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ABSTRACT 

 

Consider a sequence of random variables which obeys a first order autoregressive model 

with unknown parameter alpha. Under suitable assumptions on the error structure of the model, 

the limiting distribution of the normalized least squares estimator of alpha is discussed. The 

choice of the normalizing constant depends on whether alpha is less than one, equals one, or is 

greater than one in absolute value. In particular, the limiting distribution is normal provided that 

the absolute value of alpha is less than one, but is a function of Brownian motion whenever the 

absolute value of alpha equals one. Some general remarks are made whenever the sequence of 

random variables is a first order moving average process. 
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INTRODUCTION 

 

  Consider a sequence  {  } ,     of random variables defined on a probability space  

(     )  that obey the first order autoregressive model                , where    is an 

unknown parameter. The error structure {  }  is assumed to be IID, independent individually 

distributed, with    (  )      and                  No specific distribution of the errors 

is assumed. 

 This leads to using the least squares procedure to estimate  . Let  ̂  denote the least 

squares estimator (LSE) of  , which is a function of              In addition to estimating  , the 

limiting distribution of  ̂ , whenever properly normalized and centered, can lead to a test of 

hypothesis for    If the limiting distribution is unknown, then a simulation study can be used to 

estimate tail probabilities for a test of hypothesis. 

The LSE   ̂  is the value of   which makes   ( )  ∑ (        )
  

    a minimum. In 

particular,  ̂  
∑       

 
   

∑ (    )  
   

  substituting the model assumption               gives: 

 ̂  
∑ (        )    

 
   

∑ (    )  
   

, and 

                                                                     ̂    = 
∑ ( 

           )

∑ (    
 
   ) 

.                                             (1.1) 

 The purpose of this work is to show that  {  ( ̂    )}  converges in distribution 
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whenever the normalizing      are properly chosen. The choice of     varies according to the 

cases:   | | < 1,     = 1, and | |  > 1. The case | |  < 1, (    1, | |  < 1) is studied in chapter 2 

(chapter 3, chapter 4), respectively. 

 The Martingale Central Limit Theorem is the primary tool used to show that whenever  

| | < 1, the limiting distribution is normal. Whenever    = 1 the limiting distribution is shown to 

be a function of Brownian motion. Donsker’s Functional Central Limit Theorem is essential 

here. Order in probability techniques are utilized in the  | | > 1 case. 

 The results presented here are known. However, this work collects them into one 

resource with detailed proofs. It is hoped that a convenient comparison of the three cases of the 

AR (1) model is of interest to the reader. Each case requires uniquely different methods for 

proof. Excellent references on the theory of Time Series are the books written by Brockwell and 

Davis [2] and Fuller [4]. Hasza [3] investigated the case whenever   | |  > 1 in his Ph.D. 

dissertation. 

 Finally, an outline of the primary ideas used in proving that the Gauss-Newton estimator 

is asymptotically normal for the order one moving average model is given in the last section.  
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AR (1)-CASE I: | |  < 1 

 

It is assumed throughout this section that {  }     is a sequence of random variables 

defined on the probability space (     )  that obeys the model: 

                  | |  < 1,                                       (2.1)                        

 where                     are IID random variables with   (  )     and  

               Recall that the least squares estimator (LSE) of    is given by: 

 ̂   
∑ ( 

         )

∑ (    
 
   ) 

                                   (2.2) 

Using the model assumption (2.1),  ̂   
∑ ( 

           )    

∑ (    
 
   ) 

  and thus, 

 ̂    = 
∑ ( 

           )

∑ (    
 
   ) 

                                               (2.3) 

 Recall that a sequence {  } of random variables defined (     ) converges in 

distribution to V provided that      pointwise except possibly at values where F is 

discontinuous. Here     is the distribution function of     and F is the distribution function of V.  

The above is denoted by   
 
    Moreover,      in probability if for each    , 

  {|    |   }      , as      , denoted by    
 
     Also, {  } converges to   in      

   , provided  |    |      as      , denoted by   
  

   . Listed below are some basic 
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properties of these convergence notions. 

 

Theorem 2.1 Assume that {  } and {  }  are sequences defined on (     )  Suppose that  

       is continuous except for a set of     measure zero. Then: 

(i)   
  

      
 
     

 
       

(ii)         
 
         

 
   whenever V is a constant rv, a.s. 

(iii)           

 
         

 
     

 
    

(iv)            

 
         

 
     

 
   

(v)          
 
    (  )

 
  ( ) 

(vi)         
 
    (  )

 
  ( ) 

(vii)       
 
          

    pointwise, where     
 denotes the characteristic function of    . 

 

 The two results stated below are used to show that {
 

 
∑   

  
   } converges in probability. 

