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3.4 Validation of Simulated Measurements 

 

The main goal of this evaluation process is to assess the simulation capability to generate 

realistic slice σ
0
 and Tb measurements at the top of the atmosphere using high fidelity simulated 

hurricane environmental parameters from WRF and theoretical EM radiative transfer models 

with scattering.  

 

Under rain-free conditions, where atmosphere is slightly absorptive, the observed Tb by an 

ocean-viewing, space-borne, microwave radiometer can be accurately modeled using radiative 

transfer theory. Conversely, due to the high 3-D variability of the rainy atmosphere associated 

with tropical cyclones, the details of precipitation microphysical parameters (including graupel 

and rain drop size distribution (DSD)) are difficult to characterize [45-47]. Moreover, due to the 

larger hydrometeor diameters associated with tropical rain rates, it is not possible to use the 

simple Rayleigh approximation for absorption (rain particle size >> λ), and the full Mie 

scattering theory needs to be applied.   

 

According to this, simulated remotely sensor signatures (radar reflectivity and microwave 

brightness temperatures) of hurricanes are critically dependent on the DSD and microphysical 

assumptions. This sensitivity can negatively affect the accuracy of the simulations due to 

significant uncertainty in the DSD of the convective precipitating systems that dominate tropical 

rainfall. However, it also provides an opportunity to use comparisons between satellite 

scatterometer and radiometer observations in hurricanes and forward RTM simulated radiometric 
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signatures of precipitation to understand the sensitivity of DSD and microphysical parameter 

assumptions that result in most realistic simulated hurricanes.  

 

Hence, the microphysical processes and their representation in hurricane models are of crucial 

importance for accurately simulating hurricane intensity and evolution. The accurate modeling of 

the microphysical processes becomes increasingly important when running high-resolution 

models that should properly reflect the convective processes in the hurricane eyewall. Several 

studies have addressed that in an attempt to understand how the microphysical assumptions 

affect the storm intensity, vertical structure, size and track. 

 

In this dissertation, in spite of the fact that we have a limited set of rain microphysics in the 

available WRF nature runs, we evaluated the output of the simulation by comparing the rain 

signatures between the modeled and the observed data. For that purpose, we used real scenes 

from Hurricane Isabel in 2003 where we have real data from actual hurricane passes obtained by 

SeaWinds and AMSR onboard ADEOS-II. Table 3.3 renders a list of the simulated hurricane 

scenes and their corresponding ADEOS-II revolution number used in the validation.    
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Table 3.3 List of simulated hurricane scenes 

Hurricane and scene 

ID 

Date 

(yyyy_mm_dd) 

UTC time 

(hh:mm) 

ADEOS-II revolution 

number 

Isabel1 2003_09_11 01:35 3862 

Isabel2 2003_09_11 14:01 3869 

Isabel3 2003_09_13 02:25 3891 

Isabel4 2003_09_13 14:51 3898 

Isabel5 2003_09_14 02:01 3905 

Isabel6 2003_09_15 03:16 3920 

 

A stringent limitation to the evaluation process in extreme weather events is the unavailability of 

surface truth fields. Thus, traditional methods of validating models by direct comparisons with 

real in-situ measurements that could be paired with the satellite microwave observations will not 

be optimal, and significant differences are expected in the active areas of the storm, i.e. the eye 

wall region of the hurricane. Thus, the evaluation procedure that we have followed (to validate 

the representativeness of the simulated fields) was based on qualitative statistical techniques 

rather than quantitative pixel comparisons.   

 

First, we compared the wind directional signature (Δσ
0
) of the simulated σ

0
 values with the 

corresponding signatures obtained from real measurements provided in SeaWinds L2A data 

products. The Δσ
0
 is calculated by the differences between composite slice σ

0
 observations from 

multiple azimuth looks in 25 km WVCs. Since rain effects on σ
0
 measurements tend to be 
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isotropic, they are nearly independent of azimuth and therefore cancel when taking the difference 

between forward and aft looks. Thus, the dominant feature of the Δσ
0
 obtained from multiple 

azimuth observations is caused by the wind direction change around the eye.  

