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ABSTRACT

The modern view of optimization is that optimization algorithms are not designed

in a vacuum, but can make use of information regarding the broad class of objective func-

tions from which a problem instance is drawn. Using this knowledge, we want to design

optimization algorithms that execute quickly (efficiency), solve the objective function with

minimal samples (performance), and are applicable over a wide range of problems (ab-

straction). However, we present a new theory for blackbox optimization from which, we

conclude that of these three desired characteristics, only two can be maximized by any

algorithm.

We put forward an alternate view of optimization where we use knowledge about

the problem class and samples from the problem instance to identify which problem in-

stances from the class are being solved. From this Elimination of Fitness Functions ap-

proach, an idealized optimization algorithm that minimizes sample counts over any prob-

lem class, given complete knowledge about the class, is designed. This theory allows us

to learn more about the difficulty of various problems, and we are able to use it to develop

problem complexity bounds.

We present general methods to model this algorithm over a particular problem

class and gain efficiency at the cost of specifically targeting that class. This is demon-

strated over the Generalized Leading-Ones problem and a generalization called LO∗∗,

and efficient algorithms with optimal performance are derived and analyzed. We also
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tighten existing bounds for LO∗∗∗. Additionally, we present a probabilistic framework

based on our Elimination of Fitness Functions approach that clarifies how one can ideally

learn about the problem class we face from the objective functions. This problem learning

increases the performance of an optimization algorithm at the cost of abstraction.

In the context of this theory, we re-examine the blackbox framework as an al-

gorithm design framework and suggest several improvements to existing methods, in-

cluding incorporating problem learning, not being restricted to blackbox framework and

building parametrized algorithms. We feel that this theory and our recommendations will

help a practitioner make substantially better use of all that is available in typical practical

optimization algorithm design scenarios.
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CHAPTER 1
INTRODUCTION

A traditional view of “blackbox optimization methods” typically emphasizes their

lack of information [1, 2, 3]. After all, such methods appear to be knowledge-poor com-

pared to alternative methods that might rely on deep insight regarding a specific problem

instance, such as the formal, mathematical specification of the optimization problem, in-

cluding (when available) its derivative. One turns to blackbox methods when one has no

choice — when the objective function cannot be known to the optimizer a-priori. A more

modern view, however, is that it is more realistic and constructive to recognize that such

methods do not operate in a vacuum, but make use of information regarding the broad

class of objective functions from which a problem instance is drawn [4, 5, 6, 7].

We claim that optimization algorithms should be arranged along three dimensions

based on the following characteristics:

1. Problem abstraction: The breadth of problem classes over which, this algorithm out-

performs random search.

2. Blackbox performance: A performance metric that minimizes the number of times

the target problem instance must be sampled.
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3. Search efficiency: This is concerned with the time and space complexity of the algo-

rithm excluding the evaluation of the target problem instance.

In this dissertation, we focus on these characteristics and present new algorithms that

maximize them. We also discuss how this helps us understand existing algorithms and

impacts the design of new algorithms.

Our view is that knowing the class from which an objective function hails can pro-

vide a significant amount of information. Such information constitutes domain knowledge

of the larger, more general problem. This domain knowledge is critical for an algorithm

to solve an objective function with good performance. But we find that in practice, this

information is poorly utilized due to various practical restrictions resulting in poor per-

formance. Moreover, conceptually one can turn the question on its head: Rather than

blackbox optimization being about using domain knowledge to find a point that maxi-

mizes or minimizes some given objective function, it can be seen as searching through a

given problem class to find the problem instance that matches the target objective func-

tion. Once the specific problem instance is known, the solution is given by the instance.

Existing blackbox optimization methods already efficiently encode some domain

knowledge implicitly and procedurally via their various search operators. However, our

conceptual framework allows us to step back and construct an algorithm that separates

the notions of domain knowledge, how new samples are selected, and the mechanisms

by which blackbox search is conducted. Our idealized algorithm, called optimal elimina-
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tion of fitness functions (OEFF), works by iteratively removing all non-matching problem

instances in the given problem class until the specific problem instance is uniquely iden-

tified. This allows us to consider hypothetical scenarios in which our algorithm is given

free access to explicit and complete domain knowledge (e.g., a pair-wise table of all func-

tion and potential sample point mappings), which in turn allows us to develop blackbox

performance and blackbox complexity bounds for the problem class. In this dissertation,

we demonstrate how OEFF can be used to find blackbox complexity bounds by using it

to bound a generalized ONEMAX problem class.

We recognize that no practical algorithm can maintain a complete table of all pos-

sible problem instances and sample point mappings; however, it turns out that there are

special cases of problem classes where complete domain knowledge can be efficiently

embedded into a search process in order to develop practical algorithms for that problem

class that behave equivalently to our idealized algorithm. Such algorithms are therefore

optimal from a blackbox performance point of view. They often have substantially im-

proved efficiency over OEFF due to the embedding of the domain knowledge. In this

dissertation, we demonstrate how this can be done by deriving an algorithm for a gener-

alized LEADINGONES problem class that has optimal blackbox performance, while being

very efficient. This gives us insight about the trade-offs between problem abstraction,

efficiency, and performance.

We further apply this embedding approach to generalizations of generalized LEADIN-

GONES called LO∗∗ and LO∗∗∗. We derive an algorithm for the former that has optimal
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blackbox performance and is very efficient. We tighten pre-existing bounds to Θ(n) for

LO∗∗ and Θ(n log n) for LO∗∗∗. Next, we examine a generalization of the LONGPATH prob-

lem class and conclude that to OEFF, this problem is no harder than the underlying gen-

eralized ONEMAX problem class. So, we create a new problem class called STEEPPATH

that is designed to be easier for an EA than LONGPATH while harder for OEFF. We show

that OEFF and a traditional EA both achieve Θ(n2) for this problem class.

Of course, when practitioners face a problem, they typically have only rough ideas

regarding the problem class from which the instance is drawn — the precise class is un-

known to them. In our view, this implies that the engineer has some kind of partial do-

main knowledge. Indeed, engineers often repeatedly face new problem instances from the

same class and refine their algorithms based on past experience with those problems. In

essence, they are performing a kind of manual problem class learning, gradually refining

their partial knowledge of the problem class. Some types of hyper heuristics attempt to do

this automatically [8], but with little to no theoretical guidance as to how to do this or

what is possible. We use our framework to develop a theoretical grounding for problem

class learning.

In this dissertation, we develop ideas for representing partial domain knowledge

as probability distributions over problem classes and show how OEFF can be extended

to make use of partial domain knowledge. We also use Bayesian update methods to en-

sure that the algorithm refines its understanding of the problem class over time. From

a blackbox performance point of view, this algorithm is optimal in the sense that given
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some initial partial domain knowledge and a series of problem instances drawn from

some not-fully-known problem class, no algorithm could have a better blackbox perfor-

mance on each of the problem instances. Recognizing our algorithm is not practical to

implement, we provide high level advice for how to translate what we have learned into

more practical methods to perform problem class learning. We also examine the transfer

learning [9] scenario in the context of our theory and make suggestions for improvement.

At its heart, this dissertation is about how information affects or can affect opti-

mization. We believe that all algorithm designers have to deal with trade-offs regarding

information use while designing algorithm design. Our high level goal is to change the

way engineers think about, design, and implement optimization algorithms such that

they think first and foremost about what information is available and how it can be effec-

tively used in the current context. We hope and believe this view will challenge conven-

tional views of optimization.

1.1 Outline

In the next chapter, we discuss relevant literature on blackbox complexity and

problem class learning. In chapter three, we lay out our framework, including terms and

notation, a formal description of OEFF, and a high level discussion of our view of domain

knowledge in OEFF. Chapter four demonstrates the use of OEFF to determine blackbox

complexity bounds for a generalized ONEMAX problem class. Chapter five demonstrates
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how we use the OEFF framework to construct a practical, optimal algorithm to solve prob-

lem instances drawn from a generalized LEADINGONES problem class. Chapter six lays

out our new work on how the OEFF framework informs problem class learning. We show

how partial domain knowledge can be represented as probability distributions over prob-

lem classes, describe how such knowledge can be optimally updated, extend OEFF to do

this, and provide some high level advice for how to implement practical methods that

perform problem class learning. The final chapter offers some general discussion about

the merits of the OEFF perspective as well as a discussion of possible future directions of

research.

1.2 Contributions

In this dissertation, we make the following contributions to optimization theory

and design of optimization algorithms.

1. We present three characteristics of optimization algorithms that define dimensions

along which, all blackbox optimization algorithms can be placed.

2. We present theory for an idealistic optimization algorithm that maximizes problem

abstraction and blackbox performance. We demonstrate usage of this theory for

performance bounding of problem classes using algorithm analysis. An equivalent

result in information theory was first proven by Erdős and Renyi in [10]. However,
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when we proved our result in 2009 we were not aware of this work and it was

not commonly known in the community. Consequently, our work was accepted as

original novel research at a conference (FOGA 2009).

3. We present and demonstrate a formal process that can trade-off the problem ab-

straction of said idealistic algorithm for algorithm efficiency. We use this method

to construct an optimal algorithm for the Generalized LEADINGONES problem class

and two of its generalizations. In addition, we apply this approach to analyze the

LONGPATH problem class and contrast it against analysis of a problem class called

STEEPPATH that we constructed.

4. We suggest problem learning as an effective approach to sacrifice efficiency for per-

formance when facing multiple problem instances. We extend the idealistic algo-

rithm to perform problem learning accurately.

5. In the context of the theory presented throughout this dissertation, we make seven

suggestions that can be used to build a new, theoretically grounded framework for

designing practical optimization algorithms. We provide general, high level sugges-

tions for designing such methods, including advice to the wider transfer learning

community.
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CHAPTER 2
BACKGROUND & MOTIVATION

In mathematics, optimization is the process of identifying from a set of alterna-

tives, the best element called a solution that has been defined by an objective function. An

objective function, given an element, returns a real value indicating how good (or bad) it is.

This value is called an objective value or, in evolutionary computation community, a fitness

value. A solution is defined as the element with the highest (or lowest) fitness value. Then,

optimization becomes a process of maximization (or minimization) of an objective func-

tion and the elements with the peak value become the function’s solutions. A program

that attempts to solve an objective function is called an optimization algorithm. One of

the earliest examples of optimization algorithms are iterative approaches for identifying

the maxima from Newton and Gauss. Such methods rely heavily on in-depth knowledge

of a formalized problem instance, e.g., its derivative.

But for many practical optimization problems, this level of information is not avail-

able. Instead, a practitioner must turn to methods that rely on far less information about

an individual instance of an optimization problem. Nevertheless, a practitioner of opti-

mization does not write algorithms to solve objective functions in a vacuum. In practice,
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when a customers needs help with some problem, they provide a practitioner with some

information about the general problem. We identify three different levels of information

and specificity in these customer requests.

1. Informal description: The customer provides an informal description of the problem.

The practitioner is left to choose the search space, and define the solutions for vari-

ous problem instances that the customer may want solved using objective functions.

From the description, the practitioner also must glean the practical restrictions that

limits the type of objective functions he can write and execute.

2. Formal definition: The customer specifies a formal problem description and the ob-

jective functions. But, the practitioner is not tied to this objective function. Thus,

the customer may also provide associated restrictions that apply when designing a

new objective function.

However, in this scenario, the practitioner is free to write an algorithm that solves

the objective function without directly relying on it. He may use the objective func-

tion and the formal description to write a solver that can directly construct a solution

without needing to verify the solution using the objective function.

Only if he chooses, must he utilize the optimization framework. Even then, he may

write alternate objective functions that operate on the same solution space such that

for any alternate objective function, its set of solutions is a subset of the correspond-

ing objective function specified by the customer.

9



3. Formal definition with fixed objective functions: The customer specifies to the practi-

tioner, a set of formal objective functions as a parameterized algorithm or a math-

ematical function where the parameter can be used to identify a specific objective

function. The practitioner must construct a solver that uses these objective functions

directly. Of course, the last situation appears to be a very unlikely request from a

customer. However, this view of a problem scenario forms the basis for the blackbox

framework. We discuss this issue further in subsection 2.1.

Let us examine a practical example involving a customer. Consider the situation

where a salesman contacts an optimization expert (say, us) asking for a software to plan

his routes for him so that he minimizes traveling time while visiting all his clients at

least once. From the customer’s description, we can know that this matches the traveling

salesman problem, which becomes our formal problem description. The search space for

us is the set of all paths through weighted graphs.

Next, we formulate TSP as an optimization problem by devising an objective func-

tion. We can reasonably expect to be asked to find the solution for an arbitrary arrange-

ment of cities. Thus, for each potential arrangement represented as a weighted graph, we

construct an objective function over the search space we chose such that its solution set is

a subset of the solutions of the specific problem. For TSP, like most problems, this is an

impractically large number of objective functions. Thus we must choose a parameterized

objective function that will additionally take the weighed graph as input. The customers

current path finding request can be converted to a town graph and the resulting objective
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function is called the problem instance. The set of all possible problem instances form the

problem class, which is encoded in this example by the parameterized objective function.

What is not obvious in this is why after having identified the formal description

of the problem, the practitioner should choose to devise an optimization function and

attempt to solve it, instead of attempting to write a direct solver. An example of such a

direct solver is Dijkstra’s algorithm for single source shortest path problem. Dijkstra’s al-

gorithm does not explicitly compute any objective function to verify the solution. Instead

it directly constructs a solution from the samples. Based on this example, a generalized

optimization framework seems unjustifiably restrictive as it forces the optimization algo-

rithm to rely on the responses of the objective function alone.

However, some kind of general optimization framework confers the benefit of

problem interface unification, which means that by necessarily being expressed as an ob-

jective function, all optimization problems present the same interface to the optimization

algorithm. As a consequence, all optimization algorithms are compatible with all op-

timization problems though the resulting performance may vary. The practitioner can

take advantage of this by utilizing a pre-existing optimization algorithm for a different

problem and apply it to TSP.

The blackbox framework described below is a formalization of optimization. It has

restrictions that match those for many optimization problems and helps their analysis.
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2.1 Blackbox framework

To theoretically study algorithms we use restricted scenarios. A result derived un-

der a restricted scenario may be more realistic if the restriction is chosen to match practical

scenarios. A popular restricted scenario is the blackbox framework reviewed by Droste et

al. [11]. It refers to situations in which additional information about the problem instance

is restricted to only the fitness values it returns for sampled search points. In addition to

often being aligned with practical scenarios, this restriction guarantees problem interface

unification, an important benefit of the optimization framework. Algorithms commonly

associated with this framework include evolutionary algorithms, particle swarm opti-

mization etc. Analysis using this framework can help us understand the nature of the

objective function using landscape analysis. We can also bound performance of various

algorithms and determine the best among worst case performances over a problem class.

Importantly, the blackbox framework has no restriction on a-priori availability of

information about the problem class. This information, which consists of all possible de-

tails about the objective functions that make up the problem class, is called (complete)

domain knowledge. It is made available a-priori during the algorithm design phase. In

contrast, all the information about a single instance is called instance knowledge. In sec-

tion 3.2 we revisit these and present a representation for complete domain knowledge of

any possible problem class.
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The domain knowledge of a problem class, even though it can be very informative,

by itself is never enough to solve a new instance unless all the instances in the problem

class share a solution. This forces the algorithm to try to collect instance knowledge from

the instance using the only allowed method — sampling. By default, it also assumes

that algorithms have no restriction on the space needed or time spent computing the next

sample. We use this scenario in this paper.

Note that many of the common methods we use today, such as evolutionary al-

gorithms make use of substantially less information than even the traditional blackbox

assumes. Thus, depending on the practical scenario, some additional restrictions may be

warranted to make the analysis results more realistic. E.g., often, bounds are proven with

polynomial limits on the time the optimization algorithm can spend computing the next

sample. When analyzing performance, while lower bounds are more relevant under the

basic blackbox restriction, upper bounds are often derived with the addition of the poly-

nomial restriction. We can also further restrict information availability by limiting how

many of the most recent samples can be used to do sample selection. The reasoning is that

this is typical in practical optimization algorithms, making the bounds more relevant. As

explained in [12], this restriction can influence the bounds and bring them closer to what

is achievable in practice by such algorithms. But there still may be differences between

algorithm performance and known problem complexity [13]. The extreme restriction of

this type ([14] and [6]) is that of unbiased algorithms, where a new sample is a function

of a single previous sample and this operation is invariant w.r.t. bit-wise exclusive-or
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and the permutation of bit positions. This restriction is expected to mirror evolutionary

algorithms with traditional bit-flip and uniform crossover.

When choosing a set of objective functions that map to problems, in practice, there

often appears to be an intuitive objective function for the corresponding problem. How-

ever, the only requirement for an objective function of a problem is that its optimal points

are solutions of the corresponding problem given to us by the customer. The fitness val-

ues of the rest of the sample space are up to the discretion of the scientist. If these values

are all the same, then it is a needle-in-the-haystack (described in section 3.5) objective

function, which are particularly hard to solve. Usually the objective function is chosen

such that these fitness values help the optimization algorithm identify the solution of the

objective function.

2.1.1 Performance, problem complexity and algorithmic time complexity

For this dissertation, we define blackbox performance of an algorithm over a problem

class as the expected number of samples that the algorithm will take to solve a problem

instance averaged over all instances from that problem class.

Once we are given a specific problem class, the blackbox restriction makes this

performance metric natural as it meters the information flow from the instance to the

algorithm. As these fitness values are typically costly to compute compared to other por-
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tions of the optimization algorithm, this performance metric is quite relevant. However,

as the fitness value is a real-value, there is no limit on the information it can encode.

So, across all possible objective functions for an informal problem, any evaluation count

based performance metric has limited relevance as they can be gamed by choosing objec-

tive functions whose fitness values are more informative. However, this is rarely an issue

as the literature usually discusses performance over specific formalized problem classes,

not informal descriptions of problems.

Another metric we use later is blackbox problem complexity (or just blackbox com-

plexity), which is popular in literature. Unlike blackbox performance, it is a property of

the problem class alone, not a property dependent on both the choice of algorithm and the

problem class. It is defined as the minimal (over the possible randomized search heuris-

tics) worst-case expected optimization time [5] where in this case only, time refers to the

number of samples. Note that blackbox complexity bounds indicate what is possible (in

principle) for algorithms that work under the blackbox assumptions, whereas blackbox

performance gives bounds for an actual algorithm — so they are not the same. Still the

derived performance bounds can sometimes match the blackbox complexity bounds.

Note that due to our blackbox scenario not bounding the time spent choosing the

next sample, blackbox performance may be very different from time complexity. We pre-

fer to focus on blackbox performance in this paper because, unlike it, time complexity

is significantly impacted by the costs of the evaluation function, which is external to the

optimization algorithm. On the other hand, blackbox performance ignores the computa-
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tional costs of the optimization algorithm itself. Thus, we discuss these costs separately

in Chapter 5.

To understand the impact of the blackbox restriction, consider the single source

shortest path (SSSP) problem. The Dijkstra’s algorithm runs in O(|E| + |V |log|V |) where

|E| is the number of edges and |V |, of vertices. In contrast, [15] bounds the worst case per-

formance over a specific blackbox variant of SSSP to Ω(|V |2). Even ignoring the time com-

plexity added by the optimization algorithm, this blackbox variant is never better and is

worse if the number of edges is O(|V |). This difference stems from the fact that Dijkstra’s

algorithm is not a blackbox algorithm and thus does not obey knowledge restrictions. In

fact, given the availability of Dijkstra’s algorithm, it seems unnecessarily extreme to treat

SSSP with blackbox assumptions as the benefit of problem interface unification it confers

is unnecessary for this well studied problem.

2.2 Domain knowledge in practical blackbox optimization algorithms

The blackbox framework viewpoint leads to a number of practical and commonly

used optimization algorithms, metaheuristics [16] such as evolutionary algorithms (EAs)

in particular [17]. Nearly all of these approaches work by using search operators to ar-

range a search space such that previously sampled points of the objective function can be

used to try to infer where new, more optimal samples might be found. Ideally, one hopes

to exploit as much information available in the problem class as possible by using domain
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knowledge to bias how and where samples are taken and to understand what the fitness

value tells us about the solution.

2.2.1 Domain knowledge in evolutionary algorithms

Evolutionary algorithms are a good example of domain knowledge use in a black-

box algorithm. In a simple EA like the (1+1) EA, the mutation operator induces a topol-

ogy over the search space. With an appropriately chosen mutation operator, the resulting

topology can make it possible for the EA to produce incremental improvements to the

current candidate solution. More complicated EAs like genetic algorithms maintain a

population of samples and use operators that use multiple samples such as crossover etc.

While such evolutionary algorithms often do more than simply climb a peak within the

objective function, like most blackbox optimization methods, these algorithms clearly tra-

verse a complex landscape whose structure is determined by search operators, and how

they traverse it is determined by population mechanisms.

In [18], we show that a (1+1) EA approximates the elimination process we discuss

later. In a (1+1) EA with a mutation operator that flips each bit with some probability, let

a be a candidate solution early in the optimization process. For any sample point b, we

can create sequences of points in S from a to b such that each member in a sequence was

mutated from the previous member. Each sequence has a probability that is the prod-

uct of the probabilities of the individual mutations. Only sequences with monotonically
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increasing fitness can be a sequence of candidate solutions in an (1+1) EA. The sum of

the probabilities of all such sequences from a to b is the probability that b will become

a candidate. Given an objective function, as the search proceeds, as fitness value of the

current candidate solution a increases, this probability decreases for many points in the

search space. Given the target objective function u, if u(a) > u(b), due to the monotonic-

ity requirement on the sequence, the probability of b becoming a candidate becomes 0.

In this sense, (1+1) EA can be seen to perform an approximate elimination of potential

candidate solutions. Similarly, even other EAs that fail to drive the probability to 0 can be

considered to be eliminating candidates in a probabilistic sense.

When practitioners choose these operators for a particular application, the struc-

ture of the search landscape is changed to try to bias the algorithm for the current problem.

For an operator to arrange the search space the way an EA needs, it needs to know a lot

about the problem class. Thus, the choice of operators is a choice about the kinds of prob-

lems a practitioner believes he or she will face — a choice of the problem class to which it

will or should be applied. In this sense, the practitioner is attempting to embed domain

knowledge into the algorithm. When such bias is informative for the current instance,

these algorithms can perform well on the problem instance relative to other methods.