These results can be found in Proposition 6.3.9 and Proposition 6.3.10 of Brockwell and Davis 

[2]. 
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Theorem 2.2 Suppose that {  }     {   }       {  }      and W denotes random 

variables defined on (     )  If: 

(i)    

 
     as     , for each fixed      

(ii)   

 
   as            

(iii)                   {|      |   }     , for each fixed        Then                 

  
 
                       

     

The next result is called the “Weak Law of Large Numbers for Moving Averages.” 

 

Theorem 2.3 Let {               } be a sequence of IID random variables defined on 

(     )  where  |  |     If {  }      is a sequence of real numbers with  ∑ |  |     
     

define    ∑        
 
    Then 

 

 
∑   

 
  

   (∑   ) (  
 
   )        

 Assume that   {  }       obeys model (2.1), then: 

                     (      )                 ,          

 (           )                       

In general, an induction argument shows that: 
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        ∑       
 
   , for all                                            (2.4) 

 

Theorem 2.4 Suppose that   {  }      obeys model (2.1), then: 

 

 
∑   

 
 
  

   
  

      
 . 

Proof:   Since only asymptotic results are needed, one can assume that       and thus,  

   ∑      
        Note that    ∑      

         and hence   
  ∑        

               Define   

   ∑      
                  ∑     

       
      ∑      

                   then 

          .   Observe that     (  )  ∑       
    

  

            and   

 |  |  ∑ | | | |  
          ( (  ))

      Hence,    and    are finite a.s. 

 Observe that:     

 |     
 |   | ∑     

 

      

         ∑     

   

     

        |

 ∑ |  ||  |  

 

       

 ∑ |  ||  |  

 

       

  | |            

  It follows that      
 

  
    and thus,  |

 

 
∑ (     

  
   )|  

 

 
∑  |     

 | 
    

 

 
∑  |     

 | 
        Given,      choose T such that  |     

 |  
 

 
  for all          
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Moreover, choose N > T for which  
 

 
∑  |     

 | 
    

 

 
  for all      Hence,   

 |
 

 
∑ (     

  
   )|    for all       and thus  

 

 
∑ (     

 )
  
  

                

Next, it is shown that  
 

 
∑   

 
   

 
 

  

     . It follows from Theorem 2.3 that  
 

 
∑   

 
   

 
 ∑        

   
  

     . It remains to use Theorem 2.2 to verify that  
 

 
∑   

 
   

 
     Note that    

 

 
∑   

 
    ∑      

 

 
∑            

 
   

 
          Observe that    (                 )        

whenever      Indeed, if          and              which is contrary to the 

definition of      It follows that for          (
 

 
∑          

 
   )  

 

  
∑    

  

 
 
      and thus 

by Chebyshev’s inequality,  
 

 
∑          

 
   

 
           Denote    ∑       

         

 

 
∑          

 
           ∑      

 

 
∑          

 
   

 
          and note that    

 
              

 Observe that:  |      |  ∑ |  ||  |
 

 
∑ |    ||    |

 
   

   
           

∑ |  ||  |
 

 
∑ |    ||    |

 
   

   
          ∑ |  ||  ||    ||    |  

 
            and thus,  

 |      |  
|    |

(  | |) 
 |  | |  |  

|    |

(  | |) 
 |  | |  |  

|    | 

(  | |) 
  |  | |  |   

Then                    |      |      and thus by Theorem 2.2,     

 
    However,    

   
 

 
∑   

 
     and  

 

 
∑   

 
    

 

 
∑   

 
    

 

 
∑   

 
   

 
 

  

        It was shown above that   

 

 
∑ (     

 )
  
  

       and thus by Theorem 2.1 (i), 
 

 
∑ (     

 )
 
  

      Since 
 

 
∑   
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       it follows from Theorem 2.1 (iii) that 
 

 
∑   

  
   

 
 

  

             

Recall from (1.1) that √ ( ̂   ) = 

 

√ 
∑ ( 

           )

 

 
∑ (    

 
   ) 

   It remains to show that the limiting 

distribution of  {
 

 
∑       

 
   } is normal. The Martingale Central Limit Theorem is used to 

verify this. The notion of uniform integrability of a sequence of random variables is used in the 

proof. In particular, a sequence {      } of random variables defined on (     ) is said to be 

uniformly integrable provided that for each     there exists a real number   such that for all 

     [|  |   {|  |  }]      Observe that uniform integrability implies uniform boundedness, 

that is,        |  |                 

           

Lemma 2.1  Let {      } be a sequence of random variables defined on (     ) satisfying    

       |  |
       where      Then {      }  is uniformly integrable. 

Proof: Given      note that       
| | 

| |
     and thus, there exists     such that for all      

| |      
| | 

| |
  

  

 
 . Then for all | |      | |   

| | 

  
    and thus    |    {|  |  }|  

 |  |
 

  
     

     for all       Hence {      } is uniformly integrable.         

