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Abstract

In this Ph.D. thesis, we study regular and embedded solitons and generalized and

degenerate Hopf bifurcations. These two areas of work are seperate and independent

from each other. First, variational methods are employed to generate families of both

regular and embedded solitary wave solutions for a generalized Pochhammer PDE

and a generalized microstructure PDE that are currently of great interest. The tech-

nique for obtaining the embedded solitons incorporates several recent generalizations

of the usual variational technique and is thus topical in itself. One unusual feature of

the solitary waves derived here is that we are able to obtain them in analytical form

(within the family of the trial functions). Thus, the residual is calculated, showing

the accuracy of the resulting solitary waves. Given the importance of solitary wave

solutions in wave dynamics and information propagation in nonlinear PDEs, as well

as the fact that only the parameter regimes for the existence of solitary waves had

previously been analyzed for the microstructure PDE considered here, the results

obtained here are both new and timely.
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Second, we consider generalized and degenerate Hopf bifurcations in three dif-

ferent models: i. a predator-prey model with general predator death rate and prey

birth rate terms, ii. a laser-diode system, and iii. traveling-wave solutions of two-

species predator-prey/reaction-diffusion equations with arbitrary nonlinear/reaction

terms. For specific choices of the nonlinear terms, the quasi-periodic orbit in the

post-bifurcation regime is constructed for each system using the method of multi-

ple scales, and its stability is analyzed via the corresponding normal form obtained

by reducing the system down to the center manifold. The resulting predictions for

the post-bifurcation dynamics provide an organizing framework for the variety of

possible behaviors. These predictions are verified and supplemented by numerical

simulations, including the computation of power spectra, autocorrelation functions,

and fractal dimensions as appropriate for the periodic and quasiperiodic attractors,

attractors at infinity, as well as bounded chaotic attractors obtained in various cases.

The dynamics obtained in the three systems is contrasted and explained on the basis

of the bifurcations occurring in each. For instance, while the two predator-prey mod-

els yield a variety of behaviors in the post-bifurcation regime, the laser-diode evinces

extremely stable quasiperiodic solutions over a wide range of parameters, which is

very desirable for robust operation of the system in oscillator mode.
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CHAPTER 1
INTRODUCTION

1.1 Variational Methods for Regular and Embedded Solitons

In Part II of this thesis, variational methods are employed to generate families of

both regular and embedded solitary wave solutions for a generalized Pochhammer

PDE and a generalized microstructure PDE that are of great interest. The technique

for obtaining the embedded solitons incorporates several recent generalizations of the

usual variational technique and is thus topical in itself. One unusual feature of the

solitary waves derived here is that we are able to obtain them in analytical form

(within the family of the trial functions). Thus, the residual is calculated, showing

the accuracy of the resulting solitary waves. Given the importance of solitary wave

solutions in wave dynamics and information propagation in nonlinear PDEs, as well

as the fact that only the parameter regimes for the existence of solitary waves had

previously been analyzed for the microstructure PDE considered here, the results

obtained here are both new and timely.
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1.2 Bifurcation of Limit Cycles

In the rest of the dissertation we study a seperate and independent problem. Many

physical systems exhibit self-sustaining oscillatory behavior with no external peri-

odic forcing; for example, a beating heart, a vibration in an airplane wing, or the

interacting populations of several species. This type of behavior is modeled in by

limit cycle solutions of the corresponding nonlinear dynamical systems. A limit cycle

is an isolated periodic orbit, meaning that no other periodic orbits exist sufficiently

close to it in state space. Every nearby trajectory approaches the orbit as t → ∞

or as t → −∞. Limit cycles are pervasive throughout physics, biology, chemistry

and economics, and limit cycle theory has consequently grown into a popular and

interesting field of research.

From the point of view of dynamical system theory, limit cycles are generated

through four kinds of bifurcations: multiple Hopf bifurcations from a center or focus,

separatrix cycle bifurcations from homoclinic or heteroclinic orbits, global center bi-

furcations from a periodic annulus, and limit cycle bifurcations from multiple limit

cycles. Bifurcations involving separatricies or global bifurcations are within the realm

of global bifurcation theory and are usually studied with theories such as Poincaré-

Pontrayagin-Andronov or higher-order Melnikov function analysis. Limit cycles bi-
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furcated from a focus, center, or other limit cycles are called local bifurcations and

are studied by normal form and other local bifurcation theories [1, 2].

While there have been a very large number of studies of regular Hopf bifurcations,

generalized and degenerate Hopf bifurcations are far less widely studied. Among

recent comprehensive treatments, we may list the monograph by Huseyin [3], the

thesis by Planeaux [4], and the recent review by Yu [5]. The first named is reasonably

comprehensive at the analytical end but employs the little-used generalized Harmonic

Balance asymptotic analysis technique. By contrast, [4] is a comprehensive numerical

analysis in the context of chemical reactor dynamics. Ref. [5] uses a mix of analytic

techniques, together with limited numerical simulations, to consider the dynamics

resulting from generalized and degenerate Hopf bifurcations.

