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ABSTRACT 

 
Complex networks such as the Internet, the World Wide Web (WWW), and various social 

and biological networks, are viewed as large, dynamic, random graphs, with properties 

significantly different from those of the Erdös-Rényi random graphs. In particular, properties 

such as degree distribution, network distance, transitivity and clustering coefficient of these 

networks have been empirically shown to diverge from classical random networks.  

Existence of communities is one such property inherent to these networks. A community 

may informally be defined as a locally-dense induced subgraph, of significant size, in a large 

globally-sparse graph. Recent empirical results reveal communities in networks spanning across 

different disciplines — physics, statistics, sociology, biology, and linguistics. At least two 

different questions may be posed on the community structure in large networks: (i) Given a 

network, detect or extract all (i.e., sets of nodes that constitute) communities; and (ii) Given a 

node in the network, identify the best community that the given node belongs to, if there exists 

one. Several algorithms have been proposed to solve the former problem, known as Community 

Discovery. The latter problem, known as Community Identification, has also been studied, but to 

a much smaller extent. Both these problems have been shown to be NP-complete, and a number 

of approximate algorithms have been proposed in recent years. A comprehensive taxonomy of 

the existing community detection algorithms is presented in this work.  

Global exploration of these complex networks to pull out communities (community 

discovery) is time and memory consuming. A more confined approach to mine communities in a 

given network is investigated in this research. Identifying communities does not require the 

knowledge of the entire graph. Community identification algorithms exist in the literature, but to 
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a smaller extent. The dissertation presents a thorough description and analysis of the existing 

techniques to identify communities in large networks. Also a novel heuristic for identifying the 

community to which a given seed node belongs using only its neighborhood information is 

presented. An improved definition of a community based on the average degree of the induced 

subgraph is discussed thoroughly and it is compared with the various definitions in the literature. 

Next, a faster and accurate algorithm to identify communities in complex networks based on 

maximizing the average degree is described. The divisive nature of the algorithm (as against the 

existing agglomerative methods) efficiently identifies communities in large complex networks. 

The performance of the algorithm on several synthetic and real-world complex networks has also 

been thoroughly investigated. 
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CHAPTER 1: INTRODUCTION 
 

Interaction among entities in real-world complex systems have been modeled and studied 

as networks in order to better understand their unique properties. Each node of the network 

corresponds to an individual object of the system and the edge symbolizes the interaction 

between these individual entities. The term Complex Network refers to any such network derived 

from a real-world complex system. Empirical studies show that most of the real-world networks 

such as the Internet, the World Wide Web (WWW), protein interaction networks, human 

metabolic networks, ecological networks and railroad networks are all complex networks [24, 

116]. Scientists across disciplines including sociology, biology, computer science, linguistics and 

mathematics have identified the existence of many such networks in their domain. One common 

attribute to this assortment of complex networks is their massive size, mainly due to the large 

number of interacting individuals. A decade ago, analyzing the nature of these networks was a 

tedious task with survey tools and lot of manual interpretation. Recent advancements in 

computational techniques and data gathering has aided in the discovery, modeling and analysis 

of these networks without human intervention [87].  

1.1 New science of networks 
 

The study of networks dates back to 1736, when Leonhard Euler published the 

Königsberg bridge problem and its solution. Such networks were primarily referred as graphs 

and the branch of discrete mathematics that deals with these networks is graph theory [26, 46, 

48]. The topological and structural properties such as planarity and isomorphism, representation 

of data in graphs, and the several types of graphs and trees along with their characteristics are 
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dealt with comprehensively in graph theory [46]. But, Complex networks form the class of 

graphs that exhibit non-trivial topological structures. The presence of edges in these networks is 

neither purely regular nor purely random. Viewed as large, dynamic graphs, their properties 

differ significantly from that of the classical Erdös-Rényi graphs [58]. There is no single 

accepted definition for complexity in networks [17, 32]. The dynamicity and the massive size of 

these graphs deter the application of theorems and lemma from classical graph theory. In general, 

the networks with thousands or millions of nodes and whose structure is irregular, complex and 

dynamically evolving in time are classified as complex networks [24, 41]. For example, the 

protein interaction of Yeast [84] is shown as a network (biological complex network) in Figure 1. 

Proteins are represented as nodes and their interaction is given by the edges. The network has 

1870 nodes and 2240 edges. 

 

Figure 1: Protein interaction network of Yeast.  
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The study of complex networks further goes on to help unravel their correlation to the 

actual random graphs, and exploration of the macroscopic (global) and microscopic (node level) 

properties. Despite the multitude of research on complex networks, concentrating mainly on their 

topological and statistical properties, the knowledge about these networks is still considered to be 

in its infancy. The dramatic growth of the World Wide Web (WWW) and the statistical 

similarities of the web-graph with networks in other disciplines are the primary reasons for the 

sudden surge of interest in the study of complex networks.  Hence these networks are sometimes 

referred as web-like networks [34]. The emergence of such networks has marked the beginning 

of the “new” science of networks [14, 164]. Researchers across disciplines have posted and 

answered several questions related to understanding the complex networks. The diverse nature of 

these networks, combined with their unique properties, is the main reason for the plethora of 

network related publications in the last decade. The U.S. military has appointed a separate cross-

disciplinary research group to study the significance and impact of complex networks on the 

society [3]. The value of understanding these networks both on the academic front and in the 

social context cannot be overstated. 

1.2 Community in graphs 
 

One of the most significant properties that the nodes of any complex network exhibits is 

the tendency to be associative among group of similar nodes. Subsets of nodes, within a complex 

network, that have high affinity among themselves leading to group-wise dense connections. 

They also tend to be dissociative towards the remaining set of nodes. In other words, these 

subsets of nodes reveal higher interaction as compared to the entire system. Such induced 
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subgraphs have relatively high concentration of edges among themselves indicating their 

significance in the overall network. The existence of dense subgraphs in large sparse graphs, 

provide interesting insight to how these networks evolve because of the birth and death of nodes. 

The addition of a new node in a complex network does not randomly choose an existing node to 

connect. Instead, the node that is more influential in the network has a tendency to pull the new 

node towards itself (preferential attachment [51]). For example, a new webpage created will 

have hyperlinks pointing to the most popular and relevant websites on the same subject [37]. 

Similarly a new technical publication will definitely include the most influential articles, in its 

citation list. 

 

Figure 2: Communities in a graph.  

 

In general, this phenomenon accounts for a closer bond amongst a group of nodes. The 

induced subgraphs thus obtained are termed as Communities (also called as Clusters or 

Community structures). Motifs, modules, clusters and hubs are other terminologies in the 
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literature referring to the subset of nodes closely-knit. As noted earlier, the nodes that form the 

community are tightly coupled with nodes that belong to the community (associative) and have 

fewer connections to the outside network (dissociative). Figure 2 shows an example graph with 

three communities (shaded regions).  

Problems related to community discovery in networks are multi-fold. Some of the 

actively-pursued problems pertaining to communities are: detecting the number of communities 

in a given network; identifying the strength of the community relative to the global structure; 

identifying the membership of a specific node to a community; the importance of a given node in 

the overall network and its community (node centrality). Numerous algorithms exist in the 

literature to answer these questions in full or in partiality and some problems may still remain 

unexplored.  
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CHAPTER 2: COMPLEX NETWORKS 
 

2.1 History of complex networks 
 

Sociologists initiated the concept of connectivity and interaction among individuals in a 

society, when they studied the patterns of friendship and acquaintances in a neighborhood. Their 

results and observation were based on labor-intensive surveys. The outcome of these surveys had 

to be transformed into a concise representation in order to recognize the structure of the social 

neighborhood. Karinthy, F. [85], in his short story named “Chains”, was the first to propose the 

concept of five degrees of separation. He supported his claim by showing five intermediate 

individuals (well-known to their immediate neighbors) were sufficient to connect a Nobel Prize 

winner and himself. Milgram performed a similar experiment to find out the number of 

acquaintances between two random people in the world [108].  Many such sociological 

experiments provided evidence that the links in a social network, though random, follows a non-

random mold to its organization. This stimulated interests in the science of social connections 

[102, 144, 166].  

2.2 Random graphs 
 

Emergence of networks of genes, ecological systems and the spread of epidemic diseases 

extended the concept of random association from sociology to biology. Solomonoff and 

Rapoport were the first to systematically generate a synthetic network which replicated 

biological and social networks [148]. In particular, they were interested in knowing the 
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connectivity patterns (strong or weak) in random nets of neurons and epidemics. Their work 

marked the beginning of generating random graphs.  

However, it was Erdös-Rényi’s publication on random graphs [58] that laid foundation 

for the science of modeling synthetic networks and analyzing their properties. Given a fixed 

number of nodes n and edges m (            , the Erdös-Rényi random graph (ER graph) 

construction starts with the null graph and adds an edge between two random nodes (if there is 

no edge already) one at a time. The step-by-step generation of an ER graph with n = 5 and m = 5 

is shown as an example in (a) through (f) of Figure 3.  

 

 

Figure 3: Erdös-Rényi random graph generation with n = 5 and m = 5. 
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Another popular random graph model proposed by Gilbert also has a similar technique, 

but it involves creating graphs with given n and p, where p is the probability that two given 

nodes have an edge  between them  [71]. So with n = 5 and p = 0.5 one can obtain the same 

random graph in Figure 3 with Gilbert’s technique. 

It is quite natural to include complex networks in the class of classical random graphs 

because they evolve in a random manner. But structurally, complex networks exhibit properties 

notably different from a random graph and thus require a separate branch of science investigating 

their characteristics. The differences include the dynamicity of the graph (birth and death of 

nodes), the associative nature of the nodes and non Erdös-Rényi randomness in the addition and 

removal of edges. Compiling the above properties together, a complex network maybe defined as 

a large, dynamic, random graph with non-uniform degree distribution and high clustering. 

The growth of the internet and the WWW, and the advent of online social networks such 

as Facebook, Myspace, Linkedin, etc., has triggered interest in the study of complex networks. 

The statistical similarities these networks share with other social, biological, and linguistic real-

world networks has increased stakes in models to simulate these networks, and techniques to 

understand their network properties. 

2.3 Taxonomy of complex networks 
 

Complex networks are ubiquitous and are of great interest in various disciplines - in 

graph theory, physics, statistics, sociology, biology and linguistics [49]. Due to their existence 

across several domains they tend to inherit certain properties inherent to the system they are 

modeled from. But the most interesting ones are their common characteristics and that clearly 



9 
 

demarcates their presence in a separate class of network science. In order to generalize the 

characteristics and properties of these networks, it is essential to categorize them and explore 

their features individually. The basis of classification of complex networks can be twofold: (i) 

based on their properties [10, 75] or (ii) based on their origin [49]. The properties that are 

common to most complex networks are of primary magnitude (as will be seen in the next 

section) and have been studied in greater detail by sociologists, biologists and mathematicians 

[50, 88, 118, 143]. A novel classification based on the origin of complex networks is presented 

and discussed in the following section. 

2.3.1 Natural vs. Manmade networks 
 

Complex networks can be broadly classified into natural or manmade networks based on 

their origin. As the name suggests natural networks are a result of modeling real-world complex 

systems that have entities interacting naturally. Most of the biological and social networks 

naturally occur and evolve in the real-world. So, they form the major sub-categories of the class 

of natural complex networks. Residential factions, social clubs and cultural groups are social 

networks formed naturally based on interaction among individuals. Any network that has human 

beings as nodes and depicts their interaction (sexual contact [22, 100], acting together in a movie 

[6], etc.) form a natural social network. Biological networks, which typically represent 

interaction among proteins, genes or metabolic molecules, also belong to the natural complex 

network category [39, 84, 124, 150]. Thus, within these two primary classifications, the natural 

networks fan out based on the individuals belonging to the networks. Ecological systems such as 
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the predator-prey network [153] and the network depicting the spread of epidemic diseases [57, 

91, 99] are also types of natural biological networks.  

On the other hand the information networks (e.g., the WWW, the Internet, e-mail 

network) [28, 60, 152] and the transportation networks (e.g., network of airport connections, 

road network) [138] are the result of the engineering technology. Apart from these human-

engineered networks, the manmade networks can also include the computer-generated graphs to 

replicate the features of complex networks. These graphs are referred to as synthetic complex 

network models. 

The man-made networks require more investigation and analysis because of their wide 

variety of applications. The three major types of artificial complex networks are the ones 

resulting from engineering, literature and social networks (online). Citation graphs [23] and 

word association networks [121] are the primary examples of linguistic (literature) complex 

networks. The significance of a published article with respect to its citations and peer 

publications can be inferred from a citation network [134].  

The engineering class of complex networks can further be divided into information, 

transportation and business networks. Information networks are a result of modeling the 

communication systems such as phone calls, emails and blog/tweet follows as networks. The 

Belgian mobile phone network [23], University email network [155], and UK and Stanford web 

graphs [52] are all examples of information networks.  Analyzing such networks reveal vital 

hints on the communication, social behavior and economic patterns on the individuals connected 

by them. Networks representing the flights operated between different cities, rail routes across 

the country and road transport across towns form the transportation networks [138]. Traffic 
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density and economic transits are some of the valuable information inferred from these networks. 