 

A basic ingredient of the Martingale Central Limit Theorem is the concept of conditional 
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expectation. More precisely, let X denote an integrable random variable defined on  (     )  Let  

    be a sub   - field of     The condition expectation of X is defined by  ( | )    such 

that   is   -measurable and  
 
     

 
    for each      The existence and uniqueness 

(almost surely) of   is based on Radon-Nikodym Theorem. A list of some basic properties of 

conditional expectation is given below. Let  ( ) denote the smallest   -field such that X is 

measurable, that is,  ( )  {   ( )    ( )}  where  ( ) denotes the Borel  -field on       

 

Theorem 2.5   Assume that     are integrable random variables defined on (     )  and let  

          sub-  -fields of     The following results are valid a.s: 

(i)  ( | )    whenever    is   -measurable 

(ii)    ( | )   ( )                   

(iii)  ((     )| )    ( | )    ( | ) , where       are real numbers 

(iv)               ( | )   ( | )                 

(v)  (  | )    ( | ) , whenever   is   -measurable and    is integrable 

(vi)  ( ( | )| )   ( | ) 

(vii)  ( | )   ( ) provided that  ( ) and    are independent  -fields. 

 

Note: The Martingale Central Limit Theorem suited for our context is stated below. 

Theorem 2.6 Let {      } be a sequence of mean zero square integrable random variables 
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defined on (     )  Assume that {          } is a martingale, where{       }is an 

increasing sequence of sub-  -fields of     Suppose that      and              Denote 

  
   (  

 |    )    
  ∑   

  
      and     

   (  
 )   (  

 )   Assume that: 

(i) 
  

 

  
 

 
         

(ii) For each           
 

  
 ∑  (  

   {|  |    }
 
   )      

Then   
  

  

 
    (   )       

 

 

Theorem 2.7 Suppose that {      } obeys model (2.1); moreover, assume that 

 |  |
      for some      hen   

√    

  

 

√ 
∑       

 
   

 
    (   )  

 

Proof: The Martingale Central Limit Theorem is used to verify this. Denote               

   ∑       
 
          

   (    
   

 |    )     
   (  

 )   (  
 )  and fix      Here    

 {         }  that is, the smallest   -field such that each   ,       is measurable. 

Note that,  (    |  )   ((         )|  )      (      |  )        (    |  )                                                                                      

      (  )      Hence  {          } is a martingale. Denote   
   (    

   
 |    )   
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  (  

 |    )      
  (  

 )      
   , where     {   } and         is   -measurable. 

Define   
  ∑   

  
      ∑        

  
    and   

   (  
 )   (  

 )    ∑         
 
    Note that 

since                            ∑       
 
          ∑       

   
   . Since| |   , 

one can select      since we are interested in asymptotic results. Let      ∑       
   
   , then 

      ∑         
      

(     )  

     .  Then    
    ∑

     

    
 
    

  

       
(     )  

        It follows 

from Theorem 2.4 that   
  

 

   
   

 
∑     

  
   

  

       
  (     )

 
 

 
 

  

(    )

  

(    )

   as         i.e. 
  

 

  
 

 
   as          

Next, it is shown that  
 

  
 ∑       

  
     

   {|      |    }    for     fixed. First it is 

shown that {    
   

 }     is uniformly integrable. According to Lemma 2.1, it is sufficient to show 

that for    , given in the hypothesis,        |    
   

 |  
 

         |    
   

 |        Let 

  
   

   
        then           and 

 

 
 

 

 
    Then using Holder’s inequality,  

|    |
    |∑| | |    |

   

   

|

   

 |∑(| | )
 
 (| | )

 
 |    |

   

   

|

   

  

|(∑ | | )
   

      
   (∑ | | |    |

   )
 

      
   |

   

 (∑ | | )      
   ∑ | | |    |

      
      

Then,   |      |
     |  |

    |  |
   (∑ | | )      

     ( ), and thus {    
   

 }     is 

uniformly integrable. Hence, given     there exists      such that 

      
   

   {|      |   }    for all     . 
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Since   
   ( )  choose    such that for all            . Then for all     , 

      
   

   {|      |    }    and thus,  
 

 
∑       

  
    

  
   {|      |    }    for all      . 

