 0.5 ug of input topo I. 

These values are very close to the theoretical maximum of binding capacity of the wells, based 

on information from the commercial supplier of the plates. To more accurately assess saturation 

binding, we eluted topo I (with imidazole) and analyzed the recovered protein by Western slot 

blotting (which gives good linearity with higher concentrations of antigen). Based on slot blots, 

the binding capacity is actually closer to 1.5 g of enzyme (data not shown). This result suggests 

that each well can accommodate large amounts of topo I and despite the loss of activity; we can 

bind sufficient amounts of enzyme to over-ride this limitation.  

Topo I Cleavages in the Absence of CPT. 

 Nicked cleavage products accumulate even in the absence of CPT (Fig. 7). At a threshold 

level of about 100 units of input topo I, cleavage products can be seen in liquid assay. The 
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amount of form II cleavage product did not significantly increase even at much higher ratios of 

enzyme:DNA (up to 600 units of topo I) and the cleavages reached a stoichiometric maximum at 

100 units. That the cleavage product was due to topo I and not a contaminating nuclease can be 

ruled out since the nicked plasmid DNA was not detected unless proteinase K digestions were 

carried out (data not shown). This result clearly demonstrates that topo I cleavage complexes 

form in the absence of CPT, especially at high input levels of enzyme. Moreover, the cleavage 

reactions are not saturated since only a small fraction of input pHOT1 DNA (less than 20%) was 

converted to form II product (Fig. 7, histogram). This should facilitate detection of poisons by 

the method. 

Detection of CPT Mediated Cleavage Complexes in the Solid Phase Assay 

 Next, we titrated topo I in the presence and absence of the prototypic IFP, CPT. At low 

enzyme inputs signals were low as expected; however, at all concentrations tested, the 

fluorescent signature was increased by CPT (Fig. 8A). Note that CPT stimulation increased with 

more input topo I; thus, between 16-64 units, CPT resulted in 1.2-2 fold increases in DNA 

binding to wells, while reactions containing >100 units gave 2.5-2.7 fold increases. This 

behavior is consistent with the conventional liquid assays (i.e., detecting cleavages is optimal at 

high ratios of topo:DNA). To demonstrate that CPT stimulation was correlated with topo I 

activity, we prepared a catalytically inactive mutant (Y723F) that can bind DNA (but cannot 

initiate cleavages). The mutant protein did not display any CPT stimulation at the highest input 

of protein (Fig. 8B); however, DNA binding (relative fluorescence) was detected with mutant 

topo I, as expected (data not shown). We also analyzed DNA retained in wells (after reaction 
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termination) by digesting with proteinase K to release the DNA, followed by agarose gel 

electrophoresis to resolve relaxed and nicked open circular forms. In the absence of CPT (Fig. 

8A, 512 units) 20% of the DNA that was bound to wells was form II (and 80% I
r
). In CPT 

reactions, form II DNA increased to 70% (30% I
r
). Based on these results, the solid phase assay 

can detect interfacial poisons. Additional controls verify that the assay requires on presence of all 

reactants. CPT alone or DNA alone (Fig. 8C) gave background signals. Similarly, adding CPT to 

topo I without input DNA gave background fluorescence. Picogreen signals (Fig. 8C) depend on 

both topo I and DNA. As expected, CPT addition yielded the highest picogreen signal in the topo 

I and DNA wells. As shown in Fig. 8D, the signal is lost when the wells are digested with DNase 

I; however, a small background remains in CPT reactions (topo I partially blocks access of the 

nuclease in the covalent complex) [76].  

Termination, Optimization and Dose Dependence of Solid Phase Reactions 

 Termination and washing conditions of the solid phase reactions were examined next. 

SDS reduced the CPT complexes (10-30% without affecting the non-CPT residuals) and the 

impact of this SDS decrease was nearly identical from 0.1 to 1% (Fig. 9A). SDS in this range 

does not disrupt the nickel-His affinity complexes [77] and we confirmed that topo I is not being 

released from the plates under these conditions (data not shown). From this result we conclude 

that SDS reduces CPT based signals but has little if any affect on non-CPT reactions. The 

influence of elevated CPT concentrations was also evaluated; however, neither the solid phase 

nor liquid phase reactions displayed drug concentration dependency over the range tested (Fig. 

