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ABSTRACT 
 

Anthrax is severe disease caused by the gram-positive Bacillus anthracis that can 

affect humans with deadly consequences. The disease propagates via the release of 

bacterial spores that can be naturally found in animals or can be weaponized and 

intentionally released into the atmosphere in a terrorist attack. Once inhaled, the spores 

become activated and the anthrax bacterium starts to reproduce and damage healthy 

macrophages by the release of the anthrax toxin. The anthrax toxin is composed of three 

virulent factors: (i) anthrax protective antigen (APA), (ii) anthrax lethal factor (ALF), and 

(iii) anthrax edema factor (AEF) that work in harmony to effectuate the lethality 

associated with the disease. Out of the two internalized factors, ALF has been identified 

to play a critical role in cell death. Studies in animals have shown that mice infected with 

an anthrax strain lacking ALF survive the infection whereas when ALF is present the 

survivability of the mice is eliminated.  

Although the current therapy for anthrax is antibiotic treatment, modern medicine 

faces some critical limitations when combating infections. Antibiotics have proven very 

efficient in eliminating the bacterial infection but they lack the ability to destroy or inhibit 

the toxins released by the bacteria. This is a significant problem since ALF can remain 

active in the body for days after the infection is eliminated with no way of inhibiting its 

destructive effects. The use of inhibitors of ALF is an attractive method to treat the 

pathogenesis of anthrax infections. Over the last decade several inhibitors of the 

enzymatic activity of ALF have been identified. In order to identify inhibitors of ALF a 

variety of screening approaches such as library screenings, Mass Spectroscopy- based 

screenings and scaffold-based NMR screening have been used. Results from these 
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screening have yielded mainly small molecules that can inhibit ALF in low micromolar 

to nanomolar concentrations. Yet, although valuable, these results have very little 

significance with regards to treating ALF in a real-life scenario since pharmaceutical 

companies are not willing to invest in further developing these inhibitors. Furthermore, 

the low incidence of inhalation anthrax, the lack of a market for an ALF inhibitor, and the 

expenses associated with the approval process of the FDA, have hindered the motivation 

of pharmaceutical companies to pursuit these kind of drugs. Therefore we have screened 

a small-molecule library of FDA approved drugs and common molecules in order to 

identify currently approved FDA drugs that can also inhibit ALF (Chapter III). The 

screening revealed that five molecules: sulindac, fusaric acid, naproxen, ketoprofen and 

ibuprofen bound to either ALF or APA with sulindac binding both.   

Additionally, we have developed a nanoparticle-based screening method that 

assesses molecular interactions by magnetic relaxation changes (Chapter II). Using this 

assay, we were able to accurately measure the dissociation constants of different 

interactions between several ligands and macromolecules. Moreover, we have used 

computational docking studies to predict the binding site of the identified molecules on 

the ALF or APA (Chapter IV). These studies predicted that two molecules sulindac and 

fusaric acid could be potential inhibitors of ALF since they bind at the enzymatic pocket. 

As a result, we tested the inhibitory potential of these molecules as well as that of the 

metabolic derivatives of sulindac (Chapter V). Results from these studies provided 

conclusive evidence that fusaric acid and sulindac were both strong inhibitors of ALF. 

Furthermore, the metabolic derivatives of sulindac, sulindac sulfide and sulindac sulfone 
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also inhibited ALF.  Overall, taking together these results we have discovered the 

alternate use of a currently used drug for the treatment of ALF pathogenesis.  
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CHAPTER I: GENERAL INTRODUCTION PAVING THE ROAD 

AHEAD. 

 

 

Bacterial infections are among the most devastating diseases throughout the 

world
1
. These type of infections can produce a broad range of symptoms that can 

manifest anywhere from a couple of minutes to years after infection. Although the 

majority of these pathogens cause mild symptoms and can be successfully treated with 

modern antibiotics. The emergence of antibacterial resistance bacteria represents a 

challenge for such successful treatments, with infections often leading to death
2, 3

.   

Among these lethal bacteria we find methicillin-resistant Staphylococcus areus (MRSA), 

which is responsible for several difficult to treat infections and owes its lethality to 

commonly used antibiotics
4
. Clostridium tetani and Clostridium botulinum, which cause 

tetanus and botulism respectively, are also of major concerns
5
. More deadly still, Bacillus 

anthracis, is the bacteria that produces Anthrax, a disease that can potentially be used as 

a biological weapon
6
. Spreading through the release of bacterial spores, Anthrax is 

capable of infecting different areas of the body depending on the methods of contact
7
. 

Commonly, spores contaminate an open wound creating a mild to severe infection that is 

know as subcutaneous anthrax
8
. More deadly still, Inhalation Anthrax occurs when the 

spores are inhaled and the bacterium reproduces in the lungs, leading to a severe infection 

with a very high mortality rate
9
.  With the exception of some multidrug-resistant strains, 

most bacterial infections are treatable with modern antibiotics. However the problem still 

remains with the fact that although antibiotics are effective at killing the bacterium, they 
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fail at stopping the tissue damaging effect that the toxins released by the bacteria have on 

the infected host
10

.  

The majority of bacterial pathogens synthesize toxins as primary virulent factors 

that affect several physiological processes
11

. Whether used as a defensive mechanism as a 

way to inhibit the immune response, or as food scavengers by destroying nutrient-rich 

neighboring cells, bacterial toxins, not the bacteria themselves are the cause of lethality in 

most bacterial infections
12

.   Bacterial toxins have been defined as “soluble substances” 

that alter the normal metabolism of host cells with deleterious effects on the host. These 

deleterious effects manifest via different modes of action depending on the toxin and the 

microorganism that it comes from
13

. There are two general types of toxins, endotoxins 

and exotoxins. Endotoxins form part of the outer portion of the cell wall and are released 

once the bacteria dies and the cell wall breaks apart. Exotoxins are otherwise produced 

inside the bacterium and can be secreted or released following lysis onto the surrounding 

medium. 

 

Figure 1. Exotoxins vs. Endotoxins. 

Produced inside the bacterium, exotoxins are secreted or released after lysis into the 

surrounding environment. Endotoxins form on the outer cell membrane of bacterium and 

are released in the surrounding environment after the bacterium dies and the cell 

membrane breaks up.   
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Overview of different bacterial toxins and their characteristics by mode of damage to 

the host cell.
11

 

 

 Pore-forming toxins: Numerous bacterial exotoxins are capable of inflicting 

damage to the plasma membrane of eukaryotic cells. In the majority of cases the 

damage is mediated by pore formation, which causes an imbalance in the 

intracellular homeostasis by disturbing the selective influx and efflux of ions 

across the cell membrane of healthy cells. Among the mild pore-forming toxins 

we find alerolysin, which is released from Aeromonas hydrophila and targets 

glycophorin to cause diarrhea. Another mild exotoxin is hemolysin, which comes 

from Escherichia coli and attacks the cell membrane of red blood cells. Some of 

the more moderate pore-forming toxins include streptolysin O released by 

Streptococcus pyogenes and pneumolysin released by Streptococcus pneumoniae, 

which respectively cause strep throat and pneumonia. Other pore-forming toxins 

that produce more severe diseases include perfringolysin O (Clostridium 

perfringens) and listeriolysin O (Listeria monocytogenes). The latter two toxins 

cause gas gangrene and meningitis respectively, both very deadly and devastating 

diseases. 