Choose    such that for all         
 

 
∑       

  
     

   {|      |    }   . However,   
  

   

      

as     and thus, 
 

  
 ∑       

  
     

   {|      |    }   , for    sufficiently large. Hence:    

      
 

  
 ∑       

  
     

   {|      |    }      It follows from Martingale Convergence 

Theorem that  
 

  
∑       

 
    (   )   

    Again     
  

   

     , implies that 
√    

  

 

√ 
∑       

 
   

 
                                   

 

Theorem 2.8 Suppose that the hypotheses of Theorem 2.7 are satisfied and let  ̂  denote the 

LSE of  . Then   √ ( ̂   )
 
  (      )    

Proof:  It follows that √ ( ̂   )  

 

√ 
∑       

 
   

 

 
∑     

  
   

 , and by Theorem 2.4 and Theorem 2.7 above,    

 

√ 
∑       

 
   

 
 

  

√    
  and  

 

 
∑     

  
   

 
 

  

       Hence, 

 √ ( ̂   )
 
 √       (      )               
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AR (1)-CASE II:     

 

Suppose that {       } is a sequence of random variables defined on (     )  which 

obeys the model: 

                                                                   (3.1) 

where    , and        are IID mean zero with               Since    , it follows 

from (1.1) that the LSE of   obeys 

 ̂    
∑       

 
   

∑     
  

   
                                                     (3.2) 

If      then           , and the time series{  } is called a random walk. Many 

papers have been written about when the process is a random walk. This is of interest to 

economists. Testing the hypothesis       vs.    | |    is discussed below. 

 

Lemma 3.1 Assume that {  }    is a time series obeying the model                                                         

and that {  } is an IID sequence with  (  )    and               Then                                      

 

   
∑       

 
 

  

 
 

 

 
 
     as    , where    (   ). 

Proof: Iterating on                                                  
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                   etc. Then         ∑   
   
    , and thus ∑       

 
     

∑ (   ∑   
   
   )  

 
       ∑   

 
    ∑ ∑   

   
   

 
        ∑   

 
    

 

 
(∑   

 
   )  

 

 
∑   

  
     

Using Strong Law of Large Numbers and Central Limit Theorem,   
 

   
∑       

 
    

  

   
∑   

 
    

 

 
(∑

  

√  
 
   )  

 

    
∑   

 
 
  

   (  )

  
 
    

 

 
   

 

    (  
 )    

 

 
   

 

 
 

 

 
   

 

 
    as                                  

        

 A stochastic process{      } defined on a probability space(     ) is called a 

Gaussian process provided that for each             in  , (              )                                       

is a    -dimensional normal random vector, that is,  ∑      
 
     is a one –dimensional normal 

random variable, for each    (          )      This includes the degenerate case, where  

∑      
 
   is constant almost surely Moreover, a stochastic process{      } is called a Wiener 

process or Brownian motion provided: 

(i) {  } is a mean zero, Guassian process. 

(ii)     (     )  (   )                               

 Here    is a parameter. The index set   is chosen to be         in our context. 
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Lemma 3.2  A stochastic process{      } is a Wiener process if and only if: 

(i)       almost surely 

(ii)        (  (   )  )  whenever      

(iii)                               
  are independent random variables for   

                   

Proof: Assume that {      } obeys (i), (ii), and (iii). It is shown that the process is Gaussian. 

Let us check this for     since the idea extends. Suppose that:   

               and    (        )    . Then,                       

                (        )           (        )  (        )       

          (        )  (        )       

  (         )    (      )(        )    (        ) is normal since                                                        

                        are independent random variables by (iii) and      by (i). 

This idea extends to any    and thus {      } is a Gaussian process. Also, if        , 

then    (     )     (      (     ))     (     )     (        )             

Since           are independent random variables. Hence,    (     )      by (i) and (ii) 

and thus {      } is a Wiener process. 

 Conversely, assume that {      } is a Wiener process. Since it is Gaussian and   
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   (     )        , that is,.  (  
 )       it follows that       a.s. and (i) is satisfied. 

Moreover, since {      } is a Gaussian process it follows that       is normally distributed 

with mean zero. If        , then    (     )                  (     )      

         (   )     (      )  (   )    Hence      , and thus (ii) is 

fulfilled. 

Next, if                                                
, are 

independent if and only if they are uncorrelated since each random variable is normal. Note that 

if     ,    (         
          

)     (         
          

)     (       )  

   (     
    )     (         

)     (     
      

)     
       

     
       

                                                                               

Hence (iii) is satisfied.      

 

Remark 3.1 Condition (ii) in Lemma 3.2 is called stationary. Condition (iii) is referred to as 

independent increments. 

 

 A function space Central Limit Theorem is used to show that the normalized numerator 

of    ̂       converges in distribution. The function space is the set of all right continuous maps 

defined on I = [0, 1] whose left – hand limits exist. This set is denoted D(I). A suitable topology 

for D(I) has been defined by A.V. Skorohod (for example, see [1], p.112). This space is 
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separable. Moreover, there exists a complete metric   that induces the Skorohod topology (see 

[1], p.112). Further, if           are continuous elements in D(I), then    
 
   if and only if   

     uniformly on I.  

 Let   denote the Borel  -field on D(I), and assume      : (     )   ( D(I),  )       

     are random elements (measurable functions). Define    
 
   if and only if for each 

bounded, continuous map h : ( D(I),   )  , E( h(   ) )  E ( h( )). The following fundamental 

result, known as the Continuous Mapping Theorem, is needed ([1], Theorem 5.1). 

