
University of Central Florida University of Central Florida

STARS STARS

Faculty Bibliography 2000s Faculty Bibliography

1-1-2009

A Hypercube-Based Encoding for Evolving Large-Scale Neural A Hypercube-Based Encoding for Evolving Large-Scale Neural

Networks Networks

Kenneth O. Stanley
University of Central Florida

David B. D'Ambrosio
University of Central Florida

Jason Gauci
University of Central Florida

Find similar works at: https://stars.library.ucf.edu/facultybib2000

University of Central Florida Libraries http://library.ucf.edu

This Article is brought to you for free and open access by the Faculty Bibliography at STARS. It has been accepted for

inclusion in Faculty Bibliography 2000s by an authorized administrator of STARS. For more information, please

contact STARS@ucf.edu.

Recommended Citation Recommended Citation
Stanley, Kenneth O.; D'Ambrosio, David B.; and Gauci, Jason, "A Hypercube-Based Encoding for Evolving Large-Scale
Neural Networks" (2009). Faculty Bibliography 2000s. 2178.
https://stars.library.ucf.edu/facultybib2000/2178

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/facultybib2000
https://stars.library.ucf.edu/facultybib
https://stars.library.ucf.edu/facultybib2000
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/facultybib2000/2178?utm_source=stars.library.ucf.edu%2Ffacultybib2000%2F2178&utm_medium=PDF&utm_campaign=PDFCoverPages

A Hypercube-Based Encoding
for Evolving Large-Scale
Neural Networks

Kenneth O. Stanley*,**
University of Central Florida

David B. D’Ambrosio**
University of Central Florida

Jason Gauci**
University of Central Florida

Keywords

Compositional pattern-producing
networks, CPPNs, HyperNEAT,
indirect encoding, hypercube-based
NeuroEvolution of Augmenting
Topologies, artificial embryogeny

Abstract Research in neuroevolution—that is, evolving artificial
neural networks (ANNs) through evolutionary algorithms—is
inspired by the evolution of biological brains, which can contain
trillions of connections. Yet while neuroevolution has produced
successful results, the scale of natural brains remains far beyond
reach. This article presents a method called hypercube-based
NeuroEvolution of Augmenting Topologies (HyperNEAT) that aims
to narrow this gap. HyperNEAT employs an indirect encoding
called connective compositional pattern-producing networks (CPPNs)
that can produce connectivity patterns with symmetries and repeating
motifs by interpreting spatial patterns generated within a hypercube
as connectivity patterns in a lower-dimensional space. This approach
can exploit the geometry of the task by mapping its regularities onto
the topology of the network, thereby shifting problem difficulty away
from dimensionality to the underlying problem structure. Furthermore,
connective CPPNs can represent the same connectivity pattern at
any resolution, allowing ANNs to scale to new numbers of inputs
and outputs without further evolution. HyperNEAT is demonstrated
through visual discrimination and food-gathering tasks, including
successful visual discrimination networks containing over eight
million connections. The main conclusion is that the ability to
explore the space of regular connectivity patterns opens up a
new class of complex high-dimensional tasks to neuroevolution.

1 Introduction

Many defining characteristics of natural brains have so far eluded attempts to evolve artificial neural
networks (ANNs). Perhaps most dramatic is the astronomical complexity of biological brains. With
100 trillion connections whose collective function no artificial system yet can even approach, the
human brain is the most complex system known to exist [30, 62]. Upon closer inspection, the brain’s
complexity is manifested through precise, intricate motifs that repeat throughout it, often with variation
on a theme, such as cortical columns [47]. In contrast, neuroevolution (i.e., the artificial evolution of
ANNs) produces networks with orders of magnitude fewer neurons and significantly less organization
and regularity [18, 51, 60]. These differences between the natural and artificial suggest that something is
missing from present evolutionary algorithms that prevents them from achieving similar feats.

n 2009 Massachusetts Institute of Technology Artificial Life 15: 185–212 (2009)

* Contact author.
** School of Electrical Engineering and Computer Science, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816-2362.
E-mail: kstanley@cs.ucf.edu (K.O.S.); ddambro@cs.ucf.edu (D.B.D.); jgauci@cs.ucf.edu (J.G.)

Researchers in generative and developmental encoding, which is a branch of evolutionary computation
concerned with genetic encodings motivated by biology, often point out that repetition through ge-
netic reuse explains how such massive structures can be represented compactly in DNA [5, 23, 26,
52]. That is, a structure that repeats many times can be represented by a single set of genes that is
reused in mapping from genotype to phenotype.

Yet repetition through reuse is not the only important clue to such astronomical complexity. There
is an important organizing principle behind many observed regularities that explains their origin: The
geometry of the brain is often organized to reflect and exploit the geometry of the physical world. By
preserving the most salient physical relationships of the outside world, such as symmetry (e.g., left and
right eyes and ears) and locality (e.g., the retinotopic map of visual experience), sensory configuration
allows neural organization to largely mirror the same relationships. For example, the visual cortex pre-
serves the retinotopic layout of the eye [7]. In this way, nearby events in physical space are easily rep-
resented by similarly proximal neurons.

In fact, because neurons that are related to nearby events in space are also near each other in the
brain, many relevant operations can be performed through local connectivity. Such connectivity is
natural in a physical substrate in which longer distance requires more resources, greater accuracy,
and better organization. Thus, the properties of physical space inherently bias cognitive organization
toward local connectivity, which happens to be useful for solving problems that are projected from
the physical world.

Interestingly, neuroevolution and ANN optimization in general are normally cast as unknown
mappings between inputs and outputs [44, 51, 55, 60]. Yet although this perspective is widespread,
in effect it obfuscates the underlying problem geometry, because geometric relationships among in-
puts and outputs are discarded when they are represented only as an unstructured set of independent
parameters (Figure 1). Correlations and regularities in the task domain thereby become opaque to
the learning algorithm, which must consequently learn related functions in different parts of the net-
work independently. For example, a visual field or board game is often split into dozens of inde-
pendent coordinates with no a priori explicit relationship to each other [29, 31, 38]. A promising
alternative would be to learn a conceptual representation of the solution that is a function of the prob-
lem’s geometric structure.

This article presents such a neuroevolution method, called hypercube-based NeuroEvolution of Aug-
menting Topologies (HyperNEAT), which is designed to evolve large-scale ANNs by exploiting geom-
etry. HyperNEAT employs an encoding called connective compositional pattern-producing networks (CPPNs),
which can represent connectivity patterns as functions in Cartesian space. Connective CPPNs are

Figure 1. Regular ANN: Input order is irrelevant. Even though the order of inputs to the ANN in (a) is correlated directly
with the geometry of the front-facing robot sensors from which they are activated, traditional ANN learning algorithms
such as backpropagation [44] or current neuroevolution methods [51, 60] are blind to such ordering. In fact, the arbitrary
input order in (b) is identical from the perspective of the learning algorithm. Thus, counterintuitively, organizing inputs
(or outputs) to respect task geometry provides no advantage.

Artificial Life Volume 15, Number 2186

A Hypercube-Based Encoding for Evolving Large-Scale Neural NetworksK. O. Stanley et al.

an extension of regular CPPNs, an indirect encoding for spatial patterns that is abstracted from bio-
logical development [48, 49]. Specifically, connective CPPNs represent patterns in hyperspace that are
mapped to lower-dimensional connectivity patterns. That way, connective CPPNs evolved with
HyperNEAT can encode large-scale ANNs by discovering regularities along geometric dimensions
of variation in a manner motivated by the evolution of biological brains in nature.

The two experiments in this article aim to provide sufficient technical and conceptual insight to
allow progress in this new direction to proceed systematically from here. Thus, the first experiment
explores how geometry enables large-scale representation through reuse in a simple visual discrimi-
nation task with scalable resolution. The second experiment isolates the issue of exploiting geometric
regularities by comparing two different sensor and effector layouts for a simple food-gathering robot.
An analysis of scaling concludes by scaling an evolved ANN without further evolution to a size of over
eight million connections without loss of functionality.

Because it not only implements repetition through reuse but also exploits domain geometry,
HyperNEAT opens up significant new directions for future exploration in evolving ANNs.

The article begins with a review of CPPNs and NEAT in the next section. The HyperNEAT ap-
proach is then detailed in Section 3. Sections 4 and 5 describe and present results in the visual dis-
crimination experiment. Sections 6 and 7 then present the food gathering experiment and results.
The article concludes with a discussion and outlines future work in Section 8.

2 Background

This section provides an overview of CPPNs, which are capable of generating complex spatial pat-
terns in Cartesian space, and then describes the NEAT method that is used to evolve them.

2.1 Compositional Pattern-Producing Networks
In biological genetic encoding the mapping between genotype and phenotype is indirect. The pheno-
type typically contains orders of magnitude more structural components than the genotype contains
genes. For example, a human genome of 30,000 genes (about three billion amino acids) encodes a
human brain with 100 trillion connections [10, 12, 30]. Thus, the only way to discover structures with
trillions of parts may be through a mapping between genotype and phenotype that translates few
dimensions into many, that is, through an indirect encoding. Because phenotypic structures often occur
in repeating patterns, each time a pattern repeats, the same gene group can provide the specification.
The numerous left-right symmetries of vertebrates [40: 302–303], the receptive fields in the visual
cortex [17, 27], and fingers and toes are examples of repeating patterns in biology.

A most promising area of research in indirect encoding is developmental encoding, which is motivated
from biology [2, 5, 26, 52]. Development facilitates reusing genes because the same gene can be
activated at any location and any time during the development process.

This observation has inspired an active field of research in artificial developmental encodings [2,
4–6, 9, 11, 13–15, 21, 26, 28, 32–34, 36, 37, 39, 46, 52, 57]. The aim is to find the right abstraction
of natural development for a computer running an evolutionary algorithm, so that evolutionary
computation (EC) can begin to discover complexity on a natural scale. Prior abstractions range from
low-level cell chemistry simulations to high-level grammatical rewrite systems [52].

Compositional pattern-producing networks (CPPNs) are a novel abstraction of development that
can represent sophisticated repeating patterns in Cartesian space [48, 49]. Unlike most generative
and developmental encodings, CPPNs do not require an explicit simulation of growth or local inter-
action, yet still realize their essential functions. This section reviews CPPNs, which will be augmented
in this article to represent connectivity patterns and ANNs.

Consider the phenotype as a function of n dimensions, where n is the number of dimensions in
physical space. For each coordinate in that space, its level of expression is an output of the function
that encodes the phenotype. Figure 2a shows how a two-dimensional phenotype can be generated by
a function of two parameters.

