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ABSTRACT

The complexity of the human musculoskeletal system presents challenges in accurately identify-

ing its characteristics, particularly due to the presence of redundant actuators on a single joint.

Non-invasive measures are necessary to overcome these challenges. Optimization algorithms have

emerged as a crucial tool to advance subject-specific musculoskeletal modeling allows a more

realistic representation of biomechanical behaviors, enhancing our understanding of human move-

ment and enabling better clinical decision-making. Furthermore, optimization algorithms play a

vital role in customizing rehabilitation and assistive devices, such as orthoses and prostheses. The

current ankle-foot orthosis (AFO) stiffness measurement methods require bulky, complex designs,

and often permanent modification of the AFO. To address this, we proposed the Ankle Assis-

tive Device Stiffness (AADS) test method, which utilizes a simple design jig and motion capture

system. In our method we employed a static optimization algorithm to estimate external forces

and AFO torque, providing reliable stiffness quantification. The AADS test demonstrated high

precision among different operators and trials, with an overall percent error within ±6%.

In the pursuit of accurately measuring muscle-tendon parameters, various techniques, including

shear waves, have been utilized. However, these techniques often are invasive or lack the ability to

provide quantitative measurements. In our second study, we introduced a noninvasive method for

estimating passive muscle-tendon parameters (PMPs) in knee flexors/extensors and the Achilles

tendon. We employed a direct collocated optimal control algorithm and evaluated the precision

of the proposed method through simulation, replica leg experiments, and in-vivo experiments in-

volving 10 subjects. The estimated range for tendon slack length was reported between 0.59 and

1.13, while the median of tendon stiffness was 421 KN/m. Muscle stiffness ranged between 473

N/m and 1200 N/m. The average root mean square error (RMSE) between experimentally col-

lected joint kinematics and kinetics and forward dynamic verification was less than 0.56° and 12
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mN.m/Kg, respectively.
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CHAPTER 1: INTRODUCTION

In bio-mechanical system involving human movement and mechanical interactions, it requires

careful consideration of multiple variables and constraints. Optimization algorithms offer a pow-

erful toolset to navigate this complexity and identify solutions that maximize desired outcomes

or minimize certain objective functions. Many problems can be naturally formulated as the opti-

mization of a system’s parameters and time-varying controls. The goal of optimization algorithm

is typically to minimize a specific cost, such as, muscle activation, energy consumption, error

between experimental and simulation and etc, while accounting for the dynamic of the system.

One of the primary areas where optimization algorithms have made significant contributions is in

the field of rehabilitation and assistive devices such as prostheses and orthosis. One key benefit

is the ability to customize and fine-tune these devices to meet the unique needs and preferences

of each individual. Optimization algorithms allow clinicians and researchers to optimize various

parameters, such as stiffness and mechanical properties to maximize comfort, stability, and func-

tionality.

Ankle-foot orthosis (AFO) is an assistive device designed to provide support and alignment for

individuals with neurological or physical impairments affecting their ankle and foot control [3].

Tuning the dorsiflexion stiffness of AFOs during the stance phase has been widely used to op-

timize their performance for individual users, leading to improvements in walking ability [4, 5].

To determine the optimal AFO stiffness, reliable measurement methods are necessary. Traditional

AFO stiffness measurement techniques utilize fixtures, load cells, and potentiometers to capture

torque, load, and deformation. In the first study, to overcome the existing limitations in AFO stiff-

ness measurement, we propose the Ankle Assistive Device Stiffness (AADS) test. The Objective

of this study is developing a reliable and repeatable method to measure the stiffness of the AFO
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using a motion capture system instead of complex and dedicated equipment. By leveraging the

existing resources commonly found in gait labs, we have developed an innovative technique using

optimization algorithm that incorporates multiple axes to accurately assess AFO stiffness. Unlike

conventional approaches that rely on bulky actuators, our method utilizes the operator as a source

of bending force, resulting in a more compact and straightforward setup. This approach enables

researchers and orthotists without specialized measurement devices to easily access AFO stiffness

measurements. To validate the feasibility and precision of the AADS test, we conducted experi-

ments using AFOs with known stiffness settings and compared the experimental results with the

theoretically calculated AFO stiffness.

The other areas where optimization algorithms have made contributions is in musculoskeletal mod-

eling. Musculoskeletal models simulate the interactions between muscles, bones, and joints to

accurately represent human movement. These models are vital tools for studying human perfor-

mance, predicting joint forces, and evaluating the effectiveness of therapeutic interventions. How-

ever, the measurement of subject-specific parameters such as muscle tendon parameters is neces-

sary to model the human musculoskeletal. Moreover, individuals with movement disorders, such as

stroke survivors and children with cerebral palsy, often exhibit altered muscle characteristics such

muscle stiffness. Measurement of muscle passive parameters can be extend to evaluating PMPs in

these specific populations, leading to enhanced treatment methods and better understanding of in-

forming clinical decision-making. Hence muscle-tendon passive parameter such as muscle-tendon

stiffness and tendon slack length have draw the attention.

The traditional approach to measuring musculotendon parameters involves the invasive removal of

musculotendons from cadavers, followed by stretching them using a tensile testing machine [6].

An alternative method utilizes ultrasound imaging combined with motion capture to measure pas-

sive musculotendon parameters [7, 8]. More recently, shear waves have been employed to indi-

rectly assess tissue stiffness [9–12]. However, these methods lack the ability to provide quan-
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titative measurements of stiffness due to the discrepancy between sound units and mechanical

force/displacement units.

Despite previous efforts to measure passive musculotendon parameters, several unresolved limi-

tations persist. Noninvasive methods capable of accurately quantifying muscle-tendon stiffness,

particularly in terms of passive parameters, are still lacking. Additionally, the absence of ground

truth data for validation poses a significant challenge [6–12]. These limitations highlight the need

for further advancements to address these challenges and enhance the accuracy and reliability of

musculotendon parameter estimation methods.

In the second study, a novel noninvasive method was introduced to estimate passive musculoten-

don parameters, including tendon slack length (TSL), muscle stiffness (MS), and tendon stiffness

(TS) in knee flexors/extensors. The objective of this study is measuring the stiffness accurately

using a direct collocated optimal control optimization algorithm. The objective of the study was

validated by examining the precision of the proposed method through three different techniques.

The method can help to evaluate the efficacy of the surgery methods and suggests refinements to

the treatment based on desired stiffness. These advancements offer promising prospects for accu-

rately and noninvasively assessing musculotendon parameters, providing valuable insights into the

biomechanics of human movement.
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CHAPTER 2: A METHOD FOR QUANTIFYING STIFFNESS OF

ANKLE-FOOT ORTHOSES THROUGH MOTION CAPTURE AND

OPTIMIZATION ALGORITHM

This chapter has been published in open access journal of IEEE Access by Sepehr Ramezani [13]

and Brian Brady and Hogene Kim and Michael K. Carroll and Hwan Choi ”A Method for Quanti-

fying Stiffness of Ankle-Foot Orthoses Through Motion Capture and Optimization Algorithm” in

IEEE Access, vol. 10, pp. 58930-58937, 2022, doi: 10.1109/ACCESS.2022.3178701. The link

for license is provided in appendix

Introduction

Ankle-foot orthosis (AFO) is an assistive device intended to support neurologically or physically

impaired individuals who require assistance in controlling and aligning their ankle and foot [3].

Adjusting dorsiflexion stiffness during stance phase is a common method for tuning AFOs that can

provide subject-specific improvements in walking [4,5]. It has been shown that properly prescribed

AFOs can reduce the energy cost of walking [14,15], improve the gait pattern of the wearer [16–22]

and provide stretching rehabilitation through gait [23–25]. Among many ways to tune the AFO

to get the best outcomes, stiffness is one of the most commonly tuned parameters [26]. In current

clinical practice, AFOs are prescribed largely by orthotist discretion rather than quantitively which

makes the process subjective [27]. Vasiliauskaite et al. found that using a quantitative method to

customize the mechanical properties of AFOs to specific user needs was advantageous over the

traditional clinical practice [28].

To reach the optimal AFO stiffness we need reliable measurement methods. Typical AFO stiff-
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ness measurement methods use fixtures that affix the AFO to the testing device, a load cell that

measures the engaged or response of torque, load, and potentiometers that measure the deforma-

tion of AFO [29–32]. There are many types of AFOs such as hinged joint AFO, posterior leaf

spring AFO, and AFO with adjustable stiffness mechanisms. The variance of designs can create

complex joint moments as AFOs are being dorsiflexed, capturing six degrees of freedom response

(three translational forces and three rotational moments on each axis of the Cartesian coordinates

system) that cannot be fully captured with uni-axial loadcells.

Using multi-axis loadcells with custom designed fixtures can provide accurate AFO stiffness mea-

surements by capturing the moment from complex shapes and mechanisms [5, 30, 33, 34]. How-

ever, fixation of the apparatus affects the deformation of the AFO and loading responses. As a

result, there might be discrepancies between the measured AFO stiffness designed with specific

fixtures and AFO stiffness experienced in normal use [30]. The loading methods of previous

measurement techniques are either manual or automated. Although automated loading methods

provide convenient and consistent loading input, this requires controls of actuators leading to op-

eration complex. As a result, these limitations hinders other research lab from adopting these

methods [5, 30, 31, 35–37].

Using commercial torque or load measurement tools such as a human dynamometer [38], an in-

dustrial robot arm [39], or a universal testing machine [40] enables measuring the AFO stiffness

without custom measurement device fabrication. However, these devices still require specifically

design testing jig to apply bending to measure the AFO stiffness. In addition to this, the robot arm

and universal testing machines are not directly related to the walking assessments with AFO, so

it would be challenging to access these modalities for the people who analyze walking with mo-

tion capture systems. Both custom design AFO stiffness measurement apparatus and commercial

measurement tools employ specific actuators, such as a motor, a hydraulic cylinder, and loading

weights that require specially designed fixtures for the actuators, leading to heavy, bulky, and ex-
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pensive testing devices.

To address current measurement limitations, we are presenting an Ankle Assistive Device Stiffness

(AADS) test for determining ankle stiffness of AFOs through the use of a motion capture system

rather than a specifically designed, complex, and fixated system. Using equipment readily found

in gait labs, we derived an innovative technique that considers forces and moments on multiple

axes to accurately measure AFO stiffness. In addition, using operator as a source of bending

force instead of bulky and heavy actuators enables equipment to be compact and straightforward.

Thus, this method allows accessible AFO stiffness measurement for both researchers and orthotists

who are not trained to use specifically designed or commercially avaialble measurement devices.

To evaluate the feasibility and accuracy of the AADS test method, we tested AFOs with known

stiffnesses to compare experimental results with theoretically calculated AFO stiffness.

