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Anderson localization and colocalization of spatially entangled photons

Ayman F. Abouraddy,1,* Giovanni Di Giuseppe,1,2 Demetrios N. Christodoulides,1 and Bahaa E. A. Saleh1

1CREOL, College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, USA
2School of Science and Technology, Physics Division, University of Camerino, 62032 Camerino, Italy
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We explore the propagation of light in a two-photon state in disordered optical systems that induce Anderson
localization. We show that entangled-photon pairs demonstrate a surprising behavior that we call Anderson
colocalization: While neither photon exhibits Anderson localization, the spatial correlations of the pair remain
intact. Furthermore, we show that entangled-photon pairs colocalize faster than classical light localizes in the
same system. We also explore the propagation of anticorrelated and partially entangled photon pairs in such
systems. The results are developed using a linear systems theory that extends the scope of quantum imaging to
incorporate disordered systems.

DOI: 10.1103/PhysRevA.86.040302 PACS number(s): 03.67.Bg, 42.65.Lm, 72.15.Rn, 42.25.Dd

Quantum mechanical propagation in a disordered lattice
may result in a localized wave function, a phenomenon termed
Anderson localization (AL) [1]. Observing this fundamental
effect, nevertheless, has proven challenging in electronic struc-
tures. The analogy between the evolution of a wave function
and that of a classical optical field [2] has recently spawned
optical realizations of so-called transverse AL [3] in disordered
arrays of coupled optical waveguides [4–6]. The exquisite
control achieved in state-of-the-art microfabrication [7] now
enables studying the propagation of quantum states of light
in new classes of photonic circuits [8,9]. Although quantum
entanglement is an essential resource in quantum information
processing [10], the propagation of spatially entangled photon
pairs [11] in an AL system has not been studied extensively
heretofore. Since an extended classical source may mask the
AL signature, optical demonstrations of AL using classical
light typically make use of point excitations [4]. It might hence
be expected that a pair of photons in a spatially entangled
state, which is necessarily spatially extended [11], would
not exhibit AL upon traversing a disordered lattice. Previous
work includes studying two-photon speckle correlations from
scattering media [12], examining the impact of disorder on
temporal entanglement [13], and the effect of disorder in
waveguide arrays on squeezed light [14].

In this Rapid Communication we predict a phenomenon that
we call Anderson colocalization (AcL) that may be unraveled
in two-photon correlation space. In this phenomenon, each
spatially extended photon from an entangled pair remains
spatially extended while the relative separation between
the two photons in correlation space is localized. We find
that entangled photons colocalize faster than classical light
localizes in the same system. Furthermore, we investigate the
propagation dynamics of entangled photons that are spatially
anticorrelated and also the effect of partial entanglement. We
uncover a family of two-photon states that are invariant upon
passage through an AL system, which we call two-photon AL
eigenstates. We present these results using a linear systems
theory that extends the formalism of quantum imaging [11,15]
to incorporate disordered systems.

*raddy@creol.ucf.edu

We first consider the propagation of a classical optical
field in a linear disordered system. A single realization of the
scalar input Ei and output Eo fields are related by Eo(x1) =∫

dxhξ (x1,x)Ei(x), where ξ refers to the random parameters
characterizing the system. The input and output second-order
correlation functions [16] are thus related through

G(1)
o (x1,x2) =

∫∫
dxdx ′H (x1,x2; x,x ′)G(1)

i (x,x ′), (1)

where x1 and x2 (x and x ′) are points in the output (input)
plane, G(1)

i (x,x ′) = 〈E∗
i (x)Ei(x ′)〉, the correlation propagator

H (x1,x2; x,x ′) = 〈h∗
ξ (x1,x)hξ (x2,x

′)〉ξ results from averaging
over ξ , and G(1)

o (x1,x2) = 〈〈E∗
o (x1)Eo(x2)〉〉, where the double

brackets indicate averaging over input field fluctuations and
system disorder, which are assumed to be statistically indepen-
dent. It is straightforward to generalize this formulation to two-
dimensional (2D) field distributions and spatially discretized
systems such as coupled waveguide arrays.