 

Figure 3.13 illustrates H-pol Δσ
0
 in dB scale for two hurricane scenes (Isabel3 and Isabel4). The 

upper panels (a, and b) show the simulated Δσ
0
, and the lower panels (c, and d) show the 

SeaWinds L2A Δσ
0
. From this figure, we can see that the measured and modeled Δσ

0 
for the two 

hurricane scenes match very well. Corresponding results for V-pol Δσ
0 

are presented in 

Appendix – D.  

  



53 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.13 H-pol Wind directional signature for hurricane scenes Isabel3 (left panels) and Isabel4 (right 

panels). Upper panels [(a) and (b)] give the simulated results, and lower panels [(c) and (d)] give the 

SeaWinds measurements from ADEOS-II. 
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As will be discussed in Chapter 4, the simultaneous dual-polarized passive measurements will be 

used as part of the rain correction applied to the measured σ
0
 at the top of the atmosphere. Thus, 

having the simulated active and passive measurements to be correlated, as real observations are, 

is very crucial to the fidelity of the OVW retrieval algorithm development.  Given that, Cross-

correlations between simulated active and passive measurements hurricane signatures at the top 

of atmosphere were compared to real ADEOS-II observations as shown in Fig. 3.14. The upper 

panel shows ADEOS-II real observations, while the lower panel shows the simulated data. In all 

the sub-figures, the x-axis is the H-pol σ
0
 in dB, and the y-axis is the H-pol AMSR Tb in Kelvin 

for frequencies (10, 19, 37, and 89 GHz). Color indicates AMSR measured rain rate in the 

ADEOS-II observations plots, and WRF simulated rain rate in the simulated observations plots.   
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Figure 3.14 H-pol Cross-correlations between real ADEOS-II active and passive observations hurricane 

signatures at the top of atmosphere (upper plots) and simulated observations (lower plots). 

 

We conclude that the real and simulated hurricane observations follow similar patterns. Note that 

the variations in the in the σ
0 

and Tb are both driven by the dynamic range of wind speed and 

rain rates within the hurricane. For instance, in the 10 GHz case, high rain rates increase the Tb 

values while their attenuation effect decreases the σ
0
 values. At the other extreme, in the 89 GHz 

case, Tb’s will be depressed with high rain rates as the σ
0
 increase with wind speed (and RVBS). 

 

For quantitative evaluation, we used the Pearson product-moment correlation coefficient (r). In 

general, r is a measure of correlation that is used to identify the strength of the relationship 

between two random variables, and can be calculated as shown below:  
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 (3.3) 

 

where n is the sample size,    and    are the two quantities that we need to find the correlation 

coefficient between them, and       are their averages.  

 

Using this procedure, the calculated correlation coefficients between H-pol σ
0
 values at the top of 

the atmosphere and AMSR antenna brightness temperatures H-pol channels (6, 10, 19, 24, 37, 89 

GHz) for four hurricane scenes is given in Fig. 3.15. Red stars indicates the value of the 

correlation coefficient calculated from real SeaWinds and AMSR observations, and blue 

diamonds indicates the corresponding value calculated using the simulated data. We believe that 

the strong similarity between the different AMSR channels is a good indicator in the ability of 

the simulation to capture realistic active and passive microwave signatures.  

  



60 

 

CHAPTER 4 :  WIND RETRIEVAL ALGORITHM  
 

Over the three decades of satellite scatterometer observations (1978 - present), several 

algorithms have been developed that are capable of retrieving accurate ocean surface wind 

vectors provided that the scenes under observation are rain-free [10, 24, 48-50]. Unfortunately, 

the performance of these algorithms usually degrades significantly in the presence of 

precipitation because they do not account for rain effects on the measured signal.  

