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ABSTRACT

Electric vehicles (EVs) are one of the eminent alternatives to decarbonize the transportation sector.

However, large-scale EV adoption brings new challenges and opportunities to both transporta-

tion and power systems (TPSs). The challenges include the lack of understanding of EV driving

behaviors and the associated charging demand (CD) distribution, the complex interaction of the

decentralized decision-makers from TPSs, and the insufficient infrastructure from TPSs to accom-

modate the growing CD of EVs. On the other hand, the opportunities include benefiting the power

systems by leveraging vehicle-to-grid (V2G) technologies and improving transportation mobility

by incorporating strategic infrastructure planning.

The goal of this dissertation is to address the challenges and leverage opportunities associated

with large-scale EV adoption from planning and operational perspectives in TPSs. We have the

following objectives:

1. Better understanding the impacts of driving patterns on the spatio-temporal distribution of

EV CD.

2. Investigate the value of EVs on the coupled TPSs.

3. Plan the supporting power and transportation infrastructure for the growing CD of EVs.

More specifically, we first utilized machine learning approaches to model and forecast CD of EVs

based on their driving behavior. Secondly, we propose a multi-agent model that captures the de-

centralized interactions between key stakeholders in TPSs to investigate the value of EVs in dis-

tribution system support. Thirdly, we modeled infrastructure planning for EV adoption from two

perspectives: 1) We study the multi-stage DG and CS planning problem considering decentral-

ized investors in a multi-agent optimization framework to understand the system evolvement. 2)
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We study the centralized CS planning problem in a bi-level programming framework to optimize

transportation mobility by strategically placing CSs. To overcome the computational difficulties,

we have proposed effective computational algorithms based on exact convex reformulation and

value-decomposition algorithms. Our numerical examples demonstrate that the proposed models

can identify the equilibrium investment patterns of DGs and CSs, as well as determine the optimal

locations of CSs from a centralized entity’s perspective. Additionally, our operational framework

shows how EVs can provide system support for load pickup with endogenously determined incen-

tives and energy prices. These modeling and computational strategies can provide foundations for

future investigation, planning, and market design with large-scale EVs in coupled TPSs.
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CHAPTER 1: INTRODUCTION

Background and Motivation

Increasing global warming, air pollution, and other severe consequences of excessive fossil fuel

consummation have been a wake-up call for policymakers to take practical measures and reduce

carbon emissions. The International Energy Agency (IEA) has examined various emission sce-

narios across different sectors in their recent report [1], investigating the net zero emission (NZE)

policy. In Fig. 1.1, the report’s CO2 emission projections are presented under three possible scenar-

ios: 1) NZE scenario, where all nations implement NZE policies, 2) Announced pledged scenario

(APS), where only the 50 nations that have committed to NZE policies do so, and 3) Stated policies

scenario (STEPS), where nations adhere to their current NZE policies.
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Chapter 1 

Overview 
Key themes of WEO-2021 

 

• In the run-up to a crucial COP26 meeting in Glasgow, this World Energy Outlook-2021 
(WEO-2021) provides a detailed picture of how far countries have come in their clean 
energy transitions, and how far they still have to go. A new global energy economy is 
emerging, but will need to take shape much more quickly to avoid severe impacts 
from a changing climate.  

• An outlook based on today’s policy settings, the Stated Policies Scenario (STEPS), 
shows aggregate fossil fuel demand slowing to a plateau in the 2030s and then falling 
slightly by 2050, the first time this has been projected in this scenario. Almost all of 
the net growth in energy demand comes from low emissions sources. Nonetheless, 
the global average temperature rise in this scenario passes the 1.5 degrees Celsius 
(°C) mark around 2030 and would still be climbing as it reaches 2.6 °C in 2100. 

Figure 1.1 ⊳ CO2 emissions by sector and scenario 

 
IEA. All rights reserved. 

Clean electricity can do a lot of the heavy lifting, but it is harder 
 to bend the emissions curve in industry and transport 

• Announced net zero pledges and enhanced Nationally Determined Contributions, if 
implemented in full as in the Announced Pledges Scenario (APS), start to bend the 
curve and bring the temperature rise in 2100 down to around 2.1 °C. In the APS, oil 
demand peaks soon after 2025, and a more rapid ramp up in low emissions sources 
brings emissions down to 21 gigatonnes (Gt) in 2050. However, a much greater global 
effort will be essential to reach the relative safety of the Net Zero Emissions by 2050 
Scenario (NZE). Announced pledges close less than 20% of the emissions gap in 2030 
between the STEPS and the NZE.  
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Figure 1.1: CO2 emission outlook by sector and scenario [1]

Fig. 1.1 shows that the electricity and industrial sectors are responsible for the highest CO2 emis-

sions, with the transportation sector closely behind. It is also evident that if the current policies

outlined in STEPS are maintained, CO2 emissions from the transportation sector will continue to
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rise, necessitating strict policy implementation in line with the NZE scenario to meet the 2050

targets.

There has been a growing effort from both the power and transportation systems (TPSs) to become

more eco-friendly by promoting intermittent renewable energy sources and electric vehicles (EVs).

These developments open ways for new technologies providing more efficient energy sources and

greener transportation alternatives. As a result, transportation electrification using EVs has been

widely pursued as part of NZE policies. As shown in Fig. 1.2, the number of EVs globally has

surged from 2 million in 2016 to 16.5 million in 2021 over the past five years [2]

Global Electric Vehicle Outlook 2022  

PAGE | 14  

Trends and developments in EV markets 

Over 16.5 million electric cars were on the road in 2021, a tripling in just three years 

Global electric car stock, 2010-2021 

 
IEA. All rights reserved. 

Notes: BEV = battery electric vehicle; PHEV = plug-in hybrid electric vehicle. Electric car stock in this figure refers to passenger light-duty vehicles.  
“Other” includes Australia, Brazil, Canada, Chile, India, Japan, Korea, Malaysia, Mexico, New Zealand, South Africa and Thailand. Europe in this figure includes the EU27, Norway, 
Iceland, Switzerland and United Kingdom.  
Sources: IEA analysis based on country submissions, complemented by ACEA; CAAM; EAFO; EV Volumes; Marklines.
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Figure 1.2: Global market share of EVs by type and region 2010–2021 [2].

The rising popularity of EVs has led to a corresponding increase in the need for charging infras-

tructure and electricity demand, as demonstrated by the upward trend in the number of charging

stations (CSs) across the US (refer to Fig. 1.3). In 2021, there were approximately 50,000 EV CSs

in the US [3]. With the Biden administration’s passage of the $2 trillion infrastructure bill, this

number is projected to reach at least 500,000 by 2030 [4].

The transportation sector’s progress in adopting EVs has placed a significant burden on the power
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Figure 1.3: Public and private EV charging infrastructure in the US 2011–2021 [3].

system, which must handle the increased charging demand (CD). The International Energy Agency

(IEA) predicts that by 2030, EVs will consume roughly 4% of the world’s total electricity demand

under the APS scenario, amounting to 1,100 TWh, and could rise to 1,500 TWh if the NZE target

is achieved by 2030 [2] (refer to Fig. 1.4). Therefore, the EV adoption pathway requires careful

consideration and planning from TPSs.

 Global Electric Vehicle Outlook 2022  

PAGE | 112  

Prospects for EV deployment 

Electricity demand for EVs in 2030 in the Announced Pledges Scenario is higher than total 
electricity generation in Japan in 2020…  

Electricity demand from the global EV fleet by scenario, 2021-2030 

 
IEA. All rights reserved. 

Notes: TWh = terawatt-hours; STEPS = Stated Policies Scenario; APS = Announced Pledges Scenario; NZE = Net Zero Emissions by 2050 Scenario; LDV = light-duty vehicle; RoW = 
rest of the world. The analysis is carried out for each region in the transport model within the IEA's Global Energy and Climate Model (GEC-Model) separately and then aggregated for 
global results. For the Net Zero Emissions by 2050 Scenario, only global values are reported. Regional data can be interactively explored via the Global EV Data Explorer. 
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As part of the energy sector, the power distribution system (DS) requires dependable methods to

estimate and model the dynamic CD of EVs. This is necessary to accommodate energy genera-

tion and consider operational factors. However, the dynamic nature of CD is heavily dependent

on drivers’ choices and their trip requirements, which are linked with the transportation network

(TN), thereby coupling distribution and transportation systems (DTSs). Moreover, the advent of

vehicle-to-grid (V2G) technologies enables EVs to provide energy back to the system, which can

be beneficial for the system but needs careful consideration and scheduling. While EVs can provide

auxiliary services to the system with V2G [5], a large number of EVs can also cause significant

electricity demand on DSs [2] and place more stress on the systems [6]. Therefore, systematic

approaches that consider DTSs are necessary to better understand the CD of EVs and promote

V2G participation. In realistic settings, such an approach must also consider the decentralized

nature of decision-makers involved in DTSs and their individual objectives. Additionally, model-

ing interdependent systems results in a high-dimensional, nonlinear, and non-convex model that is

exceedingly challenging to solve [7].

In summary, this dissertation studies the following challenges and opportunities of EV adoption in

the DTSs:

• The CD dependability on EV drivers’ travel behavior.

• The complex interaction of decentralized decision-makers involved in coupled DTSs.

• The energy and charging infrastructure planning to accommodate the large-scale EV adop-

tion.

• The benefit of EVs providing system support with V2G technologies and the transportation

mobility improvement with strategic planning of CS locations.
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Goals and Contributions

This dissertation aims to explore and propose ways to tackle/exploit the mentioned challenges/opportunities

that arise with the large-scale adoption of EV adoption. The following objectives have been iden-

tified:

• Gain a deeper understanding of how driving patterns influence the charging demand (CD) of

electric vehicles (EVs) by leveraging emerging data.

• Examine the benefits and value that EVs bring to integrated power and transportation sys-

tems.

• Develop plans for the necessary infrastructure, including power DSs and charging stations

(CSs), to accommodate the increasing charging demand for EVs.

To provide solutions for the mentioned objectives, we have contributed to the field of modeling

EVs in interconnected DTS in the following areas:

• We utilized data analytic methods to model and forecast daily CD patterns of EVs using GPS

data. Furthermore, we analyzed the travel behavior of EVs in comparison to conventional

ICEVs commuting in the same urban network. We examined the spatiotemporal CD of EVs

based on their recorded SOC and developed machine-learning techniques to forecast the CD

of EVs based on trip parameters such as trip distances and their start and end times.

• We have created a market-based modeling framework to explore the possible benefits of EVs

in providing energy support to the system during times of stressed operation. This model ac-

counts for the decentralized decision-making of EV drivers in coupled DTSs and is a unique,
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computationally feasible modeling framework that considers the concerns of various stake-

holders and the operating properties of both transportation and power networks. Moreover,

the proposed model calculates the incentives of EV grid services and the corresponding dis-

tribution of EV traffic flow endogenously. Such a model enables comprehensive analyses

of the interdependence between transportation and power networks and the spatial-temporal

value of EVs for DS load balancing.

• We have approached the planning perspective by formulating the problem of expanding the

capacity of CS and DGs as a multi-stage multi-agent optimization problem. This model

provides a practical framework to better understand the interaction between private investors

and the increasing number of EVs. It incorporates both long-term planning and short-term

operational decision-making and explicitly captures the feedback effects of CS availability

and EV adoption, while also endogenously determining locational electricity prices. The

original high-dimensional non-convex problem is further reformulated as a convex problem

for an efficient solution.

• To model the decision-making of centralized entities and policymakers in CS planning,

we have proposed a bi-level programming framework that includes both the decentralized

decision-making of lower-level stakeholders and the CS investment location decision-making

of centralized entities at the upper level. To efficiently solve the highly complex bi-level

problem and understand the impact and interaction of centralized CS investment decisions

on coupled systems, we have developed a solution approach using value decomposition al-

gorithms that is highly scalable.

Outline

The remaining chapters of the dissertation are organized as follows.
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CHAPTER 2 offers a comprehensive literature review on EV adoption, CD analysis, and systems

analysis with EVs.

CHAPTER 3 details the proposed machine learning approach for modeling and forecasting the

CD of EVs.

CHAPTER 4 focuses on the proposed market-based modeling framework, which considers the

decentralized decision-making of EV drivers over coupled DTSs in the context of incentivizing

EVs for DS load pickup.

CHAPTER 5 builds upon the proposed market-based modeling framework by introducing a stochas-

tic model that considers uncertainties from both transportation and power systems. The chapter

evaluates the impact of stochasticity on the performance of the proposed framework in uncertain

emergency situations.

CHAPTER 6 presents the proposed multi-stage multi-agent model for the CS and distributed

generator (DG) expansion planning problem.

CHAPTER 7 introduces a bi-level programming framework for modeling the decision-making of

centralized investors, which incorporates the proposed market framework at the lower level and

proposes a solution algorithm to solve the complex bi-level problem.
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CHAPTER 2: LITERATURE REVIEW

This chapter aims to present an overview of the relevant studies conducted on the modeling of

electric vehicles and charging infrastructure. The literature review is comprehensively divided into

three distinct categories, including data analytic methodologies, infrastructure planning strategies,

and vehicle-to-grid (V2G) modeling for system support.

Data analytic approaches for CD modeling of EVs

The modeling and prediction of the charging demand (CD) of electric vehicles (EVs) has garnered

significant attention from the research community, leading to the development of an extensive

body of literature. This literature can be examined from two primary perspectives: 1) the input

data utilized, and 2) the applied modeling methodologies. Survey data is a widely used source for

multiple studies on EV driving and charging behavior modeling [8–10]. However, the collection

of survey data may be expensive, and it can only provide a perception of travel behavior. Mobile

phone and social network data with location tags may not be suitable for analyzing EV behavior

accurately because the mode of transportation cannot be precisely estimated. GPS data, among

mobility data sources, is the most appropriate for modeling and estimating the actual behavior of

EVs [11]. High-resolution location tracking enables the recording of driving distances for each

trip, calculation of resulting CD, and estimation of locations where charging stations are most

needed. Additionally, the high sample frequency of GPS data can enable accurate modeling of

the temporal behaviors of EVs. In earlier studies [12, 13], the GPS data of conventional internal

combustion engine vehicles (ICEVs) were used to infer EV charging behaviors based on their travel

patterns. Current studies also use GPS data from ICEVs to explore the feasibility and potential of

electrifying the existing transportation fleet [14, 15]. These data sources, however, cannot fully
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account for EV behavior since they are either small-scale data of limited ICEVs or GPS data of

specific vehicle types, such as taxi fleets [12, 14, 15].

Upon selecting a suitable data source, researchers utilize different methodologies to model and

estimate the charging and travel behavior of electric vehicles (EVs). One of the most popular

methods used in many studies is stochastic modeling, which investigates the stochastic behavior

of charging demand (CD) [9, 16–21]. Monte-Carlo Simulation (MCS) is the basis of stochastic

modeling, where a considerable number of scenarios are generated for travel parameters and trip

chains are developed to calculate EV charging behavior [17–19, 22, 23]. However, MCS needs to

generate a large number of scenarios to be accurate, which can make the problem computationally

expensive. Additionally, the correlation of travel parameters is neglected in this method since

scenarios are generated independently for each parameter. Ashtari et al. [16] proposed a stochastic

method that incorporates the correlation of parameters in their distributions. However, this method

only considers the correlation of two parameters. Another stochastic method, the Markov-chain

model, is implemented for modeling EV charging behavior [21]. This method requires fewer

scenarios than MCS. However, it is necessary to group the status of EV travel into different steps

to form an accurate Markov transition matrix, which still has computational challenges. Moreover,

aggregating the traveling status of EVs into discrete steps introduces inaccuracies into the model.

In recent years, researchers have started to utilize machine learning algorithms such as k-nearest

neighbours (KNN) [9] and artificial neural networks [8,24,25] for CD estimation. However, some

studies such as [24, 25] incorporate probabilistic models to generate synthetic trips to overcome

the limited size of their input data. In [8], a large survey dataset is used for estimating the travel

parameters and CD. However, the authors assume unrealistic scenarios such as smart charging of

EV users where a centralized entity determines the optimal charging time and shifts the charging

time to hours with a low charging price. Furthermore, they assume that vehicles will only charge

after their last trip of the day, neglecting the possibility of charging during work hours and other
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public charging options.

Charging station and energy generation planning for EV adoption

The CS planning problem has received attention from both power and transportation disciplines.

Research from a power system perspective has focused on CS capacity planning for minimizing

costs and the impact of Evs on the DSs [26–30], and improving services to the customers (drivers)

by reducing their wait time at CSs [31, 32]. Authors in [33], developed a game theoretical method

to allocate both CSs and DGs in DS network to fulfill the growing system demand and CD. [34]

formulates a stochastic model for optimal siting and sizing of DGs and CSs considering both

economical and environmental factors. However, both of the mentioned studies have a power

system centric approach and do not consider the EV growth and travel and charging behavior

in the TN. Research from a TS perspective has investigated the siting and sizing of CSs in TNs

as a facility location and allocation problem to better serve the charging demand and fulfill travel

needs [35–38]. Majority of literature in this direction have modeled the individual decision making

of the drivers and investors in the TN without considering the operational characteristic of the

DS [39–42].

However, both transportation and power systems have become increasingly coupled with a high

level of EV penetration in current research [43–45]. For example, [43] developed a modeling

framework to determine an optimal allocation of a given number of public CSs to maximize social

welfare in the coupled transportation and power network; [44] proposed a model for the expansion

planning of urban transportation and charging networks ensuring the best investment strategies for

both TS and DS; [45] studied the wireless charging location for electric bus transportation where

the power system was modeled at the higher level and the TS at the lower level. However, this

school of literature typically assumes a central-planner perspective, which may not represent the
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interaction of decentralized decision-makers.

Authors in [46], have considered the decentralized decision making of competitors from both DS

and TS in the CS planning problem. The shortcoming of this work is that they have not considered

the generation expansion and multi-stage modeling of the problem which is essential for under-

standing the evolution of the system given a specific long-term EV penetration target. Authors

in [47] modeled the evolution of a charging infrastructure in the TN with a multi-period study. In

each period, more EV traffic flow would be added to the network by considering additional origin

and destination (OD) pairs. In [48], the long-term CS expansion problem is studied by considering

finite stages of OD demands throughout the planning horizon. The scope of these two studies is

from the TN perspective without considering the charging requirements of CSs from the power

system perspective. On the other hand, [45] takes into account the power system modeling along

with the TN in a multi-stage framework. In this study, the authors have focused on CS siting

and sizing problems for electric buses, and the power system is modeled assuming the CD of CSs

can be fulfilled without considering generation expansions. Additionally, focusing on the electric

buses, this model has not considered the individual decision and preferences of private EV drivers.

EV system support in emergency conditions

In recent literature, the researchers have proposed direct coordinated methods and indirect market

frameworks to alleviate the charging impacts and promote EV participation in grid services in

stressed conditions [49]. Direct methods include reconfiguration techniques with EVs to support

system performance [50], controlling devices/techniques to manage the power flow on the lines and

feeders [51], and managing charging demand during EVs’ dwelling time at charging stations (CSs)

[52, 53]. In direct coordinated frameworks, a centralized entity, e.g., distribution system operator

(DSO) or charging station aggregator (CSA), manages the charging demand during the charging
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sessions. For example, [52, 53] aim to shift the charging demand overtime to minimize the cost of

charging or maximize the profit of the centralized entity based on exogenous daily energy prices.

Other researchers proposed coordination methods to provide better DS operation [54, 55]. For

example, [54] proposes a charging strategy for CSs to manage congestion in DS, and [55] uses EVs

to provide ancillary services. The results of the mentioned methods show limited V2G participation

because EVs attend CSs mostly for charging their vehicles [54], and they don’t have the personal

incentives to participate in the V2G program. Although these studies aim to provide decision

support to manage EV charging, the main drawback is that they typically assume a centralized

perspective, which neglects the individual needs of customers [49] and consider energy prices as

exogenous parameters.

In indirect market-based frameworks, decentralized approaches are proposed to mitigate some lim-

itations of the direct coordinated charging frameworks. In [56], incentive-based demand response

is proposed to mitigate overloads on distribution feeders and minimize the cost of customers with

flexible loads like EVs. However, the incentives are selected from pre-defined sets without the

guarantee of their optimality [57]. Authors in [58, 59] proposed multi-agent equilibrium-based

frameworks for load control to maintain the reliable operation of DS and consider customers’

requirements. However, they haven’t considered EVs in their modelings. Multiple researchers

proposed new market schemes based on the conventional market framework to alleviate system

stress with EVs [6, 49, 57, 60, 61]. For example, [60] proposes a hierarchical control technique to

manage EVs in congestion management. The DSO is at the highest level in this hierarchy with

indirect control over fleet operator (FO) based on the electricity market, and the FO has the lower-

level control over EVs based on the charging price. Similar hierarchy control is proposed in [6]

where a capacity market operator is introduced to manage the interaction of DSO and FO without

considering transportation network and other important variables in EVs decision makings such

as travel time. Furthermore, dynamic tariffs and subsidies are considered to control and promote
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the participation of EVs in stressed/congested DSs in [49, 57, 62]. The electricity prices are de-

termined in the day-ahead electricity markets, and the dynamic tariffs/subsidiaries are provided to

customers with flexible loads in real-time when the system experiences stress/congestion [49, 57].

In [61], sub-markets are formed in parts of the systems that are experiencing congestion to promote

EV aggregators to contribute to congestion management. The mentioned approaches based on the

electricity market require intense data transmission and specific agreements between the different

entities, e.g., DSO and EV aggregators, to manage the market. Modeling such interactions have

complex implementations and require iterative bidding strategies to solve the electricity market

problem. In addition, although EVs are primarily used for mobility purposes, all of these studies

largely ignore EV travel behaviors and travel demand over transportation networks. This drawback

may undermine the applicability of these studies to investigate complex feedback effects between

transportation and power systems.

In terms of EV modeling, power system literature can be divided into two categories. The first cat-

egory considers the transportation network as a black box and uses statistical methods or machine

learning techniques to model the temporal charging demand function, which is further treated as

an input for power system modeling. For example, authors in [63] used probability distribution

functions of daily travel mileage and arrival times of vehicles to model the temporal behavior of

charging demand; authors in [8] have explored machine learning techniques for predicting charging

demand load. The disadvantages of these approaches include their heavy reliance on the empir-

ical model and historical data such that the performance of predictive models is not guaranteed

with evolving transportation and power systems. The second category tries to use traffic assign-

ment models to describe the distribution of the vehicles, which can provide more insights on EV

travel behavior [64]. For example, [65] uses dynamic traffic assignment based on cell transmis-

sion models to consider the traveling requirements of mobile energy sources through transportation

system; [46] proposed a coupled transportation and distribution system modeling based on traffic
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wave theory. However, the travel and charging decision making of EV drivers are not modeled in

these works. Authors in [66] establish a power and transportation equilibrium model to incorporate

drivers’ decision makings, but this work uses a heuristic-iterative solution approach, and load pick-

up is not considered. We developed the individual decision making of EVs further in [67] based on

the classic combined distribution and assignment (CDA) model, but [67] focuses on transmission

systems and does not consider incentivizing EVs’ participation in DS support.
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CHAPTER 3: INVESTIGATING THE SPATIOTEMPORAL CHARGING

DEMAND AND TRAVEL BEHAVIOR OF ELECTRIC VEHICLES USING

GPS DATA: A MACHINE LEARNING APPROACH1

Introduction

The first step in analyzing a new phenomenon is to observe its behavior and its impacts on the sur-

roundings. EVs being the new addition to the transportation system require careful consideration

since not only they would impact the transportation system but also their CD will impact the power

systems. Now that market penetration of EVs is increasing, their addition may change the travel

behavior of drivers and pose a significant electricity demand on the power system. Additionally,

the CD of EVs depends on the travel behavior of EVs, which is inherently uncertain, causing the

forecasting of the daily CD to be a challenging task. Data analysis gives us a powerful tool to

analyze EVs and their adoption of the system. Here, we use the recorded GPS data of EVs and

conventional gasoline-powered vehicles from the same city to investigate the potential shift in the

travel behavior of drivers from conventional ICEVs to EVs and forecast the spatiotemporal patterns

of daily CD based on the drivers trip parameters. Unlike other studies that considered GPS data

of ICEVs as EVs, we have examined the data of actual EVs and provided extensive comparison

on the traveling behavior of EVs and ICEVs commuting in the same urban network. Data analytic

measures are calculated to make the comparisons and machine learning approaches are imple-

mented to forecast the daily CD. We have analyzed the CD of EVs based on their recorded SOC

without making assumptions on EVs’ initial SOC and energy consumption based on the traveling

1This chapter is developed based on the article published in [68]:
S. Baghali, Z. Guo, and S. Hassan, “Investigating the Spatiotemporal Charging Demand and Travel Behavior of
Electric Vehicles Using GPS Data: A Machine Learning Approach”, in 2022 IEEE Power & Energy Society General
Meeting (PESGEM). IEEE, 2022. Link.
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distances, which is a prevalent assumption made in different studies due to the lack of informa-

tion in the data sets. Lastly, different from studies that have focused on temporal behavior of the

CD, we have developed forecasting models to extract and estimate both the spatial and temporal

behavior of CD. Our analysis reveals that the travel behavior of EVs and conventional vehicles

are similar. Also, the forecasting results indicate that the developed models can generate accurate

spatiotemporal patterns of the daily CD.

Data Description

We will use vehicle energy dataset (VED) 2, which is a publicly available data set containing GPS

trajectories of a limited number of personal cars including both ICEVs and EVs in Ann Arbor,

Michigan, the USA from Nov 2017 to Nov 2018 [69]. This is a unique data set providing high-

resolution data of EVs’ energy consumption and their SOC. The VED contains trajectories of

383 vehicles, including 264 ICEVs, 92 hybrid EVs (HEVS), and 27 plug-in HEV (PHEVs/EVs).

The VED consists of dynamic and static data sets; Static data contains vehicle parameters (e.g.,

vehicle ID, vehicle type, vehicle class, etc.), and dynamic data contains high-resolution daily trip

trajectories and other trip parameters (e.g., day number, trip number, latitude, location latitude, and

longitude, etc.). We will derive the vehicle IDs of EVs from static data and use them to extract the

dynamic data of EVs based on vehicle ID. The collected dynamic data has different features of the

trips. Among them, we will use day number, vehicle ID, trip number, timestamps (ms), latitude,

longitude, and SOC of batteries. Table 3.1 shows a sample of the input data with the selected

features for an EV as an example.

We can calculate the trip duration and end time by considering the last timestamp recorded for each

trip. Trip distance is another important parameter that can be extracted with the recorded latitudes

2Data: https://github.com/gsoh/VED
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TABLE 3.1 INPUT DATA EXAMPLE

Day
No.

Vehicle
ID

Trip
No.

Time stamp
(ms)

Latitude
(deg)

Longitude
(deg)

SOC
(%)

5.5602 371 1288 0 42.2776 -83.7537 94.344
5.5602 371 1288 600 42.2776 -83.7537 94.344
5.5602 371 1288 700 42.2776 -83.7537 94.344
5.5602 371 1288 1700 42.2776 -83.7537 94.344

and longitudes at each timestamp by calculating the distance between each consecutively recorded

timestamp and aggregating over the records of each trip using the Haversian formula [70]. The

other key feature of the input data is the recorded SOC of batteries in each timestamp. Therefore,

we don’t need to make assumptions about the initial SOC of EVs and calculate the consumed

energy based on trip distance. With the recorded SOC values, we can determine the consumed

energy in trips and calculate the CD.

After applying all the data prepossessing procedures discussed above, we can derive the parameters

of each trip, i.e., trip start time, end time, origin and destination (OD) locations, and consumed

energy.

Travel behavior comparison

The processed input data contains the records of 4,109 trips made by EVs during one year. This

data can be used to extract the distribution of trip parameters, e.g., trip distance, trip start and end

time, number of daily trips, etc., and presents an opportunity to compare the behavior of EVs and

conventional ICEVs. Therefore, we repeated the same initial data processing on the dynamic trip

data of ICEVs, and the result was the records of 18,936 trips made by ICEVs. We will use both of

these data sets to compare the travel behavior between ICEVs and EVs.
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Fig. 3.1 shows the distribution of daily trip distances for both EVs (Fig. 3.1a) and ICEVs

(Fig.3.1b). The short distance trips (0∼20 Km) are more prevalent in both types of vehicles, and

the main difference is the maximum trip distance. ICEVs have a higher maximum trip distance

(110 Km), where the maximum trip distance recorded for EVs is 35 Km. One can infer that ICEVs

are preferred for long-distance trips. However, since the frequency of such trips is low, no general

trends can be derived.

(a) EVs (b) ICEVs

Figure 3.1: Distribution of daily trips’ distances (a) EVs (b) ICEVs

The trips’ start and end time distributions are shown in Fig. 3.2 and 3.3 for both types of vehicles.