Artificial Life Volume 15, Number 2 187

A Hypercube-Based Encoding for Evolving Large-Scale Neural NetworksK. O. Stanley et al.

Stanley [48, 49] showed how simple canonical functions can be composed to create an overall
network that produces complex regularities and symmetries. Each component function creates a
novel geometric coordinate frame within which other functions can reside. The main idea is that these
simple canonical functions are abstractions of specific events in development, such as establishing
bilateral symmetry (e.g., with a symmetric function such as Gaussian) or dividing the body into dis-
crete segments (e.g., with a periodic function such as the sine). Figure 2b shows how such a com-
position can be represented by a network.

Such networks are called compositional pattern-producing networks because they produce spatial pat-
terns by composing basic functions. Unlike ANNs, which often contain only sigmoid functions (and
sometimes Gaussian functions), CPPNs can include both those types of functions and many others.
Furthermore, the term artificial neural network would be misleading in the context of this research,
because ANNs were so named to establish a metaphor with a different biological phenomenon,
namely, the brain. The terminology should avoid the implication that biological, thinking brains are
in effect the same as developing embryos or genetic encodings. In this article, because CPPNs are
used to encode ANNs, it is especially important to differentiate these concepts.

Through interactive evolution, Stanley [48, 49] demonstrated that CPPNs can produce spatial
patterns with important geometric motifs that are expected from generative and developmental
encodings and seen in nature. Among the most important such motifs are symmetry (e.g., left-right
symmetries in vertebrates), imperfect symmetry (e.g., right-handedness), repetition (e.g., receptive fields
in the cortex [62]), and repetition with variation (e.g., cortical columns [19]). Figure 3 shows examples
of several such important motifs produced through interactive evolution of CPPNs.

That CPPNs and ANNs are so similar from a structural perspective is fortunate in that methods
designed to evolve ANNs can also evolve CPPNs. In particular, the NeuroEvolution of Augmenting

Figure 2. CPPN encoding. (a) The function f takes arguments x and y, which are coordinates in a two-dimensional space.
When all the coordinates are drawn with an intensity corresponding to the output of f, the result is a spatial pattern that
can be viewed as a phenotype whose genotype is f. (b) The CPPN is a graph that determines which functions are
connected. The connections are weighted so that the output of a function is multiplied by the weight of its outgoing
connection. Note that the topology is unconstrained and can represent any relationships.

Figure 3. CPPN-generated regularities. Spatial patterns exhibiting (a) bilateral symmetry, (b) imperfect symmetry, and
(c) repetition with variation (notice the nexus of each repeated motif) are depicted. These patterns demonstrate that
CPPNs effectively encode fundamental regularities of several different types.

Artificial Life Volume 15, Number 2188

A Hypercube-Based Encoding for Evolving Large-Scale Neural NetworksK. O. Stanley et al.

Topologies (NEAT) method is a good choice for evolving CPPNs because NEAT increases the
complexity of evolving networks over generations, allowing increasingly elaborate regularities to
accumulate. The next subsection describes the NEAT method.

2.2 NeuroEvolution of Augmenting Topologies
The NEAT method was originally developed to evolve ANNs to solve difficult control and se-
quential decision tasks [50, 51, 53]. Evolved ANNs control agents that select actions according to
their sensory inputs. NEAT is unlike many previous methods that evolved neural networks (i.e.,
neuroevolution methods), which traditionally evolve either fixed-topology networks [18, 45] or arbitrary
random-topology networks [3, 22, 60]. Instead, NEAT begins evolution with a population of small,
simple networks and complexifies the network topology into diverse species over generations, leading
to increasingly sophisticated behavior. A similar process of gradually adding new genes has been
confirmed in natural evolution [35, 58] and shown to improve adaptation in a few prior evolutionary
[1] and neuroevolutionary [24] approaches. However, a key feature that distinguishes NEAT from
prior work in complexification is its unique approach to maintaining a healthy diversity of com-
plexifying structures simultaneously, as this section reviews. Complete descriptions of the NEAT
method, including experiments confirming the contributions of its components, are available in
Stanley and Miikkulainen [51, 53] and Stanley et al. [50].

Before describing the CPPN extension, let us review the three key ideas on which the basic
NEAT method is based. First, in order to allow network structures to increase in complexity over
generations, a method is needed to keep track of which gene is which. Otherwise, it is not clear in
later generations which individual is compatible with which in a population of diverse structures, or
how their genes should be combined to produce offspring. NEAT solves this problem by assigning a
unique historical marking to every new piece of network structure that appears through a structural
mutation. The historical marking is a number assigned to each gene corresponding to its order of
appearance over the course of evolution. The numbers are inherited unchanged during crossover,
and allow NEAT to perform crossover among diverse topologies without the need for expensive
topological analysis.

Second, NEAT speciates the population, so that individuals compete primarily within their own
niches instead of with the population at large. Because adding new structure is often initially dis-
advantageous, this separation means that unique topological innovations are protected and therefore
have time to optimize their structure before competing with other niches in the population. NEAT
uses the historical markings on genes to determine to which species different individuals belong.

Third, many systems that evolve network topologies and weights begin evolution with a popula-
tion of random topologies [22, 60]. In contrast, NEAT begins with a uniform population of simple
networks with no hidden nodes, differing only in their initial random weights. Because of speciation,
novel topologies gradually accumulate over evolution, thereby allowing diverse and complex pheno-
type patterns to be represented. No limit is placed on the size to which topologies can grow. New
structures are introduced incrementally as structural mutations occur, and only those structures
survive that are found to be useful through fitness evaluations. In effect, then, NEAT searches for a
compact, appropriate topology by incrementally complexifying existing structure.

NEAT is easily extended to evolve CPPNs. While networks in the original NEAT only include
hidden nodes with sigmoid functions, CPPN NEAT allows each hidden node to specify its own acti-
vation function chosen from a given set. These functions are intended to abstract canonical gradient
patterns from nature, such as symmetric and periodic gradients. When a new node is created, it is
assigned a random activation function from the canonical set (e.g., including Gaussian, sigmoid, and
periodic functions).

If the regularities of CPPN-generated patterns evolved with NEAT could be transferred to evolved
connectivity patterns, the representational power of CPPNs could potentially evolve large-scale ANNs and
other graph structures with symmetries and complex repeating patterns such as in biological brains. The
next section introduces an approach that enables CPPNs to represent and evolve just such networks.

Artificial Life Volume 15, Number 2 189

A Hypercube-Based Encoding for Evolving Large-Scale Neural NetworksK. O. Stanley et al.

3 HyperNEAT

If CPPNs are to evolve and represent connectivity patterns, the problem is to find the best inter-
pretation of their output to effectively describe such a structure. The two-dimensional patterns in
Section 2.1 present a challenge: How can such spatial patterns describe connectivity? This section
explains how spatial patterns generated by CPPNs can be mapped naturally to connectivity patterns
while at the same time effectively disentangling task structure from network dimensionality.

3.1 Mapping Spatial Patterns to Connectivity Patterns
It turns out that there is an effective mapping between spatial and connectivity patterns that can
elegantly exploit geometry. The main idea is to input into the CPPN the coordinates of the two points
that define a connection, rather than inputting only the position of a single point as in Section 2.1.
The output is interpreted as the weight of the connection rather than the intensity of a point. This way,
connections can be defined in terms of the locations that they connect, thereby taking into account
the network’s geometry.

The CPPN in effect computes a four-dimensional function CPPN(x1, y1, x2, y2) = w, where the
first node is at (x1, y1) and the second node is at (x2, y2). This formalism returns a weight for every
connection between every node in the grid, including recurrent connections. By convention, a
connection is not expressed if the magnitude of its weight, which may be positive or negative, is
below a minimal threshold wmin. The magnitudes of weights above this threshold are scaled to be
between zero and a maximum magnitude in the substrate. That way, the pattern produced by the
CPPN can represent any network topology (Figure 4).

For example, consider a 5 � 5 grid of nodes. The nodes are assigned coordinates corresponding
to their positions within the grid (labeled ‘‘Substrate’’ in Figure 4), where (0, 0) is the center of the
grid. Assuming that these nodes and their positions are given a priori, a connectivity pattern among
nodes in two-dimensional space is produced by a CPPN that takes any two coordinates (source and
target) as input, and outputs the weight of their connection. The CPPN is queried in this way for
every potential connection on the grid. Because the connection weights are thereby a function of the
positions of their source and target nodes, the distribution of weights on connections throughout the
grid will exhibit a pattern that is a function of the geometry of the coordinate system.

The connectivity pattern produced by a CPPN in this way is called the substrate so that it can be
verbally distinguished from the CPPN itself, which has its own internal topology. Furthermore, in

Figure 4. Hypercube-based geometric connectivity pattern interpretation. A grid of nodes, called the substrate, is assigned
coordinates such that the center node is at the origin. (1) Every potential connection in the substrate is queried to
determine its presence and weight; the dark directed lines shown in the substrate represent a sample of connections that
are queried. (2) For each query, the CPPN takes as input the positions of the two endpoints and (3) outputs the weight of
the connection between them. After all connections are determined, a pattern of connections and connection weights
results that is a function of the geometry of the substrate. In this way, connective CPPNs produce regular patterns of con-
nections in space.

Artificial Life Volume 15, Number 2190

A Hypercube-Based Encoding for Evolving Large-Scale Neural NetworksK. O. Stanley et al.

the remainder of this article, CPPNs that are interpreted to produce connectivity patterns are called
connective CPPNs, while CPPNs that generate spatial patterns are called spatial CPPNs. This article
focuses on neural substrates produced by connective CPPNs.

Because the connective CPPN is a function of four dimensions, the two-dimensional connectivity
pattern expressed by the CPPN is isomorphic to a spatial pattern embedded in a four-dimensional
hypercube. This observation is important because it means that spatial patterns with symmetries and
regularities correspond to connectivity patterns with related regularities. Thus, because CPPNs gener-
ate regular spatial patterns (Section 2.1), by extension they can be expected to produce connectivity
patterns with corresponding regularities. The next section demonstrates this capability.

3.2 Producing Regular Connectivity Patterns
Simple, easily discovered substructures in the connective CPPN produce important connective regular-
ities in the substrate. The key difference between connectivity patterns and spatial patterns is that each
discrete unit in a connectivity pattern has two x values and two y values. Thus, for example, symmetry along
x can be discovered simply by applying a symmetric function (e.g., a Gaussian) to x1 or x2 (Figure 5a).

