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ABSTRACT 

The Aquarius/SAC-D is an Earth Science remote sensing satellite mission to measure global Sea Surface 

Salinity (SSS) that is sponsored by the NASA and the Argentine Space Agency (CONAE). The prime 

remote sensor is the Aquarius (AQ) L-band radiometer/scatterometer, which measures the L-band emitted 

blackbody radiation (brightness temperature) from the ocean. The brightness temperature at L-band is 

proportional to the ocean salinity as well as a number of physical parameters including ocean surface 

wind speed. The salinity retrieval algorithm make corrections for all other parameters before retrieving 

salinity, and the greatest of these is the increased brightness temperature due to roughness caused by 

surface wind speed. This thesis presents an independent approach for the AQ roughness correction, which 

is derived using simultaneous measurements from the CONAE Microwave Radiometer (MWR).  

 

When the wind blows over the ocean’s surface, the brightness temperature is increased because of the 

ocean wave surface roughness. The MWR provides a semi-empirical approach by measuring the excess 

ocean emissivity at 36.5 GHz and then applying radiative transfer theory (improved ocean surface 

emissivity model) to translate this to the AQ 1.4 GHz frequency (L-band). The theoretical basis of the 

MWR algorithm is described and empirical results are presented that demonstrate the effectiveness in 

reducing the salinity measurement error due to surface roughness. 
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CHAPTER ONE: INTRODUCTION 

Sea surface salinity (SSS), defined as the concentration of dissolved salt in water, is an important 

geophysical parameter in the study of the Earth’s climate change. Global salinity measurements from 

space can help geophysicists to unravel the ambiguity pertaining two major components of the earth’s 

climate system: hydrological (water) cycle and ocean circulation. The measurement of salinity is a 

“tracer” can give an indicator of how the natural reciprocation of water between the ocean, atmosphere 

and sea ice influences the ocean circulation and therefore the climate [1]. 

Earth is the “Ocean Planet” therefore the ocean is the dominant player in the Earth’s water cycle between 

ocean, atmosphere, and land. Salinity varies spatially and temporally, and SSS can be essential to 

understanding the ocean’s eminent role in the Earth’s water cycle, for which “approximately 86 percent of 

global evaporation and 78 percent of global precipitation occur over ocean”. By measuring salinity 

changes caused by ice melting, precipitation (rain and snow) and rivers runoff, scientists can gather 

information of how the water transfers around the Earth between land, ocean and the atmosphere [2]. 

Salinity and temperature determine the ocean density (mass/unit-volume), and variations in water density 

cause the flow of ocean currents, which are a key factor of distributing the heat between the tropics and 

the poles [1]. Because of this vital role of salinity in ocean circulation, NASA has set a science goal to 

provide global satellite salinity measurements to oceanographers and climate scientists to improve 

computer models used for forecasting climate conditions and to understand the correlation between 

salinity changes and water cycle, ocean circulation and climate. Under the NASA Earth System Science 

Pathfinder Program, the Aquarius satellite mission will provide accurate salinity maps of the entire ocean 

every seven days. These weekly maps will track any changes in salinity from month to month, season to 

season and year to year [2]. 
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1.1 Aquarius Mission Overview 

Aquarius is an earth observations satellite science mission, with the objective to provide global, long-term 

salinity measurements that will improve scientists' understanding of ocean's water cycle and climate 

changes by monitoring changes in ocean's salinity and its effect on ocean currents. 

The mission is a partnership between the United States (NASA) and the Argentina's space agency, 

Comisión Nacional de Actividades Espaciales (CONAE). The satellite was launched on June 10, 2011 

from Vandenberg Air Force Base in California, and it fly’s in a sun-synchronous polar orbit with an 

altitude of 657 kilometers and an inclination of (98°). The orbit has an exact repeat every 7 days, which is 

required for the prime instrument to completely cover the oceans. This meets the mission's requirements 

of generating salinity maps of the entire ocean once a week at a resolution of 150 kilometers [2]. An artist 

illustration of the Aquarius satellite is presented in Figure 1. 

 

Figure 1 Aquarius/SAC-D Observatory 

For the salinity measurements, the instruments are Aquarius (prime) and MicroWave Radiometer (MWR 

– secondary) that are shown in figure 1. Aquarius (AQ) is the name of the prime mission instrument, a 

passive/active (radiometer/scatterometer) L-band remote sensor developed by the NASA, Goddard Space 
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Flight Center (GSFC) and the Jet Propulsion Laboratory (JPL). MWR is a CONAE supplied instrument 

that supports AQ and is used to measure and detect rain, sea ice, and wind speed. These instruments are 

mounted on the Argentina-built spacecraft, Satélite de Aplicaciones Científicas SAC-D [3]. 