There are no major differences between the trip start time distributions for EVs and ICEVs (see

Fig. 3.2). Minor difference can be seen in the trip end time of EVs compared to ICEVs. EVs tend

to finish their trips less during t = 23 ∼ 1 (see Fig. 3.3a), whereas more trip end time has been

recorded for ICEVs during that time (see Fig. 3.3b). Also, trip end time during t = 10 ∼ 15 has

been more prevalent among EVs compared to ICEVs. This might be because of the charging needs

of EVs after the trips or user preference of the drivers.
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(a) EVs (b) ICEVs

Figure 3.2: Distribution of daily trips’ start time (a) EVs (b) ICEVs

(a) EVs (b) ICEVs

Figure 3.3: Distribution of daily trips’ end time (a) EVs (b) ICEVs

In summary, EVs and ICEVs have similar patterns on trip start/end time and distance per trip. But

ICEVs owners may be more likely to have more daily trips and ICEVs are preferred for trips with

long distances. Also, EVs tend to end their trip more during the afternoons and less close to the
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midnight.

Charging Demand Modeling

In this section, we will derive the daily spatiotemporal CD behavior based on the input data. In

order to detect the charging events, we will compare the SOC of the EVs at the end of each trip

(SOCarr
k ) and compare it to the start SOC of the next trip (SOCdep

k+1) with k representing the trip

index of the EV in the same day. If SOCdep
k+1 > SOCarr

k , trip k would be a charging event starting

at the end time of the same trip k. The CD can be calculated as the multiplication of the difference

between SOCs for the two consecutive trips or the required SOC (SOCreq) and the battery capacity

of each EV (Capv):

SOCreq = SOCdep
k+1 − SOCarr

k (3.1)

CDk =


SOCreq × Capv if SOCreq > 0

0 Otherwise

(3.2)

The temporal behavior of CD also depends on the charging duration (∆T ), i.e., the amount of

time required to receive the demanded energy (CDk). This duration is directly proportional to the

required CD and inversely proportional to the charging rate (α) and charging efficiency (η), which

depend on the battery characteristics and the installed charger. This relation is presented in (3.3).

We assumed that the demand (CDk) will be imposed on the system at the end time of trip k lasting

for a duration of ∆Tk.

∆Tk =
CDk

α · η
(3.3)

Additionally, the location of the charging event will be the destination of trip k, providing the

spatial characteristics of the CD. Going through all the trips of EVs, we derived the charging
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location for each EV (see Fig. 3.4a) – locations are color-coded for different EVs. We observe

more charging instances located in the central part of the city compared to the other regions. The

study region can be divided into finite number of zones {zi}1≤i≤n covering different parts of the

region, with n being the total number of zones, to categorize the spatial distribution of charging

events. The system operator (SO) can divide the region based on its requirements and judgments

to any number of zones with various shapes; To ensure each zone has enough number of charging

records, here we have considered to have n = 9 charging zones as shown in Fig.3.4b, which will

be used to estimate the spatial location of the CD.

(a) (b)

Figure 3.4: (a) Spatial distribution of charging events for different EVs and (b) considered
charging zones of the city

From the power system prospective, the SO can use the calculated CD and the expected charging

location for operational purposes, e.g., day-ahead generation dispatch, real time energy manage-

ment, etc. Additionally, the system planner can use the predicted spatial-temporal CD for the

future expansion of charging infrastructure and estimate the required charging station capacities at

different locations.
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Methodologies

In this section, we will develop forecasting models to estimate the spatiotemporal pattern of daily

CD. In addition, we will prepare the input data and define our input features and targets.

Prepare Model Input Features

At the start of each trip, the known parameters are a) trip start time, b) origin location, and c) start

SOC (SOCdep). Our objective is to predict whether the EV will charge at the destination location;

if yes, which zone and when this charging event will happen, and how much energy it will charge.

Predicting the choice of charging at the end of a trip and the charging zone can be modeled as

a classification problem. We will label each charging event trip of the input data based on the

number of the zone of the event L = i (1 ≤ i ≤ n), defined in Section 3, and define a dummy zone

L = n+ 1 for the trips where no charging happens at the end of the trip. Table 3.2 shows how this

labeling works on the example input data with n = 9. Trips 2 and 4 are not considered as charging

event trips because SOCreq < 0 and trip 4 is the last trip of the day with no information of the next

trip’s SOCdep in the next day (day 6). Therefore, the labels for these two trips are 10. Trips 1 and

3 are charging event trips with SOCreq > 0. The labels for these two trips are determined based on

their destination locations, and they are in zones 9 and 8, respectively.

The temporal behavior of this CD depends on the end time and charging duration and can be

determined based on the procedure presented in Section 3 using (3.2) and (3.3).

In summary, the input features of our problem are vehicle ID and current trip’s start time, origin

location, and SOCdep and we will use them to train the forecasting models.
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TABLE 3.2 PROCESSED DATA EXAMPLE FOR THE FORECASTING MODELS

Vehicle
ID

Trip
No.

T str

(h)
T end

(h)
Origin location

Label SOCdep

%

SOCreq

%Latitude Longitude
371 1 13.44 13.75 42.277 -83.75 9 40.92 41.96
371 2 18.47 18.56 42.253 -83.674 10 45.69 0
371 3 18.96 19.06 42.256 -83.696 8 33.13 46.99
371 4 15.45 15.57 42.302 -83.704 10 64.67 0

Forecasting Models

The forecasting targets in our modeling are the label of the trip, trip end time, and SOCReq. Table

3.3 shows the input features and the targets based on Table 3.2 as an example. Note that we

calculate the CD only for trips with charging events, so we need to add charging labels as an input

feature for forecasting the CD.

TABLE 3.3 INPUT FEATURES AND TARGETS OF THE EXAMPLE DATA

Input features Targets
Vehicle

ID
T str

(h)
SOCdep

%
Origin location Label T end

(h)
SOCreq

%Latitude Longitude
371 13.44 40.92 42.277 -83.75 9 13.75 41.96
371 18.47 45.69 42.253 -83.674 10 18.56 0
371 18.96 33.13 42.256 -83.696 8 19.06 46.99
371 15.45 64.67 42.302 -83.704 10 15.57 0

Five forecasting methods, namely K-nearest neighbor (KNN), decision tree (DT), random forest

(RF), artificial neural networks (ANNs), and deep artificial neural networks (DANNs) were con-

sidered to predict each target. The considered methods have been widely used in machine learning

applications and the detailed comparison on these methods are presented in [71]. We will train

the models and determine their hyper parameters separately for each target with the defined input

features. These parameters include the number of neighbors for the KNN method, tree depth for

DT and RF methods, number of neurons for ANN, and number of neurons on each hidden layer
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for the DANN method. We investigated the performance of the models for a range of parameters

by observing the accuracy of the classification for trip label prediction and the forecasting error for

the trip end time and required SOC. The selected parameters and performance evaluation of the

forecasting models are discussed in Section 3.

Results

Parameter Settings

Before feeding the input data to the forecasting models, we extract the trips made in days with

charging event occurrence (1,062 trips) and split them into training sets and test sets – 25 % test

set and 75% training sets. Scickit-learn library was used to train the KNN, DT, and RF models,

and TensorFlow library were used to train the ANN based models. All the implementations were

done on the Python software.

We trained the forecasting methods for a range of modeling parameters using the training sets and

observed the performance of the methods on test set to select the best modeling parameters. Table

3.4 summarizes the selected parameters for different forecasting methods. For the DANN method,

the number of hidden layers more than the mentioned layers in Table 3.4 resulted in less accuracy.

Therefore, we limited the number of layers to 2 for CS zone (label) and trip end time prediction,

and 3 layers for SOCreq prediction.

According to [72], the battery capacities of EVs studied in the VED data set is in the range of

20∼25 KWh. Therefore, we consider the battery characteristics of Fiat500E, which is reported as

one of the popular EVs in Alternative Fuels Data Center [73] and has a battery capacity of 24 KWh.

We assume a charging rate of α = 6.6 KW (i.e., level 2 charging) and the charging efficiency to be

η = 0.9 [73] for CD demand calculations mentioned in (3.3).
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Table 3.4 Forecasting model parameters

Target
KNN

neighbors
DT

tree depth
RF

tree depth
ANN

neurons
DANN

Layers Neurons
Label 11 8 6 400 2 500,100
T end 4 8 18 500 2 400,100

SOCreq 10 4 5 400 3 900,500,100

Charging Demand Forecasting

After determining the parameters for each forecasting model, we compared their performance for

predicting each target on the test data set (see Table 3.5). The RF method provided the highest

accuracy for charging zone label prediction and the least RMSE value for the trip end time and the

DT method had the least RMSE value for predicting the required SOC. Even though ANN-based

models have provided superior performance in other machine learning studies [8, 74], simpler

models (KNN, DT, and RF) provided better results for our dataset. The low accuracy of label

prediction stems from the small number of charging event trips (446 trips) compared to all of the

trips made in days with charging events (1,062 trips) and a large number of classes/zones (10

classes).

Table 3.5 Performance of forecasting models on the test set: classifying accuracy for label predic-
tion and RMSE value for T end and SOCreq

Target KNN DT RF ANN DANN
Label (%) 63.91 63.53 73.97 65.73 65.78
T end (h) 0.39 0.17 0.15 0.19 0.19

SOCreq (%) 17.05 15.55 15.79 21.73 17.57

We selected the best forecasting models for each target and predicted the spatiotemporal pattern

of daily CD (see Figure 3.5). We considered two cases for forecasting the SOCreq 1) using the
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predicted labels as the input feature of the trained DT model and 2) using the actual labels of the

trips. Charging start times were based on the predicted trip end times, and the resulting daily CDs

were calculated using the procedure delineated in Section 3.

Comparing the estimated demands from case 1 and the test data (see Fig. 3.5a and 3.5c) shows

that the developed classifier failed to detect the charging events in zone 1. This discrepancy is

because of the less recorded charging events in this zone (see Fig. 3.4b). On the contrary, most of

the charging events are predicted to occur at zone 5, which has more charging records in the input

data, causing a significant spike in CD of this zone at t = 11 ∼ 12. Moreover, the estimated CD

for case 1 follows the temporal pattern of the CD during t = 0 ∼ 6 but performs poorly in the

afternoon (see Fig. 3.5a) because more charging events are predicted to be at zone 5 and most of

the charging events in this zone happen in t = 11 ∼ 16.

Passing the actual zones from the test data for forecasting the SOCreq (case 2) improved the tem-

poral pattern in the afternoon and the nighttime (see Fig. 3.5b). The accurate charging zones

have reduced the charging events in zone 5 and we no longer observe the high peak CD during

t = 11 ∼ 12 (compare Fig.3.5a and 3.5b). This increase in accuracy points out the importance of

charging zone prediction in determining CD’s temporal and spatial behavior.

For comparing the temporal pattern of CD, we have derived the total daily CD (see Fig. 3.5d). The

estimated CD after midnight until the morning (t = 0 ∼ 6) follows the same pattern in both cases

and resembles the actual CD derived from test data. However, in the afternoon, the prediction

inaccuracy in charging zones resulted in inaccurate temporal estimates for case 1, especially after

t = 17.

The SO and system planners can use the estimated spatio-temporal CD in different applications:

1) The predicted zonal CD in Fig. 3.5b can be used for day ahead generation dispatch and other

operational planning purposes. For example, it is estimated that the CD at zone 8 would be high
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Figure 3.5: Zonal CD for (a) case 1 (b) case 2 (c) test data, and (d) total CD; — zone 1, — zone 2,
— zone 3, — zone 4, — zone 5, — zone 6, — zone 7, — zone 8, — zone 9; -.- Test data, -.-
Estimated case 1, -.- Estimated case 2.

during the morning. Therefore, the SO would consider allotting sufficient energy generation in the

day ahead planning of that zone. 2) The system planner can use the expected zonal CD for inferring

user preferences and expanding the CS infrastructures. For example, the daily CD pattern shows

higher CD at zones 5 and 8 compared to the other zones (see Fig. 3.5b), which can be good

candidates for CS expansion.
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Summary and Future Extensions

Estimating EVs’ daily CD’s spatial and temporal pattern is a vital factor in modeling uncertainties

in power systems. CD pattern is closely related to the travel behavior of EVs. In this study, we

use the VED, a high-resolution GPS data set of both EVs and conventional vehicles, to investigate

the potential differences in the travel behavior of EVs and conventional vehicles and analyzed the

real spatiotemporal pattern of CD. Our analyses showed that the travel behavior of EVs is similar

to ICEVs in terms of trip start and end time, and trip distance. But EVs tend to have fewer daily

trips compared to ICEVs.

After processing the GPS trajectories of EVs, we developed forecasting models to predict the

spatiotemporal pattern of CD based on the known information at the starting point of the trips. The

spatial pattern of CD was modeled as a classification problem, where the charging event locations

were grouped in different zones. The CD and its temporal pattern were estimated using a decision

tree and random forest regressors with high accuracy.

The small scale of the input data limited the performance of the forecasting model, and we will

examine the models on larger data sets as more data sets are becoming available for EVs. Future

extension should also investigate the potential reasons of different predicting accuracy to better

understand the applicability of machine learning algorithms. Another extension of this work is to

develop a forecasting model to predict the daily CD based on the historical travel data rather than

based on information at the starting point of each trip.
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CHAPTER 4: ELECTRIC VEHICLES FOR DISTRIBUTION SYSTEM

LOAD PICKUP UNDER STRESSED CONDITIONS: A NETWORK

EQUILIBRIUM APPROACH1

Introduction

Power distribution systems (DSs) have an ever-increasing electricity demand that requires long-

term planning and proactive management. The growing demand would cause line congestion and

low voltage, which may trigger contingencies such as line outages. As DSs are operated with radial

topology, outage of a line means the loss of all loads at downstream nodes. When the DS is under

stressed conditions, which means the system is heavily loaded, the bus voltage may appear to be

over low, and distribution lines may be congested. A remedy to circumvent severe contingencies

and blackouts is to shed some load, ensuring the security of the whole network.

The growing market penetration of electric vehicles (EVs) can provide auxiliary services to the

system with vehicle-to-grid (V2G) technologies; on the other hand, they can impose large elec-

tricity demand on DSs causing more stress on the systems. Additionally, the driving patterns of

EV drivers and their dependency on the transportation network make charging demands highly

unpredictable. Therefore, systematic approaches considering both distribution and transportation

systems are required to better understand the charging demand of EVs and promote V2G partici-

pation to reduce system stress.

Here, we will investigate the potential effects of EVs on reducing the load shedding in heavily

1This paper is developed based on the paper published in [75]:
S. Baghali, Z. Guo, W. Wei, and M. Shahidehpour, “Electric Vehicles for Distribution System Load Pickup Under
Stressed Conditions: A Network Equilibrium Approach”, in IEEE Transactions on Power Systems, IEEE, 2022. Link.
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loaded distribution systems (DSs). Given proper incentives, a considerable number of EVs could

provide vital support to holding the load and improving operating flexibility. A market-based mod-

eling framework that incorporates the decentralized decision-making of EV drivers over coupled

transportation and distribution networks is missing in the context of incentivizing EVs for DSs

load pickup. We propose a network equilibrium model that integrates market clearing in DSs and

traffic flow balance in transportation systems. This model captures the decentralized interactions

between key stakeholders in transportation and distribution networks as well as the spatial distri-

bution of EV traffic in response to endogenously determined incentive signals. To mitigate the

computational challenges brought by the non-convex network equilibrium model, we develop an

equivalent convex reformulation with guaranteed global convergence. Numerical studies are con-

ducted to demonstrate the effectiveness of the proposed model and computational performance.

The proposed method could provide a fundamental tool for analyzing interdependent transporta-

tion and distribution networks coupled by charging facilities and EVs.

More specifically, the contribution of the proposed model is twofold.

• First, unlike studies that haven’t considered transportation system requirements for EV par-

ticipation in power system support, we propose a network equilibrium model that captures

the complex interactions between key stakeholders in both distribution and transportation

systems. Also, the proposed model endogenously determines the incentives of EV grid ser-

vice and the corresponding EV traffic flow distribution. Such a model allows for rigorous

analyses on transportation-power interdependence and the spatial-temporal value of EVs on

DS load pickup.

• Second, we propose an exact convex reformulation of the network equilibrium model with

a guaranteed global convergence property. This model does not rely on the iterative bid-

ing strategies of market-based approaches. The convex reformulation in this paper can be
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solved by a commercial nonlinear solver to the global optimum without convergence issue.

In addition, we provide a reformulation strategy to handle network equilibrium models in-

corporating spatio-temporal clearing conditions on EV traffic flow in transportation systems

as well as the clearing conditions on energy exchange between the stakeholders in DSs to

quantify EV incentives.

The following list provides the definition of all the notations and indices used for the problem

modeling in this chapter.

Sets and Indices

• A: Set of transportation links, indexed by a

• E : Set of EV groups indexed by e

– Eτ : set of group e EVs arriving at CSs at time τ

• I: Set of distribution system nodes, indexed by i or j

– ICS: set of CS nodes

– IDG: set of distributed generation nodes

– IL: set of load nodes

• L: Set of distribution lines indexed by l

• N : Set of transportation nodes indexed by n or m

– R: set of vehicle departure nodes, indexed by r

– S: set of charging locations, indexed by s

• T : Set of time periods, indexed by t or τ

– T arr: Set of EVs’ arrival time period at CSs

Parameters
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• βk/ϵ: Coefficients/error term in drivers’ utility function

• ∆T : Time duration in one period (e.g., 1 hour)

• ζe: Battery capacity degradation rate of group e EVs

• λl,t: Binary indicator of the status of line l at time t

• ωi,t: Weights of load-pickup priority at node i and time t

• A: Transportation node-link incidence matrix

• Ci(·): ost of energy production of DG i

• Cape: Total nominal battery capacity of group e EVs

• Capend,e: Normalized battery capacity at the end of life for group e EVs

• Crep,e: Replacement cost of the battery for group e EVs

• Cres,e: Residual battery value of group e EVs

• dshelf,e: Shelf degradation of group e EVs

• Ers: OD incidence vector of OD pair rs

• FNl/TNl: Start/end nodes of line l

• K: A large value for relaxing constraints

• LFl,i/LTl,i: Incidence matrices with element l, i: equals to 1 if line l starts/connects from/to

node i and zero otherwise

• P̄ d
i,t/Q̄

d
i,t: Maximum expected active/reactive load demand at node i and time t

• P̄ ch
r,e/P̄

dch
r,e : Maximum charge/discharge rate of group e EVs departing from r
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• Qe
r: Departing flow at location r of group e EVs

• q̄τrs: Conventional vehicles travel demand from node r to node s at time τ

• rl/xl: Resistance/reactance of line l

• Sbase: The nominal apparent power of the DS

• Smax
l : Maximum apparent power of line l

• SOCarr
r,e/SOCdep

r,e : Arrival/minimum required departure SOC of group e EVs departing from

node r

• SOCe/SOC
e
: Minimum/maximum SOC permissible for group e EVs

• tta(·): Link travel time function of link a

• T arr
r,e/T

dep
r,e : Arrival/departure time of group e EVs to/from CSs traveling from r

• U e
rs(.): Utility function for group e EVs on route rs

• V min
i /V max

i : Minimum/maximum voltage at node i

Variables

• αe
rs: Incentives for group e EVs choosing CS s from r

• ητrs: The dual variable for vehicle flow conservation

• µ/ν: Dual variables of the market clearing constraints in the reformulated problem

• ρi,t: Electricity price at node i and time t

• Cdeg,e
i,r,t : Degradation cost of group e EVs traveling from r to CS i during t
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• caploss,e
i,r,t : Reduced battery capacity of group e EVs departing from r at CS i during t due to

degradation

• dei,r,t: Actual battery degradation of group e EVs at CS i(s) departing from r during t

• dcycle,e
i,r,t : Battery cycle degradation of group e EVs departing from r at CS i during t

• pei,r,t: Aggregated energy charged/discharged of group e EVs at CS i(s), traveling from r at

time t

• pdi,t/q
d
i,t: Active/reactive load demand at node i and time t

• psi,t/q
s
i,t: Active/reactive power supply at node i and time t

• pCS
i,t : Aggregated energy discharged at CS i(s) at time t (negative means energy charged)

• pDG
i,t : Active power generation of DG at node i and time t

• pfl,t/qfl,t: Active/reactive power flow on line l at time t

• q′eri/q
e
rs: EVs from group e departing from r demanded at/traveling to CS i(s)

• socei,r,t: SOC of group e EVs departing from r at CS i(s) and time t

• ttrs: Travel time between locations r and s

• vτa : Total traffic flow on link a at time step τ

• vi,t: Squared voltage magnitude at node i and time t

• x̄rs/xrs: Link traffic flow of conventional/electric vehicles from r to s

• zei,r,t: Intermediate variable to represent pei,r,t
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Modeling Overview

Stressed conditions may potentially lead to more severe power outages without proper considera-

tions. One of the top priorities of DSOs is to ensure the reliability of DSs so that stressed conditions

require effective response to alleviate load shedding. As for CSAs and DGs, they can gain extra

revenue due to supplying power effectively over time and space during these stressed conditions.

Similarly, for EV drivers, they can strategically choose charging locations to potentially earn extra

income for providing V2G services to mitigate the “stressed” conditions.

We aim to capture the interactions between four types of stakeholders in transportation and DSs,

i.e., flexible DGs (e.g., diesel generators and gas turbines), DSO, CSA, and EV drivers, for model-

ing the load pickup in DSs that are operating under stressed conditions. To model coupled distribu-

tion and transportation systems, parameters from both systems are needed. However, we note that

the parameters we used in our models, such as network parameters, travel demand, and charging

behavior, are typical parameters used in distribution and transportation system modeling.

Fig. 4.1 summaries the overall modeling framework, including the stakeholders’ objectives, main

decision variables, and their interactions. DSO purchases energy from DGs and CSA to maximize

load pickup and minimize its costs; DGs aim to maximize their profits by selling the generated

energy to the DS. On the other hand, the CSA maximizes its profit by managing EV charging and

energy exchange with the DSO. Note that CSA can either purchase energy from the system (if

it is required to charge the EVs) or provide energy to DSO whenever EVs want to participate in

system support by discharging their stored energy similar to energy storage systems [76]. The EVs’

charging flexibility will determine the incentives they receive. A market clearing is enforced on the

energy exchange in the system which requires the supplied energy by CSA and DGs to be equal

to the energy demanded by DSs (including load pickup and charging demand). The other main

interaction is between the EV owners and CSA. EVs travel through transportation networks and
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Figure 4.1: Stakeholders’ modeling framework with their objectives and main decision variables

select a CS to maximize their individual utilities. A market clearing condition is considered on this

interaction which balances the number of EVs selecting a CS with the number of EVs expected

by CSA. This modeling framework mainly focuses on applications such as system analyses or

policy-making instead of real-time operational decision-making. The proposed models could be

adopted by government agencies for urban planning and regulations on EVs’ participation in grid

services. They can also be used by utility companies to understand the spatial-temporal capacity

of EVs in DS support and the required spatial-temporal incentives considering individual EV’s

behavior. The following section will present the mathematical modeling of each stakeholder and

their interactions.

Mathematical Modeling

In this section, we present the mathematical formulations of the proposed network equilibrium

models in a coupled distribution and transportation system presented in Fig. 4.1. We first outline

the decentralized decision making of each stakeholder in the network framework. Second, we

formulate the clearing conditions to model their interactions and interpret their correspondence to

energy price and charging incentives.
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DG Owners Modeling

Each DG i (∈ IDG) determines its generation quantity pDG
i,t for each time step t (∈ T ) to optimize

its profits. Because individual DG generation capacity is limited and below the threshold of the

DSO dispatch, we assume DG owners are perfectly competitive and do not have the market power

to influence the locational electricity prices ρi,t. Therefore, the decision making of all DG owners

can be aggregated into a single optimization problem, as formulated in model (4.1).

max
pDG≥0

∑
i∈IDG

∑
t∈T

(
ρi,tp

DG
i,t − Ci(p

DG
i,t )

)
(4.1a)

s.t. PDG
i,t ≤ pDG

i,t ≤ P̄DG
i,t , ∀i ∈ IDG, t ∈ T . (4.1b)

Objective (4.1a) maximizes the profits of DG owners calculated as the total revenue
∑

ρi,tp
DG
i,t

subtracting the total production costs
∑

i∈IDG

∑
t∈T Ci(p

DG
i,t ). We assume Ci(·) to be a convex

function with respect to pDG
i,t [77], with different cost parameters for different DGs. This implies a

non-decreasing marginal cost. Constraint (4.1b) determines the upper and lower bounds of power

generation at DG node i for time t. For the cases when DGs can be disconnected from the systems,

PDG
i,t = 0.

DSO Modeling

One of the key responsibilities of a DSO is to maintain services in stressed conditions. Given

different characteristics of the loads (e.g., hospital, emergency responses) and limited resources

available, the DSO may need to prioritize the load pickup procedures. We assume that the DSO

intends to maximize the importance of loads being served within the system while minimizing the
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cost of energy purchased, which can be formulated in the model (4.2).

max
pd,v≥0,
ps,pf ,qf

∑
i∈IL

∑
t∈T

ωi,tp
d
i,t −

∑
i∈IDG∪ICS

∑
t∈T

ρi,tp
s
i,t (4.2a)

s.t.
∑
l∈L

pfl,t · LTl,i −
∑
l∈L

pfl,t · LFl,i = pdi,t − psi,t, ∀i ∈ I, t ∈ T (4.2b)

∑
l∈L

qfl,t · LTl,i −
∑
l∈L

qfl,t · LFl,i = qdi,t − qsi,t, ∀i ∈ I, t ∈ T (4.2c)

0 ≤ pdi,t ≤ P̄ d
i,t, ∀i ∈ I l, t ∈ T (4.2d)

qdi,t = (Q̄d
i,t/P̄

d
i,t) · pdi,t, ∀i ∈ I l, t ∈ T (4.2e)

pf2
l,t + qf2

l,t ≤ λl,t · (Smax
l )2, ∀l ∈ L, t ∈ T (4.2f)

vFNl,t − vTNl,t ≤ (1− λl,t) ·K + 2 · (rl · pfl,t + xl · qfl,t), ∀l ∈ L, t ∈ T (4.2g)

vFNl,t − vTNl,t ≥ (λl,t − 1) ·K + 2 · (rl · pfl,t + xl · qfl,t), ∀l ∈ L, t ∈ T (4.2h)

(V min
i )2 ≤ vi,t ≤ (V max

i )2, ∀i ∈ I, t ∈ T . (4.2i)

Objective (4.2a) maximizes the weighted sum of load demand
∑

i∈Il

∑
t∈T ωi,tp

d
i,t, where the

weights ωi,t determine the priority of the loads;
∑

i∈IDG∪ICS

∑
t∈T ρi,tp

s
i,t is the cost of energy

purchased from DG/CSA, who want to participate in the system support services. Operational

constraints are formulated in (4.2b)-(4.2i), which are adapted based on the Dist-Flow equations

proposed in [78] and later adopted in [50, 79]. Active and reactive power flow balances are mod-

eled in (4.2b) and (4.2c), respectively. Constraint (4.2d) limits the served load demand to be less

than the expected load demand at each node. Constraint (4.2e) maintains the same power factor

for the restored loads as the expected loads. Constraint (4.2f) limits power flow not exceeding line

capacity considering binary line status λl,t, with 0 indicating line outage. Constraints (4.2g) and

(4.2h) calculate the voltage at each node. K is a big number to ensure that when line l is discon-
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nected at t (i.e., λl,t = 0), the voltages of FNl and TNl are independent. Constraint (4.2i) defines

the acceptable voltage range at each node.

CSA Modeling

There could be different market settings for CS competition, including oligopoly and perfect com-

petition. In this paper, we assume CSs compete in a perfectly competitive market because of two

main reasons. First, the charging service is a homogeneous product. Different brands/stations can

hardly differentiate their services besides location and charging time. Therefore, for the same lo-

cation and same charging time, if a station sets a price slightly higher than the other, no customers

will likely be attracted to that CS. This phenomenon has been widely observed in gas station

competition, where stations at the same intersection will have identical prices. Second, there are

usually many CS providers who are not coordinated with each other to strategically set their prices.

Therefore, each CS provider may not have the market power to strategically influence the market

prices. Perfect competition assumption has been adopted in EV charging literature [39, 80, 81].