 Protein synthesis inhibitors: Another class of bacterial toxins is those that damage 

the host cell by inhibiting protein synthesis. These toxins traditionally attack 

ribosomal RNA or factors that are necessary for protein synthesis within the cells. 

Within this category we find the Shiga toxins (Shigella dysentariae), which acts 

as a N-glycosidase that modifies a RNA subunit of the ribosome. This causes the 

ribosome to become faulty, which leads to the inhibition of protein synthesis.  
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 Second Messenger Activators: A class of toxins that specializes in the activation 

or modification of second messengers. Second messengers are molecules that 

transfer signals from extracellular receptors to molecules inside the cell. This 

class of toxins works on activating or modifying these signal transduction 

pathways that are essential in maintaining a variety of key cellular functions. 

Examples of these toxins include the edema factor (Bacillus Anthracis) one of the 

key components of Anthrax, and the cholera toxin (Vibrio Cholerae) the main 

cause of Cholera. 

 Immune System Activators: These are bacterial toxins that directly stimulate or 

disturb T-cells and other immune system cells. The majority of toxins in this 

category are know as superantigens which are a class of antigens that cause the 

non-specific activation of T-cells and as a result a massive response of the 

immune system. These superantigen exotoxins are a common cause of toxic shock 

syndrome a devastating and potentially fatal illness. Staphylococcus Areus and 

Streptococcus pyogenes are among the bacteria that produce superantigen toxins.  

 Proteases: Toxins in this category are those that have enzymatic activity. Good 

examples of these kinds of toxins are the botulinum toxins (Clostridium 

Botulinum), which cause botulism, a serious and life-threatening disease in 

humans. Particularly, this toxin destroys fusion proteins at a neuromuscular 

junction resulting in the inhibition of acetylcholine release and consequently an 

interference in nerve impulses. The lack of nerve impulses causes paralysis of 

muscles such as the diaphragm often leading to suffocation. Another protease 

toxin that causes paralysis is the tetanus toxin (Clostridium Tetani), which causes 
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muscles to overreact and contract due to a lack of inhibitory neurotransmitters. 

Both the botulinum and tetanus toxins are considered the deadliest toxins in the 

world with LD50 in the ng/kg range. Within this category, we also find the lethal 

factor toxin (Bacillus anthracis) another deadly toxin that is the main cause of 

pathogenesis in anthrax. The Lethal factor toxin acts as a Zn
2+

-dependent 

endopeptidase that cleaves the N-terminus of mitogen-activated protein kinase 

kinases (MAPKK), altering the signal pathway used by the cell to recruit immune 

system cells. This alteration of the signal pathway ultimately leads to apoptosis. 

 

The challenge faced with bacterial toxins. 

 

Although with modern medicine and antibiotics most bacterial infections can be 

stopped before they become fatal, significant pathogenesis still occurs after antibiotic 

therapy. The keystone of an antibiotic is that they are designed to kill the bacteria that is 

causing the infection, but therein lays the problem as well. These antibiotics are made to 

target the bacteria and not the toxins they produce, which are the main cause of damage 

to a healthy organism. Even after the bacterial infection has been subdued, the toxins they 

released continue to circulate through the body for hours and even days causing havoc to 

healthy tissue
14-17

. Therefore, it is essential to be able to detect and inhibit toxins after the 

organism that secreted them has been eradicated. 

Currently there are no therapies that focus on inhibiting bacterial toxins. Some 

successful attempts have been made with antibodies and small molecules to inhibit 

bacterial toxins, but these therapies are still a long way from potential clinical uses.
18, 19

 

In animal models, mice immunized with an antibody against alpha-hemolysin a toxin 
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released by USA300 a strain of MRSA, reduced the severity of skin and soft tissue 

damage cause by the toxin
20

. Other researchers have focused on identifying small 

molecule inhibitors that either inhibits the toxin itself or the cellular receptors necessary 

for them to enter healthy cells
17, 21

. These small molecules have proven very effective in 

cell studies showing a dramatic decrease in cell death when used as an inhibitor of the 

toxins. 

Since toxins in circulation cause damage long after the bacteria is eliminated, it is 

important to be able to detect them as well. Existing toxin detection methods rely on 

antibody-antigen interactions in ELISA
22

, antibody microarrays
23

, surface plasmon 

resonance biosensors
24

, Western blots
25

, and antibody-coated polystyrene microbeads
26

. 

Although sensitive, these methods have a major drawback in that they need highly 

purified samples. These purification procedures are usually time-consuming and 

traditionally required complex and expensive reagents imposing a major limitation on the 

usefulness of these methods. Additionally, on low abundant samples, these purification 

methods reduce the amount of toxins that can be detected.  Other techniques employ the 

use of Multidimensional Protein Identification (MudPIT)
27

 and Liquid Chromatography 

Mass Spectrometry (LC-MS)
28

, that while they do not face the limitations observed with 

the previous methods and can achieve limits of detection in the fM range, they require 

expensive and specialized instrumentation not commonly available.  

 

Nanoparticles as a suitable molecular probe. 

 

In 1959, Nobel laureate Richard Freyman introduced the field of nanotechnology 

with his famous words “there is plenty of room at the bottom”. Since then, and 
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particularly in the last decade researchers have found more than “room at the bottom” by 

developing complex and novel nanomaterials with a vast range of applications
29, 30

. 

Nanotechnology is the study and manipulation of matter at the nanoscale, usually 

focusing at the 1-100 nm range. At this scale matter exhibits increased surface area and 

reactivity, increased electrical conductivity, quantum confinement effects, tunable 

electrical properties, and improved magnetic properties, among other properties
31

.  

Nanoparticles in particular, are colloidal suspensions of different materials that 

exhibit one or several of these properties. Some of the traditionally used nanoparticles 

include gold nanoparticles, quantum dots, polymeric nanoparticles, and iron oxide 

nanoparticles. Specifically when used as sensors, these nanoparticles provide a reliable, 

sensitive, and cost effective method to detect different targets. In the case of gold 

nanoparticles a surface plasmon band change can be observed in its absorption spectra 

when different biomolecules are absorbed at their surface
32

. Similarly, quantum dots have 

been extensively used to detect a wide range of biological targets
33

. Quantum dots are 

nano-sized semiconductors with tunable optical properties that can emit light well into 

the infrared region. Depending on their size or ratio of semiconducting material used, 

researchers can vary their band-gap, essentially tuning their fluorescence emission
31

. 