1.2 Problem Statement 

The reason that makes measuring brightness temperature at 1.41 GHz a very challenging and laborious 

task, is that at this frequency, the signal is weak and can be easily interfered by noise (unwanted signals), 

and that imposes certain number of errors to the measurements. Table 1.1 illustrates the errors induced to 

salinity measurements due to instrumental and geophysical parameters. Based on that, the key factor that 

introduces the largest error is the surface roughness. 

Table 1 Tb Error Budget 

Error source 3 Beam RMS 

Radiometer 0.15 

Antenna 0.08 

System pointing 0.05 

Roughness 0.28 

Solar 0.05 

Galactic 0.05 

Rain (Total liquid water) 0.02 

Ionosphere 0.06 

Atmosphere 0.05 

SST 0.1 

Antenna gain near land & ice 0.1 

Model function 0.08 
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Precise corrections should be done to alleviate the effect of wind speed perturbation on the measured 

brightness temperatures used to retrieves salinity, and maintain a ±0.2 psu accuracy within the very small 

range of ocean’s salinity (32-37 psu) to meet the AQ science goal [2]. Therefore, this thesis proposes 

improving AQ salinity retrievals by reducing the biases associated with Tb, by correcting for the main 

error source; oceanic winds (surface roughness). 

1.3 Objectives Of This Research 

A baseline approach in this thesis is to improve the AQ microwave radiometer salinity retrievals by 

correcting for the effect of geophysical parameters (wind speed) on measured brightness temperature. 

The L-band (1.26 GHz) radar scatterometer is going to measure simultaneous ocean backscatter in the 

footprint, which will be used to calculate the roughness that caused the brightness temperature to increase. 

Separate algorithms for H polarization and V polarization are used to generate multiple linear regressions 

to relate the roughness with the excess brightness temperature, hence, find the effect of wind speed over 

the brightness temperature measurements and eliminate it. 

This thesis provides calibration/validation of the ocean salinity measurements provided by AQ 

radiometer, and to introduce a correction algorithm of the effect of wind speed over the salinity retrieval, 

and validating this algorithm by doing comparisons between SSS and reading made by the situ buoy 

instruments. Those algorithms will remove any biases and dependence on wind speed and techniques to 

characterize these errors will be evaluated. 
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CHAPTER TWO: AQUARIUS INSTRUMENT 

2.1 Aquarius Instrument Description 

Aquarius/SAC-D satellite is a partnership mission between The United States (NASA) and Argentina 

(CONAE). It was launched on June, 10
th
 2011 from Vandenberg Air Force Base in California. 

The observatory comprises Aquarius instrument developed by NASA (main instrument) and other 

instruments provided by CONAE and its partners. A complete list of instruments and their individual 

characteristics is shown in table 2.1 [3]. 

Aquarius is a microwave radiometer/scatterometer instrument operating at L-band. The radiometer is the 

passive part if AQ and is built to map the ocean salinity, and the scatterometer is the active part built to 

provide simultaneous surface roughness correction (major source error in salinity measurements). 

Table 2 Aquarius SAC-D instruments 

Instrument Objective Description Resolution Source 

Aquarius Sea surface salinity  Integrated 1.41 GHz 

polarimetric radiometer 

 1.26 GHz scatterometer 

 390 km swath  

3 Beams 

 76 x 94 

km 

 84 x 120 

km 

 96 x 156 

km 

NASA 

 

MWR 

Microwave 

Radiometer 

Precipitation, wind 

speed, sea ice 

concentration, water 

vapor 

 23.8 GHz and 36.5 GHz 

 Dual polarized 

 390 km swath 

 40 km CONAE 
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Instrument Objective Description Resolution Source 

NIRST 

New Infrared Sensor 

Technology 

Hot spots (fires), sea 

surface temperature 

 Bands: 3.8, 10.7, and 

11.7 µm 

 Swath: 180km 

 350 m CONAE 

HSC 

High Sensitivity 

Camera 

Urban lights, fires, 

aurora 

 Bands: 450-900 µm 

 Swath: 700 km 

 200-300 m CONAE 

DCS 

Data Collection System 

Environmental data 

collection 

 Band: 401.55 MHz 

uplink 

 2 

contacts/d

ay  with 

200 

platforms 

CONAE 

ROSA 

Radio Occultation 

Sounder for 

Atmosphere 

Atmosphere 

temperature and 

humidity profiles 

 GPS occultation  Horizontal

: 300 km 

 Vertical: 

300 km 

ASI (Italy) 

Instrument Objective Description Resolution Source 

CARMEN 1 

ICARE and SODAD 

ICARE: Effect of 

cosmic radiation on 

electronics 

SODAD: Effect of 

micro-particles and 

space debris 

 ICARE: Three depleted 

Si and Si/Li detectors 

 SODAD: Four SMOS 

sensors 

 ICARE: 

256 

channels 

 SODAD: 

0.5 µ at 20 

km/s 

sensitivity  

CNES 

(France) 
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2.1.1 Radiometer 

The radiometer part of the AQ comprises a 2.5 meters offset parabolic reflector and three feeds, 

transferring the collected brightness temperature to three separate Dicke radiometers through three 

waveguides [5]. 