Also, as explained in Section 2.1, because the scientist is free to choose to solve

a different objective function set that shares solutions with the original problem class,

he can develop a new problem class along with the optimization algorithm to simplify
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incorporating the bias. However, this approach is attempted less often in the community.

We revisit this option in a later chapter.

2.2.2 Having no domain knowledge

The original No Free Lunch (NFL) theorem [19] describes the other extreme: where

there exists no bias to incorporate. It states that over the set of all possible instances

over a search space, any two algorithms have the same performance. Here, the problem

class contains objective functions with all permutations of sample points over the sample

space.

The NFL theorem is also instructive about the case when some bias may exist, but

the scientist is not aware of it during design phase. We introduce the concept of subjective

knowledge as the information we have about the problem class. Contrast this with objective

knowledge, which is complete domain knowledge about the true problem class. We discuss

these concepts further in chapter 6.

When we have no subjective knowledge, we don’t know which problem instance

we may face. We must assume that the problem instances are being chosen from the set

of all possible instances. As a consequence, NFL applies and we must conclude that no

algorithm can be expected to perform better than random search. To be precise, random

search under the blackbox framework samples uniformly at random, without repetition
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from the sample space and terminates when the solution is sampled. This underlines the

importance of having domain knowledge during algorithm design phase and incorporat-

ing it into the algorithm. However, it is important to note that removing functions from

the set of all possible instances does not guarantee performance increase — NFL applies

even when the problem class is closed under permutations of the search space. Neverthe-

less, in [20], the authors argue that it makes sense to examine a more restricted scenario

for practical algorithms where Kolmogorov complexity of the problem class is limited,

ensuring the incorporation of some biases in all practical optimization algorithms.

2.3 Non-blackbox optimization algorithms

To give context to the blackbox framework, we examine some algorithms that do

not follow the restriction of the blackbox optimization algorithm. The characteristics of

these algorithms that violate the blackbox framework’s restrictions sheds light on the

impact of the latter.

Multi-objective optimization (MOO) [21] is an approach that is technically not func-

tion optimization in the sense that the solution is not a point in the search space in gen-

eral. Here, instead of optimizing a single objective function, the optimization algorithm

attempts to maximize multiple objective functions. A consequence of this is that the solu-

tion to a multi-objective problem is a pareto front consisting of all the seen solution points

that are non-dominated. A benefit of this approach is that in circumstances where the
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problem description suggests maximizing multiple metrics, there is no need for the prac-

titioner to judge their relative weight so that a single objective function can be devised.

It is important to note that MOO is not the same scenario as single objective opti-

mization. However, it is possible to re-formulate a single objective optimization problem

as a multi-objective optimization problem. This is called multi-objectivization [22]. One

may ask whether this can make the problem harder to solve. There exists cases where

MOO formulation is equivalent to the single objective problem. For example, given three

objective functions {f1, f2, f3} s.t. f2(x) = 2 ·f1(x) and f3(x) = 3 ·f1(x). However, Brockoff

et al. [23] suggests that in fact, in some cases, depending on the objectives, adding more

objectives can make the problem easier to solve.

Sometimes, the resulting MOO formulation can provide more information about

the problem instance per sample than the single objective function and this can improve

performance. For example, Jensen [24] was able to use additional helper-objectives to

guide evolutionary algorithms in high-dimensional spaces. Knowles et al. [22] also find

that some single objective problems, when multi-objectivized, become easier to solve.

Both of these attempts use additional objective functions that depend on the problem

instance. This suggests that the limitation placed by the blackbox framework may be

overly restrictive if such “helper-objectives” can be devised.

Novelty search [25] implements another approach to adding more functions that

depend on the problem instance, and help solve it. In novelty search, additional infor-

mation about the evaluation of the sample is made available to the algorithm. This is
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considered behavior information and is tied to the sample. The behavior that generates

this information can be varied, and includes for example, the path taken to solve a maze

[25], behavior of artificial creatures in a virtual space [26], the behavior of a walking robot

[27], the path of an ant in the santa-fe trail problem [28] etc. Novelty search uses the in-

formation tied to each sample to compute the Euclidean distance between them. Based

on this distance function, the algorithm searches through the behavior space. It tries to

search uniformly by maintaining archives of previously seen samples and avoiding ex-

ploring samples that are too close to samples present in the archive.

In some of these problems such as the maze problem, the novelty search approach,

despite having a large degree of problem abstraction and reasonable efficiency, is able to

achieve higher performance than conventional blackbox algorithms. We attribute this to

its focus on the behavior space, using problem instance information beyond the objective

function. Due to the blackbox restriction, searching through the space of behaviors during

evaluation [29] is impossible under the blackbox framework. From these approaches we

may conclude that, for many practical scenarios the blackbox framework is too restrictive.

2.4 Problem learning

Even if we did not have complete domain knowledge to incorporate into our algo-

rithm during design time (off-line), we have the option of doing it on-line as the algorithm

is being used. In some cases, the true problem class may be much narrower than the de-
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signer believes at first. For example, one might approach the class of ONEMAX problems

differently from the broader class of linear problems with a finite set of possible weights

— assuming the designer knows this.

An algorithm can further miss out on domain knowledge when the designer could

not incorporate all the domain knowledge he has into it. In these situations, as we

are solving instances from the partially known problem class, we can infer more about

the problem class from the instances. This knowledge can be added to existing domain

knowledge and can aid solving future instances. We call this problem learning.

Most evolutionary algorithms perform optimization, but do no problem learning.

As an example, consider Estimation of Distribution Algorithms (EDA) [30]. These are a

variation on the classical genetic algorithm and they use a different operator for gener-

ating the new population. This operator uses all the individuals in the population along

with their fitness values to generate a probabilistic model of the currently known concept

of a “good” solution. This model is then sampled from enough times to generate the

new population. An EDA uses only the information present in the current population to

decide new samples and finally the solution. Thus, it does not do problem learning.

Of course, the degree to which an EA learns an instance can be more sophisticated.

An example is NeuroEvolution of Augmenting Topologies (NEAT) [31]. Here, each indi-

vidual is a representation of a neural network and the algorithm is a variation of a simple

genetic algorithm. A neural network is evaluated based on its input-output map. How-

ever, an infinite number of neural networks can encode the same input-output map and
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these are said to form a neutral network [32, 33, 34]. While members of a neutral network

appear the same to an objective function, they are unique to the operator. Thus, the choice

of the member of the neutral network influences the variability of its input-output map.

Consequently, representations that contain neutral networks are capable of learning vari-

ability. This suggests that algorithms that use such representation are capable of learning

more than just the solution [35]. Neutral networks also appear frequently in natural evo-

lution [36, 37] and are tied to mutational robustness [38].

However, it is important to distinguish learning about the variability appropriate

to a problem instance — which some call evolvability [39] — from problem learning. The

latter requires that the domain knowledge, which can be in the form of variability, learned

from one problem instance be used to solve another. In NEAT, it is reasonable to assume

that to some degree, the algorithm chooses those neural networks that have shown not

just the best fitness, but also the variability most suitable for the problem instance so

far. This biases NEAT towards problem instances where the paths to the solution show

consistent variability. However, in NEAT, this learned variability can be used only to aid

solving the current instance, thus lacking problem learning.

In this section, we discuss occurrences of problem learning and we start with natu-

ral evolution. Then we present some algorithms such as structured demes in evolutionary

computation and some hyper heuristics that attempt to do problem learning.
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2.4.1 Problem learning in natural evolution

One of the most obvious uses of domain knowledge in nature is in mutation control

and in particular, robustness [40, 41, 42, 43, 38, 44]. If certain systems in nature starting

from the molecular level, are not robust, it would lead to the larger organism breaking

down or producing too much variation in the offspring. This development of robust-

ness against unwanted variation is a direct use of information acquired about what is

“unwanted”.

For example, MacDonaill [45] finds that there exists a type of parity checking in

the chemical interactions between the base pairs on which the DNA is built upon. These

provide optimal discrimination between complementary and non-complementary base

pairs. Also, while this is not the only set of interactions that can be optimal, a mix of

different sets is suboptimal. This leads to a type of lock-in that prevents gradual evolution

of the base pairs from one set to another. This lock-in provides increased stability at higher

levels.

Another example is related to the proteins in the body. Maintenance of a protein’s

tertiary structure is crucial to maintaining its function [40]. There exists many naturally

occurring proteins that are resistant to changes in the tertiary structure and function de-

spite changes in the amino acids. For example, 84% of amino acids in β-lactamase in E.

Coli can suffer point mutation without affecting function.
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Studies of E. Coli [41] also show robustness of the metabolic pathways to loss of

enzymes. A study of knock down effect of individual enzymes in the metabolic pathways

of E. Coli show that of the 48 enzymes, only loss of 7 were critical. Of the remaining 41,

only loss of 9 produced growth rates below 95% of optimal. Clearly some trade-off has

occurred and nature prefers such a redundant system over a potentially more efficient

one.

Hsp90 is an important gene in the category of heat-shock genes, an essential set of

genes. The role of Hsp90 is to bind to proteins in signal transduction pathways. When

this gene is mutated [46], morphological deficiencies that can be traced back to changes

in Hsp90 occurred at 1-5%. It can be concluded that Hsp90 acts as a cushion from ge-

netic defects. It allows the organism to sustain higher mutation rates at the trait level

while avoiding many of its deleterious effects. Clearly, the design of Hsp90 is influenced

by what nature considers deleterious, which is information gathered about the problem

domain.

But does these examples qualify as problem learning or are these improvements

only the result of learning about the solution of a single fitness function? For it to be

problem learning, there must be a change in the problem instance aka fitness function. In

fact, in nature, the fitness function is changing by small amounts constantly and over large

time lines, it may change substantially. In this sense, an organism may be attempting to

optimize a fitness function significantly different from what its ancestors were optimizing,

say 10,000 years ago. Thus, this is a form of problem learning on the part of the organism
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because the heuristic, learned for a different fitness function by ancestors is still being

used successfully for new fitness functions.

2.4.2 Problem learning in Evolutionary Algorithms

We find that problem learning can also be done in evolutionary algorithms. A

direct albeit limited example of problem learning is seen in meta-evolutionary algorithms

[47]. It involves automated tuning of algorithm parameters for a problem class. This is

done over multiple instances from the problem class, and the resulting parameters are

specific to the problem class, and thus, are a form of domain knowledge.

Altenberg [48] presents a different approach to gathering domain knowledge in-

volving a type of transfer learning [9]. This is demonstrated on a problem where a par-

ticular mutation increases the fitness of the individual. However, once this mutation has

spread through a population, the entire population dies off, making it a pathological mu-

tation. In the representation for this study, there are sections that can suppress the effect

of this mutation. He ran this problem in an island algorithm with each island having a

separate population running separate EAs. There was periodic migration to an island in

case of extinction, and the migrating sample repopulates the island. Altenberg noted that

in time, the population learned to suppress the pathogenic mutation.
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The separate populations are equivalent to separate instances. The good solution

of one instance is being passed as the input to the next instance. This is an exchange

of potential domain knowledge from one instance to another. After enough migrations,

the information that has been retained can be expected to be domain knowledge. Even

though the instances in the islands are actually the same, the same learning can happen

with multiple instances which share the pathogenic property.

Another example for problem learning is the Anytime Learning approach [49],

now referred to as Continuous and Embedded Learning [50]. The CEL algorithm main-

tains a model of the environment by monitoring it. A simulation based on this model is

used to train a virtual robot. The learned behavior is then sent to a real world robot. This

is a good example of a model building optimization algorithm.

CEL can also do problem learning [51] by remembering a library of best known

robot behaviors for various environment models. When asked to perform in a new en-

vironment, CEL will model it, and then initialize with the best behavior for the closest

available model from the library. This is a good example of explicit problem learning and

is closer than most real world systems to the idealized problem learning approach pre-

sented in chapter 6, though there are significant differences, and it is unprincipled from a

theoretical point of view.

Case Injected Genetic Algorithms (CIGAR) [52] is a similar approach that learns

and applies information from the current instance to a future instance by using case-based

memory and genetic algorithms.
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2.4.3 Problem learning in Hyper Heuristics

Hyper heuristics, reviewed in [8] is an approach where high level heuristics called

hyper-heuristics are created to apply low level heuristics, that in turn create the solution

to the problem. The heuristic selection approach that involves high level heuristics select-

ing the appropriate low level heuristic has been applied to domains such as production

scheduling, 1D packing etc. Burke et al. [53] present a heuristic generation approach for

the bin-packing domain that outperforms manually designed heuristics. Heuristic gener-

ation approaches create new low level heuristics from components of existing low level

heuristics.

The low level heuristics can be constructive heuristics, which build a solution incre-

mentally. They can also be perturbative heuristics, which make small changes to a solution

as in reinforcement learning approaches. See [8] for a comprehensive treatment.

If the hyper-heuristic training algorithm is capable of online learning, it can exploit

task dependent local properties, to build hyper-heuristics. Based on our discussion so far,

online learning is a bias as it assumes that the observed local properties will repeat.

But of interest to us is offline learning, which involves gathering information in

the form of rules or programs from previously seen instances with the intention of us-

ing them to help solve a new instance. Terashima-Marin et al. [54] present a compari-

son of two offline learning hyper-heuristic systems, one using messy GAs and other us-
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ing learning classifier systems for a variety of benchmark problems. Off-line learning in

hyper-heuristics can be seen as a kind of transfer learning [9].

2.5 Making the best of Blackbox assumptions and questioning them

In the beginning of this chapter, we mentioned that we are often given an informal

description of a problem to optimize. From this, we develop a formal description of

the problem followed by a set of objective functions to optimize. When we build an

optimization algorithm under the blackbox framework under this framework, we are

allowed to incorporate domain knowledge about these objective functions. However, in

many cases, we do not have complete domain knowledge or are unable to incorporate all

that we have into the optimization algorithm, often both. To fill the gap, we sometimes

employ algorithms that can learn domain knowledge on-line from the objective functions

in a limited fashion.

Traditionally the blackbox optimization framework is considered to present a sce-

nario that severely restricts information about what we are being asked to solve. In con-

trast, we feel that domain knowledge in blackbox optimization is a lot of information and

the modern view of blackbox agrees with this. So, the relative dearth of domain knowl-

edge in existing practical algorithms for various reasons has led to an opinion that black-

box restriction is perhaps too relaxed for practical scenarios. This is why blackbox bounds
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are considered “too optimistic” and various recent papers suggest additional restrictions

to bring the blackbox framework in line with practical algorithm design realities.

This dissertation looks at what is the best that could be achieved under the black-

box framework, which provides complete domain knowledge to algorithms. We also

examine how can we achieve it and what that would cost us. To this end, we identify

three key desirable characteristics of algorithms:

1. Problem abstraction: This indicates the breadth of problem classes that this algorithm

targets. The easy way to increase problem abstraction is by targeting a bigger prob-

lem class. An algorithm outperforms random search averaged over all problem

instances in its target problem class. A different algorithm may target a larger prob-

lem class, but often reduces the increase over random search.

One way to increase problem abstraction is by introducing parameters to accept do-

main knowledge during execution time. The parameterized algorithm is effectively

a consolidated algorithm that separately targets various problem classes. This main-

tains the performance over the applied problem class, but requires that the given

domain knowledge accurately corresponds to that class.

2. Blackbox performance: This metric, defined before, is the expected number of samples

that the algorithm will take to solve a problem instance averaged over all instances

from the problem class it is applied to.
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3. Algorithmic efficiency: This is concerned with the time and space complexity of the

algorithm per sample, excluding the evaluation of the target problem instance.

The goal of an optimization practitioner is typically to find an algorithmic solution

that is optimal in all three of these senses. As we will show, this is not possible and any

algorithm, practical or otherwise, must make trade-offs that determine its practicality.

The idealized algorithm we present in the next chapter shows how to maximize problem

abstraction as well as blackbox performance. Then, we demonstrate a formal process that

we can use to trade-off problem abstraction for the sake of blackbox performance. In

chapter 6, we examine how we can ideally gather domain knowledge from previously

seen instances to help us with future instances. We suggest problem learning as a way

to gradually trade-off algorithmic efficiency for the sake of blackbox performance, if we

were so inclined.

However, we disagree with the notion of the blackbox framework being overly

relaxed in all aspects. We argue that it is too restrictive because we feel that in practical

scenarios, there are more sources of information about the problem instance than just the

objective function. We argue that these instance knowledge sources can be used to improve

performance beyond what is possible under the blackbox framework.
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CHAPTER 3
FITNESS FUNCTION ELIMINATION FRAMEWORK FOR

OPTIMIZATION

As explained before, the blackbox framework allows access to complete domain

knowledge. Algorithms make use of this information to various degrees. The question we

want to answer is, what is the optimal way to use complete domain knowledge? Among

existing approaches, evolutionary algorithms are explained as performing gradual im-

provement to a population of solutions. In section 2.2, we provide a different perspective.

We suggest that in fact, evolutionary algorithms progressively zero-in on a solution by

probabilistically eliminating potential solutions.

In this section we will discuss a new framework for optimization where we take

this elimination idea and instead of focusing on solutions, we focus on the objective func-

tions first. We use the samples from the unknown problem instance to eliminate objective

functions from the problem class until the number of remaining fitness functions all share

a solution. This framework consists of a representation for complete domain knowledge

along with algorithms that select samples and use their fitness value for optimization.

We justify this new framework by proving that it, while idealistic, is optimal w.r.t. the

blackbox performance metric discussed earlier.
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We begin with a brief explication of our notation.

3.1 Notational Preliminaries

This work considers optimization of functions that map from some discrete sample

space S into real values. When maximizing, the goal is then to find some ŝ such that

ŝ = argmaxs∈S f(s), where f : S 7→ R, and likewise for minimization we look for ŝ =

argmins∈S f(s). We refer to the situation in which we are asked to find the optimum of a

specific, unknown target function as a problem instance and denote the unknown function

as u. We use the term problem class to describe a known, finite set of functions F :=

{f1, f2, . . . , fm}, where m = |F | describes the cardinality of the function set. We use the

term F to denote the set of all possible functions mapping from some sample space S to

some known set of fitness values. Similarly, E = (℘(F)− φ) denotes the set of all possible

problem classes.

We consider the complete domain knowledge of some class to be the mapping 〈F, S〉 :

F × S 7→ R where ∀f ∈ F, ∀s ∈ S, 〈F, S〉(f, s) = f(s). This complete domain knowledge

can be viewed as essentially a vast table with as many rows as there are functions in the

function set, as many columns as there are samples in the sample space, and in which each

cell represents the objective value for that function applied to that sample. Alternately, it

is also sometimes useful to denote complete domain knowledge as a subset of F using an

indicator function IF : F 7→ {0, 1}, where IF (f) is 1 iff f ∈ F .
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As the search process proceeds, using samples, some functions from F are identi-

fied as not being the same as the problem instance and are eliminated. We use the notation

〈Fi, Sj〉 where Sj ⊆ S and Fi ⊆ F to indicate such an intermediate stage where Fi is the

set of un-eliminated functions. Sometimes shorthand such as Fi may be used for 〈Fi, Sj〉

for simplicity, where appropriate and when the context is clear.

Although the only restriction on S, the search space, assumed by most of the dis-

cussion in this paper is that it is finite, often we focus on a problem class in which the

search domain is the set of binary strings of length n. In such cases when s is a sequence

of bits, we use the notation s[i . . . j] to indicate a subsequence of s starting from i > 0 up

to and including j. Further, we use the notation f [i . . . j] for functions also when all func-

tions in the relevant problem class have unique solutions and this indicates a subsequence

of the solution of f . Used alone, [. . .] indicates an ordered sequence whose contents can

be accessed by index as described above for s.

Lastly, U indicates the subset of unsampled search points.

3.2 Representing complete domain knowledge

We can characterize an objective function as a unique set of relationships between

the fitness values returned by points in a sample space. If we sample an objective func-

tion completely, we could know (in principle) all the possible relationships between the
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sample points. Thus, all knowledge about an objective function can be represented as

an ordered list of fitness values returned for a fixed ordering of the points in the sample

space. This is complete instance knowledge.

For the next step, consider the axiom given below.

Axiom 1. If x is a variable that can take values from a set V , and if the value of x is known to be

fixed, then any knowledge about the value of x, can be described as a probability distribution over

V .

If x is the mapping of samples to fitness values that the unknown instance has,

then the possible mappings that x can be in general form the set of all possible instances

denoted by F . As the problem instance is fixed during a single optimization process,

using Axiom 1, we can describe any knowledge we can have about it as a probability

distribution over F .

However, it is important to note that this representation does not explicitly encode

structural properties that may exist in the fitness space. Such properties can be mined

from this explicit representation. Algorithms that use such properties to create heuristics

for optimization require that these properties be mined by practitioners during algorithm

design time. In contrast, the elimination approach described in section 3.3 is designed to

use the explicit representation directly.

Note that by assessing performance in the blackbox framework using an average,

one assumes that problem instances are drawn uniformly at random from the problem
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class. Thus we can simplify this knowledge representation further into a boolean vector

over members of F . The F itself can be represented as a table where each instances is a

row of fitness values and the points in the sample space form the columns. We can rep-

resent the information we have about the problem class by marking only the instances in

the problem class as True. We can get an alternate representation for domain knowledge

by removing the rows for functions not in F from the table representation of F to get a

table for F . This knowledge about the problem class is complete domain knowledge.

This representation may appear to be too different from existing representation of

domain knowledge, viz., optimization algorithms. The explanation is that optimization

algorithms encode relationships between fitness values of sample points to aid in opti-

mization, while this representation effectively enumerates the relationships.

In the next section, we present an algorithm that we prove, can use this represen-

tation ideally to solve an unknown instance.

3.3 Optimal Elimination of Fitness Functions

The optimization algorithm we are presenting tries to solve an unknown problem

instance u sampled from a problem class F by attempting to identify it in F . It does this

by comparing u(s) for all sampled points s with f(s),∀f ∈ F . If u(s) and f(s) are not

the same, f is eliminated as a potential match. This continues until there is only one un-
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eliminated function. We may also stop earlier, when all the un-eliminated functions share

a solution, which we can determine from the complete domain knowledge. This solution

is returned as the solution of the unknown. This approach of eliminating mismatching

fitness functions is the Fitness Function Elimination (FFE) framework and this algorithm

is called Optimal Elimination of Fitness Functions (OEFF) and is shown as Algorithm 1. It

is important to note that this algorithm is defined only if F , and thus F , are finite.