Network of power grids [53] and co-purchase [44] form the class of business (or financial) 

networks. One of the major beneficiaries of studying the properties of the business networks is 

ecommerce as they can enhance user preferences by better understanding their purchasing 

behavior through these networks. 

 

Figure 4: Taxonomy of complex networks based on their origin 

 

2.3.2 Online social networks 
 

One class of complex network that cannot be strictly classified under any of the above 

mentioned categories is the Social network [87]. Traditional methods to learn about the social 

links in a residential locality, or a school, or a tribe in Africa (for example) required survey tools 

and manual intervention to interpret the obtained data. These networks appear, evolve and may 

even vanish over a period of time, due to several factors such as migration, natural disasters, 
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industrial growth, etc. But their dynamic behavior takes place without any central authority 

governing them. So it is intuitive to classify them as a natural complex network. Recently, 

articles have focused on networks such as the Online Social Networks (OSNs) [98] and blog 

networks [77]. These networks are a part of the information networks and are easily accessible 

because of the transparent nature of the Web. Studying their structural properties reveals their 

interests and interaction based on addition and removal of nodes. They possess characteristics 

very similar to the naturally formed social networks. The only significant difference is that their 

interaction occurs through the Web and the Internet. Therefore we tag them under the class of 

online social networks.  

2.4 Properties of complex networks 
 

Despite randomness in their initial formation and unsystematic evolution, the complex 

networks result in a predictable aggregate. Be it the distribution of neighbors of each and every 

node or the grouping of similar entities, there is an emergence of order from chaos [3]. In recent 

times, several authors have provided brief descriptions on the traits of a complex system and 

differentiate them from other complicated systems that carry similar intricacies [15, 17, 55, 168]. 

Complex networks are indeed characterized by their unique attributes [9]. The structural and 

topological properties of complex networks are discussed mainly at two extreme levels in the 

literature: (i) microscopic - properties at node level (e.g. degree distribution, clustering 

coefficient), and (ii) macroscopic - global properties such as the average network distance 

(small-world effect). However, recent research has also focused on the mesoscopic properties 

which lie intermediate between these two, which is discussed in the following chapters. 
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2.4.1 Small-world property 
 

One of the interesting properties to observe in a given large, random graph is the network 

distance between two random nodes. The network distance, also referred as degree of separation, 

is the minimum number of intermediate nodes (shortest path) required to connect two nodes. The 

average network distance is of particular interest in case of a random graph, because it 

determines the overall graph density. The diameter of the graph (longest shortest path) has also 

been investigated in the literature [25]. Milgram’s experiment to find out the degrees of 

separation [108] marked the beginning of analyzing connectivity and interaction among 

individuals in a social network. He had requested random individuals (about 200) from Wichita, 

Kansas and Nebraska to send out similar packages, all with the same destination address - a 

doctor in Boston. The package can be sent(or passed on) from person A to person B if A knows 

B on a first name basis. Surprisingly, most of the packages reached the destination and the 

average number of intermediate hops between the origin and the destination was about six. 

Therefore, he concluded that two nodes are connected by an average of six intermediate nodes, 

now referred to as the six degrees of separation [164].  

The Web graph also revealed similar phenomenon [7, 29]. The average distance between 

any two nodes of the web graph was observed to increase only logarithmically to the size of the 

graph. Hence, the large and sparse nature of any network does not imply a weak connectivity. 

This effect is termed as the small-world property [19] and has been observed in almost all 

complex networks [8, 19, 31, 56]. 
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2.4.2 Power law degree distribution 
 

 Exploring macroscopic properties in networks with millions of nodes is tricky. Node 

level properties (microscopic) are much easier to corroborate empirically and they determine the 

robustness of a network. The number of edges incident on a vertex is called the degree of the 

node. The removal of a node with relatively higher degree would distort the topological nature of 

the network, whereas the death of an isolated node impacts the structure of the node less 

significantly. For example, in case of a social network, one or two individuals with high 

connectivity (degree) within a particular group influence the society to a greater extent. Another 

measure, that is closely associated with degree of a node is its centrality [68, 134]. The tendency 

of a node to be at the center or the quality of it being central denotes its centrality. Centrality 

determines the importance of a node in the network.  

 

 

Figure 5: Comparison between normal (left) and power law (right) distribution.  

 

Though, these measures are vital in determining the presence of a node relative to its 

neighbors, one metric that gauges the statistical characteristics of any network is the degree 

0 

0.02 

0.04 

0.06 

0.08 

0 10 20 30 40 

Fr
e

q
u

e
n

cy
 

Degree  

0 

1 

2 

3 

4 

0 20 40 60 

Lo
g 

(F
re

u
q

e
n

cy
) 

Log (degree) 



15 
 

distribution. In case of a classical random graph, every edge has equal probability of occurrence, 

thus the degree of the nodes follow a uniform distribution (Figure 5). The plot shows the uniform 

distribution shown by a random graph generated using ER random graph generator with 0.5 

probability and 50 nodes. Whereas, in a complex network the nodes attach preferentially to few 

influential nodes and this leads to a rich-get-richer phenomenon. In other words, the nodes 

exhibit a power law degree distribution (Figure 5). The Power law curve is shown for an 

instance of the Web graph (10000 nodes) given by Albert et al. [7] 

Given an undirected graph G (V, E) and a non-negative integer r,  

       
               

   
 ( 1 )  

 

i.e., P(r) is the proportion of nodes of degree r in G. The degree distribution of G follows a 

power-law, if P(r) α r 
–γ

 , where γ is the power-law coefficient [7, 88, 114]. This is also referred 

as Pareto distribution, because 20% of the nodes are highly connected to 80% of the remaining 

nodes.   

2.4.3 Clustering coefficient 
 

Power law degree distribution and small-world phenomenon are unique statistical 

properties of complex networks, but clustering of associative nodes and lower interaction (or 

dissociativity) among other nodes portrays the structural uniqueness in these networks. Subsets 

of nodes in a sparse complex network tend to connect more within their group than with nodes 

outside the set. In a social network, two people who have a friend in common are likely to 

become friends themselves. Such triangles are quantified by a metric known as clustering 
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coefficient [34, 115, 160]. This measure was first formally described as a parameter by Watts and 

Strogatz [165]. The clustering coefficient value of a node u is given by the equation 

        
                                      

           
 ( 2 )  

 

In case of nodes with degree less than two, the value is zero. The clustering coefficient of the 

overall graph is the average value of the above equation for each node in the network and is 

given by  

        
          

 
 ( 3 )  

 

Clustering coefficient is a normalized metric with its values lying between zero and one, with 

higher values denoting denser clusters. Almost all complex networks have a higher value of 

clustering coefficient (0.25 - 0.75). This is much higher when compared to that of the classical 

random graphs. A similar metric called transitivity dealing with the fraction of triangles, 

especially in small-world networks, was proposed by Barrat and Weight [18]. Transitivity of the 

graph G is given by  

       
                       

                             
 ( 4 )  

 

Table 1 summarizes these three properties and their corresponding values in case of a complex 

network and as a comparison the random network values are provided.  The value of these 

parameters for a movie-actor collaboration network [6] is shown in Table 2. 
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Table 1: Complex network properties 

 Average Distance 
Clustering 

Coefficient/Transitivity 
Degree Distribution 

Complex Networks O(log n) high ( >0.25) 
Power law  

P(r) α r
-γ

, 2 < γ < 3  

Random Network O(n) low Uniform distribution 

 

Table 2: Movie-actor network properties 

Example n m 
Average 

Distance 

Clustering 

Coefficient 

Degree 

Distribution 

Movie-actors 449,913 25,516,482 3.48 0.78 2.3 

 

 

The outcome of observing these properties and their corresponding values on a complex 

network is the evidence on the presence of cohesive subgroups. Within these sparse networks 

exist subset of nodes with higher clustering coefficient and their network distance is relatively 

smaller compared to the overall network. Each of these closely-knit groups includes one or more 

nodes that lie in the top 20% of the degree sequence, i.e. the nodes with higher degree. These 

nodes are generally referred to as hubs [4, 61] or influential nodes [76, 123] and they attract the 

nodes with not so high degree to form such dense clusters. The following section provides an 

elaborate discussion on these closely-knit subgraphs in a network, their complexity analysis [69] 

and a classification on the different techniques in the literature to explore them.  
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CHAPTER 3: COMMUNITY DETECTION 
 

Closely-knit subgraphs, naturally occurring in complex networks, have been studied and 

explored to a great extent recently. Such dense subgraphs in large sparse graphs are termed as 

Communities. Community detection is the branch of complex network science dealing with the 

characteristics, definition, extraction and identification of such close-knit nodes.  Network 

properties such as the average distance, degree distribution, clustering coefficient and transitivity 

are easier to compute despite the large nature of these networks. As mentioned in the previous 

section, these values are either node-specific or globally computable. The empirical values of 

these properties have been listed for over 700 real-world networks [120]. However, detecting 

subgraphs with certain properties in any given graph is relatively difficult because of their 

intermediate presence. The recent surge of real-world complex networks especially the social 

and biological networks has generated high interests in the algorithms to detect, extract and 

identify communities. 

3.1 History of community 
 

Community structure analysis began very early among sociologists who were interested 

in factions in local societies. They manually surveyed individuals of a society in order to find 

groups of people with similar interests. For example, Rice investigated the blocs in political 

bodies [136] and elucidated on the indices that can be used to identify and measure the strength 

of a political party in a given legislature. Weiss and Jacobson used sociometric techniques to 

study complex social systems and they analyzed the overall structure of a complex organization 

[166]. Later, the division among a group of students in a karate club was studied in detail by 
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Zachary [171]. The university-based karate club formally separated into two groups because of a 

dispute between the master and the instructor. The graph depicting this division among the 

students from Zachary’s article is popularly known as the Zachary Karate Club graph. It is the 

most cited benchmark problem for community detection algorithms [11-13, 112, 113].  

Biological networks are also prone to form such communities because of the inherent 

associative nature of the molecules and cells that they are comprised off. Clusters from 

molecular and protein interaction were shown to exist empirically [124]. Discussion on 

compartments in a predator-prey network also emerged [125]. The predator-prey structures, 

more commonly known as Food Webs, are not as large as the other biological networks [89] but 

still reveal dense subgraphs.  

3.2 Related problems 
 

Some authors refer communities in the same line as clusters. However, the term 

clustering emerges from data mining and it refers to extracting set of similar nodes from large 

datasets [79, 83]. Clustering concentrates mainly on the resemblance among the nodes using 

existing information, but communities investigate the strength of the connections between them. 

This differentiation set off a new literature dealing with community discovery algorithms., 

Procedures to uncover the closely-knit subgroups in social [67, 72], biological [72], business 

[133] and technological networks [62] evolved. Online social networks such as Facebook, 

Twitter, LinkedIn, etc. showcase this clustering property very naturally because of the active 

interaction among acquaintances, friends and friends of friends.  
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Mathematicians have been dealing with two similar problems in graph theory pertaining 

to extracting subset of nodes with significantly higher connections among them.  

(i) Graph partitioning, refers to dividing the nodes of a graph into subsets of 

equal size, such that the number of edges or the weight of the edges (in case of 

a weighted graph) that fall between them are minimized [16, 86].  

(ii) A powerful alliance is a subset of vertices such that each of them have more 

neighbors within the set to defend and defeat any attack from the neighbors 

outside the set [92]. Alliances in graphs can be of two types: (i) Given a graph 

G (V, E), a non-empty set      is a defensive alliance, if for every vertex v in 

S, v has at most one more neighbor in     than it has in S. (ii) S is an 

offensive alliance if for every         that has a neighbor in S, v has more 

neighbors in S than in    . A powerful alliance is both defensive and 

offensive [27].  

Community discovery is closely associated with these two existing problems in graph 

theory literature. They all focus on the property of the induced subgraphs. However there exist 

prominent differences between them. Extracting communities differs significantly from 

partitioning graphs because the latter divides the graph into equally sized partitions. Similarly, 

alliances concentrate on the relatively high degree of the nodes within the subset against their 

degree outside. But communities require more than just degree comparison. Finding optimal 

alliance in a graph is an NP-Complete problem [33]. Graph partitioning and community 

discovery problems are also NP-Complete [69, 142] since there is no polynomial time solution to 

verify the strength of each and every subgraph for a given graph. 
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3.3 Defining a community 
 

Informally, a community maybe defined as a locally-dense subgraph in a large globally-

sparse graph. An accepted mathematical definition for a community in graphs is yet to hit the 

literature, because it is difficult to exemplify its relatively dense nature [64]. For example, K5, 

complete graph of five nodes, is a dense graph and will certainly qualify as a community if it 

forms a subgraph of a sparse graph. But if it is part of a well-connected component consisting of 

thousands of nodes, it is not significantly large enough to be a dominant structure. Existing 

definitions of a community are conceptual and depends mainly on the topology of the underlying 

network. The relation every node shares with its neighbors, both within and outside the subgraph 

forms the essence in those definitions. Some of the definitions are also constructive, i.e., the 

result of algorithmic steps [140]. We classify the community definitions in the literature into 

three categories and discuss them briefly in this section.  