9B). Since appearance of form II DNA is a single hit phenomenon, high enzyme:DNA ratios 
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(100:1 as used here) favor efficient formation of the nicked cleavage product, even at relatively 

low levels of CPT (down to 1 M); however, reducing input topo I levels and titrating lower 

concentrations of CPT (below 1 M), we observed the expected CPT dose response that closely 

matched gel based cleavage data (Fig. 9C). We also evaluated different termination and washing 

procedures to develop some understanding of the nature of DNA retention once the input 

plasmid engages the attached topo I (Table 2). Chaotropic agents had no affect on DNA retention 

either in the presence or absence of CPT. Increasing the volume of the binding/reaction in a 96 

well plate format reduces the fluorescent signal somewhat, probably because surface areas 

increase to a larger extent over volume, thereby decreasing the probably of productive topo 

I/DNA interactions, as noted above. Elevated salt in washing buffers tends to release some of the 

bound DNA (but not all) and even very high NaCl levels (1M-2M) do not release the DNA once 

it is bound.  

Heat Denatured Topo I is Inactive in Solid Phase Assays.  

 Heat denatured topo I bound efficiently to the wells based on ELISA (as in Fig. 8, not 

shown) despite being catalytically inactive (see inset gel Fig. 10A). We then measured DNA 

retention in CPT and non-CPT reactions containing identical dilutions of the enzyme (Fig. 10A). 

The data clearly show that CPT stimulation requires catalytically active topo I (more noticeably 

at the higher inputs of topo I). In the absence of CPT, significant increases in DNA retention of 

native over denatured enzyme were seen, again at the higher inputs of topo I (at 128 and 512 

units, Fig. 10A).  Retention of denatured topo I in the absence of CPT was close to background 

levels (reactions lacking topo I). 
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Reconstruction and optimization of topo I HTS to detect IFP.  

 From the „approved oncology drugs set‟ available from NCI (Developmental 

Therapeutics Program), we selected 8 compounds at random for reconstruction testing of the 

solid phase HTS Assay.These agents were tested at a relatively high concentration (100 M) in 

order to assess whether the assay is influenced by non-specific events. The tested drugs range 

from DNA hypomehtylating agents (Azacitidine, Decitabine), a tyrosine kinase inhibitor 

(Erlotinib), a topo II catalytic inhibitor and radio-chemoprotective agent (Amifostine), an 

immune response modifier (Imiquimod), a bifunctional alkylator (Melphalan) and a bisphonic 

acid that inhibits bone resorption (Zoledronic acid). All of these agents inhibit cell growth with 

IC50 values in the low micromolar range and except for Amifostine are non-topo targeting 

agents. None of the agents would be scored as either IFPs based on solid phase HTS. As 

confirmation, none of the compounds induces topo I cleavage activity (see inset gel, Fig. 10B). 

We next asked whether it was possible to increase the IFP Ratio signal to noise ratio (defined as 

+ drug readout/no drug control), which typically ranges from 2 to 2.7 fold (Fig. 10A). We found 

that using higher inputs of linearized plasmid, significantly improved the IFP Ratio (Fig. 10C) to 

as much as 6 fold. In contrast, Form I DNA was less ideal since the supercoiled DNA tends raise 

the background of DNA cleavage with higher inputs of substrate (Fig. 10D). 

Reconstruction and optimization of topo I HTS to detect CIC.  

In order to optimize the assay for detecting CIC effectors (drugs that block topo I binding 

or catalytic activity), we screened over 90 compounds from the approved oncology set and 

identified two potent CIC drugs (mitoxantrone and daunorubicin) both of which are DNA 
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intercalators (Table 3). To optimize detection of CICs we used mitoxantrone (MTX) as a 

prototypic CIC. As shown in Fig. 11A and 11B, increasing inputs of linear and Form I DNA 

confirm that 100 ng of supercoiled substrate performed optimally and gave the highest CIC Ratio 

(no drug/+ drug ratio). In this case, CIC Ratios were in the 4-6 fold range. The CIC Ratio also 

depends on the amount of input topo I and the ratio can be as high as 10-12 fold (Table 3). 