Imperfect symmetry is another important structural motif in biological brains. Connective CPPNs
can produce imperfect symmetry by composing not only symmetric functions of one axis, but also an
asymmetric coordinate frame such as the axis itself. In this way, the CPPN produces varying degrees of
imperfect symmetry (Figure 5b).

Similarly important is repetition, particularly repetition with variation. Just as symmetric functions
produce symmetry, periodic functions such as the sine produce repetition (Figure 5c). Patterns with
variation are produced by composing a periodic function with a coordinate frame that does not
repeat, such as the axis itself (Figure 5d). Repetitive patterns can also be produced in connectivity as
functions of invariant properties between two nodes, such as distance along one axis. Thus, symme-
try, imperfect symmetry, repetition, and repetition with variation, key structural motifs in all biologi-
cal brains, are compactly represented and therefore easily discovered by CPPNs.

3.3 Substrate Configuration
The layout of the nodes that the CPPN connects in the substrate can take forms other than the
planar grid (Figure 6a) discussed thus far. Different such substrate configurations are likely suited to
different kinds of problems.

For example, CPPNs can also produce three-dimensional connectivity patterns by representing
spatial patterns in the six-dimensional hypercube CPPN(x1, y1, z1, x2, y2, z2) (Figure 6b). This
formalism is interesting because the topologies of biological brains, including the human brain, theo-
retically exist within its search space.

It is also possible to restrict substrate configurations to particular structural motifs in order to learn
about their viability in isolation. For example, Churchland [8] calls a single two-dimensional sheet of neu-
rons that connects to another two-dimensional sheet a state-space sandwich. The sandwich is a restricted
three-dimensional structure in which one layer can send connections only in one direction to one other
layer. Thus, because of this restriction, it can be expressed by the single four-dimensional CPPN(x1, y1,

Figure 5. Connectivity patterns produced by connective CPPNs. These patterns, produced through interactive evolution, ex-
hibit several important connectivitymotifs: (a) bilateral symmetry, (b) imperfect symmetry, (c) repetition, and (d) repetitionwith
variation. That these fundamental motifs are compactly represented and easily produced suggests the power of this encoding.

Artificial Life Volume 15, Number 2 191

A Hypercube-Based Encoding for Evolving Large-Scale Neural NetworksK. O. Stanley et al.

x2, y2), where (x2, y2) is interpreted as a location on the target sheet rather than as being on the same plane
as the source coordinate (x1, y1). In this way, CPPNs can search for useful patterns within state-space
sandwich substrates (Figure 6c), as is done in the visual discrimination experiment in this article.

Finally, the nodes need not be distributed in a grid. For example, nodes within a substrate that
controls a radial entity such as a starfish might be best laid out with radial geometry, as shown in
Figure 6d, so that the connectivity pattern can be situated with exact polar coordinates. The robot
control experiment in this article compares such a circular layout with a grid-based one.

3.4 Input and Output Placement
Part of substrate configuration is determining which nodes are inputs and which are outputs. The
flexibility to assign inputs and outputs to specific coordinates in the substrate creates an opportunity
to exploit geometric relationships advantageously.

In many ANN applications, the inputs are drawn from a set of sensors that exist in a geometric
arrangement in space. Unlike traditional ANN learning algorithms that are not aware of such geom-
etry (as illustrated in Figure 1), connective CPPN substrates are aware of their inputs’ and outputs’
geometry, and thus can use this information to their advantage.

By arranging inputs and outputs in a sensible configuration on the substrate, regularities in the
geometry can be exploited by the encoding. There is room to be creative and try different configura-
tions with different geometric advantages. For example, Figure 7 depicts two methods in which the
inputs and outputs of a circular robot can be configured, each of which creates an opportunity to
exploit a different kind of geometric relationship.

Figure 6. Alternative substrate configurations. This figure shows (a) the original grid configuration introduced in Figure 4,
(b) a three-dimensional configuration of nodes centered at (0, 0, 0), (c) a state-space sandwich configuration in which a
source sheet of neurons connects directly to a target sheet, and (d) a circular configuration. Different configurations are
likely suited to problems with different geometric properties.

Figure 7. Placing inputs and outputs. A robot (a) is depicted with eight radar sensors along its circumference and eight
motion effectors set at the same angles. In (b), the inputs (labeled I) and outputs (labeled O) are laid out literally according
to the eight directions in space. In (c), the inputs are placed so that their location along x determines whether they represent
a corresponding direction. Both arrangements create a geometric relationship between each input and its corresponding
output. In this way, it is possible the give evolution a significant advantage from the start.

Artificial Life Volume 15, Number 2192

A Hypercube-Based Encoding for Evolving Large-Scale Neural NetworksK. O. Stanley et al.

In one arrangement, the sensors on the circumference of the robot are arranged in a circle centered
at the origin of the substrate, and outputs form a concentric circle around that (Figure 7b). In this way,
if the CPPN discovers radial symmetry or bilateral symmetry, it can use those coordinate frames to
create a repeating pattern that captures regularities in the relationship between inputs and outputs. An
alternative arrangement places the inputs and outputs on two parallel lines whereon equivalent hori-
zontal position denotes equivalent angle (Figure 7c). That way, evolution can exploit the similarity of
horizontal positions. Each method conveys correspondence through a different geometric regularity.

By arranging neurons in a sensible configuration on the substrate, regularities in the geometry can be
exploited by the encoding. Biological neural networks rely on such a capability for many of their func-
tions. For example, neurons in the visual cortex are arranged in the same retinotopic two-dimensional
pattern as photoreceptors in the retina [7]. That way, they can exploit locality by connecting to adjacent
neurons with simple, repeating motifs. Connective CPPNs have the same capability. In fact, geometric
information in effect provides evolution with domain-specific bias, which is necessary if it is to gain an
advantage over generic black-box optimization methods [59].

3.5 Substrate Resolution
As opposed to encoding a specific pattern of connections among a specific set of nodes, connective
CPPNs in effect encode a general connectivity concept, that is, a set of underlying mathematical rela-
tionships that produce a particular pattern. The consequence is that the same connective CPPN can
represent equivalent concepts at different resolutions (i.e., different node densities). Figure 8 shows
two connectivity concepts at different resolutions.

Figure 8. Equivalent connectivity concepts at different substrate resolutions. Two connectivity concepts are depicted that
were evolved through interactive evolution. The CPPN that generates the first concept at 5 � 5 (a) and 7 � 7 (b) is shown
in (c). The CPPN in (f) similarly generates the second concept at both resolutions (d) and (e). This illustration demon-
strates that CPPNs represent a mathematical concept rather than a single structure. Thus, the same CPPN can produce
patterns with the same underlying concept at different substrate resolutions (i.e., different node densities). CPPN activation
functions in this article are denoted by G for Gaussian, S for sigmoid, Si for sine, A for absolute value, and L for linear.

Artificial Life Volume 15, Number 2 193

A Hypercube-Based Encoding for Evolving Large-Scale Neural NetworksK. O. Stanley et al.

For neural substrates, the important implication is that the same ANN functionality can be gen-
erated at different resolutions. Without further evolution, previously evolved connective CPPNs can be
re-queried to specify the connectivity of the substrate at a new, higher resolution, thereby producing a
working solution to the same problem at a higher resolution. There is no upper bound on substrate
resolution, that is, a connectivity concept is infinite in resolution. While the higher-resolution
connectivity pattern may contain artifacts that were not expressed at the lower resolution at which it
was evolved, it will still embody a good approximation of the general solution at the higher resolu-
tion. Thus, increasing substrate resolution introduces a powerful new kind of complexification into
ANN evolution.

3.6 Evolving Connective CPPNs
The approach in this article is to evolve connective CPPNs with NEAT. This approach is called
HyperNEAT, because NEAT evolves CPPNs that represent spatial patterns in hyperspace. Each point
in the pattern, bounded by a hypercube, is interpreted as a connection in a lower-dimensional con-
nected graph. Specifically, in this article, a spatial pattern in a four-dimensional hypercube is interpreted
as a two-dimensional connectivity pattern.

The basic outline of the HyperNEAT algorithm proceeds as follows:

1. Choose the substrate configuration (i.e., node layout and input-output assignments)

2. Initialize the population of minimal CPPNs with random weights.

3. Repeat until a solution is found:

(a) For each member of the population:

i. Query its CPPN for the weight of each possible connection in the substrate. If the
absolute value of the output exceeds a threshold magnitude, create the connection with
a weight scaled proportionally to the output value (Figure 4).

ii. Run the substrate as an ANN in the task domain to ascertain fitness.

(b) Reproduce the CPPNs according to the NEAT method to produce the next generation
population.

In effect, as HyperNEAT adds new connections and nodes to the connective CPPN, it is dis-
covering new global dimensions of variation in connectivity patterns across the substrate. Early on it may
discover overall symmetry, whereas later it may discover the concept of receptive fields. Each new
connection or node in the CPPN represents a new way that an entire pattern can vary—that is, a
new regularity. Thus, HyperNEAT is a powerful new approach to evolving large-scale connectivity
patterns and ANNs.

The sections that follow present experiments that demonstrate the promise of this approach.

4 Experiment 1: Visual Discrimination

The first experiment in this article is visual discrimination; the second is robot food gathering. Both
tasks are chosen for their intuitive simplicity, ability to demonstrate specific HyperNEAT capabilities,
and ease of analysis, thereby laying the foundation for future research. They are both designed to
provide empirical evidence that HyperNEAT makes possible five novel capabilities: (1) compact en-
coding through regular structure, (2) exploiting sensor placement and world geometry, (3) scaling
substrate resolution, (4) leveraging additional inputs that provide geometric bias, and (5) functional
million-connection networks.

Artificial Life Volume 15, Number 2194

A Hypercube-Based Encoding for Evolving Large-Scale Neural NetworksK. O. Stanley et al.

This section describes the visual discrimination task, and Section 5 presents its results. The food-
gathering task is then explained in Section 6.

4.1 Visual Discrimination Setup
Vision is well suited to testing learning methods on high-dimensional input. Natural vision also has the
intriguing property that the same stimulus can be recognized equivalently at different locations in the
visual field. For example, identical line-orientation detectors are spread throughout the primary visual
cortex [7]. Thus there are clear regularities among the local connectivity patterns that govern such de-
tection. A repeating motif likely underlies the general capability to perform similar operations at dif-
ferent locations in the visual field. Visual tasks are also easy to scale by increasing their resolution.

Therefore, in this article a simple visual discrimination task demonstrates HyperNEAT’s ability to
exploit regularity in the task domain. The objective is to distinguish a large object from a small object
in a two-dimensional visual field. Because the same principle determines the difference between
small and large objects regardless of their location on the retina, this task is well suited to testing the
ability of HyperNEAT to discover and exploit regularities.