In Part III of this thesis, we consider generalized and degenerate Hopf bifur-

cations comprehensively, using the established and widely-accepted multiple-scales

asymptotic technique for the analysis, as well as a variety of numerical solutions and

diagnostics. To operate on a broad platform, we consider three different models: i. a

predator-prey model with general predator death rate and prey birth rate terms, ii.

a laser-diode system, and iii. traveling-wave solutions of two-species predator-prey/

reaction-diffusion equations with arbitrary nonlinear/reaction terms.
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For specific choices of the nonlinear terms, the quasi-periodic orbit in the post-

bifurcation regime is constructed for each system with the method of multiple-scales

using the following steps. After expansions in several progressively slower time scales

are substituted into each variable and parameter, equations are separated by time

scales. Motion on each time scale can be represented by a differential operator for

each equation, and each operator is the same at each scale. These general operators

can be combined algebraically to eliminate all but one variable, giving a higher

order composite differential operator that holds information from all the general first

order differential equations for any time scale. This process creates a homogeneous

equation for the first time scale (we assume that appropriate changes of variable have

already been made to translate the system into one with a fixed point at the origin).

Sources for the other equations at slower time scales are only functions of equations

with faster time scales.

The composite operator can be solved one scale at a time. The first order (fastest

time scale) operator is homogeneous and so an ansatz can be imposed to give a

solution with the desired behavior. In our case we chose the ansatz to be a sum

of exponential functions. The same equations that we used to create the composite

operator before can now be used to find solutions for the other first order space

variables based on our chosen ansatz.
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Now that the first order operators are known, they can be plugged into the second

order equation’s source to fully determine it. If any term in the newly determined

source satisfies the homogeneous operator, then, following a standard undetermined

coefficients approach, a particular solution would involve a multiple of that term mul-

tiplied by the time variable to at least the first power. This would be unacceptable,

as it would cause an otherwise oscillating term to have an amplitude that approaches

infinity with time. The types of motion we desire need to be localized in space near

some fixed point. The elimination of these secular terms is a necessity that we use to

determine the second order normal form, which is the system of differential equations

in the coefficients of each term of the second order ansatz. This process is repeated as

many times as necessary. For our three-dimensional system, we found the required

normal form after eliminating secular terms in the second order source. For our

four-dimensional system, the normal form was found after eliminating secular terms

in the third order source.

Once the normal form is found, standard fixed point analysis allows us to find

appropriate parameter values, that when plugged into the first order ansatz, yields

the post-generalized Hopf periodic orbits. Their stability is usually analyzed with

standard phase plane analysis. However, in our two systems, the standard anal-

ysis fails since the eigenvalue of the Jacobian of the normal form at the origin is
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zero. These predictions are replaced and supplemented by numerical simulations,

including the computation of power spectra, autocorrelation functions, and fractal

dimensions as appropriate for the periodic and quasiperiodic attractors, attractors

at infinity, as well as bounded chaotic attractors obtained in various cases. The re-

sulting post-bifurcation dynamics provide an organizing framework for the variety of

possible behaviors. The dynamics obtained in the three systems is contrasted and

explained on the basis of the bifurcations occurring in each. For instance, while the

two predator-prey models yield a variety of behaviors in the post-bifurcation regime,

the laser-diode evinces extremely stable quasiperiodic solutions over a wide range of

parameters, which is very desirable for robust operation of the system in oscillator

mode.

Next, secondary bifurcations are investigated. Static bifurcations of a periodic

orbit can cause quasiperiodic behavior and a secondary Hopf bifurcation of a periodic

orbit can create a three-dimensional torus in space. Both of these scenarios may

lead to chaotic motion under further parameter variation. This work will lay out

exact regions of parameter space for which changes in second order deviations of two

particular parameters lead to each of the aforementioned system behaviors.
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1.3 Organization of the Dissertation

The remainder of this dissertation is organized as follows. In Part II (Chapters 2-3),

we use a Rayleigh-Ritz variational technique to create regular solitons in two widely

used PDEs: a generalized Pochhammer-Chree PDE and a generalized microstruc-

ture PDE. Then we extend the method in a way which incorporates several recent

generalizations of the usual variational technique to obtain analytical expressions for

embedded solitons. In part III (Chapters 4-5), we investigate the effects of second-

order parameter deviations on the dynamics of three systems whose parameters sat-

isfy conditions for the existence of a generalized Hopf bifurcation. In Chapter 4 we

examine a laser diode system, and in Chapter 5 we examine a predator-prey model

with delay terms. In Part IV (Chapter 6), we examine nonlinear dynamics resulting

from double-Hopf bifurcations in a fourth-order population model.
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Part II