Therefore, supercoiled DNA is the preferred substrate for CIC detection while linear plasmid 

works best for IFP. As shown in Fig. 11C, the CIC ratio is proportional to input MTX 

concentration under these conditions (using Form I DNA). Fig. 11C shows, for comparison, a 

dose response with CPT using linear DNA, which increases the signal readout with IFPs (see Fig 

10C). Again, we obtained excellent drug response in the optimized format with linear DNA.   

Detecting CIC and IFP. 

 To identify CIC and IFP and utilize the solid phase method as a gating assay, we 

performed solid phase screens using known structures (courtesy of NCI Division of 

Therapeutics) at a single concentration with the optimized assay (CIC screens used Form I DNA 

and IFP screens used linear plasmid). Drugs that showed above 50% inhibition were tested in 

triplicates and their p values were calculated. Statistical cut offs based on p values (Table 3) 

show the positives we detected for each mechanistic class. In the CIC screens, known 

compounds were evaluated at a single concentration (10 uM). The positive control 

(mitoxantrone) was a strong positive that met the statistical cut off (p <0.01) and showed strong 

inhibition of topo I relaxation with gel based assays. Another DNA intercalator (daunorubicin) 

was identified which is less active than the prototype mitoxantrone and DNA intercalators are 



25 
 

known to inhibit topoisomerases [78]. The other natural products (compounds 2-7, Table 3) 

scored as potential effectors of topo I catalytic activity with variable levels of potency and all 

under the cutoff value for significance. None of these compounds displayed catalytic inhibition 

using plasmid DNA. Analysis of IFP active agents reveals mostly topo I poisons as expected 

(compounds 8-10); however, the IFP screen also detected estrogen receptor modulators 

(Tamoxifen, Ralaxofene) [79] and several DNA alkylating agents (Procarbazine, Nitrogen/Uracil 

mustards). 
 

Z’ Determinations 

 A useful parameter to assess signal dynamic range as well as control variations is the Z‟ 

factor. We determined Z‟ values for our data for assays that display maximal differences 

between positives (+CPT) and negative drug controls. For example, with higher inputs (1024 and 

512 units, Fig. 3A) the +CPT mean was 2877 (SD +/-153) and in –CPT the mean value was 1181 

(SD +/- 44.5) yielding a Z‟ value of 0.808. These data were derived from multiple experiments 

performed on different days using different lots of enzyme and with different operators. Thus, 

the solid phase method is robust in detecting IFP active agents like CPT (Z‟ values in excess of 

0.5 are considered acceptable) We note however that Z‟ values were strongly dependent on topo 

I inputs, as expected, since the differences between positive and negative controls was much less 

obvious below a certain threshold of input enzyme. Experiments with low input topo:DNA ratios 

yielded a lower CPT stimulation index (see Fig. 8A, 16-64 units); however Z‟ values were still 

greater than 0.5 (actual values ranged from 0.57 to 0.58).  We obtained similar Z‟ values (0.6-

0.8) using MTX and a CIC based assay screen (not shown). 
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CHAPTER FOUR: DISCUSSION 

TopoisomerasesI are ubiquitinous enzymes that play an essential role in various cellular 

processes related to DNA metabolism and has been the target for various anticancer and 

antimicrobial agents. However lack of a simple and efficient processes has impeded the rapid 

detection of inhibitors of topoI. We have developed a simple high throughput screening method 

that facilitates the detection and differentiation of drugs that form complex with topoI and drugs 

that inhibit the catalytic activity of topo I.   

We have made use of the baculovirus expression system to produce very high yields of 

His tagged topo I. The conventional liquid phase assay has been modified here by tethering of 

the His tagged topo I to the Ni coated plate making it a solid phase assay. Binding of the topo I to 

the plate was confirmed by ELISA which showed maximum binding at 0.25-0.5g of topo I. The 

bound enzyme was then eluted by immidazole and detected by western blotting showing the the 

stability of the immobilized enzyme. We can rule out the possibility of degradation or desoption 

topoI bound to the wells as the proteins remained intact. The supercoiled DNA incubated with 

the bound DNA was found to be relaxed showing that the enzyme remained catalytically active. 