 

Moreover, for most applications, it is highly desirable to have accurate wind vector retrievals 

under all weather conditions. With this as a goal, this chapter describes the development of a new 

active/passive OVW retrieval technique that infers accurate wind vectors in extreme weather 

conditions, including very high winds (30–60 m/s) and intense rain. Being based on the 

conceptual design of the future GCOM-W2, this technique has the potential to enhance the 

usefulness of scatterometer winds in hurricanes for future NASA/NOAA scatterometer missions 

[51]. 

 

The main aspect of this new technique is the ability to correct Ku-band DFS measurements for 

rain effects before being inputted to the OVW retrieval process. The rain correction procedure 

utilizes the independent information provided by the simultaneous C-band scatterometer and 

dual polarized multi-frequency radiometer measurements from DFS and AMSR. The following 

sections describe the development of the rain correction and OVW retrieval procedures. 
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(a) 

 

(b) 

Figure 5.10 Isabel5 case for (a) east/west and (b) north/south radial cuts through the storm. Solid black line 

represents WRF wind speeds, blue solid line represents conventional Ku-band retrieved wind speeds, red 

solid line represents rain corrected Ku-band retrievals. 

 

Further, we analyze the wind speed retrieval error sensitivity to wind speed and rain rate based 

on four hurricane scenes (Isabel1, Isabel2, Isabel5, and Isabel6), and the results are presented in 

Fig. 5.11. Here the root mean squared error (RMSE) surface is shown as a function of wind 

speed (0-50 m/s) and rain rate (0-60 mm/h). The RMSE is maximized in regions of high wind 

speeds and high rain rates due to rain attenuation effects. Moreover, at low wind speeds, residual 

errors in the T-factor correction due to light rain can lead to significant errors in the retrieved 

wind speeds. 
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Figure 5.11 RMSE surface as a function of wind speed (m/s) and rain rate (mm/h) 

 

Table 5.1 summarizes the mean and standard deviation (STD) of the scalar differences between 

the retrieved wind speeds and the corresponding surface truth for different wind speed bins based 

on four hurricane scenes (Isabel1, Isabel2, Isabel5, and Isabel6). 
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Table 5.1 Wind speed comparisons for different wind speed bins 

 Conventional Ku-

band Retrievals 

(m/s) 

Corrected Ku-

band Retrievals 

(m/s) 

 

Wind speed range Mean STD Mean STD Number of points 

0-5 m/s 5.1 2.1 5 2.6 15 

5-10 m/s 1.8 2.2 2.1 2.2 94 

10-15 m/s 1.7 2 0.6 2.2 477 

15-20 m/s 0.8 1.9 0.4 1.6 2582 

20-25 m/s -0.1 3.4 0.2 2 4659 

25-30 m/s -1.7 5 0.1 2.9 2893 

30-35 m/s -4.3 5.7 -0.5 3.6 1493 

35-40 m/s -6.6 7.5 -1.5 3.9 644 

40-45 m/s -5.4 5.5 -1.7 4.9 265 

45-50 m/s -17.4 7.2 -10.3 5 129 

 

Finally, speed error statistics were evaluated with respect to the WRF truth field at the WVC 

resolution. Figure 5.12 summarizes the biases and the standard deviation of the scalar differences 

between the retrieved wind speeds and the corresponding surface truth for different wind speed 

bins. The solid red and blue lines represent the conventional Ku-band wind speed retrievals 

statistics, and the rain corrected Ku-band wind speed retrievals statistics respectively. 
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Figure 5.12 Wind speed retrieval error statistics for conventional Ku-band speed retrievals and rain 

corrected Ku-band speed retrievals. 

 

According to these results, the rain corrected Ku-band wind speed retrievals are superior in both 

the mean and the standard deviation (STD), especially for higher wind speed regions (> 20 m/s). 

5.3 Wind Direction Retrievals 

 

In this dissertation, no wind direction alias selection technique was implemented, and the closest 

alias to the WRF wind direction was chosen as the retrieved value. In other words, wind 

direction retrievals were based on the assumption that a perfect alias selection technique was 

implemented; thus, this approach results in somewhat optimistic wind direction retrieval errors. 

