






puting environment software for the new DDG-1000 warship [41]. Figure 2.1 shows a sample

Real-time Java application with Purdue’s Ovm real-time JVM: the first integrated real-time

Java system on the ScanEagle Unmanned Aerial Vehicle [5]. The flight hardware/software

was an Embedded Planet PowerPC 8260 processor running at 300MHz with 256Mb SDRAM

and 32 Mb FLASH. The operating system is Embedded Linux.

Kestrel Institute, September 2005

PCES Capstone Demo
Ovm was used for the DARPA PCES Capstone Demo

The RTSJ deployed in the ScanEagle UAV to implement 
route computation, threat deconfliction algorithms

In  collaboration between the Boeing Corporation, 
Purdue University, DLTech, UCI, WUSTL 3 An AvionicsMission-critical DRE Middlewar eStack

We propose to address issue of configuration and adaption of middleware architecture by focusing one

representative DRE application. The software in question implements flight control, threat assessment, and

route deconfliction algorithms for the SCANEAGLE Unmanned Aerial Vehicle (UAV)1. The SCANEAGLE

A is an UAV under joint development by The Boeing Company and The Insitu Group in an effort to meet

the demand for an affordable, fully autonomous vehicle with high endurance. Equipped with an onboard

inertially stabilized daylight video camera, SCANEAGLE A can stay aloft for 15 hours, traveling hundreds

of miles. Fig. 2 depicts the UAV and gives information about the hardware configuration used in flight.

EmbeddedPlanetPowerPC 8260
Core at 300 MHz

256 Mb SDRAM

32 Mb FLASH

PC/104 mechanical sized

Embedded Linux

Figure 2: ScanEagleUnmannedAerial Vehiclewith a PowePCprocessorrunning EmbeddedLinux.

In the system we are considering in this project, which is a feature complete and flight-tested configura-

tion, the UAV is controlled by Prismj, an experimental DRE avionics controller designed to operate under

hard real-time constraints. Prismj is written in the Real-Time Specification for Java (RTSJ) by the Boeing

company. It is a realistic multi-rate cyclic avionics execution context with a number of components and

events that are typical in production avionics mission-critical computing systems. The application runs over

100 threads in three rate groups (20Hz, 5Hz, and 1Hz). These threads perform different tasks. There is a

single infrastructure thread which acts as a cyclic executive and pushes events to components in the physical

device layer. Based on those events, 5Hz and 20Hz threads perform computations on components dedi-

cated to the Global Positioning System (GPS), airframe, tactical steering, and navigation steering. The 1 Hz

thread is a pilot control component and periodically switches all components in the system between tactical

a navigation steering.

The ScanEagle DRE middleware stack, illustrated in Fig. 3, starts with the Prismj application. Prismj

can be configured to use different event channels, transport layers, virtual machines and operating systems.

In the following we consider only one static configuration. Prismj components communicate internally by

the means of an Event Channel. An event channel is a standard interface for decoupling event producers

and consumers. The FACET event channel is a customizable real-time Java event channel from Washington

University of St. Louis [16, 20]. A transport layer is needed for communication between the UAV and the

ground station. This is achieved by configuring FACET to use Zen. Zen is a CORBA object request broker

(ORB) designed to support distributed, real-time, and embedded applications. Zen is written in RTSJ by UC

Irvine [27]. Prismj relies on classpath, an open source implementation of the Java standard libraries from

GNU and Purdue’s open sourced Real-time Specification for Java libraries.

The real-time virtual machine used to run Prismj is a configuration of the Ovm framework. The Ovm

project provides an open source framework for building language runtimes. Ovm is a toolkit with the basic

1The system was developed within the PCES program by Boeing, Purdue, UC Irvine and Washington University of St. Louis.
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Figure 2.1: A Sample Real-time Java application. Credit: Jan Vitek

Where the RTSJ strives for expressiveness and imposes few limitations on how a

developer structures an application in terms of concurrency, packaging, synchronization,

memory, etc., safety-critical applications must conform to rigorous certification requirements,

and use much simpler programming models that are amenable to certification. For this

reason, the Java community created SCJ. SCJ was developed as a Java Specification Request

(JSR-302), and is designed to enable the creation of safety-critical applications built using
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a safety-critical Java infrastructure and using safety-critical libraries that are amenable to

certification under DO-178B, Level A and other safety-critical standards.

2.2 Software Engineering and Formal Methods

Software Engineering is the discipline aimed at producing software with a minimum

number of faults, delivered on time and within budget, that satisfies a client’s needs [42].

This has become even more important in certain areas of software development. For example,

in safety-critical systems, software safety is a key issue in the development process. In order

to determine whether a certain software is safe, one thing developers and testers usually do is

test the software for correctness against its requirements. However, even with testing, there

is no guarantee that the program will satisfy all requirements decided on in the requirements

analysis phase. Besides, these tests are usually intended to eliminate the functional errors

in the software, that is, whether the program delivers the correct results or not. In addition

to functional requirements, real-time programs must satisfy timing constraints [43, Chapter

12]. Both time and space requirements affect the life-cycle of program development. This is

due to the additional coding and tests the programmer has to write and perform to satisfy

these constraints.

One way to guarantee that the overall implementation of the system is correct, is

to use formal methods. The term “formal methods,” refers to the mathematical tools and

techniques that are used to ensure correctness. A requirements document can be written
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using statements in mathematical logic. The requirements are then refined to construct a

formal, mathematical description of the system that can be used to symbolically test the

entire state space of the design, and formally verify the correctness of the implementation.

Formal specifications are a promising approach for the design, documentation, verifi-

cation, debugging, and testing of software systems [44, 43, 45]. Specifications are important

to achieve verification modularity, and modularizing a program’s proof of correctness can

greatly simplify the verification task of that program, as the verification task is now sim-

plified to focus on the specifications of the method being verified. This means that if the

implementation of that method changes and its specifications remain the same, it is not

required to verify calls to the method again. This property is essential for scalability of

verification; without specifications, verification algorithms can introduce a state space that

is very large in size, which makes the verification process both time and resource consuming.

In other words, it is desired that the introduced complexity of an extended system to be

verified with only an amount of work proportional to the size of the additional part added

to the system.

2.3 Timing Analysis

Timing analysis forms the foundation for this work. The basic problem for any real-

time designer is to ensure that the designed tasks are completed before (or no earlier than)
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a certain deadline. This can be done by performing timing analysis on the implementation.

The two major methods to perform analysis are:

Dynamic Analysis (or measurements). The idea is to measure the time that a task takes

at run-time. Typically this is done using tools that instrument either the source code

or the binaries with code to measure execution time. If we eliminate the underlying

features in any hardware that causes the timing characteristics to be nondeterminis-

tic, such as caches, then this could be a very precise method for tasks with no user

input or for tasks that have very clear and small sets of input parameters. However,

in many cases, those underlying features cannot be eliminated. Furthermore, if the

measurements were performed using an incomplete set of inputs, which will usually

be the case, or if timing analysis is to be performed on a software library for which

inputs are unknown, then dynamic analysis will not be able to measure the worst case

timing results for all inputs. Thus, in most practical cases, dynamic analysis cannot

give worst case execution time bounds.

Static Analysis In contrast with dynamic analysis, static analysis uses calculations rather

than measurements to extract a task execution time. In this case, the analysis can

extract the desired results without the need for a complete set of tests that can cover

all possible execution paths. Instead, path coverage and duration analysis is performed

on the code itself or on the compiled binaries without the need for the target hardware

to execute the code.
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Some of the features of static analysis, while not necessary for the analysis itself, are

very important if it is desired to have precise analysis, or tight timing bounds, by eliminating

the false positives. Two major issues for obtaining tight timing bounds are path sensitivity

and context sensitivity. We say that an analysis is path-sensitive, if it depends on the predi-

cates at the conditional statements to consolidate execution times for the different branches

formed by these conditional statements. While path insensitive analysis can still do the

job, it is usually more conservative (i.e., safer), but the result may contain more imprecise

bounds.

The second feature of static analysis that is important is its context sensitivity. A

context is simply the range of values a parameter or environmentally-bound variable can take.

A static analysis method is context-dependent if it performs different analysis for method

calls depending on the place in the code where the method is called. Differing contexts

can highly affect the execution times of any system, especially library code. For the timing

analysis to be tight, it is important for the system that performs the analysis to be both

path-sensitive and context-sensitive.

2.4 Safety Critical Java (SCJ)

While Java offers the possibility of high software productivity, it is not tailored for

safety critical or real-time systems. In particular, Java’s garbage collection may cause unpre-

dictable worst case execution times. To avoid these problems, SCJ was developed as a Java
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Specification Request (JSR-302) [46]. SCJ is designed to enable the creation of safety-critical

applications built using a safety-critical Java infrastructure and using safety-critical libraries

that are amenable to certification under DO-178B, Level A [47] and other safety-critical

standards. JSR-302 is near completion now [48].

Prior to providing an implementation for SCJ, Vitek’s group at Purdue University

implemented first the Open Virtual Machine (Ovm). The Ovm is a generic framework

for building virtual machines with different features. It supports components that provide

a wide variety of alternate implementations of core VM features. While Ovm’s internal

interfaces have been carefully designed for generality, much of the coding effort has focused

on implementations that achieve high runtime performance and good predictability with

low development costs. The real-time support in Ovm is compliant with version 1.0 of the

RTSJ. Sources and documentation for Ovm are available under an open source license [49],

and further discussion can be found in various papers by its designers [5, 50, 51].

The current implementation of Ovm relies on an optimizing compiler that translates

the entire application and virtual machine code into C which is then processed by the Gnu

C Compiler (gcc).

Vitek’s group has also produced oSCJ [52], an open-source SCJ implementation based

on OVM [49]. (Currently oSCJ implements all of Level 0 of SCJ [46], which specifies three

different levels to implement, Level 0 through 2). Like OVM, oSCJ takes the approach of

compiling both the SCJ code and virtual machine into a (large) C program, which is then

compiled with a standard C compiler (such as gcc) appropriate for the hardware.
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SCJ programs use the concept of the class Mission, which in essence is a certain

task that needs to be executed according to a certain schedule, which defines the scheduling

constraints of the mission, such as release time, deadline, and priority. Schedules use event

handlers to restrict the execution of the mission.

In SCJ Level 0, the class PeriodicEventHandler, is the only way to establish a peri-

odic activity, and thus permits the automatic execution of SCJ code. The constructor for

PeriodicEventHandler specifies an object of type PeriodicParameters, which in turn is a

subtype of ReleaseParameters. SCJ specifications for these classes are shown in Figure 2.2.

In SCJ, the object PeriodicParameters specifies the periodic release parameters for a spe-

cific periodic activity of type PeriodicEventHandler. These specifications are different for

different levels of SCJ. For example, in SCJ Level 0, only the start time and mission period

are required, while in Level 1, a deadline that defaults to the period and a miss handler are

specified. In general, timing analysis for SCJ is meant to be performed offline, and only in

Levels 1 and 2 is deadline miss detection supported dynamically.

The worst case execution time needed to execute a schedulable object is meant to

be provided by the SCJ’s release parameters. Level 0 specifications barely support that,

especially with no means to handle deadline misses. On the other hand, Level 1 supports

miss handlers only at the level of the schedulable object (or the PeriodicEventHandler).

This leaves little room for the programmer to specify duration at the method level. SafeJML

allows specification of durations and thus deadlines at the method level, this provides more

detailed specification and verification of timing constraints.
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1 @SCJAllowed

2 @SCJRestricted ({ INITIALIZATION })

3 public PeriodicEventHandler(PriorityParameters priority ,

PeriodicParameters release ,

4 StorageParameters storage)

5

6 @SCJAllowed

7 public abstract class ReleaseParameters implements Cloneable

8

9 @SCJAllowed

10 protected ReleaseParameters ()

11

12 @SCJAllowed(LEVEL_1)

13 protected ReleaseParameters(RelativeTime deadline ,

AsyncEventHandler missHandler)

14

15 @SCJAllowed

16 public class PeriodicParameters extends ReleaseParameters

17

18 @SCJAllowed

19 public PeriodicParameters(HighResolutionTime start , RelativeTime

period)

20

21 @SCJAllowed(LEVEL_1)

22 public PeriodicParameters(HighResolutionTime start , RelativeTime

period

23 RelativeTime deadline , AsyncEventHandler missHandler)

Figure 2.2: SCJ Levels 0 and 1 Specifications for PeriodicEventHandler,

ReleaseParameters and PeriodicParameters

27



2.5 JML - The Java Modeling Language

Design by Contract (DBC) is a formal specification approach that uses the idea of

assertions for specifying code using the same language that the executable code is written

in [53]. In DBC for object-oriented language like Java, classes are seen as clients of other

classes. Thus, a client calling a method must have a “contract” with the class whose method

is being called. Prior to calling that method, the client must guarantee certain conditions,

and in return, the called method must guarantee certain conditions to hold when the method

has completed execution [54]. These contracts provide formal documentation for the code.

DBC took this idea one step further by introducing keywords and syntax for these contracts,

and make them executable by the machine that is running the compiled code [53], thus

introducing an environment for formal verification or runtime checking of the code, so any

violation of these contracts can be detected and reported.