3.3.1 Diameter  
 

Earlier notion of a community focused on its equivalence to a Clique [102] . But 

expecting every member to be connected to every other member within a subgraph of a sparse 

random network is stringent. Therefore, a more relaxed definition based on the maximum 

distance between two nodes of the subset was proposed. Instead of requiring every neighbor to 

be at a distance one [clique], the subgraph diameter [46] would have an upper limit of d. The 

diameter of a graph is defined as the largest distance between two nodes in the graph. The terms 

d-clique [5], d-clan and d-club [109] are some definitions resulting from these relaxations in the 

diameter and were used to describe communities. But a subset of nodes with a maximum 
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diameter d in a graph need not be connected, since there maybe shortest paths through nodes that 

are not in the subgraph. Thus, diameter based definition of a community fails to extract the 

densely connected subset of node. 

3.3.2 Degree 
 

Distance between nodes of a subgraph cannot thoroughly determine its relative 

denseness. But defining a community based on the degree of a subset of nodes is a reasonable 

approach. Nodes with high degrees tend to attract other higher degree nodes, thus leading to 

denser structures [88]. If the internal degree of every node in the subgraph is greater than or 

equal to δ (minimum degree of the graph), then there exists a stronger tie. In other words, every 

vertex is adjacent to at least δ other vertices within the subgraph. The terms δ-plex [145] and δ-

core [146] refer to subgraphs satisfying such degree-based criteria and were referred to as 

communities. A more formal approach to defining communities was attempted by Radicchi et al. 

[129]. They defined a community as a subset of nodes whose internal degrees add up to a value 

greater than the sum of their external degrees. Later, Hu et al. [82] suggested a finer version of 

this definition, in which the external degree takes into account only those edges incident on the 

nodes in other communities. Both the definitions considered the resulting subset of vertices as a 

weak-community, because the number of internal edges will always be counted twice (because 

the sum of the degrees of a graph is twice the number of its edges), but the external edges are 

counted only once. 
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3.3.3 Alliance 
 

In order to define a community in the strong sense, comparing the degree of the entire 

subgraph against its neighborhood is not sufficient. Instead, a stronger association is required 

among nodes within the induced subgraph compared to outside.  Flake et al. [61] proposed that 

the internal degree of every vertex within a community should be greater than or equal to its 

external degree. Even though they suggested it in the context of a web graph, it was a widely 

accepted definition because such a set of vertices would form greater bond within the subset than 

outside. A narrower version of the definition was later suggested by Radicchi et al. [129] and Hu 

et al. [82]. They defined a strong community as the one in which each node has more adjacent 

nodes within the community than with the rest of the graph.  

These definitions coincide with that of alliances in graph theory as described briefly 

above. Table 3 gives a brief listing of the various definitions for a community discussed in this 

section. It is evident that a community needs to be defined in terms of the degree of the nodes. 

Especially, in the case of a large sparse graph, a dense subgraph should have nodes with higher 

average degree than those randomly present. Chapter 6 discusses in detail a novel community 

definition based on this notion. The following section discusses the most cited community 

related metric called Modularity.  
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Table 3: Existing definitions of a community 

Name Definition Reference 

Clique Every vertex is adjacent to every other vertex [Clique] [102] 

Diameter diameter of g ≤ d 
[d-clique] [5] 

[d-clan & d-club] [109]. 

Degree 

Every vertex is adjacent to at least δ other vertices in 

the subgraph [internal degree of every vertex ≥ δ ] 

[δ-core] [145]; 

[δ-plex] [146]. 

Sum of internal degrees > Sum of external degree [Weak-community] [129]. 

Sum of internal degrees > the number of edges the 

subgraph shares with other communities 
[Weak-community] [82]. 

Alliance 

Internal degree of each vertex > External degree of 

the vertex 
[Strong alliance] [129]. 

Internal degree of every vertex is greater than the 

number of edges the vertex shares with other 

communities 

[Strong alliance] [82]. 

Internal degree of each vertex ≥ External degree of 

the vertex 
[Defensive alliance] [61]. 

Set of nodes such that each of its proper subsets has 

more edges to its complement within the set than 

outside 

[LS-set] [101]. 

 

3.4 Modularity 
 

Girvan and Newman were the first to formally define a community in social and 

biological networks. They described a community to be a subset of nodes with more connections 

between them and relatively fewer edges to the outside network [72, 117]. Flake et al. defined a 

community on similar terms, but in the case of a web graph [62]. A web community is a 
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collection of web pages such that each page has more hyperlinks to pages within the community 

than outside. These abstract definitions formed the base for discovering community in complex 

networks [156]. However, one of the most widely accepted mathematical definitions of a 

community in social network literature is the network modularity, proposed by Newman [113, 

117]. Modularity (denoted by Q) measures the quality of a particular induced subgraph in a given 

network. Modularity for a network partitioned into k communities is given by 

         

 

   

    
    ( 5 )  

 

where, eij belongs to the k X k symmetric matrix  and gives the fraction of the edges that link the 

vertices in community i to vertices in community j. The trace of this matrix      , is the fraction 

of edges that connect vertices within the same community. The row sum          , is the 

fraction of edges incident on all vertices in community i.  

Modularity value has a range from zero to one. Values of Q approaching one indicate a 

strong community structure. If the number of within-community edges is no better than random, 

or if the given graph is considered as one community, the value of Q will equal 0. A complete 

graph Kn is the strongest community structure. But Q (Kn) = 0 according to the above equation. 

Whereas two complete components connected by an edge or two will have Q ≈ 1. So, given a set 

of partitions, the highest value of modularity indicates a good community structure. In spite of 

the accuracy and popularity in identifying dense communities, modularity optimization 

techniques are not suited for large networks [11, 66].  
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CHAPTER 4: ALGORITHMS TO DETECT COMMUNITIES 
 

Algorithms dealing with community detection in complex networks address one of the 

following two questions: (i) given a network, can we explore and extract subsets of nodes that 

form a community? (ii) given a network and a seed  node, can we identify the best community 

that the given seed belongs to, if there exists one? The former problem, known as Community 

Discovery, has been studied extensively in the literature and a number of approximate algorithms 

has been proposed [44, 62, 72, 110, 137]. The latter, known as Community Identification, has 

also been studied in the literature, but to a smaller extent. Techniques to discover communities in 

complex networks have been broadly discussed by a few authors [64, 127, 141, 157]. A 

comprehensive taxonomy classifying the community detection algorithms in the literature is 

presented in this section. But prior to that the existing hierarchical clustering based classification 

of the algorithms and some of the key techniques in the literature are also discussed. They focus 

on classifying the techniques based on either divisive or agglomerative hierarchical techniques, 

but a novel classification based on their underlying technique is depicted. 

4.1 Hierarchical clustering techniques 
 

Most community detection algorithms are based on hierarchical clustering techniques, 

which extract clusters based on similarity metrics. The algorithms are divided into two classes, 

based on addition or removal of edges to or from the network: (i) In Agglomerative algorithms, 

the similarities are calculated between vertex pairs by some method and edges are then added to 

an initially null graph starting with the vertex pairs with highest similarity [117]; (ii) Divisive 

algorithms start with the given network and the edges with maximum “betweenness” are 
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computed and eliminated at each step. Both procedures can be halted at some suitable points and 

the resulting set of connected components form the communities. The following subsections 

elucidate these two techniques and give a detailed view of a new taxonomy of community 

detection methodologies. 

4.1.1 Agglomerative 
 

As mentioned earlier, agglomerative algorithms buildup to a graph with communities 

from a null graph. The iterative addition of edges is based on the value of a similarity metric. 

Number of node-independent paths, edge-independent paths or paths that run between the 

vertices are some of the examples of metrics considered in a hierarchical agglomerative 

algorithm. These algorithms are good at discovering the strongly linked cores of communities 

[117]. As and when the edges are added the procedures start building a tree from an empty set of 

vertices (leaves), which can be represented by a Dendrogram [72] as shown in Figure 6.  

 

 

Figure 6: Dendrogram 

 

 

Some of the popular agglomerative techniques in the literature are explained below 
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Graph-Partitioning methods 
 

Graph partitioning requires dividing its vertices into a number of disjoint sets of roughly 

equal sizes, while minimizing the number of edges incident between the vertices in different sets 

[110]. Community discovery algorithms base themselves on traditional graph partitioning [86, 

128]. 

Spectral bisection: The Laplacian of an undirected graph is a symmetric matrix L = D – 

A, where the diagonal element lii = dii is the degree of the i
th

 vertex; and the off-diagonal element 

lij = -aij is the negative of the corresponding element in the adjacency matrix A. If the network 

separates perfectly into communities (i.e., into g components) then the Laplacian will be a block 

diagonal. There will be g degenerate eigenvectors with eigenvalue 0 [128]. If the division of the 

network is not components, then there will be g eigenvalues slightly different from 0 (non-

negative). This method is reasonably fast, but only bisects the graph and to obtain more 

partitions or larger number of communities the spectral bisection is applied repeatedly to the 

subdivisions. 

ComTector: Cliques and near-cliques correspond to high connectivity within a given 

graph. ComTector builds communities around overlapping cliques. The maximal cliques are 

considered to be clustering kernels attracting other nodes towards them. They can result in 

denser communities. The larger the size of a clique, more likely a kernel it would become a 

community structure [53]. So, the cliques are arranged in descending order and the smaller ones 

are discarded. The cliques are chosen one at a time iteratively from largest to the smallest and 

removed at each step. Each maximal clique that contains the centers of the remaining elements in 

the set is removed from the clique. Thus, at each step the kernel enclosing other smaller kernels 
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are identified and removed. On repeated removal the dominating kernels are identified as the 

communities.  

Kernighan-Lin algorithm: The Kernighan-Lin partitioning algorithm is a greedy 

optimization method that assigns a benefit function to a partition of the network and then 

attempts to maximize the value of that function [86]. This algorithm also bisects the network as 

in the spectral bisection method and requires the user to specify the number of nodes in the two 

subsets. It is a two stage algorithm in which the first stage involves finding the change in the 

benefit function when the one vertex from each subset is chosen and swapped. The second stage 

scans the sequence of swaps made to find the one with the highest value and chooses this to be 

the bisection of the graph. Specifying the size of the partitions as a priori (thus making it 

unsuitable for real-world networks) and repeated bisection of the graph are the principal 

drawbacks of the method. 

Label propagation algorithm 
 

Raghavan et al. [130] proposed a linear time algorithm that does not require any prior 

information about the number of communities. The algorithm is analogous to an epidemic in a 

locality where the individuals acquire disease most prevalent in his or her neighborhood [98]. 

The iterative algorithm initializes each node with a label and updates the label in each run with 

the maximum occurring label amongst its neighbors. If the label represents a community which 

the node, say x belongs to, then the neighbors with the same labels will influence x to belong to 

their community and hence the name label propagation algorithm (LPA). The iteration and 
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updating of labels continues till no node in the network changes its label. In other words, the 

iteration stops when every node has a label that the majority of its neighbors have.  

There are two variants of the label propagation algorithm – synchronous and 

asynchronous. Synchronous label propagation updates the label as and when it finds a new label 

and makes it available for the remaining nodes during the iteration. The asynchronous version 

waits for all the nodes to decide on their labels in an iteration and updates before the next 

iteration. An improved version of the LPA was proposed by Leung et al. [98]. This algorithm 

provides stability to the communities by avoiding labels spreading to large number of nodes 

initially. The extension of the algorithm adds a score associated with each label whose value 

decreases as the label propagates. The performance of this algorithm betters the original as a 

result of balancing the cluster formation at each step of the algorithm. 

CNM algorithm 
 

Clauset, Newman and Moore (CNM) proposed a hierarchical agglomeration clustering 

approach [44] that performs a greedy optimization of the modularity metric Q. While finding the 

global maximum modularity over all possible divisions is hard, approximation techniques have 

been proposed which gives reasonably good solutions [13]. The algorithm uses two quantities for 

calculating modularity:  

      
 

  
     

  

               ( 6 )  
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where Avw is the adjacency matrix value corresponding to nodes v and w, δ function δ(i, j) is 1 if i 

= j and 0 otherwise; m = 
 

 
        is the number of edges in the graph, dv is the degree of the 

node v which is assigned to community Cv. The algorithm requires finding the changes in Q 

resulting from the amalgamation of each pair of communities and choosing the largest. 

Clauset, Newman and Moore also suggest improvements to the data structures that 

provide considerable saving to memory and time. The CNM algorithm uses two data structures 

to find a community pair with maximum ΔQ (change in modularity) value: (1) a balanced binary 

tree (or a heap) which stores the community pairs and (2) a max heap that is sorted by the ΔQ 

values. Wakita and Tsurumi [161] observe that the algorithm does not scale, and performs well 

only for mid-scale communities (fewer than 500 nodes). They propose an alternate metric known 

as consolidation ratio given by, 

                  
    

    
 
    

    
   ( 8 )  

 

where |Ci| is the size of the community i in terms of the number of links to other 

communities. The ratio controls the growth of the community in a balanced way and considers 

merging the communities Ci and Cj based on the product of the ΔQ with the ratio value.  