We adopt a specific disordered linear systems ansatz for
which the propagator H factors in the form

H (x1,x2; x,x ′) = h∗
a (x1 − x)ha(x2 − x ′)ga(x − x ′). (2)

Note that the underlying realizations hξ need not be shift
invariant for the average impulse response ha(x) to be so; only
the statistical properties of the system disorder are spatially sta-
tionary. Writing G(1)

i (x,x ′) = √
Ii(x)Ii(x ′)gi(x − x ′) in terms

of the input intensity Ii(x) and the mutual degree of coherence
gi(x) [16], the imaging equation (1) becomes identical to that
for a partially coherent system with effective impulse response
function ha(x) and mutual coherence function equal to the
product g(x) = ga(x)gi(x). In this case, the function ga(x),
which represents correlation in the disordered system, has the
effect of modifying the degree of coherence of the input light
(reducing its effective area of coherence).

Anderson localization occurs if the system disorder is such
that a certain limit on ha and ga is attained. In the limit ha(x) →
δ(x), Eq. (2) yields G(1)

o (x1,x2) → G(1)
i (x1,x2)g(x1 − x2) and

Io(x1) → Ii(x1); that is, the point spread function of the system
is a δ function. Regardless of ga(x) and gi(x), this is a perfect
imaging system for intensity where a point input excitation
leads to a highly localized output distribution. Furthermore,
if the disorder is such that ga(x) → δ(x), then G(1)

o (x1,x2) →
Ii(x1)δ(x1 − x2) and the output coherence function is that of
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an incoherent field. In this case, the disordered system washes
out any partial coherence of the input field and suppresses
any gain of coherence that usually results from propagation.
The coherence function narrows or “localizes” in the x1 = x2

direction in correlation space. We use this stronger limit,
both ha(x) → δ(x) and ga(x) → δ(x), to represent the optical
analog of AL, which then corresponds to a narrowing of the
average impulse response function and a reduction in the
coherence length.

The need for using point excitations to demonstrate AL is
now clear. For a point excitation, say at x = 0, G(1)

o (x1,x2) =
h∗

a (x1)ha(x2) and Io(x) = |ha(x)|2, so that observing AL is
tantamount to measuring |ha(x)|2. An extended source, on
the other hand, masks this outcome. For an extended input
distribution with g(x) = δ(x), whether an incoherent input
or a disordered system with ga(x) = δ(x), we have Io(x1) =∫

dx|ha(x1 − x)|2Ii(x), so that localization is masked by the
convolution operation.

The statistical averaging needed for observing AL may be
achieved by either exciting a fixed input point of multiple
disordered-system realizations [6] or scanning input points
of the same disordered system [4]. We have shown that
these two approaches are equivalent [17]. Here we demon-
strate that the parallelism enabled by quantum entanglement
carries out the statistical averaging automatically in a manner
similar to the latter strategy.

As a concrete realization of a disordered system, consider
a one-dimensional (1D) array of coupled waveguides where
the spatially discretized field amplitudes Ej (z) in the j th
waveguide evolves according to −i

dEj

dz
= βnEj + κ(Ej−1 +

Ej+1) [2]. Here κ is the coupling coefficient between adjacent
waveguides and the βj ’s are random propagation constants
chosen from a uniform probability distribution with mean
βo and width �. This model is the so-called diagonal
disorder model. An alternative model, the so-called off-
diagonal disorder, consists of a lattice of waveguides having
random propagation constants and fixed coupling between the
waveguides. While we use diagonal disorder throughout the
paper, our conclusions are equally valid for the off-diagonal
disorder model.