The Java Modeling Language (JML) [13, 55, 14, 15, 56, 57, 16] is a behavioral

interface specification language (BISL) [18] that follows the Design by Contract approach

to specify Java modules [58, 59]. JML blended ideas from Eiffel [60, 61, 53], Larch [18, 62,

44], and the refinement calculus [63, 64, 65, 66] in its approaches to specification. It adds

many state-of-the-art features for functional specification. Readers are referred to the JML

Reference Manual [67] for more information.

Many tools have been developed to support JML, and to provide runtime and static

checking to verify functional requirements. Burdy et al. [13] list such tools. For example,
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jmlc [68] is used for runtime assertion checking. ESC/Java [69], ESC/Java2 [70], JACK [71],

and LOOP [72] are all used for static checking and verification.

JML provides minimal support for specification of timing constraints, realized by

using the duration clause [73], based on the work of Krone et al. [19]. This clause is

designed to specify the maximum time (i.e., worst case execution time) needed to process a

method call in a particular specification case in “JVM cycles”.

JML’s duration clause has never before been implemented in the tools or used in

actual case studies. In addition, JML lacks the means to write timing constraints using

intervals. Many real-time systems consider executing tasks no earlier than certain times.

A good example is the Pacemaker System Specification [74] from Boston Scientific. The

pacemaker system specifies events that must occur “not later than” a certain time, and also

“not earlier than” a certain time. The current duration clause in JML makes it difficult to

specify systems like this that need interval-based specification of timing constraints.

Another limitation in JML is the limited ability to specify bounds on loops. The

only clause that can be used to annotate loop bounds is the decreasing clause. This clause

specifies a loop variant function using an expression, of type integer or long, that must be

decreased by at least one each time the loop executes. This clause is mainly used to specify

loop termination. Furthermore, as the variant is always decreasing, it is guaranteed that the

variant represents an upper bound on the number of times the loop executes.
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However, the decreasing clause does not directly address the concept of maximum

loop iterations. Furthermore, the definition of the loop variant function can be either im-

precise or hard to construct if used to denote the maximum loop iterations. Consider the

example in Figure 2.3 on the next page, in this example, the loop variant function i is de-

creasing, but the upper limit on the number of loop iterations is a constant value, which

is the maximum number of bits in an integer (32 bits). This method can be annotated by

introducing a ghost variable that decreases while the method executes1. Alternatively, the

programmer can specify the loop with a constant maximum loop iterations, which is 32 in

this case.2 For that reason, a more direct construct is sought, one that involves less inference

than the decreasing clause.

1The decreasing clause can be constructed from the variable i using a model field and assigning to it the
formula Math.round(Math.log(i)/Math.log(2)).

2A better specification statement is to use the formula in the previous footnote.
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1 public class exDecreasing {

2

3 /*@ public normal_behavior

4 @ requires i>=0;

5 @*/

6 public static int countbits(int i) {

7 int res = 0;

8 //@ decreasing i;

9 while(i>0){

10 i=i/2;

11 res++;

12 }

13 return res;

14 }

15 public static void main(String args []){

16 System.out.println(countbits (2136));

17 }

18 }

Figure 2.3: Using the decreasing loop variant function to annotate a method that calculate

the number of bits in an integer
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CHAPTER 3
SAFEJML DESIGN AND IMPLEMENTATION

In this chapter1, I introduce my approach for the design and implementation of the

SafeJML Specification Language for SCJ programs. This approach solves the problem of

improving modular specification and verification tools for real-time and SCJ programs that

are composed of Java and low-level system code.

The proposed approach consists of three parts. The first part focus on the overall

system architecture, while the second part focuses on the design and development of the

SafeJML specification language. The third part discusses the design and implementation

of a runtime assertion checker that utilizes SafeJML to check specifications at runtime.

Chapter 4 is a continuation to this chapter. It is focused on solving the problem of timing

constraints and behavioral subtyping.

3.1 Overall System Architecture

Several architectural decisions were made in order to be able to solve the problem

that was identified in Chapter 1. The first decision was to extend an existing specification

1This chapter is based on our paper “The design of SafeJML, a specification language for SCJ with
support for WCET specification” [75].
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language (JML), and augment it with constructs to enable nonbehavioral specifications. The

second decision was to integrate with current state of the art tools and compilers to solve

this problem. Using these tools allowed to focus on the key challenges of the problem and

get good results, without devoting a considerable amount of time to duplicating the effort

that has gone into their development.

Figure 3.1: System Diagram

The overall architecture I propose is shown in Figure 3.1. As shown in the figure, the

analysis process consists of four stages:

SafeJML Compiler The first stage is the SafeJML compiler. The SafeJML compiler is a

SCJ compiler with the ability to process SafeJML specifications. The input for this

stage is the SCJ code that needs to be analyzed along with the SafeJML specifications.

The duration specifications are usually embedded inside the SCJ code itself. Alterna-

tively, the SafeJML compiler, allows for specifications to be stored in separate (.jml)
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files. The output for this stage is the compiled class files (bytecode), which in turn is

the input for the next stage, the Fiji compiler.

FijiVM Compiler During the tool’s second stage, the Fiji compiler compiles the program’s

class files into C code which in turn is compiled into machine code. Then the generated

machine code moves to the third stage, the host microcontroller.

The Host Microcontroller During the tool’s third stage, the program’s code is executed.

This will result in producing execution traces. At the end of the program’s execution,

the analysis flushes the trace information into a trace file. This file will be used later

to execute the verification part of the algorithm.

SafeJML Checker In the tool’s fourth stage, execution traces are processed by the Safe-

JML checker, which also takes the program’s code and specifications as an input. This

stage analyzes the trace files and compares them to the specifications. The output of

this stage contains warnings regarding any potential violation of the specifications. It

uses the compiler output to produce reports of specification violations.

SafeJML was originally designed [75] to be used with both static analysis tools such

as AbsInt’s aiT [21, 22, 23] and dynamic analysis tools such as RapiTime [76] Static anal-

ysis is conservative and sound, which guarantees accuracy but may give less precise results

than dynamic analysis. Dynamic analysis, on the other hand, is more precise, but requires

test cases and provides no guarantees about all possible executions. Ernst has emphasized
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the importance of applying a combination of both static and dynamic analysis [77]. Thus

SafeJML is designed to support both kinds of analysis.

In this work, I focus on dynamic analysis (runtime checking) for timing constraints.

However, when I initially tried to use RapiTime for dynamic analysis, I discovered some

limitations (as of this writing) on the size of C files it can process in a given run. This

limitation caused problems, because of the way the tool compiles SCJ to C code. Compilation

of SCJ code takes place in a SCJ implementation, mainly using the oSCJ [52, 78] or the

Fiji VM [79]. However, both of these VMs produce large C source files2, and that caused

RapiTime to stop functioning.

To overcome the problems with RapiTime, I implemented a simplified analysis tool

that calculates an estimation of the worst case execution times for the specified methods, then

compares the calculated values with the specifications of these methods. This procedure has

enabled us to do simple dynamic checking. This tool is implemented as part of the SafeJML

Runtime Assertion Checker, which is discussed in Section 3.3.1 on page 55.

Since SafeJML can also support static analysis, this work can be extended to develop

static verification tools. However, implementing static analysis is left as future work.

2In a single run of oSCJ, the tool produced a 20MB C code file, which RapiTime tool could not handle.
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3.2 The Design of SafeJML

Earlier in Section 2.5 on page 28, JML was introduced as a behavioral interface

specification language for Java. In this section I focus on extending the JML language by

adding support for timing constraints, which in the original design of JML appears in the

form of the duration clause. This clause is designed to specify the maximum time (i.e., worst

case execution time or WCET) needed to process a method call in a particular specification

case in nanoseconds3.

My design of SafeJML revises the duration clause to make it based on absolute time

units, and adds several other features that enable the use of various tools to check timing

constraints. The rationale for the language design and the initial implementation are also

introduced. This is the first publicly released and documented real-time extension to JML.

3.2.1 An Overview of SafeJML

The SafeJML implementation has been developed as an extension to JAJML4. It is

designed to allow SCJ users to specify both functional and timing behavior on a per-method

basis.

3In order to understand the rest of this chapter, it is recommended to refer to the JML Reference
Manual [17] for more information about JML design and usage.

4Please refer to Section A on page 106 for a detailed discussion on the construction of SafeJML as an
extension to JAJML.
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Specification of timing behavior on a per-method basis allows one to quickly isolate

methods that exceed their time budget, which can speed debugging of (possibly rare) runs

of the tasks that use these methods. The drawback of this feature is that programmers will

have to spend effort dividing the time budget among the methods called in a task, and then

recording this division of the time budget as timing specifications for each method. While

this seems to be contrary to the way that real-time programmers typically work, we note that

such SafeJML specifications can be added to methods in layers (first to the methods called

directly from a task (or mission), and only later to methods called by those methods, if there

is a problem). Furthermore, method timing specifications can also be added after the code

is written and some measurements have been made, with the goal of catching executions

that go over the expected timing budget. Finally, just as with functionality specifications,

timing specifications can serve as contracts, and thus can support division of labor and allow

modular reasoning about timing behavior.

As mentioned in Chapter 1, SCJ was developed as a Java Specification Request (JSR-

302) [46]. SCJ was designed to enable the creation of safety-critical applications built using

a safety-critical Java infrastructure and using safety-critical libraries that are amenable to

certification under DO-178B, Level A [47] and other safety-critical standards. JSR-302 is

near completion now [48]. Refer to Section 2.4 on page 24 for more information about SCJ.
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1 public class TransientDetectorScopeEntry {

2

3 public List createMotions () {

4 final List ret = new LinkedList ();

5 Aircraft craft;

6 /*@ maximum_loop_iterations MAX_PLANES_PER_FRAME; @*/

7 for (int i = 0, pos = 0; i < currentFrame.planeCnt; i++) {

8 // restrict maximum loop iterations

9 // perform some calculations ...

10 /*@ local_worst_case MAX_NEW_PLANES_PER_FRAME; @*/

11 if (old_pos == null) {

12 // new aircraft; calculate more...

13 } else {

14 // old aircraft; other calculations ...

15 }

16 ret.add(m);

17 }

18 return ret;

19 }

20 }

Figure 3.2: The createMotions method from the collision detection benchmark, with Safe-

JML annotations added.

3.2.2 A First SafeJML Example

The first example of SafeJML is taken from MiniCDj and is shown in Figure 3.2. This

example was first shown in Figure 1.1 on page 5.

To improve timing analysis for verification tools that use various annotations to re-

strict loop bounds, and restrict execution times, and prune infeasible paths. SafeJML uses

annotation comments (which look like /*@ ... @*/ or lines starting with //@), like JML’s
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syntax, to specify SCJ programs. For example, in Figure 3.2, line 7 specifies the maximum

number of times the loop may iterate. Line 10 specifies the maximum number of new air-

planes that can be handled in a single frame. This restricts the number of times a new

airplane will appear in a single frame.

Another example of SafeJML is taken from MiniCDj and is shown in Figure 3.3 on

the next page. This example was first shown in Figure 1.2 on page 8. Similarly, lines 6 and

14 specify that the two paths in which these lines are included are mutually exclusive.

A key requirement in the implementation of SafeJML is to compile these annotations

to the corresponding tool annotations to be used later during analysis.

3.2.3 SafeJML Syntax and Semantics

In this section we describe the syntax and semantics of the additions that SafeJML

makes to JML.

3.2.3.1 Contract Clauses

SafeJML, like JML, specifies methods using contracts (“specification cases”) [17]. As

we will discuss below, the clauses in such a contract can also be used to specify the behavior
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of blocks of code. The clauses of particular interest here are the splits-wcet-clause and the

duration-clause, as shown in the grammar below.

simple-spec-body-clause ::= . . . | splits-wcet-clause | duration-clause

1 final class VectorMath {

2

3 public static float theta(Vector3d a) {

4 float x = a.x, y = a.y;

5 if (x == 0) { // tangent undefined for x = 0

6 //@ path xeqzero \exclude xltzero;

7 if (y == 0) throw new ZeroVectorException("undefined");

8 if (y < 0) return (float) (1.5 * Math.PI);

9 return (float) (0.5 * Math.PI);

10 }

11 float t = (float) Math.atan(y / x); // calculate theta

12

13 if (x < 0) {

14 /*@ path xltzero \exclude xeqzero; @*/

15 return (float) Math.PI - t; // adjust quadrant

16 }

17 if (t < 0) t += 2 * Math.PI; // range adjustment [0, 2*pi]

18

19 return t;

20 }

21 }

Figure 3.3: The theta method from the collision detection benchmark, with SafeJML an-

notations added.
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duration-clause ::= duration spec-expression;

spec-expression ::= . . . | interval-expr

interval-expr ::= spec-expression .. spec-expression

Figure 3.4: Syntax of the duration clause.

Duration Annotations for Methods SafeJML, like JML itself [17], has a duration

clause, that is intended for specifying the worst case execution time of a method (or block

of code). The syntax of the duration clause is shown in Figure 3.4.

A spec-expression is an expression without side effects, which may use SafeJML’s

specification-only features. The interval-expressions can be used to specify a minimum, as

well as a maximum, number of nanoseconds that the method’s execution may take. If only

one number is given, it is taken as the maximum number of nanoseconds allowed (this is

equivalent to having the minimum number as 0).

The semantics of SafeJML’s duration clause is based on the work of Krone et al.