Methods

AADS Test Jig Design

The shank and foot used in the test was a 3D printed replica model of the subject’s leg. A hole

was made in the shank to allow a 30 mm diameter pylon that is commonly used for lower limb

prostheses to pass through vertically. The pylon creates a longer lever arm, reducing operator effort

for higher stiffness AFOs. A ball and socket joint (CR-MO 1/2” DR., Lexivon, Moorpark, CA)

was used to connect the pylon to the foot (Fig. 2.1). The AADS test jig design can be downloaded

at https://simtk.org/projects/foot-orthoses.
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Figure 2.1: An overview of the AADS Test. Starting by applying force to an AFO on a force
plate, the AFO bends around its center of rotation. Using motion capture marker trajectory, inverse
kinematics was processed in OpenSim. The results from inverse kinematics were then used to find
the AFO stiffness via static optimization algorithm.

Ankle-Foot Orthosis (AFO) Design

An individualized AFO, based on a 3D scan of a patient’s leg, was created by the 3D CAD Soft-

ware, Meshmixer (Autodesk, Mill Valley, CA). As seen in Fig 2.1, the hollowed leg scan was

trimmed to the shape of an articulated off-the-shelf AFO. A Camber Axis Hinge (Model 750,

Becker Orthopedic, Troy, MI) connected the foot and shank portion on the medial and lateral

sides. Extended strut bars were created on the posterior of the AFO shell to allow a spring attach-
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Figure 2.2: An overview of the AADS test. Starting by applying users’ arbitral six degrees of free-
dom forces and moments to an AFO on a force plate, the AFO bends around its center of rotation.
Using motion capture marker trajectory, inverse kinematics was processed in OpenSim. The re-
sults from inverse kinematics and experimentally obtained six degrees of freedom reaction forces
and moments from the force plate were then used to find the AFO stiffness via static optimization
algorithm.

ment to provide dorsiflexion resistance. With the designed model, the fuse deposition modeling

3D printer (Pro2, Raise3D, CA, U.S.) was used to print the AFO. The thickness of the AFO was

set to 3.5mm, and 3D printed using Advanced Polylactic acid (APLA) with a 70% infill.
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Testing

The trials for verifying AADS test performance, were conducted using twelve motion capture

cameras (Vero, Vicon, UK) with a force plate (OptimaTM, AMTI, MA). From the motion cap-

ture cameras, marker trajectories on the AFO and AADS test jig were measured to identify the

dorsiflexion angle of the AFO. The force plate was used to collect the ground reaction forces and

moments in all three dimensions, as well as the center of pressure and angle measurements (Fig.

2.2). Reflective markers were placed following a modified Helen Hayes marker set [41]. Markers

for the foot were placed on the AFO and leg replica in areas representative of the first and fifth

metatarsal, middle cuneiform, and heel. Markers to represent the shank were placed at the equiv-

alent location of the medial malleolus, the lateral malleolus, the anterior tibia, and the posterior

tibia. The heel and posterior tibia markers were placed to track the displacement of the bottom and

top of the spring respectively.

To start the trial, the AFO was placed on the force plate with the spring at the equilibrium position.

Velcro was used to attach the foot to the force plate to prevent AFO heel lift and slipping. During

the trial, the operators were instructed to push the AFO down, then return the AFO to the neutral

position. The AFO has dorsiflexion stop limited to a maximum angle of 21◦ (Fig 2.3). Since the

spring was not engaged at small AFO dorsiflexion angles, the toque of the AFO was obtained

from the 5◦ dorsiflexion angle. To accurately determine the stiffness of the spring, torque out of

range of minimum (less than 6◦) and maximum AFO dorsiflexion angle (greater than 20◦) were

not considered for the stiffness calculations.

Three different springs were used to modify the AFO stiffness: 9,910 N/m (Spring 1), 15,600 N/m

(Spring 2), 25,200 N/m (Spring 3). Each spring was randomly donned to the AFO and tested by

four different operators, each running five trials. Each operator was given minimal instructions

to ensure ease of use to future operators and validation of AFO stiffness repeatability in different
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bending conditions. From the instructions, the operator was able to decide the AFO dorsiflexion

bending speed, direction of force, and range of AFO dorsiflexion angle.

Modelling AADS Test in OpenSim

OpenSim, an opensource musculoskeletal analyses software, was used to derive AFO stiffness

[42]. A 3D model of the AFO and AADS test jig from the computer-aided design were imported

to OpenSim to create a model. The model was composed with one rotational degree of freedom

on the sagittal plane of the ankle joint, and six degrees of freedom on the center of mass of the

entire AFO and AADS test models. The distance from experimental reflective marker positions

and virtual markers in OpenSim were monitored to verify accuracy of scaling. The maximum

marker errors for bony landmarks were less than 2 cm and overall root mean square error of all

markers were less than 1cm [43,44]. The moment of inertia and the center of mass for each AADS

test jig segment and AFO segment was calculated by SolidWorks (SolidWorks, Dassault Systmes

SE, France). Also, each AADS test jig and AFO segment’s mass was measured with digital scale.

These acquired moment of inertia, center of mass, and mass data were imported to the model in

OpenSim.

Data Processing

Using OpenSim and the imported motion capture data from each trial, inverse kinematics was

performed. Inverse kinematics calculated the AFO ankle joint angle by matching the experimental

marker trajectories with the simulated marker set. To account for unknown external loads from

the operator, static optimization (SOP) algorithm was employed [45]. SOP is designed to solve

redundancy problems of human musculotendon dynamic systems. To customize SOP to AADS test

analyses, three force and three torque actuators at the top of the shank model, and one coordinate

10



actuator at the ankle joint were added. SOP determined the minimum input controls for these

actuators that matched experimental reaction forces and moments from the force plate considering

AFO kinematic. Using the estimated AFO torque profile with dorsiflexion angle, linear fit was

used to determine the level of AFO stiffness in the sagittal plane.

Validation of Results

The theoretical stiffness of the AFO was calculated to determine the validity of the results. During

the trial, two markers were placed on the surface of the hooks (red circles in Fig. 2.3). Using the

position of these markers, a virtual marker was put at the proximal part of the spring T (x, y, z),

and a marker was placed at the distal part of the spring B(x, y, z) (green circles Fig. 2.3). The

spring length SL, was calculated by:

|SL| =
√

(xT − xB)2 + (yT − yB)2 + (zT − zB)2 (2.1)

Having initial spring length (SL0), the spring displacement (∆S) is derived by following equation.

∆S = SL − SL0 (2.2)

Since we have used linear spring the force produced a spring is equal to:

F = ∆S.k (2.3)

The moment generated by spring, Ms, on the AFO ankle, was calculated by following equation.

Ms = F |AD| (2.4)
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Where |
−−→
AD| is the normal distance between the ankle joint A(x, y, z) and the line created by the

T and B virtual markers.
−−→
AD is connected to the line at point D(x, y, z) at any given time. To find

the position of point D, an unknown constant, q were multiplied to the line created by the spring

(BT ), which 0 ≤ q ≤ 1:
−−→
AD =

−→
AB + q

−→
BT (2.5)

−−→
AD is perpendicular to the

−→
BT dot product between two vectors crossing at a 90◦ is equal to 0.

0 =
−→
BT ·

−−→
AD (2.6)

This was used to solve for the unknown variable, q:

0 = (xT − xB)(xB − xA + q(xT − xB))

+ (yT − yB)(yB − yA + q(yT − yB))

+ (zT − zB)(zB − zA + q(zT − zB)) (2.7)

After q was found, it was substituted into the equations solving for (ADx, ADy, ADz). The mag-

nitude of this vector gives the moment arm, and was solved via:

|AD| =
√

ADx
2 + ADy

2 + ADz
2 (2.8)

Using equation (2.4) and (2.8), AFO stiffness is then calculated by:

k =
Ms

θ
(2.9)

Where θ is the ankle angle from inverse kinematic. Although we have used linear spring, AFO

stiffness showed some level of nonlinear behavior due to changes in moment arm. To introduce
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Figure 2.3: A labelled diagram demonstrates the positions of the center of AFO ankle joint, the
proximal part T and distal part B of the spring. Point D is the shortest distance away from the
center of AFO ankle joint and changes throughout the trial. The force vectors F and AFO dorsi-
flexion angle θ were used to calculate AFO torque.

a representative constant number for AFO stiffness, we fitted a line to the torque-angle plot. This

method was employed for every trial, and the average value for all trials on one spring was used as

the theoretical stiffness.

Statistical Analysis

A multi-factor analysis of variance (ANOVA) [46] was used to determine which factor (e.g. differ-

ent users and different springs) contributed the greatest to the total error to assess the repeatability

and reliability of the AADS test (Table 2). We defined different source of errors to verify which

factor causes major error in accuracy of AFO stiffness estimation. Factors that likely caused the

error are the different springs (Spring), the different operators (Operator), the different trials within
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the same operator (Trial), and the effect of the different springs on each operator that determines

how varying spring stiffness could affect operators AFO bending performance (Spring × Opera-

tor). We also evaluated other factors outside the main experiment variable conditions (Residual).

For example, an operator with less strength could struggle to bend an AFO with a stiffer spring.

F-value (F) and Type I error (Prob > F) was calculated from the mean sum squared (MS), the

partial sum squared (SS), and the degrees of freedom (DF) to evaluate how overall and each error

source statistically impact the accuracy of estimated AFO stiffness with SOP.

Result

Each AFO bending trial starts at 5◦ dorsiflexion, the operators chose to bend the AFO angle with

15◦ - 27◦, depending on the operator’s discretion (Fig. 2.4). Both operator 1 and 2 bent AFO

beyond the maximum dorsiflexion limit (21◦) in all spring conditions. Operator 4 only exceeded

AFO dorsi-flexion in spring 1 condition. According to the SOP results, Spring 1 had a maximum

torque of 16 Nm, Spring 2 had a maximum torque of 25 Nm, Spring 3 had a maximum torque of

36 Nm.

In the Table2.1, the most compliant AFO stiffness case (Spring 1) had the smallest standard devia-

tion (SD) out of the three springs. As the spring stiffness increased (Spring 2 and 3), the magnitude

of the SD increased. The percent error of Spring 1 shows that the experimental stiffness value was

5.4% higher than the theoretical stiffness. As the stiffness of the spring increased, the percent error

decreased in value. The experimental stiffness value of Spring 2 and 3 was 4.6% and 5.9% lower

than the theoretical stiffness.

The F-value and the type I error values from multi-factor ANOVA demonstrates that the AADS

test gives reliable and repetitive results regardless of different stiffness conditions, operator order,

14



5

10

20

25

30

35

40

15

Spring 1 - SOP Spring 2 - SOP Spring 3 - SOP

Spring 1 – Theoretical Stiffness Spring 2 – Theoretical Stiffness Spring 3 – Theoretical Stiffness 

A
F

O
 A

n
k
le

 T
o
rq

u
e 

( 
N

m
 )

A
F

O
 A

n
k
le

 T
o

rq
u
e 

( 
N

m
 )

AFO Dorsiflexion Angle ( º ) AFO Dorsiflexion Angle ( º ) AFO Dorsiflexion Angle ( º )

20 5 10 15 20 25 305 10 15 25 300 0 5 10 15 25 300 20

5 10 15 25 300 20 5 10 15 25 300 20 5 10 15 25 300 20

5

10

15

20

25

30

35

40

5

10

15

20

25

30

35

40

5

10

15

20

25

30

35

40

5

10

15

20

25

30

35

40

5

10

15

20

25

30

35

40

5

10

15

20

25

30

35

40

Operator 1

Operator 2

Operator 3

Operator 4

Figure 2.4: The graphs on the top show the plots from the static optimization results of different
operators and multiple trials, while the charts on the bottom show the results from the theoretical
calculations. For both the static optimization and theoretical graphs, all five trials of all four oper-
ators were plotted (20 trials per graph).

trial order, and each operators strength to control the AFO bending. Overall, there is no significant

difference between estimated AFO stiffness from SOP and theoretically calculated AFO stiffness

(Table 2.2).