However efficiency of the enzyme activity was found to be reduced which was due to the 

immobilization of the enzyme. Topo I is a highly dynamic enzyme that scans along the DNA 

molecule binding to the nodes. Pinning down the enzyme has probably restricted the three 

dimensional interaction of the enzyme with the DNA substrate. The reduced activity is not 

because of the chemistry of His-Ni as the bead bound enzyme was found to be more active due 

to the free mobility and surface interaction with the substrate DNA molecules. The assay is well 
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suited for HTS operation as a single enzyme purification can yield sufficient amount of topo I to 

screen 10000 to 15000 compounds with 250U / well.  

The assay could be summarized as binding of the topoI to the plates followed by addition 

of the DNA substrate and detecting the DNA bound to the topoI using picogreen dyes. The 

fluorescence signal results from relaxed and nicked open circular products of topo I. However 

elevated signals were obtained when CPT was added to the reaction mixture. This was due to the 

trapping of the ternary complex by the drug. The magnitude of the signal increased with 

increasing concentration of topo I in the wells explaining that the cleavage requires 

stoichiometric amounts of topo I molecule. Thus in accordance with the 1:1 topo DNA ratio, 

increasing the amount of topoI increased the complex formed and hence the signal. The signal 

thus obtained is also mainly due to the complex formation by the active enzyme as it diminished 

when denatured or catalytically inactive enzyme was used in the assay. 

However a small percentage of relaxed DNA was found in the plates in the absence of the 

drug. Suprisingly, the relaxed DNA is only partially released by high salt and 1% SDS was less 

effective. The addition of proteinaseK or DNase totally eliminated this DNA, clearly indicating 

the topo I interaction with the DNA was responsible for the signal. Similarly use of a heat 

denatured topo I significantly reduced the signal indicating the enzyme activity was necessary 

for the retention of DNA. The interaction of the relaxed DNA to the bound topo I may be due to 

some unusually strong electrostatic or ionic bonding different from what is seen in the free 

solution and represents salt and detergent resistant clamping. Some plausible explanations may 

be as because of the multiple protein-DNA contacts as the topo I clamps surrounds the DNA. 
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The relatively large quantities of topo I results in numerous such interactions resistant to salt 

release. Likewise, the immobilization may alter the diffusion dynamics that results in formation 

of unique topological structures tethered that cannot be easily washed away.  

The metrics of this HTS was further optimized to screen for inhibitors and poisons, which 

uses different DNA substrates in the reaction mixture. In some cases, if the researcher is 

interested in screening for interfaction poisons, they may use the linear DNA or in the case of 

inhbitors they may use the supercoiled DNA which produces high signal to noise ratio. However 

the method also works with supercoiled DNA allowing one to potentially discriminate IFPs from 

CIC in a single screen. While IFP increases the fluorescence signal CIC decreases the readouts. 

CPT and MTX were used as the positive internal controls for the assay. This method serves as a 

gating system which could be used to identify positives and negatives at a single concentration. 

The hits identified here could be tested in triplicates to establish the statistical significance with 

the p values. The positive hits could further be verified by the conventional agarose gel 

electrophoresis. 

The plate assay is amenable to do various titrations of the compounds and produce 

quatitative data comparable to the liquid phase assay. Thus is could serve as a rapid and robust 

system to screen compounds. In the current investigation a number of key points have to noted: 

First the assay could be used to characterisize both inhibitors and poisons. Second: the RFU 

values exhibit acceptable correlation with the liquid assay data Third: this could be applied to 

any other DNA transacting enzyme. 
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Figure 4: Purification of human topo I as a His tag product 
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Figure 4: Purification of human topo I as a His tag product 

Baculovirus infected SF-9 cells were harvested as described in “Materials and Methods” and the 

crude extract loaded onto the nickel column. Input, FT (flow through, column void), wash 

fractions are indicated. The imidazole eluted fractions (E1-E6) are marked. The E2 fraction 

contained 2.24 mg of topo I, corresponding to a 22 uM yield with over 2 x10
6
 units of enzyme. 