Bibliometric approach 
 

Motivated by the metrics used to define the similarity between scientific publications, 

bibliometric coupling and co-citation coupling, Balakrishnan and Deo proposed an algorithm 

that computes the bibliometric similarity between all pairs of vertices in the given graph [13]. 

Using the metric computed on n isolated nodes, edges between pairs of nodes starting with the 
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pair of the highest similarity is introduced, progressing to the weakest. The measure of similarity 

between two nodes u and v is given by   

 
           

            
   ( 9 )  

 

where N[u] is the closed neighborhood of node u, and du is its degree. One result 

observed from this technique is that algorithms employing local properties of the graph seem to 

produce better community partitions than the ones employing the global properties.  

Potts model 
 

A physics inspired approach to community detection, referred to as q-potts model 

involves assigning a spin state between 1 and q at random to each node. q-potts model is an Ising 

model with q states instead of just 0 and 1 [135]. The algorithm consists of: (1) assigning spins 

randomly to a pre-selected number of communities, (2) selecting a spin and calculating the 

energy change as the spin is moved or added to another cluster and choosing the one which 

yields the maximum energy, (3) exchanging and calculating energy by moving spins till a local 

energy minimum is reached. The above steps are repeated by sampling initial random 

configurations and the best is chosen [139]. The energy of the spin system is given by the 

Hamiltonian 

          
 

 
                               

   

 ( 10 )  

 

where Aij is the adjacency matrix elements, Jij ≡ (1 - Aij) and aij and bij are the positive 

weights of the connected and unconnected edges respectively, σi is a Potts spin value 1 ≤ σi ≤ q, 
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that designates the specific community, and function δ(i, j) = 1 if i = j and 0 otherwise. This 

method predicts fuzzy communities which are clearly separated from others and since uses only 

local values to calculate Hamiltonian and update spins proves to be a faster algorithm.  

4.1.2 Divisive 
 

Divisive algorithms iteratively remove edges from the given graph and are also two step 

processes for extracting communities; (1) calculate the similarity metric and (2) remove the edge 

between the least similar pair of nodes. While agglomerative algorithm builds the dendrogram 

from the leaves upwards, divisive techniques start at the root (top) and disintegrate the graph into 

communities by the removal of edges.  The fundamental ingredient of a divisive algorithm is a 

quantity that can single out edges connecting nodes belonging to different communities [129]. 

Betweenness score 
 

Edges that connect two communities would be included in all paths between them. The 

divisive algorithm proposed by Newman and Girvan [72], eliminates edges with highest 

betweenness score (GN algorithm). The focus is not on removing the vertex pairs with lowest 

similarity, but on finding edges with the highest betweenness and removing them. Examples of 

betweenness metric include shortest path, random-walk and current-flow, and have been 

discussed extensively [117]. After the removal of an edge the betweenness score is recalculated 

for the new graph and the edge with the highest value removed. The algorithm thus iterates in 

calculating of the score and removal of edges. 

The GN algorithm [72] was considered computationally inefficient since it involves 

calculating a global quantity, edge betweenness, whose value depends on the properties of the 
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whole network. Raddichi et al. [129] proposed edge-clustering coefficient as a metric to 

eliminate edges. It is analogous to the node-clustering coefficient, which denotes the fraction of 

pairs of neighbors of a node that are neighbors themselves. The edge-clustering coefficient is 

defined as the number of triangles a given edge (i, j) belongs to, divided by the number of 

triangles possible with that edge, given the degrees of the nodes i and j.  In general, the edge-

clustering coefficient of higher order cycles, say order g, is given by: 

 
    

 
 

    
 

   

    
    ( 11 )  

 

where     
   

 is the number of cyclic structure of order g the edge (i, j) belongs to and     
 

 is the 

number of possible cyclic structures. An edge connecting two communities would have a lower 

coefficient value, due to lesser number of cycles. The 1 to the numerator avoids zero triangles 

network. This algorithm extracts better communities in larger networks since it is based on 

vertex properties.  

Swarm aggregation 
 

Nodes in a network behave analogously to particles in a self-driven system and this lead to 

the swarm aggregation algorithm proposed by Oliveira and Zhao [119]. The algorithm is 

adaptive, aggregates information from adjacent nodes and approximates node that belong to the 

same community. Each network node vi has an initial angle value Θi(t) chosen in [0, 2π). Then 

the angle value of each node is updated based on the angles of its neighbors using the following 

equation  
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    ( 12 )  

 

where di is the number of neighbors of node i, ηi(t) is i’s moving rate at time step t and wij 

represents the  influence of neighbor j in updating i’s angle. The influence of the node’s angle 

from its neighbor is based on two main factors; common neighbors (CN), proportion of shared 

neighbors and similarity (SN), similar neighbors, which is considered in the calculation of wij 

 
                        ( 13 )  

 

If a community is composed of sub-communities, nodes belonging to the same sub-

community quickly group themselves and fall apart from nodes belonging to another sub-

community. 

Information centrality 
 

The algorithm, proposed by Fortunato et al., discovers community structures based on 

information centrality [66]. Procedurally, this is very similar to the betweenness score algorithm 

given by Newman [117]. Information centrality,   
  for an edge incident on node i is based on 

network efficiency F and is defined as the relative drop in the network efficiency caused by the 

removal of the edge. The efficiency  ij between two nodes i and j is inversely proportional to the 

shortest path length dij. F is a measure of how efficiently the exchange of information in a 

network G (with n nodes, m edges) takes place through a node. The network efficiency of a 

graph G is the average of  ij and is given by: 
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  ( 14 )  

 

The information centrality   
  of the node i is calculated as the relative drop in the network 

efficiency based on the removal of the edges incident on i:  

 
  

   
  

 
  

           

    
    ( 15 )  

    

where G’ (n nodes and (m – 1) edges) is the network obtained from G with the removal of the 

edges incident on i. The method consists of finding and removing the edges with the highest 

centrality score until the network breaks up into components. These evolve from a 

communication network where information travels along the geodesic paths. The value is 

recalculated each time after the removal of an edge. 

External optimization 
 

This algorithm based on optimizing modularity value Q uses a heuristic search based on the 

external optimization (EO) algorithm [54]. The algorithm initially proposed by Boetcher and 

Percus [26] operates on improving the local variables (individual nodes) to optimize the global 

variable (Q). The equation of modularity can be written as  

 
                    ( 16 )  

 

where,       gives the contribution of each node i (node degree) and ar gives the fraction of edges 

that have one or both vertices inside the community, on placing the node into a certain partition 
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r. In order to find out the contribution of the node i to the modularity, relative to its own degree, 

the above equation is normalized in the interval [-1, 1] as given below 

 
    

  

  
  

     

  
        ( 17 )  

 

The optimization works as follows: 

1. Split the nodes of the whole graph in two random partitions (two communities) having the 

same number of nodes in each one.  

2. At each time step, the system self-organizes by moving the node with the lower fitness 

(extremal) from one partition to the other. In principle, each movement implies the recalculation 

of the fitness of many nodes because the right hand side of equation involves the pseudo-global 

magnitude ar(i). 

3. The process is repeated until an “optimal state” with a maximum value of Q is reached. 

After that, we delete all the links between both partitions and precede recursively with every 

resultant connected component. 

4.2 Taxonomy of community detection algorithms 
 

As mentioned before, community detection algorithms can be broadly categorized 

depending on whether they discover communities globally or identify a specific community 

locally. : (i) given a network, can we identify or extract sets of nodes that satisfy the community 

structure property?, or (ii) given a network and a small set of nodes, how do we identify the best 

community structure that includes these nodes, if there exists one?. The former problem, known 

as Community Discovery, has led to a number of algorithms. The latter, Community 
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Identification, has also been studied briefly in the literature. Figure 7 illustrates the taxonomy of 

algorithms classified based on these two branches of community detection. 

It is evident from the taxonomy that the key techniques described above lead to many other 

algorithms. Some of the underlying techniques apart from the ones discussed above that lead to 

several algorithms to detect, explore and extract communities in networks are as follows: 

 Betweeness approach [72, 77, 117, 129] 

 Bibliometric technique [13, 81] 

 Graph partitioning methods [16, 86]. 

 Label propagation techniques [45, 98, 130] 

 Modularity based algorithms [38, 43, 44, 103, 111, 163] 

 

Each of these methodologies has their pros and cons. Quite a few articles have addressed the 

shortcomings and limitations of one or more of these basic procedures [11, 65, 93]. Community 

discovery is explained in the following subsection. Since our research work focuses mainly on 

community identification, it is addressed in detail in the next chapter.  



39 
 

 

 

 

Figure 7: Taxonomy of community detection algorithms  
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4.2.1 Community discovery 
 

Most of the algorithms related to communities in complex networks specialize in finding or 

extracting communities globally. Discovering communities in any well-known real-world 

networks or an artificial benchmark graph has been widely studied in the recent decade and 

several procedures have been proposed to extract such communities [64, 127, 141, 157]. The 

problem can be formally stated as follows. Given a graph G (V, E), classify the nodes V into k 

subsets,            ; such that the nodes of each Ci have higher edge density relative to 

the graph. Community discovery can result in one or more communities in a given graph or the 

given graph need not feature any community at all. On similar terms, a node can belong to more 

than one community. Therefore, the classification of community discovery algorithms further 

branches down to the following: Community Detection, Community Partition and Overlapping 

Communities (Cover). These subclasses are formally defined as follows. 

Detection 
 

Is there a community present in the graph? If yes, C1, C2… Ck strictly form the 

communities. Isolated nodes can exist and do not form communities. In other words every node 

can belong to at most one community. Community detection algorithms extract all the 

communities in a given graph and can leave out nodes that do not belong to any community.  
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Figure 8: Community detection 

 

Partition 
 

C1, C2… Ck form communities such that,  

          , if i ≠ j. 

Any given node has to belong to a community (i.e. exactly one community). 

This problem is different from the classical Graph-Partitioning Problem, since the number of 

communities and the size of the community are prior unknown [147]. Community partition 

algorithms extract all the communities in a given graph and all the nodes belong to one 

community or the other 

 

Figure 9: Community partition  
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Cover 
 

A node can belong to more than one community but should belong to at least one 

community. If a node belongs to two or more communities, the algorithms refer to them as 

overlapping communities or a cover. Community discovery algorithms that extract overlapping 

communities result in each of nodes classified into one community at least. 

 

 

Figure 10: Overlapping communities. 

 

4.2.2 Community identification 
 

The exploration of a large complex network to discover subgraphs can be 

computationally expensive and challenging. But to identify one dense subgraph that a given node 

belongs to is relatively easier. Even though community identification requires exploring fewer 

nodes as against community discovery, it is still an NP-Complete problem. The subsequent 

sections discuss this problem in detail with examples and existing solutions in the literature, 

followed by novel algorithms for community identification. A proof by reduction to show the 

NP-completeness of the community identification problem is also given.  
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CHAPTER 5: COMMUNITY IDENTIFICATION ALGORITHMS 
 

Community identification can be formally described as follows: Given a large sparse 

graph G (V, E) and a seed vertex Vu (or a set of vertices), does there exist a community that u 

belongs to? If yes, return the induced subgraph. Community discovery, on the other hand, deals 

with exploring all the communities in any given graph. But the problem that is of more interest in 

many real-world complex networks is the existence of community that any given individual node 

belongs to. Also, solving this problem is relatively easier since it does not require the knowledge 

of the entire graph. This leads to the class of algorithms for identifying a specific community to 

which a given node belongs. This section elucidates in detail the different type of nodes that 

constitutes a community and existing community identification algorithms. An improved metric 

to identify communities is also discussed. 

5.1 Nodes of a community 
 

In a large sparse graph, a node need not always belong to a community. Figure 11 shows a 

typical structure of a Community          in a given graph G. There are two subsets of the 

nodes that form a community,    and   , such that 

               

          

           

   forms the boundary nodes of the community. These are the nodes that have neighbors both 

within and outside the subgraph C. The set    forms the nuclei of the community, which 

includes nodes that have neighbors only within the community.  
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Figure 11: Components of a Community  

 

The input seed node could be one of the nuclei or boundary nodes or a node that is more like 

a leaf. There are three possible scenarios based on the location of a seed vertex (Figure 12) and 

any community identification algorithm should address these scenarios. They are as follows: 

(i) The seed vertex belongs to the core vertex set (nuclei) of a community. This is 

the primary scenario and the algorithm should easily identify the 

corresponding community, because the traversal covers all the nodes. 

(ii) The seed vertex belongs to a community, but not to the core set. In other 

words, the seed vertex is one of the boundary vertices and thus can belong to 

more than one community. Such overlapping communities are dealt with in a 

separate class of algorithms [157]. But for community identification, when the 

seed vertex belongs to the overlapping zone, the algorithm should be able to 

identify at least one of the communities, possibly the densest one. 
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(iii) The seed vertex does not belong to any community and so the algorithm 

should not return any community associated with such a node. 