Discussion:

The goal of the paper was to develop a novel method to determine the stiffness of an AFO. With the

use of a force plate and motion capture cameras, the AADS test is quick, easy-to-use, compact, and

an accessible method for those with a motion capture laboratory. The study showed the method is

consistent across multiple trials and interchangeable between operators, suggesting the AADS test
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Table 2.1: A table summarizing the calculated stiffness for each spring in second column. Column
3 shows the mean and Standard Deviation (SD) of the static optimization results for 20 trials
between the four users and the distribution of the trial results. In column 4, the deviation of mean
stiffness of SOP from the calculated stiffness value is given.

Spring Theoretical Stiffness (Nm/◦) SOP Stiffness (Nm/◦) Percent Difference (%)
1 0.67 0.71±0.02 5.4
2 1.07 1.02±0.03 -4.6
3 1.69 1.59±0.04 -5.9

provides reliable AFO stiffness measures. While the theoretical AFO torque follows the same path

on the plot when pushed down as when pulled up, there were hysteresis AFO torque curve from

experimental results. The hysteresis curve was greater as spring stiffness and AFO dorsiflexion

angle increases. This occurrence can be attributed to the AFO’s design and material property.

Since the AFO is made of APLA, it deforms as a large force is applied to it [47]. At higher

stiffness, more force is required to bend the AFO, causing more deformation. The viscoelasticity

material properties of APLA dissipates the applied force from the operator, resulting in a lower

stiffness. The decrease in torque can also be attributed to the AFO returning to its equilibrium

position, as this would not need operator input. This AFO shell deformation contributed to an

increased stiffness curve (Fig. 2.4).

Table 2.2: A summarization of the Multi-Factor ANOVA test

Source Partial SS DF MS F Prob>F
Model 0.187 15 0.012 14.36 0

Spring 0.175 2 0.087 100.31 0
Operator 0.006 3 0.002 2.13 0.111
Trial 0.001 4 0.000 0.35 0.845
Spring × Operator 0.006 6 0.001 1.17 0.34

Residual 0.038 44 0.001 0.001
Total 0.226 59 0.004 0.004
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The model in OpenSim is a rigid body segment and does not account for deformation of AFO

shells. Ideally, the distance of the spring is proportional to the AFO dorsiflexion, however, the

deformation of the AFO shank shell allows greater AFO dorsiflexion because the markers on the

pylon and AFO shell move more in the interior direction while the markers on the AFO foot is

constrained with force plates. The theoretical force is however calculated via the markers close to

the joint center, meaning deformation will not influence the force value as much as the angle. As a

result, the estimated stiffness from SOP would underestimate ground reaction forces and moment

values. This is shown by the difference between the rising and falling experimental difference

growing as the spring stiffness increases. This is also supported by the percent error becoming

more negative as the stiffness grows (Table 2.1). Future studies should use a more rigid AFO to

avoid these deformation issues.

While deformation of AFO shells led to the negative percent error in Spring 2 & 3, friction of

the hinge joint was the major error source in the least stiff Spring 1. When operators applied

force to bend the AFO, this force was applied to the hinge joint and created friction. The AFO

shell does not deform with the low stiffness spring (Spring 1) as much as it does with the stiffer

springs. Thus, the resistance from the friction of the hinge joint may profoundly overestimate the

results. The AFO shell deformation and friction of the hinge joint contributed to the theoretical and

experimental stiffness errors, causing a relatively larger MS value for different springs compared

with the other sources (Table 2.2). When the same operator used the AADS test, the results showed

consistent stiffness values. The MS value shows negligible variations in the stiffness across trials

suggesting that the result of estimated AFO stiffness with SOP is independent of operator strength,

as long as they can bend the AFO to the desired angle. These outcomes show that the method is

repeatable via the same operator, among the same AFO, or different AFOs.

When including the entire trial, the error stemming from the different operators is higher than the

other sources of error. This was due to the different maximum angles the operators decided to
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test. As operators bent the AFO, some users bent the AFO beyond 21◦ which was the maximum

dorsiflexion angle for the AFO. As shown in the Fig. 2.2, the AFO stiffness of these cases had a

greater stiffness slope compared with the AFO stiffness between 5◦ and 21◦. This over bending of

the AFO increased stiffness compared with the AFO stiffness attributed only to the spring. This

led to greater discrepancies between operators, contributing to the F-value and type I error (Table

2.2).

As a previous study described, AFO stiffness varies depending on the alignment of the AFO ro-

tational axis to the device [30]. This suggests that even if the same AFO is prescribed to each

individual, the AFO applies a different stiffness due to inter-participant variability of rotational

axes of the ankle joint on the sagittal plane and the frontal plane. Our AADS Test jig design is

capable of adjusting the fore-aft and vertical position of the ball and socket joint on the Model-

foot to match the wearer’s ankle rotation joint center. This versatile jig design will enable the

measurement of wearer-specific AFO stiffness.

The study only tested the viability of the AADS test with linear stiffness AFO model. Unlike

our AFO model, actual AFOs that have nonlinear stiffness profile such as posterior leaf spring

AFO, double-action AFO, or other AFOs may have intrinsic nonlinear stiffness in their design.

Our algorithm matches the ground reaction data and ankle joint angles at the hinge joint of AADS

by modulating the user’s engaged forces and moments to find AFO torque using an optimization

algorithm. This suggests that even if the AFO has a nonlinear stiffness profile, the optimization

algorithm will find the solution of AFO torque and the user’s engaged forces regardless of nonlin-

earity. In addition to this, our induced nonlinear stiffness profile from the AFO shell deformation

at a greater bending angle supports our method’s validity for AFO designs with nonlinear stiffness

profiles.

The methodology also has the potential to measure the coronal and transverse stiffness of AFOs
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with multiple degrees of freedom on the joint because the AADS accounts for three dimensional

forces, moments and kinematics. This suggests that AADS test can be used to measure the AFO

stiffness that has complex posterior leaf spring, off-the-shelf trimline geometries. However, this

study only validated sagittal plane stiffness of AFO due to the specific design of AFO. Thus,

future study will validate the other planes of motion and nonlinear stiffness profile AFO. Due to

the versatility of test method, the AADS test also has the potential to evaluate the comprehensive

stiffness of prostheses, knee braces, and other gait assisting devices.

Conclusion

An easy-to-use, quantitative method of determining AFO stiffness directly impacts patient care. A

quantitative measure of AFO stiffness will allow for tracking patient AFO prescription as the pa-

tient’s optimal AFO stiffness changes as their situation progresses. Having a procedure to measure

the stiffness of the AFO can help orthotists prescribe and fabricate new AFOs for their patient. In

addition, a record of the AFO stiffness will also be beneficial in refabrication when the AFO is

damaged or requires resizing as the patient grows.
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CHAPTER 3: MUSCLE TENDON PASSIVE PARAMETER

ESTIMATION

Introduction

In primary method for measuring musculotendon parameters [6], musculotendons (MTs) are re-

moved from a cadaver and are stretched using a tensile testing machine. The method is highly

invasive and only can be used to measure the parameters of cadavers then it will be scaled based

of the body segment length to create subject specific model [48]. This method may be inaccurate

since muscle properties is not necessarily linearly related to limb length, especially in people with

movement disabilities [48, 49].

Passive musculotendon parameters (PMPs) also was measured using ultrasound imaging combined

with motion capture [7,8]. The stiffness of Achilles tendon was measured by tracking the location

of the prob attached to musculotendon junction related to the bone land mark during isometric

task [50]. In other study the stiffness of medial gastrocnemius was directly measured by observing

actual length changes in muscle fibers (fascicles) during short range stretching [51]. Recently shear

waves ultrasonically have been used to indirectly quantify tissue stiffness [9–12]. Since the sound

unit cannot directly correspond to the mechanical force and displacement unit, the acquired infor-

mation cannot provide a quantitative number for stiffness. Additionally, these methods are most

effective for mechanically unloaded scenarios unlike muscle-tendon tissues which in vivo exist un-

der tension [52]. Thus, it is challenging to assess the overall tissue stiffness in non-homogeneous

tissues like muscle because only small areas of tissue can be monitored with these methods.

Using an optimization algorithm to estimate the muscle parameters with a given experimental con-

dition is an alternative method for identifying PMPs [53, 54]. In this method, an EMG-driven
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optimization algorithm is employed to find the muscle optimal fiber length and tendon slack length

for a musculoskeletal model to minimize error between experimental and simulation data [55].

Musculoskeletal models used in this method are usually based on scaled generic models [55] that

use a Hill-type muscle model [56, 57] . Frederik et. al. [58], estimated active and passive muscle

parameters of one participant from isokinetic and isometric exercises using an optimization algo-

rithm. However, as the generated active muscle forces were dominant to generate net joint torque,

passively induced joint torque from stretched muscle forces may not give proper information to

estimated PMPs. As a result, this method may not provide reliable estimates of PMPs.

Most musculoskeletal simulation problems are the systems with adjustable parameters and time-

varying controls that minimize a cost function subject to system dynamics [59]. The direct col-

located method enforces the system dynamics to match the derivative of the system’s differential

equations using the states’ derivatives [60]. Since this method can solve various cost functions with

multiple model parameters, it has been used in estimating various parameters in different tasks

such as motion tracking [61, 62], motion prediction [63–65], muscle properties estimation [66],

and assistive device parameter optimization [67]. OpenSim Musculoskeletal Optimal Control

(Moco) [59], is an opensource software toolkit for solving optimal control problems combined

with OpenSim. This is capable of customizing muskoloeskeletal models and cost functions based

on the given dynamic tasks [68].

Despite efforts made in previous studies to measure passive musculotendon parameters (PMPs),

several limitations remain unresolved. Specifically, there is a lack of noninvasive methods capable

of quantitatively assessing muscle-tendon stiffness, particularly in terms of passive parameters.

Furthermore, the algorithms utilized in previous research are not capable of considering the entire

system that consists of multiple complex constraint functions leading to the estimated outcomes

may not fully represents the actual muscle parameters. Another critical issue is the absence of

validation due to the absence of ground truth data. These limitations underscore the need for
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further advancements to address these challenges and improve the accuracy and reliability of PMP

estimation methods.

Hence, we introduced a noninvasive method to estimate PMP’s including tendon slack length

(TSL), muscle stiffness (MS) and tendon stiffness (TS) of knee flexors/extensors using a direct

collocated optimal control algorithm in Moco. Additionally, three different techniques were em-

ployed to evaluate the precision of the proposed method.