 

Theorem 3.1 Assume that    
 
   in D(I), h: (D(I),  )  (   ( )) is measurable and                

  {   ( )                        }=0. Then  (  )
 
  ( )   

 

M. Donsker proved the following Central Limit Theorem for a sequence of random elements in  

( ( )  ) . (See [1], Theorem 16.1). 

 

Theorem 3.2  Let {  } be a sequence IID, mean zero, with variance       . Denote 

  ( )  
 

√  
∑   

⟦  ⟧
    where     and  ⟦  ⟧  is the greatest integer which is less than or equal to 
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    Then    

 
   in ( ( )  ), where { ( )    } is a Wiener process on I. 

 

 Quite often one wants to prove that a sequence {  } of random variables converges in 

distribution. Assume there exists a sequence   
 
     in D(I), and a function h : ( D(I),P)   

that is continuous almost surely         If       (  )    then by Theorem 3.1,   

 
  (  )                       

In our use below,       and    , where  denotes a Wiener process on I. 

 

Lemma 3.3  Assume that the time series {  }    obeys                   and {  } are 

IID,  (  )     and             Then:   

 

    
∑     

 
 
  

 
 
     ( )   as      

Proof:  Define   ( )  
 

√  
∑   

⟦  ⟧
            According to Theorem 3.2,   

 
   in 

D([0,1]), where D([0,1]) is the set of all right-continuous maps on I with left-hand limits and   

is a Wiener process on I. Define h : D([0,1])    by  ( )   
 
    Then h is continuous almost 

surely      on D([0,1]), and thus by Theorem 3.1,   (  
 )

 
  (  )    Moreover, 

  (  
 )   

 
  

 ( )   
  
 

     
(     ) 

       
(         ) 

       

 
 

    
∑ (∑   

   
   ) 

 
  

    
 
  ( )                                                     
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 As shown in Lemma 3.1,         ∑   
   
     and thus,  

 

    
∑     

  
    

 

      
  

   

    
∑ ∑   

   
   

 
    

 

    
∑ (∑   

   
   )  

   . Observe that                                              

 
 
  ( )   

  

 √  
 

(     )

 √  
   

(         )

 √  

 
  

 
 ( )   since   

 
   and  ( )   

 
     

is continuous almost surely    ]. That is,  
 

 √  
∑ ∑   

 
  

 
 ( )     

   
 
     as       Hence,  

 

    
∑ ∑   

   
   

 
   

 
    and thus it follows that   

 

    
∑     

  
   

 
  

 
  ( )   as                                           

 

Theorem 3.3  Assume that {      } is a time series that obeys model (3.1). Then                                   

 ( ̂   )
 
 

    

    
 ( )  

  , where   ̂   is the least squares estimator of      as defined in (3.2). 

Since    , according to (3.1),  ̂    
∑       

 
   

∑     
  

   
     and thus   

 ( ̂   )  
 

   ∑       
 
   

 
 

    ∑     
  

   

 
 

 

 
   

 

 

   
 ( )  

 
    

    
 ( )  

  by Lemma 3.1 and 3.3.             

 

Remark 3.2  The above shows that { ( ̂   )} converges in distribution. However, the 

distribution of  
    

    
 ( )  

  is not known (like normal or chi-square), and thus for the needed 

sample size must be approximated using simulation of  ( ̂   ), before testing       . 
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AR (1)-CASE III:  | |    

 

Consider the time series {  }    defined on (     ) which obeys the model: 

                                                                  (4.1) 

where {  } are IID random variables with  (  )                and | |   . Recall from 

(1.1) that the LSE  ̂  of   satisfies  ̂    
∑       

 
   

∑     
  

   
. Utilizing order in probability 

techniques, it is shown in Theorem 4.1 that  ̂      (| |  )        

Recall that if {  } is a sequence of real numbers, then     ( ) means that there exists 

  such that  |  |            that is, the sequence is bounded. Further     ( ) means that  

      as    . Note that     ( )  implies     ( ). More generally, if             

then     (  ) means that |
  

  
|   ( ) and     (  ) means that  

  

  
    as   . 