[19, 80]. Its minimum and maximum allowed for the method’s execution time is given

in nanoseconds.5 We assume that the built-in SafeJML package named org.jmlspecs.lang

5 However, in SafeJML (as in JML) such a specification only applies when the precondition of the
specification case in which it appears is satisfied [17, 16].
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contains definitions of constants such as MS, SEC, etc. to allow expression of timing constraints

in units that are more convenient for the specifier. Figure 3.5 shows these definitions.

The execution time of a method call is the time from the end of parameter evaluation

before the method is called, until the method returns to the caller.

As in JML, SafeJML method specifications can contain multiple specification cases

(separated by the keyword also), each of which specifies the behavior when a certain precon-

dition is met. When the precondition for more than one specification case holds, then each

of the corresponding specification cases must have all their clauses satisfied by the method’s

execution (this is the reason the keyword is “also”) [16]. For the duration clause, this al-

lows the specification of a global worst case execution time (in a specification case with no

precondition or precondition “true”), and more stringent constraints that are governed by

other preconditions.

public static final long SEC = 1000000000;

public static final long MILLISEC = 1000000;

public static final long MICROSEC = 1000;

public static final long NANOSEC = 1;

Figure 3.5: Timing constants defined in org.jmlspecs.lang.DurationConstants
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1 /** This method creates a Vector2d that represents a voxel. */

2 /*@ public behavior

3 @ requires position.x >= 0.0f && position.y >= 0.0f;

4 @ duration 3 * MILLISEC;

5 @ also

6 @ public behavior

7 @ requires position.x < 0.0f ^ position.y < 0.0f;

8 @ duration 4 * MILLISEC;

9 @ also

10 @ public behavior

11 @ requires position.x < 0.0f && position.y < 0.0f;

12 @ duration 5 * MILLISEC;

13 @*/

14 protected void voxelHash(Vector3d position ,

15 Vector2d voxel) {

16 int x_div = (int) (position.x / voxel_size);

17 voxel.x = voxel_size * (x_div);

18 if (position.x < 0.0f) voxel.x -= voxel_size;

19 int y_div = (int) (position.y / voxel_size);

20 voxel.y = voxel_size * (y_div);

21 if (position.y < 0.0f) voxel.y -= voxel_size;

22 }

Figure 3.6: SafeJML method specification example. The method’s specification has 3 speci-

fication cases, which are separated by also.
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Figure 3.6 on the preceding page shows an example for the usage of the duration

clause in multiple behavior specification cases for a method. These specification cases, cover

three different scenarios for x and y in the position object, as distinguished by their requires

clauses. In this example each specification case contains a requires clause and a duration

clause. The duration clause will be used by the tool that is used to perform runtime checking

of timing constraints for the method. This tool can check that the execution time for this

method is no larger than the specified time for each case, given that the method’s actual

arguments satisfy the method’s precondition. The tool also uses these expressions for timing

analysis when this method is called. If at a particular call site it can be shown that the

precondition of one specification case holds, then the corresponding duration clause can be

used as the black-box value for the execution time of that call. (If at a call site one can

only prove that one of several preconditions hold, but not which one, then one must use the

maximum of all the duration clauses in specification cases whose preconditions holds during

checking.)

Context-Dependent Annotations Context dependency can aid the precision of WCET

analysis if different calls of a method will have greatly differing timing behavior. SafeJML

allows splits_wcet annotations on method specifications to specify when a certain tool

should track the context of method calls. The syntax for the splits_wcet clause is as

follows:

splits-wcet-clause ::= splits_wcet predicate ;
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1 /*@ splits_wcet true; @*/

2 void splitter(int arg1) {

3 /* ... */

4 }

5

6 /*@ splits_wcet arg1 ==3; @*/

7 void splitIf3(int arg1) {

8 /* ... */

9 }

10

11 void method1 () {

12 splitter (1); // context -dependent analysis

13 splitter (2); // context -dependent analysis

14 splitter (0); // context -dependent analysis

15 splitIf3 (1); // unified analysis

16 splitIf3 (2); // unified analysis

17 splitIf3 (3); // context -dependent analysis

18 }

Figure 3.7: SafeJML example using the splits wcet clause.

The predicate in a splits_wcet clause can refer to any visible6 fields and to the pa-

rameters of the method. The predicate clause instructs the tool whether a context-dependent

static analysis should be used. If the predicate value is true, then the analysis tool must

perform a context-dependent analysis at the place where the method was called.

Figure 3.7 shows how this clause is used in a method specification. In this example,

calls to splitter will be considered a separate analysis path each time this method is called

with a different set of arguments. Calls to method splitIf3 however, are only considered for

6More information about visibility can be found in Section 2.4 of the JML Reference Manual.
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a separate path analysis when the actual argument is 3, since that is the condition specified

in its splits_wcet clause.

If the method splitter has distinct execution paths that depend on the actual ar-

guments, then this clause will provide a tool with enough information to produce tighter

WCET times by treating each execution path that depends on a specific parameter as if it is

a separate method call. In other words, the splits_wcet clause doesn’t ever cause violations

to be recognized as errors. Instead, it provides a hint to the implementation so that it can

produce a tighter WCET analysis.

3.2.3.2 Statement Annotations

SafeJML, like JML [17], allows several annotations to be written where statements

may occur in Java code. Many of SafeJML’s annotations are intended to be directly trans-

lated into inputs for various WCET tools. Three new statement annotations are identified

in this section. These statements are added to the syntax of the jml-annotation-statement

as shown in Figure 3.8.

Loop Maximum Iteration Statements In SafeJML a loop statement body can include

a new annotation statement that specifies the maximum number of iterations of a loop. The

syntax of the SafeJML annotated loop statements maximum_loop_iterations is as follows:

loop-max-iter-stmt ::= maximum_loop_iterations constant-expression ;
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jml-annotation-statement ::= . . . | loop-max-iter-stmt

| local-worst-case-stmt

| path-anchor-stmt

Figure 3.8: SafeJML Annotation Statements.

This annotation statement is used to specify the maximum number of iterations the

loop can have. This annotation has one argument, a constant-expression, which is a pure

(side-effect free) Java expression that can be resolved at compile time, and is of type long.

The expression’s value specifies the maximum number of times that the body of the loop

executes on any invocation, and one less than the number of times the loop test executes.

The example in Figure 3.9 on the following page includes a maximum_loop_iterations

statement. In this example, the constant MAX_ARR_SIZE is used with prior knowledge from

the programmer to bound the loop with an upper limit.

Local Worst Case Statements SafeJML has a new annotation construct for blocks of

code nested inside conditional statements, the local_worst_case statement. This statement

specifies the maximum number of times that a conditionally-guarded block of code can be

executed, in total, during all iterations of the smallest enclosing loop (per activation of that

47



loop). Such a statement must occur nested within a loop and before a conditional statement

(such as an if or switch statement). The syntax of the local_worst_case statement is as

follows:

local-worst-case-stmt ::= local_worst_case constant-expression ;

The local_worst_case statement has one argument, a constant-expression, of type

long. This argument denotes the maximum number of times that all paths on which the

local_worst_case statement appears may execute during a single run of the enclosing loop.

Any greater number of iterations is a violation of the specification. An example of the Local

Worst Case Statement is shown in Figure 3.10 on the next page.

1 //@ public abstract model int MAX_ARR_SIZE = 100;

2

3 public abstract class SumArrayLoop {

4 public static long sumArray(int [] a) {

5 long sum = 0;

6 int i = a.length;

7 /*@ maximum_loop_iterations MAX_ARR_SIZE; @*/

8 while (--i >= 0){

9 sum += a[i];

10 }

11 return sum;

12 }

13 }

Figure 3.9: SafeJML maximum loop iterations statement annotation.
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1 count = 0;

2 //@ maximum_loop_iterations 100;

3 for(i=0; i < limit; i++)

4 {

5 //@ local_worst_case 50;

6 if(buffer[i] == ’*’)

7 {

8 count ++;

9 //@ local_worst_case 1;

10 if(count >= 50)

11 {

12 /* ... */

13 }

14 }

15 }

Figure 3.10: SafeJML local worst case statement annotations.

In this example, the body of the outer if-statement may execute at most 50 times

(during each activation of the enclosing loop), and the inner if-statement may execute at

most one time during the entire loop execution.

Path Annotations SafeJML supports the concept of specification of paths7, and in par-

ticular which paths exclude which other paths.

Path annotations are based on the concepts of path names and path groups. A path

name is an identifier that is declared to be associated with each path that includes the

7A path is a possible execution sequence in a program.
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enclosing block. A path group is a collection of path names. Path groups are used to specify

sets of execution paths.

Figure 3.11 shows the syntax for the path-anchor-stmt, which is used to declare path

names and path groups. The keyword path is used to declare a path in the annotated code,

and path-name identifier gives a name for this path. The keywords \in and \exclude are

optional keywords that are used to include or exclude the declared path from a path group.

To declare a new path group, a new name has to appear in the \in clause of the

path-anchor-stmt statement. If the \in clause is not used, then the path group for that path

is just the singleton group, whose name is the same as the path’s path-name.

The main purpose for introducing path groups is to be able to optimize a WCET

analysis by reducing the number of paths to be analyzed, and improve its precision by

explicitly describing infeasible paths.

path-anchor-stmt ::= path path-name [ \in path-group-name ]

[ \exclude path-group-name ] ;

path-name ::= ident | \default

path-group-name ::= path-name

Figure 3.11: Syntax for Path Annotations.
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The path name \default, which is always in scope, is used to represent the default

execution path of the code. Excluding a path from the \default path is useful when that

path conforms to a special mode of operation that will never be used (in the system being

built or as it will be deployed), or when the path should not be considered as part of the

normal behavior of the system.

Figure 3.12 on the following page shows the usage of path names and path groups.

Note that in line 4, we give the path inside the if statement a name, char_found, to indicate

that this path will be executed only if the search method has a hit on the searched character.

Similarly, in line 9, we specify a new path, char_found2, and we specify that this path is

part of the implicit path group generated earlier, char_found. This technique urges the

verification tool to consider those two paths as one, hopefully reducing analysis time. Thus,

the path statement, just like splits_wcet statement, will not cause any error to be raised

during the analysis, instead, it provides a hint to the implementation so that it can produce

a tighter WCET analysis.

In line 13, we annotate a new path, and we exclude it from the original group that was

implicitly declared earlier. This means that this path, char_not_found cannot be executed

along with the previous two paths declared as part of the group char_found. This reduces

the number of feasible paths to consider from 8 to 2. Thus less time and memory should be

required to perform the analysis.
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1 void search( int limit ) {

2 /* ... */

3 if(count != 0){

4 //@ path char_found \exclude char_not_found;

5 /* ... */

6 }

7 /* ... */

8 if (count !=0 ){

9 /*@ path char_found2 \in char_found; @*/

10 /* ... */

11 }

12 if (count == 0){

13 /*@ path char_not_found \exclude char_found; @*/

14 /* ... */

15 }

16 if (limit == 101){

17 /*@ path path_not_reachable \exclude \default; @*/

18 /* ... */

19 }

20 }

Figure 3.12: SafeJML path annotations used with if statements.
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refining-statement ::= refining spec-statement statement

| refining generic-spec-statement-case statement

generic-spec-statement-case ::= . . . | simple-spec-statement-body

simple-spec-statement-body ::=

simple-spec-statement-clause simple-spec-statement-clause

Figure 3.13: Syntax of Refining Statement From JML Reference Manual.

The last part of the example is line 17, which indicates that this part of the code is

not reachable (at least in normal operation), hence, should be excluded from the analysis8.

3.2.3.3 Duration Annotations for Blocks

As in JML, duration clauses, like other method specification contract clauses, can

be applied to a block of code using the refining statement. The syntax for the refining

statement [17, 81] is shown in Figure 3.13.

8JML has a statement unreachable; which is an annotation that asserts that the control flow will never
reach that point in the program[17, Section 13.4.4]. The semantics of \exclude \default are similar, as
the later is just a hint for the analysis.
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1 //@ refining

2 //@ duration 3 * MILLISEC;

3 { m(); }

Figure 3.14: The Usage of the Refining Statement.

The meaning of a statement refining S C is that the code C has to satisfy the

specification S. For example, the code shown in Figure 3.14 says that the call to m may take

at most 3 milliseconds to execute.

The use of such refining statements can help both designers and verification tools.

Designers can use refining statements with duration clauses to allocate a method’s time

budget to individual blocks of code. Verification tools can also use refining statements that

specify durations to better pinpoint timing errors. Verification tools can also use refining

statements as context-sensitive specifications of the time that particular blocks of code may

take. This can be useful when calling methods that do not have SafeJML specifications.

3.2.3.4 Error reporting

For statement annotations like the loop-max-iter-stmt and the local-worst-case-stmt,

the JAJML compiler for SafeJML reports the violation to the user by throwing an error

(a subtype of JMLAssertionError) as soon as such a violation is detected. However, for
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other constructs (like the duration-clause) a timing violation can only be flagged at program

termination because their semantics under SafeJML allows them to be evaluated off-line by

a tool after the program is run.

3.3 Design of the SafeJML Runtime Assertion Checker

To complete the system design, this section discusses the implementation of the run-

time assertion checker.9 It is not intended to provide a full implementation of the runtime

assertion checker for SafeJML features in this chapter. Instead, Section 3.3.1 shows the

implementation of the duration runtime checker.