Materials and Methods

In this study healthy adults were recruited to find their subject specific muscle tendon parameters.

As these parameters are not directly measurable in vivo, we employed 3 different methods to verify

our algorithm.The procedure for each method is illustrated in figure 3.1 with distinct blocks. The

details of these blocks will be explained later.

In the In-Vivo method torque and angle data obtained from experiments were utilized by Opti-

mazation algorithm to find the PMPs of the human leg model. The resulting optimal parameters

were then applied to a scaled generic model to create a subject-specific musculotendon model. For-

ward dynamics was subsequently conducted on the subject-specific model, with the experimental

torque serving as input and the motion generated by forward dynamics was compared with the

experimental joint motion to evaluate the accuracy of the model.

In the fully simulation method, we generated synthetic torque data for the parameter optimization

algorithm instead of using real-world data that may contain artifact signals. To achieve this, A

musculoskeletal model was used in place of an actual human, and a torque estimation algorithm

was employed to determine the best torque profile for generating isokinetic motion. Following this,

the estimated torque was fed into the optimization process to determine the MPM of the generic
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model. Prior to running the parameter optimization, we randomly altered the musculoskeletal

model’s PMPs to ensure the optimization was functioning correctly. Since the estimated torque

is obtained from the musculoskeletal model and the true parameters are available, the results of

the parameter optimization can be directly assessed. Moreover, forward dynamics similar to the

previous method were used for verification purposes.

In the bio-inspired leg method, a simplified version of the human leg was constructed to repli-

cate the leg’s structure, joints, and muscles. The experiment was conducted on the mechanism

instead of a human subject, and the collected torque and motion data were used as input for the

parameter optimization algorithm to determine the PMP’s of the mechanism. Unlike the fully sim-

ulated method, the experimental uncertainties are considered in this method. However, since linear

springs with predefined stiffness were used in mechanism to resemble the human muscle, the ac-

tual values of PMP’s were still accessible. This allows for comparison of the optimal parameters

with their actual value, as well as for running forward dynamic evaluation to verify the results.

In-vivo

In this study, 10 individuals (5 males and 5 females with average age: 24.9±5 height: 169.6±11cm

weight: 70.5 ± 16kg ) with no history of any musculoskeletal or neurological disorders were

recruited to perform 2 different sets of involuntary knee flexion and ankle plantar flexion. All

subjects provided informed consent before participating, and the testing protocol was approved

by the University of Central Florida Institutional Review Board. To ensure that the discrepancy

between the simulation and experimental results is not significant, a paired t-test was conducted

Table 3.1. The assumption was that the model’s accuracy would be within 2 %, with a standard

deviation of the differences between the model and participants ranging between 0.5 % and 2 %.

Based on these values, effect sizes of 4, 2, and 1 were obtained. A sample size of five data pairs
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Figure 3.1: A comprehensive overview of the various workflows to verify and validate the proposed
optimization algorithm, with yellow blocks depicting torque estimation and optimal parameter
determination, blue and green blocks showing the results of parameter and forward dynamics, and
orange blocks representing the various evaluation methods employed.

(number of participants) was determined to be sufficient to achieve more than 80 % power to reject

the null hypothesis of zero effect size when the population effect size is 2, and the significance

level (alpha) is 0.05, using a two-sided paired t-test.

The Table 3.2 is a summary of their relevant demographic information.

In the knee flexion setup, we positioned the subjects on a human dynamometer (System4 Pro,

Biodex Medical Systems, NY) with their left knee fully extended in different hip angles. The

shank was constrained with the jig of the dynamometer to enable knee flexion and the hip joint

was adjusted with 90, 55, and 15◦ with the seatback of the human dynamometer. We unlocked
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Table 3.1: Estimated sample size for a two-sample paired-means test Paired t test

alpha power N delta d0 sd d
0.05 0.8 3 4 0 2 0.5
0.05 0.8 5 2 0 2 1
0.05 0.8 10 1 0 2 2

Table 3.2: Demographic Information of 10 Participants

Subject Gender Age
Height
(cm)

Weight
(kg)

Leg Length
(cm)

Thigh
CIR
(cm)

Shank
CIR
(cm)

1 M 29 160 56.7 80.5 45 31
2 F 24 157.4 54.4 76 56.5 36
3 F 19 160.2 52.1 79 50.8 33
4 M 33 185 94 93.4 61.2 45
5 F 23 170.2 65.7 82.55 54.6 37.4
6 M 28 167.6 75 75.56 54.6 35
7 M 20 190.5 95 96 63 40.5
8 F 19 172.7 81.6 83.8 63.5 39.4
9 M 23 172 76.6 89.5 51.4 35.5
10 F 31 161 54 78 53.97 32.38
Total 24.9±5 169.6±11 70.5±16 83.4±7.2 55.4±5.8 36.5±4.2

the dynamometer and let participants perform involuntary knee flexion at a slow constant speed

(5 ◦/s) to eliminate the induced muscle force from fast muscle stretch velocity [56]. The foot

was unconstrained, allowing the ankle joint to rotate freely, thereby preventing the tension on the

biarticular gastrocnemius muscle and minimizing its impact on the net torque during knee flexion

sets.

In the ankle plantarflexion setup, the foot was constrained to the dynamometer using an ankle

joint sagittal plane motion jig. The trial began with the ankle in a fully dorsiflexed position while

the shank was horizontally constrained. Then, involuntary slow ankle plantarflexion with a 5 ◦/s

speed was performed at different fixed knee angles (0, 45, and 90◦) to differentiate the induced
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Figure 3.2: Experimental setup; left picture: dynamometer setup for knee motion, the middle
picture: the setup for ankle motion, and the right picture: goniometer placement.

ankle torque from the gastrocnemius muscle.

Participants were instructed to remain relaxed during the test to avoid any unintended muscle ac-

tivation, which could result in a jump in the torque signal. We monitored the torque signal to

detect any such jumps, and any trials in which muscle activation occurred were discarded and re-

peated. The net torque generated by knee flexors, extensors, shank segment mass, and jig mass

was recorded with the dynamometer. The knee and hip angles are recorded with electric goniome-

ters.(Avanti wireless, Delsys, MA).

To compensate for the gravity effect on the jig to identify the net knee torque that is only induced by

muscle stretch and human body segment mass, we measured the Biodex arm’s length and weight.

The human dynamometer experiment was conducted at a data collection rate of 100 Hz. This

study focuses on primary muscles that dominate generating net knee and ankle joint torque. The

target muscles in this study are: the biceps femoris long head (bflh), the biceps femoris short

head (bfsh), the gastrocnemius lateralis (gaslat), the gastrocnemius medialis (gasmed), soleus, the

semimembranosus (esmimem), the semitendinosus (semiten), the vastus intermedius (vasint), the

vastus lateralis (vaslat), the vastus medialis (vasmed), and the rectus femoris (recfem). We made an
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assumption that all muscles, except for the calf muscles, had small and rigid tendons. Therefore,

in the optimization process, we focused only on the muscle stiffness of these muscles. However,

the Achilles tendon which is the thickest and longest tendon in the human body [69] was taken into

account because the Achilles tendon plays an important role in energy-efficient walking by storing

and releasing energy.

Musculoskeletal model

We used a generic musculoskeletal model developed by Rajagoapl et al. [70]. In the Rajagopal

model, we used modified Hill type musculotendon model proposed by Degoote et al. [66]. To scale

the generic model, we measured various distances of each participant: thigh (greater trochanter to

lateral epicondyle), shank (fibula head to lateral malleolus), hip (left to right anterior superior

iliac spine), and foot (calcaneus to the tuberosity of fifth metatarsal). These measurements were

used to determine the appropriate ratio between the generic model and the subject model. All

model’s coordinates have been removed/locked except for the left hip, knee and ankle to reduce

the complexity and the computational time. The musculoskeletal model was placed in a seated

position, resembling the posture of the human subject in the experiment 3.4. All muscles were

deactivated to account for joints’ torque derived solely from passive musculotendon forces and

gravity.

Each muscle in the model was represented as a Hill-type muscle-tendon unit [57], consisting of an

active element with a parallel elastic element that accounts for a muscle and a series elastic element

that accounts for a tendon.(Figure3.3)

This model uses 4 different characteristic curves to calculate muscle force from muscle activation:

an active muscle fiber force-length curve (fact), a passive muscle fiber force-length curve fpas, a

muscle force-velocity curve fv, and a tendon force-length curve fT . The overall mathematical
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Figure 3.3: Hill-type model scheme including tendon fiber model [1]
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model is:

F 0
M

(
afact

(
l̃M

)
fv(υ̃M) + fpas

(
l̃M

))
cos (α)− F 0

MfT

(
l̃T

)
= 0 (3.1)

Where α and a are pennation angle and activation respectively and the maximum muscle force

is equal to F 0
M at a length of L0

M . The tilde is used to denote forces, velocities, muscle lengths,

and tendon lengths are normalized by F 0
M (maximum isometric force), V max (maximum eccentric

velocity), L0
M (optimal fiber length), and Ls

T (tendon slack length) respectively.

Winter [6] and Gollapudi [71] collected experimental data explaining the active and passive muscle

behavior and Magnusson et al. [72] and Maganar et al. [7] have examined the tendon force-length

curve. Later on, Thelen. et. al. [73] and Millard et. al. [1] introduced modified mathematic

formula to represent experimental data that were collected from the other previous studies (Figure

3.4). Degroote. et. al. [66] developed a new formulation to better describe muscle dynamics based

on Thelen model. Since we only focused on the passive part of the muscle in a quasi-static motion,

in the equation 3.1 active part of the muscle (fact) as well as force velocity function (fV ) was

ignored and be simplified as:

F 0
M

((
fpas

(
l̃M

))
cos (α)− fT

(
l̃T

))
= 0 (3.2)

The formulation for the passive fiber force curve is :

fpas =
e

(
kPE .

(
l̄M−1

ε0

))
− b

ekPE − b
(3.3)

Where the fpas is the normalized passive muscle force, kPE is an exponential factor and considered

[66] as constant value equal to 4. l̄M is the fiber length normalized by the optimal fiber length and ε0

is the passive muscle strain encountered at the maximum isometric force and can be set differently

for different people. In the Thelen model, b is equal to 1, while in OpenSim developer modified the
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Figure 3.4: Musculoskeletal model seated in postures similar to human body

Degroote model to avoid negative force produced within allowed range by following equation [59]:

b = e

(
kPE .