Due to the challenges of communicating and controlling EVs/CSs individually for DSO, a CSA is

typically needed to coordinate the power transactions between all CSs and DS. The CSA aims to

maximize its profits [82] while maintaining the required charging demand of EVs. The decision

making of the CSA is formulated in model (4.3).
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max
pCS,q′,soc

∑
i∈ICS

∑
t∈T

ρi,tp
CS
i,t −

∑
r∈R

∑
i∈ICS

∑
e∈E

αe
rsq

′e
ri(s) −

∑
i∈ICS

∑
r∈R

∑
t∈T

∑
e∈E

Cdeg,e
i,r,t (4.3a)

s.t. socei,r,t = socei,r,t−1 − pei,r,t/Cap
e, ∀i ∈ ICS, r ∈ R, e ∈ E , t ∈ (T arr

r,e , T
dep
r,e ] (4.3b)

q′eri(s)SOCe ≤ socei,r,t ≤ q′eri(s)SOC
e
, ∀i ∈ ICS, r ∈ R, e ∈ E , t ∈ [T arr

r,e , T
dep
r,e ] (4.3c)

socei,r,T arr
r,e

= q′eri(s)SOCarr
r,e, ∀i ∈ ICS, r ∈ R, e ∈ E (4.3d)

soce
i,r,T

dep
r,e

≥ q′eri(s)SOCdep
r,e , ∀i ∈ ICSr ∈ R, e ∈ E (4.3e)

− q′eri(s)P̄
ch
r,e ≤ pei,r,t ≤ q′eri(s)P̄

dch
r,e ∀i ∈ ICS, r ∈ R, e ∈ E , t ∈ [T arr

r,e , T
dep
r,e ] (4.3f)

pCS
i,t =

∑
r∈R

∑
e∈E

pei,r,t
Sbase

, ∀i ∈ ICS, t ∈ [T arr
r,e , T

dep
r,e ]. (4.3g)

Objective (4.3a) maximizes the CSA’s profits, which is calculated as revenue made by selling

the electricity to the DSO
∑

i∈ICS

∑
t∈T ρi,tp

CS
i,t subtracting incentives

∑
r∈R

∑
i∈ICS

∑
e∈E α

e
rsq

′e
rs

and battery degradation compensation
∑

i∈ICS

∑
e∈E

∑
t∈T Cdeg,e

i,r,t paid to EV drivers. Note that

pCS
i,t can have negative values representing that EVs are charging instead of discharging. In this

case,
∑

i∈ICS

∑
t∈T ρi,tp

CS
i,t would be the cost for CSA to charge EVs. Power prices ρi,t and EV

incentives αe
rs are endogenously determined by market in the modeling framework, as discussed

in Section 4. We note that when an oligopolistic market setting is of interest, where private-owned

CSs strategically adjust prices to compete for clients, one will need to explicitly consider prices as

decisions of CS providers instead of using the market equilibrium prices. In addition, if one focuses

on the dominant charging provider, if there exists one, a Stackelberg game-theoretical modeling

framework is more appropriate. However, if the focus is on the optimal pricing strategies of in-

dividual private-owned CSs, they can be usually studied individually. In this case, it may not be

necessary to consider the entire transportation and DSs as the way we did in this study. For exam-

ple, authors in [83] and [84] modeled the interaction of EVs with CS proposing novel algorithms

for determining the payment exchanges among them without considering coupled transportation
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and power system requirements.

Constraints (4.3b)-(4.3g) specify EVs’ SOC transition and requirements that the CSA needs to

fulfill. We discretize EVs into different homogeneous groups e based on their travel and charging

characteristics, including arriving/departing time T arr
r,e /T dep

r,e , and arriving/departing SOC SOCarr
r,e/SOCdep

r,e

, meaning that EVs who have similar available battery SOC, charging demand and travel schedules

are grouped together. Incentives αe
rs depend on EV groups and will be endogenously determined

by market. For example, an EV with high SOCarr, low charging needs, long dwelling time, and

connected to CS during periods when load-pickup services are needed will receive higher incen-

tives. Constraint (4.3b) models the dynamics of the SOC of EVs from r at CS i. Constraint (4.3c)

limits the maximum and minimum SOC of each EV group based on the drivers’ desired SOC

range. Constraints (4.3d) and (4.3e) specify the initial arrival SOC and minimum departure SOC

for each EV group at charging location i. Constraint (4.3f) restricts the charging/discharging power

of EVs at each time step t to be within a certain range based on battery/charger characteristics. We

modeled the number of EVs demanded by CSA at each CS as variable q′eri(s). This variable plays

an important role in coupling transportation and DS which is further discussed in Section 4. Con-

straint (4.3g) determines the total power supply/demand of CS i ∈ ICS at time t by summing the

normalized discharging/charging of EVs at each station.

Battery degradation by continuous charging and discharging of the battery is one of the main

concerns discouraging drivers from participating in V2G services. Battery degradation consists of

shelf and cycle degradation [85]. In this paper, the Ah-throughput counting model [86] is used

to model the mentioned degradation types. The degradation cost of EVs Cdeg,e
i,r,t is formulated in

model (4.4), which is adapted from [50] to consider EV groups and time index.
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zei,r,t ≥ pei,r,t ∀i ∈ ICS, r ∈ R, e ∈ E , t ∈ T (4.4a)

zei,r,t ≥ − pei,r,t ∀i ∈ ICS, r ∈ R, e ∈ E , t ∈ T (4.4b)

caploss,e
i,r,t = ζe · zei,r,t ·∆T, ∀i ∈ ICS , r ∈ R, t ∈ [T arr

r , T dep
r,e ] (4.4c)

d
cycle,e
i,r,t =

caploss,e
i,r,t

1− Capend,e , ∀i ∈ ICS , r ∈ R, e ∈ E , t ∈ [T arr
r,e , T

dep
r,e ] (4.4d)

dei,r,t = max{dcycle,e
i,r,t , dshelf,e},

∀i ∈ ICS , r ∈ R, e ∈ E , t ∈ [T arr
r , T dep

r,e ] (4.4e)

Cdeg,e
i,r,t = dei,r,t(C

rep,e − Cres,e)Cape,

∀i ∈ ICS , r ∈ R, e ∈ E , t ∈ [T arr
r , T dep

r,e ]. (4.4f)

EV Drivers Modeling

We have modeled the charging schedule of EVs based on their SOC requirements as part of CSA

responsibilities in (4.3). In this section, we will model the routing and charging location choices

of decentralized EVs in transportation systems. The utility function U e
rs of a driver in group e

selecting station s from r is formulated in (4.5) [50, 67]. Without loss of generality, we assume

that EV drivers make charging location choices based on four factors: locational attractiveness

β0,s, travel time −β1ttrs, charging cost/revenue from charging/discharging β2α
e
rs, and a random

term ϵ. Other exogenous factors can also be included in (4.5) without affecting the modeling

and computational strategies proposed in this paper. For example, different strategies of CSs for

attracting EVs can be modeled as a part of locational attractiveness (β0,s) to reflect different levels

of convenience which will influence the incentive offered by each CS. We can also model CSs

with different characteristics at the same location by adding dummy nodes (s′) to the main node
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(s), which are connected by links with zero travel time, as illustrated in Fig. 4.2.

U e
rs = β0,s − β1ttrs + β2α

e
rs + ϵ. (4.5)

EV drivers

TS
r1 r2 rn

U1 U2 Un

s1 s2 sm

CSA

pdch

pch

α

pdch

pch

α
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t

fz(z)
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µt3
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Figure 1: Dummy node illustration

12

Figure 4.2: Dummy node illustration

From an environmental perspective, incentives should not encourage EVs to take long trips just for

charging or grid support. In the proposed utility function (4.5), an EV chooses a charging location

and a route to maximize utilities, considering the total travel time and charging cost. Traveling

a longer distance may consume more time, especially considering potential traffic congestion.

Therefore, our model has considered the fact that EVs prefer to receive/provide service in nearby

CSs when holding other factors constant. If the utility coefficient of the travel time is sufficiently

large, no EV will seek lower charging prices or higher service incentives by traveling a longer

distance. To explicitly restrict EVs from making long-distance travel for charging/discharging ser-

vices, one can directly limit the candidate CSs to be within a range of the EV origins. As an

alternative solution, one can also explicitly maximize the total system welfare, including conges-

tion/environmental impacts, with an upper-level optimization to decide the optimal incentives for

the societal benefits. Optimizing system welfare considering environmental impacts is beyond the

scope of this study and will be left for the future.

The destination choice of EVs (qers) and path travel time (ttrs) are coupled. On one hand, the CS

selection of EV drivers impacts the travel demand distribution that will affect the travel time for

all drivers. On the other hand, the CS selection partially depends on travel time ttrs (see (4.5)).
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To capture these couplings, we adopt the CDA model [87] to model their destination choices and

route choices simultaneously, as formulated in (4.6). Notice that ∀τ ∈ T arr, we will solve CDAτ

for the traffic pattern at time τ .

min
x,x̄,q≥0

∑
a∈A

∫ vτa

0
tta(u)du+

1

β1

∑
r∈R,s∈S

∑
e∈Eτ

qers (ln q
e
rs − 1− β2α

e
rs − β0,s) (4.6a)

s.t. vτ =
∑

r∈R,s∈S
xτ
rs +

∑
r∈R̄,s∈S̄

x̄τ
rs, ∀τ ∈ T arr (4.6b)

(ητ
rs) Axτ

rs =
∑
e∈Eτ

qersErs, ∀r ∈ R, s ∈ S, τ ∈ T arr (4.6c)

Ax̄τ
rs = q̄τrsErs, ∀r ∈ R̄, s ∈ S̄, τ ∈ T arr (4.6d)∑

s∈S
qers = Qe

r, ∀r ∈ R, e ∈ Eτ . (4.6e)

The objective function in (4.6a) consists of two parts: the first part is the summation of the area

under all the link travel cost functions tta(·) (e.g., Bureau of Public Roads (BPR) function)2; the

second being the entropy of traffic distribution qers(ln q
e
rs − 1) and utility terms (excluding time) in

(4.5) [88]. Objective (4.6a) is constructed to guarantee that the optimal solutions of (4.6) are consis-

tent with the first Wardrop principal [89] and the multinomial logit destination choice assumption.

For technical details to prove this claim, one can refer to [87]. Constraint (4.6b) calculates link

flows by summing link flows of EVs (xτ
rs) and conventional vehicles (x̄τ

rs) travelling at the same

time period τ over all origin and destination pairs. Constraints (4.6c-4.6d) are the vehicle flow

conservation at each node for EV travel demand qers and conventional vehicle travel demand q̄τrs,

respectively. Constraint (4.6e) guarantees the summation of EV traffic flow distribution to each s

(qers) equals the total EV travel demand from r, (Qe
r). The equilibrium travel time for each OD pair

2This model is general and able to include the situation when transportation links are disrupted using a reduced
link capacity or significantly large free-flow travel time in the travel cost functions tta(·).
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rs can be calculated as ttrs
.
= ητrs,r − ητrs,s, where ητrs,i is the dual variable for constraint (4.6c).

Market Clearing Conditions

In a stable market, the power purchased by DSO needs to be balanced with locational power

generation. In addition, EV demanded by CSA at each CS needs to be balanced with EV traveling

to that station. The hourly market clearing conditions can be stated as (4.7). (4.7a) guarantees that

the total energy purchased by DSO is equal to the total energy generated at each node including

DGs and CSs. (4.7b) enforces the balance between EV flow of group e demanded and supplied

at each location s from r. This equation couples the traffic flow (qers) determined from the CDA

problem (4.6) with the number of EVs (q′ers) demanded in the CSA modeling (4.3).

(ρi,t) psi,t = pDG
i,t + PCS

i,t , ∀i ∈ IDG ∪ ICS, ∀t ∈ T (4.7a)

(αe
rs) q′ers = qers, ∀r ∈ R, s ∈ S, e ∈ E . (4.7b)

Locational prices of electricity ρi,t and EV incentives αe
rs can be interpreted as dual variables

for the market clearing conditions, respectively. The clearing conditions help us to model the

interdependencies of both transportation and DSs along with the models defined in (4.1)∼(4.6).

Note that the CSA sells/purchases electricity to/from the DSO based on the electricity price (ρi,t).

On the other hand, EVs will receive incentives (αe
rs) from the CSA based on their participation

in DS support and their charging requirements. Note that both incentives and energy prices are

endogenously determined in the network equilibrium framework. The incentives could be negative

if EVs need to charge a significant amount of energy while providing minimum services. In other

words, the incentives can be interpreted as the net value of the system support service payments
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subtracting charging costs.

Remark 1: In this paper, we use a Walras equilibrium concept [90], where pricing will dynami-

cally be adjusted until supply and demand are balanced. In the proposed method, CSA does not

assume how many EVs participate in the market. Instead, CSA will have its desired EV flow

(i.e., demand) based on the EV incentives CSA needs to offer. On the other hand, EVs have no

obligation to support the system, and they make decisions based on their charging needs and the

provided incentives to maximize their utility. The decentralized decision making of individual EVs

will determine the total EV supply at each location. EV incentives are endogenously determined

by the market clearing conditions (4.7) rather than arbitrarily set by the operator. Therefore, the

magnitude of incentives for providing grid services depends on the relationship between EV sup-

ply and demand. If the EV supply is less than the demand, EV incentives will increase. Since

we assume that EVs make decisions to optimize their utilities, which include incentives and travel

time, as long as the economic incentive is sufficiently large, more EVs will participate in system

service. On the other hand, CSA aims to maximize their profits. Therefore, the EV demand will

decrease if CSA needs to pay higher incentives to the EV drivers. Additionally, if the system

operator imposes a higher penalty on load shedding, the locational demand of V2G services will

increase, which will lead to a higher incentive. Then more EVs will be attracted to participate in

the grid-service market.

Remark 2: The proposed modeling framework can be extended to consider the case where the

CSA initiates contracts with DGs to purchase energy at a negotiated price. In our proposed method,

the energy exchanges are modeled via power flow constraints and clearing conditions in the power

balance. If CSA and DGs are involved in private contracts, we can define new variables for energy

exchanges to model specific agreements between CSA and the DGs. In addition, we can add the

cost/revenue terms to their objective functions based on the detailed pricing terms in their contract.

While the prices/costs for the contracted energy transactions will be given exogenously based on
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the contracts, the real-time market prices will still be determined by the current form of the clearing

condition in (4.7). Therefore, from a computational perspective, the convex reformulation will still

apply.

Remark 3: As mentioned previously, this modeling framework focuses on supporting system

analyses and policy-making in a predefined stressed condition instead of real-time decision sup-

port facing uncertainties. Therefore, the variables in our models are all under that specific sce-

nario. However, these models can be extended to consider various sources of uncertainties ap-

plying stochastic programming techniques for the decision-making of each stakeholders. One can

consider the uncertainties as different scenarios using the sample average approximation (SAA)

method [91]. The compact form of the model remains the same except for augmenting variables

to be scenario-dependent. Therefore, the proposed solution method still applies, despite more

variables and constraints in the equilibrium model.

Convex Reformulation

The decision making of each stakeholder and market clearing conditions presented in Sections

4∼4 are interdependent and need to be solved simultaneously to achieve the equilibrium solutions.

However, we note that the optimization problems of decision makers have a special structure that

the objective functions (i.e., functions (4.1a), (4.2a), (4.3a), and (4.6a)) are convex and separable

once ρ and α are fixed. In addition, the constraint sets of each stakeholder are independent and

convex. We will leverage these characteristics to develop an equivalent convex reformulation, as

illustrated in the remaining of this section.

Given any ρ and α, since models (4.1) ∼ (4.3) and (4.6) are completely separable, we can linearly

combine models (4.1) ∼ (4.3) and (4.6), which leads to problem (4.8). In other words, the optimal
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solutions of problem (4.8) will be identical with the optimal solutions to models (4.1) ∼ (4.3) and

(4.6) given any ρ and α. This is more formally stated in Lemma 1. Note that we have scaled each

objection functions and grouped the terms with energy price (ρ) and incentives (α) in the objective

function (4.8).

Lemma 1 (Combined Problem for Models (4.1) ∼ (4.3) and (4.6)). Given any ρ and α, the optimal

solutions of problem (4.8) are identical with the optimal solutions of models (4.1) ∼ (4.3) and (4.6),

when models (4.1) ∼ (4.3) and (4.6) are solved individually with ρ and α.

Proof. Lemma 1 follows directly from the separable nature of models (4.1) ∼ (4.3) and (4.6) given

ρ and α.

max
(pd,pDG,v,x,x̄,q,q′)≥0,

ps,pf,qf,pCS,soc

∑
t∈T

∑
i∈IL

ωi,tp
d
i,t −

∑
i∈IDG

C(pDG
i,t )−

∑
i∈ICS,r∈R,e∈E

Cdeg,e
i,r,t


−

∑
τ∈T arr

∑
e∈Eτ

∑
r∈R,s∈S

qers
β2

(ln qers − 1− βs
0)−

β1

β2

∑
τ∈T arr,a∈A

∫ vτa

0

tta(u)du

+
∑
t∈T

∑
i∈ICS∪ICS

ρi,t

(
− psi,t + pDG

i,t + PCS
i,t

)
+

∑
r∈R,s∈S,e∈E

αe
rs

(
qers − q

′e
rs

)
(4.8)

s.t (6.1b), (4.2b) ∼ (4.2i), (4.3b) ∼ (4.3g), (4.4), (4.6b) ∼ (4.6e).

We note that to achieve equilibrium, ρ and α cannot take any arbitrary values. They need to guar-

antee the market clearing conditions (6.6). To calculate the market clearing prices/incentives ρ∗

and α∗, we introduce another convex optimization problem, as shown in (4.9). The only differ-

ence between model (4.9) and (4.8) is that the objective function in model (4.9) does not have

terms
∑
t∈T

∑
i∈ICS∪ICS

ρi,t(−psi,t + pDG
i,t + PCS

i,t ) and
∑

r∈R,s∈S,e∈E

αe
rs(q

e
rs − q

′e
rs) but add market clearing (4.7)
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as constraint in model (4.9). We state that the optimal dual multipliers of constraint (6.6) in model

(4.9), denoted as µ∗ and ν∗, will be the market clearing prices/incentives of the original problem

in Lemma 2.

max
(pd,pDG,v,x,x̄,q,q′)≥0,

ps,pf,qf,p,pCS,soc

∑
t∈T

∑
i∈I

ωi,tp
d
i,t −

∑
i∈IDG

C(pDG
i,t )−

∑
i∈ICS,r∈R,e∈E

Cdeg,e
i,r,t


−

∑
τ∈T arr

∑
e∈Eτ

∑
r∈R,s∈S

qers
β2

(ln qers − 1− βs
0)−

β1

β2

∑
τ∈T arr ,a∈A

∫ vτa

0

tta(u)du (4.9)

s.t (4.1b), (4.2b) ∼ (4.2i), (4.3b) ∼ (4.3g), (4.4), (4.6b) ∼ (4.6e), (4.7).

Lemma 2 (Market Clearing Prices and Dual Multipliers). The optimal dual multipliers µ∗ and ν∗

of constraint (4.7) in model (4.9) are market clearing prices/incentives corresponding to market

clearing conditions (4.7) in the original problem.

Proof. (A) We rewrite model (4.9) as maxmin problem (4.10), in which we relax constraint (4.7)

using method of Lagrange multipliers. Since µ and ν can take any real values when minimizing

the objective function, model (4.10) enforces −psi,t+ pDG
i,t +PCS

i,t = 0 and qers− q′ers = 0; otherwise

objective function of (4.10) will achieve −∞ by selecting appropriate µi,t and νe
rs and cannot be a

maximum. This is why model (4.9) and the maxmin problem (4.10) are equivalent.
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max
(pd,pDG,v,x,x̄,q,q′)≥0,

ps,pf,qf,pCS,soc

min
µ,ν

∑
t∈T

∑
i∈IL

ωi,tp
d
i,t −

∑
i∈IDG

C(pDG
i,t )−

∑
i∈ICS,r∈R,e∈E

Cdeg,e
i,r,t


−

∑
τ∈T arr

∑
e∈Eτ

∑
r∈R,s∈S

qers
β2

(ln qers − 1− βs
0)−

β1

β2

∑
τ∈T arr,a∈A

∫ vτa

0

tta(u)du

+
∑
t∈T

∑
i∈ICS∪ICS

µi,t

(
− psi,t + pDG

i,t + PCS
i,t

)
+

∑
r∈R,s∈S,e∈E

νe
rs

(
qers − q

′e
rs

)
(4.10)

s.t (4.1b), (4.2b) ∼ (4.2i), (4.3b) ∼ (4.3g), (4.4), (4.6b) ∼ (4.6e).

(B) Since model (4.9) is a convex optimization problem and there exists at least one strictly feasible

solutions, based on Slater’s condition, strong duality holds. Therefore, the optimum of minmax

problem (4.11) is identical to the optimum of maxmin problem (4.10). Since model (4.8) and

model (4.11) are identical if we let ρ = µ∗ and α = ν∗, the primal solutions of model (4.10) will

also maximize (4.8). Based on Lemma 1, the primal solutions will also optimize models (4.1) ∼

(4.3) and (4.6), which means they are also the optimal decisions from each stakeholders given µ

and ν.

min
µ,ν

max
(pd,pDG,v,x,x̄,q,q′)≥0,

ps,pf,qf,pCS,soc

∑
t∈T

∑
i∈IL

ωi,tp
d
i,t −

∑
i∈IDG

C(pDG
i,t )−

∑
i∈ICS,r∈R,e∈E

Cdeg,e
i,r,t


−

∑
τ∈T arr

∑
e∈Eτ

∑
r∈R,s∈S

qers
β2

(ln qers − 1− βs
0)−

β1

β2

∑
τ∈T arr,a∈A

∫ vτa

0

tta(u)du

+
∑
t∈T

∑
i∈ICS∪ICS

µi,t

(
− psi,t + pDG

i,t + PCS
i,t

)
+

∑
r∈R,s∈S,e∈E

νe
rs

(
qers − q

′e
rs

)
(4.11)

s.t (4.1b), (4.2b) ∼ (4.2i), (4.3b) ∼ (4.3g), (4.4), (4.6b) ∼ (4.6e).

Because of (A) and (B), the optimal dual multipliers µ∗ and ν∗ of constraint (4.7) in model (4.9) are
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market clearing prices/incentives corresponding to market clearing conditions (4.7) in the original

problem.

Now, we can have the equivalent convex reformulation of the network equilibrium problems, as

stated in Theorem 1.

Theorem 1 (Equivalent Convex Reformulation of Network Equilibrium Problems). The optimal

primal variables of convex model (4.9) and optimal dual variables of constraint (4.7) are the

equilibrium solutions of the original equilibrium problem (i.e., models (4.1) ∼ (4.3), (4.6), and

(4.7).

Proof. Since the optimal dual multipliers µ∗ and ν∗ of constraint (6.6) in model (4.9) are mar-

ket clearing prices/incentives based on Lemma 2, and the optimal prime variables of model (4.9)

maximizes optimization problems (4.1) ∼ (4.3) and (4.6) when ρ = µ∗ and α = ν∗ based on

Lemma 1, solving model (6.7a) will recover optimal solutions and prices/incentives of the original

equilibrium problem (i.e., models (4.1) ∼ (4.3), (4.6), and (4.7).

Numerical Simulations

We will implement the models and reformulation techniques on two test systems for evaluating the

potential impacts of EVs on DS support and draw system insights. Throughout this section, the

term “node” is reserved to refer to the nodes of DS unless clarified. We implemented and solved

our model on Pyomo 5.6.7 [92,93] and IPOPT 3.12.13 [94], respectively. All the experiments were

run on a 3.6 GHz 9-Core Intel Core i9 with 64 GB of RAM, under UBUNTU 18.04.2.
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Four-node Test System

We start with a four-node test system shown in Fig. 4.3. Nodes 2 and 3, representing CSs, are

the connecting points between distribution and transportation systems. Nodes 2∼4 are load nodes.

Loads at node 3 have higher priority (ω3 = 60) compared to nodes 2 and 4 (ω2 = ω4 = 50). The

daily trend of load demand is adopted from the PJM data set [95]3. Assuming nodes have different

user types (e.g., residential or industrial), we assigned 45 % of the total load to node 2, 35 % to

node 3, and 20 % to node 4. The reported results in system pu are based on Sbase = 1000 kVA. All

the distribution lines have the same capacity of Smax
l = 2 (pu). The capacity of all transportation

links is 20 (vehicles/hour).

DG DG

Transportation nodes Traffic flow Links

2 3

1 420∼50 20∼50
Tarr

1,e = [18,5,12] Tarr
4,e = [20,1,16]

1 2 3 4

r1=5.75e−3

x1=2.93e−3

r2=3.076e−2

x2=1.567e−2

r3=2.284e−2

x3=1.163e−2

P̄DG=3 (pu)

Cost: 20 ($/pu)

P̄DG=1 (pu)

Cost: 2 ($/pu)

Figure 2: Four-node test system

13

Figure 4.3: Four-node test system

The improvements in EV manufacturing shows that companies are developing EVs with higher

battery capacities providing longer driving range [96]. Currently, Tesla offers the highest battery

capacity on Model S with Cap = 100 kW, and a charging rate of 17.2 kWh [8]. In the future, EVs

will have similar or higher capacities, and we assumed that EVs in our test system has the same

characteristics as Tesla Model S.

EVs are in one of the three groups based on their SOCarr (SOCarr
r,e=1 = 0.2 ∼ 0.4, SOCarr

r,e=2 = 0.4 ∼

3The selected day is Sept. 2, 2021, from American Electric Power (AEP) zone
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0.8, and SOCarr
r,e=3 = 0.8 ∼ 1). In other words, EVs are groups based on their charging needs when

they arrive at the CSs; group e = 1 having the highest and group e = 3 having the least charging

requirements. The SOCarr of each group are selected from a random distribution in the defined

ranges mentioned above 4. We assume that EVs depart from the transportation nodes 1 and 4

with the incoming traffic selected from a normal distribution of integers in the range of 20∼ 50

EVs/hour. The arrival times of EVs are also from a random distribution at hours τ (∈ T arr
r,e ) to either

CSs. The generated random arrival times for EV groups are presented in Fig. 4.3. We consider

losing line (1–2) unexpectedly at t = 10, disconnecting the DG at node 1 from the system, which

has a higher production capacity. The line comes back on at t = 20. We consider two levels of

SOCdep = 0.7 and 0.5 to investigate the effects of different EV charging needs on DS support.

The load pickup graphs (Fig. 4.4) show that the system will firstly restore the high priority load

at node 3 for both SOCdep. With a lower SOCdep, more low priority loads are picked up. The

total load loss decrease from 3.822 pu to 2.651 pu when SOCdep decrease from 0.7 to 0.5. The

power injection of CSs in Fig. 4.5a, 4.5b shows more participation of EVs in DS support during

disruption periods with SOCdep = 0.5 compared to SOCdep = 0.7, because when EVs have lower

charging demand, they are more flexible to charge/discharge.

Energy prices during the disruption increase drastically compared to normal periods for all the

nodes (see Fig. 4.6a, 4.6b) because the system has to leverage more expensive energy sources

during disruptions. By comparing the disruption periods for both SOCdep levels, we have slightly

lower energy prices when EVs are more flexible to participate in restoring the load. Comparing

Fig. 4.7a and Fig. 4.7b, EVs with lower required SOCdep receive higher incentives because they

are more valuable for system support. In addition, we see higher incentives for group 2 departing

from transportation node 1 than 4 because group 2 EVs departing from transportation node 1 will

4All the random numbers used in case studies are generated with random seed = 3
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(b) SOCdep = 0.5

Figure 4.4: Expected (dashed lines) and picked up (solid lines) load; Nodes: — 2, — 3, — 4.

5 10 15 20

Time (h)

-0.5

0

0.5

1

1.5

P
o
w

er
 i

n
je

ct
io

n
 (

p
u
)

(a) SOCdep = 0.7

5 10 15 20

Time (h)

-0.5

0

0.5

1

1.5

P
o
w

er
 i

n
je

ct
io

n
 (

p
u
)

(b) SOCdep = 0.5

Figure 4.5: Nodal power injection; Nodes: — 1, — 2, — 3, — 4.

connect to DS from t = 9 to 13, during the period when the DS has high load pickup needs.
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Figure 4.6: Nodal energy price; Nodes: 1, 2, 3, 4.
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Figure 4.7: CS incentives for EVs; Groups: 1, 2, 3.

IEEE 33-node and Sioux Falls Test systems

We further test the proposed modeling and convex reformulation on larger systems, with IEEE

33-node as a benchmark test system [78] and Sioux Falls network [50] as a realistic transportation

system. The computation times for solving the base case problem is 19.0 minutes. We note that

the proposed model can be applied to larger test systems due to the convex reformulation. Since
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problem (4.9) has a strictly convex objective function and linear constraints, this problem can be

efficiently solved by general-purpose nonlinear programming solvers or classical methods such

as the renowned Frank-Wolfe algorithm [97]. In the case study, the interior-point-based solver

IPOPT is adopted to solve problem (4.9), and the computation time is acceptable for the purpose

of this study. For extreme large-scale systems, two approaches can be considered to further en-

hance computational efficiency: 1) The network topology of both systems can be aggregated in a

way that they still retain the main characteristics of each system without jeopardizing the macro-

level conclusions for system analyses or policy-making. 2) Decomposition-based methods such as

ADMM algorithms can be directly applied to solve the proposed convex model since model (4.9)

is decomposable by systems once the clearing conditions (4.7) are relaxed. ADMM methods also

allow each system to solve its problem without acquiring extensive parameters and measurements

from the other systems.