Algorithm 1 OEFF(X ,S,u)
while INTERSECT(FILTER(GETSOLUTIONS(),X)) = ∅ do

x← NEXTSAMPLE()

for i = 1 to |F| do
if X[i] = True then

if F [i](x) 6= u(x)

then

X[i]← False

end if

end if

OEFFSTEP

end for

end while

return INTERSECT(FILTER(GETSOLUTIONS(),X))

OEFF takes as input, a boolean vector X of length |F|. All the functions in F that

are present in the problem class have the value True in their position in X and False

otherwise. The second input S denotes an array storing contents of the search space, and u
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denotes the unknown instance from the problem class that is to be optimized. F [i] returns

the ith objective function from the set of all possible functions. The helper functions used

here are,

• GETSOLUTIONS: Returns a sequence of sets of solutions, one for each function in F .

This sequence is static and easy to compute or compress as F contains all possible

functions and they can be ordered systematically.

• INTERSECT: Given a list of sets, returns their intersection.

• FILTER: Filters a list based on the boolean vector given as 2nd parameter.

• NEXTSAMPLE: A placeholder for any function that selects samples for OEFF.

It is important to clarify some design choices for OEFF. An important difference

between the blackbox framework and OEFF is that in the former, sampling the solution is

necessary and sufficient for termination. OEFF shows us that for some problem classes,

sampling the solution can be neither necessary nor sufficient to correctly identify a solu-

tion under all circumstances. Regarding necessity, OEFF can identify an objective function

without sampling its solution, and once identified, OEFF can suggest the solution imme-

diately, saving us a sample w.r.t to a valid algorithm under the blackbox framework. To

disprove sufficiency, consider a problem class F = {f1, · · · , fn} such that,

fi(x) =


x x ≤ i

0 otherwise
(3.1)
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Let u = fm,m < n. On evaluating u(m) alone, even though OEFF has sampled

the solution m, it cannot know that the solution has been sampled — along with other

functions, fn is still in the set of non-eliminated functions — and so, the solution may

be n. Thus, OEFF only terminates when the the objective functions in the candidate pool

share a solution. When we provide a new proof for NFL in section 4.2, we account for

this difference.

3.3.1 Optimality of OEFF

Regarding the issue of optimality of OEFF, first, we prove that given a particular

sample sequence, no algorithm can solve the unknown instance using fewer samples from

it than OEFF. Next, we will present a strategy for sample selection for OEFF that chooses

the sample that maximizes the blackbox performance of OEFF.

Theorem 1. OEFF is optimal in the sense that given a particular sample sequence, it is impossible

for any algorithm to be consistently correct in predicting the solution using fewer samples than

what OEFF requires.

PROOF. We will prove this by contradiction. Let there be an algorithmA that can be

expected to accurately predict the solution with fewer samples than OEFF for an unknown

u and for a specific sample sequence. From the fact that OEFF has not terminated, we

can conclude that all the functions in the problem class that share fitness values for the
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samples that A found adequate to solve u do not share a solution. If we look at the final

solution prediction of A, then there must exist at least one function that u could be that

does not have this prediction as the solution. If k is the size of the problem class, then

by probability at least 1
k
, the prediction of A is wrong. Then A cannot be expected to be

correct consistently. Thus, OEFF is optimal w.r.t. blackbox performance over any sample

sequence, once it is specified.

3.3.2 Example elimination process

We examine a simple optimal elimination process using random sampling. Con-

sider the fitness function set F = {f0, ..., f9} over a domain S = {x0, . . . , x4}. Let the

fitness value table be as given in Table 3.1. Given u as the unknown target function, let

OEFFSTEP(F, s, u) := {f |u(s) = f(s), f ∈ F}

Suppose the first random sample is x3 and u(x3) = 2. From the table, we see that

only f4 and f8 satisfy this criterion, so {f0, f1, f2, f3, f5, f6, f7, f9} are eliminated (8 func-

tions) and OEFFSTEP(F, x3, u) = {f4, f8} remain (2 functions). Suppose the next sample is

x4 and u(x4) = 3, which does not allow us to eliminate an additional function. Our third

sample is x1, u(x1) = 3. As only f8 gives x1 a fitness value of 3, we conclude that u is f8

whose solution we know to be x0.
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From this example, we can make two observations. One, the second sample con-

tributed nothing to the search process, demonstrating that possibility. Secondly, the solu-

tion x0 was not sampled, which has been explained as a possibility in section 3.3.

3.4 Sample selection for OEFF

For OEFF to be optimal, we need to complement it with a sample selection strat-

egy that can choose the sample that minimizes the expected number of future samples

required from then on. The simplest approach would be a brute force search through all

sample sequences in some order, calculating the black box performance. Because we are

exploring what is ideally possible, we follow this brute-force approach along with some

optimizations to build a sample selection strategy. While some efficient strategy may

be found under a more restricted case, we show that even though this greedy approach

appears appropriate, it is not always optimal.

3.4.1 Greedy, entropy maximizing sample selection is not optimal

When devising a sample selection strategy for OEFF, it is useful to note that the

more we eliminate, the closer we get to identifying the solution. The concept of max-

imizing elimination in a single step can be achieved by maximizing the entropy of the
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resulting partitions. Here we demonstrate that such a greedy strategy is not optimal in

general.

Let us revisit the example in Section 3.3.2 by applying this strategy to Table 3.1.

To recap, we use xi ∈ S to refer to the points in the search space and F is the problem

class {f0, . . . , f9}. The sizes of various resulting sets generated by sampling S and their

entropies are:

Partition sizes on x0 : [3, 3, 2, 2] H(x0) = 1.366

Partition sizes on x1 : [3, 3, 4] H(x1) = 1.089

Partition sizes on x2 : [6, 2, 2] H(x2) = 0.950

Partition sizes on x3 : [6, 2, 2] H(x3) = 0.950

Partition sizes on x4 : [4, 2, 2, 2] H(x4) = 1.332

These equations clearly recommend x0 as the best choice for the first sample. We

need at least another sample in any case before we can terminate. Now, let u(x0) = 1.

Let OEFFSTEP(F, x0, u) = {f0, f3, f6}. Now, we see that no choice of a second sample will

partition {f0, f3, f6} into sets of size 1. Hence, a third sample will be necessary.

Instead let x1 be the first sample. The expected information gain is significantly less

than the previous case. Let u(x1) = v and F1 = OEFFSTEP(F, x1, u). Then, by choosing

x1+v as the next sample, (the example problem class is designed such that this method
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of selecting the next sample point is correct) we find that ∀v, |OEFFSTEP(F1, x1+v, u)| = 1.

Thus a total of no more than 2 samples will be necessary, if we start sampling with x1.

Hence, the greedily maximizing information gain is an insufficient method to guarantee

the best possible sample sequence for OEFF. However, this does not preclude it from

being an effective strategy in practice from some problem classes.

3.4.2 Optimal sampling strategy for OEFF

For choosing ideal samples for OEFF, we approach the elimination process as a

game with samples and their fitness values inducing branches at alternate levels in the

game-tree. To solve this tree, from the position on the game-subtree we are in, we choose

a sample and its branch that would lead to the lowest expected distance averaged over its

leaf nodes. Unlike a typical game, our opponent chooses the problem instance at random

and induces a fitness value and branch. The tree is shown in Figure 3.1 and the formal

description follows.

Let T〈Fi,Sj〉 be a game-tree induced by some sets Fi ⊆ F and Sj ⊆ S where F and S

are both finite sets. This tree consists of two kinds of vertices called f-set vertices labeled

〈Fi, Sj〉 and s-set vertices labeled 〈Fi, Sj, sk〉where sk ∈ Sj .

The root of T〈Fi,Sj〉 is the f-set vertex labeled 〈Fi, Sj〉. Its immediate children are s-

set vertices ∀sk ∈ Sj, 〈Fi, Sj, sk〉. The children of s-set vertex are f-set vertices labeled ∀u ∈
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〈Fi, Sj〉

〈Fi, Sj, s1〉

〈Fi, Sj, s|Sj |〉

s1

s|Sj |

u1

u|F |

T〈OS(Fi,s1,u1),Sj−{s1}〉

T〈OS(Fi,s1,u|Fi|),Sj−{s1}〉

...

...

u1

...
u|F |

Figure 3.1: Illustration of game-tree conceptualization of OEFF and sample selection. Here

OS refers to the function OEFFSTEP.
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Fi, 〈OEFFSTEP(Fi, sk, u), Sj − {sk}〉. The leaf nodes are the f-sets where the first member

of the label is a singleton set.

In this game-tree, there exists an edge from an f-set for every possible sample OEFF

can make, leading to an s-set. Similarly, from an s-set 〈Fi, Sj, sk〉, there exists an edge for

every fitness function in Fi, leading to an f-set. Figure 3.1 illustrates a portion of this tree.

Algorithm 2 NEXTOPTIMALSAMPLE(F ,U )
if |F | = 1 then

return [0, false]

end if

lmin = |Su|

for all s in Su do

l← 0

for all u in F do

l = l + NEXTOPTIMALSAMPLE(OEFFSTEP(F,s,u),Su−{s})[0]+1
|F |

end for

if l < lmin then

lmin ← l

smin ← s

end if

end for

return [lmin, smin]
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The optimal sample selection algorithm is given as Algorithm 2. This algorithm is

given the current set of un-eliminated fitness functions F and the set of currently unsam-

pled points U , and it returns a sample point that will minimize the expected number of

future samples.

This algorithm explicitly searches T〈F,U〉 looking for the best sample. It is recursive,

calculating average tree depth at the second-level s-sets and then the root f-set after calling

itself recursively to calculate depth at the third level f-sets. The tree depth at a leaf node is

0. The tree depth at an s-set vertex is one more than the average of the child f-set vertices.

The tree depth at a non-leaf f-set vertex is the minimum of the tree-depths of its child

s-set vertices, and so on. This definition of tree depth aids us as it calculates the minimum

expected number of samples OEFF will need before it terminates.

This sample selection algorithm is optimal in the sense that it calculates the ex-

pected tree depths exactly and suggests the sample that results in the lowest expected

tree depth. This technique is exponential in both space and time over the sample space.

Also, if there arem unique possible fitness values, then there are nm fitness functions inF .

OEFF must search through as many fitness values as there are functions in the candidate

pool to process each sample. Thus, optimal sampling algorithms for the general case that

are polynomial on log n are unlikely since OEFF must process at least nm values for each

samples.

As we shall see later, we can use OEFF to bound the performance of a problem

class. Currently, the most commonly used alternative is based on Yao’s minimax theorem,
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which allows us to bound worst case performance and cannot be used for average case

performance. OEFF on the other hand, can also be used for optimizing the worst case by

modifying its sample selection strategy to use the maximum rather than the average of the

tree depths. Here, we explore maximizing the average case performance for OEFF, and

not the worst case performance, as a tool to bound the latter already exists. We encourage

future work for both variations of OEFF. In addition, for most of the problems examined

in this dissertation, the average case performance is identical to worst case performance,

making the distinction moot.

3.5 Implications and Uses of Fitness Function Elimination framework

An important contribution of the FFE framework is that by separating domain

knowledge from the algorithm that uses it, the framework tells us that the identification

of the unknown problem instance in the problem class is key to finding its solution with

minimal samples. It stands to reason that we exploit every avenue that can help us with

the identification.

This approach brings to light a disadvantage in the design of common evolution-

ary algorithms: outside of domain knowledge, only the fitness values from the unknown

instance are used to identify it. We call this the fitness value restriction. There are ex-

ceptions of course, recall our mention of instance knowledge sources in section 2.5. If a

practitioner chooses to use the multi-objectivization approach to supply an optimization
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algorithm with additional helper functions, then this is different from providing domain

knowledge and consequently is no longer a blackbox scenario for the original problem

class. Such an algorithm has the potential to outperform OEFF, which uses only the ob-

jective values. These helper functions can be based on the evaluation of the objective

function, ensuring that they do not incur any cost more than the evaluation of the objec-

tive function itself.

Note that this is actually consistent with OEFF being optimal. Because the objective

value is from R, it is possible to construct a new problem class where the helper function

values are embedded in the objective value. OEFF can solve a problem instance from such

a class at least as fast on average than any algorithm directly using the helper functions.

Nevertheless, outperforming OEFF over the original problem class suggests the impor-

tance of designing optimization algorithms that use more information sources than just

the objective function. Later, in section 6.4.1, we discuss the implication of using only the

objective value for problem learning and come to a similar conclusion.

We can view the candidate pool maintained by OEFF as a model of the problem

instance. OEFF refines this model by sampling until the model is adequate to identify

a solution. An EA instead maintains a model of the solution by using a population of

candidate solutions and improves its model incrementally. But a model of the solution

can also be seen as a model of the unknown instance, favoring those objective functions

whose solutions are present in the population over the rest. In this sense, by evolving

the population, EAs perform an implicit, inexact variation of fitness function elimination.
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As mentioned in the background, this point is discussed in an earlier paper [18]. Nev-

ertheless, in practice it is evident that BBO algorithms often do not use the samples best

for instance identification. We speculate that in part, this may be because the process of

manually designing accurate operators from domain knowledge is difficult.

Because of their optimality w.r.t. blackbox performance, the OEFF algorithm along

with the sample strategy, are useful for developing performance bounds. See Section 4

for some examples.

We consider the actual OEFF search method to be knowledge light instead of knowl-

edge heavy as it receives all its domain knowledge through what are effectively run-time

parameters. The parameterized nature of this information makes OEFF applicable over

all finite problem classes, giving it two of the three key algorithm characteristics we dis-

cussed in section 2.5 (problem abstraction and blackbox performance). But it also in-

creases the computational requirements of OEFF. In Section 5 we present a process by

which OEFF and sample selection strategy can be modeled over a specific problem class.

This embeds the domain knowledge of the problem class into OEFF to yield an algorithm

that may have more practical computational resource requirements while maintaining

optimality over that problem class, in essence, trading the problem abstraction character-

istic for algorithm efficiency.

When compressing domain knowledge from a tabular form to algorithmic form,

the Kolmogorov complexity of knowledge becomes relevant. The theorem below sug-

gests that the relationship between the two is not monotonic.
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Theorem 2 (Knowledge compressibility theorem). An increase in knowledge does not imply

an increase in the Kolmogorov complexity of this knowledge and vice-versa.

PROOF. First, we show a case where when knowledge increases, Kolmogorov com-

plexity increases. Consider the problem class Needle-in-a-haystack [11]. This class con-

sists of all Na, a ∈ S where Na(a) = 1 and Na(x) = 0, if x 6= a and S is the n dimensional

binary search space.

The Kolmogorov complexity of this problem class denoted by F1 is O(n) where n

is the dimensionality of the search space. Let v be a binary string of length 2n with Kol-

mogorov complexity more than twice the bounding function for the Kolmogorov com-

plexity of F1. Let F2 be set to FILTER(F1, v). As we can determine v given F1 and F2, the

Kolmogorov complexity of F2 is necessarily greater than that of F1.

Next, we show that as knowledge continues to increase, Kolmogorov complexity

can decrease. Consider F3 which has only a single instance from F1. Its Kolmogorov

complexity is O(n). Similar to the reasoning above, for some other v, the Kolmogorov

complexity of F2 is greater than the bounding function for the Kolmogorov complexity of

F3.

Thus, as knowledge increases from F1 to F2 and then to F3, we see that the Kol-

mogorov complexity increases and then decreases. The same process in reverse proves

the case for decreasing knowledge.
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The implication of this is that it may be possible to store complete domain knowl-

edge for some problem classes with a relatively small space requirement. This sustains

the possibility of practical algorithms that behave equivalent to OEFF for some problem

class.

Another important benefit of separating domain and instance knowledge from

logic is that we can easily reason about gathering domain knowledge. We take advantage

of this in Section 6, to develop a theory for gathering domain knowledge from problem

instances that were solved for use in future instances.
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Table 3.1: A problem class with ten objective function over a search space with five sample

points. Getting u(x3) = 2 results in the middle table. The chosen sample is lightly shaded

and the eliminated functions are darkly shaded. Then, getting u(x1) = 3 results in the

table on the right.

x0 x1 x2 x3 x4

f0 1 1 1 1 1

f1 2 1 2 1 2

f2 3 1 3 1 4

f3 1 2 1 1 1

f4 2 2 1 2 3

f5 3 3 1 1 1

f6 1 2 1 3 1

f7 2 3 1 1 2

f8 4 3 2 2 3

f9 4 3 3 3 4

x0 x1 x2 x3 x4

f0 1 1 1 1 1

f1 2 1 2 1 2

f2 3 1 3 1 4

f3 1 2 1 1 1

f4 2 2 1 2 3

f5 3 3 1 1 1

f6 1 2 1 3 1

f7 2 3 1 1 2

f8 4 3 2 2 3

f9 4 3 3 3 4

x0 x1 x2 x3 x4

f0 1 1 1 1 1

f1 2 1 2 1 2

f2 3 1 3 1 4

f3 1 2 1 1 1

f4 2 2 1 2 3

f5 3 3 1 1 1

f6 1 2 1 3 1

f7 2 3 1 1 2

f8 4 3 2 2 3

f9 4 3 3 3 4
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CHAPTER 4
DEVELOPING PERFORMANCE BOUNDS USING OEFF

A potential use of OEFF is in proving blackbox complexity bounds. The perfor-

mance upper bound for OEFF with a particular sample selection strategy over a problem

class acts as an upper bound for the problem class. Admittedly, performance of any al-

gorithm is a valid upper bound. Nevertheless, as OEFF is optimal over the performance

metric we are bounding, the bounds we can prove for OEFF is likely to be closer to the real

bound than for any other algorithm. Thus if we are attempting to prove upper bounds

by algorithm analysis, it makes sense to analyze the performance of OEFF rather than any

other algorithm. Unlike upper bounds, only performance lower bounds proven using the

optimal sample selection strategy or over all sample sequences can be used as the lower

bounds for the blackbox performance of the problem class.

While runtime performance of the optimal blackbox optimization algorithm is not

equivalent to its blackbox complexity, often they are the same. They will differ when some

instances in the problem class are substantially more difficult than other instances. We are

able to use OEFF for blackbox complexity of generalized ONEMAX because its instances
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are similar. Recall that we may modify the sample selection for OEFF to optimize blackbox

complexity instead of blackbox performance.

We will now use the former property to improve the upper bound for the black box

complexity of the generalized ONEMAX problem class. We revise our proof to clarify the

inconsistency raised by Doerr et al. [12] in an earlier version [18] of the proof. The sample

selection strategy we choose is random sampling uniformly over the search space.

4.1 Upper bounding blackbox complexity of OneMax

Let us consider applying the OEFF with a uniformly random sample selection

strategy on a common generalization of the ONEMAX:

Definition 1. We refer to the generalized ONEMAX problem class as the class of pseudo-Boolean

problems, f : {0, 1}n 7→ R, where given some target string x̂ ∈ {0, 1}n:

ONEMAX(x̂)(x) = n−
n∑
i=1

|xi − x̂i|

There are several things to note about this problem class. First, the class is not

small — there are 2n possible candidate functions in F , and each function can be uniquely

identified by its solution string. Second, the running time complexity of a standard (1+1)

EA on such a class is Θ(n lg n)[55]. Finally, the theoretical lower bound for any blackbox

algorithm is known to be Ω (n/ lg n) [4], though the authors of this proof do not believe

this to be tight.
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Since we can identify a function by its solution string, we can also compute the

hamming distance of each solution string to the solution string of the target function. We

use this fact to construct hamming distance sets Kd, the partition of F generated by u

based on hamming distances:

Kd = {f |f ∈ F , u(f) = d}

Let’s consider the question: What is the probability that a particular function will

be eliminated from the hamming level, Kd, given some random sample x. First, we at-

tempt to find the condition under which u(x) 6= f(x) for f ∈ Kd by examining the follow-

ing example. Let n = 8, u = 11111111 and f = 11110000. Thus, f ∈ K4. For u(x) and f(x)

to be the same, the number of bits in x that are the same as u must be equal to the ones

same as f . In the bit positions where u and f are identical (the first four bit positions), this

is inevitable. Among the bits that are different, we need half of them to be same as u and

the rest f . E.g., if the last four bits are 0001 or 1110 etc., then u and f can be differentiated

and f will be eliminated. But if it is 0011 or 1010 etc., it is not possible to differentiate

them. This example makes it clear why any Kd where d is odd are automatically elimi-

nated with any sample: if f has an odd number of bits equivalent in u, then x cannot be

equidistant from both u and f .

In general, when d is even, there are
(
d
d
2

)
ways to choose half the bits where u and

f are different. And there are 2n−d ways to choose the bits where they are the same. Thus

the probability that a sample x will not eliminate f ∈ Kd where 2 ≤ d ≤ n and d is even (d
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is assumed to be even from now on) is given as follows

Pe(d) =

(
d
d
2

)
.2n−d

2n

=

(
d
d
2

)
2d

Next, we shall prove the Lemma below to simplify the composition of the fitness functions

remaining after cn
lgn

samples are made.

Lemma 1. For a constant c, after cn
lgn

samples the expected number of functions remaining in K2

is higher than any Kd, 2 < d ≤ n

PROOF. The expected number of samples in Kd after cn
lnn

samples is((
d
d/2

)
2d

) cn
lnn (

n

d

)

We have to prove, that for all 2 < d ≤ n,((
2

2/2

)
22

) cn
lnn (

n

2

)
>

((
d
d/2

)
2d

) cn
lnn (

n

d

)
1

2

(
1

2

) cn
lnn

>

((
d
d/2

)
2d

) cn
lnn

(n− 2)...(n− d+ 1)

d!
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Let us consider the base of the first term on the R.H.S. Applying Sterling’s approximation

for factorials, we get (
d
d/2

)
2d

=
d!

d
2
!d
2
!2d

≈ ed ln d−d+ ln d
2

+ ln 2π
2

ed ln d
2
−d+ln d

2
+ln 2π+d ln 2

= e
ln d−2 ln d2−ln 2π

2

= e
ln 4d
d22π
2

=

√
2

πd

Using this result, we need to prove

1

2

(√
1
4
2
πd

) cn
lnn

=

(
πd

8

) cn
2 lnn

>
(n− 2) . . . (n− d+ 1)

d!