The input field Ei = {Ej (0)} is related to the output field
Eo = {Ej (z)} through dEo

dz
= iĈEi, so that Eo = ĥ(z)Ei, where

the transfer matrix ĥ(z) = eiĈz, and the propagator Ĥ [Eq. (2)]
results from the correlation of ĥ. In Fig. 1(b) we plot
the averaged output intensity distribution from arrays with
different levels of disorder � ranging from an extended state in
a periodic array (� = 0) to an AL state in a disordered one. We
use this discrete disordered-system model in our subsequent
calculations of entangled-photon propagation.

We now proceed to examine the propagation of a general
two-photon state with density operator

ρ̂ =
∫∫∫∫

dxdx ′dx ′′dx ′′′ρi(x,x ′; x ′′,x ′′′)|1x,1x ′ 〉〈1x ′′ ,1x ′′′ |
(3)

in a disordered system in the AL limit [Fig. 1(c)] by evalu-
ating the coincidence rate (intensity correlation) G(2)(x,x ′) =
ρ(x,x ′; x,x ′) [18]. We first consider the special case of a pure
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FIG. 1. (Color online) (a) Schematic of the system configuration
with a coupled-waveguide array. (b) Intensity distribution at the
output of arrays with different degrees of disorder �

βo
averaged over

multiple realizations for two different lengths zβo. The distributions
are displaced vertically for clarity. (c) Schematic of a pair of photons
propagating through a disordered system and the coincidence rate
G(2)

o (x1,x2) measured at the output.

two-photon state |�〉 = ∫∫
dxdx ′ψ(x,x ′)|1x,1x ′ 〉 represent-

ing entangled pairs correlated in their positions ψ(x,x ′) =
ϕ(x)δ(x − x ′). This idealized state may be generated in type I
collinear degenerate spontaneous parametric down-conversion
(SPDC) [19] in the thin-crystal narrowband limit [11,15]. The
degree of entanglement of such a state depends on the width w

of ϕ(x) (larger w corresponds to stronger entanglement) [20].
The input coincidence rate G(2)

i (x1,x2) = |ϕ(x1)|2δ(x1 − x2) is
diagonal along x1 = x2 as a result of the photon-pair spatial
correlation, and the output coincidence rate is

G(2)
o (x1,x2) =

∫∫
dxdx ′ϕ(x)ϕ∗(x ′)H (2)

+ (x1,x2; x,x ′), (4)

where the propagator H
(2)
+ (x1,x2; x,x ′) is given by

〈hξ (x1,x)h∗
ξ (x1,x

′)hξ (x2,x)h∗
ξ (x2,x

′)〉ξ , (5)

so that the coincidence rate in effect corresponds to dou-
ble traversal through the system. We introduce two output
marginal functions extracted from G(2)

o (x1,x2): (1) the singles
rate So(x1) = ∫

dx2G
(2)
o (x1,x2), resulting from integrating

over x2 and which corresponds to single-photon detection
at the output, and (2) the diagonal marginals S+

o (x1) =∫
dx2G

(2)
o (x1 + x2,x2), resulting from integration along the

x1 = x2 direction.
In order to understand the consequences of Eq. (4), we

first consider a periodic array, � = 0. In Fig. 2 we show the
evolution of G(2)

o (x1,x2) for various values of z. The output
singles So(x1) reflects the convolution of the input singles
Si(x1) = |ϕ(x1)|2 with the system point spread function. On
the other hand, the diagonal marginal S+

o (x1) has the same
distribution as that resulting from a point excitation at the
input to a system of twice the physical length [Fig. 1(b)].
Note that this holds only for the entangled photon case as we
see below when discussing the effect of partial entanglement.