Fig. 4.8 represents the characteristics of both test systems along with the sequences of the line

outages. Hourly load demand and DG characteristics are obtained from the authors of [98]. Blue

numbers on the DS diagram show the correspondence between the node indexes in the transporta-

tion system. To ensure the scale of the transportation network to be consistent with the 33-node

DS, we reduce the total capacity of links to 1 %. Also, we assume 1 % of all the traffic from the

Sioux Falls data 5 are EVs. Each EV group contains 1/3 of the traffic flow, and we used the same

SOCarr levels as the four-node test system for different EV groups. The SOCdep of EVs is set to

0.5. We investigate the performance of the systems with and without EV participation.

Without EVs, we observe load loss on many nodes as illustrated in Fig. 4.9a; EV participation

avoids load loss on nodes 21 and 26∼33 completely and increases the load served on nodes 20, 21,

22, 24, and 25 (see Fig. 4.9b). Nodes 21 and 22 still have load losses because these two nodes are

5Data: https://github.com/bstabler/TransportationNetworks/
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Figure 4.8: Test systems (a) 33-node DS •: nodes; •: corresponding nodes in transportation
system (CSs); and : faults on lines. (b) Transportation system 1 : origin nodes; 1 : destination
(CS) nodes; and →: EV incoming traffic flow.

completely isolated by line 20-21 outage. This suggests that CSs/DGs may need to be developed at

these two locations from a system support perspective. The CSs at nodes 23 and 25 try to recover

load at nodes 23∼25. But node 25 has the highest load demand in the system, and both nodes 24

and 25 are far from DGs, making voltage and reactive power support difficult. These factors result

in less load pickup at nodes 24 and 25. Overall, the daily load loss decreased from 7.899 pu to

5.426 pu with EV participating in system support.
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Figure 4.9: Expected (dashed lines) and picked up (solid lines) daily load profile of nodes with
load loss; Nodes: — 20, — 21, — 22, — 24, — 25, — 26, — 27, — 28, — 29, — 30, — 31, —
32, — 33.

The CS energy supply/demand is shown in Fig. 4.10. The discharged energy is to avoid load loss

during line outages, and the charged energy is to satisfy the charging requirements of EVs. EVs

can charge/discharge flexibly during their dwelling time at CSs as long as their SOCs meet the

minimum SOCdep. For example, the CS at node 27 charges at time steps t = 4 and 5 and discharges

energy to the system at t = 7 to support the DS.

Fig. 4.11 shows that the participation of EVs decreases the energy prices at different nodes and

time steps. The decrease in energy prices is an indicator of the system’s ability to satisfy the load

demand and avoid load loss with EVs. For example, the energy prices at nodes 8 and 11 drop

at time steps t20∼t24; the energy prices at nodes 27∼32 drop during t17∼t18. The drop in energy

prices is because of avoiding load loss at these nodes and the nodes nearby. For nodes where we

still have large load loss (e.g., node 25), the energy price is still high but not as high as the system

without EVs.

Similar to the four-node system, the CS incentives are negative or around zero for EVs who want
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Figure 4.10: EV generation/load at CSs; Nodes: 1, 2, 4, 6, 11,
13, 19, 23, 25, 27, 32.

to charge their cars (e = 1) and positive for EVs who want to participate in V2G program (e = 2 and

3) – see Fig. 4.12. Different CSs provide different incentives to EVs based on EVs’ arrival time

and DS’s energy needs. For example, CS at transportation node 19, which corresponds to node 25

in DS, offers the highest incentives for group 3 EVs and charge the highest prices for group 1 EVs

because energy shortage is severe around node 25, which nodes experience a high load loss (see

Fig. 4.9). In other words, the CS at this node wants to attract EVs who can discharge and impose

a penalty for EVs who want to charge at this location.

The CS selection of different EV groups is illustrated in Fig. 4.13. CS selection depends on a

combination of the close proximity of the destination and the incentives of CSs. The impact of

incentives can be seen at transportation node 19 (node 25 in DS). Drivers from origin node 17

would normally choose to go to destination node 19 based on its proximity. EV drivers of groups

2 and 3 have done just that but fewer drivers of group 1 have chosen this CS. This is because

the corresponding node to transportation node 19 in DS (i.e., node 25) requires energy and has
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Figure 4.11: Energy price at DG (IDG) and CS (ICS) nodes.
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Figure 4.12: CS (s) incentives for EVs coming from different origins (r) and different EV groups.

a higher cost for EVs that need to charge. In general, EVs from group 1 slightly prefer to go

to transportation nodes 5∼11 and try to avoid going to transportation nodes 13∼19 compared

to groups 2 and 3 because charging costs are lower at transportation nodes 5∼11 compared to

transportation nodes 13∼19 for group 1.
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Figure 4.13: Traffic flow of EVs among origins (r) and CSs (s) for different EV groups.

Sensitivity analysis of model inputs

In this section, we analyze the sensitivity of data inputs on the model results. We focus on three

input parameters: stress level (multiplying load demand by 0.8, 0.9, 1.1, 1.2), distribution line

parameters (multiplying line resistance and reactance by 0.8, 0.9, 1.1, 1.2), and the total number

of EVs (multiplying the number of EVs by 0.8, 0.9, 1.1, 1.2). The computation times for solving

the problem with these different input parameters are consistently between 18.1 minutes to 21.7

minutes. Fig. 4.14 presents the load loss profile for these varying factors in the cases without

and with EVs in the systems. As expected, with EVs in the systems, the total load losses will

significantly decrease compared with the case without EVs for all the investigated factors.

Furthermore, from Fig. 4.14a, the load loss increases rapidly as the stress level increases for both

with and without EV cases. The load loss difference between the two cases has been slightly

increasing from 1.69 pu to 2.67 pu when the scaling factor increases from 0.8 to 1.1, which means

when the system is not too congested, higher load demand provides more opportunities for EVs to

provide grid services to avoid load losses. However, the additional load pick-up with EVs decreases

significantly from 2.67 pu to 1.44 pu when the scaling factor increases from 1.1 to 1.2. This is

61



0.8 0.9 1 1.1 1.2

Scaling factor

0

5

10

15

L
o

ad
 l

o
ss

 (
p

u
)

(a)

0.8 0.9 1 1.1 1.2

Scaling factor

0

5

10

L
o

ad
 l

o
ss

 (
p

u
)

(b)

0.8 0.9 1 1.1 1.2

Scaling factor

2

4

6

8

L
o
ad

 l
o
ss

 (
p
u
)

(c)

Figure 4.14: Sensitivity analysis on load loss with model inputs: (a) stress level, (b) line
parameters, (c) total number of EVs; — without EVs, — with EVs, and — load loss difference
between with and without EV cases.

because with load demand being too high, both line capacity and voltage constraints may restrict

power distribution to the nodes downstream from the generation nodes, which reduces the potential

of EVs to provide grid services. From Fig. 4.14b, the difference of load loss between without and

with EVs cases decreases with the increase of distribution line resistance and reactance, meaning

that increasing these DS parameters reduce the potential of EVs to provide grid services. This

is because higher line resistance and reactance may result in higher voltage drops in the radial

structure of the DS so that additional V2G power flow may not be allowed due to violation of

voltage and line capacity constraints. From Fig. 4.14c, as the number of EVs grows, we observe

less load loss in the system. Note that increasing the number of EVs also means higher charging

demand. However, Fig. 4.14c indicates that the benefits of EVs’ participation in system support

have outweighed the additional charging demand, which shows the potential values of large-scale

EV participation in DS support.
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Conclusion

We investigate the impact of decentralized EVs on DS load pickup under stressed conditions in a

network equilibrium framework, where each stakeholder, including DG owners, DSO, EV drivers,

and CSA, maximizes its own objective in a coupled transportation and DSs. We reformulate the

network equilibrium problem as an equivalent convex optimization problem, which can be effi-

ciently solved by commercial nonlinear solvers. Numerical results on different test systems show

that the participation of EVs helps to reduce the load loss during the line outage, and the system

should provide different incentives to EVs based on their value for the DS to maximize system ben-

efits. Moreover, the results reveal how the decision makings and requirements of each stakeholder

affect the decision making of other stakeholders.

This work can be extended in multiple directions. First, the modeling framework can be used to

design optimal incentives for EVs to participate in DS service supports. Second, this work can be

used for transportation and DSs’ upgrades considering potential future EV participation in grid ser-

vices. Third, probabilistic modeling on renewable energy sources, line outages, EV characteristics

(e.g., EVs’ arrival and departure time and arrival/minimum departure SOC), and elastic EV par-

ticipation can be further examined by extending the proposed modeling framework to a stochastic

equilibrium problem. Fourth, decomposition-based algorithms can be developed combined with

the proposed exact convex reformulation to facilitate computation for extreme large-scale systems

facing high-dimensional uncertainties.
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CHAPTER 5: PRIVATE ELECTRIC VEHICLES FOR EMERGENCY

LOAD PICKUP: A MULTI-NETWORK STOCHASTIC EQUILIBRIUM

APPROACH1

Introduction

Weather conditions can cause disruptions and outages in DSs operation resulting in societal and

economical losses. As weather-related outages become more intense and more frequent, versatile

energy sources are needed to increase DS resilience and reliability. Increasing market penetration

of private electric vehicles (EVs) with their mobility and fast regulating characteristics provides

new opportunities as flexible energy resources for enhancing power system resilience. EV owners

have no obligations and most likely will not be able to participate in improving network resilience

during extreme events. However, given sufficient incentives and charging station (CS) availability,

they may be willing to provide restoration services after the event. EV participation will be more

likely when the surrounding environment is safe or during events where no hazards endanger the

safety of people, e.g., the 2021 Texas power crisis.

DSs face uncertainties from different sources, including EV participation, power supply, load de-

mand, and line outage uncertainties, which can significantly impact the restoration process. We

will extend our proposed model in the previous chapter to a stochastic equilibrium model to con-

sider uncertainties in a coupled DS and transportation system, which is necessary to draw realistic

insights on the interaction between these two systems. The interaction of stakeholders in coupled

distribution and transportation systems will be modeled as a network-based multi-agent stochas-

tic optimization problem with equilibrium constraints (N-MSOPEC). Distribution system operator

1This paper is developed based on the paper accepted by the Transportation Research Record (TRR) Journal
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(DSO), DG owners, charging station aggregator (CSA), and EV owners are modeled explicitly as

non-cooperative stakeholders to maximize their objectives during the restoration process. We con-

sider stochastic line outages in weather related events and the number of EVs participating in DS

restoration as uncertainty sources in DS and TS, respectively. Additionally, an exact convex refor-

mulation technique has been developed for the proposed N-MSOPEC model, which significantly

improves the computational efficiency to solve the high-dimensional complementarity problems.

Study cases have been created to demonstrate the close coupling between distribution and trans-

portation systems resulting from the decision making of stakeholders involved.

The remainder of this chapter is organized as follows: The overall modeling and scenario gen-

eration and reduction techniques are explained in Methodology Overview section. Mathematical

Modeling section provides the detailed mathematical formulation and design of the developed N-

MSOPEC model, followed by Convex Reformulation section for the solution strategies for the

proposed model. Numerical Results section presents the results of implementing the model on a

test system. Lastly, Conclusion section concludes the paper with the summary of findings and the

future work.

The notation used in this chapter are similar to the notations of the previous chapter except for the

addition of scenario indices (ξ) in a set of scenarios (Ξ).

Methodology Overview

The overall methodology of this study is illustrated in Figure 5.1. In the first step, the input data of

DS, TS, and the weather condition (i.e., wind speed) are acquired. Monte-Carlo simulation (MCS)

method is used in the next step to generate random scenarios for the number of EVs participating

in restoration based on the normal distribution. Similarly, line outage scenarios are generated
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based on a line fragility function and wind speed forecasts. A line fragility function provides

the probability of a line outage w.r.t weather conditions (e.g., wind speed and temperature), used

in multiple studies to simulate weather event outages in transmission and distribution systems

[99–101].

2019 21 22
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3 4 5 6 7 8
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9 10 11 12
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31 32 33

(a) IEEE 33-node

Figure 1: Coupled transportation and distribution test systems.
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Figure 2: Proposed method

5

Figure 5.1: Proposed method

We adopt the line outage probability function proposed in [100], which suggests that the line outage

probability is constant until the wind speed reaches a critical threshold (wcritical); afterward, the

probability of line outage increases linearly, until the wind speed becomes strong enough (wcollapse)
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that the line would definitely collapse. This relation is summarized in equation (5.1) [100].

PL =


P w < wcritical

a · w + P wcritical ≤ w < wcollapse

1 w ≥ wcollapse.

(5.1)

Note that the lines’ fragility function based on other weather conditions can also be compounded

in the same manner to calculate the total line outage probability. Here our focus is to model

unexpected outages and analyze the impacts of EV participation on DS system support. We have

considered outages due to windy weather conditions such as hurricanes and tornadoes, and we will

leave the influence of other factors to future studies. In order to generate line outage scenarios, the

regional hourly wind speed forecasts will be acquired, and the outage probability for each line at

each hour will be calculated based on equation (5.1). Then, a large number of random numbers will

be generated as scenarios in the range of 0 ∼ 1 for each line and time step. If the generated random

number is less than the line outage probability, the line status would be disconnected (i.e., λ = 0).

Once a line outage occurs at time step t, the line status will remain as λ = 0 for at least ∆t time

steps until the detection of the next line outage. ∆t depends on the severity of weather conditions

and repair time of the outage. On the other hand, we will model the uncertainty of available EVs by

generating random numbers as the number of EVs who are starting their trip from similar origins.

The parameters used for generating line outage and EV participation scenarios will be discussed

in details in the case studies.

In the next step, the backward scenario reduction algorithm is implemented based on [102] to

improve computational tractability and avoid an excessive number of scenarios. At each iteration

of the algorithm, scenarios that are similar (close) to each other get replaced with one scenario,

and its probability will equal the summation of the scenarios it has replaced. The iterations will
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Figure 5.2: Stakeholder’s interaction modeling, inputs, and objectives.

go on until the total number of remaining scenarios reach the desired count. For the step-by-step

implementation of the algorithm please see [102]. Assuming that line outage and EV participation

are two independent sources of uncertainties, the reduced number of scenarios can be easily merged

by compounding the line outage scenarios with the scenarios of the EV number.

After reducing the scenarios to the desired number, we propose the N-MSOPEC method to capture

the stakeholders’ interaction. Figure 5.2 summarizes the proposed modeling framework, including

the stakeholders’ objectives, inputs, main decision variables, and their interactions. DSO receives

the probable line outage scenarios as input and purchases energy from DGs and CSA to maximize

load pickup and minimize its costs accordingly; DGs aim to maximize their profits by selling the

generated energy to the DS. On the other hand, the CSA maximizes its profit by managing EV

charging and energy exchange with the DSO. Note that CSA can either purchase energy from the

system if it needs to charge the EVs or provide energy to DSO whenever EVs want to participate in

DS system support by discharging their stored energy. The EVs’ charging flexibility will determine

the incentives they receive. A market clearing is enforced on the energy exchange in the system,

which requires the supplied energy by CSA and DGs to be equal to the energy demanded by DSs

(including load pickup and charging demand). Energy prices (ρ) are associated with this market

clearing condition. The other main interaction is between the EV owners and CSA. EV drivers
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who are willing to participate in the grid services will choose their plug-in locations based on their

travel plan to maximize their personal utilities. A market clearing condition is considered in this

interaction which balances the number of EVs selecting a CS with the number of EVs expected

by CSA. This clearing condition is associated with the locational incentives (α) offered by CSs to

EV drivers. The modeling details of the proposed N-MSOPEC are delineated in the next section

providing the mathematical modeling for each of the stakeholders and market clearing conditions.

Mathematical Modeling

In this section, we will outline the mathematical modeling of each stakeholder, followed by the

market clearing conditions and the developed convex reformulation technique to solve the problem.

DG Owners Modeling

DG owners determine their hourly generation quantity pDG
i,t,ξ to maximize profits (i.e., minimize

negative profits) of selling energy based on energy price ρ. Because individual DG generation

capacity is limited, we assume DG owners are perfectly competitive and do not have market power

to influence the locational electricity prices. Therefore, the decision making of all DG owners can

be aggregated into a single optimization problem, as formulated in model (5.2).

min
pDG,pR≥0

∑
ξ∈Ξ

Ωξ

[ ∑
i∈IDG

∑
t∈T

(
Ci(p

DG
i,t,ξ)− ρi,t,ξ p

DG
i,t,ξ

)]
(5.2a)

s.t. PDG
i ≤ pDG

i,t,ξ ≤ P̄DG
i , ∀i ∈ IDG, t ∈ T , ξ ∈ Ξ (5.2b)
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Objective (5.2a) minimizes the expectation of the negative profits of DG owners, calculated as

the weighted sum of operation costs of scenarios
∑

ξ∈Ξ
∑

i∈IDG

∑
t∈T ΩξCi(p

DG
i,t,ξ) subtracting the

revenue of energy exchange with the system
∑

ξ∈Ξ
∑

i∈IDG

∑
t∈T Ωξρi,t,ξp

DG
i,t,ξ where probabilities

of scenarios (Ωi,t,ξ) are considered as weights. We assume Ci(·) to be convex function w.r.t pDG
i,t,ξ

with different cost parameters for different DGs. This implies a non-decreasing marginal cost.

Constraint (5.2b) determines the upper and lower bounds of total power generation at DG node i

for time t and scenario ξ.

DSO Modeling

During outages and system disturbances, the main goal of the DSO is to restore energy services

to the customers. Given the characteristics and application of the customers, some have higher

priority, such as hospitals, emergency centers, etc. Here, we assume that the DSO intends to

maximize serviced load demand or load pickup (pdi,t,ξ) based on their priorities (ωi,t) and minimize

the total cost of purchased energy from either DG units or CSs while satisfying system constraints

in all of the scenarios. Formulation defined in model (5.3) represents the optimization problem of

DSO in the restoration process.

Objective (5.3a) maximizes the the load pickup
∑

t∈T
∑

i∈IL ωi,t p
d
i,t,ξ, which is weighted by the

load priority ωi,t, subtracting the cost of energy exchanges with DGs and CSs
∑

t∈T
∑

ρi,t,ξ p
s
i,t,ξ.

The objectives of scenarios are weighted based on their probabilities Ωξ. Operational requirements

of the DS are adopted from the Dist-Flow model [78] in (5.3b)-(5.3i). Active and reactive power

flow balances are modeled in (5.3b) and (5.3c), respectively. Constraint (5.3f) limits power flow

not exceeding line capacity with the uncertain binary line status parameter λl,ξ, where λl,ξ = 0

indicates line outage. Constraint (5.3g) and (5.3h) calculate the voltage at each node where M is

a big number to model line outage when λl,t,ξ = 0. Lastly, constraint (5.3i) enforces the voltage
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boundaries at each node.

max
pd,v≥0,
ps,pf ,qf

∑
ξ∈Ξ

Ωξ

[∑
t∈T

( ∑
i∈IL

ωi,t p
d
i,t,ξ −

∑
i∈IDG∪ICS

ρi,t,ξ p
s
i,t,ξ

)]
(5.3a)

s.t.
∑
l∈L

pfl,t,ξ · LTl,i −
∑
l∈L

pfl,t,ξ · LFl,i = pdi,t,ξ − psi,t,ξ, ∀i ∈ I, t ∈ T , ξ ∈ Ξ (5.3b)

∑
l∈L

qfl,t,ξ · LTl,i −
∑
l∈L

qfl,t,ξ · LFl,i = qdi,t,ξ − qsi,t,ξ, ∀i ∈ I, t ∈ T , ξ ∈ Ξ (5.3c)

0 ≤ pdi,t,ξ ≤ P̄ d
i,t, ∀i ∈ I l, t ∈ T , ξ ∈ Ξ (5.3d)

qdi,t,ξ = (Q̄d
i,t/P̄

d
i,t) · pdi,t,ξ, ∀i ∈ I l, t ∈ T , ξ ∈ Ξ (5.3e)

pf 2
l,t,ξ + qf 2

l,t,ξ ≤ λl,t,ξ · (Smax
l )2, ∀l ∈ L, t ∈ T , ξ ∈ Ξ (5.3f)

vFNl,t,ξ − vTNl,t,ξ ≤ (1− λl,t,ξ) ·M + 2 · (rl · pfl,t,ξ + xl · qfl,t,ξ), ∀l ∈ L, t ∈ T , ξ ∈ Ξ

(5.3g)

vFNl,t,ξ − vTNl,t,ξ ≥ (λl,t,ξ − 1) ·M + 2 · (rl · pfl,t,ξ + xl · qfl,t,ξ), ∀l ∈ L, t ∈ T , ξ ∈ Ξ

(5.3h)

(V min
i )2 ≤ vi,t,ξ ≤ (V max

i )2, ∀i ∈ I, t ∈ T , ξ ∈ Ξ (5.3i)

CSA Modeling

In this study, we assume a CSA, who is private entity responsible for planning charging station

capacity and scheduling the charging and discharging for EV drivers while satisfying their energy

needs. The CSA aims to maximize its profits [82] while maintaining the required charging demand

of EVs in all of the scenarios. The decision making of the CSA is formulated in model (5.4).

CSs determine their total capacity (pCC
i ) as their planning decision variable to fulfill charging

demand reliably for all of the scenarios. Additionally, we assume that CSs will be providing

incentives α for attracting drivers to charge/discharge at their locations. Incentives can be negative
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or positive based on the charging requirements of the EVs. Negative values represent the charging

cost for the EVs, and positive values represent the revenue of EVs for discharging and providing

energy back to the system (i.e., vehicle-to-grid). The amount of the incentives will depend on the

supply-demand relationship at the time of charging/discharging. For example, EVs that discharge

during the emergency time of the system when the supply is significantly lower than the demand,

will get more incentives compared with EVs that discharge during normal operation hours. The

Objective (5.4a) minimizes the CSA’s negative expected profits, which is calculated as the cost of

the capacity investment of CSs
∑

i∈ICS Fi(p
CC
i ), and the weighted sum of the negative profits and

the operational costs at each scenario. Operational costs are calculated as the summation of the

costs of providing incentives for EVs
∑

r∈R
∑

i∈ICS

∑
e∈E α

e
ri,ξq

′e
ri,ξ and battery degradation costs∑

r∈R
∑

t∈T
∑

e∈E C
deg,e
i,r,t,ξ. The revenue of the CSA is calculated as selling electricity to DS based

on locational marginal prices
∑

i∈ICS

∑
t∈T −ρi,t,ξ p

CS
i,t,ξ. The power output of CSs (pCS

i,t,ξ) will be

positive when discharging and negative for charging instances. Energy prices (ρ) and incentives

(α) will be calculated endogenously on the market, which is discussed further in Market Clearing

Conditions.

EVs will be categorized into different homogeneous groups e based on their travel and charging

characteristics, including arriving/departing time T arr
r,e /T dep

r,e , SOCarr
r,e, and minimum SOCdep

r,e . In other

words, EVs with similar charging requirements and temporal behavior will be at the same group

[75]. This will facilitate the incentives design and EV charging scheduling for DS support.
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min
pCS,q′,
pCC ,soc

∑
i∈ICS

Fi(p
CC
i ) +

∑
ξ∈Ξ

Ωξ

[ ∑
i∈ICS

∑
t∈T

−ρi,t,ξ p
CS
i,t,ξ +

∑
r∈R

∑
i∈ICS

∑
e∈E

αe
ri,ξq

′e
ri,ξ

+
∑
i∈ICS

∑
r∈R

∑
t∈T

∑
e∈E

Cdeg,e
i,r,t,ξ

]
(5.4a)

s.t. (5.5)

socei,r,t,ξ = socei,r,t−1,ξ − pei,r,t,ξ, ∀i ∈ ICS, r ∈ R, e ∈ E , t ∈ (T arr
r,e , T

dep
r,e ], ξ ∈ Ξ (5.4b)

q′eri,ξSOCe ≤ socei,r,t,ξ ≤ q′eri,ξSOC
e
, ∀i ∈ ICS, r ∈ R, e ∈ E , t ∈ [T arr

r,e , T
dep
r,e ], ξ ∈ Ξ

(5.4c)

socei,r,T arr
r,e,ξ

= q′eri,ξSOCarr
r,e, ∀i ∈ ICS, r ∈ R, e ∈ E , ξ ∈ Ξ (5.4d)

soce
i,r,T

dep
r,e ,ξ

≥ q′eri,ξSOCdep
r,e , ∀i ∈ ICSr ∈ R, e ∈ E , ξ ∈ Ξ (5.4e)

pCS
i,t,ξ =

∑
r∈R

∑
e∈E

pei,r,t,ξ
Sbase

, ∀i ∈ ICS, t ∈ [T arr
r,e , T

dep
r,e ], ξ ∈ Ξ (5.4f)

− pCC
i ≤ pCS

i,t,ξ ≤ pCC
i ∀i ∈ ICS, t ∈ [T arr

r,e , T
dep
r,e ], ξ ∈ Ξ (5.4g)

CSA needs to fulfill the charging requirements of EVs. EVs’ state of charge (SOC) transition

are modeled in (5.4b)-(5.4g). Constraint (5.4b) models the SOC dynamics of EVs coming from

origin node r and charge at CS location i. Constraint (5.4c) enforces the acceptable range for the

SOC of each EV group. Constraint (5.4d) enforces the initial SOC of EVs when they arrive a CS.

Constraint (5.4e) specifies the expected minimum departure SOC for each EV group at charging

location i when they leave the CS. The total hourly power supply/demand of a CS is calculated

in (5.4f) as the summation of the normalized discharging/charging of EVs at each station. Lastly,

Constraint (5.4g) ensures that the total hourly power output of each CS does not exceed the total

charging/discharging capacity of the CS.
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In addition, one factor that discourages the participation of EV drivers in system services is bat-

tery degradation as the result of frequent charging and discharging. Here, we assume that CSA

is responsible for the costs of battery degradation of vehicles to provide DS services. The Ah-

throughput counting model [86] is commonly used for modeling the shelf and cycle degradation

types [85]. We formulated the degradation cost of EVs Cdeg,e
i,r,t in model (5.5), adapted from [50,75]

to consider battery degradation for different EV groups, time index, and scenarios.

zei,r,t,ξ ≥ pei,r,t,ξ ∀i ∈ ICS, r ∈ R, e ∈ E , t ∈ T , ξ ∈ Ξ (5.5a)

zei,r,t,ξ ≥ − pei,r,t,ξ ∀i ∈ ICS, r ∈ R, e ∈ E , t ∈ T , ξ ∈ Ξ (5.5b)

caploss,e
i,r,t,ξ = ζe · zei,r,t,ξ ·∆T, ∀i ∈ ICS, r ∈ R, t ∈ [T arr

r , T dep
r,e ], ξ ∈ Ξ (5.5c)

dcycle,e
i,r,t,ξ =

caploss,e
i,r,t,ξ

1− Capend,e , ∀i ∈ ICS, r ∈ R, e ∈ E , t ∈ [T arr
r,e , T

dep
r,e ], ξ ∈ Ξ (5.5d)

dei,r,t,ξ = max{dcycle,e
i,r,t,ξ , d

shelf,e}, ∀i ∈ ICS, r ∈ R, e ∈ E , t ∈ [T arr
r , T dep

r,e ], ξ ∈ Ξ (5.5e)

Cdeg,e
i,r,t,ξ = dei,r,t,ξ(C

rep,e − C res,e)Cape, ∀i ∈ ICS, r ∈ R, e ∈ E , t ∈ [T arr
r , T dep

r,e ], ξ ∈ Ξ (5.5f)

EV Drivers Modeling

Routing and CS selection of EVs in transportation networks will be modeled in this section. We

assume that drivers will select a CS that maximizes their own utility depending on four main

factors including locational attractiveness β0,s, travel time −β1ttrs, charging cost/revenue from

charging/discharging β2α
e
rs, and a random term ϵ. These factors are included in the utility function

of the driver formulated in (5.6) [50, 67]. Other exogenous factors can also be included in (5.6)

without affecting the modeling and computational strategies proposed in this paper.
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U e
rs,ξ = β0,s − β1ttrs,ξ + β2α

e
rs,ξ + ϵ. (5.6)

The path travel time and CS selection of the drivers are interrelated as the destination selection

of the drivers depends on path travel time and will impact the travel demand distribution of the

system, which will eventually affect the travel time of all the drivers. Here, we have adopted the

combined distribution and assignment (CDA) model to capture the interrelated CS selection and

travel time of the EV drivers as formulated in (5.7). Notice that the CDAτ model will be solved

for any τ ∈ T arr to estimate the drivers’ CS selection at each time step.