3.3.1 The Design of the Duration Checker

Refer to the overall system architecture shown in Figure 3.1 on page 33. As discussed

earlier in Section 3.1, The analysis process consists of four stages. During the first stage

of the analysis process, the SafeJML compiler invokes transformation algorithms on the

Abstract Syntax Tree (AST) of the source code. This results in code transformations to the

methods annotated with the duration clause. The algorithm used for annotated methods

transformation is shown in Figure 3.15 on the next page.

9A wiki page for SafeJML is provided at http://tinyurl.com/28zllux. The page contains documenta-
tion on how to build and test SafeJML.
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1 TransformMethod( md:MethodDecl , mb:MethodBody )

2 lst := new code block

3 if methodID of md exists

4 methodID := md.getMethodID ()

5 else

6 methodID := md.createMethodID ()

7 specCases := new List()

8 durationCheckConditions := new List()

9 for each specCase in md.getTypeHierarchy.getSpecCases ()

10 durationMin := specCase.durClause.getMinExpression ()

11 durationMax := specCase.durClause.getMaxExpression ()

12 requiresClause := specCase.getPrecondition ()

13 durationCheckConditions.add(requiresClause , durationMin ,

durationMax)

14 durationCheckerMethod := createMethod(durationCheckConditions)

15 md.hostType.addMethod(durationCheckerMethod)

16 startTimer := new statement ("CheckDurationData", "enter",

methodID , "NanoClock.getCurrentTime ()")

17 endTimer := new statement ("CheckDurationData", "exit", methodID ,

"NanoClock.getCurrentTime ()")

18 newMethodBody := createMethodWrapper(md, mb)

19 lst.add(createMethodCall(durationCheckerMethod))

20 lst.add(startTimer)

21 lst.add(newMethodBody)

22 lst.add(endTimer)

23 md.setMethodBody(lst)

Figure 3.15: Transformation Algorithm for Annotated Methods.
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This algorithm transforms the duration clause for the method of interest or that is

defined in a supertype with an implementation of that method. Cheon and Leavens [82]

discussed the implementation of a runtime assertion checker for JML and its complications.

They described two major problems associated with implementing specifications inheritance.

The first problem is the inability of a subtype’s assertion checking method to determine the

existence of a corresponding specification in its supertypes. This is due to the fact that

supertypes can be precompiled. To solve this problem, we require that all duration clauses

in supertypes must be compiled using the SafeJML compiler during analysis.

The second problem is the potential for infinite loops if assertions are checked during

assertion checking, as noted by Meyer [53]. Therefore, if a method is called during assertion

checking of another method, and the called method has its own specification, then these

checks are not performed, in order to avoid potential infinite checking loops where checking

the second method’s specification might call the first method. Similarly, duration analysis

will not be performed by SafeJML on the methods called during duration checking of another

method.

During compilation, the method of interest is transformed to perform assertion checks

for all method specification clauses. The algorithm for transformation of a method’s code

is shown in Figure 3.15 on the preceding page. This algorithm is based on Cheon’s ap-

proach [82]. It was first implemented in the original implementation of the JML RAC, and

was reimplemented in the JAJML RAC tool to implement method specification checks. The

algorithm is altered to include duration checking analysis for the SafeJML RAC. The algo-
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rithm starts by checking if a method ID was created for that method as a model field; if

this is true, then that method ID is retrieved and used to mark the duration records that

will be saved later. If no method ID was found, then the algorithm creates a new method

ID in a model field. Then the algorithm desugars all specification cases in the method of

interest and all other specification cases in its type hierarchy. These specifications are used

to generate assertion check methods for pre and post conditions as well as duration clauses.

The algorithm then injects entry and exit method calls before and after a wrapper method

that contains the original method body. The declarations for these methods are shown in

Figure 3.16.

Figure 3.17 on the following page shows how the example from Figure 3.6 on page 43

is transformed using the SafeJML RAC compiler. Figure 3.18 on page 60 shows the duration

checker method that allows the duration checker to decide whether a duration clause must

be checked based on the precondition of a specific specification case.

void CheckDurationData.enter(int mID, long ts);

void CheckDurationData.exit(int mID, long ts);

Figure 3.16: Declaration for enter and exit Methods Injected by the SafeJML Compiler for

SafeJML Annotated Methods.
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1 //@ requires position.x >= 0.0F && position.y >= 0.0F;

2 //@ duration 0 .. 3000000; public

3 //@ requires position.x < 0.0F ^ position.y < 0.0F;

4 //@ duration 0 .. 4000000; public

5 //@ requires position.x < 0.0F && position.y < 0.0F;

6 //@ duration 0 .. 5000000; public

7 protected void voxelHash(Vector3d position , Vector2d voxel) {

8 checkPre$voxelHash$Reducer(position , voxel);

9 try {

10 updateDurLimits$voxelHash$Reducer ();

11 this.chkdur$.addEntryRecord(cdx.Reducer.m$1 , NanoClock.now());

12 internal$voxelHash(position , voxel);

13 this.chkdur$.addExitRecord(cdx.Reducer.m$1 , NanoClock.now());

14 }

15 catch (org.jmlspecs.jmlrac.runtime.JMLEntryPreconditionError

rac$e) {

16 throw new

org.jmlspecs.jmlrac.runtime.JMLInternalPreconditionError(rac$e);

17 }

18 catch

(org.jmlspecs.jmlrac.runtime.JMLExitNormalPostconditionError

rac$e) {

19 throw new org.jmlspecs.jmlrac.runtime.

20 JMLInternalNormalPostconditionError(rac$e);

21 }

22 catch

(org.jmlspecs.jmlrac.runtime.JMLExitExceptionalPostconditionError

rac$e) {

23 throw new org.jmlspecs.jmlrac.runtime.

24 JMLInternalExceptionalPostconditionError(rac$e);

25 }

26 catch (org.jmlspecs.jmlrac.runtime.JMLAssertionError rac$e) {

27 throw rac$e;

28 }

29 }

Figure 3.17: The Method in Figure 3.6 on page 43 Transformed by the SafeJML RAC.
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1 private transient synthetic boolean rac$pre$voxelHash$0;

2 private transient synthetic boolean rac$pre$voxelHash$1;

3 private transient synthetic boolean rac$pre$voxelHash$2;

4 private transient synthetic CheckDurationData chkdur$ =

CheckDurationData.getInstance ();

5 private static final transient synthetic int m$1 = 1;

6 synthetic private void updateDurLimits$voxelHash$Reducer () {

7 this.chkdur$.EnterNewRecord(cdx.Reducer.m$1);

8 if(this.rac$pre$voxelHash$0)

9 this.chkdur$.populateUpperLowerLimit(cdx.Reducer.m$1 , 0, 0,

3000000);

10 if(this.rac$pre$voxelHash$1)

11 this.chkdur$.populateUpperLowerLimit(cdx.Reducer.m$1 , 1, 0,

4000000);

12 if(this.rac$pre$voxelHash$2)

13 this.chkdur$.populateUpperLowerLimit(cdx.Reducer.m$1 , 2, 0,

5000000);

14 }

Figure 3.18: The duration checker method generated for the transformed method in Fig-

ure 3.17 on the preceding page.
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After transformation, and during execution, the trace methods produce a record which

contains timing information about the method entry and exit. This record consists of the

following fields:

• mID: Represents the method ID. This value is injected by the compiler using a model

field.

• ts: This is the time at which the entry and exit methods are executed, and thus

represents the entry and exit timestamps of the method.

• durMin: This value is only recorded in the exit record, it holds the value of the minimum

specified value in the duration clause.

• durMax: This value is only recorded in the exit record, it holds the value of the maximum

specified value in the duration clause.

Several implementations of these methods for collecting traces are supported by the

SafeJML tool. For example, if the code is going to be simulated on a PC, the programmer

then will choose to collect traces in the PC’s memory, and then dump these traces in files to

be analyzed later. Similarly, if the programmer is running the trace collection algorithm on

the host hardware, the traces can be directed into a serial port and then collected on different

hardware. The net result will be a trace file to be used in the next step of the process. Both

of these methods are supported by the implementation. Furthermore, a collection of “static

native” trace handlers are available in FijiVM, which gives one the freedom to change the

trace collection implementation as desired.
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This approach has a problem when a method does not terminate normally. For

example, if an exception is raised during a method execution, then there is no guarantee

that the trace will be generated. This will cause the analysis to fail or produce inaccurate

results. I presently sidestep this issue and effectively require that all methods (on which the

tool performs duration analysis) terminate normally. In particular, this means that every

exception must be caught and handled within the method itself. In the future I plan to

overcome the problem of exceptional termination by using Java’s try-finally statements to

capture the exit trace of the method. However, due to an incompatibility issue with the

byte code produced by SafeJML and the Fiji compiler, I could not currently implement

this approach. Another approach is to start a timer in a separate thread to protect against

infinite loops, and have that thread throw an exception when the method takes longer than

specified. The evaluation and implementation of either of the aforementioned approaches is

left for future work.

During the third stage of the analysis, the code is executed. This will cause the analy-

sis to be performed and will result in producing execution traces. As some real-time systems

are designed to run as infinite loops, there has to be a termination point for the purposes of

the analysis. At the end of the execution, the analysis flushes the trace information into a

trace file. This file will be used later to execute the checking part of the algorithm.

At the fourth stage of the analysis, the execution traces are processed by the SafeJML

checker. In addition to the duration information, execution traces contain information about

preconditions. This stage analyzes the trace files and compares them to specifications. The
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output of this stage is a report of all violations of the duration specifications. The SafeJML

checker stage checks execution traces against the specifications in the program by calculating

differences in timestamps between the entry and exit traces of each method call. This

happens only if the precondition at that specific instance of execution is true.

3.3.2 Discussion

The approach described in this section to develop a runtime assertion checker for

duration annotations introduces a practical problem. This problem is realized by the extra

processing required during execution time to be able to collect all needed information for

the checker to be able to do its job correctly. This is the case as the duration expression

calculation requires information that is available only at runtime. Clearly, evaluating these

methods at execution time is a process that takes time, and will affect the overall timing

analysis of the program. This is true if two nested method calls are being analyzed simul-

taneously. A practical and precise solution remains an open topic for research and future

work.

3.4 Related Work

Many researchers have worked on the problem of WCET analysis. One early work

in this area is Shaw’s book [83]. Shaw introduces a method for precise analysis using path
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expressions to perform measurements. Shaw does not consider subtyping. Furthermore, this

analysis is not modular, since it does not use specifications.

Schoeberl and Pedersen [84] describe a precise WCET static analysis for Java systems

based on the Java Optimized Processor (JOP). Like Shaw’s analysis, it is a whole program

static analysis; however Schoeberl’s analysis is path insensitive. Also like Shaw’s analysis,

the tool uses integer linear programming to find WCET solutions from Java bytecode. Java

bytecodes for the JOP are predictable due to JOP’s design, which supports predictable

timing behavior by design. Since it is a whole program analyzer, Schoeberl’s tool is not

modular. Furthermore, it only handles subtype polymorphism by taking the worst case over

all possible method calls. SafeJML allows the use of supertype abstraction to handle subtype

polymorphism, as will be shown in the next chapter.

Formal verification of timing specifications is also introduced in Hehner’s work [85].

Hehner used refinement calculus to formalize the verification of timing specifications, but he

does not discuss OO issues such as subtyping.

The design and implementation of the duration clause in SafeJML (and in JML) is

based on the work of Krone et al. [19, 80].

Much of SafeJML’s design is built to accommodate the RapiTime tool [86, 76], a

hybrid analysis tool used to perform hybrid WCET analysis for C programs. The heavy

influence of RapiTime on SafeJML largely results from our desire to translate SafeJML into

RapiTime’s input language. However, RapiTime does not in itself deal with SCJ, nor does it
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have facilities for specification of functional behavior. SafeJML, since it builds on JML, has

extensive facilities for specification of functional behavior (which we have largely ignored in

this chapter). Such specification facilities may be quite useful for safety-critical systems.

Gustafsson et al. [87] suggest using abstract interpretation to aid WCET analysis.

They introduced their idea first in their previous work [88]. They introduce a tool called

SWEET, which uses abstract execution to automatically derive loop bounds and infeasible

paths from C programs. SWEET is integrated with a compiler and performs its analysis

on the intermediate representation of the compiler, which makes its usage limited to code

compiled using that compiler. Such automatic derivation of annotations reduces manual

intervention and thus makes the analysis process easier, less error prone and more accurate.

SafeJML could benefit from abstract execution to reduce the need for many of the anno-

tations that are designed to help RapiTime. However, SWEET itself does not treat SCJ

programs and since it is a whole-program analysis, is not modular.

Hu et al. [89] present a static timing analysis approach for hard real-time systems

based on RTSJ. They introduced XRTJ (Extended Real-Time Java), an architecture based

on RTSJ to implement static timing analysis in a portable code context. Their work can

be merged with other approaches such as model checking. Their approach uses annotations

similar to JML annotations to inject properties that can be checked at development time.

They also implement WCET analysis based on these annotations. However, this work is

tightly integrated with RTSJ and therefore does not apply to SCJ programs.
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In the Extended Static Checker for Java (ESC/Java), Flanagan et al. [69] use the JML

assume statement to warn about infeasible paths. Essentially, the statement annotation //@

assume false; mean that the current path is infeasible, and the tool will give a warning if this

statement can be reached. However, JML and the ESC/Java tool do not provide full support

for path names and path groups as addressed in Section 3.2.3.2 on page 49. Features like

the one provided in SafeJML provide full control over path analysis and therefore is better

for users.