The solution substrate is configured as a state-space sandwich (Figure 6c) that includes two sheets:
(1) the visual field is a two-dimensional array of sensors that are either on or off (i.e., black or white);
(2) the target field is an equivalent two-dimensional array of outputs that are activated at variable intensity
between zero and one. In a single trial, two objects, represented as black squares, are situated in the
visual field at different locations. One object is three times as wide and tall as the other (Figure 9). The
goal is to locate the center of the larger object in the visual field. The target field specifies this location
as the node with the highest level of activation. Thus, HyperNEATmust discover a connectivity pattern
between the visual field and target field that causes the correct node to become the most active regard-
less of the locations of the objects.

An important aspect of this task is that it utilizes a large number of inputs, many of which must
be considered simultaneously. To solve it, the system needs to discover the general principle that
underlies detecting relative sizes of objects. The right idea is to strongly connect an individual input
node in the visual field to several adjacent nodes around the corresponding location in the output
field, thereby causing outputs to accumulate more activation the more adjacent loci are feeding into

Figure 9. The visual discrimination task. The task is to identify the center of the larger box. Example visual field activation
patterns (top) and the corresponding correct target fields (bottom) are depicted. The � in each target field denotes the
point of highest activation, which is how the ANN specifies the location of the center of the larger box. This task ef-
fectively tests HyperNEAT’s ability to discover regularity, because the same principle differentiates the larger box from
the smaller one regardless of where the boxes appear on the input field.

Artificial Life Volume 15, Number 2 195

A Hypercube-Based Encoding for Evolving Large-Scale Neural NetworksK. O. Stanley et al.

them. Thus, the solution can exploit the geometric concept of locality, which is inherent in the arrange-
ment of the two-dimensional grid.

While the concept is simple, only a representation that takes into account substrate geometry can
exploit it effectively. Furthermore, an ideal encoding should develop a representation of the concept
that is independent of the visual field’s resolution. Because the correct motif repeats across the sub-
strate, in principle a connective CPPN can discover the general concept only once and cause it to be
repeated across the grid at any resolution. As a result, such a solution can scale as the resolution
inside the visual field is increased, even without further evolution.

4.2 Evolution and Performance Analysis
The field coordinates range over [�1, 1] in the x and y dimensions. However, the resolution within
this range (i.e., the node density) can be varied. During evolution, the resolution of each field is fixed
at 11 � 11. Thus the connective CPPN must learn to correctly connect a visual field of 121 inputs to
a target field of 121 outputs, for a total of 14,641 potential connection strengths.

During evolution, each individual in the population is evaluated for its ability to find the center of
the bigger object. If the connectivity is not highly accurate, it is likely the substrate will often incor-
rectly choose the small object over the large one. Each individual evaluation thus includes 75 trials,
where each trial places the two objects at different locations. The trials are organized as follows. The
small object appears at 25 uniformly distributed locations such that it is always completely within the
visual field. For each of these 25 locations, the larger object is placed five units to the right, down,
and diagonally, once per trial. The large object wraps around to the other side of the field when it hits
the border. If the large object is not completely within the visual field, it is moved the smallest
distance possible that places it fully in view. Because of wrapping, this method of evaluation tests
cases where the small object is on all possible sides of the large object. Thus many relative positions
(though not all) are tested for a total number of 75 trials on the 11 � 11 substrate for each evalua-
tion during evolution.

Within each trial, the substrate is activated over the entire visual field. The unit with the highest
activation in the target field is interpreted as the substrate’s selection. The fitness is calculated as the
sum of the squared distances between the target and the point of highest activation over all 75 trials.
This fitness function rewards generalization and provides a smooth gradient for solutions that are
close but not perfect.

An effective solution to this task must discover the correct underlying regularity that is distributed
across the substrate. Although it is possible for humans to imagine such a repeating motif, from
the perspective of a blind machine learning algorithm such discovery is nontrivial. To demon-
strate HyperNEAT’s ability to effectively discover the task’s underlying regularity, two approaches are
compared.

� HyperNEAT: HyperNEAT evolves a connective CPPN that generates a substrate to solve
the problem (Section 3).

� Perceptron NEAT (PNEAT): PNEAT is a reduced version of NEAT that evolves perceptrons
(i.e., it is a direct encoding of the ANN that does not evolve CPPNs). ANNs with 121 inputs,
121 outputs, and 14,641 (121 � 121) links are evolved without structure-adding mutations.
This restriction makes a fair comparison, because state-space sandwich substrates also
have no hidden nodes. PNEAT is run with the same settings as HyperNEAT (see the
Appendix), because both are being applied to the same problem. Because PNEAT must
explicitly encode the value of each connection in the genotype, it cannot encode underlying
regularities and must discover each part of the solution connectivity independently.

This comparison is designed to show how HyperNEAT makes it possible to optimize very
high-dimensional structures (namely, with 14,641 dimensions), which is difficult for directly encoded
methods.

Artificial Life Volume 15, Number 2196

A Hypercube-Based Encoding for Evolving Large-Scale Neural NetworksK. O. Stanley et al.

4.3 Scaling to Millions of Connections
HyperNEAT is finally tested for its ability to scale solutions to higher resolutions without further evolu-
tion, which is impossible with direct encodings such as PNEAT. The resolution is increased to 33 � 33
and 55 � 55, requiring HyperNEAT to set over one million and nine million connections, respectively.

4.4 Inputting Additional Geometric Bias
The connectivity pattern produced by the connective CPPN(x1, y1, x2, y2) is a function of four or-
thogonal axes. The axes provide a coordinate frame within which patterns are situated. A potentially
useful feature of CPPNs is that they can be biased to specific kinds of geometry by taking other
coordinate frames as input as well. Thus, because distance is an important factor in discrimination,
the distance between the two query points is input into the CPPN in addition to the usual x1, y1, x2,
and y2. In visual discrimination the additional inputs are vertical and horizontal deltas (x1 � x2 and
y2 � y1). To explore the benefits of this capability in this domain, a separate experiment is performed
with the additional inputs, and its performance is compared with the results without them.

Experimental parameters for both experiments in this article are provided in the Appendix.

5 Visual Discrimination Results

The primary performance measure in this section is the average distance from target of the target field’s
chosen position. This average is calculated for each generation’s champion across all its trials (i.e.,
object placements in the visual field). Reported results were averaged over 20 runs. Better solutions
choose positions closer to the target. To understand the distance measure, note that the width and
height of the substrate are 2.0 regardless of substrate resolution.

HyperNEAT and PNEAT were compared to quantify the advantage provided by generative
encoding on this task. Figure 10a shows the performance of both methods on evaluation trials from
evolution (i.e., a subset of all possible positions) and on a generalization test that averaged the per-
formance over every possible valid pair of positions on the board. An input is considered valid if the
smaller and the larger object are placed within the substrate and neither object overlaps the other.

The performance of both methods on the evaluation tests improved over the run. However, after gen-
eration 45, on average HyperNEAT found significantly more accurate solutions than PNEAT (p < .01).

HyperNEAT learned to generalize from its training; the difference between the performance of
HyperNEAT in generalization and evaluation is not significant past the first generation. In contrast,
PNEAT performed significantly worse in the generalization test after generation 51 (p < .01). This

Figure 10. Generalization and scaling. The graphs show performance curves over 300 generations averaged over 20 runs each.
(a) PNEAT is compared with HyperNEAT on both evaluation and generalization. (b) HyperNEAT generation champions with
and without delta inputs are evaluated for their performance on 11 � 11, 33 � 33, and 55 � 55 substrate resolutions. The
results show that HyperNEAT generalizes significantly better than PNEAT (p < .01) and scales almost perfectly.

Artificial Life Volume 15, Number 2 197

A Hypercube-Based Encoding for Evolving Large-Scale Neural NetworksK. O. Stanley et al.

disparity in generalization reflects HyperNEAT’s fundamental ability to learn the geometric concept
underlying the task, which can be generalized across the substrate. PNEAT can only discover each
proper connection weight independently. Therefore, PNEAT has no way to extend its solution to
positions on the substrate at which it was never evaluated. Furthermore, the search space of 14,641
dimensions (one for each connection) is too high-dimensional for PNEAT to find good solutions,
while HyperNEAT discovers near-perfect (and often perfect) solutions on average.

5.1 Scaling Performance
The best individuals of each generation, which were evaluated on 11 � 11 substrates, were later
scaled with the same CPPN to resolutions of 33 � 33 and 55 � 55 by re-querying the substrate at
the higher resolutions without further evolution. These new resolutions cause the substrate size to
expand dramatically. For 33 � 33 and 55 � 55 resolutions, the weights of over one million and nine
million connections, respectively, must be optimized in the substrate, which would normally be an
enormous optimization problem. On the other hand, the original 11 � 11 resolution on which
HyperNEAT was trained contains only up to 14,641 connections. Thus, the number of connections
increases by nearly three orders of magnitude. It is important to note that HyperNEAT is able to
scale to these higher resolutions without any additional evolution. In contrast, PNEAT has no means
to scale to a higher resolution and cannot learn effectively even at the lowest resolution.

When scaling, a potential problem is that if the same activation level were used to indicate positive
stimulus as at lower resolutions, the total energy entering the substrate would increase as the sub-
strate resolution increases for the same images, leading to oversaturation of the target field. In con-
trast, in the real world, the number of photons that enter the eye is the same regardless of the density
of photoreceptors. To allow for this disparity, the input activation levels are scaled for larger sub-
strate resolutions proportionally to the difference in unit-cell size.

Evolved CPPNs with and without the additional x and y delta inputs (Section 4.4) were tested for
their ability to scale (Figure 10b). While the deltas did perform significantly better on average be-
tween generations 38 and 70 (p < .05), the CPPNs without delta inputs were able to catch up and
reach the same level of performance after generation 70.

Most importantly, both variants were able to scale almost perfectly from the 11 � 11-resolution
substrate with up to 14,641 connections to a 55 � 55-resolution substrate with up to 9,150,625
connections, with no significant difference in performance after the second generation. This result is
also significant in that the higher-resolution substrates were tested on all valid object placements,
which include many positions that did not even exist on the lower-resolution substrate. Thus, re-
markably, CPPNs found solutions that lose no abilities at higher resolution.

High-quality CPPNs at the 55 � 55 resolution contained on average 8.3 million connections in
their substrate and performed as well as their 11 � 11 counterparts. These substrates are the largest
functional ANNs produced through evolutionary computation of which the authors are aware.