The three feed horns image in pushbroom fashion, pointed roughly perpendicular to the spacecraft’s flight 

direction, facing the night side of the orbit away from the sun – to avoid solar contamination – [3]. The 

inner and the outer beams point slightly forward, while the middle beams points slightly afterward [6]. 

Figure 2 illustrates the SAC-D and the AQ beams.  

The three beams point at incidence angles 28.7ᵒ, 37.8ᵒ and 45.6ᵒ for the inner, middle and outer beams 

respectively. And those beams create three instantaneous fields of view (IFOV’s) at the intersection with 

the Earth’s surface with a resolution of 79x94 km for inner beam, 84x120 km for middle beam and 

96x156 km for outer beam [6]. 

The three beams together, map a swath of 390 km with spatial resolution of 150 km to allow a repetition 

of 7 days exactly, which is significant for salinity monthly averaging [7]. 

An additional polarimetric operation is included (third stoke measurement) to help correcting for the 

Faraday angle rotation [6]. Furthermore, a tight thermal control is embedded to achieve the stability 

required for the averaging [3]. 

The radiometer was designed to provide global salinity maps on monthly basis, with an accuracy of 0.2 

psu. 
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Figure 2 SAC-D with AQ Beams 

2.1.2 Scatterometer 

The AQ scatterometer is an active sensor (Radar) operating at L-band frequency (1.26 GHz). Its purpose 

is to estimate sea surface roughness that can perturb the radiometer signal by several degrees. Those 

estimations are potential corrections for the wind speed effect on measured brightness temperatures that 

will be later used to retrieve salinity [8], where the windy conditions correspond to stronger backscatter 

signal received by the scatterometer. 

Although AQ has three separate radiometers, it has one scatterometer which circulates among the three 

feeds and both polarizations. Both radiometer and scatterometer will monitor the same pixel at the same 

instant of time. The scatterometer will create three IFOV’s that share the same incidence angle and 



9 

 

boresight location with the radiometer IFOV’s, and cover a swath of 370km (smaller than radiometer). 

Figure 3 shows the radiometer 3dB footprint (solid lines) and the scatterometer 3dB footprint (dashed 

lines) [7]. 

AQ scatterometter transmits a 1 ms (1 millisecond) pulse with a 100 Hz pulse repetition frequency (PRF), 

which results in 10 ms between the pulses [6]. 

 

Figure 3 AQ Radiometer and Scatterometer 3db Footprints 

2.2 Aquarius Measurements 

Aquarius/SAC-D observatory will provide the scientists with measurements pertaining salinity, ocean 

wind speed, rain, sea ice, sea and land surface temperature, soil moisture, high temperature events (e.g. 

fires and volcanic eruptions), night time light sources, atmospheric temperature and humidity and 
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information about space environment. But the primary goal of this mission is measuring sea surface 

salinity, which is retrieved from brightness temperatures measure by AQ instrument.  

The process starts with measuring the surface thermal emission and then using this signal to find the 

brightness temperature (in kelvin). Later, those brightness temperatures will be used to retrieve salinity, in 

which the ocean water emission is sensitive to salinity at this frequency (L-band) [4]. 

When a signal propagates through the atmosphere, a combination of atmospheric and space emissions 

contribute to attenuate and distort the signal, and those emissions must be taken into account in order to 

maintain the accuracy needed for salinity measurements. Those emissions include upwelling atmospheric 

emissions, reflected downwelling atmospheric emissions and space emissions [9]. 

Atmospheric emissions are initiated by the gas content of the atmosphere, clouds, water vapor, cloud 

liquid water and wind speed (surface roughness). Some of these emissions propagate upward causing 

upwelling signal and some of them propagate downward causing the downwelling signal that gets 

reflected back off the ocean’s surface. On the other hand, the space contribution includes cosmic 

background radiation, galactic, solar and lunar direct and reflected radiation [9].  