VARIATIONAL METHODS FOR REGULAR AND
EMBEDDED SOLITONS
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CHAPTER 2
REGULAR AND EMBEDDED SOLITONS IN A

GENERALIZED POCHHAMMER PDE

2.1 Abstract

In this chapter, variational methods are employed to generate families of both regu-

lar and embedded solitary wave solutions for a generalized Pochhammer PDE that

of great interest. The technique for obtaining the embedded solitons incorporates

several recent generalizations of the usual variational technique and is thus topical in

itself. One unusual feature of the solitary waves derived here is that we are able to

obtain them in analytical form (within the family of the trial functions) and calculate

their residuals. Given the importance of solitary wave solutions in wave dynamics

and information propagation in nonlinear PDEs, as well as the fact that only the

parameter regimes for the existence of solitary waves had previously been analyzed

for the microstructure PDE considered here, the results obtained here are both new

and timely.
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2.2 Introduction

The propagation of longitudinal deformation waves in elastic rods is governed [6–8]

by the Generalized Pochammer-Chree Equation:

utt − uttxx − (α1u+ α2u
2 + α3u

3)xx = 0 (2.2.1)

Here, α1, α2, and α3 are dimensionless parameters, and x and t denote space and

time coordinates, respectively.

References [6–8] include derivations and applications of these equations in var-

ious fields. In addition, motivated by experimental and numerical results, there

are derivations of special families of solitary wave solutions by the extended Tanh

method [6], and other ansatzen [8]. These extend earlier solitary wave solutions given

by Bogolubsky [9] and Clarkson et al. [10] for special cases of (2.2.1). In addition, [7]

generalizes the existence results in [11] for solitary waves of (2.2.1).

An analytical method for finding regular and embedded solitons with a variational

approach was given in [12]. The method for finding regular solitary waves variation-

ally is long-standing and widely used. By contrast, that for finding the so-called

embedded solitons is of very recent vintage. The embedded solitons are embedded

both in the continuous spectrum in spectral space and in a continuum of so-called

delocalized solitary waves with oscillatory tails of exponentially small amplitude. In
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this chapter, we shall construct regular solitary waves of (2.2.1) variationally and

follow the extensions of that method in [12] to construct embedded soliton families

of (2.2.1).

Towards that end and since both types of solitary wave solutions will be traveling-

waves, we first derive the traveling-wave reduced ODE corresponding to (2.2.1).

First, we transform to the traveling-wave variable z = x − ct. The derivatives are

transformed as below.

d

dx
=

d

dz

dz

dx
=

d

dz
(2.2.2)

d

dt
=

d

dz

dz

dt
= c

d

dz
(2.2.3)

Now the PDE is an ODE:

c2uzz − c2uzzzz − (α1u+ α2u
2 + α3u

3)zz = 0 (2.2.4)

After and integrating twice, we have the following ODE (2.2.5) governing 1-D longi-

tudinal wave propagation, with parameters defined by (2.2.6). Boundary conditions

are not taken into account. The solitons constructed for this equation correspond to

homoclinic orbits.

(1− a1)u− a2u
2 − a3u

3 − u′′ = 0 (2.2.5)

ai = αi/c
2, 1 ≤ i ≤ 3 (2.2.6)
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2.3 The linear spectrum

As mentioned above, embedded solitary waves exist within a continuum of delocalized

solitary waves with oscillating tails, as opposed to the exponentially decaying tails

of regular solitary waves. This distinction may be used, together with an analysis

of the tail region, to identify the disjoint parameter regimes where each of the two

types of solitary waves may exist.

First, we perform a Taylor analysis of the tail of the potential soliton to find

parameter regions where regular or embedded solitons could exist. Regular solitary

waves have a vanishing amplitude for large |z|, and embedded solitary waves will have

oscillating tails. These two behaviors can be modeled by an exponential function

with either a negative or imaginary argument. We use the simple exponential ansatz

below.

φ = A exp(λz). (2.3.1)

This is plugged into the linearized ODE to find the behavior of the tails. Note that the

solution and its derivatives are very small in the tail for both types of solitary wave

solutions. This is true even for embedded solitary waves since the tail oscillations

have exponentially small amplitudes. Hence, the linearized ODE may be used.

(1− a1)Aeλz − λ2Aeλz = 0 (2.3.2)

13



Solveing forλ reveals the eigenvalues

λ = ±
√

1− a1. (2.3.3)

Therefore, parameter regimes with a1 < 1 correspond to regular solitary waves with

exponentially decaying tails, while parameter regimes with a1 > 1 support embedded

solitons with oscillatory tails.

2.4 Variational formulation

2.4.1 The variational approximation for regular solitons

The procedure for constructing regular solitary waves with exponentially decaying

tails is well-known. It is widely employed in many areas of applied mathematics and

goes by the name of the Rayleigh-Ritz method. In this section, we shall employ it

to construct regular solitary waves of (2.2.5).