5.2 Scaling Analysis
Figure 11 illustrates the ability to scale in this task by showing how the activation patterns on target sub-
strates of varying resolution produce the same result for the same input. The larger (55 � 55) substrate
(Figure 11d) contains 8,474,704 connections and still solves the task. Activation patterns at all resolutions
result from several bands of output overlapping at the center of an object, causing it to activate highest.
Thus, the CPPN discovered this underlying concept rather than a specific set of connection weights.

5.3 Repeating Patterns
To identify the largest object irrespective of both objects’ locations, HyperNEAT must discover a
fundamental connectivity motif originating from each input neuron and repeat it across the substrate.
Figure 12 shows a diagonal cross connectivity motif originating from three different input neurons on
the same substrate, which is generated by the connective CPPN in Figure 12a.

Artificial Life Volume 15, Number 2198

A Hypercube-Based Encoding for Evolving Large-Scale Neural NetworksK. O. Stanley et al.

CPPN encoding is highly compact. If good solutions are those that achieve an average distance under
0.25, the average complexity of a good solution CPPN was only 24 connections. In comparison, at
11 � 11 resolution the average number of connections in the substrate was 12,827 out of the possible
14,641 connections. Thus the genotype is smaller than the evaluated phenotype on average by a factor
of 534, demonstrating the significant efficiency gained by removing the need to find the same motif
multiple times, even for substrates that contain millions of connections.

HyperNEAT discovered several motifs that are all effective at this task. The most intuitive motif
is the halo, which produces activation patterns such as those in Figure 13. Halo motifs were discov-
ered in eight of the 20 runs. Although they were less common, diagonal cross motifs evolved sepa-
rately four times. The remaining eight runs produced a variety of different shapes that all work
equally well. These results show that HyperNEAT creatively exploits the task geometry to find a
variety of effective repeating patterns.

5.4 Discovering Regularities
Figure 13 shows a solution at two different generations in the same run, illustrating the unique
process through which regularities in the solution are discovered. In generation 20 (Figure 13a–c),
the substrate produces halo connectivity patterns projecting from a single input node that are at
the correct vertical position, but it has not yet learned the principle of horizontal locality. Four

Figure 11. Activation patterns of the same connective CPPN at different resolutions. Activation patterns on the target
field of a substrate generated by the CPPN in (a) from the input trial shown in (b) are displayed at resolution 11 � 11 in
(c) and 55 � 55 in (d). The darker color signifies higher activation, and the position of highest activation is marked with a
white �. The same 26-connection CPPN generates solutions at both resolutions, with 10,328 and 8,474,704 connec-
tions, respectively, demonstrating the ability of the solution to scale significantly.

Figure 12. Connectivity motifs of the same substrate at different locations. The CPPN in (a) generates the motifs shown
in (b–d), which represent outgoing connectivity patterns from a single node in the visual field, whose position is denoted
by a small dot (i.e., each frame is a two-dimensional cross section of the four-dimensional hypercube encoded by the
CPPN). Note that these patterns, which each originate from only one node, differ from those in Figure 11, which shows
activation patterns from an entire trial with multiple simultaneous active nodes. The cross-diagonal hatch background
represents areas of negative weight, while solid colors between white and black represent increasingly high positive
weights. The figure shows that the connective CPPN is able to repeat the same motif across the substrate.

Artificial Life Volume 15, Number 2 199

A Hypercube-Based Encoding for Evolving Large-Scale Neural NetworksK. O. Stanley et al.

generations later (Figure 13d–f), it augments this concept by adding a new connection from x1 (i.e.,
its horizontal position) to an internal sine function (Figure 13d). This change recalibrates the hori-
zontal position of the halo center to be closer to the source node. This example explicitly demon-
strates the process through which geometric relationships are discovered. In effect, the problem
is recast from finding the correct weight of every connection originating from the visual field to a
problem of finding the geometric concepts that underlie the solution.

Whereas this experiment has demonstrated HyperNEAT’s ability to exploit regularities to opti-
mize very large ANNs, the next experiment focuses on the novel capability to test differing sensor
placement schemes in the same task, which is not possible with traditional methods.

6 Experiment 2: Food Gathering

If sensors and outputs are placed so that they respect regularities in the outside world, HyperNEAT can
discover those regularities through connective CPPNs and exploit them to solve the problem, as the
visual discrimination task demonstrates. Interestingly, there can be more than one way to place inputs and
outputs while still respecting the right regularities. The food-gathering task is designed to demonstrate
this capability and its implications. This task was chosen for its simplicity as a proof of concept; it effec-
tively isolates the issue of sensor and output placement. In the experiment, two different sensor place-
ment arrangements are compared that present a chance to exploit regularity in different ways.

6.1 Food-Gathering Setup
The food-gathering domain works as follows. A single piece of food is placed within a square room
with a robot at the center (as in Figure 7a). A set of n rangefinder sensors, placed at regular angular

Figure 13. Discovering regularities through CPPN complexification. CPPNs and their respective substrate output are
depicted at generations 20 (a–c) and 24 (d– f). As in Figure 12, the connectivity pattern originates in each case from
the location of the small dot. The figure shows that the CPPN learned to horizontally calibrate the positions of positive-
weighted connections in the substrate by discovering a new connection from x1 and changing the sign of the connection
from x2. Both connections are highlighted in (d) as dotted lines. Thus, HyperNEAT learns high-level concepts rather than
searching for the weight of individual connections in a massive ANN independently. The 13-connection CPPN in (d) pro-
duces the 8,644,480-connection substrate in (e) and (f).

Artificial Life Volume 15, Number 2200

A Hypercube-Based Encoding for Evolving Large-Scale Neural NetworksK. O. Stanley et al.

intervals, encircle the robot’s perimeter. The robot has a compass that allows it to maintain the same
orientation at all times, that is, its north-facing side always faces north and never rotates. Internally,
the robot also contains a set of n effectors. Each effector, when activated, causes the robot to move
in one of n directions, as with the nonrotating robot in Zhao and Jin [61]. Thus, there is one effector
for each sensor that points in the same direction. The robot’s objective is to go to the food.

The interpretation of effector outputs constrains the problem and the potential solutions. For the
experiment in this article, the motion vector resulting from effector output is interpreted to incen-
tivize HyperNEAT to find holistic solutions, that is, solutions that require more than a single con-
nection. The robot moves in the direction corresponding to the largest effector output. In the case of
a tie, the robot moves in the direction of the first tied output in sampling order. The robot’s speed s is
determined by

s ¼ ðsmaxomaxÞ
omax

otot

� �
; ð1Þ

where smax is the maximum possible speed, omax is the maximum output, and otot is the sum of all
outputs. The first factor correlates speed with output, so that to go at the maximum speed, the robot
must maximize the output corresponding to the direction of the food. The second factor encourages
the robot to excite a single output by penalizing it for activating more than one at a time. Fur-
thermore, outputs have sigmoidal activation, which means that if their input is zero, they will output
0.5. Thus, the robot also needs to inhibit effectors that point in the wrong direction, because they will
otherwise slow down motion in the chosen direction. Thus, while diverse solutions still work in this
domain, many are not optimal in terms of speed. The best solutions require a correct pattern con-
necting to all the outputs from all the sensors.

It is important to note that the compass-based robot is intentionally designed not to rotate, so
that it is forced to learn a separate output for each discrete direction. That way, HyperNEAT’s ability
to geometrically correlate inputs to outputs and scale the resolution of both inputs and outputs can
be tested explicitly.

Each robot attempts r trials, where r is twice the resolution; thus higher resolutions are evaluated
on more trials. For each trial a single piece of food is placed 100 units away from the robot at either
the center of a sensor or the border between two sensors. Each trial tests a different such location. If a
robot is not able to get food for a particular trial after 1,000 ticks, its trial ends. Individuals are evaluated
based on their amount of food collected and the average speed at which they obtain each item:

fitness ¼ 10; 000
fc

r
þ ttot � 1; 000r ; ð2Þ

where fc is the total amount of food collected and ttot is the total time spent on all trials.
This task is a good proof of concept because it transparently requires discovering the underlying

regularity of the domain: Two nodes at the same angle (the sensor and the effector) should be
connected, and the others inhibited. If this concept is discovered, the task is effectively trivial.
Because HyperNEAT can discover the general concept, it can use it to solve the task efficiently.
Demonstrating this fact helps to explicate how HyperNEAT works.

6.2 Sensor Placement
Two different sensor placements and substrate configurations are attempted that capture the key
correlation in different ways:

(1) Two concentric circles of nodes (Figure 7b). The inner circle (radius 0.5) is the sensors, and the outer
circle (radius 1.0) is the effectors. The nodes are placed at the same angle as in the robot. In this
layout, the key regularity is captured by shared angle. It is also interesting in that the sensors and

Artificial Life Volume 15, Number 2 201

A Hypercube-Based Encoding for Evolving Large-Scale Neural NetworksK. O. Stanley et al.

effectors are placed exactly in the shape of the robot, an intuitive scheme that would not be mean-
ingful in traditional methods.

(2) Two parallel lines of nodes (Figure 7c). The top row of sensors are placed in clockwise order, starting
from the sensor closest to 45j above west. In the bottom row, effectors are placed in the same order.
In this way, the key regularity is geometrically expressed as two nodes being in the same column.

6.3 Scaling
Similar to the visual discrimination task, the numbers of inputs and outputs of each generation’s
champion from all runs of both configurations are doubled several times, starting from the evolved
8 � 8 resolution, without further evolution. Each double-resolution substrate samples twice as many
points as its predecessor by decreasing the angular sampling interval around the robot by half.
Doubling for each champion proceeds from the initial 8 � 8 resolution to a maximum size of 128 �
128, a 16-fold increase in resolution. As a consequence, few of the angles present at the prior
resolution are sampled at the new resolution. This disparity further requires the CPPN to learn a
general connectivity concept, rather than a static mapping between points.

6.4 Additional Geometric Bias in Food Gathering
As in visual discrimination, the distance between two nodes is an important factor in their
relationship. Therefore, in food gathering, because there are two differing substrate configurations,
the Euclidean distance between (x1, y1) and (x2, y2) is input in addition to the usual x1, y1, x2, and y2.
As with visual discrimination, the benefit of such additional inputs is investigated by comparing
results with and without such inputs.

Experimental parameters for food gathering are described in the Appendix. The next sections
describe the results from the food-gathering experiment.