(
lMmin−1

ε0

))
(3.4)

Tendon force is expressed as the following:

fT = c1e
(mkt.(l̄T−c2)) − c3 (3.5)

Where c1, c2, c3 are constants equal to 0.2, 1, and 0.2 respectively. L̄T is the tendon length

normalized by tendon slack length (Ls
T ). mkt is an exponential factor calculated by:

mkt =
ln
(

1+C3

C1

)
1 + εT0 − C2

(3.6)

Where εT0 is tendon strain at the point that maximum normalized tendon force is created
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Optimization

Simulations of human movement can be classified based on whether the motion is prescribed

based on available data or predicted through the simulation process [59]. Prescribing the motion

involves utilizing musculoskeletal models to estimate unmeasured quantities, such as muscle-level

energy consumption or unknown parameters of the model [74–77]. On the other hand, motion

prediction aims to estimate kinematic of model facilitating the design of clinical interventions,

such as identifying gait trajectory of individuals with muscle weakness or developing prostheses

for amputees [78–80]. User

Musculoskeletal simulation problems typically involve optimizing a system’s parameters and time-

varying controls to minimize a specific cost, such as energy consumption. These optimization

problems are formulated as differential-algebraic equations that describe the system dynamics.

Two primary approaches have been developed to solve these complex differential-algebraic equa-

tions: single shooting and direct collocation methods [81]. These methods aim to find the optimal

solution by iteratively adjusting the system’s parameters and controls.

In single shooting, the control strategy is initially selected, and then the states are integrated for-

ward in time [78]. The optimizer aims to minimize a specific cost while adhering to equality con-

straints imposed at the end of the interval. In single shooting, the constraint relies on the control

applied up to that point, and any alteration in the control policy affects the final error. Additionally,

since integration spans the entire time domain, errors can accumulate, and the discrepancy at the

end is influenced by the entire control policy. A major drawback of the single shooting method is

the absence of assurance that the intermediate controllers iterated by the optimizer result in stable

performance. It is possible that for certain control choices, the states may become infinite. Mul-

tiple shooting mitigates some of these concerns. In multiple shooting [82], the control policy is

disctrzed as a piecewise linear (or constant) policy and discretize the states at these points. We
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integrate from the beginning of the interval to the end and enforce the condition that the states

at the end of the interval serve as the initial values for the next interval. This approach yields

good convergence because each discretization step captures the impact of changing control inputs

through a single defect. However, the optimization process is slow due to the numerical integration

of states from the start to the end of the interval. Direct collocation methods have been developed

specifically to address these challenges.

Direct collocation is an extremely potent technique for nonlinear optimization. It involves approx-

imating the state and control variables using piecewise continuous polynomials and leveraging the

properties of these polynomials to simplify the integration calculations involved. By converting

the integration and other calculations into algebraic equations, the computation time for these pa-

rameters is significantly reduced. In direct collocation, the constraints on the system dynamics

are imposed on intermediate points referred to as collocation points. The optimal solution is re-

quired to satisfy the optimality conditions solely at these intermediate points. The concept of direct

collocation is visually depicted in the figure below.

A straightforward implementation of the direct collocation algorithm can be outlined as follows.

Firstly, the control is approximated using a piecewise continuous linear function. Next, the states

are approximated using piecewise continuous cubic functions, ensuring that the values at each

discretization point (knot) match the corresponding state values, and the derivatives match the

derivatives obtained from the system dynamics. It’s worth noting that once the states and deriva-

tives at the knot points are determined, the cubic function between the knots is completely defined.

As a result, the intermediate values can only be modified by altering the state or derivative (through

control). Finally, the condition is enforced that the derivative of the piecewise continuous cubic

function must be equal to the state derivative calculated based on the system dynamics.

The direct collocation method offers several advantages over the single shooting method, includ-
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Figure 3.5: Direct collocation’s core concept: Minimizing the discrepancy between state deriva-
tives obtained from dynamics and those obtained through polynomial differentiations. [2]

ing its computational speed and elimination of the need to reduce the number of variables in the

problem, as commonly required in single shooting. However, implementing direct collocation can

be challenging since the convergence relies on the specific details of the problem formulation. To

address the complexities of implementing direct collocation in biomechanics problems, we utilized

Moco to complement the direct collocation method and estimate muscle-tendon parameters.
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Torque Estimation

The human dynamometer controls motor torque to enable constant joint rotation speeds with vary-

ing net biological joint torque. To emulate the dynamometer in OpenSim, we generated a virtual

actuator and placed on the musculoskeletal model similar to the experimental setup. To control the

torque on the virtual actuator, the MOCO track [59] optimization algorithm was used to minimize

the difference between the desired and simulated joint kinematics, while the square of the actua-

tor’s control signal is forced to be minimized. Since all muscles are deactivated during isokinetic

motion, the passive forces and gravity are the only sources of torque and MOCO finds the best

torque profile to produce the desired motion while considering the system’s dynamic. The cost

function for this optimization is given by:

min

(∫ tf

ti

∑
s∈S

ωs ∥ xs (t)− xe(t) ∥2 dt+
∫ tf

ti

∑
c∈C

ωc ∥ uc(t) ∥2
)

(3.7)

Where ti and tf are the initial and final time of the phase. C and S are set of control and state vari-

ables which were being tracked. ωc and ωs The weight for actuator control signal and state terms in

the objective function. uc(t) is the actuator control signal (input) which has the linear relation with

out put torque by defining it’s optimal force as 100. xm (t) represents the states of system including

position and velocity of coordinates. And lastly xe(t) represents the reference data. the first term

of the cost function guarantees minimize the error between model states and desired motion while

second terms is a penalty term for activation of the actuator to find the efficient solution.

Musculotendon Passive Parameter optimization

The objective of the optimization algorithm is to determine the tendon slack length (L̄T ) for all

muscles, as well as the parameter ε0, which is associated with muscle stiffness, for knee flex-
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ors/extensors excluding calf muscles. Additionally, the parameter εT0, which corresponds to

tendon stiffness is estimated for calf muscles. All other parameters in equations 3.2 to 3.6 are

obtained from the scaled generic model. During the optimization, we restrict the parameters to

certain boundaries to help the optimizer find the solution efficiently using the range of values that

were experimentally collected from the previous studies [7, 83–87]. If a muscle is compressed be-

yond its slack length it will be buckled and equations 3.3 and 3.5 will no longer explain the muscle

behavior. To avoid buckling during optimization, we calculated the muscle length in a full range of

motion of hip, knee, and ankle joints to find the minimum length of muscles. From the calculated

minimum length of the muscle, we assigned the upper bound of TSL while we use 60 % of the

default value as the lower bound [70].

Either Estimated torque from torque optimization chapter or experimental data from human dy-

namometer was applied to the knee and ankle joint to enable isokinetic exercise. In this setup, the

optimization algorithm in Moco estimated the PMPs that allow the virtual actuator on the knee and

ankle joint motion to follow the reference motion in the presence of passive forces from muscles

and gravity. Using MOCO track, the states of knee and ankle joint kinematics and external torque

will be tracked while PMPs were allocated from the optimization while the muscle activities are

disabled. The cost function of the optimization is comprised of two terms. The first term of the

cost function is the error between the experimentally collected joint kinematics (i.e., joint angles

and isokinetic low speed knee flexion or ankle plantarflexion velocity) and the musculoskeletal

model’s joint kinematics. The second term of the cost function is tracking the virtual actuator’s

signal control. Since the virtual actuator signal control is linearly related to the external torque,

tracking the actuator control is equivalent to tracking the external torque. Therefore, the second

term of the cost function represents the error between the torque generated by the actuator in model

and the reference torque. Following equation describes the total cost function.
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min

(∫ tf

ti

∑
s∈S

ωs ∥ xs (t)− xe(t) ∥2 dt+
∫ tf

ti

∑
c∈C

ωc ∥ uc (t)− xec(t) ∥2 dt
)

(3.8)

Where all the parameters are similar to equation 3.7 plus the xe(t) is represents the reference

actuator input data.

Replica leg

To comprehensively evaluate the musculotendon parameter outcomes from the optimization algo-

rithm, a physical model was developed that replicates the Rajagopal model’s lower limb segments.

As the experiment only considers the passive forces from the muscle and tendon and these models

are comparable with mechanical springs [88], we used mechanical springs for each musculoten-

don. The actual value of springs’ stiffness and the stiffness estimated by the optimization algorithm

were compared to validate the algorithm. The replica leg is carefully designed to closely resemble

the structure of a human leg, including the joints, body segments, muscle pathways, and muscle

insertions.

Fabrication

The replica is comprised of 4 aluminum profiles that replicate a hip-to-foot bone structure (Figure

6) designed and assembled in SolidWork first. Each profile represents a body segment and is

positioned so the hip sits horizontally and connects to the femur through a locking pivot joint. This

joint is also used to represent the ankle joint (between the tibia and foot bodies) with a design that

allowing for replication of both joints’ full range of motion. The end of the femur is connected to

the tibia via a knee joint which is the series of custom-made brackets that allows for the attachment

of a torque sensor (DYJN-104, ATO, CA) between them to measure the joint’s torque (the knee’s
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BFLH

RECF

VASINT

BFSH

Figure 3.6: Overall design of leg mechanism (top), fabricated leg mechanism (Middle) 3D model
in OpenSim (Bottom)

torque). The torque sensor used in this study measures torque in the mono-direction (rotation

around knee joint), and any external load or torque applied in other axes can result in artifact

signals. To address this limitation, knee joint is designed in a way that the sensor experiences

torque in only one direction and minimizes the risk of any external factors. Also, we fixed the

tight segment of the replica of leg on the ground to replicate the human seating positioning on the

dynamometer. To replicate the muscle pathway of the Rajagopal model we designed wrapping
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objects. Using Wrapping object geometric information from generic model we designed it in

SolidWorks and 3D printed (Rise3D, Irvine, CA) cylinders with the same information. Also, Some

of the springs were thick and cause collusion with other springs, considering this, extra wrapping

objects added to prevent this conflict. Knowing that the aluminum profile does not consider the

natural shape of the bone, we used bracket for the attachment point between frame and springs to

roughly follows the muscle insertion points.

We used the equation 3.16 to calculate the average stiffness for four muscles: BFLH, BFSH,

VASINT, RECF. Due to the strength restriction of wires and brackets that connect muscles to the

frame selected, we choose springs close to a tenth of these average stiffness. Each spring is attached

with minimal stretch at its shortest configuration, for example when attaching the recfem muscle,

as it is a biarticulate muscle, the hip is angled at maximum flexion and the knee was fully extended

so that the muscle can be fixed to the frame. Springs were labeled with names that correspond to

the human knee flexors and extensors including the biceps femoris long head (BFLH), the biceps

femoris short head (BFSH), the vastus intermedius (VASINT), and the rectus femoris (RECF)

(Figure3.6).

Model

To implement the optimization algorithm, we made the exact model of replica leg in OpenSim.

The segments designed in SolidWorks are imported into the OpenSim with their center of mass

and moment inertia. We used the PinJoint() function in OpenSim for all coordinates however hip

and ankle were locked during the optimization and knee only can rotate from full 0◦ to 90◦. To

model the linear spring used in the experiment, a PathSpring() function was used, which allows

for defining the pathway of the actuator using insertion points and wrapping objects. Nine virtural

markers were attached to key points on the aluminum profiles similar to the bonly landmarks on
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the human body including the intersection of springs and bodies, the center of wrapping objects,

and joint centers to record their relative positions. This data was then used in OpenSim to ensure

the accuracy of the model dimension and joint angles.