 

Example 4.1 Let       (  
 

 
) (  

 

 
)       Then      (  

 

 
 

 

  )  
 

 
 

 

     

Hence      
 

 
  (

 

  ) and     
 

 
  (

 

  )                  

         

 Let {  } be a sequence of random variables defined on (     ) and {  } a sequence of 

positive real numbers. Then      (  ) means that for each     there exists    such that      
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 {
|  |

  
   }           Further,      (  ) means that  

  

  

 
    as        and 

        (  )  is defined by        (  )          

         

Lemma 4.1  Assume that {  }, {  } are sequences of random variables defined on (     ) 

and let  {  }, {  } be sequences of positive real numbers. Then: 

(i)      (  ) and      (  )         (    ) 

(ii)       (  ) and      (  )          (     ) 

(iii)       (  ) and      |  |    (  
 )  

(iv) (i),(ii),and (iii) hold with    replaced by     

(v)   

 
        ( )     

Proof: 

(i) Fix    , note that for      {
|    |

    
  } 

  {
|  |

  
   

|  |

  
 

 

 
}  {

|  |

  
   

|    |

    
  }  {

|  |

  
 

 

 
}  {

|  |

  
  }   Given     

choose   such that  {
|  |

  
  }  

 

 
                 Since 

|  |

  

 
    {

|  |

  
 

 

 
}  

 

 
 

for   sufficiently large. Hence,  {
|    |

    
  }   {

|  |

  
 

 

 
}   {

|  |

  
  }    for   

sufficiently large, and thus        (    )  
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(ii) Given       {
|     |

     
  }  {

|  |

     
 

 

 
}  {

|  |

     
 

 

 
}  {

|  |

  
 

 

 
}  

{
|  |

  
 

 

 
}   and thus  {

|     |

     
  }   {

|  |

  
 

 

 
}   {

|  |

  
 

 

 
}    as      

Hence         (     )  

(iii)  Given      {
|  | 

  
   }  {

|  |

  
  

 

 }      {
|  | 

  
   }   {

|  |

  
  

 

 }         

and thus   |  |    (  
 )                                                   

(iv) Assume that        (  ) . Given            choose      such that   {
|  |

  
 

 
 

 }                  Then  {
|  | 

  
   }                 hence, |  |  

  (  
 ). 

(v) Fix    . Since{| |   }                     such that, {| |  
  

 
}  

 

 
 . 

Moreover,   

 
   implies that there exists    such that  {|    |  

  

 
}  

 

 
  

for          Note that, {|  |    }   {|    |  
  

 
}  {| |  

  

 
}, and thus 

 {|  |    }    {|    |  
  

 
}   {| |  

  

 
}  

 

 
 

 

 
   for      . One 

can choose       such that                {|  |    }      and thus  

     ( )         

 

 

Lemma4.2  Let {  }, {  } be sequences of random variables defined on (     ) and let {  }             
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be a sequence of positive real numbers. Then: 

(i)  (  
 )   (  

 )              (  )    

(ii)  (|  |)   (  )              (  ) . Also  ( )         (  ) 

(iii)      (  ) and                   ( )  

Proof: 

(i) Choose   such that   
 (  

 )

  
   . Given    , using Markov’s inequality,                        

 {
|  |

  
  }  

 (  ) 

  
    

 

   . Let   √
 

 
  ; then  {

|  |

  
  }  

 
 

 

                 

Hence      (  ).      

(ii)   Choose   such that  
 |  |

  
   for all       Then  

 {
|  |

  
  }  

 |  |

   
 

 

 
    when   

 

 
  ,       Hence      (  )  according 

to Liapounov’s inequality, |  |  ( |  | )
 

  . Then  
 |  |

  
 [

 (  
 )

  
 ]

 

 
, and thus  

 (  
 )   (  

 ) implies that  |  |   (  ).                     

(iii)    Given         it must be shown that  {|  |   }    as     .  Fix         

Since       (  ) , there exists      such that  {
|  |

  
   }    for all         

However,      and thus        for all     . Hence for all      ,   

 {|  |   }    {|  |      }   {
|  |

  
   }     and thus       ( )                  
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Lemma 4.3  Assume that{  },{  } are sequences of random variables defined on (     ).  

Then: 

(i)     

 
      

 
                

 
      

(ii)   

 
      

 
               

 
         

(iii)   

 
      

 
           

  

  

 
 

 

 
    provided  {   }                                                     

(iv)      

 
             

 
    if and only if    

 
   .                                                                                                                                                

(v) (     )
 
 (   )       

 
         

 
     and  

  

  

 
 

 

 
   provided  

 {   }       

(vi)   

 
   ,   

 
             (     )

 
 (   )        

(vii)         (  )
 
   if and only if   

 
    provided       

 

Given the model              where | |    and {  } are IID,  (  )                         

and                     Let    be the initial random variable. Recall that 

  ̂    
∑       

 
   

∑     
  

   
  , and thus: 

 

  ( ̂   )  
   ∑       

 
   

    ∑     
  

   
                                                    (4.2) 

 

Iterating the model             gives         ∑       
 
   . Let        ∑      

 
    . 
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Since     (∑      
 
   )  ∑        

          it follows from one of Kolmogorov’s theorems 

that    

    
→    ∑      

 
         Note that            and thus ∑     

  
    ∑   (   )    

  
      

Then     ∑     
  

    ∑   (   )      
  

    ∑   (   )  (  (      ))
 

  
                                                                                                                

∑   (   )     
     ∑   (   )   (      )   

   ∑   (   )   (      )   
      Let  

     , then ∑   (   )     
        ∑    (   )   

     Hence: 

 

    ∑    
 

 

   

   ∑    (   )

   

   

  ∑  (   )   (      )  

 

   

 

∑   (   )   (      )   
                                                     (4.3) 

 

 

Lemma 4.4  Suppose that the sequence {  } obeys the model and assumptions listed in (4.1). 