 

 

Figure 12: Community identification scenarios. Ci denotes a community. 

 

5.2 Community identification preliminary 
 

Given ),( EVG  any community identification algorithm would adhere to the following 

steps in general: 

1) Begin with the seed vertex Vu . 

2) Locally traverse the graph from u only using its adjacency information. Breadth-First 

Search (BFS), Simulated annealing [142], etc., are some of the techniques to carry out 

the procedure. 

3) Choose nodes to be included in the community. 

4) Traverse further from the newly added nodes till no new nodes can be added. 
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Initially, the traversal begins with the seed vertex’s adjacency information. Then the 

neighbors are locally explored to reach out to the next set of unvisited nodes, typically in a 

breadth-first manner. Newer nodes are added subsequently to the community during the 

traversal. The traversal techniques and the criteria for adding nodes to a community are 

discussed in detail below. Almost all the existing community identification algorithms are 

agglomerative techniques. 

5.3 Existing methodologies 
 

Community identification algorithms are very sparse in the literature and are mainly greedy 

heuristics [12, 135]. They try to obtain an induced subgraph that has a relatively maximum edge 

density within the nuclei    and among the nodes of   , and minimal external connection from 

the boundary    to the remaining graph. In this section we discuss the metrics that measure the 

strength of any identified community and act as stopping criterion for the algorithms. Any 

community identification algorithm takes an input node (or a set of nodes) and concentrates on 

building the set C with nodes from the boundary set    iteratively. Eventually the nucleus of the 

community is strengthened with nodes that yield maximum density. The input node from which 

the procedure begins is commonly referred to as a seed vertex. Though the procedures are 

similar, the metric that determines the resulting community differs. The metrics defined in this 

section are with respect to the induced subgraph          for any given input graph G (V, E). 
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5.3.1 Connection density ratio 
 

Chen et al. [40] described an algorithm to identify communities based on maximizing the 

connection density ratio. The connection density ratio δ(G) (in short δ) is the ratio of the internal 

and external density and is given by, 
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( 18 )  

 

where,    and    of the community C are defined as follows. The internal density (  ) is the ratio 

of the number of edges within C to the number of nodes in C. 
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The external density (  ) is the ratio of the edges connecting nodes outside the community to 

the number of boundary nodes. 
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( 20 )  

Using this edge-density measure, the algorithm extracts the community around a given node in 

two phases. In the first phase, any adjacent node whose inclusion increases the value of   is 

chosen and added to the community. This continues till no more nodes can be added to the 

community. The second phase examines subsets of nodes in the reduced graph and chooses the 

one with the maximum  . Using this average density measure, the algorithm extracts the 

community around a given node by iteratively adding and removing neighboring nodes and 

finding the set of nodes which gives a maximum value of  .   
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Algorithm 1: Community identification algorithm using connection density [CD] 

 

 

Input: 

G (V, E)  // Graph with vertex set V and edge set E 

s   // Seed vertex 

 

Output: 

C   // Set of nodes in the Community  

 

Procedure: 

 

1.       
2.             // Closed neighborhood of C 
3. //Addition Phase 

4. do 

5.   compute    ,    and      // Compute the density values 
6.             foreach     do 

7.              // Add a new node to C from A 

8.    compute    
  ,   

  and     // Compute new density values 

9.            
10.   end for 

11.                 // Find the node that yields  

12.    if (  
       then    //  max. increase in    

13.               // Include nodes that increase    
14.    end if 

15.  while (      

16.              // Duplicate the community nodes 

17.            // Initialize the community again 
18. //Examination Phase 

19. foreach         do 

20.              // Include node that increases     

21.   compute    
  ,   

  and      // and decreases    

22.   if (  
           

       then 

23.               

24.    end if 

25.  end for 

26. return C 
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5.3.2 Local modularity 
 

Clauset [43] defined a community based on the density of the boundary edges. His definition 

included the boundary adjacency matrix B : 






0

1
ijB

 otherwise
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He also proposed the local modularity    and defined it as the ratio of the number of 

edges the boundary vertices (  ) share with the nuclei (  ) to the total number of boundary 

edges. The algorithm iteratively maximizes the value of    by adding new nodes, till a given 

number of nodes are obtained in the community.  

 The local modularity is given by 
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Here        is 1 when either        and       or vice versa and is 0 otherwise. Note that the 

global definition of modularity Q was given by Newman and Girvan [117]. Knowing the number 

of expected nodes in the community or setting an upper limit on the number of community nodes 

prior to beginning the algorithm is not an efficient solution in case of complex networks. 
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Algorithm 2: Maximization of local modularity to identify community   [LM] 

 

Input: 

G (V, E)  // Graph with vertex set V and edge set E 
s   // Seed vertex 

k   // Number of vertices to be included in the Community 

 

Output: 

C   // Set of nodes in the Community  

 

Procedure: 

 

1.       
2.             // Closed neighborhood of C  

3.            

4.      

5. while         do     // Accumulate k nodes in C  

6.                        

7.             foreach     do 

8.              // Add a new node to C from A 

9.   compute       // Compute new Q value 

10.   compute                 

11.              // Remove the newly added node 
12.  end for 

13.                    // Add to C, the node that yields  
14.                 //            max. increase in Qi 

15.   compute        // Compute new Q value 

16.           
17.                 // Update the  neighbor set of C 

18. end while 

19. return C 
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5.3.3 Subgraph modularity 
 

Luo and Wang [103, 104], define local modularity    for a community in terms of the ratio 

of the number of edges within and outside the induced subgraph. 
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  ( 22 )  

They refer to this term as subgraph modularity. Their algorithm begins with the seed node and 

after each iteration adds the node that increases the value of   . The new nodes to be added are 

chosen from the neighbor list (which gets updated after each addition). The list is also sorted in 

non-decreasing order based on the degree. Iterating through the list of neighbor nodes twice to 

find a better set of nodes yields a strong community, but is an expensive operation in large 

graphs. Moreover the sorting performed to obtain the nodes with maximum degree adds to the 

computational cost. 
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Algorithm 3:  Maximization of Subgraph modularity to identify community  [SM] 

 

 

Input: 

G (V, E) // Graph with vertex set V and edge set E 

s  // Seed vertex 

 

Output: 

C  // Set of nodes in the Community  

 

Procedure: 

 

1.         
2. compute         // Compute modularity    for the  

3. do       // initial community 

4.              // Closed neighborhood of C 
5.                  // Sort A based on node degree 

6.  foreach     do    // in descending order 

7.    compute        // Change in    on adding u 
8.    if     > 0) then   // Add node to C  if    increases 

9.                

10.   end if 

11.   end for 

12.   foreach     do 

13.               // Change in    on removing  

14.    compute        // u from C 

15.    if     > 0) then   // Remove node if it increases    

16.               // If       does not disconnect C 
17.    end if 

18.   end for 

19.               // Update the new neighbor set 
20. while (    )     // Update the community till no  

21. compute         // new nodes can be added 
22. if    > 1 and         // Accept C if     > 1 and  

23.   return C     // s belongs to C 
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5.3.4 l-shell spreading using emerging edges 
 

Bagrow and Bollt proposed an algorithm based on the ratio of emerging edges [12]. The 

number of emerging edges of a node    is the out-degree of the node out

id . When the nodes of the 

graph are explored breadth-first with the seed as the root, the total emerging degree ( jD ) is the 

sum of the out-degree of the nodes at level j.  

      
   

 , where node vi is at level j from the root. 

Their algorithm iteratively computes the change in jD  and the stopping criterion is given 

by an input value α. The value of α is predetermined based on the degree distribution of the input 

graph and it varies from one network to the other. The change in jD  at a level j is given by 

 0,
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( 23 )  

and udD 0  where u is the seed node. Predetermining the value of α based on the degree 

distribution of the input graph is a tedious pre-computation step and will not be optimal in case 

of large complex networks. 
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Algorithm 4: l-shell spreading algorithm  [LS] 

 

 

Input: 

G (V, E) // Graph with vertex set V and edge set E 
s  // Seed vertex 

α  // Threshold value used as stopping criterion 

 

Output: 

C  // Set of nodes in the Community  
 

Procedure: 

 

1.       
2.           // Closed neighborhood of C  
3.          
4.          // Initialize emerging degree of C as degree of s 
5.     

6.     
  

  
     // Initial change in total emerging degree 

7. while (     ) do   // Accumulate nodes to C  till threshold value 

8.         

9.           // Add all neighbors to the current community 

10.            // Update the neighbor set 
11.             compute      // Compute emerging degree of the current C 

12.       
  

    
   // Calculate the change in total emerging degree 

13. end while 
14. return C 
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5.3.5 Relative edge density metric 
 

Schaeffer [142] presented a metric that considers not only the density of edges within the 

community but also the proportion of the edges within and outside. The internal density ( I ) and 

relative density ( R ) values given by Schaeffer are as follows: 
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This value gives the ratio of the number of edges in the community to the total number of edges 

possible with the given number of nodes. Let gE  denote the set of edges that connect the 

community nodes ( CV ) with the external nodes. 
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The relative density of the induced subgraph is given by 
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 RIf  *  ( 27 )  

 

The algorithm performs a local search using simulated annealing technique and the subgraph 

with the maximum value of f  is the final community.   
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Algorithm 5: Relative edge density [RD] 

 

 

Input: 

G (V, E) // Graph with vertex set V and edge set E 

s  // Seed vertex 

 

Output: 

C  // Set of nodes in the Community  

 

Procedure: 

 

1.       
2.               // Closed neighborhood of C 
3. do 

4.   compute    ,    and   

5.                                              

6.   Case  1: 

7.   {  

8.                                             

9.               // Add a randomly chosen 

10.    compute    
  ,   

  and      //  node and check if it  
11.    if (       then    //  increases the density 

12.             
13.     end if 

14.  } 

15.   Case 2: 

16.   {  

17.                                 -{s} 

18.               // Remove an existing node  
19.    compute    

  ,   
  and      //  and check if it  

20.    if (       then    //  increases the density 

21.              

22.     end if 

23.   } 

24.               // Update the neighbor set 
24. while (      

25. return C 
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5.4 Improved relative edge density metric 
 

The definition of a community or the measure that determines the strength of a 

community should be based on the number of edges in the induced subgraph [158]. We adopt 

such a definition, initially proposed by Schaeffer [142], to  consider both the density of edges 

within the community and the relative ratio of the edges within and outside. A greedy algorithm 

based on the maximization of this improved parameter f is discussed in the next section. The 

number of internal edges and external edges from Schaffer’s definition [142] are given by 

           ( 28 )  
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The internal density and relative density values are as follows: 

Internal density, 

 
       

    

 
            

  
 

 

( 30 )  

Relative density, 

 
      

    

          
 ( 31 )  

 

The product of these two parameters is proportional to the strength of the community, 

               ( 32 )  

 

The definition of      reveals that the count does not take into account edges between the nodes 

adjacent to the induced subgraph.  
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So a modified definition to the external edge count to include these edges is described. 

Let      denote the set of all nodes adjacent to the induced subgraph g. 

                                    

So the new definition of the sum of external edges is  

                                                  

Consider the following example (Figure 13). 

 

                     

Figure 13: Induced subgraphs with different sparseness 

 

Here, for g, dint = 8 and dext = 6. Similarly the values for g’, are dint = 8 and dext = 6. The presence 

of edges between the nodes outside g’ does not impact the value of the number of external edges. 

Therefore, the relative density value would be the same for both the induced subgraphs (g and 

g’). But the subgraph g is stronger compared to g’ since it is a part of a relatively less sparse 

graph. The modified definition of external degree would count these edges that account for the 

relative density of the subgraph. Therefore, the value of dext, according to the new definition 

would be 6 and 12 for g and g’ respectively. 
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5.5 Community identification based on improved relative density 
 

A greedy algorithm based on maximizing the value of the metric ‘f’ is presented and 

discussed in this section. The metric f is defined from the above mentioned inference - the 

product of internal and relative density. From the definition it is evident that the induced 

subgraph, that includes the seed vertex, with the maximal value of internal and relative densities 

would be the ideal community. Therefore, we traverse locally from the seed vertex in a breadth-

first manner accumulating nodes that increase the value of f. One of the pitfalls of the existing 

methodologies in identifying a community is the inclusion of outlier nodes. We address this issue 

in our algorithm which is discussed in detail below. 

The seed vertex and its adjacent neighbors form the initial community. The nodes adjacent to 

this initial community form the neighbor-list (Queue). This list is frequently updated depending 

on the inclusion or removal of nodes in the community during the iteration. The core module of 

the algorithm is the alternation between two steps – (i) addition phase and (ii) deletion phase. 