Replica leg experiment

The knee joint of replica leg was adjusted to different angles with a fixed increment of 8◦ by

locking the joint. A total of 12 trials were conducted for each of the for hip 90◦. During each

trial, the torque sensor was used to record the torque generated by the spring and the weight of

the shank, while the motion capture system was used to measure the angle of the knee. Nine

reflective markers (Figure 3.7) were placed on key points aligned with virtual marker position in

OpenSim. Inverse kinematics was used to calculate the angles of the hip and knee. The ankle joint

was fixed at 90◦ for all trials and hip was setup in 90◦ (perpendicular to thigh) while knee was from

0 (fully extended) to 90◦ with increment with 8◦ ((Figure 3.7). The recorded torque and angles

were employed by the optimization algorithm to determine the stiffness and the resting length (the

length at which the spring does not produce any forces) of each spring. The same optimization

algorithm introduced in previous section was presented to estimate the parameters of the replica

leg model with the goal of reducing the error between the experimental and simulation torque and

angle.

Forward Dynamics Evaluation

A forward dynamic was performed to evaluate optimization outcomes for all three verification

methods including fully simulation, replica leg and in-vivo. In the forward dynamics, the torque

serves as an input of musculoskeletal model with optimized parameters. The motion generated by

the forward dynamic was compared with the experimental joint motion to evaluate the accuracy of
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Figure 3.7: Replica leg experimental setup: Isokinetic knee flexion at hip 90

the model. To calculate the motion integration on multi-body dynamics was used.

q̈ = [M(q)]−1
{
τm + C(q, q̇) +G(q) + F

}
(3.9)

Where q̈ is the coordinate accelerations created by joint torques(τ ) , coriolis and centrifugal forces

(C (q, q̇)), gravity(G (q)), and external forces applied to the model (F ). q and q̇ are coordinates

and their velocities, and [M(q)]−1 is the inverse of the mass matrix. The total torque net generated

by muscles was calculated by following equation:

τm = [R (q)] f (lT , lM) (3.10)
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The net moments, τm are a result of muscle moment arms, R (q) , multiplied by muscle passive

forces, f , which is a function of muscle fiber lengths lM and tendon lengthlT . As forward dynamic

calculates the states of the system (q̈, q̇, q) which includes the knee and ankle joint motion, veloci-

ties and acceleration. We used the output to compare with the reference motion and make an error

curve.

Parameter Error Evaluation

Since the estimated values of ε0 and εT0 do not have a direct physiological representation of mus-

cles, they need to be converted into musculotendon stiffness. The nonlinear behavior of musculo-

tendon stiffness is illustrated by Equations 3.3 and 3.5, indicating that its value varies according to

the muscle length changes. Nevertheless, to compare the estimated PMPs with previous studies, a

single representative value is needed. Thus, we used the average stiffness of muscle-tendon at the

initial length and the length at which maximum isometric force (F 0
M ) occurs to introduce a con-

stant number that represents musculotendon stiffness. The derivative of the equation 3.5 related to

tendon length gives us the tendon stiffness:

K̄T =
dF̄ T

dL̄T

= mktc1e
(mkt.(L̄T−c2)) (3.11)

Normalized stiffness at tendon slack length and the fiber strain at the maximum isometric force is:

K̄T =

 mkt if L̄ = 1

mkt(1.2) if L̄ = 1 + ε0

(3.12)
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Taking average of both condition and considering the maximum isometric force F 0
M and Ls

T the

actual tendon stiffness is:

KT = (
F 0
M

Ls
T

) 1.1mkt =
1.97 F 0

M

ε0 Ls
T

(3.13)

Alternatively, we can take the same approach to determine the muscle stiffness by differentiating

equation 2 and obtaining the normalized muscle stiffness, as explained below. stiffness is:

K̄P =
dF̄

PE

dL̄M

=
kPE

ε0
.
e

(
kPE

(
L̄M−1

ε0

))
− b

ekPE − b
=

kPE

ε0
F̄ (3.14)

K̄P =

 0 if L̄M = Lmin

kPE

ε0
if L̄M = 1 + ε0

(3.15)

Similar to 3.13 The actual average stiffness considering F 0
M , LT and kPE=4 is [59]:

KPavg = K̄Pavg .
F 0
M

L0
M

=
2

ε0
.
F 0
M

L0
M

(3.16)

And finally, parameter error is calculated by:

Error =
Pe − Pr

Pr

∗ 100(16) (3.17)

Where Pe and Pr are optimal and reference parameters. Also, we reported the ε0 and εT0 for extra

details which can be helpful for future studies
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Results

simulation

Figure 3.8 shows the results of the estimation error of optimal values for tendon slack length (TSL)

in the fully-simulated method for various hip and ankle conditions. The estimation error for the

main knee flexors/extensors is less than -0.032 %, except for calf muscles (gaslat, gasmed, soleus

), which have an error of around -3.2 %. It is noteworthy that the TSL error of knee extensors

decreases as the hip angle decreases from 90◦ to 15◦, while the flexors muscles exhibit the lower

error when the hip angle is 90◦, causing them to be fully stretched. For example, the error of

the semitendinosus muscle decreased from -3.2 % to -1 % when the knee changes from 90 to 0◦.

The error for calf muscles is also lower when the knee is at 0◦. For instance, the error of the

Soleus muscle decreased from -3.1 % at a knee angle of 90◦ to -1 % when the knee is at 0◦. The

negative error for most muscles suggests that the estimated TSL is less than the reference value in

the musculoskeletal model. The results of the muscle stiffness error estimation are presented in

Figure 3.9. The optimization procedure successfully estimated the muscle stiffness with an error

of less than 3.5% across all conditions. The highest estimation error was observed for the rectus

femoris muscle when the hip angle was 55◦, while the error was close to zero at hip 15◦. The

semimembranosus muscle exhibited a noticeable change in error, decreasing from -1.5 % to 0.2

% and 0.05 % as the hip angle increased from 15 to 55 and 90◦ respectively. Similar to the TSL

results, the error for flexor muscles was lower when the hip angle was 90◦, whereas the error for

extensor muscles decreased when the hip angle was 0◦.

The maximum estimation error for the calf muscles was reported for the gastrocnemius medialis

muscle, with a value of -0.1 %, while the estimation of the soleus muscle stiffness was nearly

zero. The accuracy of muscle stiffness estimation for the calf muscles was highest when the knee
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Figure 3.8: The estimation error for tendon slack length (TSL) varies among different muscles. The
left chart illustrates TSL for knee flexor-extensors, excluding calf muscles, during knee flexion
trials at hip angles of 90◦, 55◦, and 15◦ (blue, red, yellow). The right chart shows TSL for calf
muscles during ankle plantar flexion trials at knee angles of 90◦, 45◦, and 0◦ (blue, red, yellow).

angle was 45◦, with estimation errors of -0.01 %, -0.02 %, and nearly zero for the gastrocnemius

lateralis, gastrocnemius medialis, and soleus muscles respectively.

The estimation error of Achilles tendon stiffness (TS) is presented in Figure 3.10. The maximum

error of 63 % and -40 % is reported for the gastrocnemius lateral and gastrocnemius medial mus-

cles, respectively, at a knee angle of 90◦. However, this value was reduced to 4 % and 6 % when

the knee angle was decreased to 0◦. Similarly, the estimation error of TS for the Soleus muscle

decreased from -25 % to 20 % and then 10 % as the knee angle decreased from 90 to 45 and 0◦

respectively.

The error between the reference data and the data generated from the forward dynamic applied on

the model with optimized parameters in the ankle plantar flexion trial with different knee angles
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Figure 3.9: The estimation error of muscle stiffness among different muscles. The left chart
illustrates muscle stiffness of knee flexor-extensors, excluding calf muscles, during knee flexion
trials at hip angles of 90◦, 55◦, and 15◦ (blue, red, yellow). The right chart shows muscle stiffness
of calf muscles during ankle plantar flexion trials at knee angles of 90◦, 45◦, and 0◦ (blue, red,
yellow).

is shown in Figure3.11. The torque error remains consistently low, at around 0.05 N.m, for all

sample times during ankle plantar flexion where the knee joint was setup at 45 and 0◦. However,

in the knee 90 trial, the error peaks at 0.35 N.m at the beginning of the trial. Similarly, in terms of

motion error, the knee 90 trial shows larger error of 0.1◦ at the beginning, while the error for the

other trials remains less than 0.03◦.

Replica leg

The experiment of knee flexion was conducted on Bio-inspired leg with hip 90◦ to determine

the optimal resting position and stiffness for each spring. Figure 3.12 presents the calculated

error between the optimal parameters and the actual stiffness of the springs. Among the springs,
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Figure 3.10: Tendon stiffness estimation error, for different knee angles of 90◦, 45◦, 0◦

Figure 3.11: The error between the forward dynamic of optimized results and the reference motion.
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Figure 3.12: Optimized parameter including stiffness and resting position for all springs

VASINT exhibited the highest estimation error in stiffness, exceeding the actual value by 9 %.

Conversely, BFLH and RECFEM showed estimation errors 3.9 % and 3.2 % lower than their

respective actual stiffness values. The lowest error was observed in BFSH with a deviation of

2.3 %. Regarding the optimized resting position, the results mostly indicated values lower than

the actual positions, with errors of 7.9 %, 7.1 %, and 4.6 % for BFLH, BFSH, and VASINT,

respectively. The maximum error of 8.5 % was observed in RCFEM. A forward dynamics analysis

was conducted on a replica leg with the optimized parameters to determine its similarity to the

reference motion and torque. The joint angle derived from forward dynamics using the estimated

parameters precisely matched the reference knee motion data, and the torque output was aligned

with the experimental data (See Figure3.13).
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Figure 3.13: Optimized parameter including stiffness and resting position for all springs

In-vivo Method

Figure 3.14 illustrates a sample of torque measurements obtained using a dynamometer.The sam-

ple data corresponds to participant P9 and recorded during different low-speed knee flexion move-

ments when the hip angle is set to 90◦. The plot provides a visual representation of three distinct

torque components. The blue line represents the total net torque, which encompasses the com-

bined effects of the leg’s weight and the passive muscle forces acting on the knee joint. The red

line represents the torque generated specifically by the leg’s weight and the passive muscle forces.

The yellow line represents the torque resulting solely from the passive muscle forces. By isolating

these factors, we can observe the contribution of the inherent passive force of the muscles to the

overall torque profile.

A distinct trend can be observed in the torque generated by the passive forces as the knee undergoes

a range of motion. Specifically, there is a sharp drop in torque from 0 to 20◦ of knee flexion,

followed by a gradual decrease until the knee reaches 45◦. Beyond this point, the torque continues
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Figure 3.14: Torque analysis of experimental data during low speed isokinetic Knee Flexion
Movements. Total net torque (blue line), the torque from the leg’s weight and the passive muscle
forces (red line), and the pure torque from the passive muscle forces only (yellow line)

to decrease in a linear fashion until it eventually reaches 0 at a knee angle of 90◦.