The first part of the objective function (5.7a) is the summation of the area under all the link travel

cost functions tta(·) (e.g., Bureau of Public Roads (BPR) function) and the second part is the en-

tropy of traffic distribution qers(ln q
e
rs− 1) and utility terms (excluding time) in (5.6). The technical

proofs discussed in [87] prove that the solution of (5.7) guarantees the first Wardrop principal [89]

and the multinomial logit destination choice assumption. Constraint (5.7b) calculates link flows by

summing link flows of EVs (xτ
rs) and conventional vehicles (x̄τ

rs) travelling at the same time period

τ over all origin and destination pairs. Constraints (5.7c-5.7d) are the vehicle flow conservation

at each node for EV travel demand qers and conventional vehicle travel demand q̄τrs, respectively.

Constraint (5.7e) guarantees the summation of EV traffic flow distribution to each s (qers) equals

the total EV travel demand from r, (Qe
r).
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min
x,x̄,q≥0

∑
a∈A

∫ vτa

0

tta(u)du+
1

β1

∑
ξ∈Ξ

∑
r∈R,s∈S

∑
e∈Eτ

qers,ξ
(
ln qers,ξ − 1− β2α

e
rs,ξ − β0,s

)
(5.7a)

s.t. vτ =
∑

r∈R,s∈S

xτ
rs +

∑
r∈R̄,s∈S̄

x̄τ
rs,ξ, ∀τ ∈ T arr, ξ ∈ Ξ (5.7b)

(ητ
rs) Axτ

rs,ξ =
∑
e∈Eτ

qers,ξErs, ∀r ∈ R, s ∈ S, τ ∈ T arr, ξ ∈ Ξ (5.7c)

Ax̄τ
rs = q̄τrsErs, ∀r ∈ R̄, s ∈ S̄, τ ∈ T arr (5.7d)∑

s∈S

qers,ξ = Qe
r,ξ,∀r ∈ R, e ∈ Eτ , ξ ∈ Ξ (5.7e)

Market Clearing Conditions

The interaction of stakeholders are modeled as two main clearing conditions here. The power

exchange among the DSO, DGs, and CS should be balanced in a way that the power purchased

by DSO needs to be balanced with locational power generation. Additionally, the number of EVs

selecting a CS should be equal to the expected number of EVs by CSA. These conditions are stated

in the hourly market clearing conditions as equation (5.8). Equation (5.8a) guarantees that the total

energy purchased by DSO is equal to the total energy generated at each node including DGs and

CSs, and equation (5.8b) ensures that the number of EVs selecting a CS is equal to the number of

EVs demanded by CSA. Locational prices of electricity ρi,t,ξ and incentives for EVs αe
rs,ξ can be

interpreted as dual variables for the market clearing conditions. Since the objective functions are

scaled with scenarios’ probabilities Ωξ, we have scaled the clearing conditions with the same factor

to derive the true prices after solving the optimization problem by evaluating the dual variables of
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these conditions.

(ρi,t,ξ) Ωξ p
s
i,t,ξ = Ωξ p

DG
i,t,ξ + Ωξ P

CS
i,t,ξ, ∀i ∈ IDG ∪ ICS, ∀t ∈ T , ξ ∈ Ξ (5.8a)

(αe
rs,ξ) Ωξ q

′e
rs,ξ = Ωξ q

e
rs,ξ, ∀r ∈ R, s ∈ S, e ∈ E , ξ ∈ Ξ (5.8b)

Convex Reformulation

The individual models of stakeholders defined in Section (5)∼(5) are interdependent and need to

be solved simultaneously considering the market clearing conditions in equation (5.8), forming

the N-MSOPEC model. Direct combination of these models results in a large-scale, highly non-

convex complementarity problem, which is challenging to solve. We will extend our proposed

reformulation technique in [75] from deterministic to stochastic settings to form an exact convex

formulation of the N-MSOPEC framework developed here. We observe that models (5.2)∼(5.4)

are convex optimization problems with constraints completely separable. The objective functions

of these models are almost separable except for the multiplication terms of primal and dual vari-

ables in market clearing conditions (5.8) (i.e., ρi,tpsi,t, ρi,tp
DG
i,t , ρi,tPCS

i,t , αe
rs,ξq

′e
rs,ξ, α

e
rs,ξq

e
rs,ξ). This

type of problem can be reformulated by linearly combining all the (scaled) objective functions

and intersecting all the constraint sets in (5.2)∼(5.4). Then, we apply the reverse procedures of

Lagrangian relaxation to the market clearing conditions (5.8) [103]. Accordingly, the N-MSOPEC

(i.e., (5.2)∼(5.4) and (5.8)) can be equivalently reformulated as a single convex optimization prob-

lem (5.9), which can be efficiently solved by commercial nonlinear solvers (e.g., IPOPT). For

proof, one can reformulate (5.2)∼(5.4), and (5.8) as variational inequalities (VIs), which can be

shown to be equivalent with the VIs for (5.9) (see [75] for details). After solving the problem

defined in (5.9), we can derive the locational energy prices (ρi,t) and charging prices (βi,t,y) by
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retrieving the dual variables corresponding to constraints (5.8). Note that model (5.9a) is a classic

two-stage stochastic programming problem, which can be further decomposed by system, scenario,

and stage to improve computational efficiency for extremely large cases. Since the main focus of

this study is not on an extremely large case investigation, we will leave the advanced algorithm

design for the future.

min
pCS,soc

∑
i∈ICS

Fi(p
CC
i ) +

∑
ξ∈Ξ

Ωξ

[∑
t∈T

( ∑
i∈IDG

Ci(p
DG
i,t,ξ)−

∑
i∈Il

ωi,tp
d
i,t,ξ +

∑
i∈ICS

∑
r∈R

∑
e∈E

Cdeg,e
i,r,t,ξ

)

+
β1

β2

∑
a∈A,τ∈T arr

∫ vτa

0

tta(u)du+
1

β2

∑
τ∈T arr

∑
r∈R,s∈S

∑
e∈Eτ

qers,ξ
(
ln qers,ξ − 1− βs

0

) ]
(5.9a)

s.t. (5.2b), (5.3b) ∼ (5.3i), (5.4b) ∼ (5.4g), (5.5), (5.7b) ∼ (5.7e), (5.8) (5.9b)

Numerical Results

In this section, the effectiveness of the proposed model will be investigated based on a small test

system coupling DS and TS. The results are mainly used to get meaningful insights into the system

interactions and the impact of stochasticity on the systems. For notation simplicity, the term node

is referred to as a DS node unless declared as a TS node explicitly throughout this section.

Four-node Test System

A small four-node test system (see Figure 5.3) is considered here for deriving insights and evaluat-

ing the interdependencies of the systems. Nodes are shown with black lines and numbers, and red
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circles show the TS nodes. Distribution lines have the capacity of 2 (pu), and each lines’ charac-

teristics (r, x) are included in Figure 5.3. Nodes 1 and 4 are generation nodes connecting to DGs.

The generation cost functions for DGs (Ci(·)) are assumed to be linear functions w.r.t pDG and the

constant cost coefficients for each DG is included in Figure 5.3. Nodes 2 ∼ 4 are load nodes with

daily load profiles shown with dashed lines in Figure 5.5. We assumed that loads at node 3 have

higher priority of load pickup (ω3 = 60) compared to nodes 2 and 4 (ω2 = ω4 = 50). The TS nodes

1 and 4 are origin nodes of EVs, and TS nodes 2 and 3 are their candidate charging locations –

coupling with the DS. The charging capacity cost function Fi(·) is assumed to be a linear function

w.r.t pCC and the cost coefficient for CS at nodes 2 and 3 is 20($/pu).

2019 21 22
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3 4 5 6 7 8

DG

9 10 11 12
13

DG

1415161718
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2423 25 26 27 28 29 30

DG

31 32 33

(a) IEEE 33-node

Figure 1: Coupled transportation and distribution test systems.
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Figure 2: Proposed method
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Figure 3: Four-node test system

5

Figure 5.3: Four-node test system

All the transportation links have a capacity parameter in the 4th-order BPR function of 20 ve-

hicles/hour. The incoming traffic of EVs are in one of the three groups based on their SOCarr

(SOCarr
r,e=1 = 0.3, SOCarr

r,e=2 = 0.6, and SOCarr
r,e=3 = 0.8). We assume that EVs from each origin

node are divided evenly between these three groups to consider different charging requirements,

e.g., if 30 EVs depart from TS node 1, each group will have 10 EVs. The arrival time of each group

to CSs departing from TS origin nodes 1 and 4 (τ (∈ T arr
r,e )) are selected randomly from a uniform

distribution, as reported in Figure 5.32.

2All the random numbers in this paper are generated with random seed=1
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Figure 5.4: Generated scenarios for (a) forecasted day ahead wind speed at lines: 1, 2,
and 3; (b) number of occurrences for EV counts from each origin nodes: 1 and 4.

Scenarios are generated based on the methodology discussed in Methodology Overview section.

The critical and collapse wind speeds for lines are set as wcritical= 30 (m/s) and wcollapse= 50 (m/s),

respectively [100]. It is assumed that a severe wind condition will hit the area during t= 10∼20 (h).

To model this weather condition, wind speed for the area of lines 1, 2, and 3 is selected randomly

in the range of w= 30 ∼ 45 (m/s), w= 25 ∼ 40 (m/s), and w= 25 ∼ 35 (m/s), respectively for

each hour during that period. Additionally, for other time steps, the wind speed is assumed to be

less than the wcritical for all the lines. We generated 1000 scenarios of wind speed for each line

and time step as reported in Figure 5.4a Then, the line outage probability was calculated based on

equation (5.1) with P̄ = 0.003. We assumed that once a lone outage occurs, the line status remain

0 for at least ∆ = 3 hours (considering the repair time). We generated 1000 line outage scenarios

based on the calculated probabilities and reduced the number of scenarios to 5 for all the lines.

The same number of scenarios were generated for the number of EVs as random integers with

uniform distributions in the range of 20∼40 for each origin node. Figure 5.4b shows the generated

scenarios of EV counts for the two origin nodes. These scenarios were also reduced to 5 scenarios.

As mentioned, we assumed that the total number of EVs departed from each origin will be divided
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TABLE 5.1 REDUCED LINE OUTAGE AND EV PARTICIPATION SCENARIOS

Scenario
ξ

Line outage
Ω EV counts (Qe

r) ΩLine Duration

1
1 9∼21

0.256 Q1
1 =7.33 , Q2

1 = 6.59, Q3
1 = 7.33

Q1
4 = 10, Q2

4 = 10, Q3
4 = 9 0.1732 9∼17

3 11∼13

2 1 9∼21 0.204 Q1
1 =9.33 , Q2

1 = 8.39, Q3
1 = 9.33

Q1
4 = 7.66, Q2

4 = 7.66, Q3
4 = 6.89 0.2182 11∼20

3 1 10∼21 0.311 Q1
1 =9.33 , Q2

1 = 8.39, Q3
1 = 9.33

Q1
4 = 12.33, Q2

4 = 12.33, Q3
4 = 11.09 0.2392 13∼15

4 1 12∼21 0.122 Q1
1 =12 , Q2

1 = 10.8, Q3
1 = 12

Q1
4 = 11, Q2

4 = 11, Q3
4 = 9.9 0.2372 9∼20

5 1 12∼21 0.105
Q1

1 =12.66 , Q2
1 = 11.39, Q3

1 = 12.66
Q1

4 = 7.66, Q2
4 = 7.66, Q3

4 = 6.89 0.133

evenly into three groups (e) to represent EVs with different charging requirements. Table 5.1 shows

the number of EVs for each group on the reduced scenarios along with the reduced scenarios of

line outages. Note that high winds will also impact the transportation demand and relative highway

capacities (41). Here, we will consider a more drastic impact by considering a 10% decrease in

travel demand of EVs who have an arrival time during the high wind forecast (t = 10∼20) (i.e.,

group e = 2, 3 EVs from origin nodes 1 and 2, respectively, as these EVs have an arrival time

of T arr
r,e = 19 and 16 (see Figure 5.3)). Lastly, the reduced scenarios were merged into 25 total

scenarios as discussed in Methodology Overview section. In the upcoming subsections, we will

delve into power and transportation interdependencies in case analysis and investigate stochastic

metrics the stochastic analysis.

Case analysis

To investigate system interdependencies and conduct sensitivity analyses, we designed three cases.

In case 1 (base case), the line outage and EV count scenarios are considered with the above-

mentioned system characteristics. In case 2, the capacity of the distribution line connecting nodes
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3 to 4 is reduced to 0.5 (pu) to evaluate the impact of DS congestion on the overall performance

of the model. In case 3, the transportation link capacity of the link connecting TS nodes 1 to 2 is

reduced to 2 (vehicle/hour), and the other system characteristics remain the same as in case 1.
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Figure 5.5: Load pickup profile: - - - expected load demand; node 2, node 3 , and
node 4.

The load pickup pattern in Figure 5.5 shows that the system was able to manage energy generation

from DGs and CSs to fulfill the expected energy demand (dashed lines) for the higher priority load

(node 3) in cases 1 and 3 but experience load losses in the other nodes because the line outages limit

energy transmission toward these nodes. More load loss occurs at node 2 (Figure 5.5b) because

the capacity of distribution line 3–4 has reduced, limiting the energy transmission toward nodes

2 and 3. But in case 2, the system was able to provide the load demand at node 4 since DG at

node 4 has enough generation capacity for node 4. On the other hand, the reduced link capacity

connecting TS nodes 1–2 did not cause major changes in the load pickup (see Figure 5.5c) because

this limitation changes the distribution of EVs to different CSs only (further illustrated in Figure

5.8) and the total EV charging demand/support remains similar to case 1 (illustrated in Figure 5.7).

Figure 5.6 and 5.7 represent the power output of DG and CS nodes respectively for the defined

cases. DG at node 4 has provided the highest generation during the day because it has a lower

generation cost compared to the DG at node 1. Generation at node 4 decreases when system
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Figure 5.6: Power output of DGs: node 1 and node 4.
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Figure 5.7: Power output of CSs: node 2 and node 3.

requirements (e.g., voltage constraints) propel DG at node 1 to provide energy or when CSs can

provide energy back to the system (see Figure 5.6). The positive power output at CS nodes 2 and

3 shows the V2G support from EVs at CSs when EVs have sufficient and flexible stored energy;

and the negative values represent the charging demand of the EVs (see Figure 5.7). For example,

in case 1 (Figure 5.7a), we observe that EVs provide more energy services to the system to prevent

load loss at nodes 2 and 3 especially during night time. The power injection patterns in cases 2

and 3 (Figures 5.7b and 5.7b) show the influence of the DS and TS on the decision making of

stakeholders in both systems. Without the possibility of energy transmission to node 2 in case 2,

the energy output of CS at node 3 has been reduced, which also caused the major reduction of
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the CD at node 2 (Figure 5.7b). For example, charging demand at nodes 3 and 2 has significantly

decreased during t = 8∼13 compared to case 1 to avoid consuming more distribution capacity and

causing more load losses. As a consequence, the power injection at node 3 for system support

during t = 17∼22 is lower compared to case 1 because not enough energy has been charged for

EVs in the earlier time periods. In case 3, where the reduced TS link capacity causes congestion

for EVs going to node 2 (see Figure 5.8c), we observe that charging demand and system support

have shifted from node 2 to node 3 during t = 3∼7 and later during t = 19∼22 compared to case

1 (see Figure 5.5a). This shift reflects the arrival time of the vehicles departing from nodes 1 to

3. Since the shift in CS outputs has not occurred during the line outage period, it did not cause

major changes in load pickup (Figure 5.5c) and incentives (Figure 5.9c). Other time steps with no

significant shifts represent the arrival time of EVs departing from node 4 or the EVs from node 1

that have not changed their CS selection compared to case 1 (compare Figure 5.8c and 5.8a).
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Figure 5.8: EVs’ CS selection: group 1, group 2, and group 3.

EV drivers’ CS choices are shown in Figure 5.8 as the number of EVs from each group for each OD

pair. EVs CS selection co-relates with both the proximity of the charging location and provided

incentives by the CSs. EVs with the availability to participate in system support are offered higher

incentives (Figure 5.9) and attracted toward the nodes having more generation service needed

(Figure 5.8). More system support urgency in case 2 resulted in higher charging costs and higher
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incentives for EVs’ system support (Figure 5.9b). Consequently, node 2 has attracted more EVs

with charging requirements (group 1), which has lower charging costs, and EVs with less charging

requirements (groups 2 and 3) are attracted to node 3 in case 2, which offers more system support

(Figure 5.8b). This is another indicator that our model could capture close coupling between the

coupled systems. The reduced TS link capacity in case 3 increases the travel time from origin node

1 to 2 due to congestion and encourages drivers departing from node 1 to choose the CS at node

3 instead of node 2 (see Figure 5.8c). This shift in CS selection is also reflected in the CS power

output shown in Figure 5.6c, which we have discussed previously.
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Figure 5.9: CS incentives for EVs: group 1, group 2, and group 3.

We calculated the incentives given to EV drivers by CSA as the dual variables of the clearing

conditions discussed in Market Clearing Conditions. Figure 5.9 shows these values for different

EV groups in the three cases. The incentives reflect the value of different EV groups to CSA.

Negative incentives for group 1 EVs represent charging costs for the drivers as this EV group has

higher charging demand, and positive incentives for groups 2 and 3 EVs represent the revenue for

those drivers since they have lower charging demand and have the flexibility to provide DS support.

EVs with lower charging requirements are offered higher incentives (Figure 5.9) because of their

availability to participate in system support during line outages. In case 1 (Figure 5.9a), group 3

EVs departing from TS node 4 receive higher incentives compared to the group 3 EVs departing
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from node 1. This is because EVs from TS node 4 arrive at CSs during the time when the system

needs more support to avoid load losses. The same reasoning applies for the higher charging cost

for group 1 EVs from origin node 4. Incentives for group 3 EVs from origin node 4 have increased

in case 2 (see Figure 5.9b) because DS is experiencing higher load losses compared to case 1 (see

Figure 5.5) during the dwelling time of these EVs at the CSs. The reduced TS link capacity in case

3 does not change the incentives compared with case 1. This is because although more EVs from

node 1 will choose CS at node 3 to avoid congestion in case 3, the power from EVs can be freely

transferred between node 2 and 3 since there is no congestion in DS.

Stochastic analysis

First, we calculate the value of the stochastic solution (VSS) by comparing the impacts of using

the proposed stochastic modeling with the results of deterministic modeling. The deterministic

modeling results are achieved by solving a deterministic problem using the expected value of the

uncertain parameters (weighted average value of uncertain parameters based on the probability

of scenarios) as its only scenario. In the proposed N-MSOPEC, we can compare the objective

function value of each stakeholder in stochastic and deterministic models to evaluate how each

stakeholder has benefited from the stochastic modeling compared to the case where they have only

considered the expected value of the uncertain parameters.

Second, we compute the expected value of perfect information (EVPI) for each stakeholder. In the

single-agent stochastic optimization models, the decision maker can always benefit from knowing

the exact realization of the uncertain parameters [104]. In a multi-agent setting, however, agents

compete with each other for their own benefits. If all the agents had access to the perfect infor-

mation, the perfect information may not benefit all the agents. To simulate the case with perfect

information, we will allow the planning variable (CS capacity pCC) to be scenario dependent.
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Therefore, the objective function of CSA (5.4a) can be reformulated as (5.10) and the bounds of

CS capacity constraint (5.4g) will be scenario dependant.

min
pCS,q′,
pCC,soc

∑
ξ∈Ξ

Ωξ

[ ∑
i∈ICS

(
Fi(p

CC
i,ξ ) +

∑
t∈T

−ρi,t,ξ p
CS
i,t,ξ

)
+
∑
r∈R

∑
i∈ICS

∑
e∈E

αe
ri,ξq

′e
ri,ξ

+
∑
i∈ICS

∑
r∈R

∑
t∈T

∑
e∈E

Cdeg,e
i,r,t,ξ

]
(5.10)

Accordingly, the charging capacity term in the objective function of the convex reformulation

(5.9a) will also be scenario-dependant, and the problem with perfect information can be defined as

(5.11). This combined problem can be decomposed by scenario. To calculate the EVPI for each

stakeholder, we just need to solve both problems (5.9a) and (5.11) and evaluate the differences in

the objective functions of each stakeholder.

min
pCS,soc

∑
ξ∈Ξ

Ωξ

[ ∑
i∈ICS

Fi(p
CC
i,ξ ) +

∑
t∈T

( ∑
i∈IDG

Ci(p
DG
i,t,ξ)−

∑
i∈Il

ωi,tp
d
i,t,ξ +

∑
i∈ICS

∑
r∈R

∑
e∈E

Cdeg,e
i,r,t,ξ

)

+
β1

β2

∑
a∈A,τ∈T arr

∫ vτa

0

tta(u)du+
1

β2

∑
τ∈T arr

∑
r∈R,s∈S

∑
e∈Eτ

qers,ξ
(
ln qers,ξ − 1− βs

0

) ]
(5.11a)

s.t. (5.2b), (5.3b) ∼ (5.3i), (5.4b) ∼ (5.4g), (5.5), (5.7b) ∼ (5.7e), (5.8) (5.11b)

Figure 5.10 shows the objective values of stakeholders in three types of modeling, i.e., stochas-

tic, deterministic, and perfect information. Note that the objective of DGs and CSA, as defined

in (2a) and (5.4a), are minimization problems, and the objective of DSO (3a) is a maximization

problem. In other words, lower objective values are favorable for DGs and CSA, and a higher

87



DGs CSA DSO Drivers

Objectives

-1000

-500

0

500

1000

Figure 5.10: Stakeholders’ objectives

objective value is favorable for DSO. As for the EV drivers, the objective is defined as the total

expected utility (E
∑

ue
rsq

e
rs). The difference between stochastic and deterministic objective val-

ues represents VSS. We observed that stochastic modeling was more beneficial for DGs and the

drivers where they achieved lower objectives/higher utility compared to the deterministic problem.

This is because considering uncertainty will reflect the extreme energy shortage scenarios, where

energy prices and EV incentives are higher for DGs and EV drivers. However, the DSO had better

objective values in the deterministic modeling. The CSA acted as a non-beneficiary entity in the

equilibrium model and had an objective function value close to zero in all three types of model-

ings. This is because the objective function of CSA is linear to energy prices and EV incentives,

which are both determined by market clearing conditions. These results show that, in the multi-

agent framework, stakeholders may benefit differently by adopting a stochastic modeling approach

compared with deterministic models.

Comparing the objective values of stochastic and perfect information problems will give us the

EVPI. We observed that DGs and EV drivers benefited from having access to perfect information,
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reduced their costs and increase their utility, respectively. This is because perfect information

allows the CSA to make scenario-dependent investments avoiding over-investment, which will

increase the locational energy prices and EV incentives. On the other hand, the DSO has incurred

less objective value. The results show that, unlike centralized problems where a central entity

would benefit from perfect information, in mutli-agent framework, all decision makers will respond

to perfect information, and their decisions are impacting the benefits of each other. The aggregate

impacts of more information on each decision maker will include both the impacts brought by more

information to the system and the secondary impacts brought by the response of other decision

makers to more information.

Additionally, we investigated the total expected load loss in the three types of modeling. The load

loss decreased from 7.6788 pu in deterministic modeling to 7.2199 pu in stochastic modeling,

and perfect information helped further reduce the total load loss to 7.1232 pu. The reason is

that a deterministic approach overlooks the potential extreme supply shortage scenarios, which

have a higher return and under-investment. Also, the system improved load pickup with perfect

information as the CSA could plan independently for each scenario of outages to allow DSO to

operate more efficiently, resulting in better load pick-up opportunities for EVs and DGs.

Conclusion

We explored the potential value of private electric vehicles (EVs) for load pickup in a coupled

power distribution and transportation system with uncertainties of line outage and EV participa-

tion. We developed a network-based multi-agent stochastic optimization problem with equilibrium

constraints (N-MSOPEC) framework to capture the decision making of decentralized stakeholders

in both distribution and transportation systems incentivizing EV participation. A large number of

line outages and EV participation scenarios were generated and further reduced to high probable
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scenarios to reflect the stochastic nature of the system while ensuring computational tractability.

We then propose an exact convex reformulation to the N-MSOPEC, so that the highly non-convex

N-MSOPEC problem can be effectively solved by commercial non-linear solvers with guaranteed

global convergence. The simulation results on a small test system and designed case studies pro-

vided insights into the value of private EVs on distribution system support during line outages. The

results showed that our model could capture the interactions between key stakeholders to quantify

the value of EVs’ DS system support. Some key takeaways from the numerical studies are: 1) EV

participation along with DG generations can help fulfill the high-priority loads and reduce total

load loss. 2) The incentives offered by the CSs depend on the flexibility of EV charging, the needs

of DS load pickup, and the accessibility of CSs. 3) Characteristics of both power and transportation

systems influence the decision making of stakeholders, and a holistic modeling approach is nec-

essary to capture these complex couplings.Additionally, we found out that stochastic modeling or

perfect information does not necessarily benefit all stakeholders. The proposed multi-agent mod-

eling framework can be an effective tool to quantify the impacts of stochasticity and information

on individual stakeholders.

The proposed methodology can be used by transportation and distribution system planners for

evaluating alternative system upgrade plans considering a large-scale EV adoption in the future.

In addition, charging station aggregators can leverage the proposed models to guide their incentive

design to attract EVs to provide distribution system services at the right time and locations. For

the government, this model can be used to evaluate regulations on the V2G market and policies on

promoting EV adoption and V2G participation. To enable a real world large-scale study, decompo-

sition based methods can be further developed to the reformulated convex optimization model as

a nature extension to improve the computational efficiency. Additionally, the modeling can be ex-

tended to consider other weather-related events, such as extreme temperatures and flooding rains,

by incorporating additional line fragility functions for each weather condition.
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CHAPTER 6: MULTI-STAGE CHARGING STATION AND

DISTRIBUTED GENERATOR CAPACITY EXPANSION IN

DECENTRALIZED POWER DISTRIBUTION AND TRANSPORTATION

SYSTEMS1

Introduction

As worldwide environmental concerns have propelled governments to issue long-term plans for

the transportation sector to become fully electric, we are observing an increasing EV adoption

pattern. The pathways towards transitioning to EVs requires a reliable charging infrastructure,

providing the CD of EVs. The prerequisite for such infrastructure requires a long-term plan from

both power and transportation systems. From the perspective of the power distribution system

operator (DSO), the distribution system (DS) will need to accommodate a combination of the

growing EV CD and the existing load profiles. Therefore, the capacity of CSs and generation

units need to be carefully planned spatially and temporally to fulfill the charging needs while

minimizing grid impacts. DGs are the key energy sources in DSs that need to plan for the growing

CD of EVs along with the CSs. One important aspect of this long-term plan is how to model

the independent stakeholders in the coupled DTSs where the decision making of each stakeholder

will impact the others. Here, we have formulated the CS and DG capacity planning problem

as a multi-stage multi-agent optimization problem where the non-cooperative stakeholders make

decisions to fulfill their own objectives in coupled DTSs. The proposed model provides a practical

framework for better understanding the interaction of private investors and better preparing for

a large number of EVs. The proposed model incorporates both long-term planning actions and

1This chapter is developed based on an article currently under 2nd round peer-review process at the journal of IEEE
Systems Journal
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short-term operational decision makings. Feedback effects of CS availability and EV adoption

can be explicitly captured and locational electricity prices can be endogenously determined. The

original formulation is a high-dimensional non-convex problem, which is further reformulated as

a convex problem that can be solved efficiently. In summary, the main contribution is that we have

developed a computational tractable multi-stage multi-agent joint CS and DG capacity planning

model that can capture the decentralized decision making of different stakeholders from both TS

and DSs and identify plausible paths of system evolvement to achieve a target EV penetration level.

The remainder of this chapter is organized as follows: the Mathematical Modeling section summa-

rizes the overall problem followed by the detailed modeling and reformulation strategies. Results

section discusses the outcomes obtained from solving the proposed model on test systems and sen-

sitivity analyses on important parameters. Conclusion section concludes the paper with a summary

of findings and potential future research directions.

The following list provides the definition of all the notations and indices used for the problem

modeling in this chapter.

Sets and Indices

• E : Set of EV groups, indexed by e

– Eτ : set of EV groups arriving at CSs at time τ

• I: Set of distribution system nodes, indexed by i or j

– ICS: set of charging station nodes

– IDG: set of distributed generation nodes

– IL: set of load nodes

• L: Set of distribution lines, indexed by l

• R: Set of vehicle origin nodes in transportation network, indexed by r
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• S: Set of charging locations in transportation network, indexed by s

• T : Set of time periods in one day, indexed by t or τ

• Y: Set of years in planning horizon, indexed by y

Parameters

• α: Discount factor

• γi,t,y: Charging cost for EVs at CS i time t of year y

• δer : Fraction of total number of EVs for group e EVs

• ωy
r : Predicted EV growth rate for each year y departing from r

• b0/b1/b2: Drivers’ utility function coefficients

• BCS
y : CS upgrade budget in year y

• BDG
i,y : DG upgrade budget for DG i in year y

• C1
i /C

2
i /C

3
i : Generation upgrade /maintenance/production cost functions for DG i

• Cape: Total battery capacity of group e EVs.