In the addition phase each node from the queue are added one-at-a-time and the change in 

density value is checked. We add a node to the current community only if it increases the value 

of f. The new set of community nodes thus obtained (the community maybe unchanged after 

addition phase, if no new node increases the value of ‘f’) is the input to the deletion phase. In the 

deletion phase, we remove one node at a time and compute the change in f value. If there is an 

increase, clearly, that node does not belong to the community. If the removal of the input seed 

node increases the density value then it does not belong to any community. The output in that 

case would be an empty set. The neighbor-list is updated at this point to include nodes adjacent 
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to the newly added nodes. The alternative addition and deletion continues until no new vertices 

can be added to increase the value of the density. The pseudocode of this technique is expressed 

in Algorithm 6. 

The greedy algorithm based on the improved relative density metric uses the addition and 

deletion strategy similar to the one employed in Luo et al.  algorithm [104] but in a more 

effective way. The metric used in their algorithm just measures the ratio of the internal and 

external edges but discards the significance of the number of nodes in the induced subgraph. 

Since we are interested in dense subgraphs of significant size it is essential to keep into 

consideration the number of nodes added to the community. The addition phase of our algorithm 

ensures the inclusion of nodes that contribute even slightly to the strength of the community. The 

deletion phase takes care of eliminating outlier nodes that is of little importance to the 

community. 

Suppose the final resulting community consists of k’ nodes and the average degree of the 

subgraph is   . The average time complexity of the algorithm is        ). Since in each iteration 

     adjacent nodes of each of the k’ nodes in the community needs to be investigated for 

inclusion or exclusion from the induced subgraph. 
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Algorithm 6: Community identification based on improved relative density 

 

Input: 

G (V, E)  // Input graph with vertex set V and edge set E  

u    // Seed vertex 

 

Output: 

C   // Set of vertices that form the Community 

 

1. Procedure Initialize ( ) 

2. { 

3.          
4.               // To keep track of visited vertices 

5.   foreach           

6.   { 

7.                       // Insert node w to the Queue 

8.            
9.   } 

10.                         // Compute the value of f  

11.  do 
12.   { 

13.                     // Store the current size of the community 

14.   additionPhase ( )   

15.   deletionPhase ( ) 

16.   }while (                   // Repeat till there is no change in size 

17. } 

18.  

19. Procedure additionPhase ( )  // Add new node and compare change in value 

20. { 

21.                       // Obtain the first element of the Q 

22.    foreach           
23.   { 

24.                       

25.            

26.                           

27.   if (      then   // Density value does not increase 

28.            
29.  else    // Retain the new value  

30.        
31.   } 

32. } 
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33. Procedure deletionPhase ( )  // Delete existing node and compare change in value 

34. { 

35.   foreach      
36.   { 

37.             

38.                          

39.   if (      then   // Density value does not increase 

40.            
41.                        
42.  else     // Retain the new value 

43.        

44.                  
45.   } 

46. } 
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5.5.1 Experimental observation 
 

 

 

Figure 14: NCAA football network of fall 2000 season. The ten communities identified 

correspond to the ten conferences. 

 

The algorithm was implemented and tested on the Girvan and Newman synthetic graph 

(discussed in detail in Chapter 7) consisting of 128 nodes, 1024 edges and four communities. 

One node from each of the communities was used as the seed vertex and the algorithm identified 

the corresponding community accurately. The implementation was also tested with different 
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nodes from the same community and on each instance it yielded the community corresponding to 

the input seed node.  However the most interesting observation was made on the communities 

obtained in the American football network compiled by Girvan and Newman [72]. The network 

formed by the NCAA Division IA colleges during regular season fall 2000 has been used as a 

benchmark to test several community detection algorithms in the literature and was believed to 

have 11 communities corresponding to the 11 conferences in the league. But our algorithm 

identified only ten communities which had a relatively dense sub structure as shown in Figure 

14. The ten communities were obtained by using input seed nodes from different conferences, 

but the node from the eleventh conference did not yield any community. Later it was 

acknowledged by Evans [59] that the 2000 football season indeed had only ten conferences and 

more games were scheduled among them than against other conference teams. The algorithm 

was also tested on other real-world networks such as the Zachary karate club, Bottlenose 

dolphins, etc., with known community structures. 
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CHAPTER 6: COMMUNITY IDENTIFICATION ALGORITHM BASED 

ON AVERAGE DEGREE 
 

 In this section a novel divisive algorithm to identify communities in complex networks 

based on maximizing average degree is presented. Even though the improved density based 

definition discussed in the previous chapter is effective in retrieving dense communities, 

computing internal and external densities at each step could prove costly in large communities. 

Moreover the existing techniques are all agglomerative (accumulate nodes to the community 

during each iteration) and hence can be computationally expensive for large networks. A 

discussion on the definition based on average degree, the NP-completeness of the community 

identification and the algorithm are as follows. 

6.1 Definition 
 

Given a graph ),( EVG , the average degree of an induced subgraph ),( EVg   is defined as 

the ratio of twice the number of edges in the subgraph to the total number of nodes in g. Average 

degree of the subgraph g is given by  
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Note that the sum of the degrees of all nodes in a graph is twice the number of edges in the graph 

[46]. An example graph with average degree of its subgraph is shown in Figure 15. There are 

five nodes and eight edges in the subgraph. The sum of the degree of the nodes is 16 and so the 

average degree is           
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Figure 15: Average degree of the subgraph g is 3.2. 

 

The subgraph ),( EVg   forms a community if the average degree of g ( vd  ) is greater than 

the average degree of any other subset of vertices within the neighborhood of   . Since complex 

networks are large, we restrict ourselves to considering only the set of vertices within a 

neighborhood at a distance k. Therefore, if ),( uk  denotes the set of vertices within a 

neighborhood k from vertex u, then ),( ukV   forms a community if 

 ),,( ukV    vdvd   ( 34 )  

Since, in a community identification algorithm we begin with a seed vertex Vu , defining a 

community by considering vertices only within k-neighborhood is a realistic measure. Next, a 

divisive algorithm based on maximizing the average degree of the induced subgraph within k-

neighborhood is elucidated. The NP-completeness of the problem is discussed prior to that. 
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6.2 NP-Completeness 
 

The above definition of a community depicts the dense subgraph in large sparse graph more 

precisely than the existing definitions (elaborated in Chapter 3). But, identifying a subgraph with 

maximum average degree in the given graph would require a comparison of all the subsets of 

nodes leading to an exponential solution. The NP-completeness of community identification can 

be proved by restriction method given by Garey and Johnson [69]. An NP-completeness proof 

by restriction for a given problem   consists of showing that   contains a known NP-complete 

problem       as a special case. Identifying an induced connected subgraph with a specific 

property is a proven NP-complete problem (GT22: [69]). One such NP-complete problem is the 

identification of cliques, where the property of the induced subgraph is the completeness. The 

problem of identifying an induced connected subgraph with maximum average degree restricts to 

this NP-complete problem, since identifying cliques would be a special case of our community 

identification. 

6.3 Community identification based on maximizing average degree 
 

The definition of a community clearly indicates that we are interested in identifying subsets 

of vertices with maximal average degree in a given graph. Given a large graph and a seed node u 

we identify a set of vertices that u belongs to satisfying the above criteria. Since we explore only 

a restricted neighborhood of u, there is one other parameter k, required as input to the algorithm. 

In other words, the parameter k specifies the distance till which we explore the given graph from 

the seed. Typically, the value of k is a positive integer greater than two. When k value is one or 
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two, we have just the seed node and/or few of its neighbors (neighbors of neighbors), which is 

insufficient to identify a community.  

As a first step of the algorithm we perform a breadth-first search [46] on the input graph 

starting at node u. Once we obtain the subset of vertices ),( uk  by the breadth-first technique, 

our algorithm iteratively removes nodes that do not belong to the community. Let C denote this 

initial set of vertices ),( uk . The average degree of the subgraph [ Cd ] is calculated. Now, we 

remove the nodes with minimum degree and calculate the new average degree [ Hd ]. We 

compare the two average degree values and if Hd is greater than Cd then we store the new set of 

vertices in C. It is to be noted that the degree of the nodes in C needs to be updated on the 

removal of minimum degree nodes. Again, with the new set of vertices, we remove the nodes 

with the least degree and re-compute the average degree Hd . The iterative removal and average 

degree computation continues till Hd is greater than Cd . If Hd becomes less than Cd , we stop the 

iteration and return the set of nodes C as the community. If a given seed does not belong to any 

community, it will be removed in one of the iterations of the algorithm (since the node would not 

contribute to a higher average density of the resulting set of nodes). A detailed description of the 

notation and steps involved in the algorithm are given by Algorithm 7. 
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Algorithm 7: Community identification based on Maximizing Average degree [AD] 

 

 

Input: 

G (V, E)  Graph with vertex set V and edge set E 

u    Seed vertex 

k   Depth of BFS exploration from u 

 

Output: 

C (VC , EC)  Set of vertices and edges that form the Community 

 

 

1 Procedure Initialize ( ) 

2 { 

3                  // Function returns the induced subgraph till 

4        //    depth k from node u as root, in graph G 

5 }                   

6 Procedure find_Community ( ) 

7 { 

8           // Start with the entire subgraph as C 

9       Compute_Avg_Deg (C)  // Find average degree of the subgraph C 

10   do 

11   { 

12           // Previous best Community 

13            // Previous best Avg. deg 

14                
    // Find the smallest degree of the subgraph 

15                      // Include nodes that have degree        

16          

17                           // Include newly induced edges  

18         Compute_Avg_Deg (C)    // Find avg. deg. of the modified subgraph  

19    }while (       

20              // Restore best Community 

21             

22 } 
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6.4 Computational complexity 
 

The time complexity of the algorithm is        , where n’ denotes the number of nodes in the 

k-neighborhood [ ),(' ukn  ] and d  denotes the average degree of the nodes in the subgraph. 

For each of the nodes (n’) in the resulting community, the algorithm needs to check the degree of 

the adjacent nodes )'( dn . The time complexities of the existing community identification 

algorithms are mentioned in Table 4. Let k’ denote the number of nodes in the resulting 

community for a given input node and    denote the average degree of the nodes, then the 

average case time complexity of the algorithms are as follows: 

Table 4: Average case complexity of community identification algorithms 

Algorithm Complexity 

Clauset’s local modularity [LM]          

Bagrow & Bollt’s l-shell [LS]         

Luo et al. subgraph modularity [SM]                          

Chen et al. connection density [CD]             

Schaffer’s relative density [RD]          

Improved relative density          

Maximizing average degree         
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CHAPTER 7: PERFORMANCE ON SYNTHETIC AND REAL-WORLD 

NETWORKS 
 

One of the desired characteristic of a community identification algorithm is the accuracy to 

fetch the set of vertices that form the community irrespective of the input seed. Since an accepted 

quantitative metric to gauge the quality of a community is yet to be devised in the literature, the 

algorithm has to be compared and tested against graphs with known community structures. 

Synthetic and real-world graphs have been used as benchmarks to test the effectiveness of 

community detection algorithms. We implemented our algorithm using Java in eclipse SDK and 

the graph visualizations were done using Gephi [20], GLay[154] and Pajek [21]. 

Regular graphs [e.g., ladder, path, grid] do not posses any dense subgraphs because their 

edges are uniformly distributed. Hence they are not investigated for presence of communities. 

Classical random graphs also do not exhibit this property since there is no preferential 

attachment among nodes to form denser subgraphs [34]. Therefore it is essential to use random 

graph models that generate scale-free, clustered graphs to test community detection algorithms. 

Several random graph generators take into account the dynamic addition of nodes and edges and 

produce graphs similar to real-world complex networks [42, 47, 63, 116, 126, 159]. Similarly, 

numerous examples of complex networks exist in real-world such as the web graph [52], protein-

interaction networks [105] and the Internet [15]. But it is essential that the algorithms are tested 

on graphs with known community structures, before applying them to real-world large graphs. 

The execution results of our algorithm on these synthetic graphs and some real-world graphs are 

discussed below. 
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7.1 Synthetic graphs 
 

A number of network models have been proposed in the literature to generate graphs 

replicating the properties of complex networks [34, 94, 169]. In particular, the random graphs 

generated with locally-dense subgraphs are the ones of interest to test community detection 

algorithms. Algorithms are tested on these controlled graphs to see if they recognize the already 

known community structure. The performance comparison of the community identification 

algorithms on two such synthetic graphs, which are most cited in the literature are discussed. 

7.1.1 GN graphs 
 

Girvan and Newman described a synthetic graph with 128 nodes divided equally into four 

communities (GN graph) [117]. The average degree of the graph is equal to 16 and so the graph 

consists of 1024 edges. Edges are placed independently at random between the vertex pairs with 

probabilities pin (higher value - for an edge within the same community) and pout (low value - for 

an edge between two communities). One node from each of the communities was chosen 

randomly as input to our algorithm and the set of nodes that form the community was correctly 

identified. The value of k [the BFS depth] was given as three which was sufficient to identify the 

community. The average degree of the communities is equal to 14.4375. The four communities 

identified are depicted with different colors in Figure 16. 