For this purpose, we first require the corresponding Lagrangian. The Lagrangian

having equation (2.2.5) as its Euler-Lagrange equation is

(1− a1)u2/2− a2u
3/3− a3u

4/4− uzzu/2 (2.4.1)

This may be found by comparison with similar examples. It may also be found

more systematically by matching the Euler-Lagrangian equation to (2.2.5), equating

14



coefficients of corresponding terms, and integrating the resulting equations in Lie-

algebraic fashion.

The localized regular solitary wave solutions will be found with a Gaussian trial

function (2.4.2). Note that it is standard to use such Gaussian ansatzën for analytic

tractability. This is true even for simpler nonlinear PDEs where exact solutions may

be known and have the usual sech or sech2 functional forms.

φ = A exp

(
−z

2

ρ2

)
(2.4.2)

Next, substituting the trial function into the Lagrangian and integrating over all

space yields the ‘averaged Lagrangian’ or action (2.4.3):

A2
√
π

72ρ
(−9A2ρ2 + 9

√
2(2 + ρ2)− 8

√
3Aρ2a2) (2.4.3)

The next step is to optimize the trial functions by varying the action with respect to

the trial function parameters, viz. the core amplitude, A, and the core width, ρ. This

determines the optimal parameters for the trial function or solitary wave solution,

but within the particular functional form chosen for the trial function ansatz. The

resulting variational Euler-Lagrange equations, by varying A and ρ respectively, are

the system of algebraic equations:

ρ2(3
√

2a1 + A(2
√

3a2 + 3Aa3)) = 3
√

2(1 + ρ2) (2.4.4)

ρ2(18
√

2a1 + A(8
√

3a2 + 9Aa3)) = 18
√

2(−1 + ρ2) (2.4.5)
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Given their relative simplicity, and assuming a1 = 1/2, a3 = 1, a nontrivial solution

to these equations is

A =
4(10− ρ2)a2

3
√

3(ρ2 − 6)
(2.4.6)

ρ2 =
80a2

2 + 2
√

2(81− 4
√

81
√

2a2
2 + 50a4

2)

27
√

2 + 16a2
2

(2.4.7)

The optimized variational soliton for the regular solitary waves of the traveling-wave

equation (2.2.5) is given by the trial function (2.4.2) with the above A and ρ. The

following plots show the resulting regular solitary wave solution for various values of

the parameter a2. Note that the tail analysis revealed the need for a1 < 1 in regimes

with regular solitary waves.

Figure 2.1 shows the residual of the variational regular solitary waves obtained

above. We are able to find this since our variational solution for the regular solitary

waves given by (2.4.2), (2.4.6), and (2.4.7) is, unlike for most variational solutions,

an analytical one. Inserting this variational solution (2.4.2) (with (2.4.6) and (2.4.7))

into the traveling-wave ODE (2.2.5), the deviation of the left-hand side of (2.2.5)

from zero gives a direct measure of the goodness of the variational solution.

Figure 2.2 shows this left-hand side for a1 = 1/2, a3 = 1. For small values of a2,

the residual is small for all values of z. Greater values of a2 create a greater residual

for small values of z, but it approaches 0 for any particular a2 as z →∞.
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Figure 2.1: The regular soliton plotted for a1 = 1/2, a3 = 1
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Figure 2.2: Residual of the regular soliton
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2.4.2 The variational approximation for embedded solitons

In the very recent and novel variational approach to embedded solitary waves, the

tail of a delocalized soliton is modeled by (2.4.8). Our embedded solitary wave will be

embedded in a sea of such delocalized solitons. The cosine ensures an even solution,

and the arbitrary function κ(c) will, as shown below, help to ensure the integrability

of the action.

φtail = α cos(κ(c)z) (2.4.8)

Our ansatz for the embedded soliton uses a second order exponential core model plus

the above tail model.

φ = A exp

(
−z

2

ρ2

)
+ φtail (2.4.9)

Plugging this ansatz into the Lagrangian (2.4.1) and reducing the trigonometric

powers to double and triple angles yields an equation with trigonometric functions

of the double and triple angles, as well as terms linear in z. The former would make

spatial integration or averaging of the Lagrangian divergent. However, it is possible to

rigorously establish, following a procedure analogous to proofs of Whitham’s averaged

Lagrangian technique [13], that such terms may be averaged out, so we shall set them

to zero a priori.
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The terms linear in z would also cause the Lagrangian to be non-integrable.

Hence, we set κ(c) as below to force these linear terms to equal 0.

κ(c) = ±
√
−8 + 8a1 + 3α2a3

2
√

2
(2.4.10)

ai = αi/c
2 (2.4.11)

Note that this step, and the preceding step of averaging out trigonometric functions

of the higher angles are novel ones for the variational approximation of embedded

solitary waves. They are not part of the traditional Rayleigh-Ritz method used for

the construction of regular solitary waves.