The propagation path also includes the ionosphere, where the earth’s magnetic field causes the 

polarization of the propagating signal to rotate [10]. And that can be a problematic issue, since emissivity 

depends on polarization. Figure 4 illustrates the noise signals affecting the original signal (Black). 
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Figure 4 Signals Received by AQ 

 

Errors occurred from the above sources cause attenuations and distortions to be added to the measured 

signal. AQ measured antenna temperature is filtered to remove those errors separately. A conventional 

radiative transfer model is used to speculate the attenuations and emissions caused by the atmosphere 

[11]. The galactic and cosmic backgrounds can be modeled, and those models can be used to characterize 

their contribution in the measured brightness temperature [12]. Solar radiations are minimized by keeping 

the Aquarius/SAC-D observatory in a nearly polar, sun-synchronous orbit (equatorial crossings occur at 

6:00 am and 6:00 pm) and pointing the beams toward the night side of the orbit. But despite that, solar 

and lunar radiations manage to reach the radiometer through the side lobes [6]. This kind of occurrences 

can be accurately predicted and removes from the brightness temperatures. And third stokes parameters 

(correlation between vertical polarization and horizontal polarization) are measured to retrieve the 

rotation angle and solve for it [10].  
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Surface roughness caused by surface wind speed yields and increase in the brightness temperature. And 

this is the most difficult source of error to correct for, because of the difficulty of characterizing the wave 

roughened surface. 

2.2.1 Aquarius Brightness Temperatures 

Surface brightness temperature (TB) is the microwave signal caused by emissions from the land and sea 

surfaces, which propagates through the atmosphere. This signal gets attenuated and affected by external 

sources by the time it gets to the top of the atmosphere; therefore at this point this signal is called the 

brightness temperature at the top of the atmosphere (Ttoa).  

The signal experiences Faraday rotation of polarization vectors as it travels through the ionosphere (Ttoi). 

After that, direct solar and galactic signals are added to it and the new signal is picked up by the horns of 

the observatory and called apparent aperture temperature (TA) [9]. 

Transferred through the feed horns, the orthomode transducer (OMT) and Front-End transmission line 

until the input of the radiometer, this signal weakens and internal noises are added to it. At this stage the 

signal is called antenna temperature (Tant) [13]. Tant then is converted to counts as shown in figure 5 that 

shows AQ block diagram. 

 

 

Figure 5 AQ Block Diagram 

Hor Ta 

Tant 
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Each radiometer of AQ is a three states Dicke radiometer (Antenna, Dicke load, Noise diodes) to help 

calibrating and measuring the radiometer gain and offset [7]. Noise diodes, internal losses and 

temperatures are adequately calibrated and modeled, and are used to convert radiometer counts to 

measured antenna temperatures (Tant) and then to apparent temperature (TA) [13] as shown in figure 6. 

 

Figure 6 Inverse Model Block Diagram (First Step) 

 

An inverse model is dictated to reconvert TA back to TB. Figure 7 illustrates the block diagram of the 

inverse model. 

 

Tant 
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Figure 7 Inverse Model Block Diagram (second step)  

  

Using vertical polarization and horizontal polarization, the first, second and third stokes of the 

measurement vector TA,mea (apparent temperature vector) are generated. TA,mea is shown in equation (1) 

[14]: 

TA,mea = [

       

       

       

]   [

                  

                  

                      

]                                                                                        (1) 

TA,mea is divided into two components, TA measured from earth field of view (TA,earth) and TA measured 

from space field of view (TA,space) [14]. 

TA,mea =                                                                                                                                            (2) 

And those two components can be calculated as: 

TA,earth = 
 

  
 ∫  ( ) ( )        

     
 
  

  
                                                                                                 (3) 

TA,space = 
 

  
 ∫  ( )            

     
                                                                                                           (4) 
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The integration in equation (3) is over the Earth’s surface, where    is the differential surface area. While 

the integration in equation (4) is over space, where    is the differential solid angle. G is the antenna gain 

function, in which each element in it, is a function of the look direction b. For equation (3), b is the unit 

vector pointing from the antenna to   . And for equation (4), b is a unit vector in the direction 

determined by    [9].  

The term  ( ) is the rotation matrix, and   is the rotation angle which is a combination of polarization 

rotation angle and Faraday rotation angle. 

Space brightness temperature consists of cosmic background, galactic, solar and lunar components. These 

radiations reach the antenna either directly or through Earth by reflection and scattering. And those which 

are reflected and scattered back from Earth are considered within the Earth’s component of the radiation. 

TA,space = TA,sun_direct + TA,galax_direct                                                                                                                 (6) 

TA,earth = TA,earth_direct + TA,sun_refl  + TA,gal_refl + TA,sun_scat  + TA,moon_ref                                                            (7) 

 TA,sun_direct, TA,sun_refl and TA,sun_scat  are direct, reflected and scattered solar radiation respectively, 

TA,gal_direct, TA,gal_refl and TA,gal_scat  are direct and reflected galactic radiation respectively and TA,moon_ref  is 

the reflected radiation of the moon, while TA,earth_direct is the radiation coming directly from the earth [9].                                 