This fraction was diluted from 0 to 1:1500 and assayed for relaxation of plasmid DNA (upper gel 

image). Cleavage activity of His-tag topo I was assessed in the lower gel. Purified topo I (500 

units) was incubated with zero or 1 M CPT and 100 ng of pHOT1 supercoiled DNA for 30 min 

at 37
o
C and reactions terminated with 1% SDS. After proteinase K digestion, samples were 

loaded directly onto a 1% agarose gel containing 0.5 g/mL ethidium bromide. The positions of 

supercoiled (form I), relaxed (form I
R
) and nicked open circular (form II) DNAs are indicated. 

Low levels of topo I cleavage products are visible in the minus drug control.  
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Figure 5: Topo I activity on affinity beads 
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Figure 5: Topo I activity on affinity beads. 

(A) Nickel sepharose beads were incubated with purified His-tag topo I or BSA. Input proteins 

and FT (flow through) fractions are marked. The beads were washed by centrifugation (10 bead 

volumes per wash) and each wash fraction collected and loaded onto an SDS-PAGE for analysis 

by staining with coomassie blue. Below the input lane is a topo I relaxation assay of affinity 

beads that were washed to remove unbound enzyme. Lanes 1 and 2 contain a supercoiled DNA 

reference marker and topo I control, respectively. Lanes 3 and 4 are dilutions of washed beads 

(diluted to give 0.08 or 0.16 L as indicated) in PBS (20 L reaction volume) to which 200 ng 

pHOT1 supercoiled DNA was added directly, followed by 30 min incubation at 37
o
C. DNA was 

recovered by proteinase K digestion and analyzed on a 1% agarose gel. Lane 5 is 20 L of W4 

(4
th

 wash off the column) mixed directly with 200 ng of pHOT1 supercoiled DNA and incubated 

as above (lane 6 is a relaxed DNA marker). (B) Cleavage Activity on Beads. Purified topo I 

cleavages were assayed in free solution form or on beads using 100 ng pHOT1 supercoiled 

DNA. The indicated units of topo I were from the washed beads in Panel A (the number of input 

units of topo I input for the two assay sets were normalized based on relaxation activity.) 

Proteinase K was used to release DNA for gel analysis. Both solution and bead assays contained 

10 M CPT added. (C) Cleavage Activity of Bead Bound and Free topo I. Equivalent amounts 

of topo I activity were titrated on beads (left) or as free enzyme (right) in cleavage reactions 

containing 10 M CPT. The position of nicked open circular (II) DNA is indicated.  The plot 

below shows the digitized data from the gel. 
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Figure 6: Analysis of Solid Phase and Liquid Phase Topo I Activity. 
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Figure 6: Analysis of Solid Phase and Liquid Phase Topo I Activity. 

 (A) Topo I activity recovery in solid and liquid phase. Topo I titrations were carried out in liquid 

phase by conventional relaxation assays using 100 ng of pHOT1 DNA. The solid phase assays 

were performed by binding the indicated amount of purified topo I protein to plates followed by 

sufficient washing to remove unbound enzyme. Reactions were carried out in the wells by 

adding 100 ng pHOT1 in assay buffer and after incubation, proteinase K (plus 0.1% SDS final 

volume) was added and incubation continued for 15 min at 37
o
C. The recovered DNA was then 

loaded onto an agarose gel to resolve supercoiled (form I) and relaxed DNA (form I
R
). The gel 

data were digitized using a gel documentation system and software (Syngene). 