7 Food-Gathering Results

All sensor configurations were able to collect food at all positions within the first few generations except
for the concentric case without the Euclidean-distance input, which took on average 33 generations to
learn how to get food at every position. Thus, for most configurations, the main challenge was to learn
to get food efficiently. The performance measure in this section is thus the average time (i.e., number of
ticks) it takes the robot to get a piece of food over all its trials. Robots that cannot get the food in a trial
are assigned the maximum time 1,000 for that trial. Results are averaged over 20 runs.

Figure 14a shows how performance improved over 500 generations for both placement schemes,
with and without the Euclidean-distance-input geometric bias. Parallel placement on average evolved
significantly faster strategies (p < .05) than concentric. This disparity is explained by the more
complex relationship, in Cartesian coordinates, between corresponding nodes in the concentric case.
However, the added geometric information in this experiment significantly increased performance of
both methods after the fourth generation (p < .01). Furthermore, the Euclidean-distance input is so
useful that it erases the difference between the two schemes, causing them to perform similarly when
present. Thus, parallel placement is easier to exploit for HyperNEAT except when the CPPN is
provided the connection length as input.

7.1 Scaling Performance
As in visual discrimination, substrates were scaled and tested without further evolution. Individuals
generally did retain the ability to collect food, although, unlike the case of visual discrimination, there
is some degradation in performance at each increment in resolution. To illustrate this degradation for
different configurations, Figure 14b shows the average difference in efficiency between resolution
8 and resolution 32; lower numbers imply better ability to scale.

Artificial Life Volume 15, Number 2202

A Hypercube-Based Encoding for Evolving Large-Scale Neural NetworksK. O. Stanley et al.

Parallel placement scaled significantly more effectively than concentric except in the earliest gen-
erations (p < .01). However, as with efficiency, when concentric placement’s CPPN was provided
length as input, it scaled as well as parallel placement did with length input. In both cases with the
extra input, scaling significantly improved over runs using concentric placement without the addi-
tional input (p < .01), but not significantly over those using regular parallel placement.

As Figure 14b shows, concentric placement without the length input degraded significantly
between resolution 8 and 32; in fact, individuals could no longer collect food at every position.
However, it turns out that information about the task was still retained implicitly at the higher
resolution: When allowed to continue evolving at the higher resolution, solutions that collect all the
food were always found within five generations (2.5 on average). On the other hand, when concen-
tric evolution is started from scratch at a lower resolution, it takes on average 33 generations to learn
to get food on every trial. Thus, even when performance degrades significantly after scaling, the
resultant individual still retains important geometric information that can be quickly tweaked to work
at the higher resolution.

Figure 14c shows the average absolute performance at different resolutions for CPPNs without
the additional input, and 14d shows the same comparison for those with it. Parallel placement
consistently outperformed concentric at the same resolution (Figure 14c). Again, however, when the
length input was provided (Figure 14d), the performance of the two placement schemes no longer
differed significantly. Although each increment in resolution leads to a graceful degradation in per-
formance, scaled individuals at all resolutions and in all configurations significantly outperformed a

Figure 14. HyperNEAT food-gathering performance. The performance of both sensor layouts at resolution 8, with and
without the extra Euclidean-distance input, is shown in (a). The difference in speeds when different methods are scaled
from 8 to 32 is shown in (b). Graphs (c) and (d) show the speeds of the two sensor placement schemes at all resolutions,
with and without the distance input (i.e., bias toward exploiting locality), respectively. The conclusion is that HyperNEAT
learns to exploit the placement geometry.

Artificial Life Volume 15, Number 2 203

A Hypercube-Based Encoding for Evolving Large-Scale Neural NetworksK. O. Stanley et al.

set of random individuals, showing further that scaling indeed retains abilities present in the lower-
resolution network (p < .01 versus random). Furthermore, although the average time degrades, most
scaled networks could still collect all the food if their unscaled predecessor could.

In a more dramatic demonstration of scaling, one high-fitness individual of each sensor place-
ment scheme was scaled to a resolution of 1024. The resulting ANNs each had over one million
connections and could still gather all the food.

An important question that emerges from the scaling results on food gathering is why substrates
do not scale perfectly as in visual discrimination. This question is addressed in the following analysis
and revisited later in the discussion (Section 8).

7.2 Repeating Motifs
To consistently activate highly the one output pointing in the right direction and inhibit all others
requires discovering such a motif and repeating it across the substrate. Figure 15 shows several
examples of this motif at different locations in both concentric and parallel substrates. The benefit of
CPPN representation is that it need only discover the correct motif once by exploiting how it relates
to the geometry of inputs and outputs.

The CPPN in Figure 15a (top row) shows how such exploitation is possible. HyperNEAT
discovered that by connecting x1 to a Gaussian node with a positive weight and x2 to the same node
with a negative weight, the weight connecting any two nodes in the substrate is made a function of
horizontal distance. This principle is all that is necessary to cause the same motif to appear at every
locus of horizontal correlation.

On the other hand, the principle of radial symmetry that underlies the correct motif in concentric
substrates is more challenging. Angular differences necessary to exploit concentric regularity take
more structure to compute, although the concept is eventually discovered.

Figure 15. Repeated patterns in solutions. The CPPNs in (a) represent parallel (top row) and concentric (bottom row)
substrates that solve the task. The connectivity patterns in (b) and (c) are outgoing motifs, each from a single input node
in the substrate. These images show that the same motif is repeated in different locations.

Artificial Life Volume 15, Number 2204

A Hypercube-Based Encoding for Evolving Large-Scale Neural NetworksK. O. Stanley et al.

7.3 Scaling Analysis
Figure 16a,b shows evolved parallel and concentric motifs at both 8 � 8 and 16 � 16 resolution.

Scaling up can sometimes produce small artifacts that are not apparent at lower resolutions (Fig-
ure 16c,d). These imperfections vary greatly, as do their effects on performance, although in all cases
sufficient information was retained to quickly recover the old behavior in less than five generations.

Analyzing the source of higher-resolution imperfections explains how CPPNs represent regular-
ities. Recall that a connective CPPN is in effect a pattern within a four-dimensional hypercube. If
two of those dimensions, say x1 and y1, are fixed, then the remaining two dimensions define a two-
dimensional cross section of the hypercube. The pattern within that cross section is in effect the
infinite-resolution connectivity pattern for one input node from which all finite substrate resolutions
are sampled. Figure 17 depicts two such cross sections for both concentric and parallel substrates. The
figure shows that the CPPN constructs a pattern that, when sampled at the right resolution, defines the
connectivity weights of all connections between the fixed source location and the sample point.

Figure 16. Perfect and imperfect scaling. The parallel (top row) and concentric (bottom row) 8 � 8 motifs in (a) scale
perfectly to the 16 � 16 motifs in (b). However, because of artifacts at higher resolution, not all motifs scale perfectly, as
shown by comparing (c) and (d), in which missing connections are identified by arrows. While the motif is mostly intact,
slight imperfections of this type are common during scaling in this task.

Figure 17. Hypercube cross sections. Typical (a and c) and atypical (b and d) two-dimensional cross sections of hy-
percubes generated by CPPNs are depicted for working concentric (a and b) and parallel (c and d) substrate configu-
rations. Each cross section represents the infinite-resolution outgoing connectivity pattern originating from the location
of the �. When substrates are generated in practice, these cross sections are sampled at the substrate resolution. Thus,
much of the detail in the patterns is discarded for low-resolution substrates, though it may reemerge when scaling to
higher resolution.

Artificial Life Volume 15, Number 2 205

A Hypercube-Based Encoding for Evolving Large-Scale Neural NetworksK. O. Stanley et al.

Because only the sample points are required to be correct during evaluation, the unsampled por-
tion of the pattern can exhibit artifacts that are not visible at the sample resolution, but may become
so at higher resolutions. Interestingly, however, the pattern often elegantly captures the fundamental
geometric relationship, as in Figure 17a and 17c, which explains why scaling sometimes is perfect or
close to perfect.

In contrast to food gathering, scaled CPPNs in visual discrimination performed almost perfectly,
with statistically insignificant degradation across all resolutions. What distinguishes the two tasks? An
important difference between them is that the precision of the substrate in visual discrimination does
not need to increase, because the sizes of the boxes remain the same relative to the size of the sub-
strate. In food gathering, on the other hand, the size of the food is in effect shrinking when the
resolution goes up, because food can only be detected by a single sensor and there are more sensors
at higher resolution. Therefore, in food gathering, in order to scale perfectly, the precision of the
solution would need to increase with the resolution. Because the task is never evaluated at higher
resolution during training, it is not possible to ensure such an increase through training.

Thus, one conclusion on scaling is that, depending on the task, it may be perfect or imperfect;
however, the more important conclusion is that it always retains at least what was known at the lower
resolution, which is significantly better than starting from scratch if evolution is to continue at the
higher resolution. Furthermore, a useful result of these experiments is that there is now a basis on
which to predict what kinds of tasks will scale perfectly.

7.4 Evolving Motifs
Rather than finding the value of each connection separately, evolution in HyperNEAT progresses by
discovering global regularities. Figure 18 traces progress over parallel and concentric runs of evolu-
tion. The early solutions are simple linear combinations of the coordinates. Although inefficient,
these patterns learn to gather food through a few good connections that compensate for others.
Later in evolution, symmetries and regularities begin to be discovered, although they are not always
the most fundamental ones for the task. For example, the concentric substrate in Figure 18b partially
solves the task by exploiting its bilateral symmetry, even though the task is more fundamentally
radially symmetric. Finally, evolution discovers the essential regularity of the task domain, which is
horizontal distance for parallel substrates and angular disparity in concentric substrates (Figure 18c).

Figure 18 . Evolution discovers regularities. Early-generation connective CPPNs typically produce simple connectivity pat-
terns (a). Eventually, HyperNEAT begins to exploit regularities (b), though they may not be the most fundamental ones.
Finally, HyperNEAT discovers the fundamental regularity that underlies the task for the given substrate configuration (c).
Thus, instead of optimizing individual connection weights, evolution is a process of gradually discovering and exploiting
holistic regularities.

Artificial Life Volume 15, Number 2206

A Hypercube-Based Encoding for Evolving Large-Scale Neural NetworksK. O. Stanley et al.

The next section discusses the major ramifications of this work.

8 Discussion and Future Work

The central insight in HyperNEAT is that regularity in higher-dimensional spatial patterns is easily
mapped to regular connectivity in lower-dimensional space, creating a new kind of indirect encoding
for ANNs. Experimental results show how it is possible to encode up to millions of connections by
discovering the pattern of recurring motifs underlying a solution. This section explores the implica-
tions of this capability and its underlying methodology.