Next, the rest of the Lagrangian can be integrated over all space to give the action

−A
√
π

72ρ

(
−18
√

2A(1 + ρ2) + ρ2f(a1, a2, a3)
)

(2.4.12)

f(a1, a2, a3) = 8
√

3A2a2 + 36α2a2 + 9A3a3 + 9
√

2A(2a1 + 3α2a3) (2.4.13)

ai = αi/c
2 (2.4.14)

As for the regular solitary waves, the action is now varied with respect to the core

amplitude (A), the core width (ρ), and the small amplitude (α) of the oscillating tail
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to give the following system of equations (2.4.15), (2.4.16), and (2.4.17):

ρ2
(

4
√

3A2a2 + 6α2a2 + 6A3a3 + 3
√

2A(2a1 + 3α2a3)
)

= 6
√

2A(1 + ρ2)

(2.4.15)

8
√

3A2ρ2a2 + 36α2ρ2a2 + 9A3ρ2a3 + 9
√

2A(2− 2ρ2 + ρ2(2a1 + 3α2a3)) = 0

(2.4.16)

4a2 + 3
√

2Aa3 = 0 (2.4.17)

For strictly embedded solitary waves, which occur on isolated curves in the parameter

space where continua of delocalized solitary waves exist, the amplitude of the tail is

strictly zero. Once again, this is an extra feature not encountered in the standard

variational procedure. Hence, we set α = 0 in the above equations in order to recover

such embedded solitary waves, yielding

ρ2
(

2
√

3Aa2 + 3A2a3 + 3
√

2a1

)
= 3
√

2(1 + ρ2) (2.4.18)

ρ2
(

18
√

2a1 + A(8
√

3a2 + 9Aa3)
)

= 18
√

2(ρ2 − 1) (2.4.19)

4a2 + 3
√

2Aa3 = 0 (2.4.20)
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Figure 2.3: The embedded soliton plotted for a1 = 2

If we set a1 = 2, a nontrivial analytical solution to these equations can be found.

A = −2
√

2a2

3a3

(2.4.21)

ρ2 = − 27
√

2a3

12a2
2 − 8

√
6a2

2 + 27
√

2a3

(2.4.22)

a3 =
−18a2

2 + 10
√

6a2
2

27
√

2
(2.4.23)
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As for the regular solitary waves, our embedded solitary waves (2.4.9) (with α = 0

and (2.4.21), (2.4.22), (2.4.23)) are somewhat unusual for the variational approach,

being available in analytic form. Hence, as done for the regular solitary waves, they

could be inserted into the left-hand of side of (2.2.5), which could then be plotted

for various ranges of z and a2. Then, the left-hand side of (2.2.5) again remains very

small over all ranges of z and a2, thus attesting to the goodness of the variational

embedded solitary waves constructed here.

2.5 Conclusion

We have found both regular and embedded solitons in a generalized Pochhammer

PDE using a variational method. While both types of solutions are important and

relevant in themselves, the approach used for the construction of the embedded

solitary waves is novel. It employs several extensions of the conventional Rayleigh-

Ritz variational technique, which is a widely used and most versatile technique for

the construction of regular solitary waves of important nonlinear PDEs.
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CHAPTER 3
REGULAR AND EMBEDDED SOLITONS IN A

GENERALIZED MICROSTRUCTURE PDE

3.1 Abstract

In this chapter, variational methods are employed to generate families of both regular

and embedded solitary wave solutions for a generalized microstructure PDE that is

of great interest. The technique for obtaining the embedded solitons incorporates

several recent generalizations of the usual variational technique and is thus topical in

itself. One unusual feature of the solitary waves derived here is that we are able to

obtain them in analytical form (within the family of the trial functions). Thus, the

residual is calculated, showing the accuracy of the resulting solitary waves. Given the

importance of solitary wave solutions in wave dynamics and information propagation

in nonlinear PDEs, as well as the fact that only the parameter regimes for the

existence of solitary waves had previously been analyzed for the microstructure PDE

considered here, the results obtained here are both new and timely.
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3.2 Introduction

One-dimensional wave propagation in microstructured solids is currently a topic of

great interest, given the potential applications of such materials in diverse areas. This

phenomenon has recently been modeled [14] by equation (3.2.1) with complicated

dispersive and nonlinear terms.

φtt − bφxx −
µ

2
(φ2)xx − δ(βφtt − γφxx)xx = 0 (3.2.1)

Here, b, µ, β, δ, and γ are dimensionless parameters, φ denoting the macroscopic

deformation of the material, and x and t denoting space and time coordinates, re-

spectively.

Equation (3.2.1) is derived by using the so-called Mindlin model in [15–17]. It

is a non-integrable PDE. However, necessary analytic conditions for the possible

existence of solitary waves of (3.2.1) have been derived in [17, 18]. The last-cited

papers also numerically construct asymmetric, pulse-shaped traveling-wave solutions

of (3.2.1), where the spatial and temporal coordinates occur in the combination x−ct.