• F 1
i /F

2
i : Capacity upgrade/maintenance cost functions for CS i

• FNl/TNl: Start/end nodes of line l

• k: Yearly EV adoption coefficient based on available total charging capacity

• LFl,i/LTl,i: Incidence matrices with element l, i: equals to 1 if line l starts/connects from/to

node i and zero otherwise

• P̄ ch
r,e: Maximum charge rate of group e EVs departing from r
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• PDG
i : Minimum active generation capacity of DG i

• P d
i,t,y/Qd

i,t,y: Active/reactive load demand at node i and time t of year y

• pryrs: Probability of a driver departing from r to select a CS at location s at year y

• Q̄y
rs: Predicted EV traffic flow from r to s at year y

• rl/xl: Resistance/reactance of line l

• Sbase: The nominal apparent power of the DS

• Smax
l : Maximum apparent power of line l

• SOCarr
r,e/SOCdep

r,e : Arrival/minimum required departure SOC of group e EVs departing from

node r

• SOCe/SOC
e
: Minimum/maximum SOC permissible for group e EVs

• T arr
r,e /T

dep
r,e : Arrival/departure time of group e EVs to/from CSs traveling from r

• Uy
rs: Utility of a driver at origin node r selecting a CS at destination node s of year y

• V min
i /V max

i : Minimum/maximum voltage at node i

Variables

• βi,t,y: Charging/service cost for CSA/users at node i and time t of year y

• ρi,t,y: Electricity price at node i and time t of year y

• Ai,y: Additional generation capacity for DG i in year y

• Di,y: Additional charging capacity for CS i in year y

• pe,yi,r,t: Aggregated CD of group e EVs at CS i(s), traveling from r at time t of year y
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• pCS
i,t,y: Aggregated CD at CS i(s) at time t of year y

• pDG
i,t,y/q

DG
i,t,y: Active/reactive power generation of DG at node i and time t of year y

• pdi,t,y: CD satisfied by DSO at node i and time t of year y

• psi,t,y/q
s
i,t,y: Active/reactive power purchased by DSO at node i and time t of year y

• pCC
i,y : Total charging capacity of CS i in year y

• qe,yrs : Travel demand of group e EVs from r to s in year y

• Qe,y
r : Total number of group e EVs departing from r in year y

• Qy
r : Total number of EVs departing from r in year y

• S̄DG
i,y : The generation capacity of DG at node i of year y

• soce,yi,r,t: SOC of group e EVs departing from r at CS i(s) and time t of year y

• vi,t: Squared voltage magnitude at node i and time t

Mathematical Modeling

On one hand, the increasing EV adoption and charging demand require effective planning of CS

and DG generation; on the other hand, the planning of CSs and DGs influences the charging

availability and electricity costs, which affects the future EV adoption and charging demand dis-

tribution. We will model the multi-stage CS and DG planning for a growing number of EVs over

years considering these closed coupling. Our objective is to determine the equilibrium investment

patterns of CSs and DGs capacity for each year considering key stakeholders’ own interests while

reaching the desired target level of EV adoption at the end of the planning horizon.
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We consider three key decentralized decision makers that are involved in the CS and DG planning

problem: 1) DSO, 2) CSA, and 3) DG owners. In this section, we will present the mathemati-

cal modeling of the proposed network-based multi-stage multi-agent optimization problems with

equilibrium constraints (NM-MOPEC) framework, in which we model the decentralized decision-

making of each stakeholder and equilibrium conditions in a coupled distribution and transportation

system. In addition, to mitigate the computational challenges brought by non-convexity, we pro-

pose an exact convex reformulation to solve the NM-MOPEC efficiently.

DG Owners Modeling

Each DG i (∈ IDG) determines its hourly generation quantity pDG
i,t,y and yearly added capacity UDG

i,y

to minimize net costs (i.e., maximize profits). We assume that DG owners are perfectly competitive

since each DG owner has limited capacity and does not have the market power to influence the

locational electricity prices ρi,t,y [67]. Therefore, the decision making of all DG owners can be

aggregated and formulated in model (6.1).

min
pDG,qDG,
S̄DG,UDG≥0

∑
y∈Y

αy

[ ∑
i∈IDG

[
C1

i (Ui,y) + C2
i (S̄

DG
i,y ) +

∑
t∈T

(
C3

i (p
DG
i,t,y)− ρi,t,yp

DG
i,t,y

)]]
(6.1a)

s.t. pDG
i,t,y

2
+ qDG

i,t,y

2 ≤ (S̄DG
i,y )2,

∀i ∈ IDG, t ∈ T , y ∈ Y (6.1b)

pDG
i,t,y ≥ PDG

i , ∀i ∈ IDG, t ∈ T , y ∈ Y (6.1c)

S̄DG
i,0 = S̄Init

i (6.1d)

S̄DG
i,y = S̄DG

i,y−1 + UDG
i,y , ∀i ∈ IDG, y ∈ Y/{0} (6.1e)

C1
i (Ui,y) ≤ BDG

i,y , ∀i ∈ IDG, y ∈ Y (6.1f)
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Objective (6.1a) minimizes the cost of DG owners, calculated as the total cost of additional gen-

eration capacity
∑

y∈Y αy
∑

i∈IDG C1
i (Ui,y), total cost of yearly maintenance with respect to to-

tal installed generation capacity
∑

y∈Y αy
∑

i∈IDG C2
i (S̄i,y), and total costs of energy production∑

i∈IDG

∑
t∈T C3

i (p
DG
i,t ) subtracting the total revenue from energy sales

∑
i∈IDG

∑
t∈T ρi,tp

DG
i,t . We

assume Ck
i (·) to be convex functions [77] with respect to Ui,y, S̄i,y, and p̄DG

i,y , respectively, with dif-

ferent cost parameters for different DGs. This implies non-decreasing marginal costs. Note that,

the energy prices ρi,t,y are determined endogenously in our modeling framework based on energy

supply and demand balancing, which will be discussed in Section 6. Constraint (6.1b) specifies the

upper bounds of total power generation for each DG at each time step. Constraint (6.1c) restricts

the minimum generation output of DGs. Constraint (6.1d) sets the initial capacity of DGs. Con-

straint (6.1e) calculates the total DG capacity at each year based on the added capacity Ui,y at year

y and the existing capacity in the previous year y − 1. Moreover, we consider each DG investor

may have limited annual budget for upgrading its generation capacity, as formulated in constraint

(6.1f).

DSO Modeling

The DSO intends to minimize the total operation costs while satisfying system operational con-

straints, which can be formulated as model (6.2). Objective (6.2a) minimizes the total cost of pur-

chased energy from DG generators and upstream substation
∑

y∈Y
(
αy

∑
i∈IDG

∑
t∈T ρi,t,yp

s
i,t,y

)
subtracting the revenue from supplying energy to CSs

∑
y∈Y

(
αy

∑
i∈I

∑
t∈T βi,t,yp

s
i,t,y

)
. Opera-

tional constraints are formulated in (6.2b)-(6.2f), which are adapted based on the Dist-Flow equa-

tions proposed in [78]. Active (including charging demand) and reactive power flow balances are

modeled in (6.2b) and (6.2c), respectively. Constraint (6.2d) limits power flow not exceeding line

capacity. Constraint (6.2e) calculates the voltage at each node while constraint (6.2f) defines the

acceptable voltage range at each node.
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min
v≥0,

ps,pf ,qf

∑
y∈Y

αy
[ ∑
i∈IDG

∑
t∈T

ρi,t,yp
s
i,t,y −

∑
i∈I

∑
t∈T

βi,t,yp
d
i,t,y

]
(6.2a)

s.t.
∑
l∈L

pfl,t,y · LTl,i −
∑
l∈L

pfl,t,y · LFl,i = P d
i,t,y + pdi,t,y − psi,t,y, ∀i ∈ I, t ∈ T , y ∈ Y

(6.2b)∑
l∈L

qfl,t,y · LTl,i −
∑
l∈L

qfl,t,y · LFl,i = Qd
i,t,y − qsi,t,y, ∀i ∈ I, t ∈ T , y ∈ Y (6.2c)

pf 2
l,t,y + qf 2

l,t,y ≤ (Smax
l )2, ∀l ∈ L, t ∈ T , y ∈ Y (6.2d)

vFNl,t,y − vTNl,t,y = 2 · (rl · pfl,t,y + xl · qfl,t,y),∀l ∈ L, t ∈ T , y ∈ Y (6.2e)

V min
i

2 ≤ vi,t,y ≤ V max
i

2, ∀i ∈ I, t ∈ T , y ∈ Y (6.2f)

Drivers charging choice modeling

To model drivers’ choices of charging locations in the transportation system, we adopt a logit

model, where drivers choose the CS locations that maximize their own utility. Denote set r ∈ R

is the location of EV drivers and set s ∈ S is candidate charging locations. The utility function

Urs of a driver selecting location s from r is formulated in (6.3) [50, 67, 105]. We assume that

EV drivers make charging location choices based on four factors: locational attractiveness b0,s,

travel time −b1ttrs, charging cost −b2γ
e
rs, and a random term ϵ. Other exogenous factors can also

be included in (6.3) without affecting the modeling and computational strategies proposed in this

chapter. Note that travel time incorporates travel distance, congestion, and other traffic incidents,

which are important factors in the decision-making of drivers.

Uy
rs = b0,s − b1ttrs − b2γs,y + ϵ. (6.3)
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Then, the probability of a driver (prrs) choosing CS s departing from r can be calculated as a

function of Urs using (6.4).

pryrs =
eU

y
rs∑

s∈S e
Uy
rs
. (6.4)

The calculated probability can be used as the expected percentage of the drivers who start from r

and charge at location s. We will use this probability to distribute the total traffic flow of EVs from

each origin node to the candidate CS nodes in the next section.

CSA Modeling

A CSA is a private entity managing charging infrastructure and EV charging activities. The CSA

aims to minimize its costs (i.e., maximize its profits) [82] while satisfying the charging require-

ments of EVs. The decision making of the CSA is formulated in model (6.5). Objective (6.5a)

minimizes the CSA’s present value of costs, which is calculated as summing the discounted costs

of (1) adding new charging capacity
∑

y∈Y αy
∑

i∈I F
1
i (Di,y), (2) maintaining the existing CS

based on its total charging capacity
∑

y∈Y αy
∑

i∈I F
2
i (p

CC
i,y ), (3) purchasing energy from the sys-

tem
∑

y∈Y αy
∑

i∈I
∑

t∈T βi,t,y(p
CS
i,t,y), and subtracting the revenue received from charging EVs∑

y∈Y αy
∑

i∈I
∑

t∈T γi,t,y(p
CS
i,t,y). Similar with electricity purchasing cost from DG (ρi,t,y), elec-

tricity cost for CSA (βi,t,y) will be determined endogenously by the market electricity supply and

demand, as discussed in Section 6.

In this paper, we assume that the increase in EV numbers will be endogenously influenced by the

available charging capacity of CSs in addition to the overall growth trend. Therefore, we modeled

the yearly growth of EV traffic in constraint (6.5b) where the total EV flow from origin r at year y

(Qy
r) is calculated as the base growth from the previous year (1 + ωy

r )Qy−1
r plus the additional EV

growth based on the availability of the total charging capacity k
∑

i∈ICS pCC
i,y . Other EV growth
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mechanisms can also be modeled within the proposed modeling framework.

min
pCS,soc
pCC,D

∑
y∈Y

αy
∑
i∈ICS

[
F 1
i (Di,y) + F 2

i (p
CC
i,y ) +

∑
t∈T

(
βi,t,y p

CS
i,t,y − γi,t,y p

CS
i,t,y

)]
(6.5a)

s.t. Qy
r = (1 + ωy

r ) Qy−1
r + k

∑
i∈ICS

pCC
i,y , ∀r ∈ R, y ∈ (0, Y ] (6.5b)

Q0
r = Q̄Init

r , ∀r ∈ R, s ∈ S (6.5c)

Qe,y
r = δe Qy

r , ∀r ∈ R, e ∈ E , y ∈ Y (6.5d)

qe,yrs = pryrs Q
y
r , ∀r ∈ R, s ∈ S, y ∈ Y (6.5e)

soce,yi,r,t = soce,yi,r,t−1 + pe,yi,r,t/Cap
e, ∀i ∈ ICS, r ∈ R, e ∈ E , t ∈ (T arr

r,e , T
dep
r,e ], y ∈ Y (6.5f)

qe,yri(s),tSOCe ≤ soce,yi,r,t ≤ qe,yri(s),tSOC
e
, ∀i ∈ ICS, r ∈ R, e ∈ E , t ∈ [T arr

r,e , T
dep
r,e ], y ∈ Y

(6.5g)

soce,yi,r,T arr
r,e

= qe,yri(s),tSOCarr
r,e, ∀i ∈ ICS, r ∈ R, e ∈ E , y ∈ Y (6.5h)

soce,y
i,r,T

dep
r,e

≥ qe,yri(s),tSOCdep
r,e , ∀i ∈ ICS, r ∈ R, e ∈ E , y ∈ Y (6.5i)

0 ≤ pe,yi,r,t ≤ qe,yri(s),tP̄
ch
r,e,∀i ∈ ICS, r ∈ R, e ∈ E , t ∈ [T arr

r,e , T
dep
r,e ], y ∈ Y (6.5j)

pCS
i,t,y =

∑
r∈R

∑
e∈E

pe,yi,r,t

Sbase
, ∀i ∈ ICS, t ∈ [T arr

r,e , T
dep
r,e ] (6.5k)

0 ≤ pCS
i,t,y ≤ pCC

i,y ∀i ∈ ICS, t ∈ [T arr
r,e , T

dep
r,e ], y ∈ Y (6.5l)

pCC
i,y = pCC

i,y−1 +Di,y, ∀i ∈ ICS, y ∈ (0, Y ] (6.5m)

pCC
i,0 = P̄CC,Init

i , ∀i ∈ ICS (6.5n)∑
i∈ICS

F 1
i (Di,y) ≤ BCS

y , ∀y ∈ Y (6.5o)

Objective (6.5a) minimizes the CSA’s present value of costs, which is calculated as summing the

discounted costs of (1) adding new charging capacity
∑

y∈Y αy
∑

i∈I F
1
i (Di,y), (2) maintaining

the existing CS based on its total charging capacity
∑

y∈Y αy
∑

i∈I F
2
i (p

CC
i,y ), (3) purchasing en-
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ergy from the system
∑

y∈Y αy
∑

i∈I
∑

t∈T βi,t,y(p
CS
i,t,y), and subtracting the revenue received from

charging EVs
∑

y∈Y αy
∑

i∈I
∑

t∈T γi,t,y(p
CS
i,t,y). Similar with electricity purchasing cost from DG

(ρi,t,y), electricity cost for CSA (βi,t,y) will be determined endogenously by the market electricity

supply and demand, as discussed in Section 6.

In this paper, we assume that the increase in EV numbers will be endogenously influenced by the

available charging capacity of CSs in addition to the overall growth trend. Therefore, we modeled

the yearly growth of EV traffic in constraint (6.5b) where the total EV flow from origin r at year y

(Qy
r) is calculated as the base growth from the previous year (1 + ωy

r )Qy−1
r plus the additional EV

growth based on the availability of the total charging capacity k
∑

i∈ICS pCC
i,y . Other EV growth

mechanisms can also be modeled within the proposed modeling framework. Constraint (6.5c)

sets the boundary conditions of initial EV traffic from each origin. We have grouped EVs with

similar travel and charging characteristics in terms of arriving/departing time T arr
r,e /T dep

r,e , SOCarr
r,e, and

minimum SOCdep
r,e into different homogeneous groups, indexed by e. Constraint (6.5d) calculates

the EV flow from origin r that fall into each group e, where δer is the percentage of group e EVs.

The probability distribution of SOCarr
r,e and travel patterns from classic household travel survey,

emerging large-scale vehicle GPS data, and charging session records [68, 106] can be used to

estimate δer . The CS selection of EVs is specified in (6.5e) where EVs are distributed to candidate

CSs based on the logit probability calculated in (6.4).

Constraints (6.5f)-(6.5i) specify EVs’ SOC transition and charging needs that the CSA needs to

fulfill. Constraint (6.5f) models the dynamics of the SOC of EV group e from r at CS i in the

DS (i.e., location index s in the transportation network). Constraint (6.5g) limits the maximum and

minimum SOC of each EV group based on drivers’ desired SOC range and/or battery specification.

Constraints (6.5h) and (6.5i) specify the initial arrival SOC and minimum departure SOC for each

EV group at charging location i. Constraint (6.5j) restricts the charging/discharging power of EVs

at each time step t to be within a certain range based on battery/charger characteristics. Constraint
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(6.5k) determines the total power demand of CS i ∈ ICS at time t by summing the normalized

discharging/charging of EVs at each station. Constraint (6.5l) ensures that the total hourly charging

demand of each CS should be less than the total charging capacity of the CS. Constraint (6.5m)

calculates the total charging capacity of each CS pCC
i,y by summing the charging capacity from

the previous year pCC
i,y−1 and the added charging capacity Di,y. Constraint (6.5n) sets the existing

charging capacity of CSs at each location i at year 0. Lastly, constraint (6.5o) specifies the yearly

investment budget of CSA.

Market Clearing Conditions

In a stable market, the locational power purchased by DSO needs to be balanced with the locational

power generation. In addition, the locational CD fulfilled by the DSO should be balanced with the

CD of CSs. These conditions are stated in the market clearing conditions (6.6). (6.6a) guarantees

that the total energy purchased by DSO is equal to the total energy generated at each node with

DGs, and (6.6b) ensures that the charging demand satisfied by DSO is equal to the charging demand

required by the CSs. Locational prices of electricity ρi,t,y and electricity cost for CSA and other

users βi,t,y can be interpreted as dual variables for the market clearing conditions. The reason we

multiply both sides of the clearing conditions with the discount factor αy is to facilitate the convex

reformation and interpretation of dual variables (ρ and β), as discussed in Section 6.

(ρi,t,y) αypsi,t,y = αypDG
i,t,y, ∀i ∈ IDG, ∀t ∈ T , y ∈ Y (6.6a)

(βi,t,y) αypdi,t,y = αypCS
i,t,y, ∀i ∈ ICS, t ∈ T , y ∈ Y (6.6b)

102



Remark 1: The modeling framework proposed in this manuscript does not require an explicit

pricing model. Instead, the pricing of energy supplied by DGs and demanded by CSs are deter-

mined by market clearing conditions (6.6). In other words, each decision maker will try to make

its own decisions to maximize their own benefits, as defined in (6.1), (6.2), and (6.5). Then the

aggregated supply and demand at each node can be determined. If the energy supplied is less than

the energy demanded at a particular node, the price will go up, and vice versa. The prices will

be adjusted until the energy supply and demand at every node are balanced. This market clear-

ing mechanism resembles the realistic dependency of locational prices on the balance of supply

and demand. Such prices are refereed as equilibrium prices, which can be calculated as the dual

variables of constraints (6.6b) and (6.6a) in the convex reformulation (6.7). This relates to the

locational marginal price concept, where the dual variables indicate the marginal costs of one ad-

ditional unit of demand to the objective function (6.7a). Therefore, although the objective function

(6.7a) is manually constructed for computational purposes, it can be interpreted as the total system

costs of the hypothetical market clearing operator.

Convex Reformulation

The multi-stage decision making of each stakeholder and market clearing conditions presented

in Sections DG Owners Modeling∼Market Clearing Conditions are closely coupled and need to

be solved simultaneously to achieve the system equilibrium states. However, it is challenging to

directly solve the NM-MOPEC due to the non-convex nature caused by the complementarity con-

ditions. In this section, we present an exact convex reformulation that can recover the optimal

primal and dual variables efficiently. We observe that models (6.1)∼(6.5) individually are convex

optimization problems with constraints completely separable. In addition, the objective functions

of these models are almost separable except for the multiplication terms of primal and dual vari-

ables in market clearing conditions (6.6) (i.e., ρi,tpsi,t, ρi,tp
DG
i,t , ρi,tPCS

i,t , βi,t,yp
d
i,t,y, βi,t,yp

CS
i,t,y). This
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type of problem can be reformulated by linearly combining all the (scaled) objective functions and

intersecting all the constraint sets in (6.1)∼(6.5) following a reverse Lagrange relaxation proce-

dure [67]. Accordingly, the NM-MOPEC (i.e., (6.1)∼(6.5) and (6.6)) can be equivalently reformu-

lated as a single convex optimization problem (6.7), which can be efficiently solved by commercial

nonlinear solvers (e.g., IPOPT). This reformulation can be easily seen if we apply Lagrangian re-

laxation on constraint (6.6) in model (6.7). For detailed proof, one can refer to [67]. After solving

the problem defined in (6.7a), we can derive the locational energy prices (ρi,t) and charging prices

(βi,t,y) by retrieving the dual variables corresponding to constraints (6.6). Note that since the ob-

jective functions for all the stakeholders are scaled with the discount factor αy for each year y, we

have scaled the market clearing conditions (6.6) with the same discount factor αy so that the prices

derived from the dual variables are in the value of year y.

min
pCS,soc

∑
y∈Y

αy

[ ∑
i∈IDG

[
C1

i (U
DG
i,y ) + C2

i (S̄
DG
i,y ) +

∑
t∈T

C3
i (p

DG
i,t,y)

]
+
∑
i∈I

[
F 1
i (p

CC
i,y ) + F 2

i (Di,y)

−
∑
t∈T

γi,t,yp
CS
i,t,y

]]
(6.7a)

s.t. (6.1b), (6.1e), (6.2b) ∼ (6.2f), (6.5b) ∼ (6.5o), (6.6) (6.7b)

Remark 2: The original formulation, i.e., (DG Owners Modeling∼Market Clearing Conditions), is

a multi-agent optimization problem with equilibrium constraints, which is non-convex if one solves

it directly as a mixed complementarity problem (MCP), because MCP involves multiplication of

two continuous variables (i.e., complementariy terms) from Karush–Kuhn–Tucker (KKT) condi-

tions. Our reformulation is convex because the objective function is convex and all the constraints

are linear. In addition, our reformulation is exact (i.e., our reformulation is not an approximation
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and does not introduce any approximation error to the original equilibrium solutions). Because if

one relaxes the market clearing condition (6.6) in model (6.7) using Lagrangian relaxation, model

(6.7) can be separated into model (6.2), (6.1), and (6.5). For detail proof strategies, one can refer

to [67].

Remark 3: The main motivation for developing our model, instead of using the existing multi-

level modeling framework, is threefold. First, the distribution system is increasingly decentralized,

which could involve a significant number of investors and aggregators. Each of these decision-

makers may not have sufficient market power to influence the others’ actions. For example, in

the current charging network, we have several individual infrastructure investors, none of whom

is dominating the market (see Figure 6.1). In such a decentralized setting, multilevel assumption

is not justifiable because there is no “leading” decision maker that can assume the followers will

simply react to his/her decisions. In contrast, multi-agent approaches are better fit for this setting,

where multiple decision makers interact with each other in a competitive market to optimize their

own objectives. Second, the focus of the multilevel modeling approach is typically on the decision

support for the leader to optimize his/her objective, assuming the leader can expect the response

of other decision makers. However, we are interested in understanding the market interaction

outcome of all the market participants. Third, the classic multilevel optimization modeling ap-

proaches are extremely challenging to solve due to the non-convexity introduced by the inclusion

of optimization problems as constraints. The traditional solution approaches, such as single-level

reformulation of the multilevel optimization modeling or heuristic algorithms are not scalable and

do not guarantee global optimal solutions. However, our proposed modeling framework can be

solved by commercial non-linear solvers to exact solutions in an efficient manner.
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Figure 6.1: Current division of investors in charging station infrastructure

Results

We implemented our convex reformulation model (6.7) in Pyomo 5.6.7 and solved it using IPOPT

3.12.13. All the experiments were run on an AMD FX(tm)-8350 eight-core processor with 16 GB

of RAM memory, under UBUNTU 20.04.2.

Test Systems and parameter settings

In this subsection, we present the test systems and a summary of key model parameters and data

sources. The complete list of model inputs can be openly accessed 2.

We implemented the proposed model on the IEEE-33 feeder [98] coupled with Orlando Trans-

2Data set: https://github.com/SinaBaghali/InputData
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Figure 1: Coupled transportation and distribution test systems.

5

(a) IEEE 33-node

(b) Orlando transportation system

Figure 6.2: Coupled transportation and distribution test systems.

portation system (see Figure 6.2). In the distribution test system, nodes 8, 13, and 30 are the

generation nodes, and the feeder is connected to the main grid at node 1. The cost functions de-

fined in (6.1a) are assumed to be linear, and the upgrade costs of DGs are proportional to their

average construction cost from [107]. The cost coefficients for different DG nodes, along with

their minimum required generation, and cost coefficients [108, 109] of CSs/EVs are summarized

in Table 6.1. The system pu is based on Sbase = 100 MVA, and the discount factor is assumed to

be α = 90%.
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Table 6.1 Test system parameters

Generation nodes’ cost coefficients and parameters
Nodes c1i ($/pu) c2i ($/pu) c3i ($/pu.h) PDG

i (pu) S̄Init
i (pu) BDG

i ($)
1 – – 200 – – –
8 934.5 9.34 36 0.02 1.6 400

13 934.5 9.34 36 0.01 1.5 400
30 934.5 9.34 36 0.01 1 400

Yearly growth rate of the number of EVs
Year 0 1 2 3 4
ωy
r 0 1 0.5 0.33 0.25

Year 5 6 7 8 9
ωy
r 0.8 1 0.556 0.571 0.432

Parameter settings for CSs and EVs
Parameter f 1 ($/pu) f 2 ($/pu) γ ($/pu.h) k (#/pu) Cape (pu) BCS ($)

value 1,781.4 17.184 150 0.2 0.001 100

To model the base power demand (i.e., loads excluding the EV charging demand), we use the

demand data from PJM Interconnection [95]. Hourly historical load forecast data was collected

for a representative date (March 31) from 2012 (initial year y = 0) to 2021 (final year y = 9),

specifically for the American Electric Power (AEP) area. The considered hourly load over the

years in system pu is shown in Figure 6.3. This load demand is used in addition to the CS energy

requirements to model the total power demand in the DS.

To model the traffic distribution in Orlando metropolitan area, origin-destination (OD) travel de-

mand from the 2020 Central Florida Regional Planning Model (CFRPM) was used. This data

includes daily traffic counts between origin and destination (OD) TAZs in Orange County, Florida

in April 2015. In order to match the IEEE 33-node DS, 33 TAZs with the most trips were used for

modeling the transportation system, with 35 % of these vehicles are assumed to be EVs. The travel

demand from CFRPM generated from the origin nodes is treated as the initial EV travel demand

(Q̄Init). For the years after, a base growth factor (ωy), which is estimated from global outlooks on

EV growth from the International Energy Agency [110] (see Table 6.1), was applied to simulate
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Figure 6.3: Hourly load demand over the planning horizon with y: — 0, – –△ 1, – – – 2, – - – 3, –
–◦ 4, · · · 5, – ·▷ 6, · · ∗ 7, – –□ 8, – -♢ 9.

EV growth. The coefficients of EVs’ utility functions are b0 = 0, b1 = 0.06, and b2 = 0.05.

Trips are equally divided into three groups (e ∈ E), representing low, medium, and high initial

SOC, with initial SOC sampled from uniform distributions [0, 0.3], [0.3, 0.6], and [0.6, 0.9], re-

spectively. We focus on destination charging in this study, which is the dominant charging type

now [106]. We leveraged the 2017 National Household Travel Survey [111] to estimate the distri-

bution of arrival times as shown in Figure 6.4. After the arrival time was determined, the departure

time was calculated with dwelling time uniformly sampled between four to six hours3.

3All the randomized values were generated with random seed 1.
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Figure 6.4: Probability Distribution of Arrival Times

Results Analyses

In this section, we will present and analyze the resultant multi-year allocations of CS charging/DG

capacities and hourly operational variables, such as hourly DG generation and energy prices, based

on the proposed modeling.