8.1 Limitations of Direct Encoding
The comparison between PNEAT and HyperNEAT in visual discrimination highlights that direct
encodings are vulnerable to high dimensionality (i.e., a large number of connections), regardless of
underlying regularities in the domain. Thus, like other direct encodings, PNEAT can improve only by
discovering each connection strength individually.

While previous research has confirmed the advantage of indirect encoding over direct encoding
[5, 14, 25, 43, 52], the comparison with PNEAT gives a sense of its urgency in neuroevolution. If
PNEAT cannot optimize a network of 14,641 connections to discover a simple repeating motif, it is
evident that tasks requiring more than 15,000 connections are going to require some form of indirect
encoding.

In contrast, HyperNEAT demonstrates how it is possible to optimize orders of magnitude beyond
10,000 connections. Because connective CPPNs represent the solution conceptually, a single solution
in effect represents an infinite range of resolutions (i.e., node densities). Thus, the same solution can
scale to higher resolutions, which is a new capability for even indirect encodings of ANNs.

8.2 Substrate Scaling Implications
Visual discrimination solutions suffer no statistically significant degradation in performance as they
scale. However, scaling results on food gathering demonstrate that solutions cannot always be ex-
pected to scale perfectly. This conclusion is not surprising; in tasks like food gathering scaling re-
quires not only higher resolution, but higher precision, because the detail present in the additional
substrate is germane to the solution. A candidate trained at lower resolution has no means to evalu-
ate such details and therefore may contain artifacts when they are brought into greater focus.

Nevertheless, while not always perfect, the ability to scale without further evolution is a significant
advance for neuroevolution. The important consequence is that information learned at the lower
resolution is retained at the higher resolution; it is only within the expanded portions that error may
be introduced. Thus, the real benefit of this capability is that in the future, further evolution can be
performed at the higher resolution. Instead of starting over from scratch, HyperNEAT can continue
to build on lower-resolution solutions after they are magnified. The numbers of sensors, hidden
nodes, and outputs can be multiplied without losing prior knowledge, because CPPNs in effect
decouple solutions from individual inputs and outputs. Such scaling may prove an important tool for
ultimately achieving solutions with a million or more connections to problems that require such high
dimensionality to solve. For example, a promising application of substrate scaling is machine vision,
wherein general regularities in the structure of images can be learned at low resolution and then
scaled up.

Scaling the substrate connectivity concept suggests an interesting high-level explanation for how
brains evolved increasing complexity in nature. It is implausible that the human brain evolved by
one new connection at a time from one generation to the next. How then could complexity have
increased over generations? An interesting hypothesis is that, at a high level of abstraction, the
evolution of brains in biology in effect included several such increases in density on the same con-
nectivity concept. Not only can such an increase improve the immediate resolution of sensation
and action, but it can provide additional substrate for increasingly intricate local relationships to be

Artificial Life Volume 15, Number 2 207

A Hypercube-Based Encoding for Evolving Large-Scale Neural NetworksK. O. Stanley et al.

discovered through further evolution. If neural connectivity patterns are represented in DNA as
concepts, then such increases would be possible, thereby creating new opportunities for further
structural elaborations to evolve within the higher-resolution substrate. Connective CPPNs are a
concrete formal explanation of how such complexification can work at a high level of abstraction.

8.3 Substrate Configuration and Geometry
The food-gathering task demonstrates that in contrast to regular ANNs, different substrate place-
ment schemes create geometric relationships that are exploitable in different ways, some more easily
than others. Connective CPPNs exploit regularities in parallel placement more efficiently than in
concentric, because the angular differences necessary to exploit concentric regularity take more
structure to compute with the given set of activation functions. Thus the activation functions in the
CPPN are like a language that describes geometric structure. With the right words, it is easier to de-
scribe a particular relationship. HyperNEAT allows the experimenter to inject knowledge into the
search through such configurations—for example, by grouping correlated objects or arranging sen-
sors analogously to their real-world geometry.

Furthermore, additional geometric information provided as input to the connective CPPN can
significantly simplify the structure necessary to describe key motifs. When connection length is pro-
vided as input, the two placement schemes produce equivalent results. This result is important be-
cause it shows that connective CPPNs allow the experimenter to provide hints to the learning
algorithm about the kinds of geometric principles that may underlie the solution.

It is important to note that connectivity patterns can include hidden nodes and recurrence. Just
as a subset of nodes in the substrate are assigned as inputs and another subset as outputs, a third
subset can be reserved as hidden nodes. Regular patterns of hidden nodes, like cortical columns in
the human brain [47], can potentially be discovered.

Thus more complex problems requiring hidden nodes are an important future research direction.
For example, board games like Checkers [16] and Go [54] likely require hidden nodes to permit ef-
fective strategies. Such games exhibit numerous tactical regularities across different positions on the
board that connective CPPNs can potentially encode efficiently.

Recurrence, on the other hand, is naturally expressed by simply querying connections in the sub-
strate that would be recurrent. HyperNEAT can potentially evolve massive recurrent structures such as
continuous-time recurrent neural networks (CTRNNs) that control walking gaits for diverse animal
morphologies [41, 42, 56]. This application is promising because gaits and body morphologies are often
highly regular, with left and right sides related and one leg’s timing related to that of others.

It is also possible that non-neural connectivity patterns can be evolved in the future (e.g., to
describe robot body morphologies). Furthermore, because CPPNs can describe spatial patterns [49]
in addition to connectivity patterns, the two types of pattern may be combined in the future.

9 Conclusion

This article has addressed how it is possible to represent and discover large-scale ANNs. The sug-
gested approach searches for regularities in the task domain by representing the solution as a func-
tion of the task geometry. That way, it is possible to generate ANNs with millions of connections
based on underlying geometric motifs. To demonstrate this approach, HyperNEAT evolved connec-
tive CPPNs that solve simple visual discrimination and food-gathering tasks at varying resolutions.
Both tasks required HyperNEAT to discover a repeating motif in neural connectivity. Furthermore,
because CPPN encoding is independent of the number of sensors, solutions could be scaled to
variable resolutions. Most importantly, HyperNEAT suggests how someday it may be possible to
tackle problems that heretofore have proven too complex for modern machine learning methods
because of their astronomically high dimensionality. HyperNEAT shifts the locus of difficulty away
from problem dimensionality to problem structure, thereby providing hope that such domains may
ultimately be conquered by discovering their underlying regularities.

Artificial Life Volume 15, Number 2208

A Hypercube-Based Encoding for Evolving Large-Scale Neural NetworksK. O. Stanley et al.

Acknowledgments
All the software and source code used in this article is available through http://eplex.cs.ucf.edu.

References
1. Altenberg, L. (1994). Evolving better representations through selective genome growth. In Proceedings of

the IEEE World Congress on Computational Intelligence (pp. 182–187). Piscataway, NJ: IEEE Press.

2. Angeline, P. J. (1995). Morphogenic evolutionary computations: Introduction, issues and examples. In
J. R. McDonnell, R. G. Reynolds, & D. B. Fogel (Eds.), Evolutionary Programming IV: The Fourth Annual
Conference on Evolutionary Programming (pp. 387–401). Cambridge, MA: MIT Press.

3. Angeline, P. J., Saunders, G. M., & Pollack, J. B. (1993). An evolutionary algorithm that constructs
recurrent neural networks. IEEE Transactions on Neural Networks, 5, 54–65.

4. Belew, R. K., & Kammeyer, T. E. (1993). Evolving aesthetic sorting networks using developmental
grammars. In S. Forrest (Ed.), Proceedings of the Fifth International Conference on Genetic Algorithms. San
Francisco: Kaufmann.

5. Bentley, P. J., & Kumar, S. (1999). The ways to grow designs: A comparison of embryogenies for
an evolutionary design problem. In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-1999) (pp. 35–43). San Francisco: Kaufmann.

6. Bongard, J. C. (2002). Evolving modular genetic regulatory networks. In Proceedings of the 2002 Congress
on Evolutionary Computation.

7. Chklovskii, D. B., & Koulakov, A. A. (2004). Maps in the brain: What can we learn from them?
Annual Review of Neuroscience, 27, 369–392.

8. Churchland, P. M. (1986). Some reductive strategies in cognitive neurobiology. Mind, 95, 279–309.

9. Dawkins, R. (1986). The blind watchmaker. Essex, UK: Longman.

10. Dellaert, F. (1995). Toward a biologically defensible model of development. Master’s thesis, Case Western
Reserve University, Cleveland, OH.

11. Dellaert, F., & Beer, R. D. (1996). A developmental model for the evolution of complete autonomous
agents. In P. Maes, M. J. Mataric, J.-A. Meyer, J. Pollack, & S. W. Wilson (Eds.), From Animals to Animats 4:
Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior. Cambridge, MA: MIT Press.

12. Deloukas, P., Schuler, G. D., Gyapay, G., Beasley, E. M., Soderlund, C., Rodriguez-Tome, P., Hui, L.,
Matise, T. C., McKusick, K. B., Beckmann, J. S., Bentolila, S., Bihoreau, M., Birren, B. B., Browne, J.,
Butler, A., Castle, A. B., Chiannilkulchai, N., Clee, C., Day, P. J., Dehejia, A., Dibling, T., Drouot, N.,
Duprat, S., Fizames, C., & Bentley, D. R. (1998). A physical map of 30,000 human genes. Science,
282(5389), 744–746.

13. Eggenberger, P. (1997). Evolving morphologies of simulated 3D organisms based on differential gene
expression. In P. Husbands & I. Harvey (Eds.), Proceedings of the Fourth European Conference on Artificial
Life (pp. 205–213). Cambridge, MA: MIT Press.

14. Federici, D. (2004). Evolving a neurocontroller through a process of embryogeny. In S. Schaal, A. J. Ijspeert,
A. Billard, S. Vijayakumar, J. Hallam, & J.-A. Meyer (Eds.), Proceedings of the Eighth International Conference
on Simulation and Adaptive Behavior (SAB-2004) (pp. 373–384). Cambridge, MA: MIT Press.

15. Federici, D. (2004). Using embryonic stages to increase the evolvability of development. In Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO-2004) Workshop Program. Berlin: Springer-Verlag.

16. Fogel, D. B. (2001). Blondie24: Playing at the Edge of AI. San Francisco: Kaufmann.

17. Gilbert, C. D., & Wiesel, T. N. (1992). Receptive field dynamics in adult primary visual cortex. Nature,
356, 150–152.

18. Gomez, F., & Miikkulainen, R. (1999). Solving non-Markovian control tasks with neuroevolution.
In Proceedings of the 16th International Joint Conference on Artificial Intelligence (pp. 1356–1361).
San Francisco: Kaufmann.