Existing wind alias selection techniques such as nudging and median filtering [34] may be 
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applied to yield more realistic results; however the relative comparisons between conventional 

and rain corrected retrievals are still valid. 

 

Figure 5.13, shows a wind direction comparison between two OVW retrieval algorithms and the 

corresponding WRF surface truth for four hurricane scenes (Isabel1, Isabel2, Isabel5, and 

Isabel6). Panel-a shows the conventional Ku-band retrievals, and panel-b shows the rain 

corrected Ku-band retrievals. The color scale indicates the density of points where warm colors 

indicate high density and cool colors indicate low density. 

 

 
(a) 

 
(b) 

Figure 5.13 Wind direction comparison between WRF surface truth and (a) the conventional Ku-band 

retrievals, and (b) the rain corrected Ku-band retrievals. 
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From these results, it is apparent that the rain corrected Ku-band wind direction retrievals are 

superior in both the mean and the STD. Final conclusions and summary of future work are 

presented next in Chapter 6. 
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CHAPTER 6 :  SUMMARY & CONCLUSION 
 

Accurate observations of ocean surface vector winds from spaceborne earth observing satellites 

have been proven to be extremely useful for many oceanographic and meteorological 

applications.  They provide global mapping of ocean surface winds with more uniform sampling 

and coverage than in situ observations. More importantly, in extreme weather events, spaceborne 

wind observations have been crucial to weather forecast and modeling activities, and warning 

capabilities.  

 

Experience with the currently available satellite OVW measurements and the continuous 

increase in the operational needs resulted in new operational XOVWM requirements for future 

scatterometry missions. Thus, in response to the scientific community, NASA’s JPL has 

proposed the DFS as a baseline scatterometer onboard the GCOM-W2 satellite mission planned 

by JAXA in the coming few years. 

 

6.1 Summary and Conclusion 

 

Under this dissertation, we have developed a novel OVW retrieval algorithm for the next 

generation NASA/NOAA missions. It utilizes the rain corrected Ku-band scatterometer 

measurements to infer accurate winds after correcting them for rain effects using the 

simultaneous C-band active measurements and multi-frequency passive radiances.  
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Being based on the future GCOM-W2 mission, no real data were available; hence simulated data 

were used to evaluate the performance and study the feasibility of the algorithm. High-resolution 

(1.3 km) hurricane wind and precipitation fields were simulated for several scenes of Hurricane 

Isabel in 2003 using the WRF model and RTM with Mie-scattering.  

 

To evaluate the fidelity of the simulation, real Isabel hurricane passes from SeaWinds and 

AMSR onboard ADEOS-II were used. The analysis of these satellite data provided confidence in 

the capability of the simulation to generate realistic active and passive measurements at the top 

of the atmosphere taking rain effects into consideration.  

 

Rain can affect scatterometer σ
0
 measurements in three ways: attenuation, rain volume 

backscatter, and splash. All of these introduce errors into the process of estimating OVW at the 

surface. Typically, in extreme weather events, where rain is very intense, the attenuation effect 

dominates leading to underestimated retrieved winds.  

 

A rain correction procedure for the Ku-band scatterometer measurements was developed under 

this dissertation that modeled the rain attenuation and rain volume backscatter as a lumped 

integrated transmissivity or “T-factor”. We used a high-fidelity simulation to produce C-band 

active measurements and dual polarized AMSR Tb’s observations for two hurricane cases. Using 

these data an empirical T-factor multilinear regression was performed. Afterwards, the corrected 

Ku-band active measurements were fed to the conventional MLE technique to retrieve wind 

speeds and directions in a 10   10 km wind vector cells.  
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To evaluate the performance of the algorithm, OVW retrievals were obtained using the corrected 

Ku-band measurements, and the wind measurement performance was compared with that of the 

conventional Ku-band measurements. Results from the developed algorithm are very 

encouraging and they demonstrate the potential to improve wind measurements in extreme wind 

events for future wind scatterometry missions such as the proposed GCOM-W2. 