66



CHAPTER 4
SUBTYPING AND WCET ANALYSIS

In this chapter1, a novel approach to use SafeJML to specify subtypes in SCJ programs

is introduced. This approach solves the problem of modular subtype specifications for SCJ

programs.

Recall that SCJ allows for subtype polymorphism, also known as dynamic dispatch,

which determines the code to run for a method call such as o.m(x) based on the dynamic

class of the receiver object, o. But due to the problems with reasoning about subtype

polymorphism that was described in Section 1.1.2, some researchers in real-time systems

suggest that this feature should be disallowed [25]. However, in this section, a solution to

these reasoning problems is introduced by using standard techniques for modular reasoning in

the presence of subtype polymorphism, and how these techniques can be applied to reasoning

about timing constraints in SCJ programs. Allowing the use of subtype polymorphism should

also have benefits in terms of programmer efficiency and ease of maintenance, since it allows

code reuse [90] and the use of object-oriented design patterns.

A standard methodology for modular reasoning in the presence of subtype polymor-

phism, called supertype abstraction [16, 28], is to use the static types of each call’s receiver to

1This chapter is based on our paper “Specifying Subtypes in SCJ Programs” [24].
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find the specifications for reasoning about the effect of a method call. For method calls, su-

pertype abstraction says that to verify {P}o.m();{Q} (that starting in a state that satisfies

property P , the call o.m() necessarily achieves a state that satisfies Q) one uses the speci-

fication of m associated with the static type of o. (In particular, one checks that P implies

the precondition specified for m in the static type of o, and that this method’s postcondition

implies Q.)

Soundness of supertype abstraction requires types to be behavioral subtypes of their

supertypes [27]. If S is a subtype of T , then S is a behavioral subtype of T only if all

overriding methods in S obey their specification in T [91, 92, 16, 26, 27, 28, 93].

However, applying behavioral subtyping to timing constraints poses a practical prob-

lem for timing constraints. This problem arises because methods in a subtype are often

required to do more elaborate information processing than the methods they override in

their supertype(s). This often occurs because a subtype’s instances may contain more infor-

mation than those of its supertypes. For example, consider again the type Vector2d and its

subtype Vector3d. Since the scale method of Vector2d has a very tight timing constraint,

which permits just enough time for a reasonable implementation, that specification does not

allow enough time to perform the calculations needed in a Vector3d object.2

As explained in Section 1.1.2, one can try to avoid such problems by either not over-

riding methods, or by underspecification. Those ways of avoiding the problem are orthogonal

2 If one thinks about subtypes that are for higher dimensional vector spaces in general, then one realizes
the truly fundamental nature of this specification problem.
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to SafeJML; that is, SafeJML’s analysis will still work correctly if these techniques are used.

However, because these approaches either give up on method overriding or use imprecise

specifications, they either give up some of the flexibility of OO programming or result in an

imprecise analysis.

4.1 A Solution for Subtyping

The key to solving this problem is to recognize that the problem lies in seeking an

a priori fixed limit on the method’s time bound. That is, timing constraints for methods

cannot simply be constants. This is not a new observation, as others have already noted

that timing constraints in general must depend on data such as arguments to a method

[94, 19, 80]. As the examples shown previously illustrate, the runtime type (i.e., class) of a

method’s receiver object is also data that is input to that method. Thus the timing constraint

of a method in general may need to depend on the receiver’s dynamic type.

For runtime checking tools like SafeJML, using this technique requires collecting in-

formation about timing constraints at two stages: first during the compilation of the timing

constraints, and second during execution. SafeJML checks timing constraints after the pro-

gram has finished running, when it analyzes the collected information and compares the

observed execution times to the specified timing constraints.

The insight that the receiver’s dynamic type is input to each method dovetails with an

elegant specification technique first published by Matthew Parkinson [95, 96]. The essence of
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Parkinson’s technique is to write specifications of methods using “abstract predicate families”

[95, p. 78], which can have differing definitions in various types. The value of an abstract

predicate can (and generally does) depend on the runtime type of a method’s receiver. The

SafeJML analog of an abstract predicate family is a non-static pure model method; such

a model method can only be used in specifications, and yet can be overridden in different

types, which allows it to have a different meaning for each subtype. To interpret such model

methods during SafeJML’s checking (which takes place after running the program), SafeJML

must record information about the runtime type of each method’s receiver; this information

allows SafeJML to use the correct model method implementation to interpret a specification.

Consider the example introduced earlier in Figures 1.3 and 1.4 in Section 1.1.2, the

timing constraint for Vector2d’s scale method can be rewritten in JML by introducing a

specification like the following, where scaleTime is a pure model method.

//@ duration scaleTime ();

The meaning of the method scaleTime would change, using overriding, in each concrete

subtype. To reason about the time taken by calls to scale either requires knowledge of

the exact runtime type of the receiver, or some separate specification of how the scaleTime

method depends on the dynamic type of the receiver. This dependency can be captured

in the specification of the scaleTime method for a specific type, which would then apply

to all its subtypes. For example, if one uses Figure 4.1 as the specification for scale and

additionally specifies that the result of scaleTime is no greater than the number of dimen-

sions in that vector object times the time it takes for the platform to compute one floating

70



point multiplication and one floating point assignment, then this specification would have

to be obeyed by all subtypes of the class Vector2d. Thus, one can reason using static type

information (supertype abstraction [28, 16, 27]). However, if one needs more precision, and

if during reasoning one can prove something about the exact dynamic type of a collection,

then one can instead use the specification for a type that is an upper bound on the object’s

exact dynamic type and that type’s scaleTime and getDimensions methods.

How the proposed solution applies to the vector example is shown in Figures 4.1 and

4.2. The pure model methods scaleTime and getDimensions are introduced in Vector2d and

used in the duration specification rewritten for Vector2d and inherited by Vector3d, which

overrides getDimensions.

For runtime checking of timing constraints, it is important that the implementation

consumes minimal (and constant) time. The implementation achieves this by outputting an

execution trace, during the program’s execution, with enough timing information to enable

later check of timing constraints. A similar technique was used to evaluate the performance

of oSCJ implementation [78], and Alan Shaw described a similar technique in his book [83].

When the program is not executing, the tool checks the program’s execution trace and

compares the duration of method calls with those specified for the corresponding method.

The novel feature of this implementation is that execution traces are designed to

contain enough information about the program’s state to enable checking duration clauses

that use abstract predicates (model methods), which depend on the dynamic type of the

receiver.
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1 public class Vector2d {

2 //@ public model JMLDataGroup dims;

3 protected /*@ spec_public @*/ float x, y; //@ in dims;

4

5 /*@ public normal_behavior

6 @ requires !Float.isNaN(factor);

7 @ assignable dims;

8 @ ensures x == \old(x) * factor && y == \old(y) * factor;

9 @ duration scaleTime ();

10 @*/

11 public void scale(float factor) {

12 this.x *= factor;

13 this.y *= factor;

14 }

15

16 /*@

17 public pure model long scaleTime () {

18 return this.getDimensions ()

19 * (ITimeConstants.MultiplyTime +

ITimeConstants.AssignTime);

20 }

21 @*/

22

23 /*@ ensures \result >= 2;

24 public pure model int getDimensions () {

25 return 2;

26 }

27 @*/

28 }

Figure 4.1: Specifications for Vector2d, modified from those in Figure 1.3 to use the proposed

approach with model methods (following Parkinson et al.).
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1 public class Vector3d extends Vector2d {

2

3 protected /*@ spec_public @*/ float z; //@ in dims;

4

5 /*@ also

6 @ public normal_behavior

7 @ requires !Float.isNaN(factor);

8 @ assignable dims;

9 @ ensures z == \old(z) * factor;

10 @*/

11 public void scale(float factor) {

12 super.scale(factor);

13 this.z *= factor;

14 }

15

16 /*@

17 public pure model int getDimensions () {

18 return 3;

19 }

20 @*/

21 }

Figure 4.2: Specifications for Vector3d, modified from those in Figure 1.4 to use the proposed

approach.
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For this to happen, the algorithm introduced in Section 3.3.1 on page 55 is extended

to collect information about methods overridden is subtypes and are included in the duration

analysis. This is done by extending the trace record introduced earlier to support collecting

information about such methods. This is realized by adding a new field to the record,

classDynamicType, which represents the receiver’s dynamic type. This value is tracked by a

variable injected by the compiler.

This extension makes the compiler aware of the overridden methods in subtypes.

This enables the checker to check the duration clause depending on the dynamic type of the

receiver.

4.2 Analyzing Subtypes in SCJ using SafeJML

As introduced in Section 2.4, SCJ specifications introduce the concept of release

parameters that are meant to provide an estimate of the WCET time needed to execute

a schedulable object. In this section, the relationship between SafeJML specifications and

the SCJ release parameters mechanism is introduced using an example.3 This example is

inspired by one of the SCJ examples that ships with the FijiVM implementation. The

connection to the SCJ release parameter mechanism can be seen in the mission class, shown

in Figure 4.3 on the next page. The mission class ListHandlerMission initiates two list

handler objects: one of type ListHandler (shown in Figure 4.4 on page 76) and the other of

3More information about SCJ release parameters can be found in Section 2.4 and detailed discussion can
be found in the SCJ Specifications [46].
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type SortedListHandler (shown in Figure 4.5 on page 77). Both of these handler types are

subtypes of PeriodicEventHandler.

1 @SCJAllowed(members=true , value=LEVEL_2)

2 public class ListHandlerMission extends Mission {

3 private static final int MISSION_MEMORY_SIZE = 10000;

4 public void initialize () {

5 ManagedMemory.getCurrentManagedMemory ()

6 .resize(MISSION_MEMORY_SIZE);

7 (new ListHandler("lsthndlr",

8 new RelativeTime (0, 0),

9 new RelativeTime (0.5 * ITimeConstants.ObjectSwapTime ,

0)))

10 .register ();

11 (new SortedListHandler("srtlsthndlr",

12 new RelativeTime (0, 0),

13 new RelativeTime(ITimeConstants.ObjectSwapTime

14 * n * (Math.log(n), 0))).register ();

15 }

16 }

Figure 4.3: Mission class that uses ListHandler and SortedListHandler objects.

SafeJML and SCJ’s specification’s are incompatible at the level of periodic event

handlers. First, it is required for any type that extends PeriodicEventHandler to have its

release parameters defined. Adding SafeJML specifications to such SCJ release parameter

specifications would result in duplication of specification of timing constraints, which would

potentially cause maintenance problems. Second, because of that potential duplication of

specifications and checks, if one were to use SafeJML to specify timing constraints at the

periodic event handler level, then any missed deadlines would be noted twice: once by the
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SCJ miss handler and once by the SafeJML checker. Thus, we recommend that SafeJML not

be used to specify the handleAsyncEvent method, instead, SafeJML can be used to specify

more detailed timing constraints.

The ability of SafeJML to specify timing constraints at more detailed levels, including

individual methods, is illustrated by our specifications for the two types of lists in this

example. Figure 4.6 on page 78 declares a type UnsortedList that inverts a list when the

method process() is called. It is used by the handler type ListHandler.

1 public class ListHandler extends PeriodicEventHandler {

2

3 static final int priority = 13, mSize = 10000;

4 protected /*@ spec_public @*/ UnsortedList list;

5 // ...

6

7 public ListHandler(String hdlName ,

8 RelativeTime startTime ,

9 RelativeTime period) {

10 super(new PriorityParameters(priority),

11 new PeriodicParameters(startTime , period),

12 new StorageParameters(mSize , mSize , mSize));

13 list = new UnsortedList ();

14 }

15 // ...

16 public void handleAsyncEvent () {

17 // ...

18 list.process ();

19 // ...

20 }

21 // ...

22 }

Figure 4.4: Timing constraint specifications for ListHandler using SCJ method.

76



1 public class SortedListHandler extends PeriodicEventHandler {

2

3 static final int priority = 13, mSize = 10000;

4 protected /*@ spec_public @*/ SortedList list;

5 // ...

6 public ListHandler(String hdlName ,

7 RelativeTime startTime ,

8 RelativeTime period) {

9 super(new PriorityParameters(priority),

10 new PeriodicParameters(startTime , period),

11 new StorageParameters(mSize , mSize , mSize));

12 list = new SortedList ();

13 }

14 // ...

15 public void handleAsyncEvent () {

16 // ...

17 list.process ();

18 // ...

19 }

20 // ...

21 }

Figure 4.5: Timing constraint specifications for SortedListHandler using SCJ method.
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1 public class UnsortedList{

2 // ...

3 protected /*@ spec_public @*/ List list;

4 // ...

5

6 /*@ public normal_behavior

7 @ requires list != null;

8 @ ensures list.size() == \old(list.size());

9 @ duration processTime ();

10 @*/

11 public void process () {

12 // ...

13 list.invert ();

14 // ...

15 }

16 /*@

17 public pure model long processTime () {

18 return (long) (0.5 * ITimeConstants.ObjectSwapTime);

19 }

20 @*/

21 // ...

22 }

Figure 4.6: Specifications for UnsortedList.

In Figure 4.7 on the next page, we introduce another type, SortedList, which is a

subtype of UnsortedList. This is used by the handler type SortedListHandler. When

SortedList’s method process() is called, the SortedList object sorts the list instead of

inverting it.