The external antenna temperature terms (space radiation) are directly computed by performing numerical 

integrations [9]. Figures 8 and 9 show the direct and reflected solar and galactic temperatures compared 

with the orbital angle over 4 days period for vertical and horizontal polarizations (late August). 
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Figure 8 Direct Solar and Galactic Contaminations 

 

Figure 9 Reflected Solar and Galactic Contaminations 

The remaining term of the equation is TA,earth_direct can be found by subtracting the space radiation 

contribution from the measure Ta’s (TA,mea). 
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TA,earth_direct =   TA,mea  -  TA,galax_direct  - TA,gal_refl - TA,sun_direct  -  TA,sun_refl  -  TA,sun_scat  - TA,moon_ref                   (8)   

To estimate Ttoi, a forward simulation is used [9] as shown in equation (9): 

Ttoi = A.TA,earth_dir                                                                                                                                          (9)    

Where A is antenna pattern correction (APC) matrix (3 by 3). 

Faraday rotation perturbs the polarization of the propagating electromagnetic waves and affects the 

measured brightness temperature by several kelvins. This effect needs to be alleviated to the minimum 

before those brightness temperatures are used to retrieve salinity [14]. Therefore, next step of retrieving 

the surface brightness temperature is finding Ttoa by applying the Faraday rotation correction as shown in 

equation (10) [9]: 

Ttoa =   (  ) Ttoi                                                                                                                                       (10)  

Where    is the Faraday rotation angle that can be found using the third and second stokes as shown 

below: 

   = 
 

 
     (

      

      
 )                                                                                                                                   (11) 

And 

  (  ) = [
                                      
                        
                        

]                                                                                                         (12) 

To abolish the Faraday rotation, equation (11) is substituted in the rotation matrix in equation (12) and 

then in equation (10), which will treat each of the stokes separately to speculate the first and the second 

stoke of Ttoa [16].  
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The first stoke is not radically affected by the Faraday rotation, hence, the first stoke of Ttoi and first stoke 

of Ttoa are equal. But this is not the situation for the second stoke [16]. 

Ttoa(1) = Ttoi(1)                                                                                                                                           (13) 

Ttoa(2) = √    
 ( )      

 ( )                                                                                                                     (14) 

 Afterward, the conventional polarization (V, H) are calculated [16]. 

Ttoa,V = 
    ( )     ( )

 
                                                                                                                                 (15) 

Ttoa,H = 
    ( )     ( )

 
                                                                                                                                 (16) 

Ttoa,V and Ttoa,H are the vertical and horizontal brightness temperature at the top of the atmosphere 

respectively.   

The signal at the top of the atmosphere is reliable to be used in the Radiative Transfer Model (RTM) to 

calculate the surface brightness temperature. It comprises upwelling signal, reflected downwelling signal 

reflected extraterrestrial (cosmic) signal and the surface emission signal [9], as shown in Figure 10. 
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Figure 10 RTM Signals 

Ttoa =             (   )     (   )                                                                                  (17)    

Tup is the upwelling temperature, Tdwn is the downwelling signal, Tex is the extraterrestrial back scatter 

signals (Tcosmic), Ts is the physical temperature of the sea surface,   is the surface emissivity and ( ) is the 

transmittance of the atmosphere, which is computed by using the NCEP profiles of pressure, temperature, 

humidity and liquid water. 

The Ts are taken from the NCEP daily product (Earth gridded over 0.25 degree boxes) [9], and therefore, 

the emissivity can be given as: 

   = 

          

 
 (          )

   (         )
                                                                                                                        (18) 

Surface brightness temperature measured by Aquarius can be found as: 
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TB,P =                                                                                                                                                   (19)           

The amount of ocean emission is different from H pol to V pol (~40% H pol, ~60% V pol) and is highly 

polarized, and also has incidence angle dependence. Figures 11 through 13 show Ocean’s TBV versus TBH 

at 28.7ᵒ, 37.8ᵒ and 45.6ᵒ respectively in which land and ice contaminations are filtered out. 

 

Figure 11 Beam 1 TB Comparison  
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Figure 12 Beam 2 TB Comparison 

  

Figure 13 Beam 3 TB Comparison 
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2.2.2 Aquarius Salinity Retrievals 

The ocean surface emissivity depends on surface temperature Ts, sea surface salinity SSS, Earth incidence 

angle, polarization and surface roughness (Horizontal polarization is more sensitive to surface roughness 

than Vertical polarization) which is a function of wind speed and direction [6]. 