As R.H.S is smaller than
(
n
d

)d, ignoring constant term, we need to prove

(
πd

8

) cn
2 lnn

>
(n
d

)d
(4.1)

If d is assumed to be a constant value independent of n, the R.H.S. of equation 4.1 is

polynomial while the L.H.S. is super-polynomial and the inequality is valid.

When d is thought of as kn, k ≤ 1, in equation 4.1, we find the R.H.S. is O(2n).

For the L.H.S., consider the function
(
n
q

) 1
2 lnn

. For q > 1, the function approaches
√
e

asymptotically. In equation 4.1, q = 8
kπ
≥ 8

π
. Picking an arbitrary value 1 < b <

√
e, for

c > ln 2
ln b

, we have ((
n

q

) 1
2 lnn

)cn

> bcn = Ω(2n)
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Thus for 2 < d ≤ n, as the L.H.S. of equation 4.1 is Ω(2n), and the R.H.S. is O(2n), the

lemma is proven.

Lemma 2. After some samples say S1, P (En, En−2, · · · , E2) > P (E2)n/2, where Er is the event

that after some samples, all the functions in Kr have been eliminated.

PROOF: First, we show that ∀r > 2, P (Er|Er−2, · · · , E2) > P (Er). W.l.o.g, let 1n be

the solution. W.l.o.g, let kr ∈ Kr in general be the string 1n−r0r. If k2 is eliminated by a

sample x, then x ends in 00 or 11. Let Ekr be the event that kr is eliminated by a random

sample. kr will not be eliminated if and only if the sample x has exactly r/2 1s in the last

r bits. So,

P (Ekr) =
2r −

(
r
r/2

)
2r

Recall that if k2 got eliminated, then x ends in 00 or 11. If it ends in 00, kr will

survive if the r − 2 bits before the last two bits has exactly r/2 ones. If ending in 11, it

needs exactly r/2 zeros. Thus,

P (Ekr |Ek2) = 2

(
2r−2 −

(
r−2
r/2

)
2r−2

)

Taking the inequality P (Ekr |Ek2) > P (Ekr) and solving for r, we note that for r ≥ 4,

P (Ekr |Ek2) > P (Ekr). In general, the probability of a function inKr being eliminated after
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samples in S1 is, 1− (1− P (Ekr))
|S1|. But, if K2 is empty, this means that,

∀k2 ∈ K2, ∃xk2 ∈ S1 s.t., k2(xk2) 6= u(xk2) (4.2)

∀kr ∈ Kr,∃k2 ∈ K2 s.t., kr(k2) = (r − 2) ∧ P (kr(xk2) 6= u(xk2)) > P (Ek2) (4.3)

Thus, given E2, probability of this function being eliminated because of samples in

S1 is higher because we know xk2 exists. As all members of Kr have a higher probability

of being eliminated, P (Er|E2) > P (Er). Similarly, as proposition 4.2, 4.3 holds just as well

given (Er−2, · · · , E2), we find that,

∀r > 2, P (Er|Er−2, · · · , E2) > P (Er) (4.4)

By chain rule, we have,

P (En, En−2, · · · , E2) =P (En|En−2, · · · , E2) · P (En−2|En−4, · · · , E2) · · ·P (E2)

>P (En) · P (En−2) · · ·P (E2) (from equation 4.4)

>P (E2)n/2 (from lemma 1)

Theorem 3. For the domain of generalized ONEMAX of size n, the expected number of samples

of the target function u required by OEFF to eliminate all incompatible functions is O (n/ lg n).

PROOF. We will determine that asymptotically almost surely there are no functions

left inK2 after cn
lgn

samples. First, note that the probability of a random sample eliminating

a function in K2 is (2
1)

22
= 1

2
, and the probability that it will not be eliminated is also 1

2
. The

probability that it will be eliminated after cn
lgn

samples is 1−
(

1
2

) cn
lgn .
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There are
(
n
2

)
functions in K2 before elimination. The probability that all these

functions will be eliminated after cn
lgn

is as follows:

(
1− 1

2
cn
lgn

)n(n−1)
2

Thus, from lemma 2 the probability of there being no functions other than the solution is

at least:

PE =

((
1− 1

2
cn
lgn

)n(n−1)
2

)n
2

=

(
1− 1

2
cn
lgn

)n2(n−1)
4

Given that n4 < 2
cn
lgn and n3 > n2(n−1)

4
for sufficiently large n, we know:

PE >

(
1− 1

n4

)n3

=

((
1− 1

n4

)n4
) 1

n

=

((
1− 1

n4

)n4−1(
1− 1

n4

)) 1
n

≥
(

1

e

(
1− 1

n4

)) 1
n

Since this asymptotically approaches 1, so does PE .

Recall from the introduction that a similar bound can be concluded from an earlier

paper in the field of information theory by Erdős and Renyi [10]. However, that work was

unknown within the community when the proof above was developed. Consequently,

the proof was accepted as original novel research at a conference [18].
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4.2 Lower bounding blackbox complexity

We can also lower-bound the blackbox complexity of a problem class by proving

the lowest sample-complexity that OEFF can achieve over that problem class given any

sample sequence. These lower bounds are relevant because they reflect the absolute min-

imum samples required by an algorithm to solve the worst-case instance. An example of

such a bound is the important No Free Lunch theorem [19]. Using Yao’s min-max theo-

rem, it was originally proved over F (the set of all possible instances) and later sharpened

[56] to hold over problem classes that are closed under permutation. We present below an

alternate proof for the sharpened NFL that demonstrate the capability of our approach.

Lemma 3. If F is a problem class not closed under permutation, ∃g ∈ F−F, f ∈ F s.t., ∃x, y ∈ S

where,

1. g(x) = f(y) ∩ g(y) = f(x).

2. Either x or y is a solution of g.

PROOF. By definition, if F is not closed under permutation, ∃g ∈ F such that,

∃z, y ∈ S where swapping the fitness values of z and y in g will give a function in F , say

f . If z or y is a solution of g, the lemma is proved. Otherwise, let x (different from y or z) be

a solution of g. We can swap fitness values of z and y using x as an intermediary in three

steps such that each of these steps involve the fitness value of the solution. Additionally,
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as one of these swaps has to start with a function not in F and result in a function in F ,

the lemma is proven.

Theorem 4. A No Free Lunch result holds over the set of functions F if and only if F is closed

under permutation. [56]

PROOF. To prove sufficiency, we need to show that if the set F is closed under per-

mutation, then OEFF, given any sample sequence, cannot be expected to have better per-

formance than random search, as well as that no algorithm can have worse performance

than OEFF. First, we show that any two sample sequences have identical performance in

OEFF.

Let Sm be a search space of size m and Vm be an arbitrary set of fitness values (with

repetition) of size m. Then let PERM(Sm, Vm) be the set of fitness functions that map from

S to V in all possible ways. With |S1| = 1, we find that any sample sequence has the same

expected performance over PERM(S1, V1) for all |V1| ≥ 1. Let us assume this property

holds over PERM(Sn, Vn) for all |Vn| ≥ n where |Sn| = n.

W.l.o.g, let Vn+1 be an arbitrary set of fitness values of size n + 1. W.l.o.g, consider

x1, x2 ∈ Sn+1. After we have sampled x1 and eliminated functions, we can effectively

remove x1 from the sample space as we will not sample it again. So, performance over

our candidate pool is same as performance over PERM(Sn+1−x1, Vn+1−u(x1)). Similarly,

after sampling x2, performance is same as over PERM(Sn+1−x2, Vn+1−u(x2)). Because of
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our inductive assumption, over both of these problem classes, any two sample sequences

have the same expected performance.

If the highest value in Vn is repeated j times, then on sampling x1 or x2, the prob-

ability of sampling the solution is j/|Vn|. Thus, any sample sequence starting with x1 is

expected to need the same number of samples as if it had started with x2. As our choice of

x1 and x2 are arbitrary, NFL applies and the inductive step is proven. Thus, by induction,

over a problem class closed under permutation, any two sample sequences have identical

expected performance. Thus, OEFF cannot do better than random search and as it cannot

do worse than random search, it has performance identical to random search.

Similarly, no algorithm can do worse then OEFF because if it could, then there must

exist at least two sample sequences with different expected performance such that OEFF

chooses the better one and this algorithm chooses the other. As all sample sequences are

shown to have the same performance, this is impossible. No algorithm can do better than

OEFF either. Thus, NFL holds.

To prove necessity, let us assume F is not closed under permutation. Then by

lemma 3, ∃g ∈ F − F, f ∈ F s.t. swapping fitness values of two samples say, x and y pro-

duces f where one of these samples, say x, is a solution of g. With random sampling, there

is a non zero probability of all possible sample sequences. Consider the sample sequence

consisting of all samples other than x, y and the solutions of g. After eliminating every

function except f , OEFF will terminate now or might have terminated earlier, suggesting

at least y as the solution. However, there is a finite probability that random sampling will

64



sample x first and will need to make one more sample. This is more than OEFF, even

accounting for the difference of one sample mentioned at the end of section 3.3. Thus, if

F is not closed under permutation, OEFF can be faster than random sampling and NFL

does not apply.

4.3 Discussion

The FFE framework provides a unified approach to blackbox complexity bounding

by simplifying the choice of algorithm for analysis to OEFF. We can prove performance

lower bounds using FFE by proving lower bounds for OEFF given optimal sample selec-

tion or all sample sequences. Similarly, upper bound for OEFF given any sample selection

strategy is also the upper bound for the blackbox complexity of the problem class.

A key disadvantage of using FFE for bounds is that it covers only the unrestricted

case with unlimited space and time available to select the next sample. Next, we examine

how we can use OEFF and optimal sampling to create potentially practical algorithms for

specific problem classes.

An important observation from the FFE framework is that while domain knowl-

edge is required to be part of algorithms, it can be present as algorithm input/parameters

instead of the more popular notion of embedding it in algorithm code. This separates the

algorithm from the domain knowledge, and we can see that the basic optimization algo-
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rithm is quite simple. Recall that we represent domain knowledge in OEFF as a boolean

vector over F denoting which functions are present in the target problem class. We can

interpret this boolean vector as a model of the unknown objective function. Thus, OEFF is

in fact developing a model of the problem instance and identifying its solution by using

the model as soon as it is accurate enough.

A disadvantage of OEFF arises due to it having a very verbose representation for

domain knowledge, which is a consequence of its design as an optimal algorithm for any

problem class. Because of this verbosity, for each sample selection, substantial overhead

is incurred due to searching though the domain knowledge. In the next section, we ex-

amine some techniques for incorporating specific a-priori domain knowledge into OEFF

to reduce this overhead at the cost of problem abstraction.

66



CHAPTER 5
MODELING OEFF OVER SPECIFIC PROBLEM CLASSES

Recall that OEFF is by design optimal with respect to blackbox performance over

any problem class given the right domain knowledge. Thus, the code of OEFF is knowl-

edge light because it assumes nothing about the problem class. However, it is heavily

parameterized in the sense that as discussed before, its parameters can represent all pos-

sible domain knowledge. We also discussed how these characteristics lead to massive

overhead per sample as a result of storing and processing these parameters.

One approach we suggest to alleviate this concern is to derive an algorithm from

OEFF that trades off problem abstraction for reduced overhead by duplicating or model-

ing the behavior of OEFF when it is given some specific domain knowledge as parameters.

This will not change the blackbox performance over the specific problem class. But for

many problem classes, this can result in reduced computational overhead and improved

time complexity compared to OEFF.

Our approach to modeling OEFF uses the game-tree shown in Figure 3.1, which is a

representation of the behavior of OEFF over an arbitrary problem class. However, once we

have a-priori domain knowledge, the game-tree for OEFF will no longer be arbitrary —
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its nodes will have specific sets of fitness functions and edges will have specific samples

and objective functions. This new game-tree reflects the specific behavior of OEFF over

this problem class. By simplifying this game-tree in a way that does not affect the final

result, we will be deriving new behavior that can produce results identical to OEFF. We

can encode this new behavior into an algorithm, which will be equivalent to OEFF for

this problem class and likely will execute with far lower overhead. That is, we trade-off

problem abstraction for efficiency.

In later sections, we present some game-tree simplification techniques and demon-

strate the complete modeling process by developing an OEFF equivalent algorithm for the

Generalized Leading Ones problem class defined in Section 5.2.1 as well as a further gen-

eralization. We then build on this result to tighten the bound for another generalization

of Leading Ones. We also examine the LONGPATH problem class and conclude that as

this problem class is a singleton set, it is trivial for OEFF. So, we develop the STEEPPATH

problem class that has the opposite property — over it, a (1+1)EA is no worse than OEFF.

We then present the OEFF modeling process over STEEPPATH problem class and derive

performance bounds.
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5.1 Techniques for modeling OEFF

In this section, we present two techniques that can simplify the game-tree for OEFF

by exploiting repetitive patterns in it. Note that future research may uncover more tech-

niques.

5.1.1 Game tree simplification by exploiting State Duplication

The first simplification technique exploits state duplication in the game-tree. Note

how in Figure 3.1, the number of edges leading to child nodes from an s-set vertex are

numbered up to |F |. However, different edges may lead to the same f-set, which are then

duplicated in the tree. One reason for this is that given a particular sample, different

unknown fitness functions can produce the same un-eliminated set. In fact,

Observation 1. If for u ∈ F , Fu = OEFFSTEP(F, s, u), then ∀v ∈ Fu, Fu = OEFFSTEP(F, s, v).

F

F1

F1

F1

s1

s2

s3

F F1

s1, s2, s3

Figure 5.1: Illustration of exploiting state duplication in a game-tree.
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As shown in figure 5.1, we can simplify the game-tree by collapsing the duplicated

states. Thus, for many function classes, once we have access to the table, there is oppor-

tunity for eliminating a large number of potential nodes from the game-tree. It is easy

to see that the reduction in states is increased when more fitness functions share fitness

values. For example, in the domain of Generalized Leading Ones (see Section 5.2.1), half

of all fitness values are 0, half of all the rest are 1 and so on.

Given below is another useful property where U is the set of unsampled points.

Theorem 5. The tree depth from 〈Fi, U〉 is independent of U .

PROOF. Let us assume the contrary. Let U,U ′ ⊆ S such that the tree depth of

〈Fi, U〉 and 〈Fi, S ′u〉 are different. This means there exists a u ∈ Fi such that the path taken

by OEFF from 〈Fi, U〉 to 〈{u}, S1〉 is w.l.o.g shorter than the one from 〈Fi, U ′〉 to 〈{u}, S2〉

for some S1, S2 ⊂ U . Let X be the set of samples from the shorter path. For the other

path, OEFF would not have chosen a longer path if X could have eliminated Fi − {u}.

We must conclude that the ability of X to eliminate Fi − {u} depends on more than u, Fi

and X itself. This is not true as f ∈ F − {u} will be eliminated if ∃s ∈ X s.t. f(s) 6= u(s).

Thus OEFF always takes the same number of samples from 〈Fi, U〉 to 〈{u}, S3〉 for any

S3 ⊂ U ⊆ S.

Sample selection searches through the game-tree described before and thus is con-

cerned with unsampled points. But OEFF only uses tree depth during execution. Thus

while modeling OEFF, we ignore prior samples and thus reduce the number of states.
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5.1.2 Game tree simplification by exploiting Sample Symmetry

The second technique we present for modeling OEFF and optimal sample selection,

exploits symmetry of samples in the game-subtrees they induce.

〈Fi, Sj〉

〈Fi, Sj, s1〉

〈Fi, Sj, s2〉

〈Fi, Sj, s3〉

s1

s2

s3

Same tree depths

Figure 5.2: Illustration of exploiting symmetry of samples in a game-tree. In this case, for

the next sample, we can uniformly choose from {s1, s2, s3}

As seen before, in the general case, the sample selection algorithm needs to have

access to the tree depth from each sample to determine the best sample. However, in

some cases, it does not matter what the actual depth of the subtree is because the depth

of all possible subtrees is the same (see figure 5.2). In some cases, we can at least identify

a set of samples with the same lowest tree depth. This eliminates the need for actually

calculating the tree depth and the optimal sample selection strategy would be to choose

any sample from this set.

However, though any sample is optimal on the metric we are optimizing — aver-

age case performance, for a specific sample, there can be a pathological objective function.

Instead, if we choose a sample uniformly at random from this set of optimal samples, in
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some cases, we can improve our worst case performance. This is formalized below in

Theorem 6.

Definition 2. Two sets of fitness functions F1 and F2 over a sample space S are said to be per-

mutable with each other if a one-to-one mapping ψ from S1 ⊆ S to S2 ⊆ S exist such that,

∀f ∈ F1,∃g ∈ F2 s.t. ∀s ∈ S1, f(s) = g(ψ(s))

We will denote this as F1 ←→S1,S2 F2. We can also say f permutes to g to express the

one-to-one mapping between F1 and F2.

Lemma 4. If F1 ←→S1,S2 F2, and if S1 and S2 consists of all samples that may be selected for

sampling for F1 and F2 respectively, then F1 and F2 has the same tree depth.

PROOF. We will prove the two trees isomorphic by induction. Consider T〈F1,S1〉 and

T〈F2,S2〉. We know that for the two root f-set vertices 〈F1, S1〉 and 〈F2, S2〉, ∀s ∈ S1, ψ(s) ∈ S2

and vice-versa and F1 ←→S1,S2 F2.

Let 〈Fi, Si〉 be a vertex in T〈F1,S1〉 and 〈F ′i , S ′j〉 be a vertex in T〈F2,S2〉 such thatFi ←→Si,S′i

F ′i . Consider the child f-set vertices 〈OEFFSTEP(Fi, sk, u), Si − {sk}〉 and

〈OEFFSTEP(F ′i , ψ(sk), u
′), S ′j − {ψ(sk)}〉 where u ∈ Fi and u permutes to u′. For f in

Fi and g in F ′i such that f ←→Si,S′i
g, f(sk) = u(sk) iff g(ψ(sk)) = u′(ψ(sk)). Thus,

OEFFSTEP(Fi, sk, u) ←→Si−{sk},S′i−{ψ(sk)} OEFFSTEP(F ′i , ψ(sk), u
′). Additionally, ∀s ∈ Si −

{sk}, ψ(s) ∈ S ′i − {ψ(sk)}.

Thus by induction, the two trees are isomorphic. Consequently, their tree depths

are the same.
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Theorem 6. Two subtrees 〈Fi, U, s1〉 and 〈Fi, U, s2〉 have the same tree depth if there exists a one-

one mapping of←→U−{s1},U−{s2} from every set present in the multi-set {OEFFSTEP(Fi, s1, u)|u ∈

F} to another set in the multi-set {OEFFSTEP(Fi, s2, u)|u ∈ F}.

PROOF. Tree depth of subtree from a s-set vertex is calculated by averaging the

depth of child f-set vertices (see Figure 3.1) and adding 1. Because of the mapping, for

every subtree depth that we average for s1, there is a subtree from s2 with the same depth

because of Lemma 4. Thus the averaged values are identical. Consequently, the tree depth

from branches selected by s1 and s2 are the same.

Now we can use these two techniques on the game-tree induced Generalized Lead-

ing Ones in an attempt to simplify it and derive an algorithm based on it.

5.2 Constructing an optimal algorithm for Generalized Leading Ones

In this section, we demonstrate the complete modeling process by applying the

two techniques described in the previous section to develop an OEFF equivalent algo-

rithm for the Generalized Leading Ones problem class defined below.
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5.2.1 Generalized Leading Ones

We consider a particular generalization of the pseudo-Boolean LEADINGONES prob-

lem class (abbreviated here as GLO). For a space of binary sequences of length n, GLO can

be defined as follows.

GLOx̂(x) =
n∑
i=1

i∏
j=1

(xi ≡ x̂i) (5.1)

where x̂ is a sequence of length n hidden in the fitness function. As there are 2n unique

strings in the search space, with each of them as a unique hidden sequence, there are 2n

unique fitness functions in GLO with that sequence as the solution. A fitness function in

GLO returns the length of the longest prefix common between the sample point and the

hidden sequence. These fitness functions are characterized by large plateaus that occur

because changes outside the shared prefix do not influence the fitness value. The plateaus

make it hard for a randomized search algorithm to optimize locally.

Even though simple EAs can only achieve Θ(n2) over GLO, there exists an obvi-

ous algorithm that can achieve exactly n: simply flip bits one at a time. It is given as

Algorithm 3, where f is the fitness function and on termination, the solution lies in x.

In addition, the blackbox complexity for GLO is actually well known [11] as n/2 + o(n)

which is consistent with this algorithm. Indeed, part of the motivation for choosing this

problem class is that we have existing results to compare with our derived algorithm.
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Algorithm 3 Solving GLO one bit at a time
binary[N ] x← [0, . . . , 0]

for i = 0 to N − 1 do

if f(x) = i then

x[i]← 1

end if

end for

5.2.2 Modeling over Generalized Leading Ones

Let F ′ = OEFFSTEP(F, sk, u). For exploiting state duplication, using Theorem 1

and the defintion of GLO, we make this observation about OEFF on GLO.

Observation 2. ∀si ∈ S such that u(si) ≤ u(sk), OEFFSTEP(F ′, si, u) = F ′

One can come to the same conclusion from observing the fitness table of GLO.

From the definition of GLO, we know that this is because the fitness function in GLO

returns the length of the longest shared prefix common to both the sample point and the

solution of the fitness function. As the fitness functions OEFF has not eliminated must

also share this prefix, a sample with a shorter prefix cannot eliminate them.

In GLO, as there are exactly n + 1 unique fitness values being returned by every

function, from Observation 2 we can conclude that for a given unknown, a maximum of

n+1 different elimination sets can be formed by OEFF. But different unknowns may form

different elimination sets.
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Consider a set F s
i containing fitness functions sharing a prefix of length i where s

is the sample that produced it. As explained later in Equation 5.3, u(s) = i − 1. Let us

define F s
i as follows.

F s
i =

f
∣∣∣∣∣∣∣∣
f ∈ F,

f [1 . . . i] = u[1 . . . i] = s[1 . . . i− 1]s̄[i]

 (5.2)

where u[i . . . j] is the subsequence of the solution of u (as u has a unique solution),

from index i > 0 up to and including j. The set F s
i for 0 ≤ i ≤ n and s ∈ {0, 1}n form all

the possible sets of un-eliminated fitness functions.