 

6.2 Future Work 

 

Several avenues for future research are apparent to us. The present simulation is limited in 

possible dynamic range of rain parameters, thus the simulated observations need to be validated 

using different sets of rain micro-physics. Moreover, only two hurricane scenes were used to 

train the T-factor regression model, so having more simulated hurricane cases to train the T-

factor model will include a wider range of geophysical parameters, hence improve the robustness 

of the model.  

 

Moreover, the C-band scatterometer measurements are currently only used in the rain correction 

procedure as one of the independent variables used in the multilinear regression model used to 

estimate the T-factor. In the future, we want to exploit the sensitivity of the H-pol C-band 

scatterometer measurements in combination with the Ku-band scatterometer measurements to 
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retrieve OVW. One way of doing that is to combine these two active measurements in the MLE 

cost function.   

 

Finally, in this dissertation, we did not incorporate a wind direction alias selection technique into 

the OVW retrieval algorithm, and perfect alias selection was assumed by choosing the closest 

wind directions (aliases) to the nature run.   Several good alias selection techniques are currently 

available for conventional scatterometer OVW retrievals [53, 54], and any of them can be 

implemented in the OVW retrieval process described in the dissertation. 
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APPENDIX A.  SPACE-BORNE ACTIVE MICROWAVE WIND 

ESTIMATION HISTORY 
 

The idea of using radar to estimate ocean surface wind conditions was originated during the 

World War II (1940’s), where the interest was primarily clutter rejection in military radar 

systems. During this period, it was recognized that normalized radar cross section of the ocean 

surface (σ
0
) was related to wind velocity. Later, in 1963, Richard Moore and Willard Pierson, 

proposed that ocean wind speed could be inferred using radar remote sensing techniques by 

interpreting the magnitude of the ocean backscatter.  

 

During the 1960’s and 70’s, ocean remote sensing was actively studied within the National 

Aeronautics and Space Administration (NASA) and US Navy research communities to define the 

fundamental physics and develop the technology of microwave scatterometry for the 

measurement of ocean winds.  

 

The advent of the first spaceborne wind scatterometers, on the NASA’s SeaSat-A mission in 

1978, proved that OVW retrievals from space are possible [9]. As a follow-up mission, the 

NASA scatterometer (NSCAT) aboard the Advanced Earth Observing Satellite (ADEOS) was 

launched in 1996. Unfortunately, the ADEOS satellite, however, failed after only one-year of 

operation, which prematurely terminated the NSCAT measurements.. 

 

During the NSCAT era, the next generation scatterometer called SeaWinds was being designed. 

To fill the gap in coverage caused by the NSCAT failure, a SeaWinds instrument was flown on 
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the QuikSCAT satellite as a “quick recovery” mission in June 1999. The next SeaWinds 

instrument was launched in November 2002 aboard ADEOS-II. Both SeaWinds instruments 

provided unprecedented earth-wide coverage of ocean winds. Additional scatterometers have 

been launched by the European Space Agency (ESA) aboard the European Remote Sensing-1 

(ERS-1) and ERS-2 satellites. As a sequel instrument to ERS-1 and ERS-2, the Advanced 

Scatterometer (ASCAT), was launched in 2006 on the European Meteorological Operational 

(MetOp) satellite [55]. An illustration of satellite scatterometers from 1974 to present (2011) is 

given in Fig. A.1 and key instrument characteristics are summarized in Table A.1. 

 

ERS-1 and -2 have provided nine years of continuous wind data with daily global ocean 

coverage of 40%. Their measurements have 50- km spatial resolution but are sampled at 25 km. 