A similar trend is observed in the disordered case ( �
βo

=
0.2). When input point excitations of classical light are coupled
to this array, AL is observed [Fig. 1(b)]. When the entangled
two-photon state propagates in this array, G(2)

o (x1,x2) remains
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FIG. 2. (Color online) Output coincidence rate G(2)
o (x1,x2) (2D

color plots, 101 × 101 waveguides), single marginals So(x1) (1D
plots, dashed blue), and diagonal marginals S+

o (x1) (1D plots, solid
green) for various propagation distances of entangled photons in
1D coupled waveguide arrays (each containing 101 waveguides with
κ = 0.05) with different degrees of disorder. The columns correspond
to propagation distances zβo = 0, 20, 50, 100, and 200. The first
pair of rows corresponds to a periodic array � = 0, and the second
and third pairs correspond to �

βo
= 0.1 and 0.2, respectively; 41

waveguides are excited with equal amplitudes. The marginals So(x1)
and S+

o (x1) in all panels are normalized to the same value for
comparison; G(2)

o (x1,x2) in each panel is normalized separately for
clarity.

diagonal along x1 = x2. Since So(x1) is spatially extended,
neither photon separately demonstrates AL. On the other hand,
the narrow distribution of S+

o (x1) centered on x1 = 0 signifies
that the separation between the two photons is always small,
and in the AL limit the two photons always emerge together
from the same waveguide into which they entered. In other
words, neither photon localizes, but the pair colocalizes. We
term this phenomenon Anderson colocalization (AcL).

Furthermore, entangled photons colocalize faster in two-
photon correlation space than a classical field localizes when
traversing the same medium. This is clearly seen when we
compare the output intensity Io(x1) for classical input point
excitation [Fig. 1(b)] and S+

o (x1) for entangled pairs (Fig. 2).
We find that S+

o (x1) corresponding to a propagation length z

is identical to Io(x1) for length 2z, as was anticipated from
Eq. (4).

The entangled state is a useful simplification, but it is also
important to examine how partial entanglement affects AcL.
We consider here the effect of the decrease in the entangled-
photon source width w. As w decreases, the strength of the
photon correlations decreases, and the two photons become

w = 0 21 11 3 
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FIG. 3. (Color online) Effect of entangled-photon source size, and
hence degree of entanglement, on the two-photon coincidence rate.
The first two rows depict G(2)

o (x1,x2) and both the single marginals
So(x1) (dashed blue) and diagonal marginals S+

o (x1) (solid green)
for a periodic array (� = 0) for various values of the width w. The
last two rows correspond to a disordered array ( �

βo
= 0.2). Note the

evolution from AL when w = 1 (blue curve on the left) to AcL for
larger width (green curve on the right). Normalization scheme and
waveguide index range are similar to Fig. 2 and zβo = 200.

uncorrelated when the source is reduced to a point [20].
In Fig. 3 we depict G(2)

o (x1,x2) for periodic (� = 0) and
disordered ( �

βo
= 0.2) arrays while increasing w from 1 to 21

in units of interwaveguide separation. When w = 1, the two
photons are no longer entangled and they enter together one
waveguide. Consequently G(2)

o (x1,x2) factorizes into a product
since the two photons are uncorrelated. Here So(x1) is identical
to Io(x1) for a point input excitation at x = 0. This behavior
was previously noted in Ref. [8]. In this case S+

o (x1) does
not carry any information about the system. As we increase
w, the source becomes entangled and G(2)

o (x1,x2) no longer
factorizes. In the periodic array, the two diagonal peaks are
diminished and the two off-diagonal peaks are strengthened.
So(x1) no longer corresponds to the classical output and the
discrete diffraction features are washed out. On the other
hand, S+

o (x1) approaches Io(x1) for a point input excitation
to a system with twice the length of the physical system. For
the disordered array, G(2)

o (x1,x2) factorizes when w = 1 and
both photons exhibit AL. In this case both So(x1) and S+

o (x1)
reflect the mapping of the localized input state to a localized
output state. As w increases, So(x1) broadens in step with w,
while S+

o (x1) maintains the small width associated with AcL.
Increasing entanglement thus results in a gradual evolution
from AL to AcL.