More recently [14, 19, 20], pulse trains in (3.2.1) have been numerically patched

together.

An analytical method for finding regular and embedded solitons with a varia-

tional approach was given in [21]. The method for finding regular solitary waves
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variationally is long-standing and widely used. By contrast, that for finding the

so-called embedded solitons is of very recent vintage. The embedded solitons are

embedded both in the continuous spectrum in spectral space and in a continuum

of so-called delocalized solitary waves with oscillatory tails of exponentially small

amplitude. In this paper, we shall construct regular solitary waves of (3.2.1) vari-

ationally and follow the extensions of that method in [21] to construct embedded

soliton families of (3.2.1).

Towards that end and since both types of solitary wave solutions will be traveling-

waves, we first derive the traveling-wave reduced ODE corresponding to (3.2.1).

First, we transform to the traveling-wave variable z = x − ct. The derivatives are

transformed as below.

d

dx
=

d

dz

dz

dx
=

d

dz
(3.2.2)

d

dt
=

d

dz

dz

dt
= c

d

dz
(3.2.3)

Now the PDE is an ODE:

(c2 − b)φzz −
µ

2
(φ2)zz − δ(βc2φzz − γφzz)zz = 0 (3.2.4)

After integrating twice, the PDE becomes the following ODE (3.2.5) governing 1-

D longitudinal wave propagation, with parameters defined by (3.2.6) and (3.2.7).

Boundary conditions are not taken into account. The solitons constructed for this
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equation correspond to homoclinic orbits.

φzz − qφ−
1

2
rφ2 = 0 (3.2.5)

q =
c2 − b

δ(βc2 − γ)
(3.2.6)

r =
µ

−δ(βc2 − γ)
(3.2.7)

3.3 The linear spectrum

As mentioned above, embedded solitary waves exist within a continuum of delocalized

solitary waves with oscillating tails, as opposed to the exponentially decaying tails

of regular solitary waves. This distinction may be used, together with an analysis

of the tail region, to identify the disjoint parameter regimes where each of the two

types of solitary waves may exist.

First, we perform a Taylor analysis of the tail of the potential soliton to find

parameter regions where regular or embedded solitons could exist. Regular solitary

waves have a vanishing amplitude for large |z|, and embedded solitary waves will have

oscillating tails. These two behaviors can be modeled by an exponential function with

either a negative or imaginary argument. We use the simple exponential ansatz

φ = A exp(λz). (3.3.1)
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This is plugged into the linearized ODE to find the behavior of the tails. Note that the

solution and its derivatives are very small in the tail for both types of solitary wave

solutions. This is true even for embedded solitary waves since the tail oscillations

have exponentially small amplitudes. Hence, the linearized ODE may be used.

λ2Aeλz − qAeλz = 0 (3.3.2)

Solving for λ reveals the eigenvalues

λ = ±√q. (3.3.3)

Therefore, parameter regimes with q > 0 correspond to regular solitary waves with

exponentially decaying tails, while parameter regimes with q < 0 support embedded

solitons with oscillatory tails.

3.4 Variational formulation

3.4.1 The variational approximation for regular solitons

The procedure for constructing regular solitary waves with exponentially decaying

tails is well-known. It is widely employed in many areas of applied mathematics and

goes by the name of the Rayleigh-Ritz method. In this section, we shall employ it

to construct regular solitary waves of (3.2.5).
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For this purpose, we first require the corresponding Lagrangian. The Lagrangian

having equation (3.2.5) as its Euler-Lagrange equation is

L = −q
2
φ2 − r

6
φ3 +

1

2
φφzz. (3.4.1)

This may be found by comparison with similar examples. It may also be found

more systematically by matching the Euler-Lagrangian equation to (3.2.5), equating

coefficients of corresponding terms, and integrating the resulting equations in Lie-

algebraic fashion.

The localized regular solitary wave solutions will be found with a Gaussian trial

function (3.4.2). Note that it is standard to use such Gaussian ansatzën for analytic

tractability. This is true even for simpler nonlinear PDEs where exact solutions may

be known and have the usual sech or sech2 functional forms.

φ = A exp

(
−z

2

ρ2

)
(3.4.2)

Next, substituting the trial function into the Lagrangian and integrating over all

space yields the ‘averaged Lagrangian’ or action (3.4.3):

−A
2

2

√
π

2

(
1

ρ
+ qρ

)
− A3

6

√
π

3
rρ (3.4.3)

The next step is to optimize the trial function by varying the action with respect to

the trial function parameters, viz. the core amplitude, A, and the core width, ρ. This
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Figure 6.1: Bifurcation lines of system C

Figure 6.2: A stable fixed point exists in the region between the first two bifurcation
lines L1 and L2.
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Figure 6.3: A stable periodic orbit is created during the first Hopf bifurcation.