(B) ELISA Determinations of Bound Topo I. Topo I (specific activity of 5x10
6
 units/mg protein) 

was bound and plates washed to remove unbound enzyme. The remaining signal was detected 

using a monoclonal anti-topo I antibody. The primary antibody was diluted 1:1000 in PBS-T and 

100 L added per well (1 hr) and wells were washed three times with 200 L of PBS-T, 

followed by the enzyme conjugated secondary (rabbit anti-mouse) at 1:500 in PBS-T. Plates 

were washed three times again with PBS-T and quantified at 595nm using TMB Peroxidase EIA 

substrate kit (Bio-Rad).  
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Figure 7: Topo I cleavages in the absence of  CPT. 
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Figure 7: Topo I cleavages in the absence of CPT. 

Topo I reactions (liquid) were carried out at the indicated input of enzyme with 200 ng of 

pHOT1 DNA. After termination with 1%SDS, the reactions were digested with proteinase K and 

loaded onto an ethidium bromide containing agarose gel. Positions of nicked open circular (II), 

linear (III) and relaxed (I
R
) plus supercoiled DNA (I) are indicated (the latter two forms co-

migrate in this gel system containing ethidium bromide). The amount of DNA in form II was 

quantified in each lane in the graph below the gel.  
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Figure 8: CPT Induced Cleavages in Solid Phase Assays 
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Figure 8: CPT Induced Cleavages in Solid Phase Assay. 

(A) Solid Phase Activity Titrations. Indicated amounts of topo I (based on liquid assays) were 

bound to Nickel plates in triplicate and reactions carried out in the absence or presence of 5 M 

CPT for 30 min at 37
o
C as indicated (100 ng Form I DNA input). In one set of reactions (512 

units), the DNA was recovered and analyzed by gel electrophoresis to determine the fraction of 

relaxed or nicked open circular DNA. (B) Fold increase in DNA binding due to CPT. The data in 

the open boxes are based on results shown in Panel A to reflect changes in CPT stimulation over 

a range of input WT (wild type) topo I. The black shaded boxes are data from an equivalent 

titration (in terms of ng input protein) with Y723F topo I mutant that is catalytically inactive but 

can still bind DNA. (C) DNA binding depends on presence of both topo I and DNA. A series of 

reactions were carried out with the indicated solutes. CPT was added at 5 M, DNA at 100 ng 

and topo I at 512 units. Note that backgrounds (+CPT no DNA) were not subtracted (dashed 

line). (D) Bound DNA is released by DNase I digestion. The reactions were assembled with the 

indicated components (CPT added at 5 M). DNase I was added at 50 g/mL was added to the 

wells for 30 min at 37
o
C and the wells were washed with PBS-T three times (200 uL per wash).  
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Figure 9: Reaction termination and CPT Titration Data.   
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Figure 9: Reaction termination and CPT Titration Data.   

 (A) Effect of SDS in Termination Buffer.  Minus (open bars) and plus (5 M) CPT (closed bars) 

reactions were terminated and washed with the indicated buffers that differ in SDS content. 

Reactions contained 512 units of topo I bound to plates. (B) High CPT Titration. Reactions 

contained 512 input units of topo I, 100 ng of supercoiled (Form I) DNA and the indicated CPT 

concentrations.  Identical reactions were processed in solution and the products analyzed by 

agarose gel electrophoresis with 0.5 g ethidium bromide/mL (C) Low CPT Titration. Solid 

phase reactions contained 256 units of topo I bound to wells plus the indicated amounts of CPT 

with 100 ng of Form I input DNA (filled symbols). The same reactions were carried out in 

solution and nicked open circular DNA resolved by EB agarose gel electrophoresis (open 

symbols). 
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Figure 10: Native and denatured topo I and input DNA optimization. 
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Figure 10: Native and denatured topo I and input DNA optimization. 

 (A) Native and Denatured Topo I Analysis. Purified topo I (512 units) was incubated on ice or at 

95
o
C for 30 min and diluted with PBS. Each dilution was bound to nickel coated wells as 

described in “Materials and Methods” using the standard binding reaction (100 ng Form I DNA). 

Background signals (no topo input) are shown but were not subtracted. The inset agarose gel 

shows the activity associated with denatured and native enzyme. (B) Reconstruction Test 

Screens. Compounds were selected from the Diversity Set available from the NCI (see 

“Materials and Methods”) and 100 M tested. Reactions contained 512 topo I units (liquid phase 

units) and 5 M CPT as positive control. Reactions were carried out in triplicate in solid phase. 