GN graphs with 256 (GN256) and 512 (GN512) nodes were also used as test graphs to the 

algorithm. The average degree of each of these graphs was 16 and they consisted of four equal-

size communities similar to the 128 node GN graph (GN128). A comparison of the execution 

results of our algorithm against four other algorithms is shown in Figure 17. All the algorithms 
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were given the same seed and their execution time to identify the community is calculated in 

milliseconds. Note that we have not compared the execution time of the algorithm proposed by 

Bagrow and Bollt because of the aberration in results due to the input parameter α. As evidently 

seen from the figure, the increase in the number of nodes in the resulting community 

significantly affects the performance of the existing algorithms. This is a serious bottleneck when 

applying the algorithms to large real-world complex networks. But the average degree based 

algorithm (AD) takes considerably less time (in fact sub-linear time complexity) and accurately 

identifies communities irrespective of the size of the graph (or the community). 

 

Figure 16: Girvan-Newman synthetic graph (128 nodes, 1024 edges and four equally sized 

communities).  
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Figure 17: Run time comparison of community identification algorithms 

 

The performance of our community identification algorithm was also tested on GN graphs 

with varying ratios of inter-community and intra-community edges. We compared the results 

with two algorithms with the next best run time (inferred from Figure 17) - Luo et al.’s algorithm 

(SM) and Schaeffer’s algorithm (RD). The vertices of the GN graph were divided into four 

communities of equal size with each vertex consisting of 16 adjacent nodes ( 16id ). The 

number of inter-community edges was varied from one to nine ( 91  outd . Therefore, a total 

of nine different GN graphs were generated as test cases. The algorithms were tested using the 

same seed in each of the test cases and Jaccard’s index was used to calculate the percentage of 

nodes correctly identified [132]. If T denotes the target community vertices for a given seed 
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vertex and C denotes the set of vertices identified for the seed by a community identification 

algorithm, then Jaccard’s index is given by 

CT

CT
CTJ




),(

 

The value of J ranges from 0 to 1, with 1 indicating a perfect match between the expected and 

obtained result with no outlier nodes.  

 

Figure 18: Jaccard index values comparing target set and obtained set of community nodes for 

three algorithms. 

 

The comparison results are shown in Figure 18. All three algorithms identify the community 

nodes with no false or true positives until the number of inter-community edges per vertex is less 

than or equal to 6 [ 6outd ]. But for 7outd , SM and RD algorithms fail to identify all the 
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nodes in the community a given seed belongs to, whereas our algorithm has J(T,C) equal to one. 

Even in the case where the number of adjacent nodes within the community is equal to the inter-

community degree (i.e., 8outd ), the average degree based algorithm identifies 75% of the 

expected community nodes.  

7.1.2 LFR graphs 
 

Another model for generating a controlled test graph with communities was proposed by 

Lancichinetti et al. [94, 95]. These graphs are referred as LFR (Lancichinetti, Fortunato and 

Radicchi) graphs and consist of communities of different sizes unlike GN graphs.  

 

Figure 19: Power-law degree distribution exhibited by LFR graph with 512 nodes.  

 

LFR graphs are better in testing a community algorithm because the communities are of variable 

sizes and the average degree also varies. We used an LFR graph with 512 nodes and 4171 edges, 
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with an average degree of 16.293. The degree distribution of the LFR graph is shown in Figure 

19 and it clearly exhibits power-law degree distribution discussed in Chapter 2.  

 

 

Figure 20: LFR synthetic graph (512 nodes and 4171 edges).  

 

The graph consisted of five communities of varying sizes and is shown in Figure 20. Similar 

to the GN graph, we selected one node at random from each of the communities and the 

algorithm identified the corresponding community precisely. Nodes within a distance of four 
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from the seed node were necessary to identify communities in LFR graphs as against three in 

case of GN graphs (i.e., k = 4 in the algorithm). The five communities (differentiated using 

colors) identified by our algorithm are shown in the figure. 

 

Figure 21: Jaccard’s index for communities from seed nodes with increasing degree. 

 

Another interesting observation on community identification algorithms would be the 

variation in the set of nodes obtained based on the initial seed node. Eventually, we are interested 

in the same set of nodes that contribute to the community, irrespective of the node from which 

we begin the identification. This is one of the desired properties of a community identification 

algorithm and this behavior was tested in the AD algorithm by starting with seed nodes of 

varying degree (increasing order). One of the five communities (with 81 nodes) was chosen and 

the degree of the nodes varied from 10 to 31. Figure 21 depicts this comparison for seed nodes 

from the same community but of varying degrees against SM and RD algorithms. Nodes with 
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relatively lower degree in the community do not lead to identifying the entire expected set of 

nodes in the community and hence the lower value of Jaccard’s index. The consistency of our 

algorithm irrespective of the initial seed is evident from the Jaccard’s index range (0.65 to 1.0). 

The other two algorithms did not fare well in LFR graphs as evident from their poor 

identification of community nodes for a given seed. 

 
 

Figure 22: Jaccard’s index comparing communities identified in LFR graphs with varying size.  

 

The performance of our algorithm on identifying communities in LFR graphs of increasing 

magnitude was also tested. The graph sizes chosen were 128, 256, 512, 1024 and 2048. LFRx 

refers to graph with x nodes. The number of communities was fixed to five and so the 

community size also increased with respect to the graph size. Jaccard’s index comparing our 

algorithm with Luo et al.’s algorithm on these graphs is shown in Figure 22. Despite the 

increasing size and decrease in the ratio of intra-community and inter-community edges, our 
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algorithm identified more than 50% of the expected nodes against only 20% by the subgraph 

modularity (SM) algorithm. The number of nodes, number of edges and the average degree of 

the LFR graphs used to test the algorithms are listed in Table 5. Note that Schaeffer’s algorithm 

(RD) did not identify communities in LFR graphs (Figure 21), so we have excluded it from 

analysis for LFR graphs with increasing size. 

 Table 5: LFR graphs of varying size and their average degree 

Network Type n m Avg. degree 

LFR1 128 502 7.84375 

LFR2 256 1036 8.09375 

LFR3 512 2087 8.15234 

LFR4 1024 4145 8.0957 

LFR5 2048 8266 8.07227 

 

 

7.2 Real-world networks 
 

Identifying communities in real-world complex networks tests the effectiveness of a 

community identification algorithm. As mentioned before, numerous examples of real-world 

networks have been used as benchmarks to test community detection algorithms in the literature 

[7, 49, 84, 124, 125, 171]. Some of the real-world benchmark graphs are not very large networks 

(less than 500 nodes), but are still considered because of their well-defined community structure. 

For example, Zachary’s karate club network [171] is the most cited real-world social network (in 

community detection literature), but it is a very small network consisting of only 34 nodes. The 

karate club network and the two communities are shown in Figure 23.  
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Figure 23: Zachary karate club network (34 nodes and 78 edges) 

 

We tested our algorithm on several known real-world graphs and some of the results are 

discussed below. Table 6 gives a list of real-world complex networks that we used as input to our 

algorithm to identify communities. The number of nodes, number of edges, number of 

communities, and average degree are all summarized in the table. Some of these graphs, their 

communities and the performance of the algorithm in identifying communities in the real-world 

networks are discussed in this sub section. The network properties and communities in biological 

networks are mentioned in a separate sub section. Even though the functional brain network is a 

biological network, due its abstract nature it is explained in the generic category. 
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Table 6: Some of the real-world benchmark networks  

Network Type n m    Nc Ref. 

Zachary Karate Club Social 34 78 4.6 2 [171] 

Bottlenose dolphins Social 62 159 5.1 2 [106] 

Brain Functions Biological 90 337 7.5 5 [80] 

Books on American Politics Business 105 441 8.4 2 [90] 

NCAA Football (2011) Social 120 674 5.6 11 [1, 2] 

Jazz Musicians Social 198 2742 27.7 2 [73] 

 

7.2.1 Bottlenose dolphins 
 

Lusseau [106, 107] studied the association between bottlenose dolphins in Doubtful Sound, 

New Zealand. The network was based on social acquaintances (preferred companionships) and 

each node of the network corresponds to a dolphin. Individuals that were seen together more 

often than expected by chance have an edge between them in the graph. Lusseau’s work focused 

mainly on the social network properties such as the power-law distribution, clustering and self-

organizing phenomena of bottlenose dolphins.  

He also observed centers of associations, with adult females being responsible for the hubs. 

These findings lead to the observance of communities in such a small network and a number of 

community detection algorithms in the literature explore the intrinsic community nature of this 

network [11, 38, 117]. Our algorithm identified the core of the two large communities in the 

dolphin network, ignoring the outlier nodes. These communities correspond to the two groups 

described by Lusseau et al. [107] based on their frequent interaction and association. The two 

groups of dolphins are denoted by red and blue color nodes (black color nodes represent dolphins 

that were considered as outliers) in Figure 24. 
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Figure 24: Bottlenose dolphins’ social network (62 nodes and 159 edges).  

 

7.2.2 Jazz musicians  

 

The collaboration network of jazz musicians reveals interesting topological and structural 

properties [73]. Each node corresponds to a jazz band and an edge exists between two nodes if 

they have at least one musician in common. The network consists of 198 nodes and 2742 edges 

and its properties has been analyzed in the literature [54, 155, 163]. As in the case with any 

social network, the jazz musician collaboration network also exhibits communities. The node 

with the highest degree was chosen as the seed and our algorithm identified the largest dense 

subgraph of the network as shown in Figure 25 (the community shown in red). The community 

corresponds to the strong correlation amongst the bands due to their recording locations. Our 

algorithm identifies the nodes that lie intermediate between the two dense structures of the 

network to belong to the larger group, which is a desirable result in the real-world scenario.  
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Figure 25: Jazz musicians collaboration network (198 nodes and 2742 edges).  

 

7.2.3 NCAA football  
 

The National Collegiate Athletic Association (NCAA) football network depicts the schedule 

of football games between Division IA (now known as the Football Bowl Subdivision) colleges. 

The college teams represent the nodes and an edge between two nodes denotes a regular season 

game scheduled between the two teams. Girvan and Newman [72] compiled the schedule of the 

college teams during regular season of Fall 2000 (Figure 14) and it has been used as a 

benchmark in several community detection algorithms [13, 40, 96, 130]. The number of teams 
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has been increased from 115 to 120 in 2011 and the football network comprising of these 120 

nodes from their 2011 schedule was compiled [1, 2].  

 

 

Figure 26: 2011 NCAA Division I FBS football network (n = 120 and m = 674).  

 

Each of the teams belongs to one of the twelve conferences and size of the conferences 

ranges from 8 to 12 (apart from the Independents conference which has only four teams). The 
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inherent community structure in this network is a result of the conferences because the teams of 

the same conference play against each other more frequently than they do against teams of other 

conferences. Therefore, the network comprises of more edges within the conference than outside, 

thus leading eleven communities (the Independents conference does not form a community). Our 

algorithm distinctly identified the community (in this case the conference) that a given node 

belongs to and the communities are shown in Figure 26. The eleven communities in the network 

correspond to the conferences (represented by different colors). The four teams from the 

Independents conference are placed separately in the middle since they do not form a 

community. 

 

7.2.4 Brain functions 
 

Analysis on intrinsic human brain activity based on blood oxygen level-dependent (BOLD) 

and resting-state functional magnetic resonance imaging (R-fMRI) has received considerable 

attention in the past decade [162]. The reason for this is primarily attributed to the understanding 

of the brain as a complex network (the human connectome [78, 151]). Specifically, the functional 

network of the brain demonstrates non-trivial topological properties such as small average 

distance, modularity and highly connected hub regions.  

These network properties have also been found to change through aging and in various 

pathological conditions. The functional brain network, an abstract representation of the brain, 

comprises of 90 nodes, each of which corresponds to regions in the brain (based on a prior 

Automated Anatomical Labeling [AAL]) [80]. The temporal correlation between the regions 

corresponds to the edges among the nodes. This abstract representation of the brain can be 
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organized as five different communities corresponding to somatosensory (motor and auditory), 

vision, attention, default-mode and limbic. Given a seed (region), our algorithm returned the 

corresponding community it belongs to. This helps in identifying the functionality of a region or 

a sub-region. The five communities are represented by five different colors (Figure 27) and it is 

evident that they are tightly knit. 

 

 

Figure 27: Resting-state functional brain network with five communities (90 nodes and 337 

edges).  
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7.2.5 Co-purchased books on American politics 

 

The network representing the books on American politics that are purchased by the same 

customer reveals interesting information towards people’s reading habits. Nodes of the network 

correspond to the books in the New York Times Bestseller list in the year 2005 and two books 

are linked if they were purchased by the same person as compiled by Krebs [90]. The network 

exhibits two communities and interestingly they correspond to the interests shown by the people 

towards a political party. Identifying a community for a given node in this network not only 

helps facilitate recommendations, but also helps understand how book readers can influence a 

society in political campaigning. Our algorithm identified the two communities shown in Figure 

28 and some nodes did not belong to both the communities. 
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Figure 28: Co-purchased books on American politics (n = 105 and m = 441) 
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7.2.6 Comparing correctness of classified nodes 

 

The results obtained from the community identification algorithms on some real-world 

networks were compared against the expected set of nodes (as mentioned in the literature). 