There is no transition from any F si
i to any F sj

j for j < i as F sj
j ⊃ F si

i if si[1 . . . j−1] =

sj[1 . . . j − 1] and F
sj
j ∩ F

si
i = ∅ otherwise. There is a transition for j > i iff u(sj) = j − 1.

This can be written as follows,

OEFFSTEP(F b
i , s, u) =


F b
i u(s) < i

F s
u(s)+1 u(s) ≥ i

(5.3)

This reduction in states results in a new tree given in Figure 5.3. Let us examine

how optimal sample selection behaves in this tree. For an arbitrary state F bi
i , we will

attempt to identify the set of optimal samples which we will prove symmetrical. Consider

a sample s such that s[0 . . . i] 6= bi[0 . . . i− 1]b̄i[i]. As u(s) < i, the state will remain Fi. Let,

Sbii =

s
∣∣∣∣∣∣∣∣
s ∈ {0, 1}n,

s[0 . . . i] = bi[0 . . . i− 1]b̄i[i]

 (5.4)

Consider any two samples s1, s2 ∈ Sbii . For some u1 ∈ F bi
i , let d1 = u1(s1) + 1.

OEFFSTEP(F bi
i , s1, u1) = F s1

d1
(5.5)
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We know there exists u′1 ∈ F
bi
i such that u′1(s2) = u1(s1). In fact,

Observation 3. ∀ui, ∃!u′i s.t. ui(s1) = u′i(s2)

Additionally,

OEFFSTEP(Fi, s2, u
′
1) = F s2

d1
(5.6)

Theorem 7. F s1
d1
←→S

s1
d1
,S
s2
d1

F s2
d1

.

PROOF. Consider the map M where ∀y ∈ {0, 1}n−d1 we map s1[1 . . . d1− 1]s̄1[d1]y ∈

Ss1d1 to s2[1 . . . d1 − 1]s̄2[d1]y ∈ Ss2d1 .

Let f ∈ F s1
d1

. Choose f ′ ∈ F s2
d1

such that f [d1 . . . n] = f ′[d1 . . . n]. Let s3 ∈ Ss1d1 . It is

clear that f(s3) = f ′(M(s3)). In other words, f permutes to f ′. The theorem follows from

Definition 2.

Additionally, from F s1
d1

, we will not choose a sample point outside Ss1d1 . Similarly

for F s2
d2

. We also know from Observation 3 that the number of F s1
d1

formed by ui are the

same as the number of F s2
d1

formed by u′i. Thus, from Theorem 6, it follows that all the

samples in Sbi are symmetrical and have the same tree depth.

Thus the best sample selection strategy from Fi would be to randomly pick a sam-

ple from Sbii . We cannot benefit from Theorem 5 to reduce states further for OEFF since,

due to the property of GLO, we already ignore all prior samples.
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Figure 5.3: Game tree of OEFF for GLO after exploiting state-duplication. Two levels

from an arbitrary node F Si
i is shown.
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5.2.3 Deriving the algorithm and its blackbox performance

From an arbitrary state F bi
i , we randomly pick a sample from Sbii . This sample

shares a prefix of length i with the solution. The probability of the i+ jth bit being the first

wrong bit is 1
2j

for j ≥ 1. Thus the probability of getting a new fitness i + j − 1 is also 1
2j

.

Equation 5.3 tells us that this is also the probability of transitioning to state Fi+j . Using

these probabilities to calculate the expectation of j given m higher states,

Em(j) =
m∑
i=1

i

2i
= 2− m+ 2

2m

For large n, m can also be expected to be large.

lim
m→∞

Em(j) = 2

Thus for large n, the expected number of samples OEFF with optimal sampling

will take to solve Generalized Leading Ones is n
2
. As the number of samples is a sum of

as many independent random variables with finite variance, by law of large numbers, the

variance on the blackbox complexity approaches 0 for large n. We conclude that this is

the exact blackbox complexity of Generalized Leading Ones.

An algorithm modeling the behavior of OEFF with optimal sampling can achieve

this bound with linear space and time complexity. This is given as Algorithm 4. The

function RANDOM(k) returns a random binary sequence of length k.

Our bound for the expected first-hitting time for Algorithm 4 is consistent with

the general blackbox complexity shown in [11]. In fact, the sampling strategy they con-
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Algorithm 4 OPTIMALGLO(u)
binary[n] s← RANDOM(n)

fbest ← u(s)

while fbest < n do

s[fbest + 1]← s̄[fbest + 1]

if fbest = n− 1 then

break

end if

s[fbest + 2 . . . n]← RANDOM(n− fbest − 1)

fbest ← u(s)

end while

return s
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sider for establishing these bounds is equivalent to Algorithm 4, and it’s clear that when

one considers success probabilities for our algorithm, the bounds from [11] also hold — it

is lower bounded by n/2 − o(n) and upper bounded by n/2 + o(n). It is important to

note that the algorithm that is derived by OEFF is identical to the optimal algorithm sug-

gested in [11]. Moreover, because we have shown that this is equivalent to OEFF using an

optimal sampling strategy, we know that this simple algorithm embeds all relevant do-

main knowledge for this problem class. Additionally, it is worth pointing out that were

the blackbox complexity bounds not known for GLO, runtime analysis of OPTIMALGLO

would establish these bounds, per our discussion in the previous chapter.

5.3 Constructing an optimal algorithm for LO∗∗

We can further generalize the GENERALIZEDLEADINGONES problem class by as-

signing a non-zero weight to each bit. This generalization is called LO∗∗ and was previ-

ously defined in [4]. The objective function is given below.

LO∗∗x̂,w(x) =
n∑
i=1

(
wi ·

i∏
j=1

(xi ≡ x̂i)

)
, (5.7)

where x̂ is a binary sequence of length n that is the solution of the fitness function and

w ∈ Rn
+. A fitness function in LO∗∗ returns the total weight of the bits in the longest prefix

common between the sample point and the solution. Key differences between LO∗∗ and
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GLO are that the plateaus can occur at any fitness value, and that the fitness function

space is infinite due to the fact that w exists in a continuous, real valued space.

LO∗∗ makes a good case to consider for our discussion for several reasons. First,

though OEFF itself is restricted to finite problem classes, it is important to note that the FFE

framework allows us to say something about some infinite problem classes analytically,

and it is possible to derive efficient and black-box optimal algorithms using the ideas of

OEFF, even if OEFF itself cannot optimize such classes.

5.3.1 Outline and introduction

In LO∗∗, each objective function is characterized by both x̂, the solution and the

weight vector w. As functions with all combinations of weights and solution can occur, it

is important to note that for every weight vector, all possible solutions can occur.

The goal of an algorithm for LO∗∗ is to identify the solution — x̂ of the unknown

objective function u. Identifying the weight vector of u is not always required to suggest

the correct x̂. The weight vector of u is relevant if and only if it helps improve the perfor-

mance of the algorithm. We consider a subset of optimization algorithms for LO∗∗ that do

not examine the magnitude of the fitness values of samples, only their relative ordering.

As a consequence, these weight blind algorithms do not learn about the weight vector of u.
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To derive an optimal algorithm for LO∗∗, first we show that no algorithm for LO∗∗

can outperform the best weight blind algorithm for LO∗∗. We do this by showing that for

any function u ∈ LO∗∗, we can select a finite subset of objective functions LO∗∗u ⊂ LO∗∗

“around” u such that even over this smaller finite subset, it is impossible to use what we

can learn about weights of u to solve it using fewer samples than an optimal weight blind

algorithm.

Next, in sections 5.3.4 and 5.3.5 and we derive the ideal weight blind algorithm

derived from OEFF over some subset of LO∗∗ with a finite set of weights. As optimal

weight blind algorithm for a finite set of weights remain optimal even for infinite set of

weights, we conclude that the derived algorithm is the optimal algorithm for LO∗∗.

Before we begin, let’s clarify some terminology. First, lets consider things from the

perspective of sampling. Note that all of the LEADINGONES problems we have discussed

so far have the property that the objective value is 0 unless at least some of the prefix

matches the correct solution. Moreover, it is also the case that if u(ŝi) > u(ŝj) then, ŝi must

match more of the prefix of the true solution of the target function than ŝj . Observing this,

we see that if ŝ is the sample with the highest fitness seen so far, we know that this sample

shares at least as long a prefix with the solution as any other sample we have seen. Given

a sample ŝ, we say that the sample has “solved” all the bits in the shared prefix between the

sample and the target function’s solution. We refer to the first bit (from left to right) that

differs from the target function’s solution as the “blocking bit” of ŝ. Bits after a blocking
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bit are effectively “disabled” and do not affect the fitness value. Like GLO , the position

of the blocking bit is often unknown to the algorithm.

Now let’s consider things from the perspective of elimination of functions. As

OEFF removes functions as candidates for the target function, when all remaining func-

tions have the same bit value for a particular bit position of the potential solution — when

x̂i is the same value for all remaining functions — we say that OEFF “knows” that bit. Like-

wise, when OEFF removes all functions save for those with a particular weight at the same

position, we say that OEFF knows that weight for the target function.

5.3.2 Proving the optimality of weight blind algorithms

A defining property of LO∗∗ is that unlike GLO, the fitness value may not be able to

directly tell us how many bits have been solved. This is because each bit can be weighted

differently and the observed increase in fitness can suggest multiple numbers of solved

bits. We want to show that in LO∗∗, this makes keeping track of weights inconsequential

to identifying the solution. We demonstrate this by showing that given any u ∈ LO∗∗, we

can find a subset of LO∗∗ with a finite set of weights such that weight vectors cannot be

eliminated fast enough to eliminate solutions faster than a weight blind version of OEFF.

For any unknown function u ∈ LO∗∗ with weight vector ŵ, we develop a weight

set Wu as follows.
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Wu =

(
n⋃
j=1

n⋃
i=1

{
ŵj
i

})⋃(
n⋃
j=1

n⋃
i=j

{
i∑

k=j

ŵk

})
(5.8)

Let LO∗∗u be the problem class of all functions from LO∗∗ whose weights consist

entirely of values from Wu. Several things are worth noting about LO∗∗u . First, obviously,

LO∗∗u ⊂ LO∗∗. Second, since LO∗∗u , like LO∗∗, is parameterized by a solution vector x̂,

all solutions are represented in LO∗∗u and with equal proportion. Since there are a finite

number of positions in the bit string, a finite number of possible weight values, and a

finite number of potential solution strings, there are a finite number of functions in LO∗∗u

and OEFF can be applied to it.

Finally, note that for every potential target function f in LO∗∗, there exists some

finite subset LO∗∗f though they are obviously not all the same.

A weight blind version of OEFF only uses information contained in the relative or-

dering of fitness values of its samples. For example, if the latest sample x returned fitness

v, the highest fitness so far, OEFF would try to use the absolute value of v to eliminate

functions that return a different fitness value for x. However, a weight blind version of

OEFF would only use the fact that v gave the highest fitness so far, and eliminate func-

tion for which that would not be true. As all fitness values returned by u are a sum of

consecutive weights starting from w1, including 0, there are exactly n + 1 unique fitness

values. As wi > 0 for 1 ≤ i ≤ n, the weight blind OEFF exploits the fact that for x, y ∈ S,

x shares a longer prefix with the solution of u than y if and only if u(x) > u(y). Thus this
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algorithm depends only on the fact that the weights are positive, which holds true for

every function in LO∗∗. From this, we can make the following observation.

Observation 4. The weight blind version of OEFF for LO∗∗u and LO∗∗u′ for any u, u′ ∈ LO∗∗ are

the same algorithm.

Next, consider OEFF and a weight blind algorithm applied to u given u ∈ LO∗∗u .

Lemma 5. OEFF can never eliminate more potential solutions sampling u given u ∈ LO∗∗u than

the optimal weight blind algorithm, also given u ∈ LO∗∗u .

PROOF: As u is the unknown, the fitness increases are always a sum of a sequence

of consecutive weights of u. Consider an example u with weight vector < a, b, c, d >. For

the example,

W̄u =

{
a

2
, · · · , d

2
,
a

3
, · · · , d

3

a

4
, · · · , d

4

}
⋃
{a, b, c, d, a+ b, b+ c, c+ d, a+ b+ c, b+ c+ d, a+ b+ c+ d}

As a consequence of making a new sample x , compared to some previous sample

y three outcomes are possible for a weight blind OEFF.

1. Fitness goes up: This can only happen if the first bit different between x and y was

the blocking bit for y. Thus, weight blind OEFF can eliminate functions that do not

share all the bits up to and including that blocking bit.
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Though OEFF is able to know the sum of the weights of newly solved bits, it does

not help. For any increase in fitness wi + · · · + wi+k resulting from having solved

k new bits in the target functions, there exist functions in the candidate pool that

can result in the same increase solving any number of remaining bits. Since this

is always true for any k, while many functions will get eliminated based on their

weights, no potential solutions can be eliminated in addition to what a weight blind

OEFF can do.

In the example, lets say the first sample produced fitness v. Thus, all functions that

share no bits are eliminated by a weight blind OEFF, solving one bit. OEFF cannot

do any better because, If v = a + b + c + d, that could be just one bit with weight

a+ b+ c+ d, two bits with weights (a+ b+ c), d and so on up to four bits. Similarly,

if v = a, it could be just one bit with weight a or two bits with weight a/2 each or

three bits with weight a/3 each or four with weight a/4 each.

2. Fitness does not change: This can only happen if the first bit (say bit i) different be-

tween x and y occurs after the blocking bit of y. A weight blind algorithm now

knows that bit i and later bits were not solved in y, resulting in elimination of func-

tions for whom blocking bit would occur on or after position i.

In this case, OEFF cannot eliminate any additional solutions in any case because the

lack of difference in fitness provides no additional weight related information to

eliminate solution. Recall that this hold true even for GLO.
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3. Fitness goes down: As the functions eliminated by neither OEFF nor its weight blind

version is affected by the order of the samples, the assertion for this case follows

from the case where fitness goes up.

Thus, we conclude that the weight blind OEFF algorithm eliminates exactly the

same potential solutions as OEFF.

To summarize, from observation 4, we know that the weight blind version of OEFF

for LO∗∗u and LO∗∗u′ for any u, u′ ∈ LO∗∗ are the same algorithm. From lemma 5, it follows

that this single weight blind algorithm can solve u ∈ LO∗∗ with no more samples than

any other algorithm that is given u ∈ LO∗∗u .

For any algorithm to solve LO∗∗, it must identify the solution, not a particular

function (many functions have the same solution). From an elimination perspective, this

means that all functions with the wrong solution must be ruled out as a possibility. Since

LO∗∗u contains functions with all possible solutions, to solve the problem, any algorithm

for LO∗∗ must be able to rule out all f ∈ LO∗∗u for which the solution is wrong, no matter

what is in LO∗∗−LO∗∗u . As we have shown that this task cannot be performed with fewer

samples than the weight blind OEFF, and as we have shown that this algorithm can solve

all u ∈ LO∗∗, we conclude that it is the optimal algorithm for LO∗∗.
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5.3.3 Simplifying the game tree

To derive the optimal weight blind algorithm, we first simplify the state space for

OEFF over a finite subset of LO∗∗ with an arbitrary but finite set of weights by merging all

the states whose functions have the same set of possible solutions, but different weights.

This will not affect the distribution of solutions because, at any point of time, any weight

vector in the candidate pool has associated with it, all the solutions in the candidate pool.

In this reduced state space, the states are differentiated only by the un-eliminated solu-

tions that are represented. We develop an algorithm based on this game-tree.

Given a sample, we can separate all solutions into sets (called position sets) based

on the position of the first bit that is different between the solution and the highest sample

so far. In one such set with first different position i, there are 2n−i functions because, the

bits that follow bit i can take any value. In any set of un-eliminated solutions, either all or

none of the members of this set will be present in that state depending upon how many

bits we know of the solution. Thus, any set of un-elimination functions, and thus any

state, can be characterized using the best sample so far and which of its position sets are

represented in the set of un-eliminated solutions. It can be equally characterized by the

probability for each position set with which the unknown solution can be its member.

This results in the following state representation.

F
ŝ,u(ŝ)
<p0,p1,··· ,pn> (5.9)
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where u is the unknown, ŝ is the sample with the highest fitness seen so far, and pj is the

probability of the (j + 1)th bit of ŝ being the first bit different from the solution, which as

reader will recall is called the blocking bit of ŝ. pn is the probability of having no blocking

bits. Please pay attention to the fact that the probability for the first bit is p0.

Now, let us consider sample selection. Let the original sample s1 be chosen uni-

formly at random. Let i be the index of the first bit that changes between sample sj and

the next sample sj′ such that u(sj′) is the highest fitness observed so far and u(sj) is the

next highest. In comparing u(sj′) to u(sj), three outcomes are possible:

1. u(sj′) > u(sj), fitness goes up: Bit i was the blocking bit. OEFF now knows at least i

bits. The new blocking bit occurs somewhere after i and we present the probability

of those positions being the blocking bit later. The bits in sj′ after i up to the next

blocking bit are being used by u to calculate the difference in fitness between sj and

sj′ .

2. u(sj′) < u(sj), fitness goes down: The blocking bit occurs after bit i. The values of bits

in sj′ after position i do not affect u(sj′) because flipping i has essentially disabled

them.

3. u(sj′) = u(sj), fitness remains the same: The blocking bit occurs before bit i. So, the

bits after i− 1 were definitely disabled during fitness evaluation for both vj and vj′ .

Based on the second and third case, we need only flip one bit, as the value of

the rest of the bits do not matter. So, their values can be chosen based on the first case.
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In this case, the bits after i in any sample cannot be distinguished by u. So, as they were

generated at random in s1, we can keep them same as in s1. Thus, flipping just one bit, say

j, and sampling is equivalent to flipping bit j and flipping bits to its right at random and

sampling. Among these, for simplicity, we follow a sampling strategy involving flipping

only one bit at a time.

To solve more bits, we must flip the blocking bit. So, based on pj values, we may be

aware that certain bits cannot be the blocking bit, and we can avoid flipping the bits with

pj = 0. To denote the new sample we get after flipping a bit, we introduce the function

v(s, d) = s[0 : d− 1]s̄[d− 1]s[d : n], where s is a sample point and d ≤ n.

Now that sample selection is substantially simplified to choosing a bit, we notice

that our state representation has an unlimited number of states due to the probability

distribution. However, only a subset of them can actually occur. So, let us reason about

the states that can occur as a result of sampling after flipping a bit and choose a more

concise representation. Again, we consider the following possible outcomes of the action

of flipping bit y:

1. Fitness goes up: If the fitness went up, then y necessarily was the blocking bit and

we just flipped it. OEFF now knows bits 0 to y and the new blocking bit is now

positioned after y. Thus, pj = 0, (j ≤ y). In the candidate function set, there are

2n−y−1 different solutions, that share bits 0 to y and differ on the rest. As 2(n−y−1)−1

of these have a different bit in x̂y+1 than the last sample, with probability 1/2, the
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blocking bit is at y + 1. Similarly, with probability 1/4, the blocking bit is at y +

2. Finally, with probability 1/2n−y−1, the blocking bit is at n − 1 and that is also

the probability that all the bits have been solved (pn). Let i denote the right-most

blocking bit that we flipped in all the samples made so far.

2. Fitness goes down: This means that we flipped a bit we had already solved. Thus,

OEFF knows that we have solved at least bit up to and including bit y resulting in

pj = 0, (j ≤ y). If y ≤ i, we cannot eliminate any function. Otherwise, the resulting

candidate function set and pj are identical to the previous case. Let g be the right-

most bit flip that resulted in a reduction or increase in fitness (g ≥ i).

3. Fitness does not change: This means we flipped a bit that does not influence the fitness

because the blocking bit is to its left. Thus, pj = 0, (j ≥ y). In this case, OEFF can

eliminate functions from the candidate pool whose blocking bits fall on or after y.

There are 2n−y of these. That leaves 2n−g−1 − 2n−y in the candidate pool.

We are interested in the smallest y that resulted in no change in fitness after the

most recent increase in fitness due to flipping the blocking bit. This is because every

time a blocking bit is flipped, the new blocking bit can fall anywhere and we cannot

assume anything about its right side limits. Let r denote this smallest y. By default,

after flipping the blocking bit, immediately after a fitness increase, r takes the value

n+ 1 to reflect the fact that the new blocking bit could be at n.
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Having examined the events that change the state, we note that all probability

distributions have contiguous non-zero probability values — no zero probability position

i has non-zero probabilities at both i − 1 and i + 1. In other words, all positions, whose

position sets are present in the set of un-eliminated solution, are contiguous.

Considering the present/not-present nature of position sets and relationship be-

tween their sizes, we can represent all possible F-states from equation 5.9 that can occur

using K ŝ,u(ŝ)
i,g,r . For convenience, the variables are,

• ŝ: The sample with the highest fitness so far.

• u: The unknown function being solved.

• i: The right-most blocking bit that we flipped in all the samples made so far.

• g: Index of the right-most bit whose flip resulted in any change in fitness.

• r: Index of the left-most bit whose flip resulted in a decrease in fitness since the most

recent increase in fitness. If no decrease has occurred, it is n+ 1.

The underlying probability distribution over blocking bit positions denoted by j

can be given as follows:
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K
ŝ,u(ŝ)
i,g,r (j) =



1
2n−g−1 if j = r − 1 ∧ r = n+ 1

2n−j−1

2n−g−1 = 1
2j−g

if g < j < r − 1 ∧ r = n+ 1

2n−j−1

2n−g−1−2n−r
if g < j < r ∧ r < n+ 1

0 otherwise (j ≥ r ∨ j ≤ g)

(5.10)

So far we have reduced the state space of a weight blind OEFF substantially and

we have a concise representation that reflects the information contained in the candidates

sets of OEFF. Next, we further examine the sample selection strategy over this new state

space.

5.3.4 Deriving an ideal sample selection strategy

We are concerned with the optimal bit to flip for any state. Once the blocking

bit is flipped, the resulting state is independent of the samples taken before the latest

sample. Thus, the optimal bit flip strategy minimizes the number of samples to flipping

the blocking bit. Theorem 8 below proves the sample selection strategy that achieves this.

We observe that there are two types of probability distributions: where r = n + 1

and where r < n in Ki,g,r. In the former, the last non-zero probability is same as the

one before it and in the latter, the last one is half the one before it. We note that for both

distributions, ignoring the position of the first non-zero probability, the values are defined

entirely by the number of non-zero probability values. Let us denote the former by P (x)
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where there are x + 1 non-zero probabilities and the latter by P ′(x) where there are x

non-zero probabilities.