Polymeric nanoparticles on the other hand do not tend to have optical properties of their 

own, but by engineering the composition of the polymer, the assembly of the nanoparticle 

can be controlled in such way that hydrophobic pockets are created
34

. These hydrophobic 

pockets can carry fluorophores that are used to detect biomolecules. In addition, iron 

oxide nanoparticles have been used not for their optical capability, but because of their 
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magnetic properties and their ability to alter the magnetic spins of neighboring water 

atoms, a property utilized in Magnetic resonance Imaging (MRI).
31, 35

 

 

Iron Oxide Nanoparticles, the path to the better sensor. 

 

Superparamagnetic iron oxide nanoparticles (IONPs) have the capability of 

affecting neighboring water proton relaxation times, thus allowing for a sensitive and 

robust detection method that do not depend on optical properties as other nanomaterials 

do. Iron oxide nanoparticles owe their superparamagnetic properties to their Fe3O4/Fe2O3 

core, which is usually covered with polymer coating for added stability. Although most 

modern synthetic procedures require the stabilizing polymer coating, some preparations 

can be prepared without the coating. Due to their superparamagnetic state, IONPs posses 

an induced magnetic field which directly disturbs the spin-spin relaxation of neighboring 

water protons.
36

 This shortens the time it takes from the water protons to relax to their 

original state thus reducing the spin-spin relaxation times T2 (Figure 1A). The change in 

T2 can be accurately observed using a magnetic relaxometer (a miniaturized MRI), 

allowing iron oxide nanoparticles to become Magnetic Relaxation nano-Sensors (MRnS).  

The development of new synthetic techniques and protocols in the production of 

MRnS has allowed for a nanoparticle design with a controllable surface. Especially the 

use of polymers such as dextran and polyacrylic acid provide surface functional groups 

that can be manipulated when adding different ligands to yield nanoparticles with 

controlled valencies.
37

 High-valency MRnS that carry several targeting ligands offer the 

benefit of a surface-mediated multivalent affinity, resulting from multiple and strong 

interactions between the high local concentration of binding ligands on the nanoparticle’s 
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surface and receptors on the corresponding target
38

. Due to the larger number of surface 

ligands, high-valency MRnS have the capability to interact with multiple target units at 

the same time, thus driving the formation of a cluster made of target units and several 

nanoparticles. The formation of these nano-sized clusters causes a decrease in the overall 

T2 of the solution due to permanent localization of water molecules locked within the 

clusters in the induced magnetic field (Figure 1D). High-valency MRnS have been 

extensively used to detect and quantify numerous targets, including DNA, mRNA, 

viruses, proteins and cells.  

It is not until recently that low-valency MRnS have been studied for the detection 

various targets
39

. Low-valency MRnS have a low number of targeting ligands on their 

surface and as opposed to high-valency systems, generally tend to be weak binders due to 

the absence of increased multivalent affinity. In the case of magnetic nanoparticles, the 

use of low-valency MRnS has traditionally not been encouraged because the low-density 

of targeting ligands on the surface of the nanoparticles will not induce the formation of 

clusters. In a recent study published by our group, we have reported a newly discovered 

interaction mechanism that uses low-valency MRnS as a binding magnetic relaxation 

(bMR) nanosensor, to produces substantial changes in the magnetic relaxation signal 

while taking advantage of faster binding kinetics and minimal amounts of target 

compounds. With lower amount of surface ligands, bMRs do not induce the formation of 

clustering, but instead bind a low amount of target to the surface of the nanoparticles. The 

presence of the targets on the surface of the bMR obstructs the access of the water 

molecule to the induced magnetic field causing the T2 of the solution to increase (Figure 

1B-C). This low valency assay has been used to detect peptides, DNA, and proteins with 
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high sensitivity and reproducibility. Similarly, this technique can be used to detect toxins 

by using an anti-toxin antibody or a small molecule as a ligand
40

. Furthermore, because 

the formation of a cluster is not necessary and the binding of targets to surface ligands is 

a fast process, this bMR detection method provides faster kinetics, thus reducing the 

length of the assay.  

 

 

Figure 2. Visual representation of nanoparticle states as targets bind to their 

surface.
39

  

A: In the absence of targets bound to the surface water protons are able to feely move in 

and out of the induced magnetic field. B-C: As the concentration of target bound on the 

surface increases, the intercation between the water molecules and the induced magnetic 

field is disrupted, resulting in an increase in the T2 signal. D: When enough target is 

added to cause a cluster, the water molecules are locked into the induced magnetic field, 

resulting in a large decrease of the T2.  
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Small Molecule Libraries, a pool of targeting ligands.   

 

Although highly specific, the use of antibodies as capturing ligands has a series of 

issues such as instability at higher temperatures, antibody denaturation and slow kinetics. 

These issues are of great concern in any antibody-based diagnostics assay, in particular if 

its intended use is in the field or remote locations where a controlled lab setting is not 

available. Specifically, when antibodies are used as surface ligands for nanoparticles, 

their disadvantages become more noticeable. Size-induced precipitation, steric 

interactions, nanoparticle instability, and reduced target affinity are among the drawbacks 

of conjugating antibodies to the surface of nanoparticles. For these reasons, it would be 

ideal to conjugate more stable targeting ligands, such as small molecules to the 

nanoparticles. Small molecules are low molecular weight organic compounds that by 

definition are not polymers. They come in every size and reactivity and traditionally have 

been implicated in several important molecular interactions such as that of 

pharmaceuticals and their respective targets. 

Small molecules that can be used in pharmaceutical applications are traditionally 

identified out of small molecule libraries (SML). SMLs are pools of molecules that are 

screened for binding to biological receptors or targets of interest
41

. Traditionally, SMLs 

contain anywhere from tens to hundred of thousands molecules, and can be focused to 

specific functional groups or provide a wide range of functionalities and molecular 

functions. These libraries can be synthesized either in solid supports or solution, and are 

commercially available for purchase. Small molecules selected from SMLs screenings 

have provided many of the currently know therapeutics
41

. Specifically, in recent years, 

the screening of SMLs has yielded various molecules with the capability to inhibit 
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bacterial toxins. Among these, are several anthrax toxins inhibitors that can be used to 

arrest the pathogenesis of the toxin.
42, 43

 It will be years before one of these molecules is 

able to pass through the regulatory agencies and become available to patients. This is in 

part due to the lack of incentive from pharmaceutical companies due to the large expense 

that is associated with bringing new drugs to market as well as putting a new drug 

through the long review process imposed by the Food and Drug Administration (FDA). 