NSCAT covered 77% of global ocean at 25-km resolution while QuikSCAT covered 93% of the 

global ocean in a single day. QuikSCAT has provided over a decade of standard wind products 

with 25-km spatial resolution, but special products with 12.5-km resolution for selected regions 

have been produced. In one decade, daily wind vector coverage increases from 41%, to 77%, 

then to 93%, and spatial resolution improves from 50km, to 25 km, and to 12.5 km. 
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Figure   A.1 Spaceborne wind measuring scatterometers sponsored by NASA and ESA. 

 

 

Table   A.1 Characteristics of space-borne wind scatterometers. 
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APPENDIX B.  THE SAFFIR-SIMPSON HURRICANE WIND 

SCALE 
 

 

The Saffir-Simpson Hurricane Wind Scale (SSHS) is a 1 to 5 categorization based on the 

hurricane's intensity at the indicated time. It was originally developed by wind engineer Herb 

Saffir and meteorologist Bob Simpson, and has been an excellent tool for alerting the public 

about the possible impacts of various intensity hurricanes. The scale provides examples of the 

type of damage and impacts in the United States associated with winds of the indicated intensity. 

The determining factor in the scale is the maximum 1-minute sustained surface wind speed, 

which is the peak 1-minute wind at the standard meteorological observation height of 10 m [33 

ft] over unobstructed exposure. The SSHS is presented in Table B .1. 

 

Table   B.1 Saffir-Simpson Hurricane Scale 

Storm Class m/s mph kt km/h 

Tropical 

depression 
0-17 0-38 0-33 0-62 

Tropical storm 18-33 39-73 34-63 63-117 

1 34-43 74-95 64-82 119-153 

2 44-49 96-110 83-95 154-177 

3 50-58 111-130 96-113 178-209 

4 59-69 131-155 114-135 210-249 

5 > 70 > 156 > 135 > 250 
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APPENDIX C.  MAXIMUM LIKELIHOOD ESTIMATION 
 

Maximum likelihood (MLE) is a well-known statistical method to estimate parameters using a 

mathematical model and applying this to an empirical dataset with random errors of known 

probability distribution. The principle behind maximum likelihood estimation is to determine the 

variables that maximize the likelihood probability of the sample data. The advantages of this 

method are its robustness and its efficient method to determine the mean of the process. 

 

Consider x is a continuous random variable with PDF 

 

                      (C.1a) 

 

where           are k unknown constant parameters. For an experiment with N independent 

observations, x1, x2, …, xN. The likelihood function is defined as follows: 

 

                                            
 
     (C.1b) 

 

Assuming Gaussian distribution with identical standard deviation , the PDF of the distribution 

is given by: 
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       (C.2) 

 

where    denotes the mean value, and  is the standard deviation of the process. MLE of the 

process is compute by (C.1) and yields: 
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For convenience L is usually expressed in logarithmic domain as: 
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The MLE’s of           are determined by maximizing L (or ). Taking the partial derivatives 

of   with respect to each parameter and equates to zero yields: 

 

    

   
  

 

  
          

 

   

 (C.5a) 

    

  
   

 

 
 

 

  
         
 

   

   (C.5b) 

 

Solving (C.5a) and (C.5b) simultaneously, solutions are: 

 

    
 

 
   

 

   

 (C.6a) 

    
 

 
         
 

   

 (C.6b) 

 

This implies that by minimizing           
    will also maximizes L (or  ). 
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APPENDIX D.  V-POL TB FIELDS FOR HURRICANE ISABEL 
 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure   D.1 V-pol Tb fields on a latitude/longitude grid, for hurricane Isabel in September 2003. Right side 

panels (a, c, and e) show the original high resolution Tb fields, and the left side panels (b, d, and f) show the 

averaged Tb fields over the antenna patter  
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APPENDIX E.  V-POL WIND DIRECTIONAL SIGNATURE FOR 

HURRICANE SCENES ISABEL3 & ISABEL4 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure   E.1 V-pol Wind directional signature for hurricane scenes Isabel3 (left panels) and Isabel4 (right 

panels). Upper panels [(a) and (b)] give the simulated results, and lower panels [(c) and (d)] give the 

SeaWinds measurements from ADEOS-II. 
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