The optimal yearly capacity expansion for different CSs is presented in Fig. 6.5, which shows

that the CSA gradually increases the capacities on different nodes to the response of CD growth

in the system. The charging capacity increases significantly after the 5th year following a drastic

increase in EV growth rate (see Table 6.1) and it reaches its maximum value in the last year (y =

9) for all the CSs. CSs at nodes 16 and 27 are the two nodes with the highest invested capacities

(0.2948 pu and 0.2885 pu respectively) over the studied time horizon, while node 2 attracts the

lowest investment (0.1178 pu). Higher investment of charging capacity shows the favorability of

these locations by investors, which is based on multiple factors, including the travel time (which

influences charging demand) and power distribution feasibility (which influences energy price).
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As nodes 16 and 27 are in close proximity to multiple origin nodes of EV drivers (see Fig. 6.2),

they have become favorable for the travelers considering the travel time. Additionally, they are

close to the nodes with DGs in DS (see Fig. 6.2), which makes power distribution to these nodes

easier without violating distribution system constraints including voltage constraints and distribu-

tion line capacity. Different nodes may invest differently in different years. For example, node 16

significantly increases the capacity in year 7 while nodes 25 and 32 receive minimum investment

in the same year so that the marginal investment profits at each node are the same. However, the

overall increasing trend of CS capacity is similar for all the nodes.
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Figure 6.5: CS capacities in the planning horizon for CSs at nodes: — 2, — 4, — 6, — 11, — 13,
— 16, — 19, — 23, — 25, — 27, — 30, — 32.

The optimal generation capacity of DGs for each year is presented in Fig. 6.6, which shows that

DG owners have increased their capacity in the first and last two years in response to the load

demand and CD increase of the corresponding years. As shown in Fig. 6.3, the load demand is

higher in the first two years of the planning horizon, with the peak load demand of 4.354 (pu) in
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y = 2. Therefore, the DGs have invested early in the first two years and increased their generation

capacity. The generation capacity of DGs remains constant during y = 2 ∼ 7 (see 6.6) since there

is no more load demand increase during this period (see Fig. 6.3) and the generation capacity is

able to cover the increasing charging demand for this period. After the 7th year, DGs at nodes 8

and 13 have increased their capacity in response to the higher CD during the last two years of the

planning horizon, which is also leading to the increased charging capacity of CSs as shown in Fig.

6.5.
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Figure 6.6: Generation capacity of DGs in the planning horizon for DGs at nodes: — 8, – – – 13,
– - – 30.

Another observation from Fig. 6.6 is that the generation capacity of DG at node 8 has remained

the highest capacity among other DGs during the planning horizon. This stems from the fact that

compared with the other DGs, DG 8 is located in a part of the network that has more CS nodes and

load nodes in its vicinity without other competing generation units (see Fig. 6.2). Additionally,

the generation capacity of DG at node 30 has remained close to the generation capacity of DG 13

during y = 1 ∼ 7, however, its capacity surpasses DG 13 after y = 7. This increase stems from
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the structure of the network where node 30 is the only DG providing the energy of a branch while

nodes 13 and 8 share the same branch, and node 8 already has a high generation capacity which

reduces energy demand from node 13.

Next, we evaluate the operational variables of the system including the power generation of DGs

(pDG), CD of CSs (pCS), energy prices of DG nodes (ρ), and electricity prices for CSA (β). For the

purpose of illustration, we will present the results for the mentioned variables on the representative

day of the last year (year 9) of the planning horizon (see Fig. 6.7). This year has the maximum

number of EVs throughout the planning horizon and consequently imposes the maximum CD on

the system.

The hourly generation output shows that the DG at node 8 serves the highest percentage of the

power demand (both charging demand and the electricity demand for other usages) and reaches

its maximum capacity at t = 8 (see Figure 6.7a). Even though all DGs at nodes 8 and 13 have

the same generation costs (see Table 6.1), DG 8 generates more energy because it is closer to the

region where there is no DG unit (see Fig.6.2). The power generation of other DGs has a similar

pattern with maximum generation during t = 8 ∼ 21, because of higher CD during that period

(see Fig. 6.7c) based on the EVs’ arrival time distribution presented in Fig. 6.4. Moreover, the

optimal generation capacities have evolved in a way that there is no need to purchase energy from

the upper grid (node 1), and the energy from the upper grid is only been used for reactive power

support.

Fig. 6.7b shows that the electricity prices ρ are low for all the DG nodes during t = 1 ∼ 9 and

22 ∼ 23 when the generation of the DGs has not reached their maximum capacity (see Fig. 6.7a).

As the DGs reach their maximum capacity during t = 10 ∼ 22, prices on all nodes increase

drastically because ρ represents the marginal cost of an additional unit of electricity generation,

which is equal to either the cost of purchasing energy from the main grid or the marginal cost
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(c) Charging demand of CSs
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Figure 6.7: Operational parameters in year 9; (a) Nodes: · · · 1, — 8, – – – 13, and – - – 30; (b)
DG nodes: 8, 13, and 30; (c) CS nodes: 2, 4, 6, 11,
13, 16, 19, 23, 25, 27, 30, 32.

of both capacity expansion and generation. The temporal pattern of the daily CD presented in

Fig. 6.7c, follows the arrival time distribution as considered in Fig. 6.4 which is higher during

t = 10 ∼ 23. This is also reflected in the DG generation outputs in Fig. 6.7a where DGs were

producing energy at their capacity during that period. Fig. 6.7d shows the charging prices for CSA

at CS nodes. The temporal pattern of β follows the electricity prices presented in Fig. 6.7b. The
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charging price is high and equal to the energy price during t = 10 ∼ 22 as the DGs are operating

with their maximum capacities, and it is low at other times of the day when the CD is lower and

DGs are operating at a level lower than their capacity.

Computation performance comparison

Another solution algorithm for the proposed multi-agent problem is to consider an iterative process

where each stakeholder solves his/her own problem based on the received price signals until market

equilibrium conditions are satisfied. In other words, problems defined in (6.1), 6.2, and (6.5) can

be solved independently given energy and charging prices ρ and β. The prices gets updated in

each iteration based on aggregated locational supply and demand. This solution method is highly

volatile and needs careful parameter selection to converge. Additionally, even if it converges, the

computation time and solution accuracy may be compromised.

For the sake of comparison, we applied an iterative process to solve our model and to show how

our reformulation technique outruns iterative algorithms in terms of computational efficiency and

accuracy. Fig. 6.8 shows the pattern of energy price on node 8 at time step 3 in year 9 as an

example. It shows that after 200 iterations (more than 5 hours of running) the algorithm hasn’t

converged to the equilibrium price and keeps oscillating with an threshold of 0.1%. The investiga-

tion on the other variables e.g., the generated power by DGs (pDG) also shows oscillating patterns

(see Fig. 6.9). This indicates that iterative algorithms may not be salable for the proposed multi-

stage multi-agent problem and our proposed exact convex reformulation provides a more reliable

solution method to determine the equilibrium outcome of the system.

To the best of the authors’ knowledge, limited scalable global-convergence algorithms in the area

of a decentralized decision environment for multi-stage charging stations and distributed generator

capacity expansion are available. For example, studies like [27,28,31,32,112] design CS planning

115



Figure 6.8: Electricity price convergence: - - - Equilibrium price; — Iterative algorithm.

problems with the focus on satisfying the charging demand of the vehicles in their charging ses-

sions with limited system modeling, so that their main study focuses are distinct from our study

and the solution methods are not applicable. Other studies that have more extensive modeling

at a system level proposed tailored solution approaches for their problems. For example [44–46]

proposed reformulation techniques to solve the CS planning problems that are suitable for mixed

integer linear programming problems but not for our problem, which is nonlinear non-convex.

Sensitivity analysis

The investment decision making of DG owners and CSA depends on a number of important fac-

tors including yearly budget (BDG/BCS), discount factor (α), and the EV adoption coefficient (k).

Here, we will analyze how changes in these factors will influence the decision making of the stake-

holders. For the sake of clarity, our analyses focus on 3 representative CSs in the test system since

other CSs have similar resulting patterns. The baseline case is defined in Section Test Systems and
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Figure 6.9: Generation output of DG 8: - - - Equilibrium result; — Iterative algorithm.

parameter settings.

Yearly budget

We considered three budget levels: 1) 50% of the base case budget, 2) the base case budget, and 3)

twice the base case budget. The results of the considered cases are illustrated in Fig. 6.10, which

shows that with less yearly budget (case 1), DGs are not able to invest more in the first years of the

planning horizon as they would in the base case (case 2). Consequently, they have increased their

capacity later in the last 3 years of the planning, which is one year earlier compared to the capacity

increase pattern of the base case. For example, in case 1 at y = 2 ∼ 6, DG at node 8 has a capacity

0.2419 (pu) less than that of the base case, and it has started increasing its capacity in the 6th year

to reach its desired capacity in the last year of the planning horizon. Whereas the same DG has

invested more in the first years, and its capacity has remained constant during y = 2 ∼ 7, which is

then increased in the last two years of the planning horizon.
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Figure 6.10: Optimal capacities for (a) DGs (b) CSs. DG nodes: — 8, – – – 13, – - – 30; CS
nodes: · · · 2, – – – 4, — 16; Cases: ∗ 1, ▷ 2 (base), and ◦ 3.

On the other hand, a higher budget allows DGs to have more flexibility for increasing their capacity

each year and DGs have responded differently to this flexibility in case 3 (see Fig. 6.10a). The

capacity of DG 8 has remained close to the base case, reaching higher capacities in the last two

years of the planning horizon compared to the base case (case 2). DG 30 was able to invest more

and we observe that its capacity has increased drastically compared to the base case (case 2) and

it is close to the capacity of DG 8. The reason may stem from the fact that DG 30 is located in

a part of the network that is critical and its higher capacity with the available budget is useful for

the system and will increase the DG owners’ profits. With a higher capacity for DG 30, it has

been more beneficial for DG 13 to invest less because much of the load demand and CD would be

already fulfilled by DG 30.

The lower budget limits the yearly investments for the CSA, hindering high investments for the last

years of the planning horizon and promoting earlier investments. Therefore, in case 1, we observe a

higher installed capacity for CSs in the first years of the planning horizon compared to the base case
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(see Fig. 6.10b). For example, the CS at node 2 has gradually increased its capacity throughout

the 9 years to reach its required high capacity at the final year. As the budget of CSA has increased

from case 1 to case 3, we observe that CSs have a less installed capacity in the first years of the

planning since the high budget allows them to increase their capacity drastically in the final years of

the planning when needed. This behavior is more evident in the charging capacity of CS 16, where

we observe a drastic increase in capacity from years 7 to 8. Therefore, we can say that investing as

late as possible is more beneficial for the CSA in this setting as long as the budget allows and the

CD each year can be served. In other words, the CSA may not have economic motivations to invest

in charging capacity early in a decentralized system and government incentives may be needed to

encourage the charging infrastructure investment in the early stage of EV adoption.

Discount factor

We considered three levels of α, 0.7, 0.9 (base case), and 1, to observe the stakeholders’ response

(see Fig. 6.11). With α = 1, the costs of future years will not be discounted, which resulted in

earlier investments for both CSA and DG owners. For example, as α increases from 0.7 to 1, DG

8 has invested more in the first two years (see Fig. 6.11a). The impact of the discount factor is

more evident in the capacity of CSs (see Fig. 6.11b). The timing of CSA capacity investment

depends on two main factors. On one hand, investing early can attract more EV adoption early on

and increase the charging revenue. On the other hand, investing late can reduce the present value

of the investment costs due to the discounted factor. When α = 1, the capacity of CSs in the first

years is significantly higher compared to the cases when α = 0.7 or 0.9. This major difference is

because the benefits of attracting more EV adoption in the early years outweigh the disadvantage

of a higher present value of investment costs when the discount factor is closer to one.
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Figure 6.11: Optimal capacities for (a) DGs (b) CSs. DG nodes: — 8, – – – 13, – - – 30; CS
nodes: · · · 2, – – – 4, — 16; α: ∗ 0.7, ▷ 0.9 (base), and ◦ 1.

EV adoption coefficient

The investigated factors so far did not have a major impact on the additional number of EVs each

year.To demonstrate the sensitivity of the EV adoption coefficient k on the system equilibrium

patterns, we consider three levels for k (#/pu ): 0.2 (as in base case), 2, and 5. As we can see

from Fig. 6.12, the total number of EVs increases more from the expected number of EVs as k

increases. The optimal capacities of DGs and CSs are shown in Fig. 6.13. The resulting pattern for

the capacities of DGs did not change significantly from the base case (see Fig. 6.13a). We observe

higher DG capacities only for the last two years of the planning horizon because of the additional

number of EVs as the k has become larger. The yearly pattern of CS capacities has changed notably

as k has increased (see Fig. 6.13b). With a higher k, the CSA has a higher incentive to invest more

charging capacity early in the planning horizon to increase EV adoption. As a positive feedback

effect, in order to fulfill the additional CD resulting from more EVs, the CSA will need to invest

in more charging capacity over the years. For example, the capacity of CS 16 increases drastically
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during y = 1 ∼ 5 with k = 5, reaching a higher capacity compared to the cases with smaller values

of k.
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Figure 6.12: Resulted and expected yearly number of EVs departing from origin node 3; – - –
resulted and — expected; k: ▷ 0.2 (base), ∗ 2, and ◦ 5.

Conclusion

In this study, we proposed a multi-agent multi-stage optimization approach to study the interaction

of decentralized decision makings of the DSO, DG owners, and charging station aggregator (CSA)

in the CS and DG capacity expansion problem. We explicitly modeled the endogenous market

electricity prices as well as the feedback effects of charging availability on the growth of EVs.

Moreover, we applied a convex reformulation technique to simultaneously solve the decentralized

multi-agent problems efficiently. The proposed model provides a computationally tractable frame-

work to understand how the system evolves over time to fulfill a growing level of EV adoption.

The simulation results on a synthetic test system, coupling IEEE 33-node DS and Orlando trans-

portation network, show that our modeling strategy is able to effectively identify the equilibrium
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Figure 6.13: Optimal capacities for (a) DGs (b) CSs. DG nodes: — 8, – – – 13, – - – 30; CS
nodes: · · · 2, – – – 4, — 16; k: ▷ 0.2, ∗ 2, and ◦ 5.

investment patterns over space and time for both DG and CS to satisfy the growing number of EVs

in a decentralized environment.

This work can be extended in several directions. First, a more detailed transportation network mod-

eling reflecting routing and traffic congestion can be coupled with the existing model to provide a

more accurate spatial distribution of EVs. Second, decomposition and dynamic programming al-

gorithms can be designed to further enhance the computational efficiency for large-scale problems.

Third, government intervention can be investigated to influence the interaction of stakeholders for

social benefits while ensuring system-level targets of EV adoption. Fourth, the modeling frame-

work can be extended to a stochastic model in order to incorporate the impacts of key uncertain-

ties, e.g., load demand, generation, and EVs’ charging requirements, on the system equilibrium

patterns.
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CHAPTER 7: CHARGING INFRASTRUCTURE PLANNING

CONSIDERING MOBILITY NEEDS AND POWER GRID SERVICES: A

BI-LEVEL OPTIMIZATION FRAMEWORK

Introduction

This chapter proposes a novel charging infrastructure planning framework for electric vehicles

(EVs) that considers both the mobility needs and power grid services opportunities of EVs. The

framework aims to address the increasing trend of EV adoption worldwide following net zero

emission policies, and the need for efficient charging infrastructure network planning. Existing

literature on charging infrastructure planning has mostly focused on either power system-centric or

transportation system-centric approaches, but these systems are increasingly coupled with large-

scale EV adoption. The proposed framework utilizes a bi-level optimization approach, where a

government planning agency (charging infrastructure planner) makes decisions on charging station

allocation at the upper level, while the lower level models the interaction of stakeholders from both

power distribution and transportation systems in a market-based equilibrium model.

The resulting bi-level optimization problem is highly non-convex due to the presence of integer

variables and the bi-level model structure, which presents computational challenges. To address

this, we propose a novel value-decomposition-based solution algorithm that solves a series of

mixed integer linear problems (MILPs) and convex optimization problems iteratively. The key

strategy of the proposed algorithm is to relax the non-linear constraints in the original bi-level

problem to a solvable MILP and then add linear cuts to tighten the feasible region based on strong

duality theory. The algorithm starts with formulating the upper-level problem as a MILP, including

all the constraints from both upper and lower problems, and solving it as the master problem (MP).
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Then, the lower-level equilibrium problem is solved independently with the charging station allo-

cation results from the MP. The objective value of the MP provides a lower bound for the solution,

and further iterations are performed to tighten the bounds and converge to the optimal solution.

Lastly, we analyzed our model with simulation results on test systems based on the Sioux Falls

transportation network and IEEE distribution networks. The results showed the effectiveness of our

model and the convergence pattern of the proposed solution algorithm. The interdependent nature

of power and transportation systems in the planning problem is investigated with case analysis

and detailed discussions on results. With the proposed bi-level model, we can model the realistic

feedback effect of planning decision variables on the operation of systems and how, in return,

operational requirements and drivers’ choices would impact the planning decisions. The system

operators can use this model to investigate planning strategies for the ever-increasing charging

demand and grid services opportunity for EVs in the future.

Methodology

The proposed framework will be explained in detail in this section. Figure 7.1 represents the

summary of the proposed model. At the upper level, a government planning agency, i.e., the

charging infrastructure planner, decides charging station allocation among candidate locations,

minimizing investment costs, total travel time of drivers in the transportation system, and the value

of EV grid services. At the lower level, we have modeled the interaction of stakeholders from

both power distribution and transportation systems, including distribution system operator (DSO),

charging station aggregator (CSA), distributed generators (DGs), and EV drivers, in a market-based

equilibrium model.

The interaction between stakeholders in the lower-level equilibrium is modeled as follows. DSO
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Figure 7.1: Methodology overview

optimizes its energy purchases from DGs and CSA to minimize its costs considering system re-

quirements; DGs aim to maximize their profits by selling the generated energy to the DS. On the

other hand, the CSA maximizes its profit by managing EV charging and energy exchange with

the DSO. Note that CSA can either purchase energy from the system (if it is required to charge

the EVs) or provide energy to DSO whenever EVs want to participate in system support by dis-

charging their stored energy. A market clearing is enforced on the energy exchange in the system

which requires the supplied energy by CSA and DGs to be equal to the energy demanded by DSs.

Energy prices (ρ) are associated with this market clearing condition. The other main interaction is

between the EV owners and CSA. EVs travel through transportation networks and select a CS to

maximize their individual utilities. A market clearing condition is considered on this interaction

which balances the number of EVs selecting a CS with the number of EVs expected by CSA. This

clearing condition is associated with the locational incentives (α) offered by CSs to EV drivers.

Therefore, the EVs’ charging flexibility and the urgency of the DS energy needs will determine the

incentives they receive.
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The mathematical modeling of each stakeholder and the proposed bi-level problem will be dis-

cussed in the remaining part of this section.

Investor’s Modeling

The charging infrastructure planner has a system-level objective of minimizing the total travel time

of vehicles and the investment costs of installing new CSs which is modeled as an optimization

problem in (7.1).

min
δ

β1

β2

∑
n,m∈A

∑
τ∈T arr

tffn,m vn,m,t

(
1 + bn,m(

vn,m,t

Capn,m

)α
)
+

∑
i∈ICS

δiCiP
CS,cap
i (7.1a)

s.t
∑
i∈ICS

δi CiP
CS,Cap
i ≤ B (7.1b)

The Bureau of Public Roads (BPR) function is used for the total travel time in the objective function

(7.1a) and (
∑

δiCiP
CS,cap
i ) is for modeling the total investment cost of CSs. The cost coefficient

Ci represents the cost of installing each unit of charging capacity (PCS,cap) at candidate locations

i ∈ ICS, and δ is a set of binary variables used to determine the optimal investment decision.

Constraint (7.1b) ensures that the investment does not exceed the budget limit.

DG Modeling

For each DG i (∈ IDG), the optimization of its profit involves determining the generation quantity

pDG
i,t for each time step t (∈ T ). Since the generation capacity of individual DGs is limited and falls
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below the threshold of DSO dispatch, we assume that DG owners are perfectly competitive and do

not possess market power to influence locational electricity prices ρi,t. As a result, the decision-

making of all DG owners can be consolidated into a single optimization problem, as formulated in

model (7.2).

max
pDG≥0

∑
i∈IDG

∑
t∈T

(
ρi,tp

DG
i,t − Ci(p

DG
i,t )

)
(7.2a)

s.t. PDG
i,t ≤ pDG

i,t ≤ P̄DG
i,t , ∀i ∈ IDG, t ∈ T . (7.2b)

The objective (7.2a) aims to maximize the profits of DG owners, which are calculated as the total

revenue
∑

i∈IDG

∑
t∈T ρi,tp

DG
i,t minus the total production costs

∑
i∈IDG

∑
t∈T Ci(p

DG
i,t ). The pro-

duction costs are assumed to be a convex function with respect to pDG
i,t [77], with different cost

parameters for different DGs, implying a non-decreasing marginal cost.

Constraint (7.2b) establishes the upper and lower bounds on power generation at DG node i for

time t. In cases where DGs can be disconnected from the system, PDG
i,t = 0.

DSO Modeling

The DSO has a key responsibility to maintain services in accordance with system requirements.

In our model (7.3), we assume that the DSO aims to minimize the cost of energy purchased while

adhering to system constraints.
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min
v≥0,

ps,pf ,qf

∑
i∈IDG∪ICS

∑
t∈T

ρi,tp
s
i,t (7.3a)

s.t.
∑
l∈L

pfl,t · LTl,i −
∑
l∈L

pfl,t · LFl,i = pdi,t − psi,t, ∀i ∈ I, t ∈ T (7.3b)

∑
l∈L

qfl,t · LTl,i −
∑
l∈L

qfl,t · LFl,i = qdi,t − qsi,t,∀i ∈ I, t ∈ T (7.3c)

0 ≤ pdi,t ≤ P̄ d
i,t, ∀i ∈ I l, t ∈ T (7.3d)

qdi,t = (Q̄d
i,t/P̄

d
i,t) · pdi,t, ∀i ∈ I l, t ∈ T (7.3e)

pf 2
l,t + qf 2

l,t ≤ λl,t · (Smax
l )2,∀l ∈ L, t ∈ T (7.3f)

vFNl,t − vTNl,t = 2 · (rl · pfl,t + xl · qfl,t),∀l ∈ L, t ∈ T (7.3g)

(V min
i )2 ≤ vi,t ≤ (V max

i )2, ∀i ∈ I, t ∈ T . (7.3h)

In the objective (7.3a), the term
∑

i∈IDG∪ICS

∑
t∈T ρi,tp

s
i,t represents the cost of energy purchased

from DG/CSA. The operational constraints are formulated in (7.3b)-(7.3h), which are based on

the Dist-Flow equations proposed in [78] and later adopted in [50, 79]. These constraints include

the balance of active and reactive power flows in (7.3b) and (7.3c), respectively. Constraint (7.3f)

limits power flow to not exceed line capacity. Constraints (7.3g) calculate the voltage at each node,

while constraint (7.3h) defines the acceptable voltage range at each node.

CSA Modeling

A CSA is typically required to manage the communication and control challenges of EVs and

CSs individually for the DSO. The CSA’s objective is to maximize profits while maintaining the

required charging demand of EVs, as formulated in model (7.4). The CSA’s profits are calculated

as the revenue made by selling electricity to the DSO, minus incentives and battery degradation
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compensation paid to EV drivers. Note that pCS
i,t can have negative values, indicating that EVs

are charging instead of discharging, in which case
∑

i∈ICS

∑
t∈T ρi,tp

CS
i,t would be the cost for the

CSA to charge EVs. Electricity prices ρi,t and EV incentives αe
rs are determined endogenously

by the market, as discussed in Section 7. If the market setting of interest is oligopolistic, where

private-owned CSs strategically adjust prices to compete for clients, prices need to be explicitly

considered as decisions of CS providers, and a Stackelberg game-theoretical modeling framework

may be more appropriate. However, if the focus is on the optimal pricing strategies of individual

private-owned CSs, they can be studied individually without considering the entire transportation

and DSs, as shown in studies such as [83] and [84].

max
pCS,q′,soc

∑
i∈ICS

∑
t∈T

ρi,tp
CS
i,t −

∑
r∈R

∑
i∈ICS

∑
e∈E

αe
rsq

′e
ri(s) −

∑
i∈ICS

∑
r∈R

∑
t∈T

∑
e∈E

Cdeg,e
i,r,t (7.4a)

s.t. socei,r,t = socei,r,t−1 − pei,r,t/Cap
e, ∀i ∈ ICS, r ∈ R, e ∈ E , t ∈ (T arr

r,e , T
dep
r,e ] (7.4b)

q′eri(s)SOCe ≤ socei,r,t ≤ q′eri(s)SOC
e
, ∀i ∈ ICS, r ∈ R, e ∈ E , t ∈ [T arr

r,e , T
dep
r,e ] (7.4c)

socei,r,T arr
r,e

= q′eri(s)SOCarr
r,e, ∀i ∈ ICS, r ∈ R, e ∈ E (7.4d)

soce
i,r,T

dep
r,e

≥ q′eri(s)SOCdep
r,e , ∀i ∈ ICSr ∈ R, e ∈ E (7.4e)

− q′eri(s)P̄
ch
r,e ≤ pei,r,t ≤ q′eri(s)P̄

dch
r,e ∀i ∈ ICS, r ∈ R, e ∈ E , t ∈ [T arr

r,e , T
dep
r,e ] (7.4f)

pCS
i,t =

∑
r∈R

∑
e∈E

pei,r,t
Sbase

, ∀i ∈ ICS, t ∈ [T arr
r,e , T

dep
r,e ], (7.4g)

− δiM ≤ pei,r,t ≤ δiM, ∀i ∈ ICS, r ∈ R, t ∈ T (7.4h)

(ϕCS

i,t
, ϕ

CS

i,t ) − δiP
CS,Cap
i ≤ PCS

i,t ≤ δiP
CS,Cap
i , ∀i ∈ ICS, t ∈ T . (7.4i)

Constraints (7.4b)-(7.4i) specify the SOC transition and requirements of EVs that the CSA needs

to fulfill. EVs are discretized into different homogeneous groups based on their travel and charging
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characteristics, such as arriving/departing time and state of charge (SOC), meaning that EVs with

similar battery SOC, charging demand, and travel schedules are grouped together. Incentives αe
rs

depend on EV groups and are determined endogenously by the market, considering factors such

as initial SOC, charging needs, and dwelling time. Constraint (7.4b) models the dynamics of the

SOC of EVs from r at CS i. Constraint (7.4c) limits the maximum and minimum SOC of each EV

group based on the drivers’ desired SOC range. Constraints (7.4d) and (7.4e) specify the initial

arrival SOC and minimum departure SOC for each EV group at charging location i. Constraint

(7.4f) restricts the charging/discharging power of EVs at each time step t based on battery/charger

characteristics. The number of EVs demanded by the CSA at each CS is modeled as variable q′eri(s),

which plays an important role in coupling transportation and DS, as further discussed in Section 7.

Constraint (7.4g) determines the total power supply/demand of CS i ∈ ICS at time t by summing

the normalized discharging/charging of EVs at each station. Constraint (7.4h) avoids charging

instances for all EV groups where δi is equal to zero in candidate location i, where M is a big

number to ensure that pei,r,t and δi are independent when δi=1. Lastly, constraint (7.4i) limits the

total charging/discharging of CSs with the system based on their capacities (PCS,Cap
i ).

One of the primary concerns that dissuade drivers from participating in Vehicle-to-Grid (V2G) ser-

vices is the degradation of batteries caused by continuous charging and discharging. This degra-

dation can occur in two forms: shelf degradation and cycle degradation, as described in the study

by Smith et al. [85]. In this paper, the Ah-throughput counting model proposed by Peterson et

al. [86] is utilized to model these types of degradation. The formulation of the degradation cost for

Electric Vehicles (EVs), denoted as Cdeg,e
i,r,t , is presented in model (7.5), which is adapted from [50]

to account for EV groups and the time index.
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zei,r,t ≥ pei,r,t ∀i ∈ ICS, r ∈ R, e ∈ E , t ∈ T (7.5a)

zei,r,t ≥ − pei,r,t ∀i ∈ ICS, r ∈ R, e ∈ E , t ∈ T (7.5b)

caploss,e
i,r,t = ζe · zei,r,t ·∆T, ∀i ∈ ICS, r ∈ R, t ∈ [T arr

r , T dep
r,e ] (7.5c)

dcycle,e
i,r,t =

caploss,e
i,r,t

1− Capend,e , ∀i ∈ ICS, r ∈ R, e ∈ E , t ∈ [T arr
r,e , T

dep
r,e ] (7.5d)

dei,r,t = max{dcycle,e
i,r,t , dshelf,e},

∀i ∈ ICS, r ∈ R, e ∈ E , t ∈ [T arr
r , T dep

r,e ] (7.5e)

Cdeg,e
i,r,t = dei,r,t(C

rep,e − C res,e)Cape,

∀i ∈ ICS, r ∈ R, e ∈ E , t ∈ [T arr
r , T dep

r,e ]. (7.5f)

EV Drivers Modeling

In this section, we will further extend our model to include the routing and charging location

choices made by decentralized EVs in transportation systems. The utility function denoted as U e
rs

for a driver in group e selecting charging station s from route r is formulated in equation (7.6), as

proposed in [50, 67].