Additionally, the low occurrence of anthrax infections adds to the lethargic interest 

exhibited by pharmaceutical companies.  

 

The roadmap ahead, an organizational overview of this study. 

 

Therefore, the primary objective of this dissertation is to assemble a SML of 

commonly available FDA-approved small molecule drugs that is to be screened against 

binding to the anthrax toxins. By using drugs that are already available to patients, they 

can be readily used if they are found to inhibit the toxins. The screening will be 

performed via magnetic relaxation by conjugating these small molecules to the surface of 

bMRs. Furthermore, computational binding studies and inhibition assays will shed light 

into the usefulness of the screened small molecules as potential inhibitors of the anthrax 

toxins. 

This dissertation will be divided into four major chapters that will address the 

objectives of this work. In Chapter 2 a new method that measure the affinities of  

molecular interactions via magnetic relaxation is described. The described methods can 

be applied to a broad range of interactions including those between small molecules and 

toxins. In Chapter 3, a Small Molecule Library (SML) will be selected and screened for 
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binding to the anthrax toxins. The protective antigen and lethal factor will be selected as a 

model system for the screening due to their pivotal role in the pathogenesis of the disease 

and because it will be beneficial to discover a known drug that inhibits these proteins. 

Within this section of the work the small molecules will be chemically attached to the 

surface of bMRs and used to detect and measure the interaction between each molecule 

and the targets. After some molecules are identified to bind the anthrax toxins, in Chapter 

4, they will be studied computationally in order to assess the location of the binding on 

the toxin. Concluding, in Chapter 5, the results from the studies in chapter three will be 

taken into consideration and the inhibition potential of the identified molecules will be 

evaluated against the protease activity of the anthrax lethal factor.   
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CHAPTER II: DETERMINATION OF DISSOCIATION CONSTANT 

KD VIA MAGNETIC RELAXATION. 
 

 

Introduction 

 

Molecular interactions, particularly those involving a ligand and a protein, play a 

vital role in multiple biological processes.
44-48

 For example, the association between an 

antibody and its target or the binding of a small molecule drug to a cellular receptor is an 

important example of these interactions.  The study of these interactions, notably those 

associated with disease, is important for the development of novel therapeutics and 

sensing technologies. These interactions are typically evaluated by a dissociation 

constant; an equilibrium constant that describes how strongly a ligand binds to a 

particular target protein by measuring the propensity of the ligand to dissociate from the 

protein. Denoted as KD, the dissociation constant is the inverse of the association constant 

and it is expressed in the following equation where complex AxBy breaks into xA and yB 

subunits:  

AxBy É xA + yB

KD 
[A]x  [B]y

[AxBy ]

 

The smaller the KD, the higher the affinity between the ligand and protein thus the 

stronger the interaction between the two.  

Several techniques have been developed to assess these molecular interactions 

and measure KD values. However, as most reported KD values have been determined 

using different methods, comparative studies are difficult as variations in KD values can 
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be seen using different techniques.
49

 The most commonly used techniques to measure KD 

include:  

 Surface plasmon resonance (SPR)
44

 is a technique that uses specialized 

instrumentation to sensitively measure the association and dissociation 

between ligands and a stationary target. This method involves the use of a 

metal plate, traditionally gold, to which proteins are attached. This metal 

support has an specific surface plasmon band, that changes as the ligands 

associate or dissociate with the anchored protein. Some of the drawbacks of 

SPR is that it requires the binding of either the ligand or the protein on a solid 

support, which affect the binding kinetics and it is not representative of the 

binding affinity in solution. Additionally, purified proteins are needed for the 

experiment, making it a labor intensive and expensive technique. 

 Isothermal titration calorimetry
50, 51

 is a physical technique used to determine 

the thermodynamic parameters of interactions in solution. It uses a calorimeter 

that has a sample and reference cell within an adiabatic jacket. This 

instrument uses a set of very sensitive thermocouples to detect temperature 

differences between the sample and reference cells. The 

protein/macromolecule is placed in solution in the sample cell and the ligand 

is titrated into it allowing the instrument to detect a change in temperature as 

the macromolecule and ligand bind. The major drawback with this technique 

is that it requires expensive instrumentation that is not commonly available. 

Additionally, the nature of the instrument does not allow for measurements 

directly on live cells.  
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 Radioligand binding assays
52

 uses a radioactively-labeled ligand to asses the 

biding between that ligand and a protein/macromolecule. Using a competitive 

assay a single concentration of radioligand competes against different amount 

of unlabeled-ligand for binding to the macromolecule. Measurements are 

usually made using a scintillation counter. The drawbacks to this technique is 

that it uses expensive radioactive materials that can pose a hazard to the user.  

 The conjugation of targeting ligands to iron oxide nanoparticles has been 

extensively utilized to fabricate nanosensors and targeting imaging agents for the 

detection of various molecular targets.
30, 37, 53, 54

 In particular, we recently reported that 

binding of a protein target to a ligand attached to magnetic iron oxide nanoparticle  in 

solution resulted in an increase in the spin-spin relaxation times (T2) of the water protons 

in solution.
39

 This observation facilitated the development of magnetic relaxation 

nanosensors that can quantitatively sense the presence of a target by measuring the 

increase in the water T2 upon target binding. To differentiate our nanosensors from 

previously described magnetic nanosensors that cluster upon target addition resulting in a 

decrease (not an increase) in T2, we herein denote our nanosensors as binding magnetic 

relaxation (bMR) nanosensors and explore their utility as sensors to interrogate molecular 

interactions.  Specifically, we hypothesized that a targeting bMR nanosensor can be used 

in a competition assay format to determine the KD of a particular molecular interaction as 

it occurs on the surface of a nanoparticle. 
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Figure 3. Approach for the determination of the dissociation constant (KD) via 

changes in magnetic relaxation.  

In the absence of a competing ligand, the target protein interacts with ligands on the bMR 

nanosensors, resulting in a low ΔMR signal. As the concentration of competing ligand 

increases, the intercation between the protein and the nanosensor is disrupted, resulting in 

an increase in the ΔMR signal.  