The specifications for both types in Figure 4.6 and Figure 4.7 on the next page show

how SafeJML’s methodology can be used to specify timing constraints. For the subtype

SortedList, since it is a behavioral subtype of its supertype UnsortedList, specifications

78



from both types must be satisfied. However, following our proposed approach, the duration

clause is only specified in the supertype, and only the pure model method, processTime,

used by the duration clause, is overridden in the subtype in order for the duration clause to

be satisfied.

1 public class SortedList extends UnsortedList {

2 //@ public model instance int n;

3 //@ public initially n == 0;

4 //@ public invariant n >= 0;

5 //@ protected represents n = list.size();

6

7 /*@ also

8 @ public normal_behavior

9 @ requires n >= 1;

10 @ ensures list.isSorted ();

11 @*/

12 public void process () {

13 // ...

14 list.sort();

15 // ...

16 }

17 /*@

18 public pure model long processTime () {

19 return (long)(ITimeConstants.ObjectSwapTime * n *

Math.log(n));

20 }

21 @*/

22 // ...

23 }

Figure 4.7: Specifications for SortedList, a subtype of UnsortedList.
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4.3 Related Work on Subtyping

We know of no other solutions to the problem of subtyping for timing specification

and verification.

Our solution for the subtyping problem was inspired by the work of Parkinson and

his coauthors [96, 95]. In his work, Parkinson introduced the concept of abstract predicate

families, which allow specifications to vary based on the runtime class of a method’s receiver.

The use of abstract predicate families allows subclasses to have what seem like strikingly

different behaviors, and allows for “reuse subtypes” that exploit inheritance even though

they have what may seem like somewhat different functional behavior. A major difference

between SafeJML’s model methods and abstract predicate families is that model methods

cannot be used to enforce permissions and do not by themselves enforce data abstraction. In

Parkinson’s work, inherited methods must be reverified in each subtype, unless the abstract

predicate families used in the specification of a method are constrained by a reflexive and

transitive relation [96, Section 6.5] with certain properties. One kind of relation that works

is when abstract predicate family definitions are unchanged in a subtype, and another is

that subtype’s definitions are proper extensions. Although Parkinson and his coauthors do

not extend their work to timing specifications, it seems that the idea of proper extensions

would not normally apply to timing constraints, since, as we have argued, subtype methods

often need more time to do their work than the methods they override. It is unclear whether

the formal framework of abstract predicate families would work with our examples. Indeed,

80



Parkinson leaves the problem of static reasoning with abstract predicate families largely

open.

Schoeberl and Pedersen [84] describe a precise WCET for Java Systems based on

the Java Optimized Processor (JOP). This is also a whole-program static analysis, which

makes it non-modular. This analysis hides the problem of subtyping because it depends on

the duration for execution of byte codes, which requires prior knowledge about each type at

compile time.

The SARTS [97] tool implements a model-based schedulability analysis of SCJ sys-

tems. The tool automatically translates SCJ code implemented based on JOP, into an

abstract time-preserving UPPAAL model, and then performs WCET verification using the

UPPAAL model checker. SARTS is a static analysis tool, which makes it precise, but at the

cost of analysis time. On the other hand, in SARTS, the level of accuracy can be adjusted to

limit state space and verification time. (The size of the state space that SARTS can handle

is limited by the capacity of the UPPAAL model checker’s implementation [97, Section 7].)

SARTS is also limited to specific hardware, namely the FPGA implementation of JOP [98].

Hu et al. [99] addressed dynamic dispatching in object-oriented and hard real-time

systems. Their work was based on the XTRJ architecture [100]. This work utilizes annota-

tions first introduced in the XTRJ architecture to perform WCET analysis for subtypes and

dynamically-dispatched methods. However, handling dynamic dispatching is performed by

assuming that the caller has enough information about each call’s receiver exact type.
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CHAPTER 5
SYSTEM EVALUATION

This chapter presents the evaluation of SafeJML based on the four requirements

identified in Chapter 1. These are expressiveness, precision, direct feedback, and developer

efficiency. The programs used in this evaluation are based on examples from the FijiVM

distribution.

5.1 Experiment Setup

The main example from FijiVM distribution that was used in this chapter is the

CDx [20] benchmark. The CD (Collision Detector) benchmark suite is an open source appli-

cation that implements an aircraft collision detection algorithm with simulated data. The

benchmark comes in different flavors to support different hardware and software platforms.

One flavor is a C-based implementation, which was originally developed as part of this dis-

sertation to evaluate RapiTime[76]. For the purpose of this evaluation, a different flavor of

the CDx was used; minicdx [78], which is provided as an example in the FijiVM distribution

of the oSCJ implementation.
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The minicdx example implements one periodic task; the collision detector task. This

task runs on a pregenerated set of frames that describe a number of planes and their 3D

coordinates in space. The task then works on detecting the number of collisions that could

occur in a specific time frame1.

Figure 5.1: Locations for Six Planes used in the experiment

The minicdx algorithm uses a simulator to generate workloads to be able to test

the software. In this experiment, the simulator is set to generate 1000 frames, each has a

preconfigured number of planes, and the simulation is performed at a constant interval of

50ms.

1Algorithm details and test results are available in T. Kalibera [20] paper.
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Figure 5.1 on the preceding page show the locations of six planes in the experiment.

The figures to the left show the X and Y locations of the planes for a subset of the run

(the first 300 frames). Location information is generated using predefined formulae to guar-

antee collision occurrence for testing purposes. In this case, a star formation of the planes

movement guarantees collisions at different intervals.

For the experiments presented in this chapter, a laptop with Intel Core 2 Duo x86

CPU running at 2.4GHz with 4GB of RAM was used. The machine has Ubuntu 11.10 32-bit

Linux installed. A memory-based implementation was used to collect all data points used

for the experiments. While this approach limits the number of data points that can be

collected for analysis, it is considered a more accurate method for analysis if compared to

other methods like disk-based or serial port collection methods. Plsek et al.[78] compared

the performance of the benchmark used in this evaluation; the minicdx and the original

benchmark, CDx, both written in Java. The comparison was performed on both LEON3 and

x86 architectures. The comparison shows strong correlation of execution times between the

two benchmarks in both architectures.

5.2 Evaluating Expressiveness

In order for the duration clause to be useful, the timing analysis resulting from the

use of the duration clause must first be expressive. In this context, expressiveness means that
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SafeJML must be useful for expressing specifications of timing constraints for real safety-

critical and real-time systems.

First step in evaluating expressiveness is to use the duration annotation to annotate

the methods of interest in the project. Eight methods were selected to be annotated and

analyzed. Figure 5.2 shows the call hierarchy for the methods being annotated.

1 TransientDetectorScopeEntry.run()

2 TransientDetectorScopeEntry.createMotions ()

3 Aircraft.getCallsign ()

4 TransientDetectorScopeEntry.lookForCollisions ()

5 TransientDetectorScopeEntry.reduceCollisionSet ()

6 Reducer.performVoxelHashing ()

7 TransientDetectorScopeEntry.determineCollisions ()

8 Motion.findIntersection ()

Figure 5.2: Call hierarchy for the methods annotated in the minicdx project.

As a start, the first method in the hierarchy, TransientDetectorScopeEntry.run(),

was annotated. This is the main method that implements the CD task. The method is

shown in Figure 5.3 on the next page. This method is called from the object of type

TransientDetectorScopeEntry, which is instantiated and called from an object of type

CollisionDetectorHandler, a subtype of PeriodicEventHandler. This is the standard way

to establish a periodic activity, and thus permits the automatic execution of SCJ code2.

2Refer to Section 2.4 on page 24 about SCJ background for more information about the architecture of
SCJ programs.
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1 /*@ public normal_behavior

2 @ requires true;

3 @ assignable reducer ,numberOfCollisions ,

4 @ cdx.ImmortalEntry.detectedCollisions;

5 @ duration Constants.DETECTOR_PERIOD;

6 @*/

7

8 public void run() {

9 final Reducer reducer = new Reducer(voxelSize);

10 int numberOfCollisions = lookForCollisions(reducer ,

createMotions ());

11 if (cdx.ImmortalEntry.recordedRuns <

cdx.ImmortalEntry.maxDetectorRuns) {

12 cdx.ImmortalEntry.detectedCollisions

13 [cdx.ImmortalEntry.recordedRuns] = numberOfCollisions;

14 }

15 }

Figure 5.3: Specifications for the method run() in TransientDetectorScopeEntry, a class

used to implement the collision detector algorithm in minicdx benchmark.

To perform the experiment, I ran the SafeJML tool on the example and analyzed

the resulting duration information. Figure 5.4 on the next page shows a histogram of the

runtime of the aforementioned method in 10 experiments. The results show that all runs

took less than 0.22ms to conclude. This result is far below the specified duration (50ms),

hence, the tool did not report any error for the experiments. Results show that about 96%

of the runs took less than 0.12ms. While this shows that the system did not have any misses,

the results show that about 3.5% of the runs took between 0.14 and 0.16ms. These runs are

the ones that had collisions, hence the extra time spent detecting these collisions. During
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the majority of the runs, the system was not able to detect any potential collisions, so the

collision detection process terminates earlier and takes less time to execute than the specified

time.
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Figure 5.4: Frequency of durations of 20 experiments for the annotated method

To complete the experiment, all the other methods listed in Figure 5.2 on page 85 were

annotated with the duration clause. This experiment revealed two interesting observations

in the implementation.

• None of the annotated methods required specifying a minimum limit for the duration

clause. This observation does not mean that this feature is not useful. Other systems

specifications call for this feature explicitly3. However, the minicdx system did not

3Refer to Section 2.5 on page 28 for more information about the Pacemaker System Specification [74].
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require this feature to be used. To address this issue, the analysis in Section 5.3.3 on

page 99 introduces a hypothetical minimum limit to the methods shown in the analysis

in order to prove the ability of the tool to analyze minimum limits.

• An attempt to run the analysis on a caller and a called method that are both anno-

tated using the duration clause caused the analysis to report a false missed deadline

for the caller method. This behavior is related to the algorithm used in the system

implementation. This is handled currently by warning the user that nested analysis is

taking place.

To further analyze the second observation, I ran the analysis on a three-level nested

call hierarchy of the methods shown in Figure 5.2 on page 85. Three methods were annotated,

TransientDetectorScopeEntry.run(), TransientDetectorScopeEntry.lookForCollisions()

and TransientDetectorScopeEntry.reduceCollisionSet(). The experiment was run three

times, once by annotating the three methods, second by annotating the first and second

methods, and third by annotating the first method only. As mentioned in the second obser-

vation mentioned earlier, this experiment will show the effect of annotating nested methods

in the call hierarchy on the upper-most calling method. Figure 5.5 on the following page

shows the timing analysis for the upper-most method, TransientDetectorScopeEntry.run(),

using a boxplot4. The central line in both boxes represents the median, while the hinges

mark the quartiles and the whiskers are each up to 1.5x the interquartile range (IQR) from

4The boxplot is a statistical graph that displays a five number summary, these are: the sample minimum,
the lower quartile or first quartile, the median, the upper quartile or third quartile and the sample maximum

88



the closer quartile. The results show a clear overhead of using nested analysis. While the

method of interest should take no more than 0.1ms, applying annotations to the methods in

the call hierarchy of this method increased the worst case execution time of this method to

about 0.2ms.

 40

 50

 60

 70

 80

 90

 100

 110

 120

Three Methods Two Methods One Method

Comparison of duration measurements when specifying nested methods in the call hierarchy

Figure 5.5: Comparison of duration clause timings for nested methods in a call hierarchy

One more observation from this evaluation is the fact that there are many outliers

that are present in both experiments. In regression analysis, a data point is called an

“outlier” if it diverges greatly from the overall pattern of data. This is represented in the

figure by the individual points showing above and below the box whiskers. In this case,

the difference in the maximum outlier between the first and the third experiments is about

0.01ms. This can be caused by other processes running on the machine and sharing the same
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hardware resources with the experiment is using. Therefore causing unpredictable delays in

the execution. In fact, running the same experiment on dedicated hardware will eliminate

the aforementioned reasons and result in more accurate measurements.

As shown earlier, by using SafeJML, the problem of timing analysis becomes a feature

in the language and the programmer will no longer have to implement code to measure

durations. Moreover, timing methods and performing duration analysis becomes an easy

task that is supported by the compiler.

The evaluation shows that the programmer can specify duration requirements by

using the duration clause introduced earlier.

5.3 Evaluating the Duration Clause for Methods

In this section, experiments to evaluate the system for precision, direct feedback,

and developer efficiency are presented. The SafeJML Runtime Assertion Checker must be

precise enough to be useful. Precise measurements imply consistent overhead of the tool.

For this reason, this evaluation measures the overhead of using the SafeJML analysis. The

overhead of the measurements describe how imprecise the system is. Or in other words, this

decides whether the SafeJML is “safe” to use or not. In this context, “safe” means that

the analysis will not cause violations in the system in places where there should be be no

violations. Based on measurements, users can determine whether an overhead is acceptable
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as an error margin in their timing analysis, or whether the analysis is considered “safe” for

that program.

SafeJML must also give correct feedback to the programmer. Feedback is related to

violations of timing constraints being related directly to the smallest specified units, that

is the methods (or statements, in the case of refining statements) being specified. The

evaluation shows that the error messages generated by the tool are actually useful for the

user to identify the specific method that is violating timing specifications.