Then: 

(i)   ∑    (   ) 
    (    )       (| |   )      

(ii)  (      )   (| |   )  

(iii) ∑   (   )  (      )   
     ( | |   )      

(iv)  ∑   (   )   (      )    (| |  ) 
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(v)      ∑     
  

    (    )       (| |  )          

(vi)          (    )     almost surely. 

Proof: 

(i) Note that ∑    (   ) 
       ∑      

            (   )

      
     (   )

    
                                                         

 

    
  (| |   ) Since      ( )  it follows from Lemma 4.1 (iv) that 

  ∑    (   ) 
    (    )        (| |   )    (    )     

  (| |   ) .                       

(ii) Since        ∑      
 
   , it follows that  (      )     (      )  

∑              ∑      
   

 
            

        (| |   )                                   

(iii) According to (ii),    ∑   (   )  (      )    
    ∑   (   )   (      

   

 )   ∑   (   )        
    M      ∑    ( | |   ) 

     It follows from 

Lemma 4.2 (ii) that ∑   (   )  (      )     
 
   ( | |   )  

(iv) Applying Cauchy’s inequality and (ii) above,                          

 |∑   (   )   
    (    )|  ∑   (   )  ( | |  |    | )

 

  
                                                                                    

( | | )
 

 ∑   (   )  ( |    | )
 

   ∑   (   )  | |   
   

 
     

    | |  ∑ | | (   ) 
    | |     (

  | |  

  | |  )   (| |  )                                                 

It follows from Lemma 4.2 (ii) that ∑   (   )   (    )    (| |  )   
                                  

(v) It follows from (4.3), Lemma 4.4 (i), and parts (i),(iii), and (iv) above that                                                          
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    ∑     
  

    (    )       (| |  )  

(vi) Given      employing (4.3), (i), (v), and the expectations calculated in (iii) and 

(iv), ∑  {|    ∑     
  

    (    )    |   } 
      ∑ | |      

    for 

some      It follows from the Borel-Cantelli Lemma that 

     ∑     
  

    (    )     almost surely.          

 

Next, consider the numerator of     ∑       
 
    from (4.2). Note that: 

   ∑       
 
       ∑           

 
        ∑     (  (      ))  

 
    

          ∑   (     )  
 
     ∑   (     )(      )  

 
                                  (4.4) 

 

Lemma 4.5  Given that the sequence {  } satisfies the model and assumption listed in (4.1) 

then: 

(i)          (| |  )   

(ii)  ∑   (     )(      )  
 
      ( | |  )  

(iii) ∑   (     )(      )  
 
      almost surely. 

Proof: 

(i) Recall        ∑       
 
   . Then by Lemma 4.2 (i) and Lemma 4.4 (ii)              

         (| |  )  
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(ii) According to Lemma 4.4 (ii),  (      )    (| |   ).  Hence                                                 

 |∑   (     )(      )  
 
   |  | |  ∑ | | (   )( (      )  (  

 ))
 

   
   

| |    ∑ | | (   )| |   
       ( | |  ). Then by Lemma 4.2 (ii), 

∑   (     )(      )  
 
      ( | |  ).                                         

(iii) As shown in the proof of (ii) above, ∑   
   |∑   (     )(      )  

 
   |  

∑   | |   
   , and the latter series converges by the ratio test. Then by the Borel-

Cantelli Lemma, ∑   (     )(      )  
 
        almost surely.          

 

 

Theorem 4.1  Let {  } be a sequence which satisfies the model and assumption listed in 4.1. 

Then                ̂      (| |  )    

 

Proof: According to (4.2),   ( ̂   )  
   ∑       

 
   

    ∑     
  

   
 , and by Lemma 4.4 (vi),                                                       

    ∑     
  

    (    )     almost surely. By (4.4) and Lemma 4.5 (ii),   

   ∑     
 
       ∑   (     )     ( ) 

    .  Moreover,   ∑   (     )    
   

  ( )  ( )    ( )   and thus    ∑     
 
        ( )   Hence   ( ̂   )    ( )  and 

thus   ̂      (| |  )             
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MA (1) 

  

Consider the first order moving average model:                   where    are 

IID,      (  )    and             The     ,       are observable, and the goal is 

to define an estimator  ̂  in terms of            such that √ ( ̂    )
 
  (    )  for some 

     In particular, this would imply that  ̂ 

 
     that is, { ̂ } is a consistent estimator of the 

unknown parameter     It is assumed that                      This is needed for 

convergence properties. 