 

 

Assay Design 

In our magnetic-relaxation-based competition assay, a constant amount of bMR 

nanosensors in a series of aqueous solutions containing increasing amounts of free 

competing ligand is mixed with the targeting protein. In the absence of free ligand, the 

target protein binds to ligands on the bMR nanosensors, causing an increase in the T2 of 

the solution.  This change in T2 represents the initial state of our assay and herein we 



18 

denote it as ΔT2 (initial). The addition of increasing amounts of free ligand (competitor) in 

the sample lowers the observed change in T2, as the added free ligands in solution 

compete with the bMR nanosensors for binding to the target protein. We denote this 

change in T2 in the presence of a competitor as ΔT2 (competitor). As the amount of free 

ligand increases, the magnetic relaxation signal change (ΔMR signal) defined herein as 

the [ΔT2 (initial) - ΔT2 (competitor)]/ΔT2 (initial) increases, reaching a plateau when ΔMR-signal  

approaches a value of one (Figure 3). The initial ΔMR signal in the absence of a 

competitor will be zero, since there is no competing ligand present in the sample to 

compete for binding to the target protein. Thus, low competitor concentrations will yield 

low ΔMR signals while high competitor concentrations will cause a disruption in the 

interaction between the target protein and the bMR nanosensors causing larger ΔMR 

signal values. 

Therefore as the concentration of the competitor increases in the system, the 

ΔMR-signal values are expected to increase, reflecting the competition that the free and 

competing ligand is effecting on the system. The concentration of free ligand at which a 

50% change in the MR value is observed is then defined as the dissociation constant. 

Specifically at this concentration, an equilibrium is achieved, where 50% of the target 

protein interacts with a free ligand and the remaining portion associates with the 

nanosensors, inducing quantifiable MR changes.  
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Materials and Methods 

 

Reagents. 

All reagents were of analytical reagent grade. Iron salts (Fe2Cl3  4H2O and 

Fe3Cl3  6H2O) were obtained from Fluka. Polyacrylic acid (PAA, MW 1.8 kDa), 

ammonium hydroxide, hydrochloric acid, N-hydroxysuccinimide (NHS), the CTB 

pentamer, Avidin, Biotin, Rhein, Glucose, Galactose, Lactose, -Cyclodextrin and 

Concanavalin A were purchased from Sigma-Aldrich, whereas Dextran (MW 10 kDa) 

was received from Pharmacosmos. EDC (1-ethyl-3- [3-

dimethylaminopropyl]carbodiimide hydrochloride) and Protein G were obtained from 

Pierce Biotechnology, and the Tetanus toxin C fragment (TTC) was from Roche 

Biomedical. Doxorubicin and PBS buffer were purchased from Fisher Scientific. Anti-FR 

antibody and EpCAM antibody were received from Santa Cruz Biotechnology.  MCF-7 

and HeLa cell lines were established from ATCC. 

Synthesis of protein-carrying bMRs. 

For the conjugation of proteins to the iron oxide nanoparticles, we utilized 

EDC/NHS chemistry as previously described
39

. Specifically, poly(acrylic acid)-coated 

nanoparticles ([Fe] = 0.25 mg/mL) were mixed with 2 mL of MES buffer (pH 6), 

followed by the drop wise addition of EDC (1 mg, 0.11 mmol) and NHS (0.8 mg, 0.15 

mmol). The reaction mixture was incubated for 3 min before the drop wise addition of 

Protein G (0.1 mg) or Avidin (0.15 mg) in DI water (0.1 mL). The reaction continued for 

30 min at room temperature under continuous mixing, before overnight incubation at 4 

C. To obtain the protein-carrying bMRs, we magnetically separated the reaction mixture 
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through a 1X-PBS-equilibrated LS25 column (Miltenyi). Conjugation of antibodies to 

Protein G-carrying bMRs (250 μL) was performed as previously reported,
39

 by using 0.5 

ng of  EpCAM Ab  (Santa Cruz Biotechnology) or 0.5ng of FR Ab (Santa Cruz 

Biotechnology), which resulted in low valency bMRs. The nanoparticle valency was 

evaluated as previously reported
37

, through quantification of the nanoparticle’s antibody 

amount using the BCA assay (Pierce Biotechnology).  

Preparation of small-molecule-carrying bMRs. 

Folic acid and doxorubicin- carrying bMRs were prepared as described in the 

literature
39

. To synthesize Rhein-conjugated bMRs a similar approach was followed. 

Briefly, propargylated poly(acrylic acid)-coated nanoparticles (3 mg, 2 mg/mL) were 

added to a low stoichiometric ratio of azide-functionalized Rhein (0.5 µg Rhein-N3, 10 

µg/ml DMSO).  The reaction was initiated at room temperature in the presence of 

catalytic amount of CuI (0.01 µg in 500 µL of bicarbonate buffer, pH 8.5), and further 

incubated for 12 h at room temperature. The final reaction mixture was purified with a 

magnetic column (LS25, Miltenyi) using DMSO as the elutant. The rhein – nanoparticle 

preparation was stored at room temperature until further use. Confirmation of the 

successful conjugation of Rhein to the nanoparticles was achieved through UV-Vis 

absorption spectroscopy, by recording rhein’s absorbance at 443 nm using Cary 300 

spectrophotometer. 

Dextran-coated Nanoparticle. 

Dextran-coated bMR nanoparticles were synthesized using a previously 

described method. Briefly, An acidic solution of iron salts containing 0.203 g FeCl2. 

4H2O and 0.488 g FeCl3. 6H2O in HCl solution (88.7 μl 12 N HCl in 2 ml water) was 
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mixed with ammonium hydroxide solution (830 μl NH4OH in 15 ml DI water) under 

stirring. The reaction mixture was stirred for 25 seconds before a solution of dextran (5 g 

in 10 ml DI water) was added. The resultant solution was continued to stir for 1 hr and 

then centrifuged at 4,000 rpm for 30 minutes to get rid off large particles. The resulting 

dextran-coated iron oxide nanoparticles in the supernatant were collected and washed and 

several times with distilled water and concentrated using a KrosFlow filtration system. 

Assay for the Determination of Dissociation (KD) Constant via Magnetic Relaxation: 

Avidin – Biotin KD Measurement: For this interaction we utilized Avidin-carrying bMRs 

(0.015 mg Fe/mL), which had a diameter of 76 nm and a r2 relaxivity of 116 mM
-1

s
-1

. 

The bMR analyzing solution consisted of 4.5 μL Avidin-carrying bMRs and 2,000 μL of 

de-ionized water. Samples containing 10 μL of different concentrations of free Avidin 

(competing ligand, 0.1 fM to 1 pM, in DI water) and 200 μL of the bMR analyzing 

solution (bMR nanosensor) were prepared followed by the addition of 10 µL Biotin 

(target small molecule, 205 nM). A negative control sample was prepared in the same 

fashion, adding 10 µL fresh 1X PBS buffer instead of Biotin (0 M Biotin control sample). 