Figure 3.15 presents the optimized tendon slack length (TSL) values from in-vivo method for

different muscles among all participants and a generic model. The TSL values for the calf muscles

(gaslat, gasmed) are normalized by the length of the shank (from the knee joint to the ankle joint),

while the TSL values for the other muscles are normalized by the length of the thigh (from the

hip joint to the knee joint). The bar chart displays the data, with each bar representing a specific
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muscle. The blue box represents the Interquartile Range (IQR), and the blue line represents the

median value.

For the calf muscles, the normalized TSL values are 0.95 [0.06] for gaslat, 0.96 [0.07] for gasmed,

and 0.69 for soleus. The soleus muscle has the smallest IQR of [0.003] among all the muscles,

indicating less variability in the TSL values. Among the other muscles, the highest normalized

TSL is observed for semiten with a value of 1.13 [0.18]. This is followed by bflh with 1.116

[0.182], and refcfem with 1.1 [0.114]. Among the quadriceps muscles, Vasint has the highest

normalized TSL of 0.7 and the lowest IQR of [0.025], while Vaslat and Vasmed have normalized

TSL values of 0.65 [0.13] and 0.59 [0.18] respectively.

In addition to the optimized tendon slack length (TSL) values, we included the normalized TSL

values of the generic Rajagopal model in the plot. To ensure a fair comparison, we replaced all the

Millard muscles in the Rajagopal model with the Degroote model. The comparison between the

optimized TSL values and the generic model revealed significant differences.

Specifically, for semiten, soleus, and vasint muscles, the TSL values of the generic model fell

outside the Interquartile Range (IQR). The TSL value for semiten in the generic model was 0.68,

which is 39 % less than the median value. For soleus, the generic model exhibited a TSL value

of 0.75, which is 8 % higher than the median value. Additionally, the TSL value for vasint in the

generic model was 0.56, which is 20 % less than the median value. Furthermore, the gaslat and

gasmed exhibited TSL values on the upper fence, with gaslat at 1.02 and gasmed at 1.08. Figure

3.16 presents the calculated stiffness of the Achilles tendon, derived by summing the individual

tendon stiffness values of the gaslat, gasmed, and soleus muscles. The optimized tendon parameter

is reported as 421 [92] KN/m, indicating a higher stiffness compared to the generic model’s

tendon stiffness of 303 KN/m.

The knee flexor and extensor muscles with short tendons were considered as rigid, focusing solely
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Figure 3.15: Normalized tendon slack length between participant. The central line within the box
indicates the median value (blue line), while the box represents the interquartile range (IQR). the
Data out of the bar are outliers

on optimizing their muscle stiffness for each individual participant. The optimized epsilon values

obtained from the optimization process were then utilized in equation 14 to calculate the muscle

stiffness when both the hip and knee angles were zero◦. The results of the optimization of muscle

stiffness for each individual are presented in Figure 3.17.

Among the knee flexor muscles, semimem demonstrated the highest stiffness with a value of 1.2
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Figure 3.16: Inter-Participant Variability in Optimized Achilles Tendon Stiffness using the In-
Vivo Method

[0.3] KN/m. Following semimem, bflh and semiten exhibited stiffness values of 802 [147] N/m

and 473 [111] N/m respectively. The stiffness values of the quadriceps muscles, namely vasmed,

vaslat, and vasint, were relatively close to each other, with approximate values of 936.8 [296] N/m,

861 [489] N/m, and 745 [246] N/m respectively, in descending order. Notably, recfem displayed

the largest interquartile range (IQR) among the muscles, with a value of 922 [566], indicating
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Figure 3.17: Optimization results of muscle stiffness for individual participants.

greater variability in stiffness compared to the other muscles. The muscle stiffness values obtained

from the generic model were found to be significantly larger compared to the optimized values.

Specifically, the generic stiffness value for semimem was 2.41 KN/m, which was 90 % higher

than the corresponding optimized value. Similarly, the generic stiffness for vaslat was 2 KN/m,

indicating an increase of 137 % compared to the optimized parameter.
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Table 3.3: RMSE comparison between experimental and forward dynamics data for motion and
torque across all participants in knee and ankle trials.

RSME of Motion (◦) RSME of Torque (N.m/kg)
Ankle trial Knee Trail Ankle trial Knee Trail

P1 0.009 0.058 0.0073 0.0093
P2 0.023 0.021 0.0275 0.0009
P3 0.792 1.648 0.0053 0.0256
P4 0.020 0.087 0.0079 0.0039
P5 0.007 0.205 0.0024 0.0209
P6 0.007 0.017 0.0035 0.0010
P7 0.040 0.267 0.0104 0.0122
P8 0.010 0.058 0.0147 0.0045
P9 0.026 0.095 0.0154 0.0067

P10 0.010 0.228 0.0149 0.0370
Avg 0.095 0.268 0.0109 0.0122

The optimized parameters obtained from experimental data were implemented in the model, and a

comparison between the forward dynamic simulation and experimental data is presented in Table

3. The root mean square error (RMSE) was calculated to assess the agreement between the torque-

time curve and motion-time curve of the experimental data and the forward dynamic simulation.

The torque RMSE was normalized by the participants’ body weight, while the knee angle, having

the same range of motion for all participants, did not require normalization.

In the ankle trial, participant P3 exhibited the highest maximum error in motion, with 0.79◦, while

in the knee trial, the maximum error was 1.6◦ for the same subject. In most cases, the error for both

ankle and knee trials was below 0.04 and 0.26◦, respectively.The lowest RMSE values for the knee

trial were achieved by P2 (0.87 mN.m/Kg), while for the ankle trial, the lowest RMSE value was

obtained by P5 (2.4 mN.m/Kg). On the other hand, the highest RMSE value for the ankle trial

was observed in P3 (27.5 mN.m/Kg), and for the knee trial, P10 had the highest RMSE value (37

mN.m/Kg). In the ankle trials the average RMSE of motion and torque among the all participants

was 0.094◦ and 11 mN.m/Kg while in knee trials these values were 0.56◦ and 12 mN.m/Kg.
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Discussion

The results obtained from the three different methods provide valuable insights into the estimation

of PMP and torque measurements. These findings shed light on the performance of the optimiza-

tion algorithm and the accuracy of the musculotendon model in various experimental settings.

The result of fully simulated method indicated that the optimization procedure was successful in

estimating the TSL and MS for most muscles, as the estimation errors remained below 3.5 % for

TSL and MS Estimation across all conditions. Furthermore, we observed that the MS and TSL

error for knee extensor muscles decreased as the hip angle decreased, while the flexor muscles

exhibited lower error when the hip angle was 90◦. Similarly, the TS estimation error of calf muscles

decreased as the knee angle decreased to 0◦. This suggests that the optimization error is reduced for

muscles that are in a stretched position, as they have a higher contribution to generating net torque.

These findings provide valuable insights for designing different motions for joints to increase the

accuracy of optimization. Consistent with a previous study by [55], incorporating various motion

patterns, including walking and squat jumping, which involve larger muscle stretches, has the

potential to improve tendon slack length (TSL) optimization.

In simulation method the torque and motion errors were found to be correlated with errors in

estimating the optimal parameters. In general a higher error in estimating the PMP resulted in

larger errors in torque and motion. Building on this observation, a strategy was employed to select

the best optimized parameters for each participant by utilizing a cost function that incorporated

both motion and torque errors. The optimized parameter set with the lowest cost function value

among all trials was identified and chosen as the optimal solution for that participant.

The successful validation of the optimization algorithm in estimating the parameters of replica leg

that closely resembles the human leg demonstrates its reliability in determining human muscle
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parameters. It is important to note that the replica leg was only run in the Hip90 condition. In

this specific condition, the BFLH muscle was under tension at a knee angle of 0, and during knee

flexion, the VASINT muscle was under tension. However, if the hip angle was set to 45 or 0, due

to geometric restrictions of the mechanism and the limitations of the commercial spring, the BFLH

muscle would not be adequately tensioned, resulting in a reduced contribution to the net torque.

The available length of the desired stiffness was long and closely matched the distance between

the wrapping object and the insertion point, leaving limited space for stretching the BFLH muscle.

Also, differences in actuator type and joint structure between the robotic leg and the actual human

leg may introduce errors in human experiments. For example, the linear spring used in the robotic

leg experiment is a simplification of the nonlinear elastic component of passive human muscles.

Additionally, the number of springs used in the leg experiment is fewer than the knee flexors and

extensors in the human leg, resulting in fewer unknown parameters for optimization and a less

complex task. Furthermore, the human knee is more complex than the simple hinge joint used in

the robotic leg. Despite these simplifications, the leg replica was able to validate the performance

and feasibility of estimating muscle stiffness and musculotendon slack length using optimization

and experiment settings.

Achilles tendon plays in important role in energy efficient walking by utilizing energy recycling

mechanism. As stiffness information can be used to calculate the level of energy storage and

return [89], In the in-vivo we chose to estimate tendon stiffness rather than muscle. Also, this

decision was made due to the convergence issues encountered when attempting to optimize both

muscle and tendon stiffness simultaneously. The reason for this convergence problem can be at-

tributed to the available experimental data. The experimental data only provided information on

the total displacement and total force, without direct measurements of the displacement at the

muscle-tendon junction. Consequently, the determination of stiffness values became an underde-

termined problem, with an infinite number of potential solutions that could satisfy the given total
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force and displacement. To address this challenge and facilitate the optimization process, the mus-

cle stiffness values were utilized from the generic model for the calf muscles. This allowed for a

focused optimization of the tendon stiffness, simplifying the problem and promoting convergence

of the optimization algorithm. This limitation can be address by informing each muscle and tendon

length using experimental method [25].

The observation from figure 3.14 suggests that the crucial phase for torque analysis lies within the

range of 0 to 20◦ of knee flexion. The sharp drop in torque during this phase can be attributed to the

full extension of all knee flexor muscles, resulting in the maximum stretch and the generation of

substantial passive forces. Consequently, the data obtained during the early stages of knee flexion

provides rich and informative input for the estimation of PMP.

The median of the optimized tendon slack length (TSL) values for the calf muscles was found to be

lower compared to the values obtained from the generic model. Conversely, for other muscles, the

median of the optimized TSL values was higher. These findings indicate that the average Achilles

tendon length in the subject-specific model is shorter than that in the generic model. This aligns

with the findings of Falisse [55], who also reported a decrease in TSL compared to the generic

model.

Also, the optimized TSL values for the knee flexor and quadricep muscles were higher than those

of the generic model while the optimized MS were lower than those of the Rajagopal model. These

results suggest that the passive force generated by these muscles in the generic model is greater

than the subject-specific model. Specifically, the optimized stiffness for the semimem and vaslat

muscles were found to be 90 % and 137 % lower than the generic model, and their tendon slack

lengthw were higher, leading to a drastic reduction in the passive force generated by these muscles.

In contrast, the estimated the level of semiten and vasint muscle stiffness aligned with the generic

model. However, the etimated TSL for these muscles was considerably higher, leading to a reduc-
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tion in muscle fiber length and, consequently, a decrease in the passive force generated by these

muscles.