19. Goodhill, G. J., & Carreira-Perpinn, M. A. (2002). Cortical columns. In L. Nadel (Ed.), Encyclopedia
of cognitive science, Vol. 1 (pp. 845–851). London: MacMillan.

20. Green, C. (2003–2006). SharpNEAT homepage. http://sharpneat.sourceforge.net/.

21. Gruau, F. (1994). Neural network synthesis using cellular encoding and the genetic algorithm. Ph.D. thesis,
Ecole Normale Superieure de Lyon, France.

Artificial Life Volume 15, Number 2 209

A Hypercube-Based Encoding for Evolving Large-Scale Neural NetworksK. O. Stanley et al.

22. Gruau, F., Whitley, D., & Pyeatt, L. (1996). A comparison between cellular encoding and direct encoding
for genetic neural networks. In J. R. Koza, D. E. Goldberg, D. B. Fogel, & R. L. Riolo (Eds.), Genetic
Programming 1996: Proceedings of the First Annual Conference (pp. 81–89). Cambridge, MA: MIT Press.

23. Hart, W. E., Kammeyer, T. E., & Belew, R. K. (1994). The role of development in genetic algorithms (Technical
Report CS94-394). University of California, San Diego.

24. Harvey, I. (1993). The artificial evolution of adaptive behavior. Ph.D. thesis, School of Cognitive and Computing
Sciences, University of Sussex.

25. Hornby, G. S., & Pollack, J. B. (2001). The advantages of generative grammatical encodings for physical
design. In Proceedings of the 2002 Congress on Evolutionary Computation.

26. Hornby, G. S., & Pollack, J. B. (2002). Creating high-level components with a generative representation
for body-brain evolution. Artificial Life, 8(3), 223–246.

27. Hubel, D. H., & Wiesel, T. N. (1965). Receptive fields and functional architecture in two nonstriate
visual areas (18 and 19) of the cat. Journal of Neurophysiology, 28, 229–289.

28. Jakobi, N. (1995). Harnessing morphogenesis. In Proceedings of the Second International Workshop on
Information Processing in Cells and Tissues (pp. 29–41).

29. James, D., & Tucker, P. (2005). Evolving a neural network active vision system for shape discrimination.
In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2005) Late Breaking Papers.
New York: ACM Press.

30. Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (Eds.). (1991). Principles of neural science (3rd ed.). Amsterdam:
Elsevier.

31. Kohl, N., Stanley, K., Miikkulainen, R., Samples, M., & Sherony, R. (2006). Evolving a real-world
vehicle warning system. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2006)
(pp. 1681–1688).

32. Komosinski, M., & Rotaru-Varga, A. (2001). Comparison of different genotype encodings for simulated
3D agents. Artificial Life, 7(4), 395–418.

33. Lindenmayer, A. (1968). Mathematical models for cellular interaction in development: Parts I, II. Journal
of Theoretical Biology, 18, 280–299, 300–315.

34. Lindenmayer, A. (1974). Adding continuous components to L-systems. In G. Rozenberg & A. Salomaa
(Eds.), L Systems, Lecture Notes in Computer Science 15 (pp. 53–68). Heidelberg: Springer-Verlag.

35. Martin, A. P. (1999). Increasing genomic complexity by gene duplication and the origin of vertebrates.
The American Naturalist, 154(2), 111–128.

36. Miller, J. F. (2004). Evolving a self-repairing, self-regulating, French flag organism. In Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO-2004). Berlin: Springer-Verlag.

37. Mjolsness, E., Sharp, D. H., & Reinitz, J. (1991). A connectionist model of development. Journal of
Theoretical Biology, 152, 429–453.

38. Moriarty, D., & Miikkulainen, R. (1993). Evolving complex Othello strategies with marker-based encoding of
neural networks (Technical report AI93-206). Department of Computer Sciences, The University of Texas
at Austin.

39. Prusinkiewicz, P., & Lindenmayer, A. (1990). The algorithmic beauty of plants. Heidelberg: Springer-Verlag.

40. Raff, R. A. (1996). The shape of life: Genes, development, and the evolution of animal form. Chicago: University
of Chicago Press.

41. Reil, T., & Husbands, P. (2002). Evolution of central pattern generators for bipedal walking in a
real-time physics environment. IEEE Transactions on Evolutionary Computation, 6(2), 159–168.

42. Reil, T., & Massey, C. (2001). Biologically inspired control of physically simulated bipeds. Theory in
Biosciences, 120, 1–13.

43. Reisinger, J., Stanley, K. O., & Miikkulainen, R. (2005). Towards an empirical measure of evolvability.
In Genetic and Evolutionary Computation Conference (GECCO2005) Workshop Program (pp. 257–264).
Washington, DC: ACM Press.

44. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by error
propagation. In Parallel distributed processing (pp. 318–362). Cambridge, MA: MIT Press.

45. Saravanan, N., & Fogel, D. B. (1995). Evolving neural control systems. IEEE Expert, 10(3), 23–27.

Artificial Life Volume 15, Number 2210

A Hypercube-Based Encoding for Evolving Large-Scale Neural NetworksK. O. Stanley et al.

46. Sims, K. (1994). Evolving 3D morphology and behavior by competition. In R. A. Brooks & P. Maes
(Eds.), Proceedings of the Fourth International Workshop on the Synthesis and Simulation of Living Systems (Artificial
Life IV) (pp. 28–39). Cambridge, MA: MIT Press.

47. Sporns, O. (2002). Network analysis, complexity, and brain function. Complexity, 8(1), 56–60.

48. Stanley, K. O. (2006). Exploiting regularity without development. In Proceedings of the AAAI Fall Symposium
on Developmental Systems. Menlo Park, CA: AAAI Press.

49. Stanley, K. O. (2007). Compositional pattern producing networks: A novel abstraction of development.
Genetic Programming and Evolvable Machines, 8(2), 131–162.

50. Stanley, K. O., Bryant, B. D., & Miikkulainen, R. (2005). Real-time neuroevolution in the NERO video
game. IEEE Transactions on Evolutionary Computation, 9(6), 653–668.

51. Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural networks through augmenting topologies.
Evolutionary Computation, 10, 99–127.

52. Stanley, K. O., & Miikkulainen, R. (2003). A taxonomy for artificial embryogeny. Artificial Life, 9(2),
93–130.

53. Stanley, K. O., & Miikkulainen, R. (2004). Competitive coevolution through evolutionary complexification.
Journal of Artificial Intelligence Research, 21, 63–100.

54. Stanley, K. O., & Miikkulainen, R. (2004). Evolving a roving eye for Go. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO-2004). Berlin: Springer-Verlag.

55. Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge, MA: MIT Press.

56. Terzopoulos, D., Rabie, T., & Grzeszczuk, R. (1994). Artificial fishes: Autonomous locomotion,
perception, behavior, and learning in a simulated physical world. Artificial Life, 1(4), 327–351.

57. Turing, A. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society B,
237, 37–72.

58. Watson, J. D., Hopkins, N. H., Roberts, J. W., Steitz, J. A., & Weiner, A. M. (1987). Molecular biology of
the gene (4th ed.). Menlo Park, CA: Benjamin Cummings.

59. Wolpert, D. H., & Macready, W. (1997). No free lunch theorems for optimization. IEEE Transactions on
Evolutionary Computation, 1, 67–82.

60. Yao, X. (1999). Evolving artificial neural networks. Proceedings of the IEEE, 87(9), 1423–1447.

61. Zhao, D., & Jin, W. (2005). The study of cooperative behavior in predator-prey problem of multi-agent
systems. In Proceedings of the International Symposium on Autonomous Decentralized Systems (ISADS 2005)
(pp. 90–96). Piscataway, NJ: IEEE Press.

62. Zigmond, M. J., Bloom, F. E., Landis, S. C., Roberts, J. L., & Squire, L. R. (Eds.) (1999). Fundamental
neuroscience. London: Academic Press.

Artificial Life Volume 15, Number 2 211

A Hypercube-Based Encoding for Evolving Large-Scale Neural NetworksK. O. Stanley et al.

Appendix: Experimental Parameters

Because HyperNEAT extends NEAT, it uses similar parameters [51]. Furthermore, extending a given
NEAT implementation to HyperNEAT requires minimal effort because HyperNEAT fits on top
of the existing NEAT algorithm. Thus, the two experiments in this article were performed with
different NEAT packages, each of which came already equipped with preexisting facilities for one
experiment. The visual discrimination task utilizes a custom version of NEAT developed by Jason
Gauci at the University of Central Florida that includes optimizations for processing visual input and
output. The food-gathering experiment is implemented in Colin Green’s public domain SharpNEAT
package [20], which includes infrastructure for robot control experiments. The two NEAT packages
differ slightly in their implementations, and the two experiments were performed separately; there-
fore they use slightly different parameters. However, both packages preserve the core NEAT algo-
rithm and with it evolve CPPNs. Both packages, including HyperNEAT extensions, are available at
http://eplex.cs.ucf.edu.

Table 1 shows the parameters used in both implementations of HyperNEAT. In addition, if the
magnitude of the CPPN’s output for a particular query is less than or equal to 0.2, then the con-
nection is not expressed in the substrate. If it is greater than 0.2, then the number is scaled to a
magnitude between 0 and 3. The sign is preserved, so negative output values correspond to negative
connection weights.

While some parameters differ slightly, they follow similar logic, that is, the parameters’ relative
values are similar within the systems. NEAT has been found to be robust to moderate variations in
parameters [50, 51, 53].

Table 1. Parameter settings. Gauci HyperNEAT was applied to visual discrimination, and food gathering was evolved in
SharpNEAT HyperNEAT.

Value

Parameter Gauci HyperNEAT SharpNEAT HyperNEAT

Pop. size 100 150

c1 2.0 2.0

c2 2.0 2.0

c3 1.0 0.2

ct Variable Variable

Prob. add link 0.1 0.03

Prob. add node 0.03 0.01

Target no. of species 8 10 to 15

Elitism 20% 20%

CPPN output range �1 to 1 �1 to 1

CPPN weight range �3 to 3 �3 to 3

Function set Gaussian, sigmoid, sine,

bounded linear

Gaussian, sigmoid, sine,

absolute value

Artificial Life Volume 15, Number 2212

A Hypercube-Based Encoding for Evolving Large-Scale Neural NetworksK. O. Stanley et al.

	A Hypercube-Based Encoding for Evolving Large-Scale Neural Networks
	Recommended Citation

	arl15202 185..212