Theorem 8. To eliminate the blocking bit from positions j < n that have non-zero probabilities pj

in P (x) and P ′(x), the optimal strategy is to sample after flipping bits one at a time starting from

bit g + 1 until and including bit g + x and the minimum number of samples that is required to do

this, denoted by E(P (x)), E(P ′(x)), is x.

PROOF: We will prove this by induction on x. Consider the base case P (1). Here,

g = n − 2 and our ideal option is to flip n − 1. Once this is done, we would have pn = 1

and all else 0. Next, consider P ′(1) when g = n− 3. Our ideal sample is n− 2 because it is

the only possible blocking bit. As a result, pn−2 would become 0. Now, consider P ′(1) for

an arbitrary g. It is clear that the optimal sample still flips g+1 and results in the blocking

bit being eliminated from bit g + 1. Thus the base case is proven.

Assume that the this property holds true for P (m) and P ′(m). Thus, ∀x ≤ m,E(P (x)) =

E(P ′(x)) = x. Now, consider P (m + 1), which always is identical to Ki,n−m−2,n+1. Let us

compare flipping bit g + 1 with flipping bit g + y, y ≥ 2. If we flip g + 1, with probability

1/2, we will gain in fitness and otherwise, we lose fitness. With g + y we can also see no

change. For our hypothesis to be true, the samples we need if we start by flipping g + 1

95



should be no greater than if we start by flipping g + y. This can be written as follows.

1

2
· (1 + E(P (m))) +

1

2
· (1 + E(P (m)))

≤ Ki,n−m−2,n+1(n−m− 2 + y) · (1 + E(P (m− y + 1))) fitness increase

+

(
n∑

j=y+1

Ki,n−m−2,n+1(n−m− 2 + j)

)
· (1 + E(P (m− y + 1))) decrease

+

(
y−1∑
j=1

Ki,n−m−2,n+1(n−m− 2 + j)

)
· (1 + E(P ′(y − 1)) + E(P (m− y + 2)))

In the last line we add E(P (m − y + 2)) because, having pushed the blocking bit out of

bits (g + 1) · · · (g + y − 1) using E(P ′(y − 1)) samples, we must still push the blocking bit

out of the rest of the bits.

1

2
· (1 +m) +

1

2
· (1 +m) ≤ 1

2y
· (1 + (m− y + 1))

+
1

2y
· (1 + (m− y + 1))

+

(
1− 1

2y−1

)
· (1 + (y − 1) + (m− y + 2)))

(1 +m) ≤ 1

2y−1
· (m− y + 2) +

2y−1 − 1

2y−1
· (m+ 2)

0 ≤ 2y−1 − y

This holds true for all y ≥ 2. Thus our optimal sample flips g + 1 and so, E(P (m+

1)) = 1 + E(P (m)) = 1 + m. Next, consider P ′(m + 1) from Ki,g,g+m+2. We have

Ki,g,g+m+2(g + y) = 1
1−2−m

· 1
2y

.
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1

1− 2−m
·1
2
· (1 + E(P ′(m))) +

(
1− 1

1− 2−m
· 1

2

)
· (1 + E(P ′(m)))

≤ Ki,n−m−2,n+1(n−m− 2 + y) · (1 + E(P (m− y + 1))) fitness increase

+

(
n∑

j=y+1

Ki,n−m−2,n+1(n−m− 2 + j)

)
· (1 + E(P (m− y + 1))) decrease

+

(
y−1∑
j=1

Ki,n−m−2,n+1(n−m− 2 + j)

)
· (1 + E(P ′(y − 1)) + E(P (m− y + 2)))

(1 +m) ≤ 1

1− 2−m
· 1

2y
(1 +m− y + 1)

+

(
m+1∑
j=y+1

1

1− 2−m
· 1

2j

)
· (1 +m− y + 1)

+

(
y−1∑
j=1

1

1− 2−m
· 1

2j

)
· (m+ 2)

(1 +m) ≤ 1

1− 2−m
· 1

2y
(m− y + 2)

+
1

1− 2−m

(
1

2y
− 1

2m+1

)
· (m− y + 2)

+
1

1− 2−m

(
1− 1

2y−1

)
· (m+ 2)

≤ 1

1− 2−m

((
1

2y−1
− 1

2m+1

)
(m− y + 2)− m+ 2

2y−1
+m+ 2

)
≤ 1

1− 2−m

(
m+ 2− y

2y−1
− m− y + 2

2m+1

)
(5.11)

For y = 2, we have

m+ 1 ≤ 1

1− 2−m

(
m+ 1− m

2m+1

)
,
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which holds true for m ≥ y − 1. As we increase y, for the same m, the two negative terms

in equation 5.11 decrease and so, the inequality must hold. Thus our ideal sample flips

bit g + 1 and thus, E(P ′(m+ 1)) = 1 + E(P ′(m)) = m+ 1.

5.3.5 The optimal algorithm for LO∗∗

Based on this analysis, we can write the optimal algorithm for LO∗∗ as given in

Algorithm 5. The initial sample can tell us the first bit with 1/2 probability. Otherwise,

it will take an extra sample for the first bit. So solving the first bit is expected to take 1.5

samples. After the first bit is solved, we will be at Ks
0,0,n+1. Then, as we are flipping one

bit at a time, and as we cannot converge until we have flipped the last bit to ensure that

pn = 1, we will flip an additional n − 1 bits. So, this algorithm will take exactly n + 1/2

samples.

The work [4] determines the blackbox complexity upper-bound of this class as

n + 1 by considering enumerative search of each bit position as the worst case. Their

lower bound, n/2 − O(n) is taken optimistically from the GLO lower bound. Here we

show that this optimism is not warranted: Blackbox algorithms cannot hope to do better

than enumeratively searching through the bit positions.
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Algorithm 5 OPTIMALLO∗∗(u)
binary[n] s← RANDOM(n), g ← 0, flast ← 0

while g < n do

fnew ← u(s)

if fnew > flast then

s[g + 1]← s̄[g + 1] {Flip bit g + 1}

flast ← fnew

g ← g + 1

else if fnew < flast then

s[g]← s̄[g] {Undo previous flip}

s[g + 1]← s̄[g + 1] {Try again}

g ← g + 1

else

s[g]← s̄[g] {Initial sample has fitness 0. Flip the first bit.}

flast ← fnew

end if

end while

return s
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5.4 Analyzing OEFF on a generalization of LONGPATH

In this section, we examine behavior of OEFF over our generalization of the LONG-

PATH objective function which we call fLP. The function is similar to a generalized ONE-

MAX with solution {0}n. However, starting at {0}n, there is a specific sequence of sample

points that differ from adjacent samples by a single bit such that the fitness of each sample

in this sequence is one higher than its predecessor.

This path is valid only for odd dimensions. Pl denotes the path for l dimensions.

P1 = {0, 1}. To construct this path Pl+2, create the path for Pl recursively. Then, create

subpath S00 by prepending “00” to each point in Pl and S11 by prepending “11” to each

point in Pl in the reverse order. The bridge point is obtained by prepending “01” to the

last point in Pl. We can get Pl+2 by joining S00, the bridge point and S11. The length of

this sequence is 3 · 2(n−1)/2 − 1 = O(2n) for odd n. In addition, due to the design of this

sequence, we can know that it ends at 11 · 0n−2.

The problem was constructed by Horn et. al. [57] as a means to show that EAs

need crossover — supposing that a mutation based EA would have to slowly traverse

an exponentially long path. However, as Rudolph [58] showed, due to the structure of

this path, a simple mutation based EA can make leaps along this path using multiple

bit mutations. Thus, a simple (1+1) EA can find the solution in O(n3) time. No one has

yet posited a blackbox complexity bound for common generalizations for LONGPATH.

However for the generalization given below, it is easy to see that it is O(n/ log n).
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This function fLP has the interesting property that the length of the path as well as

ratio of the sample space to the length grows exponential to the size of the search space.

To study this problem, a generalization makes the problem relevant to our blackbox dis-

cussion, since knowledge of a single instance class is tantamount to knowing the solution.

Let our problem class, generalized LONGPATH be,

F ∗LP = {fy|y ∈ {0, 1}n ∧ fy(x) = fLP(x⊕ y)},

where ⊕ is the bitwise exclusive or operator.

To solve an objective function from F ∗LP, a (1+1) EA would first solve the general-

ized ONEMAX in O(n log n). Then, the (1+1) EA can solve the path in O(n3).

Despite the generalization, due to the specific and monotonic increase in fitness

on the path, on sampling a single sample on the path, OEFF can immediately identify

the problem instance and solve the unknown. However, due to the exponentially small

chance of hitting the path by random, OEFF cannot expect to identify the instance quickly

based on this. It can solve the underlying generalized ONEMAX problem class inO(n/ log n).

As the solution of the generalized ONEMAX problem is a point on the path, and the path

is unique in the class, OEFF need not take any more samples, all functions except the

target function will have been eliminated.

Thus, in this problem, despite the generalization, there is a a large difference in

the performance of EAs and OEFF. Still, it is worth mentioning that one could take the
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optimal algorithm for ONEMAX from [10], run it to the start of the path, then flip the first

two bits to solve the problem.

5.5 STEEPPATH: Easier for EAs, tougher for OEFF

The generalized LONGPATH that we devised above is shown to be no harder for

OEFF than the underlying generalized ONEMAX, primarily due to the predictable nature

of the path. Thus, we introduce an interesting variation called STEEPPATH that has the

opposite property. It is easy to get on the path due to fixed starting point, but it is harder to

identify where it ends due to randomization. Additionally, the path is no longer than the

number of dimensions. This results in this problem class being easier for EAs (specifically

the (1+1) EA) and OEFF is able to do no better than the (1+1) EA. The STEEPPATH problem

class is given below.

f<v1,v2,··· ,vk>(x) =


2n x = x̂,

maxki=1

∏i
j=1(xvj + 1)(xvj ≡ x̂vj) otherwise,

(5.12)

where 0 ≤ k ≤ n/2, and ∀i, j ≤ k s.t. i 6= j, vi 6= vj . Also, x̂ is the solution, which has 1s

only at vi.

In this problem class, any objective function returns 0 except for a specific shortest

path between {0}n and its solution, which could be any string with no more than n/2 1s.

In this path, {0}n is evaluated to 0 (unless it is the solution). From then on, for a specific
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sequence of non-repeating single-bit flips, the resulting samples start with a fitness of 2

and then doubles for every flip. The solution is always given a fitness of 2n. This problem

class can be also seen as a generalization of LEADINGONES.

5.5.1 Simplifying the states

As this problem class is already discrete, there is no need for discretization. By de-

fault, OEFF will maintain all surviving objective functions in the problem class. However,

after each sample, we can say this about the un-eliminated functions:

Lemma 6. After sampling s that has d 1’s, and getting a fitness of 2d, the un-eliminated functions

include only those functions whose vd+1, · · · , vk is a subset of positions of 0’s in s. We call this set

F s
(d).

PROOF: In the STEEPPATH problem class, consider functions with the solution

11001000. The vi values for any these functions will be a permutation of {1, 2, 5}which are

the positions of 1s in the solution. Generalizing from this, it is clear that initially, all per-

mutations of every set in ℘({1, · · · , n}) of size at most n/2 are present as the sequence of

vi for an objective function. After sampling s, all the functions with k ≤ d get eliminated.

All functions whose v1, · · · , vd matches the 1’s in s survive. For the surviving functions,

the remaining 1s in the solution whose positions do not exist in v1, · · · , vd, must be in po-
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sitions that have 0s in s. Thus the position of these remaining 1s is a subset of the position

of 0s in s.

Let us initially consider a sampling strategy of first sampling the all zero string. If

the fitness is 2n, we terminate. Otherwise, we are at F s
(0) where s is the all zero string. If

we flip a random 0-bit and sample, there is 1
n

chance that that bit position was v1 and by

lemma 6, we reduce the problem class. If we fail to increase the fitness, we can remove

those functions whose v1 was that bit position. Let uj be the bits that were flipped for the

jth failed sample after the most recent fitness increase. This results in the following state,

F s
(d),<u1,··· ,uk′>

From a given state, as we remember the failed flips, we need not repeat them as

they will produce no change in state. Now, if we only flip one bit of s at a time, then ui

can be just a number indicating the position of the flipped bit. Otherwise, it is a set of

positions. We show below that we need only flip one bit at a time.

Lemma 7. From any given state F s
(d),<u1,··· ,uk′>

consisting of only single 0-bit flips with 0 ≤ k′ <

(n− d), flipping only one 0-bit at a time is better than more than one.

PROOF: At state F s
(d),<u1,··· ,uk′>

, as k′ can be 0, this includes the state where we have

made no failed samples at all after the most recent fitness increase. Thus, if we show

single-bit flips as optimal, we will never flip more than 1 bit at a time.

To reach state F s′

(d+b), we have to flip a specific set of b bits in s viz., {vd+1, · · · , vd+b}.

We consider two approaches: flipping bits one at a time, solving b bit separately and
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flipping b bits together, solving them in one go. We start with the latter and show that it

is slower than the former.

In the candidate pool for F s
(d),<u1,··· ,uk′>

, vd+1 can take (n−(d+k′)) values. vd+i, ((d+

1) < (d+ i) ≤ n/2) can take (n− (d+ i− 1)) values. Thus, there are,

(n− (d+ k′)) · (n− (d+ 1))!

(n− j)!

functions with their k = j. Furthermore, there are,

S(b) =
(n− (d+ k′)) · (n− (d+ 1))!

b! · (n− (d+ b))!

ways to choose b bits, of which, at most one is correct. As we can remember our failed

samples in u, we can expect to take S(b)/2 samples before we can make a transition, as

long as k ≥ d + b. Functions with d < k < d + b will force OEFF to sample S(b) samples.

However, we remain optimistic and stick with S(b)/2. We find that for 4 ≤ b ≤ n/2, S(b) =

Ω((n− d)3).

If b = 1, from F s
(d),<u1,··· ,uk′>

, we will reach F s′

(d+1) after n−(d+k′)
2

. Note that this is not

an optimistic estimate as we will always make the transition. So, to reach F s′

(d+b), we can

expect to take (n− (d+ k′)) +
∑d+b−1

i=d+1
n−i

2
samples.

We find that S(1) = O((n − d)2) < Ω((n − d)3). Additionally, for b = 2, 3, S(1)

remains linear while S(2) and S(3) are quadratic and cubic respectively on n − d. From

this, we conclude that our best strategy is single-bit flip.

Having chosen single bit flip, we can expect to solve a function with k 1’s in∑k−1
i=0

n−i
2

samples. p(k), the probability of this function occurring is,
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p(k) =
k!∑n
j=0 j!

Thus, the expected number of samples from F s
(0) is,

E(n) =
n∑
k=0

(
p(k) ·

k−1∑
i=0

n− i
2

)

Now, from the initial state, if we do not sample {0}n, with probability 1∑n
j=0 j!

, we

will take n samples. However, with the remaining probability, we will gain 1 sample.

Thus, it is superior to not sample {0}n first and directly sampling its single bit flips. So

the expected number of samples is,

E(n) =
n∑n
j=0 j!

+
n∑
k=0

(
k!∑n
j=0 j!

·
k−1∑
i=0

n− i
2

)
= Θ(n2)

5.5.2 Comparison to EA

An (1+1) EA with single-bit flip can be initialized for this problem class with the

all zero string as the initial population. To an EA, this is no different than LEADINGONES.

A bit-flip based EA must flip the leading bit, which at a mutation probability of 1/n takes

roughly an expected n mutations – and it must do this n times (at most, depending on k).

Runtime analysis for the (1+1)-EA for GLO has been done, Θ(n2). Thus, we see that for
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the STEEPPATH problem, the optimal algorithm for it needs the same order of samples as

a simple EA.

We can add a generalized ONEMAX to the plateau of STEEPPATH and generalize it

similar to how we did LONGPATH. The resulting class can be a super-class of generalized

ONEMAX as well as a variant of a subset of LO∗∗∗ (discussed in the next section). How-

ever, this change will just add an O(n/ log n) phase to the OEFF algorithm and will not

fundamentally affect its behavior. This generalization with also not affect the EA behav-

ior. Consequently, we have identified a fairly broad class of problems for which a simple

(1+1) EA is an optimal blackbox algorithm.

5.6 Deriving a lower bound for LO∗∗∗

The LO∗∗∗ is a generalization of LO∗∗ where the instance and the solution must

have some fixed permutation applied to it before evaluation. Otherwise, the evaluation

is like LO∗∗.

LO∗∗∗x̂,w,v(x) =
n∑
i=1

(
wvi ·

i∏
j=1

(xvi ≡ x̂vi)

)
, (5.13)

where x̂ is a binary sequence of length n that is the solution of the fitness function and

w ∈ Rn
+ such that

∑n
j=1 wj = 1. A fitness function in LO∗∗∗ returns the total weight of the
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bits in the longest prefix based on some order v, common between the sample point and

the solution.

We will repeat the definition of know and solve here. Value of a bit i is considered

solved by s if, ∀1 ≤ j ≤ i, svj = x̂vj . An x̂i, wi or vi is said to be known by OEFF if the

candidate pool reflected in the current state consists of functions that share the same x̂i,

wi or vi respectively.

Let us briefly consider similarities between this problem class and LO∗∗. Our goal

is still to match the sample to the solutions. We cannot do any better than flipping the

current blocking bit, the first mismatching bit, to make progress towards this goal. In

addition, lemma 5 still holds true. We can also make the following observation.

Observation 5. OEFF cannot know the weight or value of bits that follow the current blocking

bit. As for the position, it can know that they are not positioned among known bit positions.

However, in LO∗∗, it was impossible for OEFF to know the value of a bit without

knowing the value and weights of all previous bits. This simplification is no longer pos-

sible. When a blocking bit is flipped, the next blocking bit vi can be an arbitrary number

of bits ahead in v and at an arbitrary position. And the position of the blocking bit can

be found without finding out the position or values of the intermediate bits. Also, it is

possible to terminate without knowing these values due to
∑n

i=1 wvi = 1, ensuring that

finding these values have to be properly justified as the ideal strategy for OEFF.
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For these reasons, we will avoid deriving an exact optimal algorithm and simply

derive a lower bound based on OEFF. If we can lower bound the number of samples

OEFF will take, then we have effectively developed a lower bound for the LO∗∗∗ problem

class. Because we are deriving a lower bound, rather than an actual algorithm, we can

optimistically ignore some samples that we would take during search, which simplifies

things.

We examine a process where after a blocking bit has been solved, it is learned by

OEFF. Additionally, OEFF also learns the bits that come before the most recently learned

blocking bit in the order imposed by v. Thus, once OEFF has learned the current blocking

bit vi, before it attempts to learn the next blocking bit, it always knows the weights, values

and positions of that bit and all previous bits vj, wvj , x̂vj , (j ≤ i). Here, we will only count

samples that OEFF will take to learn the position and value of the blocking bits and ignore

the samples required to learn other values.

Having learned blocking bit at vi, OEFF cannot know the index of the next blocking

bit other than that it is one of the indexes that are in {1, · · · , n} − {v1, · · · , vi}. Let us

examine all possible samples and their contribution to identifying the position of the next

blocking bit. Let s be the next sample while s′ the previous sample that has the highest

fitness value seen so far.

Observation 6. u(s) <
∑i

j=1wvj iff s and s′ differ in bit positions v1, · · · , vi.
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Thus, if the fitness value of s is lower, as we are assuming OEFF knows all the

previous bit values, weights and positions, this sample will not help eliminate any func-

tions. So, we consider samples that change only positions vi+1, · · · , vn. Let the posi-

tions that we changed in s be z1, · · · , zk. If the fitness value goes down, that means

∃zj, j′ ≤ i s.t. zj = vj′ . It it remains the same, then all zj are after the blocking bit. Fi-

nally, if it increases, then at least one zj was the blocking bit and the blocking bit has

moved.

So, we can identify the blocking bit by splitting x = {1, · · · , n} − {v1, · · · , vi} ran-

domly into two halves and flipping the bits in the first half. If we gain in fitness, we know

that this half has the blocking bit vi′ and none of the bits before it after vi. We can now do

a binary search in this half so that we can converge to the blocking bit in log |x|. If we gain

no fitness, we can try flipping bits in the other half and follow the same procedure.

However, if the set that contains the blocking bit also contains a bit before it, we

would be unable to gain fitness by flipping either halves. Then, we have to repeat the

process with a smaller number of bits per flip in the hope that we get the blocking bit

vi′ alone, without any bits vj, j < i′ in the same set. We consider the previous attempt

iteration 1 and begin iteration 2. In this iteration, we split the x into 1/4 sets of equal

sizes at random and sample after flipping the corresponding bits in each set looking for

a fitness a fitness increase. At iteration m, we will divide the bits in x into 1/2m sets. As

soon as an increase in fitness is seen, we proceed with a binary search for the blocking bit.
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If we do all the iterations down to where the sets are single bits, it would take us

|x| log(|x|) samples. For the lower-bound analysis, we optimistically assume we always

get a fitness increase in the first iteration. Thus, identifying the blocking bit takes log(|x|)

samples. As flipping each blocking bit gains us only 2 bits, we conclude that we take at

least
∑n/2

j=0 log(2 · j)) samples. Thus, the number of samples required to solve LO∗∗∗ is

Ω(n log n).

The alternative to learning about all the bits up to the blocking bit is not learning

about them. So, we examine the alternate strategy that involves not learning the position

of the blocking bit or any of the bits that have been solved. This would allow us to avoid

the binary search after the iteration stage and allow us to solve early blocking bits in O(1)

each.

However, assume we have solved n/2 bits. We need to find a set of bits such that

it includes the blocking bit and does not include any of the first n/2 bits in v. We can

expect to need log(n) − 1 iterations for each blocking bit as only if the bit positions were

divided into sets of size 2 can we expect to find such a set. As each iteration is Ω(n), each

blocking bit after n/2 samples will take Ω(n log(n)). Even if we do only the final iteration,

that is still Ω(n), resulting in Ω(n2) for the algorithm. Thus the resulting algorithm will be

clearly slower than the bound proven above. It is also clear that learning some bits while

not learning others is not going to improve the performance.