Magnetic relaxation measurements were performed after 15 minutes of incubation at 

room temperature. Dynamic light scattering (DLS) studies were done using a 

PDDLS/CoolBatch 40T instrument using Precision Deconvolve 32 software. Transverse 

(T2) proton relaxation times measurements were done using a Bruker Minispec mq20 

NMR analyzer operating at a magnetic field of 0.47 T and at 37 °C. 

Protein G – IgG magnetic-relaxation-based KD determination: Following a similar 

approach as the Avidin – Biotin assay, the Protein G – IgG dissociation constant was 

measured. An analyzing solution of Protein G-carrying bMRs (0.007 mg Fe/ mL) was 
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incubated with various amounts of free Protein G (0.43 fM – 0.43 pM) in 1X PBS buffer. 

After the addition of IgG (50 nM, 1X PBS buffer) in the form of IgG-EpCAM antibody 

(Santa Cruz Biotechnology) as the target protein a 15-minute incubation period at room 

temperature was allowed before magnetic relaxation measurements were performed.  

Concanavalin A – Dextran KD determination: Dextran-coated iron oxide nanoparticles 

(0.012 mg Fe/mL, 115 nm and a r2 relaxivity of 175 mM
-1

s
-1

, in DI water
 
) were used as 

bMR sensors and introduced into a solution containing various amounts of free dextran 

(1.25 nM – 62.5 nM). The samples were then incubated with Concanavalin A (50 nM) for 

15 minutes at room temperature, followed by magnetic relaxation measurements.\ 

Folic Acid – Folate receptor expressed on the plasma membrane of HeLa cells: Various 

samples of 200 µL of an analyzing solution containing folic acid-carrying bMRs (0.01 

mg Fe/mL, in 1X PBS) were incubated with varying concentrations of free folic acid 

(competitor, 1.1 nM – 0.56 µM, 1X PBS). Folate-receptor-expressing HeLa cells in 1X 

PBS (10 µL , 10,000 cells quantified with a hemocytometer) were added to each sample 

followed by an incubation period of 30 minutes at room temperature. Magnetic relaxation 

measurements were then performed. 

Anti-folate-receptor Antibody – folate-receptor-expressing HeLa cells: Anti-folate-

receptor antibody-carrying bMRs (0.008 mg Fe/mL) were incubated with various 

concentrations of free anti-folate receptor antibody (competitor, 0.45 pM – 4.5 nM, 1X 

PBS ). The samples were then incubated with FR-expressing HeLa cells (10 µL, 10,000 

cells in 1X PBS) for 30 minutes at room temperature before performing magnetic 

relaxation measurements. 
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EpCAM Antibody – EpCAM-expressing MCF-7 cells: Samples containing EpCAM 

antibody-conjugated bMRs (0.008 mg Fe/mL) were incubated with various 

concentrations of free EpCAM antibody (competing protein, 45 fM – 45 nM, 1X PBS). 

The samples were then incubated with EpCAM-expressing MCF-7 cells (10 µL, 8,000 

cells in 1X PBS,) for 30 minutes at room temperature followed by magnetic relaxation 

measurements. 

TTC – Doxorubicin: Samples consisting 200 µL of an analyzing solution containing 

Doxorubicin-conjugated bMR nanosensors (0.01 mg Fe/mL)  and increasing amounts of 

free doxorubicin (0.9 µM – 12 µM, in 1X PBS) were prepared. The target protein TTC (4 

nM) was added to each sample followed by a 15- minute incubation at room temperature 

and magnetic relaxation measurements. 

TTC – Rhein: Following the same protocol as with the previous assays, rhein-conjugated 

bMR were introduced into a solution containing various amounts of free Rhein (0.5 µM – 

500 µM, 1X PBS). The samples were then incubated with TTC (4 nM) for 15 minutes at 

room temperature, before performing magnetic relaxation measurements. 

CTB – Carbohydrates: A nanoparticle analyzing solution was made out of 4.5 μL 

dextran-coated nanoparticles (5 mg Fe/ mL) and 2,000 μL de-ionized water. Samples 

containing of different concentrations of the carbohydrates of interest (concentration 

range provided below) and 200 μL of the nanoparticle analyzing solution were prepared, 

followed by the addition of CTB (10 μL 1.7 μM DI water). The samples were incubated 

for 15 minutes before performing magnetic relaxation measurements. Carbohydrates of 

Interest (DI water): Dextran (0.1 µM – 50 µM), Glucose (2.4 µM – 470 µM), Galactose 

(0.2 µM – 94 µM), Lactose (3.8 µM – 380 µM), -Cyclodextrin (0.4 µM – 200 µM) 
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Results 

 

In order to test our assay, we measured the KD via magnetic relaxation of a broad 

range of protein-ligand interactions with different degrees of affinities. As a model 

system, we first used the avidin - biotin interaction, a well-studied strong interaction, with 

reported KD values in the femtomolar range.
55

 For these studies, we designed a bMR 

nanosensor consisting of avidin-conjugated iron oxide nanoparticles (76 nm and an r2 

relaxivity of 116 mM
-1

s
-1 

at 0.47T). Samples containing the bMR nanosensor (0.015 mg 

Fe/mL) in a solution containing different concentrations (10 fM – 1 pM) of free avidin 

(competitor) were prepared, followed by the addition of biotin (200 nM). Within 15 

minutes, T2 measurements and calculation of the ΔMR signal values at various 

concentrations of inhibitor revealed a concentration-dependent trend (Figure 4A). A 50% 

change in the ΔMR signal values was observed at an avidin concentration of 3 fΜ, 

indicating that the avidin-biotin KD was equal to this value. This KD value is in close 

agreement with a reported KD value of 1fM, determined via titration calorimetry 

studies.
55

 In control studies with bovine serum albumin, the bMR nanosensors yielded 

nominal changes, suggesting that the observed changes in magnetic relaxation were 

target-specific. 