The inset gel shows a parallel set of reactions carried out under identical conditions, except the 

DNA products were analyzed on a 1% agarose-ethidium bromide gel. (C,D) Analysis of input 

DNA. Solid phase reactions contained 512 units of topo I and graded doses of linearized plasmid 

DNA (C) or Form I DNA (D) in the presence and absence of 10 M CPT. Reactions were 

carried out in triplicate. 
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Figure 11: Optimized input DNA for detecting CIC.  
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Figure 11: Optimized input DNA for detecting CIC.  

 (A) Input DNA testing.  Solid phase reactions contained purified topo I (512 units) and either 

Form I DNA or linearized plasmid in the presence and absence of 10 M mitoxantrone (MTX).  

Reactions were in triplicate. (B) Reconstructed CIC titration with MTX. Titrations with the CIC 

drug (MTX) contained topo I (512 units) and 100 ng of Form I DNA.  (C) Titrations with the IFP 

drug (CPT) were identical except 100 ng of linear DNA were used.  The CIC ratio represents 

plus drug readout/no drug controls. The IFP ratio is the inverse or - drug/+drug.  
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Table 2: Washing and Reaction conditions 

 

  

Conditiona -CPT +CPT

Controlb 100% 100%

3M Gu-HCl 100% 100%

1M Urea 100% 100%

25ulc 100% 100%

50ulc 66% 100%

100ulc 40% 37%

200ulc 23% 24%

0 NaCl 100% nd

0.1M NaCl 72% nd

0.25N NaCl 66% nd

0.5M NaCl 58% nd

aReactions contained 512 units of topo I input, 100 ng Form I DNA and – or + 5 uM

CPT. The reactions were terminated and washed four times with buffers containing the

indicated solutes or using standard assay washes (see Materials and Methods) with the

indicated binding/reaction volumes. The values given correspond to the % of maximal

observed value for each treatment (nd, not done).
b Control represents the standard solid phase assay conditions for either – and or +CPT

(actual fluorescent units 2150 and 3450 respectively).
cVolume experiments correspond to the volume used in the binding and assay in each

well.
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Table 3: Screening of Natural product set by HTS 

 

a. The natural product set II ( ID# 1391250/87) was screened for CIC active agents that 

would score as catalytic inhibitors of topo I (10M) using Form I DNA. Out of 94 

compounds, only a single compound was statistically significant (mitoxantrone; **p< 

0.01). The other compounds listed allowed elevated targeting of topo I but inhibition was 

negative based on relaxation data. 

b. Confirmations of CIC activity was tested by relaxation of plasmid DNA at three drug 

concentrations ( 1, 10 and 100 M). The 10 M result is shown. 

c. Known topo poisons (brackets) were tested at 10M with linearized plasmid DNA. The 

remaining compounds listed scored as IFP hits with the indicated p values ( *p<0.05, 

**p<0.01) out of 94 compounds screened. The mustard compounds displayed elevated 

IFP ratios but were not statistically significant. 

Compound a CIC Ratio 

-drug/+drug 

bInhibition

(@10 uM)

Negative control 1.0 0%

Positive control 

Mitoxantrone

12.1** 85%

1. Daunorubicin 2.45 <10%

2.  Sporidesmolide 1.86 0%

3.  Himbacine 1.47 0%

4.  Chrysanthin

Pyrethrosin

1.45 0%

5. Dehydroabietic acid 1.42 0%

6. Carbomycin 1.33 0%

7. Fumagillin 

dicyclohexylamine

1.28 0%

Compound c IFP Ratio
+drug/-drug

Negative control -

Positive control 

IFP (CPT)

4.0**

d Positive control 

CIC (MTX)

0.40**

8. Dactinomycin 2.17*

9. Irinotecan 2.2*

10. Topotecan 2.77*

11. Tamoxifen 2.17*

12. Ralaxofene 2.0*

13. Procarbazine 2.0*

14. Nitrogen 

mustard

1.42

15. Uracil 

mustard

1.12
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