Having examined both the option of learning v and not learning it, we conclude

that the best strategy is to learn it and that this algorithm is Ω(n log n). Given this, we are
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able to relax our assumptions about the weights adding up to 1 as this strategy does not

depend on it. Similar to LO∗∗, the upper bound n log n+O(n) for the blackbox complexity

of LO∗∗∗ is derived in [4], while the lower bound is based on GLO. We were able to show

that, like LO∗∗, the upper bound is asymptotically tight.

5.7 Implications and limitations of algorithm design by formal

modeling

Formal modeling cannot work with a partial understanding of the problem class

and requires complete domain knowledge. Additionally, this knowledge must be in a

form that can be used to build a game-tree for the problem class. This can limit the appli-

cability of this approach.

Also, in many cases, the formal process we have described may be a very compli-

cated task to implement. In addition, it can only be used for deriving an algorithm that

behaves exactly like OEFF and such an algorithm may not be practical. In such cases,

it makes sense to approximate OEFF instead of modeling it exactly. An approximation

process has more flexibility than modeling due to the relaxation of the requirement to be

equivalent to OEFF. Our attempt to model OEFF teaches us about some trade-offs that we

face while approximating OEFF. We observe three extremes for algorithms:
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1. An algorithm can be like OEFF and acquire large amounts of domain knowledge

through parameters. This provides OEFF with adequate domain knowledge to be

optimal w.r.t. blackbox performance. Due to the parameterized nature of domain

knowledge, it also achieves a high degree problem abstraction. On the other hand,

it loses performance during sample computation (referred to as efficiency from now

on) as it needs to mine through the large parameterized domain knowledge.

2. Instead, it can be like the final algorithm presented in section 5.2.3. By giving

up problem abstraction, it has domain knowledge available a-priori. This domain

knowledge is mined and incorporated into the algorithm. Consequently, it is opti-

mal over the target problem class and may have substantially increased efficiency.

3. Lastly an algorithm can be like the random search strategy. Random sampling es-

chews domain knowledge in any form. Consequently, it achieves a limited yet pre-

dictable performance of (|S| + 1)/2 (for problems classes with a single solution per

function). However, this lack of domain knowledge confers it efficiency as well

as total problem abstraction. Admittedly, random search is Θ(|S|) on space if the

list of samples needed to avoid duplicate samples is maintained as a boolean ar-

ray. It is Θ(log |S|) on time as it needs to generate as many random bits and only

constant time to check for duplication using the boolean array. Enumerative search

is Θ(log |S|) on space to store the latest sample and can avoid generating a ran-

dom number per sample. Nevertheless, we consider only random search because,
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enumerative search can have pathological cases where sampling |S| point may be

required.

From this, we argue the following corollary.

Corollary 1. Given domain knowledge in an explicit representation, of the three key character-

istics of algorithms viz. problem abstraction, blackbox performance and algorithm efficiency, an

algorithm can maximize only two.

DISCUSSION: In practice, we have efficient algorithms with high blackbox perfor-

mance for specific problem classes that search through a large space for a solution. These

algorithms employ search heuristics that take advantage of shared structures in the ob-

jective functions of the problem class. However, such targeted algorithms exhibit low

blackbox performance for problem class that do not have the same structure.

Given domain knowledge in this explicit representation, we have two choices: use

it as it is at run-time or manually mine it for structure during design time to derive effi-

cient heuristics. If we do the latter, the algorithm that results can be efficient and can have

good performance, but only for that specific problem class. On the other hand, if we use

the domain knowledge as it is during run-time, we have the OEFF algorithm.

For OEFF, which depends on such a representation, eliminating objective functions

based on each sample requires looking up upto |Fi| values from the table. In the sample

selection strategy, as we have to examine all samples, simply to create child nodes for

< Fi, U >, we must examine all |U | · |Fi| values. Even though this value decreases over
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time due to a reduction in the candidate pool, we need to look up at least 2 · |U | values

as there are always at least 2 functions in the candidate pool. So, depending upon the

problem class, sample selection from the initial state, < F, S >, can take any where from

2 · |S| table lookups to Ω(|S|! · |F |) lookups. As we cannot make any assumptions about

these values in the general case, each sample requires examining as many values as the

size of the search space, which is inefficient. Thus, it is impossible to maximize all three

characteristics.

If domain knowledge for any problem class can be provided in any form, then an

algorithm can require that domain knowledge be made available in the form of optimal

heuristics for that problem class. The algorithm can then employ them for searching for

the solution efficiently. Such an algorithm maximizes all three characteristics. However,

having any domain knowledge available as relevant structural information is an unreal-

istic scenario.

We already show that OEFF, algorithm modeling OEFF and random search are

three algorithms that maximizes the three pairwise combinations of characteristics, prov-

ing that maximizing any two is possible.

Figure 5.4 shows this trade-off between key characteristics of algorithms. Thus,

there cannot be a “perfect” algorithm under the blackbox framework that maximizes all

three characteristics. Thus, all algorithms must make compromises to some degree and

the ideal mix is highly context dependent.

115



In the next section, we make some more observations about the blackbox frame-

work and issues concerning designing of blackbox optimization algorithms.

5.8 Observations on practical algorithm design

We feel that those who are willing to invest a lot of time to incorporate domain

knowledge into their algorithm will find some kind of generalized optimization frame-

work an unnecessary complication. Thus, we assume that the practitioners above all else

favor problem abstraction, which facilitates algorithm reuse and makes it easy to solve

their problem using existing work. We are also of the opinion that when compared to

blackbox performance, maximizing efficiency is not a very important requirement for

users of the blackbox optimization framework.

Given this point of view, we note that a vast majority of optimization algorithms

used in practice choose to treat an objective function as a virtual blackbox in the sense that

they examine only the fitness value returned by the function and do not examine how it

was computed. Note that we call this design choice the fitness value restriction. Typi-

cal examples are Genetic Algorithm, NEAT, Particle Swarm Optimization etc. There are

exceptions, viz. novelty search and multi-objectivization approaches. While the fitness

value restriction improves interface compatibility, we note some disadvantages:
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1. Fitness value restriction leads to complicated algorithms. The NFL theorem underlines

the necessity of domain knowledge for performance better than random search.

Thus, a practitioner is forced to write the algorithm and objective functions such

that the assumptions of the optimization algorithm matches the objective functions

closely. Using domain knowledge to manually build such algorithms can be com-

plicated and we feel that it makes it difficult to achieve ideal performance.

2. Common objective function design choices along with fitness value restriction leads to ar-

tificial upper-bounds on performance. The fitness value restriction does not limit the

information content in a fitness value. Thus, even with fitness value restriction, de-

pending on the objective function, the blackbox complexity can be arbitrarily small.

However, in practice, in addition to the fitness value restriction, objective functions

are often limited in what they inform through the fitness value. The fitness value

usually is a grade for points in the search space and is used as such by the optimiza-

tion algorithm. If we assume that in practice, it is difficult to incorporate maximum

possible information into each fitness value and still use it effectively in an optimiza-

tion algorithm, then the fitness value restriction limits how informative each eval-

uation can be about the solution, which affects performance negatively. algorithm

design guideline is that it limits domain knowledge access to instance information.

In practice, we feel this is often an artificial restriction that should be ignored if it

does not help the practitioner design algorithms of adequate performance.
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3. Fitness value restriction is not proven to be necessary for problem interface unification. One

advantage of having exactly one instance knowledge source (the objective function)

is that the algorithm written for one objective function is compatible with any ob-

jective function, performance aside. This important advantage attracts many users

who want to take advantage of the large library of existing optimization algorithms.

However, we argue that it has not been shown that this restriction is required for a

unified problem interface. We recommend exploration of frameworks that allow ad-

ditional instance knowledge sources while maintaining an equivalent level of prob-

lem interface unification, allowing reuse of algorithms.

Another important observation that is relevant to practical approximations is that

OEFF builds a model of the problem class using samples. Model building during op-

timization can be seen in various existing algorithms [59]. However, most of these ap-

proaches involve modeling the underlying patterns in the set of candidate solutions to

determine a new solution, a relatively domain knowledge light approach. In contrast,

OEFF stresses the importance of modeling the problem instance because it defines the

relationship between the samples and the solution of the instance.

This suggests the use of approximations of OEFF where simpler models of the

problem instance can be learned from samples and a learned model can be used to par-

tially identify the solution with no additional samples. Creating such an algorithm would

require the practitioner to define a model for the problem instance as well as define the

relationship between a model and the solution.
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In Chapter 7, we introduce theory that describes how we can gather domain knowl-

edge from problem instances. We also make recommendations for designing an optimiza-

tion algorithm that reflect the observations above.
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Abstraction Performance

Efficiency

(OEFF)

(Model of OEFF)(Random Search)

Figure 5.4: The triangular trade-off between problem abstraction, blackbox performance

and algorithm efficiency.
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CHAPTER 6
PARTIAL DOMAIN KNOWLEDGE REPRESENTATION AND USE

So far we have discussed the situation where we have complete domain knowl-

edge as specified by the blackbox framework. But in practice, this scenario is rare and our

domain knowledge is usually incomplete. We call our knowledge the subjective knowl-

edge. It is subjective because initially it is our belief about the problem class and is not

something we can query. In contrast, we call the correct complete domain knowledge

about the actual problem class as objective knowledge, something that is independent of

our opinion. Importantly, objective truth impacts reality while subjective knowledge does

not.

To devise a search strategy for a problem class, a scientist will try to improve his

subjective knowledge as much as possible and then incorporate it into the algorithm. In

our view, almost all algorithms for realistic problems are built using incomplete subjective

domain knowledge rather than objective knowledge from an accurate formal description

of the problem. Given this lack of domain knowledge, it makes sense to try to add to our

subjective knowledge from the instances we are able to solve from the problem class. We

call this problem learning.
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Recall our discussion of existing problem learning approaches in section 2.4. From

that discussion, some obvious questions arose:

1. Under what scenario can we update knowledge of the problem class?

2. What is optimal from an informational point of view?

3. What are the limitation of any approach to doing this?

In machine learning, there are well known Bayesian analysis results that show

what is possible to learn in, for example, classification tasks. Likewise, learning-to-learn

(their analogue to problem learning) has also been examined this way [60] . We review

this in the next section.

Building on this, we describe an ideal representation for domain knowledge that

may be incomplete. We then describe the scenario for problem learning and integrate

this representation into OEFF and the sample selection strategy, enabling it to use partial

domain knowledge ideally. In section 6.3, we derive Bayesian formulas for updating this

partial domain knowledge using information about seen problem instances. Finally, we

discuss the benefits and limitations of this — both from an idealistic point of view as well

as a practical point of view.
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6.1 A model for learning-to-learn in classification tasks

To help us understand problem learning in optimization, let us first examine the

analogous learning-to-learn in classification tasks. We base this section on the classic

theoretical treatment by Baxter [60]. In that paper, Baxter presented both empirical as well

as Bayesian approaches to learning-to-learn. Differences in these two approaches arise

primarily due to the latter’s belief in an objective truth (analogous to objective problem

class). As this is consistent with our belief also, we focus only on the Bayesian approach.

First, let us review the Bayesian view of classification, for context.

The goal in classification is to use a set of labeled points to infer a general target

function that can be used to label future unseen points. We start with some partial knowl-

edge about this function and update our knowledge from labeled points. Formalizing

this, the components of Bayes approach to modeling single-task learning are:

1. An input space X and an output space Y .

2. A set of probability distributions Pθ on X × Y , parametrized by θ ∈ Θ.

3. A prior distribution p(θ) on Θ.

A single probability distribution from line 2 represents a classification problem.

For example, if we are doing character recognition, X would be a set of images (typically

a subset of Rd representing pixel intensities) and Y would be the set of characters and

digits. The set in line 2 represents a set of all possible classification problems, with any
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mapping between X and Y . The problem that is currently given to learn is denoted as θ∗,

the exact value of which is unknown.

From line 3, we see that a prior probability distribution p(θ) is available, along

with {Pθ : θ ∈ Θ}, represents the a-priori knowledge or bias of the learner. Thus, this rep-

resents the incomplete knowledge the algorithm has regarding the current classification

task. Next, we see how this knowledge can be used for classification.

6.1.1 Learning: Using and updating knowledge of the current task

We can formally represent the training set consisting of labeled points from X as

z = {(x1, y1), . . . , (xm, ym)}. Contents of z are sampled according to Pθ∗ where θ∗, the

objective true classification, is unknown. Recall that the goal of classification is to use z to

update the prior distribution p(θ). It is possible to compute a posterior distribution p(θ|z)

as follows,

p(θ|z) =
p(z|θ)p(θ)
p(z)

(6.1)

=

∏m
i=1 p(xi, yi|θ)p(θ)∫
Θ
p(z|θ)p(θ)d(θ)

(6.2)

The probability distribution of possible outputs for an input x∗ can be determined

using p(θ|z) and averaging over Θ.

p(y|x∗; z) =

∫
Θ

p(y|x∗; θ)p(θ|z)d(θ)
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So far, we have seen a theoretical model that demonstrates how we can best use our

incomplete knowledge and labeled points to improve our understanding of the classifi-

cation task. Our claim of “best” is based on our use of the Bayes theorem, which specifies

formula for accurate update of knowledge from evidence. However, our interest extends

beyond single task learning into what Baxter calls learning-to-learn. This is where we try to

figure out the appropriate initial p(θ) for the type of classification tasks that we continue

to face.

6.1.2 Learning-to-learn: Learning about the initial task knowledge

Consider the scenario where we are facing multiple classification tasks one after

the other. Associated with each classification task is its unique objective distribution Pθ∗ .

These tasks are being sampled from {Pθ : θ ∈ Θ} by some probability distribution Q over

it. Thus, Q is an objective distribution because it decides the nature of the classification

tasks we will face.

The goal of learning-to-learning is learning Q. To learn Q, we must focus on the

set to which Q belongs — the set of prior probability distributions {Pπ : π ∈ Π}. Like Q,

each Pπ is a probability distribution on Θ. Let Q = Pπ∗ for some π∗ ∈ Π.

Thus, the components of Bayes approach to modeling learning-to-learn are:

1. An input space X and an output space Y .
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2. A set of probability distributions Pθ on X × Y , parametrized by θ ∈ Θ.

3. A set of prior distributions Pπ on Θ, parametrized by π.

4. An objective prior distribution Pπ∗ where π∗ ∈ Π.

5. A subjective hyper-prior distribution PΠ on Π.

Due to the two-tiered structure, this model is an example of hierarchical Bayesian

model.

To use this model first we need to sample. First, n values of θ are sampled from Θ

based on Pπ∗ , the objective prior distribution. Then for each θi, (x, y) are sampled m times

from X × Y based on Pθi . Here, the learner receives n×m samples. Let xi,j correspond to

jth sample based on θi. For convenience, let the whole set of samples be z(n,m).

First, the learner generates the posterior distribution p(θn|z(n,m−1)) on the set of all

n tasks, Θn.

p(θn|z(n,m−1)) =
p(z(n,m−1))p(θn)

p(z(n,m−1)
(6.3)

=
p(θn)Πn

i=1Πm−1
j=1 p(zij|θi)

p(z(n,m−1))
(6.4)

where p(z(n,m−1)) =
∫

Θn
p(θn)Πn

i=1Πm−1
j=1 p(zij|θi)dθn. Then it uses the posterior distribution

to generate a predictive distribution on Zn.

p(zn|z(n,m−1)) =

∫
Θn
p(zn|θn)p(θn|z(n,m−1))dθn
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Of particular interest to us is how this model for solving classification tasks trans-

lates to the problem of finding the optimum of fitness functions. In the next section,

we develop an idealized formal representation for any domain knowledge incomplete or

otherwise based on our existing representation for complete domain knowledge.

6.2 Idealized problem class learning in optimization

Our ideas for problem class learning in Blackbox optimization are based on the

ideas reviewed in the previous section. To develop the representation for incomplete

domain knowledge, we take the model for learning-to-learn in classification tasks and

map to the field of optimization. This leads to almost analogous components.

1. An input space X (a finite sample space) and an output space Y (a finite set of real

valued fitness values),

2. The set F of all possible fitness functions mapping from X to Y (set F is necessarily

finite),

3. The power set ℘(F ) of the previous set referring to the set of all possible fitness

function sets,

4. A particular set from ℘(F ) which represents the problem, the objective problem class,
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However, this lacks a representation for incomplete or uncertain domain knowl-

edge. As we assume an objective problem class that can be repeatedly sampled, the com-

plete domain knowledge regarding sampled instances is fixed. As this problem class is a

member of ℘(F ), from axiom 1, we can conclude that a probability distribution over ℘(F )

sufficiently constitutes a representation for any domain knowledge. Thus, to the above

list, we add:

5. A subjective prior distribution Θ on ℘(F ) that denotes any prior knowledge about the

problem class.

An algorithm that can use incomplete domain knowledge must be able to directly

or indirectly use Θ. Our approach is to first collapse Θ to a probability distribution over

objective functions called β. Then we modify OEFF and sample selection to use β instead

of the boolean vector we described before. This is justified because of Axiom 1 combined

with the fact that for OEFF, the unknown function is fixed. Thus Θ is too detailed a

representation for OEFF and β is adequate. The β function can be computed as follows:

∀f ∈ F, β(f) =
∑

G∈℘(F )

Θ(G) · 1G(f)

|G|
(6.5)

where 1G is an indicator function for membership in G.

When developing OEFF, we assumed that the unknown instance is chosen uni-

formly at random from the problem class. Thus, we were able to represent domain

knowledge using only a boolean representation instead of a full probability distribution.
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However, now that a probability distribution is being given to us that may have unequal

non-zero probabilities, the boolean representation for OEFF is rendered inadequate. To

compensate for this, we do not provide domain knowledge directly to OEFF. Conse-

quently, it starts with a boolean vector with all functions marked TRUE. We move the

domain knowledge usage and the termination condition to the sample selection strategy.

We adjust the sample selection strategy to weigh the branches to the f-set vertices

based on β after adjusting for eliminated functions. We terminate when sample selection

returns [0, false] or even earlier when we find that all functions with non-zero probability

in β share a solution. The modified sample selection algorithm is given as Algorithm 6.

In the next section, we shall see how information gathered during a optimization

can be used to update Θ.

6.3 Updating partial domain knowledge

Before we start examining how we can update incomplete domain knowledge, let

us review the context under which we perform this update. We are trying to devise an al-

gorithm that is trying to learn about optimizing some incompletely known problem class

by updating the algorithm’s belief about that class. The steps involved in this process can

be described as given below:

1. Start with some subjective prior knowledge about the problem class
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Algorithm 6 NEXTOPTIMALSAMPLE(F ,U )
if functions in {f |f ∈ F ∩ β(f) 6= 0} share a solution then

return [0, false]

end if

lmin = |Su|

for all s in Su do

l← 0

for all u′ in F do

Ftemp ← OEFFSTEP(F, s, u′)

l = l + β(u′)∑
f∈F β(f)

· (NEXTOPTIMALSAMPLE(Ftemp, Su − {s})[0] + 1)

end for

if l < lmin then

lmin ← l

smin ← s

end if

end for

return [lmin, smin]
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2. Get a random problem instance from the objective set.

3. Use the subjective prior to solve the instance.

4. Use the knowledge gathered from the instance while solving it to update the sub-

jective prior.

5. Go to 2.

Introducing the variables, let us say the algorithm has Θ0 as subjective prior. Θ0 is

converted to β0. This β0 is used to solve the first instance given using the OEFF and the

sample selection algorithm.

At the end of the run, after we have solved the instance, while we may not be sure

which instance exactly was solved, we can tell that the functions in the eliminated set H

could not be the one that was solved. We can use this piece of information “The solved

instance is not present in H” to update Θ0 and produce Θ1. This process repeats and we

generate β1 using Θ1 and solve the next instance using β1 and so on.

As the incomplete domain knowledge consists of a probability distribution Θi over

E , we must figure out how to update this probability distribution. We can do this by

deriving the equation for updating the probabilities of individual functions in E .

Consider the following events.

• Cf : the event that f is the current unknown objective function.

131



• EH : The event that by the time the instance was solved, exactly the functions in H

were eliminated. H ′ = F −H .

• EG: The event that G is the actual problem class.

Theorem 9. Given P (EG) = Θ(G),

P (EG|EH) =
Θ(G)|G ∩H ′|
|G|
∑

g∈H′ β(g)
(6.6)

PROOF. The probability of selecting a particular set of k samples is 1

C
|S|
k

. Given Cf , the set

eliminated from F by sampling is unique to the samples selected. Thus,

P (EH |Cf ) =


1

C
|S|
k

if f ∈ H ′,

0 otherwise
(6.7)

Also, by definition, P (Cf ) = β(f). From these two we get,

P (EH) =
∑
f∈F

P (EH |Cf ).P (Cf )

=
∑
f∈H′

1

C
|S|
k

β(f)

=

∑
f∈H′ β(f)

C
|S|
k

Thus we can compute P (Cf |EH) as follows:

P (Cf |EH) =
P (EH |Cf ) · P (Cf )

P (EH)

=


β(f)∑

g∈H′ β(g)
if f ∈ H ′,

0 otherwise
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This tells us how to update our β based on the functions eliminated so far. The next step

is to figure out how to update the Θ based on H after the solution is found. We have,

P (Cf |EG) =


1
|G| if f ∈ G,

0 otherwise
(6.8)

since the unknown is chosen uniformly from the problem class. Then,

P (EG|Cf ) =
P (Cf |EG) · P (EG)

P (Cf )

=


Θ(g)

β(f)·|G| if f ∈ G,

0 otherwise

P (EG|EH) =
P (EG ∩ EH)

P (EH)

=
1

P (EH)

∑
f∈F

P (EG ∩ EH ∩ Cf )

=
1

P (EH)

∑
f∈F

P (EG|Cf ∩ EH)P (EH ∩ Cf )
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When P (Cf ∩EH) 6= 0, it follows that Cf ∩EH ≡ Cf . Thus we replace Cf ∩EH in the first

term with Cf .

P (EG|EH) =
1

P (EH)

∑
f∈F

P (EG|Cf )P (EH ∩ Cf )

=
∑
f∈F

(P (EG|Cf ) · P (Cf |EH))

=
∑
f∈G

Θ(g)

β(f) · |G|
·


β(f)∑

g∈H′ β(g)
if f ∈ H ′,

0 otherwise

=
∑

f∈G,H′

Θ(G)

|G|
∑

g∈H′ β(g)

P (EG|EH) =
Θ(G)|G ∩H ′|
|G|
∑

g∈H′ β(g)
(6.9)

To confirm, the new β and the new Θ should sum to 1. It is obvious that the former is

true. For the latter, when expanding β by definition, we find,

∑
f∈H′

β(f) =
∑
G∈E

Θ(G)|G ∩H ′|
|G|

Using this in equation 6.9 and summing P (EG|EH) over all G ∈ E , we get 1.