Next, we investigated the affinity between Protein G and IgG (Figure 4B), as 

well as Concanavalin A and dextran (Figure 4C), as model interactions for protein-

protein and protein-carbohydrate interactions. For the Protein G – IgG interaction, a bMR 

nanosensor composed of Protein G-carrying iron oxide nanoparticles was incubated with 

various amounts of free Protein G (0.43 fM – 0.43 pM), before addition of mouse IgG 

(50 nM) as target protein. Our magnetic relaxation results indicated that the KD of this 
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interaction was in the picomolar range (0.4 pM). The reported KD value for a similar 

interaction, using a rabbit IgG in a fluorescence binding assay, is also in the picomolar 

range (50 pM), although slightly higher.
56

 This is expected as the interaction with Protein 

G and IgG has been reported to be different depending on the source of IgG used (rabbit 

vs mouse).
57

 Meanwhile, for the interaction between dextran and the carbohydrate-

binding protein Concanavalin A (Figure 4C), dextran-coated iron oxide nanoparticles 

were used as bMR sensors and introduced to a solution containing various amounts of 

free dextran (1.25 nM – 62.5 nM), before addition of  Concanavalin A (50 nM). Our 

measurements indicated that a KD value for this interaction was is in the nanomolar range 

(18.8 nM), within the same range of the reported value in the literature (90 nM).
58

 The 

use of different sources and batches of Concanavalin A (a lectin) and dextran (a complex 

carbohydrate) might affect the interaction between these two macromolecules, resulting 

in different KD values. Furthermore, control experiments using bovine serum albumin 

(BSA) do not reveal a concentration-dependent signal change confirming the specificity 

of our assays (Figure 5, A-B). Taken together, these results indicate that our bMR-based 

method can rapidly measure the dissociation constant of different protein–ligand 

interactions within a wide range of affinities. 
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Figure 4.  Determination of the dissociation constant for protein-protein interactions 

via magnetic relaxation and bMR nanosensors.  

A) Avidin – Biotin, B) Protein G – IgG, C) Dextran – Concanavalin A. (Errors were 

within 1-2%, which are too small to depict). 
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Figure 5. Control experiments using different competitors.   

In this set of experiments the protein used as the competitor was different from that being 

used in the surface of the nanoparticles. These competitors were chosen specifically so 

that they would not specifically bind the target in order to establish the selectivity of our 

method. A) Protein G coated nanoparticles targeting IgG with Bovine Serum Albumin 

(BSA) as a competitor. B) Detxran coated nanoparticles targeting Concanavalin A with 

BSA as a competitor.  

 

After validating the ability of our magnetic relaxation method to measure KD 

values of molecular interactions in solution, we investigated whether our method can be 

applied to study interactions with transmembrane proteins in intact cells. Membrane 

proteins and cellular receptors control key biological processes within the cell and are the 

target for a wide variety of therapeutics.
59-61

 Most of the current methods to determine Kd 

values use purified membrane receptors in solution or attached to a flat surface.
49, 62-64

 

Therefore, we reasoned whether one could use the bMR assay to determine the KD 

between a ligand and a cell receptor using cells in suspension. To validate our hypothesis, 

we used the folate receptor (FR) as a model system and investigated the affinity of this 

receptor to its natural targeting ligand, folic acid, using HeLa cells as the source of FR.
65

 

For these studies, a folic-acid-conjugated iron oxide nanoparticle was used as the bMR 

nanosensor. Following a 30-minute incubation of the HeLa cells with the bMR 
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nanosensors and increasing amounts of free folic acid (1.1 nM – 0.56 µM), a similar 

behavior to that observed with the soluble protein targets was observed (Figure 6A). At 

low amount of competitor, a low ΔMRS-signal was observed that increased at higher 

concentrations and eventually reached a plateau, allowing us to calculate the KD as 16 nM 

for this particular interaction. This value compares with the reported values of 0.1 nM
66

  

and 30 nM
65

 for folate receptor/folic acid interactions. However, these values were 

obtained using the solubilized receptor in a radioligand-binding assay, instead of using 

HeLa cells in suspension. It is worth noticing the different KD values reported in the 

literature for the same molecular interaction, suggesting that these values depend on the 

nature of the assay and experimental conditions. 
49

 

The interaction between the folate receptor and an anti folate receptor antibody 

(Santa Cruz Biotechnology, sc-28997) was also studied (Figure 6B). For this study, anti 

folate antibody conjugated nanoparticles were used as bMR sensors. Results revealed a 

KD value in the low nanomolar range (0.19 nM), while the reported value in the literature 

for a system using a recombinant solubilized receptor and a totally different antibody was 

2.23 nM.
62

 In control studies, substituting the FR antibody with the EpCAM antibody 

(Santa Cruz Biotechnology, sc-73491) resulted in no significant increase in the ΔMR 

signal value with increasing concentration of EpCAM antibody. Similarly, no response 

was observed when MCF-7 cells were used, as this cell line does not express the folate 

receptor assays (Figure 7 A-B). These results indicate that the observed changes in ΔMR 

signal are specific to a folate receptor/anti-folate antibody interaction and not to a non-

specific interaction between the designed bMR nanosensors and the HeLa cells. In 

additional experiments, we used the anti EpCAM antibody conjugated iron oxide 



29 

nanoparticles as bMR nanosensors to measure the KD between the EpCAM antibody and 

EpCAM receptors in MCF-7 cells (Figure 6C). Our results indicated a KD of 73 pM 

while the reported value in the literature is 550 pM.
63

 Again, these studies were 

performed using the extracellular domain of EpCAM (expressed and purified from yeast) 

and attached to a solid support for SPR studies. Taken together, these results indicate that 

our magnetic relaxation method can be used to study the interaction of small molecule 

ligand and proteins with cell surface receptors using intact cells with comparable 

accuracy to current methods, yet at a higher speed and potentially lower cost. As these 

experiments are performed within 30 minutes with cells in suspension, any endocytosis 

of the nanoparticles is minimized. 
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Figure 6.  Determination of the dissociation constant for protein-cells interactions 

via magnetic relaxation and bMR nanosensors.  

A) Folic acid – Folate receptor (FR) expressed on HeLa cells, B) anti-folate-receptor 

antibody – Folate receptor on HeLa cells), C) anti-EpCAM antibody – EpCAM Receptor 

(MCF-7 Cells). (Errors were within 1-2%, which are too small to depict). 

 

 

 

 



31 

 

Figure 7. Control experiments using different competitors.   

In this set of experiments the protein used as the competitor was different from that being 

used in the surface of the nanoparticles. These competitors were chosen specifically so 

that they would not specifically bind the target in order to establish the selectivity of our 

method. A) FR Antibody coated nanoparticles targeting FR receptor on HeLa cells with 

EpCAM antibody as a competitor. B) EpCAM Antibody coated nanoparticles targeting 

EpCAM receptor on MCF-7 cells with FR antibody as a competitor. 