The wind direction effect of the surface emission shall be removed before retrieving the salinity: 

T`B =       (  )   (  )    (  )    (  )                                                                                     (20) 

T`B is the surface brightness temperature with the wind direction effect removed. p1 and p2 are coefficient, 

   is the incidence angle,    is the direction of wins relative to the azimuth angle of the AQ beam look 

direction and W is the wind speed [9]. 

Vertical T`B only is used in the algorithm to retrieve salinity [6] because it is less sensitive to wind speed 

ton provides more reliable retrievals: 

SSS =         (        )                                                                                                                     (21) 

For a certain incidence angle (  ) and sea surface temperature (SST), the relation between the brightness 

temperature and the SSS is almost linear. Figures 14 through 19 illustrate the relation between TBV and 

TBV versus salinity at 28.7ᵒ, 37.8ᵒ and 45.6ᵒ respectively and at 299 K SST over a 4 days period. 
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Figure 14 Horizontal TB versus Salinity (Beam 1) 

 

Figure 15 Vertical TB versus Salinity (Beam1) 
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Figure 16 Horizontal TB versus Salinity (Beam 2) 

 

Figure 17 Vertical TB versus Salinity (Beam 2) 
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Figure 18 Horizontal TB versus Salinity (Beam 3) 

 

Figure 19 Vertical TB versus Salinity (Beam 3) 
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CHAPTER THREE: AQ DATA ANALYSIS 

3.1 Salinity Algorithm 

After correcting the measured brightness temperature for the wind direction effect, Ocean surface 

emissions depend on TS, SSS, and incidence angle and ocean roughness (wind speed only). 

TB = SST   (            )                                                                                                                  (21) 

In early stages, an emissivity model is used to find the value of the salinity at specific geophysical 

parameters (WS, SST), incidence angle and surface brightness temperature [16]. 

This algorithm can be presented as the following equation: 

SSS = ao(     ,SST) + a1(     ,SST) T`B                                                                                               (22) 

The a coefficients are functions of incidence angle and sea surface temperature are in tabular form and 

they are functions of wind speed and sea surface temperature [6]. The model is only applied to the vertical 

polarization only (physical characteristics of vertical polarizations make it more reliable in measuring 

salinity [17]) 

The algorithm will be trained by empirically estimating the a coefficients that will mitigate the error 

between the modeled salinity and the true salinity measured using the in situ buoys [17]. The algorithm 

validation requires to compute T`B over a full range of SSS, SST, and WS for a certain incidence angle. 

The salinity retrieval is very sensitive to WS. Blowing winds add an excess brightness temperature to the 

measured TB, which in turn adds an excess salinity to the retrieved. Brightness temperature changes about 

0.2K-0.3K for every 1m/s change in wind speed and that will introduce the salinity retrieval error of 1 psu 

for warm water (25ᵒC) and more than 2 psu for cold water(5ᵒC) [18], and therefore, a precise correction 

technique should be implemented to achieve an accuracy of 0.2 psu. Figures 20 to 23 show the relation 
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between the WS and TB for both vertical and horizontal polarizations respectively at 28.7ᵒ, 38.7ᵒ and 45.6ᵒ 

incidence angles over SSS= 34 psu and SST= 300 K. 

 

Figure 20 WS versus TB at 28.7ᵒ for SST=300K and SSS=34psu 
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Figure 21 WS versus TB at 37.8ᵒ for SST=300K and SSS=34psu 

 

 

Figure 22WS versus TB at 45.6ᵒ for SST=300K and SSS=34psu 

3.2 Ocean Roughness Correction 

When the wind blows over the ocean’s surface, waves from the surface roughness increase, yielding 

drastic changes in ocean surface reflectivity and therefore, the surface emission is increased [20] as shown 

in equation (23) (CFRSL emissivity model): 

 (             ) =        (          )           (  )                                                               (23) 

And therefore the modeled brightness temperature which is used to estimate the excess brightness 

temperature can be found as [18]: 

  (             ) =          (          )             (  )                                                     (24) 
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The brightness temperature at zero wind speed is called the smooth brightness temperature (TB,smooth), and 

can be determined by calculating the water emissivity using the Klein and Swift dielectric model [18]. 

The excess brightness temperature is the error induced by the wind, and for a certain SST and SSS, it’s a 

function of wind speed only. 

The main approach is to use the CFRSL model to calculate an excess brightness temperature, and then 

subtract it from the measured surface brightness temperatures to find the smooth brightness temperature 

that is used to retrieve salinity as shown on figure 23.  