We next consider the entangled two-photon state when
the two photons are anticorrelated in position ψ(x,x ′) =
ϕ(x)δ(x + x ′), which may be produced after the two entangled
photons with correlated positions traverse a Fourier-transform

040302-3
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(a)

FIG. 4. (Color online) Anderson localization and colocalization
of entangled photon pairs anticorrelated in position. (a) Propagation
dynamics of entangled photon pairs in periodic (� = 0, first row)
and disordered ( �

βo
= 0.2, second row) arrays. (b) Effect of partial

entanglement on AL and AcL; zβo = 200. Normalization scheme is
similar to Fig. 2. Waveguide index range is similar to Figs. 2 and 3.

system [11,15]. The two photons in such a state are always
on opposite sides of the origin at the input, and the output
coincidence rate is

G(2)
o (x1,x2) =

∫∫
dxdx ′ϕ(x)ϕ∗(x ′)H (2)

− (x1,x2; x,x ′), (6)

where the propagator H
(2)
− (x1,x2; x,x ′) is given by

〈hξ (x1,x)h∗
ξ (x1,x

′)hξ (x2, − x)h∗
ξ (x2, − x ′)〉ξ . (7)

We find that the results are identical to the correlated case
except that the x1 = x2 and x1 = −x2 diagonals in G(2)

o (x1,x2)
are exchanged, as shown in Fig. 4. We observe AcL here in
the narrow width of G(2)

o (x1,x2) along the x1 = −x2 direction.
Hence, the antidiagonal marginal S−

o (x1) = ∫
dx2G

(2)
o (x1 −

x2,x2) exhibits AcL here. In this case, the separation between

the two photons remains invariant, and the two photons always
emerge symmetrically from opposite sides of the array.

An important and general observation emerges from
the results above: For entangled photons, whether cor-
related (Fig. 2) or anticorrelated (Fig. 4), the coinci-
dence rates at the output G(2)

o (x1,x2) = ρo(x1,x2; x1,x2)
and input G(2)

i (x1,x2) = ρi(x1,x2; x1,x2) are, surprisingly,
the same, since ρo(x1,x2; x ′

1,x
′
2) → ρi(x1,x2; x1,x2)δ(x1 −

x ′
1)δ(x2 − x ′

2) in the AL limit. This result applies in fact to
all two-photon states in the AL limit. It is not the case, though,
that the output and input states remain necessarily the same;
only the coincidence rates do. An AL system thermalizes the
two-photon state and ρo becomes diagonal regardless of the
input state. There is, though, a family of two-photon states
that remain unchanged after passage through a disordered AL
medium. We call these states two-photon AL eigenstates, and
they take the form

ρi(x,x ′; x ′′,x ′′′) = ρ(x,x ′; x,x ′)δ(x − x ′′)δ(x ′ − x ′′′). (8)

Examples of such eigenstates include (1) separable
mixed states ρi(x,x ′; x ′′,x ′′′) = ρ1(x)δ(x − x ′′)ρ2(x ′)δ(x ′ −
x ′′′), where the two photons are independent and mixed, and
(2) classically correlated states ρi(x,x ′; x ′′,x ′′′) = ρ(x)δ(x −
x ′)δ(x − x ′′)δ(x ′ − x ′′′), where the two photons are correlated
in location, as in the entangled-photon case, but lack phase
correlations. We thus uncover a central result of this Rapid
Communication: AL does not diminish two-photon spatial
correlations, but it does destroy phase correlations. Separable
two-photon states remain separable; correlated two-photon
states remain correlated.

In conclusion, we have presented a formalism to describe
the propagation of classical and two-photon light in disordered
systems. We uncovered a phenomenon associated with the
propagation of entangled-photon pairs in such systems, which
we call Anderson colocalization: While neither photon is
localized, the two-photon separation in coincidence space
is. The increase in entanglement is accompanied by a
gradual evolution from AL to AcL. Our results are intimately
connected with a specific ansatz for a disordered system
model inspired by the waveguide arrays used heretofore in AL
demonstrations with classical light. This work should stimulate
further investigations of higher-order correlation functions of
classical and quantum states of light propagating in disordered
media using our model and other variants.
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