Last, SafeJML must be efficient for developers to use, in the sense that it adds only

a small amount of overhead to the edit-compile cycle of a developer. Efficiency will be

quantified by measuring the overhead of using the system versus using the basic FijiVM

compiler.

5.3.1 Evaluating Precision

Precision is the degree to which repeated measurements under unchanged conditions

show the same results. In this case, the measurement tool is the SafeJML duration runtime

checker, and the measurements are the method duration.

To evaluate the imprecision of the tool, the same method used in Section 5.2 on

page 84 was used. The experiment was modified to measure the overhead of using the

duration clause versus eliminating the duration clause. This was done by manually inserting
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code that will record timestamps to measure the time the tool takes to record the duration

records. The experiment was then executed twice, (again, the experiment executes the

method 1000 times each time it is invoked), once with SafeJML duration analysis enabled,

and another time with the duration analysis disabled. Figure 5.6 shows the comparison

between the two experiments using a boxplot.

 0

 0.05

 0.1

 0.15

 0.2

Experiment 1 Experiment 2

Duration overhead when using SafeJML (Exp 1) vs. no SafeJML (Exp 2)

Figure 5.6: Comparison of duration of a method execution when the duration clause is

used (Experiment 1) vs. not using the duration clause (Experiment 2) for the method

TransientDetectorScopeEntry.run()

The graph shows a clear overhead when using the SafeJML tool to analyze the pro-

gram. Recall that a memory-based approach is used to collect the data points for this

experiment. A closer look at the quartiles of both experiments show some interesting facts.
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The value of the first quartile (Q1) of experiment 1 is about 0.077ms, while the value of

the third quartile (Q3) is about 0.091ms. Q1 represents the 25th percentile of the data

points, while Q3 represents the 75th percentile of the data points. In contrast, Q1 and Q3

for experiment 2 are 0.067ms and 0.081ms respectively. The interquartile range for both

experiments is very close, being 0.014ms and 0.013ms for experiments 1 and 2 respectively.

This means that 50% of the data points are bound in an almost equal interquartile range

for both experiments. This indicates that the method of interest took, in both experiments,

almost the same time to execute, that is if the overhead of the analysis is ignored. This is

desirable as it indicates that the overhead of the analysis is close to being a constant value.

However, the median in experiment 1 is clearly greater than in experiment 2. While the me-

dian in experiment 2 is about 0.070ms, it is around 0.078ms in experiment 1. The difference

between the two medians represents the median overhead for using the SafeJML tool for

timing analysis. However, one should realize that there may be some additional imprecision

in this measurement, although it does indicate that the overhead of using the SafeJML tool

is about 0.008ms. This imprecision would be caused by the measurement tool itself.

Outliers can also be seen in this experiment. In this case, experiment 1 data ex-

tends to reach about 0.216ms at one point, while experiment 2 shows a maximum value

of about 0.180ms. These extremes show a difference in duration measurements in the two

experiments. This difference is an indication of external processes affecting the experimental

setup. However, there is an upper bound to these measurements that the experiment never

exceeded throughout the evaluation period. That is the one mentioned above. Therefore,
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statistical methods similar to the one presented earlier can determine whether it is safe to use

SafeJML duration analysis for a particular program, or whether the analysis is considered

“safe” for that program.

5.3.2 Evaluating Precision for Subtypes

To evaluate the precision of the tool and its ability to analyze duration specifications

of subtypes, we studied the benchmark to find a good candidate type that can be used for

the evaluation. After going through the benchmark, we selected a particular class as a good

candidate to measure the tool’s overhead. The class Motion in the benchmark describes

a motion of an airplane using two 3D vectors that comprise the start and finish locations

of a single airplane at a certain instance of the analysis. The class contains the method

findIntersection, which provides the ability to detect whether two motions will intersect

within a predefined radius. The method implements a complex algorithm that takes into

consideration the speed of each airplane during the analysis, which the reader will recall is

taking place every 50ms.

We believe that the algorithm found in Motion’s findIntersection method is more

complex than necessary, as it does not take into consideration that the sampling rate of the

algorithm is too fast so that any known aircraft cruising at its maximum speed cannot travel

more than about 114 meters (374 feet) during the 50ms sampling rate.5 Given this fact,

5 The X-15 traveled at Mach 6.7, which is about 6629 feet per second, or about 374 feet per 50 ms. The
Boeing 747, at 600 mph maximum speed, can travel around 44 ft in 50 ms.
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we implemented an approximation to the algorithm for calculating collisions. The approx-

imation was implemented as a supertype for the Motion type, named ApproxMotion. Using

this implementation, the programmer can use the approximation algorithm in most cases,

and only needs to use the subtype Motion’s algorithm for more accurate results. We also

annotated the findIntersection method in both types using a duration clause. Figure 5.7

on the next page and Figure 5.8 on page 97 show the two annotated methods.

The experiment was then run three times, at first, the original code Motion.java

was annotated and duration data was collected. The code was then modified such that the

original class became a subtype for the new supertype ApproxMotion.java. The two types

were used to collect data for the second and third experiments, once by using the supertype,

and the second time using the subtype. Duration records were collected and analyzed.

Figure 5.9 on page 98 shows a comparison of the three experiments using a boxplot.

The y axis is the execution duration for each method in microseconds (µs). The graph

shows an almost identical execution duration pattern for the first and last experiment, since

these implement the same algorithm, it is expected for both executions to perform the same.

This result proves that dynamic dispatch has minimal overhead on execution time, as in the

third experiment, we are using a subtype and adding duration annotations in the supertype.

The graph also shows a clear decrease in the method duration when using the introduced

approximation compared to using the original implementation. It also shows that the tool

was precise enough to detect this decrease.
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One more observation from this evaluation is the fact that there are many outliers

that are present in both experiments, as all three experiments extend to reach about 35µs.

This indicates that while the implementation is straightforward, with very limited number

of execution paths, the execution can suffer from inconsistencies in its duration due to its

operating environment. However, these inconsistencies had upper bounds that were below

the specified duration.

1 /*@ public normal_behavior

2 @ assignable \nothing;

3 @*/

4 public Vector3d findIntersection(final Motion other) {

5 // A complex algorithm that returns the intersection between

6 // the current motion and the motion ’other’

7 }

8 /*@

9 public pure model long findIntersectionTime () {

10 return 50 * org.jmlspecs.lang.DurationConstants.MICROSEC;

11 }

12 @*/

Figure 5.7: The method findIntersection() in the subtype Motion.
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1 /*@ public normal_behavior

2 @ requires other != null;

3 @ ensures pos_one == \old(pos_one);

4 @ ensures pos_two == \old(pos_two);

5 @ duration 0 .. findIntersectionTime ();

6 @*/

7 public Vector3d findIntersection(final Motion other) {

8 final float apr = Constants.PROXIMITY_RADIUS;

9 final float xa0 = getFirstPosition ().x - apr;

10 final float xa1 = getSecondPosition ().x + apr;

11 final float xb0 = other.getFirstPosition ().x - apr;

12 final float xb1 = other.getSecondPosition ().x + apr;

13 final float ya0 = getFirstPosition ().y - apr;

14 final float ya1 = getSecondPosition ().y + apr;

15 final float yb0 = other.getFirstPosition ().y - apr;

16 final float yb1 = other.getSecondPosition ().y + apr;

17 final float za0 = getFirstPosition ().z - apr;

18 final float za1 = getSecondPosition ().z + apr;

19 final float zb0 = other.getFirstPosition ().z - apr;

20 final float zb1 = other.getSecondPosition ().z + apr;

21 if( (xa0 <= xb1 && xb0 <= xa1) &&

22 (ya0 <= yb1 && yb0 <= ya1) &&

23 (za0 <= zb1 && zb0 <= za1)) {

24 return getFirstPosition ();

25 } else {

26 return null;

27 }

28 }

29 /*@

30 public pure model long findIntersectionTime () {

31 return 35 * org.jmlspecs.lang.DurationConstants.MICROSEC;

32 }

33 @*/

Figure 5.8: The method findIntersection() in the introduced supertype ApproxMotion

added to the minicdx benchmark which shows the approximation for the algorithm.
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Figure 5.9: Comparing duration data for the original type Motion, the new supertype

ApproxMotion, and the new subtype Motion, using SafeJML duration clause
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5.3.3 Evaluating Feedback

In this section, I show how the SafeJML tool can provide correct and accurate feedback

to the programmer by providing a timing report that is useful for the programmer to identify

the specific method that is violating one or more timing specifications.

In order to evaluate the feedback of the tool, the duration specification for the method

findIntersection shown earlier in Figure 5.8 on page 97 was set to finish no earlier than

17.5µs and no later than 120.0µs, and the same experiment that was used in Section 5.3.1

was used for this evaluation. Other methods were also annotated to provide more feedback.

The tool then generated a report indicating that at least one instance of the run took more

than 120.0µs to conclude. Similarly, at least one instance of the run took less than 17.5µs

to conclude. Figure 5.10 on page 102 shows the report generated by the duration runtime

assertion checker.

This experiment shows that the tool gives direct feedback to the programmer by re-

porting the method name and the specification case that is violating the duration annotation.

5.3.4 Evaluating Developer Efficiency

Developer efficiency describes the extent to which time or effort is well used for the

intended task or purpose. it is a measurable concept, quantitatively determined by the ratio

of the outcome of the task compared to the effort spent to achieve this outcome. In the
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context of this evaluation, we identify the development efficiency of the tool by the time it

takes for the developer to engage the tool for the purpose of measuring the duration of a

method to execute. In other words, efficiency is measured by the overhead that the tool

imposes on both compilation and post execution analysis. For the tool to be efficient to the

developer, the tool must cause minimal usage overhead.

An experiment was conducted using a computer clock to measure the time it takes

for the full cycle of the experiment to execute. The experiment was repeated once using the

regular FijiVM and another time using the SafeJML tool chain. Table 5.1 shows efficiency

analysis for both experiments. The results show about 7% overhead of the total execution

time when SafeJML is used. However, the compiler itself generated very little overhead, and

significant amount of time is spent during FijiVM compiler execution. It is important to

mention here that runtime and analysis time depend on the number of runs per experiment,

which is 1000 runs for this case. The number of runs are kept the same to measure the

developer efficiency in a typical example.
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Table 5.1: SafeJML Efficiency Analysis

Toolchain Stage Duration (sec) Duration (%)

FijiVM

javac 6 2.4%

Fiji Compiler 197 77.9%

Runtime 50 19.8%

Analysis 0 0.0%

Total 253 100.0%

FijiVM + SafeJML

SafeJML Java Compiler 7 2.6%

Fiji Compiler 200 73.8%

Runtime 50 18.5%

Analysis 14 5.2%

Total 271 100.0%

Overhead 18 7.2%
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1 Duration violations found ...

2 ============================

3

4 Maximum Duration Violations:

5 ===================

6 Method{spec} Duration Spec

7 ============ ======== ====

8 cdx.TransientDetectorScopeEntrySubtype.reduceCollisionSet

9 {specCase_1} 122153 [17500 .. 120000]

10 cdx.Motion.findIntersection{specCase_1} 22699 [1500 .. 10000]

11

12 Minimum Duration Violations:

13 ===================

14 Method{spec} Duration Spec

15 cdx.TransientDetectorScopeEntrySubtype.reduceCollisionSet

16 {specCase_1} 16134 [17500 .. 120000]

17 cdx.TransientDetectorScopeEntrySubtype.reduceCollisionSet

18 {specCase_1} 15854 [17500 .. 120000]

19 cdx.TransientDetectorScopeEntrySubtype.reduceCollisionSet

20 {specCase_1} 17390 [17500 .. 120000]

21 cdx.TransientDetectorScopeEntrySubtype.reduceCollisionSet

22 {specCase_1} 12921 [17500 .. 120000]

23 cdx.TransientDetectorScopeEntrySubtype.reduceCollisionSet

24 {specCase_1} 17111 [17500 .. 120000]

25 cdx.TransientDetectorScopeEntrySubtype.reduceCollisionSet

26 {specCase_1} 17460 [17500 .. 120000]

27 cdx.Motion.findIntersection{specCase_1} 1466 [1500 .. 10000]

28 cdx.Motion.findIntersection{specCase_1} 1257 [1500 .. 10000]

29 cdx.Motion.findIntersection{specCase_1} 1467 [1500 .. 10000]

30 cdx.Motion.findIntersection{specCase_1} 1466 [1500 .. 10000]

31 cdx.Motion.findIntersection{specCase_1} 1466 [1500 .. 10000]

32

33 Maximum execution times for this run...

34 =======================================

35 cdx.TransientDetectorScopeEntrySubtype.reduceCollisionSet ->122153 ns

36 cdx.Motion.findIntersection ->22699 ns

Figure 5.10: Report showing duration specification violation generated by the SafeJML

Duration RAC.
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CHAPTER 6
CONCLUSIONS

This chapter presents my conclusions. First I present a summary for the work com-

pleted. A list of limitations and future work follows, then I present the contributions of this

work.