Figure 6.4: A stable periodic orbit is created during the first Hopf bifurcation.

Figure 6.5: A stable quasi-periodic orbit is created during the first Hopf bifurcation.
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Figure 6.6: The power spectrum for the stable quasiperiodic orbit shows two clear
peaks indicating that power is being concentrated in these distinct frequencies.

Figure 6.7: The solution in the region after L4 is unstable.
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and the quasi-periodic orbit is now unstable. Trajectories fly to infinity soon after

the interesting behavior shown in Figure 6.8.

6.6 Conclusion

We have comprehensively analyzed the wavetrain dynamics resulting from Hopf and

double-Hopf bifurcations in two-reactant reaction-diffusion (or two-species predator-

prey) systems with general nonlinearities. For general functional forms of the non-

linear prey birthrate/prey deathrate or reaction terms, regular/double-Hopf bifurca-

tions are shown to occur at various critical values of the traveling wave speed. The

post-bifurcation dynamics is investigated for three different functional forms of the

nonlinearities. The normal forms near the double Hopf points have been derived us-

ing the method of multiple scales. The post bifurcation dynamics resulting from the

normal form include stable limit cycles and two-period tori corresponding to periodic

and quasiperiodic wave trains. In principle, subcritical Hopf bifurcations may yield

more complex behavior, although none has been observed. The diverse behaviors

predicted from the normal forms in various parameter regimes have been validated

using numerical simulations and diagnostics. In general, the dynamics changes be-

tween analytically predicted regions of phase space separated by stability boundaries

derived from the the normal form.
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6.7 Appendix A

For systems A-C, the source terms are

S1,1 =S1,2 = S1,3 = S1,4 = 0 (6.7.1)

S2,1 =−D1N1 (6.7.2)

S2,2 =
F0G0α2

D1αβ
− G2

0z2θ

D1z2β2
− G2

0α2θ

D1zαβ2
+

G2
0θ2

D1zβ2
+

θ

D1z
N2

1

+
α

D1

N1P1 −D1M1 (6.7.3)

S2,3 =−D1P1 (6.7.4)

S2,4 =− F0G0β2

D2αβ
+

G2
0β2θ

D2zαβ2
− N1P1β

D2

+
D22q0v

D2
2

− q0v2

D2

−D1Q1 (6.7.5)

S3,1 =−D2N1 −D1N2 (6.7.6)

S3,2 =N1

(
F0α2

D1α
− 2G0z2θ

D1z2β
− G0α2θ

D1zαβ
+

2D1G0θ2 −D12G0θ

D2
1zβ

)
(6.7.7)

+N1

(
2N2θ + P2αz

D1z

)
+ P1

(
−D12G0α

D2
1β

+
G0α2

D1β
+
N2α

D1

)
+M1

(
D12v

D2
1

− v2

D1

)
−D2M1 −D1M2

S3,3 =−D2P1 −D1P2 (6.7.8)

S3,4 =N1

(
D22F0β

D2
2α

− F0β2

D2α
+
G0β2θ

D2zαβ
− D22G0θ

D2
2zα

− P2β

D2

)
(6.7.9)

+ P1

(
−G0β2

D2β
− N2β

D2

)
+
D22Q1v

D2
2

− Q1v2

D2

−D2Q1 −D1Q2
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For systems A-C, the composite operator is

Lc ≡
F0βNi

D2α
+
D2

0v
2βNi

D2G0α
+
D3

0vβNi

G0α
+
D1D

3
0vβNi

D2G0α
(6.7.10)

− G0θNi

D2zα
+
D1D

4
0βNi

G0α
− D0vθNi

D2zα
− D2

0θNi

zα

For systems A-C, the composite source is

Γi ≡
v2βD0Si,1
D2G0α

+
vβD2

0Si,1
G0α

+
D1vβD

2
0Si,1

D2G0α
+
D1vβD0Si,2
D2G0α

(6.7.11)

+
D1βD

3
0Si,1

G0α
+
D1βD

2
0Si,2

G0α
+
vSi,3
D2

+D0Si,3 + Si,4
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Figure 6.8: The stable quasiperiodic orbit created at line L3 has become unstable
after the secondary Hopf bifurcation at L5.
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[30] P Bergé, Y Pomeau, and C Vidal. Order within chaos. New York: Wiley, 1984.

[31] R Seydel. From equilibrium to chaos. New York: Elsevier, 1988.

124



[32] GL Baker and JP Gollub. Chaotic dynamics. Cambridge: Cambridge University

Press, 1990.

[33] HDI Abarbanel, MI Rabinovich, and MM Sushchik. Introduction to nonlinear

dynamics for physicists. Singapore: World Scientific, 1993.

[34] D Kincaid and W Cheney. Numerical analysis. Pacific Grove, CA: Brooks/Cole,

1991.