 

Figure 23 Correction Algorithm 

SSSanc is the ancillary salinity derived from the HYCOM model (described in section 4.1), it is salinity 

maps generated by averaging the In-Situ measurements every 6 hours every day that give a close 

estimation of the actual salinity values of the ocean. 
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To model the excess brightness temperature, CFRSL emissivity model has been developed to relate the 

geophysical parameters (SSS, SST, WS) to surface emissivity. And this model comprises two parts: 

smooth surface emission and rough ocean surface emission [19] as shown in equation (24). 

Smooth ocean surface emission can be determined by setting the WS parameter to zero which will 

converge the excess term of the equation to zero, and therefore the excess surface emission due to wind 

speed can be estimated as: 

           =          -                                                                                                                       (25) 

Figure 23 to 28 show the relation between the wind speed and the excess brightness temperature for the 

vertical polarization at 28.7ᵒ, 37.8ᵒ and 45.6ᵒ respectively. 

 

Figure 24 WS versus Excess TbV at 27.8ᵒ 
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Figure 25 WS versus Excess TbV at 37.8ᵒ 

 

Figure 26 WS versus Excess TbV at 45.6ᵒ 

This dependent on wind speed can be modeled as: 

WS
WS

Tb
Tb

constSST

meas
rough 








                                                                                                          (26) 
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 Tbrough is the excess brightness temperature due to wind speed, 
       

   
 is the rate of change in brightness 

temperature due to wind speed and  WS is the wind speed range (0 – 20 m/s). Table 3 shows the rate of 

change for each of the polarizations for the three incidence angle. 

Table 3 TB Rate of Change Due to Wind Speed  

Polarization  Incidence angle         

   
 

Vertical 28.7ᵒ 0.27091 

Vertical 37.8ᵒ 0.25911 

Vertical 45.6ᵒ 0.24605 

 

Since the brightness temperature comprises two parts the measured salinity will have two parts as well, 

salinity due to smooth ocean surface and salinity due to rough Ocean surface [18]: 

SSS = SSS_smooth + ∆ SSS                                                                                                                                                                     (27) 

Equation (25) provides a very accurate estimate of the excess brightness temperature using the modeled 

brightness temperatures, that is used to calculate the smooth surface brightness temperature from the 

Aquarius measured brightness temperatures 

                                                                                                                                        (28) 

After correcting for the wind speed effect, smooth salinity retrievals due to smooth brightness temperature 

can be found using equation (22): 

SSSsmooth =                                                                                                                                    (29) 

The rate of change is salinity due to changes in brightness temperature can be presented as: 
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Tb
Tb

SSS
SSS

constSST









                                                                                                                   (30) 

Table 4 shows the rate of change in salinity due to the change in excess brightness temperature: 

Table 4 SSS Rate of Change Due to Excess TB  

Polarization  Incidence angle         

   
 

Vertical 28.7ᵒ 0.32795 

Vertical 37.8ᵒ 0.30529 

Vertical 45.6ᵒ 0.27688 

 

Since excess brightness temperature is directly related to wind speed changes, the excess salinity can be 

presented as: 

     = 
    

   
  

   

   
                                                                                                                           (31) 

Figures 29 to 34 show the relation between the wind speed and the excess salinity for vertical polarization 

at 28.7ᵒ, 37.8ᵒ and 45.6ᵒ respectively. 
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Figure 27 Excess Salinity Due to WS for V pol Beam 1 

 

Figure 28 Excess Salinity Due to WS for V pol Beam 2 
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Figure 29 Excess Salinity Due to WS for V pol Beam 3 

 

 

The corrected salinity (SSSsmooth) equals: 

SSSsmooth = SSSmeas -                                                                                                                              (32) 

Figure 35 shows a global 7-days salinity map, generated using the smooth surface salinity retrieved from 

the smooth surface brightness temperatures measured by Aquariu. 
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Figure 30 Global Salinity Map for 7-Day Period 
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CHAPTER FOUR: RESULTS AND VALIDATION 

4.1 The Hybrid Coordinate Ocean Mode (HYCOM) 

“HYCOM was developed by the HYCOM Consortium, which is part of the U.S Global Ocean Data 

Assimilation Experiment (GODAE)” [21]. Its main goal it to provide global maps of sea surface salinity 

averaged every 6 hours. 

The main approach is to collect data from all the world’s oceans and seas, measured by the In Situ Buoy 

(shown in figure 35) over long time period and long distances apart, to create 6 hours maps of ocean 

salinity (shown in figure 36). 

 

Figure 31 In-Situ Data Sources 
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Figure 32 Global Salinity Map Using HYCOM 

The HYCOM salinity is a smoothened salinity that shows an average of the global salinity and unable to 

detect the region with high wind speeds and high rain precipitations, but yet, it is the one of the most 

reliable model for salinity since it collects data of physical salinity from various parts of the ocean using 

different means, as shown in figure 37. 