The Achilles tendon estimation results showed a 38 % increase compared to the generic model.

Notably, this value is relatively closer, with only an 8 % difference, to the findings reported in a

previous study by Muraoka [87], where a value of 390 (48) KN/m was reported. These findings

emphasize the importance of making substantial adjustments to the parameters of the Degroote

model in order to improve the accuracy of musculoskeletal modeling.

The limitation of our study is that we only utilized the results from one trial out of the nine con-

ducted (three different joint conditions repeated three times) to determine the optimized parame-

ters. However, for future studies, implementing a multi-phase optimization approach, where all

trials are included, could provide a more comprehensive estimation by exposing the muscles to

a wider range of stretched situations. This would likely lead to improved parameter estimation

across all trials. Another limitation in our study is the assumption that the Achilles tendon is a

summation of the individual tendon stiffness values of the calf muscles. To achieve a more ac-

curate estimation, future improvements could involve refining the tendon model and considering

a shared tendon for all three calf muscles. This approach may provide a closer estimation of the

Achilles tendon properties and contribute to a more realistic representation of the musculoskeletal

system.

Individuals with movement disorders, including stroke survivors [90,91] and children with cerebral

palsy [92], often exhibit altered muscle characteristics. The estimation of PMPs can play a crucial

role in modeling the walking patterns of individuals with movement disabilities [93,94].The impli-

cations of our study can be extended to evaluate PMPs in these specific populations and enhance

the effectiveness of treatment methods [95–97].
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Conclusion

In the first study we employed an optimization algorithm to develop a an easy-to-use, quantitative

method of determining AFO stiffness. Estimated AFO stiffness were compared within the opera-

tors’ trials and with theoretically calculated AFO stiffness to evaluate the accuracy of AADS tests.

The AADS test results were repeatable through multiple trials and across operators. In low stiff-

ness conditions, the AADS test had greater stiffness than actual results due to the friction of the

AFO joint. As the spring strength increased, the AFO stiffness measured by AADS test was lower

compared with actual stiffness due to the deformation of test AFO shells. The overall percent error

between the theoretical and experimental stiffness was within ± 6%. Moreover, the AADS test had

high precision among the different operators and trials. The quantitative measure of AFO stiffness

will allow for tracking patient AFO prescription as the patient’s optimal AFO stiffness changes as

their situation progresses. It can help orthotists prescribe and fabricate new AFOs for their patient.

In addition, a record of the AFO stiffness will also be beneficial in refabrication when the AFO is

damaged or requires resizing as the patient grows.

In second study, We introduce a new method that enables comprehensive and accurate passive mus-

culotendon parameters estimations using an optimal control optimization. Through a simulation-

based analysis We observed that the prediction of muscle stiffness and tendon slack length had an

error of less than 3.5%, while the error in tendon stiffness was less than 6% at a knee angle of zero.

Secondly, using a simplified model of the human leg, we achieved a maximum estimation error

of 9% for VASINT stiffness and an 8.5% error in resting position for RECTFEM. We assessed

the accuracy of the proposed approach by comparing experimental data with data generated from

forward dynamic simulations applied to subject-specific models with optimized parameters. The

average root mean square error between experimental data and simulation output was less than

0.56◦ for joint angle, and it was less than 12mN.m/Kg for torque.
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The method can help to evaluate the efficacy of the surgery methods and suggests refinements to

the treatment based on desired stiffness. It can also be used to evaluate the outcomes of other

treatments like stretch rehabilitation. Additionally, this method provides subject-specific muscle-

tendon passive parameters for musculoskeletal analysis of children with cerebral palsy or athletic.
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The link for licence is https://creativecommons.org/licenses/by/4.0/legalcode
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This is a human-readable summary of (and not a substitute for) the license.

Under the following terms:

Notices:

Creative Commons License
Deed
Attribution 4.0 International (CC BY 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format

Adapt — remix, transform, and build upon the material

for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Attribution — You must give appropriate credit, provide a link to the license, and
indicate if changes were made. You may do so in any reasonable manner, but not in
any way that suggests the licensor endorses you or your use.

No additional restrictions — You may not apply legal terms or technological
measures that legally restrict others from doing anything the license permits.

You do not have to comply with the license for elements of the material in the public
domain or where your use is permitted by an applicable exception or limitation.

No warranties are given. The license may not give you all of the permissions
necessary for your intended use. For example, other rights such as publicity, privacy,
or moral rights may limit how you use the material.

Creative Commons — Attribution 4.0 International — CC BY 4.0 https://creativecommons.org/licenses/by/4.0/
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[12] J.-L. Gennisson, T. Deffieux, E. Macé, G. Montaldo, M. Fink, and M. Tanter, “Viscoelastic

and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear

imaging,” Ultrasound in medicine & biology, vol. 36, no. 5, pp. 789–801, 2010.

[13] S. Ramezani, B. Brady, H. Kim, M. K. Carroll, and H. Choi, “A method for quantifying

stiffness of ankle-foot orthoses through motion capture and optimization algorithm,” IEEE

Access, vol. 10, pp. 58 930–58 937, 2022.

[14] D. J. Bregman, M. M. van der Krogt, V. de Groot, J. Harlaar, M. Wisse, and S. H. Collins,

“The effect of ankle foot orthosis stiffness on the energy cost of walking: a simulation study,”

Clin Biomech (Bristol, Avon), vol. 26, no. 9, pp. 955–61, 2011.

[15] B. Chen, B. Zi, Y. Zeng, L. Qin, and W.-H. Liao, “Ankle-foot orthoses for rehabilitation and

reducing metabolic cost of walking: Possibilities and challenges,” Mechatronics, vol. 53, pp.

241–250, 2018.

65



[16] T. Sumiya, Y. Suzuki, and T. Kasahara, “Stiffness control in posterior-type plastic ankle-

foot orthoses: effect of ankle trimline. part 2: Orthosis characteristics and orthosis/patient

matching,” Prosthet Orthot Int, vol. 20, no. 2, pp. 132–7, 1996.

[17] Y. L. Kerkum, A. I. Buizer, J. C. van den Noort, J. G. Becher, J. Harlaar, and M. A. Brehm,

“The effects of varying ankle foot orthosis stiffness on gait in children with spastic cerebral

palsy who walk with excessive knee flexion,” PLoS One, vol. 10, no. 11, p. e0142878, 2015.

[18] N. F. J. Waterval, F. Nollet, J. Harlaar, and M.-A. Brehm, “Modifying ankle foot orthosis

stiffness in patients with calf muscle weakness: gait responses on group and individual level,”

Journal of NeuroEngineering and Rehabilitation, vol. 16, no. 1, p. 120, 2019.

[19] S. Yamamoto, S. Miyazaki, and T. Kubota, “Quantification of the effect of the mechanical

property of ankle-foot orthoses on hemiplegic gait,” Gait & Posture, vol. 1, no. 1, pp. 27–34,

1993.

[20] K. Desloovere, G. Molenaers, L. Van Gestel, C. Huenaerts, A. Van Campenhout, B. Calle-

waert, P. Van de Walle, and J. Seyler, “How can push-off be preserved during use of an ankle

foot orthosis in children with hemiplegia? a prospective controlled study,” Gait Posture,

vol. 24, no. 2, pp. 142–51, 2006.

[21] M. A. Brehm, J. Harlaar, and M. Schwartz, “Effect of ankle-foot orthoses on walking effi-

ciency and gait in children with cerebral palsy,” J Rehabil Med, vol. 40, no. 7, pp. 529–34,

2008.

[22] I. Skaaret, H. Steen, T. Terjesen, and I. Holm, “Impact of ankle-foot orthoses on gait 1 year

after lower limb surgery in children with bilateral cerebral palsy,” Prosthet Orthot Int, vol. 43,

no. 1, pp. 12–20, 2019.

66



[23] N. S. Thompson, T. C. Taylor, K. R. McCarthy, A. P. Cosgrove, and R. J. Baker, “Effect of

a rigid ankle-foot orthosis on hamstring length in children with hemiplegia,” Dev Med Child

Neurol, vol. 44, no. 1, pp. 51–7, 2002.

[24] H. Choi, K. M. Peters, M. B. MacConnell, K. K. Ly, E. S. Eckert, and K. M. Steele, “Impact of

ankle foot orthosis stiffness on achilles tendon and gastrocnemius function during unimpaired

gait,” Journal of Biomechanics, vol. 64, pp. 145–152, 2017.

[25] H. Choi, T. A. L. Wren, and K. M. Steele, “Gastrocnemius operating length with ankle foot

orthoses in cerebral palsy,” Prosthet Orthot Int, vol. 41, no. 3, pp. 274–285, 2017.

[26] D. Adiputra, N. Nazmi, I. Bahiuddin, U. Ubaidillah, F. Imaduddin, M. A. Abdul Rahman,

S. A. Mazlan, and H. Zamzuri, “A review on the control of the mechanical properties of

ankle foot orthosis for gait assistance,” Actuators, vol. 8, no. 1, p. 10, 2019.

[27] K. Kane, P. Manns, J. Lanovaz, and K. Musselman, “Clinician perspectives and experiences

in the prescription of ankle-foot orthoses for children with cerebral palsy,” Physiotherapy

Theory and Practice, vol. 35, no. 2, pp. 148–156, 2019.

[28] E. Vasiliauskaite, A. Ielapi, M. De Beule, W. Van Paepegem, J. P. Deckers, M. Vermandel,

M. Forward, and F. Plasschaert, “A study on the efficacy of afo stiffness prescriptions,” Dis-

abil Rehabil Assist Technol, vol. 16, no. 1, pp. 27–39, 2021.

[29] D. J. Bregman, A. Rozumalski, D. Koops, V. de Groot, M. Schwartz, and J. Harlaar, “A new

method for evaluating ankle foot orthosis characteristics: Bruce,” Gait & Posture, vol. 30,

no. 2, pp. 144–9, 2009.

[30] B. R. Shuman and E. Russell Esposito, “Multiplanar stiffness of commercial carbon com-

posite ankle-foot orthoses,” Journal of Biomechanical Engineering, vol. 144, no. 1, pp. 1–8,

2021.

67



[31] A. Ielapi, E. Vasiliauskaite, M. Hendrickx, M. Forward, N. Lammens, W. Van Paepegem,

J. P. Deckers, M. Vermandel, and M. De Beule, “A novel experimental setup for evaluating

the stiffness of ankle foot orthoses,” BMC Research Notes, vol. 11, no. 1, p. 649, 2018.

[32] T. Kobayashi, A. K. L. Leung, and S. W. Hutchins, “Techniques to measure rigidity of ankle-

foot orthosis: A review,” Journal of Rehabilitation Research and Development, vol. 48, no. 5,

p. 565–576, 2011.

[33] P. Cappa, F. Patane‘, and M. M. Pierro, “A novel device to evaluate the stiffness of ankle-foot

orthosis devices,” Journal of Biomechanical Engineering, vol. 125, no. 6, pp. 913–917, 2004.
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