[35] AH Nayfeh and DT Mook. Nonlinear Oscillations. New York: Wiley, 1979.

[36] S. Krise and S. Roy Choudhury. Bifurcations and chaos in a predator-prey

model with delay and a laser-diode system with self-sustained pulsations. Chaos,

Solitons and Fractals, 16:59–77, 2003.

[37] J. M. Cushing. Integrodifferential Equations and Delay Models in Population

Dynamics. In Lecture Notes in Biomathematics, volume 20. Berlin: Springer-

Verlag, 1977.

[38] K. Smitalova and S. Sujan. A Mathematical Treatment of Dynamical Models in

Biological Science. Ellis Horwood, New York, 1991. And references therein.

[39] N. MacDonald. Time Lags in Biological Models. In Lecture Notes in Biomath-

ematics, volume 27. Berlin: Springer-Verlag, 1978.

125



[40] M. Farkas. Stable oscillations in a predator-prey model with time lag. J Math

Appl, 102:175–88, 1984.

[41] H.T. Davis. Introduction to Nonlinear Differential and Integral Equations.

Dover, New York, 1962.

[42] H. El-Owaidy and A. A. Ammar. Stable oscillations in a predator-prey model

with time lag. J Math Appl, 130:191–99, 1988.

[43] J. Hale. Theory of functional differential equations. Springer-Verlag, Berlin,

1977.

[44] N. MacDonald. Time delay in predator-prey models. Math. Biosciences, 28:321–

30, 1976.

[45] N. MacDonald. II. Bifurcation theory. Biosciences, 33:227–34, 1977.

[46] J. E. Marsden and M. McCracken. The Hopf Bifurcation and Its Applications.

Springer-Verlag, New York, 1976.

[47] J. D. Murray. A prepattern formation mechanism for animal coat markings. J.

Theoret. Biol., 88:161, 1981.

[48] E. Roos. Predator-Prey Models with Distributed Delay. Master’s thesis, Uni-

versity of Central Florida, Orlando, 1991.

126



[49] S. R. Choudhury. On bifurcations and chaos in predator-prey models with delay.

Chaos, Solitons and Fractals, 2:393–409, 1992.

[50] A. Turing. The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B,

237:37–72, 1952.

[51] C. W. Wardlaw. Evidence relating to the diffusion-reaction theory of morpho-

genesis. New Phytol., 54, 1955.

[52] H. G. Othmer and L. E. Scriven. Instability and dynamic pattern in cellular

networks. J. Theoret. Biol., 32:507, 1971.

[53] L. A. Segel and J. L. Jackson. Dissipative structure: an explanation and an

ecological example. J. Theoret. Biol., 37:545, 1972.

[54] A. Gierer. Generation of biological patterns and form. Prog. Biophys. Molec.

Biol., 27:1, 1981.

[55] A. Gierer and H. Meinhardt. A theory of biological pattern formation. Kyber-

netic, 12:30, 1972.

[56] H. Meinhardt. Models of biological pattern formation. Academic Press, 1982.

[57] M. I. Granero, A. Porati, and D. Zanacca. A bifurcation analysis of pattern

formation in a diffusion governed morphogenic field. J. Math. Biol., 4:21, 1977.

127



[58] J. P. Keener. Activators and inhibitors in pattern formation. Stud. Appl. Math,

59:1, 1978.

[59] L. A. Segel. Taxes in ecology and cell biology. Springer-Verlag, 1984.

[60] J. Smoler. Shock waves and reaction-diffusion equations. Springer-Verlag, Berlin,

1984.

[61] F. Rothe. Global solutions of reaction-diffusion equations. Springer-Verlag,

Berlin, 1984.

[62] P. C. Fife. Mathematical aspects of reacting and diffusing systems. Springer-

Verlag, New York, 1979.

[63] J. D. Murray. Mathematical Biology. Springer-Verlag, Berlin, 1989.

[64] M. Mimura and J. D. Murray. On a diffusive predator-prey model which exhibits

patchiness. J. The, 75:249, 1978.

[65] J. Bard. A model for generating aspects of zebra and other mammalian coat

patterns. J. Theoret. Biol., 93:363, 1981.

[66] H. C. Schaller. Neurohormones and their functions in hydra. Plenum, London,

1982.

128



[67] J. D. Murray, P.K. Maini, and R. T. Tranquillo. Mechanochemical models for

generating biological pattern and form. Phys. Reports, 59:171, 1988.

[68] S. A. Levin and L. A. Segel. Pattern generation in space. SIAM Rev., 27:45,

1985.

[69] L. Edelstein-Keshet. Mathematical models in biology. Random House, New

York, 1988.

[70] Stefan C. Mancas and S. Roy Choudhury. Periodic and chaotic traveling wave

patterns in reaction-diffusion/predator-prey models with general nonlinearities.

Far E. J. Dyn. Sys., 11:117–142, 2009.

129