 One might proceed as follows. Note that               define  (   )      where 

| |       and consider the least squares sum   ( )  ∑ (        )
  

     Since    is 

continuous in  , there exists  ̂         such that   ( ̂ )     | |    ( )  It might be 

tempting to use  ̂  as an estimator of     The problem is that one needs to know             in 

order to find  ̂   Since               are not observable, it follows that  ̂  is not a valid 

estimator.  

 Note that                   Let       be an imposed initial random variable. 

Define   ( )         and   ( )          ( )      Iterating,   ( )        ( )    

    (      )                ( )        ( )      (           )   

                   etc. Hence   ( )  ∑ (  )    
        (  )         is 
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computable for various values of    By Taylor’s expansion,      (  )        ( )  

   ( )

  
(    )          Denote   ( )   

   ( )

  
 and thus   ( )   

  ( )(    )          

 Note that   ( )  ∑  (  )      
         (  )       Let  ̅  denote an initial 

estimator of   , where | ̅ ( )|                  Then   ( ̅ )    ( ̅ )(    ̅ )         

An estimator  ̂  of     ̅  is obtained by ignoring    and using the least squares estimator, 

 ̂  ∑
  ( ̅ )  ( ̅ )

  
 ( ̅ )

 
     The improved Gauss-Newton estimator  ̂  of    is  ̂   ̂   ̅   

Since   ( ̅ )    ( ̅ )(    ̅ )          ̂  
∑   ( ̅ )[  ( ̅ )(    ̅ )      ]

 
   

∑   
 ( ̅ ) 

   
  

(    ̅ )  
∑   ( ̅ )(     )

 
   

∑   
 ( ̅ ) 

   
 and thus  ̂      ̂  (    ̅ )  

∑   ( ̅ )(     )
 
   

∑   
 ( ̅ ) 

   
  Then 

√ ( ̂    )  

 

√ 
∑   ( ̅ )(     )

 
   

 

 
∑   

 ( ̅ ) 
   

  It remains to show that 
 

 
∑   

 ( ̅ ) 
   

 
    a nonzero 

constant random variable, 
 

√ 
∑   ( ̅ )  

 
   

 
    and 

 

√ 
∑   ( ̅ )  

 
   

 
  (    )  for some 

     Then it follows that √ ( ̂    )
 
 

 

 
 (    )   (  

  

  )   (    )  where   
 

 
  

Showing the above results are not easy; let us first look at the general parameter estimation 

problem in nonlinear regression. This provides the general technique needed. 

 Consider the general regression model     (     )          where    is the 

unknown parameter,    and    are observable random variables,        In general,        
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However, in our case       Suppose that the parameter space   is a compact subset of   and 

 (   )     is continuous in    Let us assume that {      } are IID, mean zero and 

variance      As before, suppose that { ̅ }is a sequence of initial estimators of     Assume 

that  (   )has two continuous derivatives in    By Taylor’s expansion,  (     )   (    ̅ )   

  

  
(    ̅ )(    ̅ )  

 

 

  

   (    ̃ )(    ̅ ) , for some  ̃  on line between       ̅ . Here  ̃  

is a random variable. Then      (     )      (    ̅ )  
  

  
(    ̅ )(    ̅ )  

 

 

   

   (    ̃ )(    ̅ )      Define   
 ( )  (

  

  
(    ) 

  

  
(    )   

  

  
(    ))  

   
  (          ),   

  (          ), and   
 ( )  ( (    )  (    )    (    ))  Then 

     ( ̅ )    ( ̅ )(    ̅ )      and thus the least squares estimator of     ̅  is  

 ̂  
  

 ( ̅ )(     ( ̅ ))

  
 ( ̅ )  ( ̅ )

. The Gauss-Newton estimator of    is defined by  ̂   ̂   ̅    

Again, observe that  ̂  
  

 ( ̅ )(  ( ̅ )(    ̅ )      )

  
 ( ̅ )  ( ̅ )

 (    ̅ )  
  

 ( ̅ )(     )

  
 ( ̅ )  ( ̅ )

  where 

  
  

 

 
(

   

   (    ̃ ) 
   

   (    ̃ )   
   

   (    ̃ )) (    ̅ )   Hence  ̂      

 ̂  (    ̅ )  
  

 ( ̅ )(     )

  
 ( ̅ )  ( ̅ )

  and thus √ ( ̂    )  

 

√ 
  

 ( ̅ )(     )

 

 
  

 ( ̅ )  ( ̅ )
  As before, it must be 

shown that 
 

 
  

 ( ̅ )  ( ̅ )
 
    where   is a nonzero real number, 

 

√ 
  

 ( ̅ )  

 
    and 
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√ 
  

 ( ̅ )  

 
  (    )  Then it follows that √ ( ̂    )

 
  (  

  

  )  (    )  
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