6.4 Implications and discussion

Problem learning involves gathering domain knowledge from problem instances

seen so far to help solve a future unknown instance. We presented a theory based on the

Elimination of Fitness Functions approach that describes how this may be done ideally.
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Based on this approach, we see that in EFF, problem learning involves a probability distri-

bution over complete domain knowledge and rules to update this probability distribution

based on seen samples from a solved problem instance.

The theory we have presented for problem learning suggests that in practice, given

an optimization algorithm, problem learning can be achieved by approximating the prob-

ability distribution over the domain knowledge representation and approximating the

update rules. Unlike OEFF, as most practical optimization algorithms encode domain

knowledge, a requirement for complete problem learning is that this probability distribu-

tion must span a space of optimization algorithms. In fact, our choice of space over which

we approximate the probability distribution that we learn reflects the knowledge that can

be gathered by problem learning. E.g., in meta-evolutionary algorithms described in sec-

tion 2.4.2, we approximate a probability distribution over algorithm parameters by main-

taining a population of these parameters, limiting our learning ability to such a space.

The space of code for optimization algorithms is harder to search through than the

space of parameters of optimization algorithms. This holds true even if the parameters

are pieces of code such as in hyper-heuristics. This stresses the importance of having op-

timization algorithms that accept a significant portion of their final domain knowledge

through algorithm parameters. These can be more easily modified than traditional opti-

mization algorithms to become powerful problem learning optimizers.
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6.4.1 Can we determine the benefits of problem learning?

An important question on the issue of domain knowledge gathering is whether or

not it can be shown to improve performance. Another is whether we can predict how

much performance improvement will result.

First, we examine what happens when we attempt problem learning given no prior

domain knowledge. To understand more about having no domain knowledge, consider

the lemma given below.

Lemma 8. If all possible problem classes are equi-probable, then so are all the objective functions

and vice versa.

PROOF: Let 1G be an indicator function for membership in G. We can compute the

probability distribution over individual objective functions denoted by β as follows.

∀f ∈ F , β(f) =
∑

G∈℘(F)

Θ(G) · 1G(f)

|G|

=
1

℘(F)
·
∑

G∈℘(F)

1G(f)

|G|

=
1

℘(F)
·
|F|∑
i=1

1

i

(
|F| − 1

i− 1

)

As the last term is independent of f , the lemma is proven.

Thus, when all problem classes are equally likely, all problem instances are too.

Consider the situation where we have fully sampled the functions in the set G ⊂ F .

W.l.o.g., let F ⊃ G be the objective set. Let u ∈ (F − G) be our next problem instance
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to be solved. As information has been gathered about F under idealistic assumptions,

performance of OEFF over it must improve. However, as a consequence, all problem

classes that shares no elements with G must decrease. F −G is such a set.

This means that given some arbitrary objective set F , after sampling instances in

G from it, though we face increased performance over F on average, we face worse per-

formance than random search over every function in F that has not been seen so far.

By coupon collector’s problem, we know that we need O(|F | log(|F |)) instances from F

(sampled with repetition) to see all instances at least once. It is clear that to receive perfor-

mance improvements over F fairly evenly, we must sample the problem class much more

than its size. To improve performance over the majority of the problem class, even if we

ignore repeated problem instances, we need to solve at least |F |/2. Thus, it is unrealistic

to start with no domain knowledge and depend on problem learning alone to acquire

sufficient domain knowledge for reasonable performance.

Next, using examples, we argue that performance improvement due to problem

learning can be significant, which we feel is what can be expected in most practical situa-

tions. We argue that only in rare situation is improvement impossible. However, a more

rigorous proof is needed to settle the issue.

Consider the problem classes F and G over a binary space of length n+ 1.

F = {fy1 , fy2 , · · · , fyn}

G = {gy1y1 , . . . , gy1yn , gy2y1 , . . . , gynyn}
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where yi is an n-bit binary string whose numerical value is i and,

fy(x) =


2n if ∀i ≤ n− 1, x[i] = y[i] and x[n] = 1

n−H(x[0, n− 1], y) if x[n] = 1

0 otherwise

gyy′(x) =


n−H(x[0, n− 1], y) if x[n] = 1

2n if ∀i ≤ n− 1, x[i] = y′[i] and x[n] = 0

0 otherwise

where H is the hamming distance function.

In this problem, the search space is broken into two halves. One half where the last

bit has value 1 is structured like a Generalized ONEMAX problem. For function fy ∈ F ,

the other half has only 0s. Thus the solution will be y.1 and this sample will have fitness

2n. This fitness value of 2n in the generalized ONEMAX half identifies this function as a

member of F .

For the function gyy′ ∈ G, the generalized ONEMAX portion is based on y. How-

ever, the string y.1 only has fitness value n. In the other section of the search space, all

fitness values are 0 except the point y′.0, which has fitness value 2n and is the solution.

This half is similar to Needle-in-a-haystack (NIHS) landscape. Having the solution in this

half identifies this function as a member of G.

Assume our prior knowledge is that the problem class is F , G, or F ∪G with equal

probability. We want to answer the question: Using only the prior knowledge, can we
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accurately predict whether gathering domain knowledge from new instances is going to

give us higher performance?

Recall from section 6 that we design our subjective prior into the optimization

algorithm for best performance. To keep things simple, assume that we can solve the n-

bit generalized ONEMAX problem in n samples, and that it takes on average 2n−1 samples

to solve the NIHS portion. Given an unknown instance u, there are two broad strategies

we can choose.

1. Assume u ∈ F . Solve the generalized ONEMAX problem using n samples. Success

probability is 1
2n

. If fail, solve the NIHS portion in 2n−1 samples. Expected time to

solve is

Expected time = n.
1

2n + 1
+ (n+ 2n−1)

2n

2n + 1
= h(n) +

n2n

2n + 1

2. Assume u ∈ G. Solve the NIHS problem using 2n−1 samples. If fail, solve the

generalized ONEMAX problem. Expected time to solve is

Expected time = 2n−1.
2n

2n + 1
+ (2n + n)

1

2n + 1
= h(n) +

2n

2n + 1

From this, we conclude that solving the NIHS problem first rather than the generalized

ONEMAX problem is likely to solve u sooner.

Now, we examine three different possibilities for the actual objective set from

which u is being drawn
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Case 1: F ∪G is the objective set: In this case, the collapsed distribution of our subjective

prior matches the subjective set exactly. Thus, trying to update the subjective prior from

seen instances is not going to bear fruit.

Case 2: G is the objective set: In this case, if we gather knowledge from new instances,

we can update our subjective prior to match problem classG. This improves our expected

performance slightly by eliminating chance of failure. However, note that even though

the expected performance of strategy 2 is slightly worse than what is possible with com-

plete domain knowledge, because it solves the NIHS portion first, if the problem class

turned out to be G, its actual performance is 2n−1. Thus gathering domain knowledge

will not benefit performance as it cannot get any better than 2n−1.

This effect of improvement in expected performance with no improvement in ac-

tual performance is due to expected performance being calculated based on the subjec-

tive prior while the latter being calculated based on the objective set. This discrepancy

between expected and actual performance can be steeper if strategy 1 was chosen and the

objective set is F .

Case 3: F is the objective set: The performance we get on strategy 2 if F is the problem

class is 2n + n because our attempt to find solution in the NIHS section always fails. And

if we learned that F is the problem class, we can skip the NIHS section entirely and our

performance would be n. Compared to 2n+n, this is a huge improvement and underlines

the benefits of domain knowledge gathering under some circumstances.
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Thus, we show that depending upon the case, gathering domain knowledge may

result in no improvement, some improvement and even great improvement.

Our second question is whether we can differentiate between these cases based on

just our prior. From the above examples, it is clear that all three of these cases follow

from the same subjective prior. Also, based on just the prior, we can make no conclusions

about which case we are going to have. Thus, in this case, we cannot be sure one way or

the other that gathering domain knowledge will deliver performance improvements.

However, consider the case where current domain knowledge and any future do-

main knowledge we may gather are all going to result in the same behavior from OEFF.

For example consider various problem classes which are variations of Generalized ONE-

MAX differing only in increases to the fitness value of the solution. If all the problem

classes had the same probability of being the true problem class, then it is no use to learn

which one exactly is the true problem class. This is because no matter which one it turns

out to be, OEFF is going to solve it like a Generalized ONEMAX problem class.

6.4.2 Suggestions for practical optimization algorithms

Based on the theory that has been presented so far, and the points we have made

previously regarding the blackbox framework in section 5.8, we make the following rea-
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soned recommendations for a practical optimization algorithm. As some of these recom-

mendations are seen separately implemented in practice already, we provide examples.

1. Be capable of using additional instance knowledge sources. Due to the importance of in-

stance knowledge sources in solving problem instances, we must build algorithms

that are capable of using more than just the objective function. With any new source,

we face the problem of interpreting it: what can the values from this source tell us

about the problem instance? Interpreting this information requires domain knowl-

edge which can be gathered through problem learning and/or be made available

by practitioner. The fact that using additional instance knowledge sources violates

the fitness value restriction over the problem class means that it can result in perfor-

mance exceeding OEFF. An example is the multi-objectivization approach that uses

“helper functions” based on the target objective function.

2. Do problem learning based on all instance knowledge sources. By definition, an objec-

tive function is only required to define solutions. For this, a needle-in-a-haystack

function is adequate, and this function is not a useful instance knowledge source.

An objective function can be used as an instance knowledge source only if the algo-

rithm has domain knowledge — knows something about the values of non-solution

samples — that can improve performance. This requirement of domain knowledge

to give context to fitness values applies equally to additional instance knowledge

sources. The more we know about how the values returned by these sources re-
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late to the problem instance, the more domain knowledge we have and the more

informative these sources will be.

Consequently, based on theory explained so far, problem learning can help us use

these sources more effectively to identify the problem instance. In fact, the impact

of problem learning is proportional to the number of additional sources and their

informativeness.

3. Accept significant domain knowledge in a form that is easy for human beings to understand

and use. The domain knowledge that a practitioner or a subject matter expert can

provide to an optimization algorithm can make a significant impact on performance.

Thus, it is critical to the performance of an optimization algorithm that it can accept

domain knowledge from practitioners and experts in a form most convenient for

them.

4. Restrict the domain knowledge representation for efficiency. In addition to restricting the

domain knowledge for human input, it is also required to restrict it in ways that

allow it to be used with a practical optimization algorithm. Even though efficiency

is not the first priority for practitioners resorting to optimization and problem learn-

ing, as OEFF is in fact impractical, sacrifices must be made on the space of domain

knowledge for the sake of practicality. Most algorithms restrict domain knowledge

input to a handful of parameters.
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5. Use the information maximizing sample selection strategy if possible. This sample selec-

tion strategy, which is introduced in this dissertation, is not optimal, but we believe

it can be good enough to be an effective practical strategy. However, its applicability

may depend on the chosen domain knowledge representation.

6. Solve by building a model of the problem instance and using it to find at least a partial

solution. This is in line with expected behavior from an algorithm that aims to ap-

proximate OEFF. This is an important requirement which also restricts the domain

knowledge representation as it must be informative for both problem identification

as well as problem solving. Continuous and Embedded Learning algorithm from

section 2.4.2 is a good example of this model building approach.

7. Optionally, favor problem abstraction by maximizing scope of domain knowledge represen-

tation. Based on existing theory, increasing the scope of the domain knowledge rep-

resentation is likely to increase overhead, reducing efficiency. However, as stated

in Chapter 2, the increase in problem abstraction may be more desirable to prac-

titioners as it allows them to use off-the-shelf algorithms to solve related but new

problem classes. This point brings to light the efficiency-abstraction trade-off that

all algorithm designers must make.

The theory presented in this dissertation is insufficient to decide the best imple-

mentation of these suggestions in practice. For that, further research is required. Once
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that is accomplished, we can implement these suggestions into a theoretically sound al-

gorithm capable of problem learning. We leave this to future work.

6.4.3 Suggestions for Transfer Learning approaches

The problem learning theory we have developed is specifically for the black-box

scenario where we learn about the problem class by sampling it. The transfer learning

scenario is different from black-box scenario. In transfer learning, there are two problem

classes of interest say, A and B. One of these is our objective problem class, say B and

unlike the blackbox scenario, we are given no access to it in the beginning. Instead, we

are given access to A which is expected to be “similar” to B. We gather domain knowl-

edge from A with the hope that this domain knowledge improves performance over B.

Note that transfer learning can be followed by regular problem learning using B. Such a

scenario of using domain knowledge from one problem class to solve another is justified

under many circumstances such as whenB is too expensive to evaluate, but we were able

to devise a cheaper problem class A that is similar.

Despite being a different scenario, we can apply the theory we have developed

as both scenarios involve problem learning. Also, this theory is applicable whether the

transfer learning is automated or manual. First, we try to determine the best prior bias we

can choose for this problem learning task. Because we are attempting problem learning,

it is clear we do not know much about A or B. Nevertheless, as our goal is to learn B,
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it makes sense to choose our initial knowledge about B as the prior bias. It is especially

important to ignore domain knowledge about A and focus on the differences between A

and B in this prior bias.

Next, we update this bias by learning about the problem classA. If we have a good

prior bias that suppresses the aspects of A that is not present in B, then as we learn about

A, the prior bias will slow us down from learning too much about A that is not relevant to

B. However, it is clear that if we spend enough time learning about A, we can over-learn

it, making our original prior bias irrelevant. As a result, we will end up with complete

domain knowledge about A, losing any knowledge we had about B. The differences

between A and B form inaccurate domain knowledge about B and consequently can

result in “negative transfer”, which is the situation where transfer learning leads to lower

performance than with no transfer learning. As concluded by Pan et al. [9], negative

learning is an open problem in transfer learning.

Thus, we suggest an alternate strategy. Start with prior bias about A and problem

learn about A as much as possible resulting in plenty of domain knowledge about A.

But instead of using this domain knowledge directly, we first “water it down” to reflect

the fact that we are transfer learning. Then, we update this watered down bias using

our prior bias about B. This of course requires that we use an algorithm with a domain

knowledge representation that allows these operations. OEFF allows them, and we can

demonstrate these operations as follows. Let ΘB be our prior bias about B and ΘA be

the domain knowledge that we have learned about A and c be a positive real value that
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reflects our distrust of the domain knowledge we have gathered about A. Thus, we can

compute Θ′B, the final bias about B as follows.

∀F ∈ E ,Θ′B(F ) = NORMALIZE ((ΘA(F ) + c) ·ΘB(F )) (6.10)

This approach avoids over-learning A as we explicitly reduce the emphasis on the

domain knowledge of A. Furthermore, we need not worry about losing what we know

about B as it is added only in the last step. If equation 6.10 is approximated properly

with an adequately conservative c, the theory we have developed tells us that we can

assuredly avoid any negative learning.
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CHAPTER 7
CONCLUSION

The blackbox framework is a formalization of optimization in a scenario where the

information available to optimization algorithm is partially restricted. As per the modern

view of blackbox optimization, optimization algorithms have access to the broad class

of objective functions from which the problem instance is drawn. In this dissertation, we

examine the blackbox scenario, focus on blackbox performance in combinatorial blackbox

optimization, and ask how we can make the best of the blackbox restriction. We present

theory that answers some of these questions and discuss its implications on the blackbox

framework and practical optimization algorithms.

Popular blackbox optimization approaches such as evolutionary algorithms en-

code information about the nature of the objective/fitness functions it may be asked to

solve, aiming to improve performance over those problems. These approaches use ob-

jective values from the functions, often only for ranking, in a way that helps find the

solution. We argue for a different approach, where we sample the search space to identify

the objective function in the problem class and use its identity to determine the solution.
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This function identification is done by eliminating other fitness functions, and we call this

the Elimination of Fitness Functions approach.

We prove that an algorithm called Optimal Elimination of Fitness Functions, based

on EFF has optimal blackbox performance, a popular performance metric for the blackbox

framework that counts samples of the fitness function. We also present a sampling strat-

egy that does a thorough search of potential samples before making an optimal sample

for OEFF. OEFF is also optimal from a problem abstraction point of view.

This maximizing of blackbox performance by OEFF makes it a natural candidate

for proving performance bounds. We explain why this can be done and demonstrate it

on the Generalized ONEMAX problem class. We bound the performance of OEFF using a

random sample sequence to O( n
logn

), which was original research within the community

and tightens the previously proven bound of Ω( n
logn

). We also show how we can prove

lower bounds by providing an alternate proof for the No Free Lunch theorem.

Another aspect of OEFF is that as a result of having to process its many parameters

for each sample, it is inefficient from a space and time complexity point of view. We

argue that this is inevitable due to OEFF being optimal as well as having a large degree of

problem abstraction. In fact, we conclude that any algorithm can maximize only two out

of the three key characteristics of optimization algorithms viz. performance, efficiency

and problem abstraction.
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We show that we can trade-off problem abstraction for efficiency without sacrific-

ing performance by modeling the behavior of OEFF over a problem class. For this mod-

eling process, we develop formal techniques that reduce states and exploit symmetry on

the game-tree induced by OEFF when operating over a specific problem class. We apply

this technique to derive an optimal algorithm for the Generalized LEADINGONES prob-

lem class. We chose this problem class because it is well known and its optimal strategy

is easy to understand. Its game-tree is also very suitable for the modeling process.

We then examine a further generalization of Generalized LEADINGONES called

LO∗∗ that has infinite problem instances. Despite the fact that OEFF operates over only a

finite problem class, we were able apply our technique to derive the optimal algorithm

for LO∗∗ and tighten existing bounds. We build on this result and tighten known bounds

for another generalization called LO∗∗∗. We briefly discuss the LONGPATH problem class

and explain that this singleton class which is known to be O(n3) for a (1+1)EA is trivial

for OEFF. Thus, we develop the STEEPPATH problem class that has the opposite property

— over it, a (1+1)EA is no worse than OEFF. We then present the OEFF modeling process

over STEEPPATH problem class and derive the performance bounds.

Having understood how the performance of algorithms is impacted by the black-

box framework, we approach optimization algorithms with a fresh perspective. We infer

from common practice that when it comes to optimization algorithms, practitioners care

about problem abstraction, performance and efficiency in that order. Our attempts to cre-

ate optimization algorithms should take full advantage of the freedoms allowed us by
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the practical scenario or context to improve these metrics. We find that while we can use

the blackbox framework for analytical purposes, it is unsuitable as an algorithm design

guideline as some of its restrictions are not warranted in many of the practical scenarios

that we face. We argue that the blackbox restriction artificially limits performance and is

not required to confer problem interface unification to blackbox algorithms. We also sug-

gest that the framework fails to account for the form in which the knowledge about the

problem class is made available. Only OEFF can directly use the domain knowledge in

the form assumed by the blackbox framework. Practical algorithms are as limited by their

inability to transform the domain knowledge to a suitable form as they are by the lack of

domain knowledge. Lastly, we stress the importance of the fact that majority of domain

knowledge in a practical algorithm is transformed and placed there by a practitioner.

We propose problem learning as a critical approach to improving problem abstrac-

tion and performance at the cost of efficiency. Though limited problem learning has been

attempted often, a theoretical understanding of problem learning in optimization is lack-

ing. We present theory where we extend the OEFF algorithm to handle incomplete do-

main knowledge. We also derive the formulas we can use to update this domain knowl-

edge based on experience. This general theory for problem learning is used to make some

suggestions for doing problem learning in practice.

We use this theory to conclude that it is unrealistic to start with no domain knowl-

edge and depend on problem learning alone to acquire sufficient domain knowledge for

reasonable performance. We prove that barring some practically rare situations, it is im-
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possible to predict the benefit of problem learning. We speculate that due to the relatively

knowledge-light nature of optimization algorithms, there should nevertheless often be

significant performance benefit.

We apply this theory to practical optimization algorithms and make some recom-

mendations. We suggest ignoring the blackbox restriction by designing algorithms that

can accept instance knowledge through sources other than the objective functions. These

algorithms should be made capable of problem learning as well as accepting domain

knowledge from the practitioner to better understand these sources. We highly recom-

mend that domain knowledge from practitioners be accepted in a form that favors the

practitioner instead of the algorithm. Relative to the theoretical ideal, we would have to

restrict the scope of problem learning with the intention of reducing overhead to achieve

a minimum practical efficiency. However, increasing the scope of problem learning con-

fers problem abstraction, a priority for most practitioners. If possible, we recommend an

information maximizing sample selection strategy. Finally, the optimization algorithm

should approximate the problem modeling approach of OEFF by using the available do-

main knowledge to do partial problem identification as well as problem solving.

We are also able to apply the problem learning theory to the transfer learning sce-

nario where we are attempting to learn a target task by learning shared aspects from a

cheaper related task. Though we are attempting to learn a related task, we should have

some knowledge about the target task. We suggest that to avoid negative transfer, we

should “water down” the domain knowledge learned from the related task and update
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it with this prior knowledge. We present a formula for this update that should be ap-

proximated in practical algorithms and argue that this formula, properly applied, avoids

negative transfer in transfer learning.

7.0.4 Future Research

As future research, we can extend the research presented here in the following

directions.

1. Use our theory to derive more theoretical bounds. These results may include new black-

box complexity bounds based on OEFF performance bounds. Many problem classes

including infinite problem classes may be attempted. We expect many opportunities

for improving upper bounds of blackbox complexity.

2. Develop new theory to predict the utility of problem learning in a particular context. We

showed how the benefit of problem learning can range from significant to very lit-

tle. Developing theory to predict the benefit can help practitioners make informed

decisions about using problem learning.

3. Use our theory to derive additional practical algorithms. We presented a theoretical ap-

proach to modeling OEFF over specific problem classes. This theory can be used to

derive practical algorithms for other problem classes, extending our understanding
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of solving them. In addition, we can also identify new patterns in the game-tree that

we can use to simplify it.

4. Use our practical recommendations to create frameworks for algorithm design. We can also

take advantage of the practical recommendations as well as the presented theory

to develop a framework for designing practical optimization algorithms or learn-

ing them using problem learning. This approach should be backed by theory that

justifies problem learning from the knowledge sources that are used.
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