6.1 Summary

Designers and developers of Safety-critical systems are becoming more interested in

Java as a development tool. However, Java for safety-critical systems has very little support

for specification languages and dynamic checking tools. In this dissertation, I presented

SafeJML, a language that extends the support of JML as a specification language to in-

clude timing constraints and dynamic checking for systems developed using Safety-Critical

Java (SCJ). Besides supporting dynamic checking, the language includes features that could

be utilized in static checkers for timing constraints, used mainly in calculating worst case

execution times for methods (WCET). I also presented SafeJML Duration Runtime Asser-

tion Checker (RAC), a tool used to perform dynamic checking of timing constraints. The

new tool was evaluated based on four requirements: expressiveness, precision, direct feed-
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back, and developer efficiency. Furthermore, I discussed a practical problem related to using

subtypes along with modular specifications. I also described a methodology to solve this

problem, which enables the usage of modular specifications for timing constraints along with

subtypes. This solution’s implementation and evaluation was presented.

6.2 Limitations and Future Work

The work presented in this dissertation has the following limitations:

• No implementation is made available for a static verification tool that uses other Safe-

JML features to statically verify duration specification and perform WCET analysis.

• The current RAC implementation requires all methods to terminate normally, no ex-

ceptional termination is allowed. A future enhancement to overcome this limitation by

using a try-finally statement is planned.

• The current RAC implementation might produce false positive results if used to analyze

nested method calls. A future enhancement to account for the analysis overhead in

nested method calls is left for future work.

• The current RAC reporting mechanism for methods violating their duration specifi-

cations does not include file name and line numbers. A future enhancement will be

provided to support this detailed reporting.
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6.3 Contributions

The following list contains the list of contributions of this work:

• Designed and implemented SafeJML, a modular specification language for Safety-

critical systems built using Safety-Critical Java (SCJ).

• Designed and implemented the SafeJML Runtime Assertion Checking (RAC) tool.

This tool dynamically checks duration specifications for methods and reports any vio-

lations for the programmer.

• Designed a methodology and algorithm to perform duration analysis for subtypes. The

methodology was implemented as part of the SafeJML RAC tool.

• Designed and partially implemented JAJML, an extensible JML compiler. The Safe-

JML and SafeJML RAC implementations both used JAJML as their base implemen-

tations.
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APPENDIX A

THE DESIGN OF JAJML
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This appendix describes the approach used for building an extensible compiler for

JML1. An example to build a runtime assertion checker for JML is also discussed. The

compiler is based on the JastAdd attribute grammar tool [102, 103], and hence called JAJML.

The developers of JastAdd have provided an extensible Java compiler, upon which JAJML

is built. JAJML was in turn extended to support the features discussed throughout this

work, or SafeJML.

The original work from which this appendix is based on, uses loop annotations to

show the approach to building JAJML. For relevance, I decided to use the duration clause in

SafeJML as an example for this appendix. In essence, the ideas used in both examples are

the same. The reader is advised to refer to our technical report [101] for a broader discussion

and the implementation of loop annotations in JAJML2.

A.1 Building the JAJML Compiler

In this section, I use an example to describe how the duration clause was implemented

in JAJML using the JastAdd compiler. As a first step, it is important to give a brief overview

of JastAdd and then discuss the various tasks needed to make an extension: scanning,

abstract syntax tree declaration, parsing, static analysis, and code generation.

1This appendix is based on our technical report “Extensible Dynamic Analysis for JML: A Case Study
with Loop Annotations” [101].

2Sources and other information for the JAJML compiler can be obtained from http://sourceforge.

net/apps/trac/jmlspecs/wiki/JAJML.
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The JastAdd Compiler Construction System [103, 102] extends Java with rewritable

circular reference attribute grammars. In addition, JastAdd has other mechanisms like static

aspect-oriented programming, declarative attributes, and context-dependent rewrites, that

support the tool’s modularity and extensibility. These techniques make writing extensi-

ble compilers more efficient. The acronym “JAJC” refers to the JastAdd extensible Java

compiler, and “JastAdd” is used for the JastAdd compiler construction tool.

A.1.1 Scanning

The JAJC uses Flex for lexical analysis. Thus, in order to extend the JAJC, it is

necessary to use Flex for lexical analysis of JAJC.

The scanner for JAJC is split into several files. Each file contains part of the overall

Java lexical grammar, organized to ease extension. For example, the lexical grammar for

comments is found in a file Comments.flex.

Flex has a feature that is very valuable for JAJC, namely the ability to use states

to control the lexical analysis. JML specifications, and therefore, JAJC specifications, are

contained within special annotation comments of the form /*@ ... @*/ or from //@ to the

end of a line. Thus the lexical grammar uses several states to make sure it only recognizes

JML keywords within such annotation comments [67, Section 4]. The addition of these states

is done in a separate file, JAJML.flex, without editing or changing the JAJC’s lexer files.3.

3 However, flex does require duplicating the standard Java lexer’s definitions within the new states.
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A.1.2 Parsing

The JAJC uses the Beaver LALR(1) parser generator for parsing. Beaver accepts

grammars expressed in EBNF and is well-integrated into JastAdd. This integration makes

it easy to use Beaver’s AST nodes, which are represented as instances of generated Java

classes when manipulating attributes from within JastAdd.

The parser for JAJC is split over several files, as Beaver allows new context-free rules

to be added to the grammar. This makes it easy to extend the grammar simply by adding

new productions in separate files. For example, one can add productions for the duration

expression by adding productions for the statement nonterminal. These productions can be

found in the file jajml.parser. An example of the added code is shown in Figure A.1 on

the following page. (This grammar follows the one introduced in Section 3.2.3.2 on page 46,

which follows the same rules for JML grammar introduced in JML Reference Manual [67,

Section 12.2].) In Beaver semantic actions are enclosed in {: and :} brackets. Each rule is

responsible for creating and returning the corresponding AST node. Each AST node type is

defined in the abstract grammar files as described above.
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JmlDuration duration_clause =

JMLduration expression.e1 DOTDOT expression.e2 IF expression.p

SEMICOLON

{: return new JmlDuration(false , e1 ,e2 , new Opt(p)); :}

| JMLduration_redundantly expression.e1 DOTDOT expression.e2 IF

expression.p SEMICOLON

{: return new JmlDuration(true , e1 ,e2 , new Opt(p)); :}

| JMLduration expression.e1 DOTDOT expression.e2 SEMICOLON

{: return new JmlDuration(false , e1 ,e2 , new Opt()); :}

| JMLduration_redundantly expression.e1 DOTDOT expression.e2

SEMICOLON

{: return new JmlDuration(true , e1 ,e2 , new Opt()); :}

| JMLduration BS_not_specified SEMICOLON

{: return new JmlDuration(false , null , null , new Opt()); :}

| JMLduration_redundantly BS_not_specified SEMICOLON

{: return new JmlDuration(true , null , null , new Opt()); :}

;

;

Figure A.1: Part of the added grammar describing the duration clause.
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abstract JmlStmt:Stmt;

abstract JmlAnnotationStmt: JmlStmt;

Figure A.2: AST for Loop Annotations Added to the jajml.ast File.

A.1.3 The Abstract Grammar

JastAdd supports a concise “abstract grammar” for declaring abstract syntax trees

(ASTs). All classes that compose the AST are defined in abstract grammar files. JastAdd

automatically generates Java classes to represent these ASTs.

The JAJC uses several abstract grammar files to define ASTs for Java. (There is one

file for the Java 1.4 features and a file for each new feature added in Java 5.) JastAdd makes

extending the hierarchy with new AST classes easy. This is done by adding new rules to the

abstract grammar.

The added abstract grammar file describes the ASTs for JML’s loop annotation state-

ments. The declaration of the two AST classes that will serve as superclasses for other ASTs

and will help organize them in the file jajml.ast are shown in Figure A.2.

The abstract AST class JmlAnnotationStmt inherits from the JmlStmt AST class, itself

is an abstract AST class that inherits from the JAJC’s Stmt AST class. For each feature, an

entry in the jajml.ast file is added that declares the ASTs for that feature. ASTs for dura-

tion clause are shown in Figure A.3 on the next page. The AST class JmlMethodSpec is defined
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as a subclass of JmlAnnotationStmt which is shown earlier. The AST class JmlDuration is

a subclass of JmlMethodSpec. The above says that a JmlDuration contains three nodes: the

first two nodes are First and Second, both of type Expr and are used to hold the minimum

and maximum duration constraints in a duration specification statement, and a Pred that is

of type Expr, and is specified as Optional, hence the enclosing square brackets. This defini-

tion of the JmlDuration AST can be directly mapped to the grammar introduced earlier in

Figure A.1 on page 110.

JmlMethodSpec:JmlAnnotationStmt ::= <IsRedundant:boolean >;

JmlDuration:JmlMethodSpec ::= First:Expr Second:Expr [Pred:Expr];

Figure A.3: AST for duration Clause Added to the jajml.ast File.

A.1.4 The Attribute Grammar

After parsing, and before applying rewrites and tree transformations, JastAdd com-

pilers typically perform type checking and other static analysis. This allows messages about

any problems in the user’s program to be generated from unmodified ASTs that directly

reflect the user’s input and are thus easy for users to understand.

Type checking and other kinds of static analysis are performed using JastAdd’s at-

tribute grammar facilities. Attribute grammars attach attributes to ASTs. Attributes can
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be defined in either declarative or imperative style. While imperative style allows for writing

regular Java code to manipulate the nodes, declarative style simply specifies the relations

that define each attribute. Attributes are evaluated in an order determined automatically by

JastAdd. Imperative style attribute definitions are executed when their values are needed

by the declarative style attributed definitions, which controls the overall order of execution.

Imperative style attribute definitions are written in Java code, and are useful when making

complex decisions, for example in transformation code.

Attributes are implemented inside JastAdd aspects and can be either inherited or

synthesized. Inside an aspect, one can define new attributes and equations4 that are added

to the different ASTs. This approach supports modularity of features, as each feature is

implemented in a single aspect. Each aspect can affect many different types of ASTs, which

supports separation of concerns.

There are several Java analyses that must be implemented in a compiler based on the

JAJC. These analyses they must be implemented by AST classes such as JmlDuration. For

example, type checking for the duration clause is implemented in JAJC with the synthesized

attribute JmlDuration.typeCheck(). Figure A.4 on the next page shows the type checking

attribute for the duration clause as implemented in the file duration.jrag.

Several other attributes needed to be defined and implemented for other SafeJML

features in the same manner. Examples of these analyses are shown in Table A.1.

4In Attribute Grammar, an equation defines an attribute, the right-hand side of the equation is an
expression that uses other attribute values to define the value of the left-hand side attribute. From an OO
perspective, attributes are represented by fields, and equations are represented by methods that are used to
compute the fields [103, Section 3.1].
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public void JmlDuration.typeCheck (){

TypeDecl lmt1 = getFirst ().type();

TypeDecl lmt2 = getSecond ().type();

if (!lmt1.isLong () && !lmt1.isInt()) {

error("the type of \"" + getFirst () + "\" is " + lmt1.name()

+ ", but should be int or long");

}

if (!lmt2.isLong () && !lmt2.isInt()) {

error("the type of \"" + getSecond () + "\" is " + lmt2.name()

+ ", but should be int or long");

}

}

Figure A.4: Code from duration.jrag, for duration clause type checking.

Table A.1: Standard Java Analyses and Their Matching Attributes in JAJC

analysis attribute

assignment checking isDAbefore(Variable)

definite unassignment isDUafter(Variable)

unreachable statements canCompleteNormally()

variable lookup lookupVariable(String)

name classification nameType()

type checking typeCheck()

114



Several attributes were also added to extract parts of the JML duration clause ASTs,

but all these are trivial.

A.1.5 Compiling Runtime Assertion Checks

This section describes how the prototype uses the facilities of JastAdd to compile

runtime assertion checking code for JML duration clause5. Annotations in JAJML are

implemented by transforming the AST to include the original code woven with assertion

checking code. Assertion checking code throws JML-specific error objects when an assertion

fails.

JAJML uses assertions derived from duration clause to insert Enter and Exit meth-

ods for the purpose of timing the method, as discussed in Section 3.3.1 on page 55. These

methods will then record method entry and exit timing information during execution.

An annotated method is considered to include the entry and exit timings. To explain

this precisely, The process in which the annotated JML source code is transformed into

Java with runtime assertion checks is specified. This is done by transforming the method

to include these calls. Code of the form shown in Figure A.5 on the next page, can be

transformed to the form shown in Figure A.6 on the following page.

5Similar considerations would apply for such tasks as verification condition generation.
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/*@ public behavior

@ requires P;

@ duration 300 .. 500;

@ ensures Q;

@*/

T m(p1,p2,...) {

// method body

}

Figure A.5: A method annotated with method duration specifications

T m(p1 ,p2 ,...) {

checkPre(P,p1,p2,...);

DurationRAC.enter(mID ,Time());

T ret = mWrapper(p1,p2,...)

DurationRAC.exit(mID ,Time());

checkPost(Q,p1,p2,...)

return ret;

}

T mWrapper(p1 ,p2 ,...) {

// method body

}

Figure A.6: A transformed form of the annotated method
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The prototype example expresses this kind of transformation directly at the level of

abstract syntax trees in JastAdd. The prototype transforms the method to include entry

and exit calls and passes the method ID as discussed in Section 4.1 on page 69.

For method transformation, JastAdd’s transformation() function was used. The

choice was to made in preference to JastAdd’s Rewrite construct, because transformations are

done after the static analysis steps described above, and this, as described above, generally

leads to better error message generation. This transformation function is implemented for

JmlDuration.
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