To model the charging location choices, we assume that EV drivers consider four factors: lo-

cational attractiveness denoted as β0,s, travel time represented as −β1ttrs, charging cost/revenue

from charging/discharging denoted as β2α
e
rs, and a random term ϵ. Without loss of generality, other

exogenous factors can also be incorporated into equation (7.6) without affecting the proposed mod-

eling and computational strategies in this paper. For example, different strategies implemented by

Charging Stations (CSs) to attract EVs can be included as part of the locational attractiveness (β0,s),

reflecting varying levels of convenience and corresponding incentives offered by each CS.
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U e
rs = β0,s − β1ttrs + β2α

e
rs + ϵ. (7.6)

The choice of destination (qers) for Electric Vehicles (EVs) and the corresponding path travel time

(ttrs) are interconnected. On one hand, the selection of Charging Stations (CSs) by EV drivers

impacts the distribution of travel demand, which in turn affects the travel time for all drivers. On

the other hand, the CS selection process is partially influenced by the travel time ttrs, as indicated

in equation (7.6). To capture these interdependencies, we adopt the combined distribution and

assignment (CDA) model proposed by Sheffi (1985) [87], which allows us to simultaneously model

the destination choices and route choices of EVs. The CDA model is formulated in equation (7.7).

It’s important to note that for each time period τ in the set of arrival times T arr, we will solve the

CDA model denoted as CDAτ to obtain the traffic pattern at that specific time τ .

min
x,x̄,q≥0

∑
a∈A

∫ vτa

0

tta(u)du

+
1

β1

∑
r∈R,s∈S

∑
e∈Eτ

qers (ln q
e
rs − 1− β2α

e
rs − β0,s) (7.7a)

s.t. vτ =
∑

r∈R,s∈S

xτ
rs +

∑
r∈R̄,s∈S̄

x̄τ
rs, ∀τ ∈ T arr (7.7b)

(ητ
rs) Axτ

rs =
∑
e∈Eτ

qersErs, ∀r ∈ R, s ∈ S, τ ∈ T arr (7.7c)

Ax̄τ
rs = q̄τrsErs, ∀r ∈ R̄, s ∈ S̄, τ ∈ T arr (7.7d)∑

s∈S

qers = Qe
r,∀r ∈ R, e ∈ Eτ . (7.7e)

The objective function in equation (7.7a) is composed of two parts. The first part is the summation

of the area under all the link travel cost functions tta(·), such as the BPR function, which can also
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accommodate scenarios where transportation links have reduced capacity or significantly large

free-flow travel time [88]. The second part includes the entropy of traffic distribution qers(ln q
e
rs−1)

and utility terms (excluding time) from equation (7.6) [88]. The construction of objective function

(7.7a) ensures that the optimal solutions of the CDA model (equation (7.7)) are consistent with the

first Wardrop principle [89] and the multinomial logit destination choice assumption. Technical

details to prove this claim can be found in [87].

Constraint (7.7b) calculates the link flows by summing the link flows of EVs (xτ
rs) and conventional

vehicles (x̄rsτ ) traveling at the same time period τ for all origin and destination pairs. Constraints

(7.7c) to (7.7d) represent the vehicle flow conservation at each node for EV travel demand qrse

and conventional vehicle travel demand q̄rsτ , respectively. Constraint (7.7e) ensures that the sum-

mation of EV traffic flow distribution to each s (qrse) equals the total EV travel demand from

r, denoted as Qe
r. The equilibrium travel time for each origin-destination (OD) pair rs can be

calculated as ttrs
.
= ητrs, r − ητrs, s, where ητrs,i is the dual variable associated with constraint

(7.7c).

Market Clearing

In a stable market, the power purchased by the DSO must be balanced with the power generated at

each location. Additionally, the EV demand at each CS needs to be balanced with the EVs traveling

to that station. The hourly market clearing conditions can be expressed as equation (7.8). Equation

(7.8a) ensures that the total energy purchased by the DSO is equal to the total energy generated at

each node, including Distributed Generators (DGs) and CSs. Equation (7.8b) enforces the balance

between the EV flow of group e demanded and supplied at each location s from r. This equation

establishes a coupling between the traffic flow (qers) determined from the CDA problem (7.7) and

the number of EVs (q′ers) demanded in the CSA modeling (7.4).
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(ρi,t) psi,t = pDG
i,t + PCS

i,t , ∀i ∈ IDG ∪ ICS, ∀t ∈ T (7.8a)

(αe
rs) q′ers = qers, ∀r ∈ R, s ∈ S, e ∈ E . (7.8b)

The locational prices of electricity (ρi,t) and EV incentives (αe
rs) can be understood as dual vari-

ables associated with the market clearing conditions. These clearing conditions allow us to model

the interdependencies between transportation and D) operations, as well as the models defined

in (7.2) to (7.7). It’s important to note that the CSA sells/purchases electricity to/from the DSO

based on the electricity price (ρi,t), while EVs receive incentives (αe
rs) from the CSA based on their

participation in DS support and their charging requirements. It’s worth mentioning that both incen-

tives and energy prices are endogenously determined within the network equilibrium framework.

The incentives may be negative if EVs require a significant amount of energy while providing

minimum services. In other words, the incentives can be interpreted as the net value of the system

support service payments subtracting charging costs.

Equilibrium Problem

We consider the investor as the leading decision maker as its CS location decision will influence

the operation of the other stakeholders, i.e., DG owners, DSO, CSA, and EV drivers. We can

construct an equivalent problem that incorporates the problem of these stakeholders. We observe

that if ρ and α were known, models (7.2) to (7.4) and (7.7) are convex optimization problems with

completely separable constraints. This type of problem can be reformulated by linearly combining

all the (scaled) objective functions and intersecting all the constraint sets in (7.2) to (7.4) and (7.7).
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Subsequently, we can apply the reverse procedures of Lagrangian relaxation to the market clearing

conditions (7.8) [103]. As a result, the models in (7.2) to (7.4) and (7.7) can be equivalently

reformulated as a single convex optimization problem (7.9), which can be efficiently solved using

commercial nonlinear optimization techniques. For extensive proof and deriving of the equivalent

equilibrium problem, one can refer to our previous publication at [75].

min
(pDG,v,x,x̄,q,q′)≥0,

ps,pf,qf,p,pCS,soc

∑
t∈T

 ∑
i∈IDG

C(pDG
i,t ) +

∑
i∈ICS,r∈R,e∈E

Cdeg,e
i,r,t


+

∑
τ∈T arr

∑
e∈Eτ

∑
r∈R,s∈S

qers
β2

(ln qers − 1− βs
0) +

β1

β2

∑
τ∈T arr ,a∈A

∫ vτa

0

tta(u)du

(7.9a)

s.t (7.2b), (7.3b) ∼ (7.3h), (7.4b) ∼ (7.4i), (7.5), (7.7b) ∼ (7.7e), (7.8). (7.9b)

Bi-level Modeling and solution approach

As previously stated, our bi-level problem involves two main parts: the investors’ problem as

the upper-level problem and the defined equilibrium problem as the lower-level problem. We

can express this problem as the optimization problem (7.10), with the equilibrium problem (7.8)

incorporated as a constraint on the investors’ problems (7.1).
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min
δ

β1

β2

∑
n,m∈A

∑
τ∈T arr

tffn,m vn,m,t

(
1 + bn,m(

vn,m,t

Capn,m

)α
)
+

∑
i∈ICS

δiCiP
CS,cap
i (7.10a)

s.t
∑
i∈ICS

δi P
CS,Cap
i ≤ B (7.10b)

min (7.9a) (7.10c)

s.t (7.9b). (7.10d)

Solution Algorithm

To simplify the notation, we will consider the general structure of a bi-level program, as shown

in 7.11a. Specifically, for our particular problem, the functions f(.) and g(.), along with their

decision variables x and y, correspond to the models defined in (7.10) and (7.9), respectively. It

should be noted that the lower-level problem is a convex problem when the upper-level decisions

y are given. However, it is important to highlight that h3(x, y) contains bilinear terms of both x

and y.
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min
x,y

f(x, y) (7.11a)

s.t. h1(y) ≤ 0 (7.11b)

x ∈ argmin g(x, y) (7.11c)

s.t. h2(x) ≤ 0 (7.11d)

h3(x, y) ≤ 0 (7.11e)

Given that model 7.11a is a mixed-integer nonlinear and bilevel mathematical problem, traditional

methods such as generalized Benders decomposition and KKT reformulation are not scalable.

Therefore, we propose a value decomposition algorithm1.

To begin, we relax the optimality condition for the lower-level problem, resulting in the relaxed

problem shown in 7.12. Solving model 7.12 directly using commercial solvers poses challenges

for two reasons. First, the objective function f(x, y) is nonlinear and includes the polynomial

function of x (the BPR function in (7.10a)) and the integer variable y (the investment term in

(7.10a)). To address these challenges, we utilize second-order conic reformulation techniques for

the polynomial function (See Appendix for the details of the conic reformulation for the BPR

function). Second, constraint (7.12d) contains bi-linear terms, which we reformulate using the

big-M reformulation.

1The value decomposition algorithm results from discussion with Dr. Weijun Xie from Georgia Institute of Tech-
nology.
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min
x∈Rn

+,y∈{0,1}m
f(x,y) (7.12a)

s.t. h1(y) = 0 (7.12b)

h2(x) = 0 (7.12c)

h3(x, y) = 0 (7.12d)

The two bilinear terms in our formulation, which are part of h3(x, y), correspond to the comple-

mentarity terms defined in (7.13) for the CS capacity constraints.

0 ≤ δi⊥ϕ
CS

i,t P
CS,Cap
i ≥ 0 (7.13a)

0 ≤ δi⊥ϕCS

i,t
PCS,Cap
i ≥ 0 (7.13b)

We can reformulate the complementarity terms by defining helper variables z and z and applying

the big-M method, as shown below:

(δi − 1)M ≤ zi,t − ϕ
CS

i,t P
CS,Cap
i ≤ (1− δi)M (7.14a)

− δiM ≤ zi,t ≤ δiM (7.14b)

(δi − 1)M ≤ zi,t − ϕCS

i,t
PCS,Cap
i ≤ (1− δi)M (7.14c)

− δiM ≤ zi,t ≤ δiM (7.14d)
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In order to guarantee that the optimal solution x, y satisfies the optimality condition of the lower-

level problem (i.e., 7.15a), it is necessary to add sufficient and necessary conditions. There are

two approaches to ensuring these conditions: branch-and-bound algorithms and branch-and-cut

algorithms. It is worth noting that both algorithms take advantage of the fact that the lower-level

problem, as shown in (7.15), is convex given upper-level decisions yU .

min
x∈Rn

+

g(x) (7.15a)

s.t. h2(x) = 0 (7.15b)

h3(x|yU) = 0 (µ) (7.15c)

We explain the basic ideas of the branch-and-bound algorithms in the remainder of this section.

Branch-and-bound algorithm

Achieving the upper bound of the original problem (7.11a) is a straightforward process. Starting

with an upper-level integer decision yU of the relaxed problem (7.12), one can solve the lower-level

problem (7.15) and obtain the lower-level optimal solutions xL. The upper bound of the original

problem (7.11a) can be obtained by computing f(yU ,xL). The lower bound of the original prob-

lem (7.11a) is simply the objective value of the relaxed problem (7.12). To enhance the tightness

of the lower bound, cuts are added iteratively.

It is worth noting that for the upper-level optimal solutions xU and yU to satisfy the optimality
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conditions of the lower-level problem (7.15), it is equivalent to have condition (7.16) due to strong

duality.

g(xU) ≤ max
µ

min
x

L(x, µ|yU) (7.16)

where L(x, µ|yU) is the Lagrangian function if one relaxes constraint (7.15c) in model (7.15), see

(7.17).

L(x, µ|yU) = g(x)− ⟨u, h3(x|yU)⟩ (7.17)

Condition (7.16) is equivalent to the following condition (condition (7.18)).

∃µ, s.t. g(xU) ≤ min
x

L(x, µ|yU) (7.18)

The lower-level constraints, specifically constraints (7.15b) and (7.15c), are satisfied by any opti-

mal solutions of the upper-level relaxed problem (7.12) and lower-level problem (7.15) denoted as

xL and xU . By iteratively adding cuts (7.19) to model (7.12), we can improve the lower bound.

g(x) ≤ L(xL,µ,y) (7.19)

There are two reasons why directly adding cut (7.19) to model (7.12) results in nonlinearity. First,

g(x) is a nonlinear but convex function. Second, L(xL,µ,y) contains bilinear terms of µ and y.

To overcome the first issue, we use Taylor series to linearize g(x) around xL and xU . As a result,

we add two cuts, namely (7.20) and (7.21), at each iteration.
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g′(x,xL) ≤ L(xL,µ,y) (7.20)

g′(x,xU) ≤ L(xL,µ,y) (7.21)

where g′(x,xL/U) is the Taylor linear approximation of g(x) at points xL/U .

Second, to address the second issue, we use big-M reformulation, similar to the strategies discussed

in (7.14).

In order to improve the efficiency of the algorithm’s runtime, we suggest incorporating an extra

cut that eliminates binary solutions that were previously examined in earlier iterations. The cut

is expressed through equation (7.22), and is applicable only to binary variables (yB) which are a

subset of the upper-level variables (y). This step helps to avoid redundant computations when the

optimal integer solution has already been obtained. The effectiveness of this cut will be assessed

in the numerical results section to determine its impact on efficiency.

∑
i∈Y B

1

1− yBi +
∑
i∈Y B

0

yBi ≥ 1, (7.22)

where,

Y B
1 = {i|yB,iter

i > 0.5}

Y B
0 = {i|yB,iter

i < 0.5}

The complete form of the bi-level model for our problem along with the detailed formulation of

the cuts is explained in the Appendix section.
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We summarize our algorithm in Algorithm 1.

Algorithm 1 Branch-and-Bound Algorithm

1: Solve the relaxed problem (7.12). Store the optimal solution as {xU,0,µU,0,yU,0} and objective
value as ObjU,0.

2: Given yU,0, solve the lower-level problem (7.15) and store the optimal solutions and objective
value as xL,0 and ObjL,0 respectively.

3: Initialize LB = ObjU,0, UB = f(xL,0,yU,0), iter = 0
4: while (UB-LB)/UB > ϵ do
5: Add cuts (7.20), (7.21), and (7.22).
6: iter = iter + 1
7: Solve relaxed problem (7.12). Store the optimal solution as {xU,iter,µU,iter,yU,iter} and

objective value ObjU,iter

8: Given yU,iter, solve lower-level problem (7.15) and store the optimal solutions as
{xL,iter,µL,iter}.

9: Update LB = ObjU,iter, UB = f(xL,iter,yU,iter)
10: end while

Numerical results

Our goal is to evaluate the decision-making of investors when determining the location of CSs

and investigate the operation of entities that are impacted by these decisions. To achieve this, we

implemented the defined bi-level model and the solution algorithms on two test systems. It is

important to note that in this section, the term ”node” refers specifically to the nodes of DS unless

otherwise specified. We utilized Pyomo 5.6.7 [92, 93] and IPOPT 3.12.13 [94] to implement and

solve our model. All experiments were conducted on a system running UBUNTU 18.04.2, with a

3.6 GHz 9-Core Intel Core i9 and 64 GB of RAM.

Four-node test system

The test system being evaluated is a small four-node system, which is illustrated in Fig. 7.2. Nodes

2 and 3 are the candidate CSs and serve as the links between the distribution and transportation
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Figure 7.2: Four-node test system

systems, while nodes 2 through 4 represent the load nodes. The load demand pattern is based on

data from the PJM dataset, with September 2, 2022, from the AEP zone selected for this study. In

contrast to previous chapters, it is assumed that the load demand is equal among the nodes, with a

factor of 0.2 retrieved from the PJM dataset. The results are presented in per unit (pu) values, with

a base capacity of Sbase = 1000 kVA. All the distribution lines have the same maximum capacity

of Smax
l = 2 (pu), and the transportation links have a capacity of 10 (vehicles/hour). It is assumed

that each candidate CS will have a total capacity of 0.3 (pu).

The development of EVs with higher battery capacities that provide a longer driving range is a

recent advancement in EV manufacturing. Tesla’s Model S, for example, currently offers the

highest battery capacity of 100 kW, with a charging rate of 17.2 kWh. We assume that future

EVs will have similar or higher capacities, and in our test system, we assume that the EVs have

the same characteristics as Tesla’s Model S. The EVs are divided into three groups based on their

initial state of charge (SOCarr), where group e = 1 requires the most charging, group e = 2 is

intermediate, and group e = 3 requires the least charging. Each group’s initial state of charge is

randomly selected within the defined ranges mentioned above.

EVs leave from transportation nodes 1 and 4, and there is incoming traffic of 20 EVs. The arrival

times of EVs are randomly distributed during the hours τ (∈ T arr
r,e ) and can go to either of the CSs.
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The randomly generated arrival times for EV groups are shown in Fig. 7.2.

Based on the above-mentioned system characteristics, the algorithm converges quickly, even at the

first iteration since it is a small test system with only two candidate locations. The optimal location

for the CS investment was found to be node 3. It should be noted that the transportation system is

symmetrical, so choosing either node 2 or 3 as the CS location would not affect the total travel time

of the system, which is part of the upper-level objective function. In fact, we solved the problem

by assuming that only node 2 was the candidate CS location, and the resulting objective function

was the same as when node 3 was chosen. We conducted sensitivity analysis by changing system

parameters in the transportation system to introduce asymmetry and further investigate investors’

decision-making.

We began by increasing the number of incoming EVs from node 1 to 80 vehicles while setting the

incoming EVs from node 2 to 20 (as shown in Fig. 7.3). As the number of incoming EVs from

node 1 surpassed 20 vehicles, node 2 became the optimal location for the CS since it was closer to

the origin nodes with more EVs, thereby reducing the total travel time of the system. This trend

continued until the number of EVs from node 1 reached 45 vehicles. At this point, the increased

congestion on link 1–2 caused the total travel time to become higher than when the CS was located

at node 3, making node 3 the optimal location. When the number of EVs from node 1 reached 70

vehicles, having only one CS was not sufficient to meet the charging and DS requirements, so both

candidate locations were selected for CS installations. The CS output for 65 and 70 vehicles from

node 1, as shown in Fig. 7.4, demonstrates how the charging demand was distributed between the

CSs.

The previous analysis demonstrated the influence of transportation network congestion and in-

creased CD on CS investment decisions. In the next step, we will perform a similar analysis from

the perspective of the DS to determine how limitations in power distribution affect investment de-
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Figure 7.3: CS investment decision with EV increase from node 1; —◦ node 2 and —△ node 3
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Figure 7.4: CS out put with EV increase from node 1; node 3 with 65 EVs, node 3 with
70 EVs, and node 2 with 70 EVs.

cisions. We will model this impact by increasing the load demand at node 3, as shown in Fig.

7.5. Following a 15% increase in load demand, the optimal CS location shifts from node 3 to both

nodes 2 and 3. This is because the additional demand at node 3 limits the power transferability to

that node, making node 2 a more favorable option for meeting the charging requirements of EVs.
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Figure 7.5: CS investment decision with load demand increase in node 3; —◦ node 2 and —△

node 3

In the next step, we explored an extreme scenario in which we double the load demand at node 3

and assume that all EVs belong to group 3 to investigate a case where EVs can provide more energy

to the system. We then compare the system’s operational performance to the base case where the

optimal location for the CS was at node 3. The CS output during the day is shown with blue bars

in the graph in Fig. 7.6. When we double the load demand at node 3, the CS location changes to

node 2 due to the voltage constraint (7.3g) limiting power transferability to node 3. Additionally,

the CS output becomes limited, as illustrated with orange bars in Fig. 7.6. This demonstrates how

the DS requirement, specifically the voltage constraint, affects the selection of the CS location

for charging. However, if we relax this constraint, the optimal CS location reverts to node 3, as

depicted by the green bars in Fig. 7.6), and the CS output is no longer limited, resulting in a similar

operational performance to the base case.
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Figure 7.6: CS output; node 3 with base-case load, node 2 with load increase, and
node 3 with load increase and relaxing the voltage constraint.

IEEE-33 node and Sioux Falls test systems

In the previous subsection, we demonstrated that our model and solution algorithm can effectively

capture the interdependence of power and transportation systems in CS investment problems, using

small test systems. Now, we will assess the performance of our model on larger, interconnected

test systems, and evaluate the convergence and run time of our solution algorithm.

Fig. 7.7 shows the coupled test systems that we have considered here. The blue nodes in both

systems show the total candidate CS locations and the numbers with arrows on the transportation

network show the incoming number of EVs from the origin nodes.

Base case analysis

We begin with a base case consisting of 5 origin nods and 5 candidate CS locations (destination

nodes) represented by green circled nodes in Figure 7.7. The proposed algorithm reaches con-
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incoming traffic flow. 1 : selected ODs for base case and 1 : resulting optimal CS locations for
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vergence after 6 iterations, which takes approximately 8.05 minutes to run. The fast convergence

is attributed to the inclusion of cuts that eliminate binary solutions from the previous iterations.

Without this cut, the algorithm would run for many iterations, gradually increasing the LB until it

meets the termination criterion. Figure 7.8 illustrates the upper and lower bounds with and with-

out the cuts. Without the mentioned cuts, even though the optimal solution has been found, the

algorithm continues to make slight improvements to the LB for 100 iterations (2.41 hours of run
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Figure 7.8: Investor’s objective value; - . - UB, — LB with the additional cuts, and - - - LB without
the additional cuts.

time) without reaching the desired distance to the UB. With the addition of the cuts, the algorithm

stops more quickly because the LB exceeds the UB (see the green line in Fig. 7.8), indicating that

the optimal integer solution has already been found through the omitted binary solutions, and the

previous optimal points are not explored any further.

The red circles highlighted in Figure 7.7 demonstrate that the CS investments were made in closer

proximity to origin nodes that receive a greater number of incoming vehicles. In Figure 7.9, the

output of CSs at nodes 16 and 27 indicate that they attracted EVs with more significant charging

requirements in comparison to the CS at node 19. This is because nodes 16 and 27 are located in

closer proximity to the DG nodes, which supply more dependable energy and meet the system’s

requirements. On the other hand, node 19 is farther from the DG nodes and contributes more to the

system by discharging more energy, resulting in more instances of discharging and fewer charging

instances observed at this node.
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Figure 7.9: CS output; node 16, node 19, and node 27.

Computational analysis

Initially, we conducted the base case and then proceeded to expand our test system by adding

more candidate CS locations and origin nodes, resulting in a total of 12 candidate CS and origin

nodes. Table 7.1 summarizes the run time and the number of iterations required for the algorithm

to converge in each case.

We observed a linear increase in run time as the number of ODs increased until we reached 10

OD pairs. At this point, the run time and iteration count increased significantly because there were

multiple possible and feasible solutions with similar objective values, causing the algorithm to run

for more iterations. However, once we exceeded 10 OD pairs, the number of iterations required

to achieve optimal results decreased, resulting in a reduction in run time. This can be attributed

to the fact that a larger number of CSs are necessary to meet the changing requirements of EVs,

resulting in fewer feasible optimal solutions with similar objective values and faster convergence

of the algorithm.
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Table 7.1 Algorithm performance analysis

Number of
OD pairs

Selected ODs Run time (minutes) No. of Iterations Optimal CS locations in TN Optimal CS nodes in DS

5
O: 7,9,12,17,23
D: 2,11,13,15,20 8.05 6 11,13,20 16,19,27

6
O: 7,9,12,17,23,6
D: 2,11,13,15,20,14 14.22 6 13,15,20 19,11,27

7
O: 7,9,12,17,23,6,18
D: 2,11,13,15,20,14,4 38.80 10 2,13,15,20,14 4,19,11,27,2

8
O: 7,9,12,17,23,6,18,3
D: 2,11,13,15,20,14,4,10 34.93 6 2,13,20,14,4,10 4,19,27,2,6,13

9
O: 7,9,12,17,23,6,18,3,24
D: 2,11,13,15,20,14,4,10,5 53.34 7 13,20,14,4,10 19,27,2,6,13

10
O: 7,9,12,17,23,6,18,3,24,16
D: 2,11,13,15,20,14,4,10,5,21 225.13 20 13,15,20,10,5 19,11,27,13,23

11
O: 7,9,12,17,23,6,18,3,24,16,22
D: 2,11,13,15,20,14,4,10,5,21,19 48.45 4 2,13,20,10,21,19 4,19,27,13,32,25

12
O: 7,9,12,17,23,6,18,3,24,16,22,8
D: 2,11,13,15,20,14,4,10,5,21,19,1 38.69 2 2,13,20,10,5,21,19,1 4,19,27,13,23,32,25,1

Conclusion

In conclusion, this chapter has presented a detailed overview of a proposed bi-level framework for

managing the allocation of charging stations for electric vehicles. The framework involves two

levels, with a government planning agency making decisions on charging station allocation at the

upper level and the interaction of stakeholders from power distribution and transportation systems

modeled at the lower level. The framework employs a market-based equilibrium model that models

the interaction of stakeholders from both power distribution and transportation systems, and a

novel value-decomposition-based solution algorithm that solves a series of mixed integer linear

problems and convex optimization problems iteratively. Simulation results on small test systems

and bigger test systems based on the Sioux Falls transportation network and IEEE distribution

networks demonstrate the effectiveness of the proposed model and the convergence pattern of the

solution algorithm. The model provides a realistic representation of the feedback effect of planning

decisions on system operations and can help system operators investigate planning strategies for

the increasing charging demand and grid services opportunities for EVs in the future.
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APPENDIX: PROPOSED BI-LEVEL MODEL FORMULATION
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The complete mathematical problem for the proposed bi-level model is presented in (8.23)

min
δ

β1

β2

∑
n,m∈A

∑
τ∈T arr

tffn,m vn,m,t

(
1 + bn,m(

vn,m,t

Capn,m

)α
)
+

∑
i∈ICS

δiCiP
CS,cap
i (8.23a)

s.t
∑
i∈ICS

δiCi P
CS,Cap
i ≤ B (8.23b)

Lower level problem constraints :

(7.2b), (7.3b) ∼ (7.3h), (7.4b) ∼ (7.4i), (7.5), (7.7b) ∼ (7.7e), (7.8) (8.23c)

Reformulated complementarity terms : (7.14) (8.23d)

Cuts :

f(v(eq), q(eq)) ≤ η (8.23e)

f(v(up), q(up)) ≤ η (8.23f)

L(veq, q(eq)),Cdeg,pDG,pCS) ≤ η (8.23g)∑
i∈∆1

1− δi +
∑
i∈∆0

δi ≥ 1, (8.23h)

where f(.) is the first-order Fourier approximation of the equilibrium objective function (7.9a)

around the given points. And L(.) is the simplified Lagrangian function of the equilibrium prob-

lem:
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f(V ,Q) =
β1

β2

 ∑
(n,m)∈A

∑
τ∈T arr

tffn,m

(
Vn,m,τ +

b

α + 1

V α+1
n,m,τ

Capα

)
+

β1

β2

 ∑
(n,m)∈A

∑
τ∈T arr

(
tffn,m

(
1 + b(

Vn,m,τ

Cap
)α
)
(vn,m,τ − Vn,m,τ )


+

1

β2

∑
r∈Rs∈Se∈E

(
Qe

r,s

(
ln(Qe

r,s)− 1− βs
0

)
+
(
lnQe

r,s − βs
0

)
(qer,s −Qe

r,s)

)
∑
t∈T

 ∑
i∈IDG

C(pDG
i,t ) +

∑
i∈ICS,r∈R,e∈E

Cdeg,e
i,r,t

 (8.24)

L(V ,Q,Cd,PDG,P CS) =
β1

β2

 ∑
(n,m)∈A

∑
τ∈T arr

tffn,m

(
Vn,m,τ +

b

α + 1

V α+1
n,m,τ

Capα

)
+

1

β2

∑
r∈Rs∈Se∈E

Qe
r,s

(
ln(Qe

r,s)− 1− βs
0

)
+
∑
t∈T

( ∑
i∈ICS,r∈R

Cd,e
i,r,t + C(PDG

i,t )

+
∑
i∈ICS

ϕi,tP
CS
i,t − zi,t + ϕ

i,t
PCS
i,t + zi,t

)
(8.25)

Additionally, ∆1 denotes a collection of potential CS indexes where the binary solution from the

previous iteration is equal to 1, while ∆0 denotes a collection of potential CS indexes where the

binary solution from the previous iteration is equal to 0. We can represent these sets similar to

(7.22) as:

∆1 = {i|δiteri > 0.5} (8.26)

∆0 = {i|δiteri < 0.5} (8.27)
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