HYCOM salinity was collocated spatially and in time with AQ orbits to provide a preliminary estimate of 

the performance of the forward model and the salinity model. 

4.2 Validation 

Aquarius provides a global salinity measurement with a resolution of 150 km, which measurements are 

continuous in time. A 7 days cycle is required for Aquarius to provide a global image of sea surface 

salinity that is comparable with the HYCOM model salinity.  
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The HYCOM was collocated with the AQ longitudes and latitudes given each orbit’s time. The difference 

between the HYCOM and AQ salinity was then found as shown in equation 32: 

                                                                                                                                  (32) 

Histograms show the distribution function of the differences shown in figure 37, per beam. 

 

Figure 33 Salinity difference Per Beam 

The differences are following a nearly perfect Gaussian distribution, which shows that the mean number 

of salinity values are less than | |   . Variations with the mean values between the beams are due to 

different incidence angles effect, and also the geometry of the beams intersecting the surface of the earth 

at three locations within the 150 Km swath. 
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Wind speed effect is eliminated from the corrected salinity retrievals, figure 38 shows the relation 

between wind speed and            . 

 

Figure 34 Salinity Differences Relation With Wind Speed 

The figure is a binned average representation of the relationship between             and the wind speed, 

averaged every 2 m/s for each beam separately. Every 2 m/s, the average             and the average WS 

is calculated and represented by a dot. And as illustrated, the majority of the points are within the 

accuracy region of 0.2 psu error budget.  

Some points are showing discrepancy, and that is related to the fact that comparing an instrument 

measurements in real time with a model of averaged data, taken at various periods of time and difference 

locations cannot be credible where rain exists, near land borders and also over areas where physical 

measurements were not taken by the In-Situ.  
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CHAPTER FIVE: CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

Sea surface salinity is a major factor for tracing the global water cycle. Geophysicists can use it to 

understand the processes of natural precipitation, evaporation, freezing and melting of ocean water and 

this was the motive for NASA to start the Aquarius mission with CONAE, which goal, is to provide 

global salinity measurements and weekly salinity maps of the entire ocean. 

The endeavor of the research is to correct the retrieved salinity for the wind speed effect, where the ocean 

waves agitated by blowing winds, will add an excess brightness temperature to the smooth ocean 

brightness temperature which will change the salinity measurements by few degrees of psu. An algorithm 

to correct for the geophysical parameters effect was proposed, calibrated and validated. 

A Radiative Transfer Model is applied and simulated to covert the measured output counts to surface 

brightness temperature. At first the count are converted to antenna temperatures TANT at the input of the 

radiometers, using pre-launch calibrated coefficients, and then a correction model is used to find the 

apparent temperatures TA. 

An inverse model simulates the direct space TB, reflected space TB and the atmospheric TB. the output of 

this model is the surface brightness temperature (including roughness). 

The CFRSL emissivity model, corrects for the wind speed excess TB vertical polarization (only Vpol is 

used to retrieve salinity) using equation (25), to calculate           that is then subtracted from the AQ 

measured brightness temperature        
  to find          

  that is used to find the smooth salinity. 
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To validate the algorithm, the output salinity is compared to the HYCOM salinity (global model). The 

comparison is done by finding the difference between the HYCOM salinity and the retrieved salinity 

(equation 32). 

The comparisons show that the mean number of points falls within the desired range of accuracy. Points 

closer to the land or over rainy regions may show discrepancies higher or lower than the       , and that 

is due to the fact of comparing a well calibrated instrument instant measurements to a model that averages 

various points over the ocean 

5.2 Future Work 

The Aquarius instrument was launched to space in June 10
th
, 2011, and still in the test and validation 

process. Any further changes on the calibration coefficients will require re-tuning of the CFRSL 

emissivity model to keep matching the AQ instrument. The excess brightness temperatures will be found 

again to generate the smooth salinity maps to compare with the HYCOM. Furthermore, a better validation 

and comparisons will need to be implemented using the raw buoy measurement data, which represent the 

physical measurement of salinity. That will require more work on collocating the AQ boresight location 

with very little and scattered amount of random points over the oceans. But yet, this will give a better 

indicating of the validity of the salinity measurements being retrieved by the AQ instrument. 

 One more important issue is the effect of other geophysical parameters on the AQ measurements, mainly 

rain. Rain rated derived from the MWR, will be used as rain flags to validate the data set by removing 

rainy pixels from the analysis, and that will ameliorate the comparisons with the buoy data. The MWR 

beams are smaller in size, and that will provide a 40 Km resolution as shown in table 2 (an average of 2-3 

beam of MWR will be comprised within one AQ beam), and that will require applying a weighted 

averaging of the MWR rain rate data within each beam of AQ.  
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