Different seed nodes were chosen for each of the networks randomly (all from the largest 

community in that network) and the union of the results obtained from each seed was used in the 

comparison. The Jaccard’s index values of the comparison are shown in Figure 29.  

 

Figure 29: Jaccard index values comparing expected to obtained results in real-world networks. 

 

Except for the dolphin’s network, our algorithm identified the expected community more 

accurately than the other algorithms. This aberration in the result can be attributed to the 

presence of several nodes with degree one (leaves) in the largest community of the dolphin 

network (please refer to Figure 24) and our algorithm fetched only the core set of nodes with the 
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maximum average degree. This property becomes essential when analyzing large networks, since 

we are interested in the most significant members forming the community.  

7.3 Biological networks 
 

The direct correlation between the structure and function justifies the importance of 

efficiently identifying, detecting and extracting communities in case of biological networks. 

Especially in large biological networks such as the genome and neural network, identifying the 

best community that a given node belongs to (if there exists one) is more appropriate. Efficient 

algorithms to identify communities help uncover functionally significant components in a given 

biological network. Examples of such instances include the set of diseases a gene corresponds to 

in a disease network, the group of neurons associated with a particular functionality in the human 

brain, and the set of highly interacting proteins. The data presented (number of nodes and edges) 

may differ from the original datasets provided by the authors because we have eliminated self-

loops and duplicate edges for analysis purposes. 

Table 7: Properties of biological networks 

Organism Network Type n m    CC Q Ref. 

C. elegans Neural 297 2148 14.46 0.292 0.372 [165] 

C. elegans Metabolic 453 2025 8.94 0.646 0.409 [54] 

Human Disease-Gene 516 1188 4.6 0.635 0.82 [74] 

Human Gene 903 6760 14.97 0.853 0.842 [74] 

Yeast Protein 2284 6646 5.81 0.13 0.567 [30] 

 

The high modularity and clustering coefficient values reassures the existence of communities 

in such biological networks. Table 7 summarizes the network properties of some of the 

biological complex networks analyzed in the literature. The details include number of nodes (n), 
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number of edges (m), average degree (  ), clustering coefficient (CC), and modularity (Q). The 

description of these networks along with their degree distribution and the community 

corresponding to the node with the highest degree are as follows: 

7.3.1 Caenorhabditis elegans  
 

The complex biological processes taking place in an organism can be studied in depth 

from the molecular properties of their gene and protein. However, obtaining the genome 

sequence to perform a thorough study of the mechanisms is still in its infancy. The completely 

sequenced and well-annotated genome of Caenorhabditis elegans (C. elegans) marked the 

beginning of analyzing such metabolic networks [54, 113]. Nodes correspond to the proteins that 

form the molecules and their interaction is represented by an edge. The community 

corresponding to the node with the highest degree is shown in Figure 31.  

    

Figure 30: Power-law degree distribution of C. elegans metabolic network 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 

F
re

q
u

en
cy

 o
f 

n
o
d

es
 

Degree 



93 
 

 

Figure 31: Community identified in C. elegans metabolic network 

 

Similarly, the neural network of C. elegans represented as a directed, weighted network 

was studied by White et al. [167]. But their network properties were analyzed by Watts and 

Strogatz [165], and they classified the neural network to be one of the small-world networks. We 

have extracted an unweighted and undirected version of the same network and identified the 

community corresponding to the node with the highest degree. The power-law degree 
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distribution and the community identified are shown in Figure 32 and Figure 33 respectively. It 

is to be noted that C. elegans is the only organism to have its neural network completely mapped. 

 

 Figure 32: Power-law degree distribution of C. elegans neural network 

 

7.3.2 Human disease network  
 

Modeling disorders and their respective disease genes as network helps unravel the 

common origins of gene associations in human beings. There are two different ways of 

observing the disease networks obtained from human disorders [74]. In the “human disease 

network” nodes represent the disorders and two nodes are connected if they have at least one 

gene in which the mutations are associated with both disorders. In the “disease gene network”, 

the disease genes correspond to the nodes and two genes are linked if they are associated with 

the same disorder. Though other network properties have been mentioned in the literature, the 

communities obtained from the nodes with highest degree are depicted in the Figure 34 and 
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Figure 35 below. The set of diseases caused by a particular gene and set of relative disorders 

occurring as a result of a particular disease can be easily identified by applying the average 

degree based technique onto these networks.  

 

Figure 33: Community identified in C. elegans neural network 



96 
 

 

 

 

Figure 34: Community identified in human disease network 
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Figure 35: Community identified in disease gene network 
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7.3.3 Saccharomyces cerevisiae 
 

The network properties of the Protein-Protein interaction network of Saccharomyces 

cerevisiae (Yeast) has been studied in detail by several authors [30, 84, 124]. The network is not 

as sparse as the other biological networks and hence the community identified contains almost 

the entire connected component as shown in Figure 36. 

 

Figure 36: Community identified in Protein interaction network of Yeast 
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CHAPTER 8: CONCLUSION AND FUTURE DIRECTIONS 
 

Discovering and identifying communities in large real-world networks are essential in 

understanding the associative behavior of the nodes. Despite the several algorithms proposed to 

discover communities in complex networks, the real-world networks almost always do not 

require extraction of all the communities. The primary objective of the current research is to 

devise fast and efficient methods to identify communities. This section provides suggestions for 

future directions in community identification and a summary of the current research. 

8.1 Parallel algorithms 
 

The novel average degree based algorithm being faster and accurate than the existing 

techniques would definitely serve better in case of large complex networks. However, the 

enormity of the complex networks necessitates the possibility of exploring the usage of multiple 

processors to work simultaneously and speed up the process. The key factors in designing such a 

parallel algorithm for community identification are data distribution and concurrent execution. 

Initial breadth-first exploration of the graph can be done in parallel [70, 170], but the subsequent 

removal of the nodes with minimal degree at each stage would cause issues.  

In case of shared memory architecture, the processors can choose the minimum degree 

value from its block of the data and place it in a shared variable (by comparing with a value 

already placed by another processor). Then each processor can remove the nodes with this 

minimum degree value in their portion of the data. After the removal, the degree of the 

remaining nodes needs to be updated synchronously. However, in case of message passing 

architecture (distributed memory) all the processors will find out the local minimum degree 
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value per iteration and communicate among others to vote for the global minimum. Then each 

processor can remove the nodes with that minimum value locally. Computing the average degree 

of the induced subgraph during each stage of the algorithm would also prove expensive in terms 

of communication time. 

However, community discovery in parallel is quite straight forward. Each process can 

take different input seed node and identify the community it belongs to. This would lead to 

discovering communities in parallel, provided the seed nodes are chosen from different 

communities.  

8.2 Quality of a community 
 

In this research, we have defined a community in terms of average degree and relative 

density that takes into account the relative dense nature of these structures in sparse 

neighborhood. However, an accepted quantitative definition of a community is still under debate. 

This makes it difficult to evaluate the algorithmic results and presence of communities in 

complex networks. The modularity metric [113, 117] discussed earlier has been used as a 

standard to compare the quality of communities in the literature. But computing the modularity 

of a community requires the knowledge of all the communities in the given graph. This is not 

feasible in case of complex networks.  

8.3 Applications 
 

Applications in the real-world scenario that requires identifying membership 

(community) for a given node is aplenty. Examples of such scenarios include identifying 
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synonyms for a given word in a linguistic network [147], finding the set of pages a given 

webpage has hyperlinks to (in a web graph) [23],  identifying the neurons with similar 

functionality in the human connectome [151], and spotting the related genes corresponding to a 

given disease [74]. Here we mention two applications that can take advantage of community 

identification algorithms to a great extent. 

8.3.1 Recommendation networks 
 

A popular real-world application that can take advantage of network modeling is the 

music recommendation service [35, 36, 97]. Several online music recommendation engines such 

as Pandora, Musicovery, and iLike have gained popularity recently because of their ability to 

create playlists based on user selection. Based on the attributes of the songs such as genre, artist, 

acoustics, musician, etc., an edge between two songs in the music database can include weights. 

Community identification algorithms discussed in this work for unweighted graphs can be 

expanded to such weighted graphs by extracting induced subgraphs with maximum weighted 

average degree.  

A similar network that can take advantage of community identification based 

recommendation is the co-purchasing network [98, 149]. Each node of the network corresponds 

to an item (typically listed and purchased from an online catalog) and an edge exists between two 

items if both items were bought by the same customer. This network resembles the co-purchased 

books on American politics discussed earlier. But several other factors such as the category of 

the item and price range can be used as weights for the edges. A community identified in such a 

network would correspond to the set of items the customer is most likely to buy next. 
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8.3.2 Content delivery networks 
 

Content Delivery Networks (CDNs) or Content Distribution Networks replicate web 

content and deploy content servers in multiple locations often over multiple backbones and ISPs. 

More formally, CDN is a collaborative collection of network elements spanning the internet, 

where content is replicated over several mirrored web servers in order to perform transparent and 

effective delivery of content to the end users [122, 131]. Content providers contract with CDNs 

to host and distribute their content. Akamai and Limelight are two of the best CDNs distributing 

contents of well known content providers such as YouTube [Limelight], Microsoft, Yahoo 

[Akamai] etc. Fetching and replicating content onto the nearest ISP requires not only the 

knowledge of hyperlinks the user has visited but also the underlying connectivity among 

different web pages. Identifying community corresponding to the web page visited can help fetch 

these related web pages efficiently, thus improving user experience in terms of speed. 

8.4 Ranking 
 

Identifying a set of related nodes for a given seed has significant applications as 

elaborated above. But prioritizing the obtained neighbors based on their connectivity proves 

pivotal especially in applications such as music and movie recommendations. Ranking and 

categorizing the identified nodes can enhance the search techniques and provide efficient results 

in online search engines. Ranking in clusters has been researched in data mining to a great 

extent. But they look for similarity among nodes. Ranking based on the connections among the 

nodes would possess greater value in real-world applications. 
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8.5 Summary 
 

In this dissertation the properties of complex networks and ways of mining cohesive dense 

structures in such networks has been investigated. A comprehensive taxonomy of the techniques 

to discover and detect communities, with emphasis on key algorithms has been discussed in 

detail. An in-depth survey of the existing community identification algorithms has also been 

presented. A novel greedy heuristic based on relative density of the induced subgraph, which can 

be used to identify communities in real-world networks efficiently is presented. We have also 

listed and analyzed the various community definitions in the literature. An improved definition 

of a community based on the average degree of the subgraph is discussed and a faster linear time 

divisive algorithm for identifying communities in large complex networks is presented. The 

performance of the algorithms on synthetic benchmark graphs and several real-world networks is 

also examined and comparative results are presented. Finally some related problems for future 

research in this topic have been stated.   
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APPENDIX  

LIST OF SYMBOLS 
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     fraction of edges incident on all vertices in community i 

A Adjacency matrix of the graph 

BC Boundary nodes of community C 

Bij Boundary adjacency matrix value at row i and column j 

C(VC, EC) Community 

CC(G) Clustering coefficient of graph G 

CC(u) Clustering coefficient of node u 

  
   Information centrality value for an edge incident on node i 

    
 

 edge-clustering coefficient for edge (i, j). 

D Diagonal matrix of the graph 

di Degree of node i 

dij shortest path length between nodes i and j 

      Average degree of the vertex set    

      Number of external edges from the Community 

  
    Internal degree of node i 

      Number of internal edges within a Community 

  
     External degree of node i 

E Edges of G 

eij k X k symmetric matrix entry - fraction of the edges that link the vertices 

in community i to vertices in community j 

f Product of external density and relative density 

G (V, E) Unweighted, Undirected Graph 

H Hamiltonian of the graph 

Di Total emerging degree at level i 

Kn Complete graph of n vertices 

      contribution of node i’s degree on placing it to a partition r 

L Laplacian of the graph 

m Number of edges 



106 
 

n Number of vertices 

NC Nuclei nodes of Community C 

N [U] Union of closed neighborhood of each u   U 

N[u] Closed Neighborhood of vertex u 

P(r) Proportion of nodes with degree r in a graph 

Q Modularity 

    Local modularity 

qi modularity value corresponding to node i 

S Subset of vertices 

    
 

 number of possible cyclic structures of order g 

T(G) Transitivity of graph G 

V Vertices of G 

wij influence of neighbor j in updating i’s angle 

    
   

 number of cycles of order g on the edge (i, j) 

α Input parameter that decides the stopping criterion in l-shell spreading 

algorithm 

γ Power-law coefficient 

        Set of vertices within a neighborhood k from vertex u 

δ Minimum degree of the graph 

ηi(t) moving rate of node i at time step t 

Θi(t) angle value of node i at time step t 

λi relative contribution of node i to the community structure ( = qi/di) 

σi Potts spin value 1 ≤ σi ≤ q 

      Density of graph G 

      Nodes adjacent to the induced subgraph g but not within g 

    External density of a subgraph 

    Internal density of a subgraph 

    Relative density of a subgraph 
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