 

Next, we utilized the bMR nanosensor based competition assay to study the 

interaction between toxins and small molecules. Recent reports describe the interaction of 

doxorubicin with the tetanus toxin C fragment (TTC)
67

 and galactose or dextran with 

cholera toxin B subunit (CTB).
40

 The study of these interactions is important for the 

development of small-molecule-based therapeutics. For the TTC-doxorubicin interaction, 

a doxorubicin-carrying iron oxide nanoparticle was designed. Within 15 minutes, we 

were able to observe a sigmoidal response with increasing ΔMR-signal value upon 

incubation of the bMR nanosensors with TTC (4 nM) in the presence of increasing 

amounts (0.9 µM – 12 µM) of doxorubicin (Figure 8A). Using this data a  KD  of 4.1 μΜ 

was calculated, which is close to the reported value of 9.4 μΜ determined using a similar 

competition assay to ours with a fluorescence readout instead of magnetic relaxation.
68
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Next, we tested if rhein, an anthracycline antibiotic structurally similar to 

doxorubicin, binds to TTC. Results show that indeed rhein interacts with TTC with a Kd 

value of 33.6 μΜ, which is slightly higher (weaker affinity) to the interaction with  

doxorubicin (Figure 8B). To our knowledge this is the first time that rhein has been 

reported to bind TTC. This interaction can be atributed to the fact that both molecules 

posess an anthraquinone group, which in the case of doxorubicin has been reported to 

play a key role in TTC binding.
[25] 

This observation points toward the use of our bMR 

nanosensor-based competition assay in structure activity relationship (SAR) studies, 

where the competition of structurally similar compounds toward binding to a particular 

protein or cellular receptor is studied by magnetic relaxation.  

 

 

Figure 8. Determination of the dissociation constant of small molecules (doxorubicin 

and rhein) and TTC, via bMR nanosensors and magnetic relaxation.  

A) Doxorubicin – TTC. B) Rhein – TTC. (Errors were within 1-2%, which were too 

small to depict.) 

 

Meanwhile, the interaction of the cholera toxin B subunit (CTB) with dextran was 

studied using dextran-coated iron oxide nanoparticles as bMR nanosensors (Figure 9). 
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Using our competition method, we found that the KD of the dextran – CTB interaction to 

be 4.9 μΜ. This value is substantially lower that the value we have previously reported 

using SPR (14 mM).
40

 In that report, CTB was immobilized to the SPR gold plate, using 

a ganglioside as a linker. Likely, this approach may block sites where dextran binds to, 

therefore affecting the interaction between CTB and dextran. Hence as the spatial 

orientation of these entities is constrained by the adhering mechanism, this may affect the 

KD values. Our magnetic relaxation method using bMR sensors in solution is a 

homogeneous assay and therefore more sensitive than those involving the attachment of 

the target protein to a solid support.
69, 70

 

 

 

Figure 9. Determination of the dissociation constant of Dextran and CTB via 

magnetic relaxation and bMR nanosensors. 
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Finally, we investigated whether the dextran-coated iron oxide nanoparticles can 

be used as bMR nanosensors to study the interaction of CTB with other carbohydrates. 

We reasoned that this bMR nanosensor  may be able to identify the KD of similar 

molecules, due to their structural resemblance and chemical composition (i.e. functional 

groups) between the nanoparticles’ coating and the screened molecules. These studies 

revealed that increasing concentrations of glucose, galactose, lactose and β-cyclodextrin 

disrupted the association between dextran-coated iron oxide nanoparticles and CTB 

(Figure 10A-D). Hence, we determined that glucose had a KD of 36 μM, whereas the KD 

of galactose, lactose, and β-cyclodextrin were 3.5 μM, 88 μM, and 5.6 μM respectively.  

Summarizing, we observed that dextran has a lower affinity towards CTB than galactose 

and β-cyclodextrin, while lactose has the least affinity followed by glucose (KDGal < 

KDCyclo < KDDex < KDGlu < KDLac). To our knowledge, the interaction of these 

carbohydrates with CTB has not been previously reported. Overall, this study’s findings 

are summarized in Table 1.  
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Figure 10. Determination of the dissociation constant of carbohydrates and CTB via 

magnetic relaxation and bMR nanosensors.  

A) Glucose – CTB. B) Galactose – CTB. C) Lactose – CTB. D) -Cyclodextrin – 

CTB. (Errors were within 1-2%, which were too small to depict.) 
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Table 1. Comparison of dissociation constant (KD) values determined in this study 

with those reported in the literature.  

Interaction
 

KD 
[a]

 
KD 

[b]
 

Reported  

Avidin – Biotin  3 fM 1 fM 
55

 

Protein G – IgG    0.4 pM 50 pM 
56

 

Concanavalin A – Dextran 11.8 nM 90 nM 
58

 

Folate receptor – Folic Acid 16 nM 0.1 nM 
66

 

Folate receptor  – anti-FR Ab 0.19 nm 2.2 nM 
62

 

EpCAM receptor – anti-EpCAM Ab 73 pM 550 pM 
63

 

TTC – Doxorubicin  4.1 M 9.4 M 
68

 

TTC – Rhein  33.6 M N/A 

CTB – Dextran  4.9 M 14 mM 
40

 

CTB – Glucose  36 M N/A 

CTB – Galactose  3.5 M N/A 

CTB – Lactose  88 M N/A 

CTB – -Cyclodextrin 3.6 M N/A 
[a] Values determined using bMR nanosensor competition assay 

[b] Values reported in the literature, corresponding reference in bracket 
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Conclusion 

 

 We have developed a new method to measure the dissociation constants KD of 

molecular interactions based on magnetic relaxation. 

 Our system has the ability to work over a wide range of affinities and conditions. 

 This is a unique method as it measures the interaction between ligands on the 

surface of a nanoparticle with either solubilized proteins or a cell surface 

receptor on intact cells. 

 Due to the multivalent nature of the interactions between ligand on a 

nanoparticle and receptors on the surface of a cell, our assay is able to give a 

more realistic KD measurement as it takes into account the role that avidity plays 

in these interactions.  

 We discovered the interaction between a Rhein and TTC and reported its 

dissociation constant. 

 New interactions between galactose, β-cyclodextrin, lactose and CTB were 

discovered and reported.  

 

Discussion 

 

The use of Magnetic Relaxation Nanosensors (MRnS) for the detection of 

pathogens has become a powerful biodiagnostic tool capable of producing rapid and 

accurate results. For instance, MRNs avoid the downfall of commonly used technologies 

that rely in the use of expensive reagents and/or sensitive reporting modalities 

(fluorophores), by taking advantage of their intrinsic and robust magnetic properties to 
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report changes of macromolecular aggregation with a high degree of sensitivity. In recent 

years this technology has been extensively used to investigate the detection of different 

targets such as bacteria, cancer cells and toxins. Also throughout this time, along with the 

ongoing development of these MRnS-based biodiagnostics, the molecular dynamics 

associated nanoparticle – target interaction was further studied. This led to the 

understanding of the binding versus clustering effect in which nanoparticle valency and 

target concentration play a vital role in dictating the behavior of nanoparticles in solution. 

 Based on this knowledge, we created an assay capable of measuring the 

dissociation constant KD of different interactions using bMRs (binding Magnetic  

Relaxation sensors). This assay takes advantage of the sensitive response observed when 

low amount of targets interact with low-valency nanoparticles.  By controlling the 

amount of target that binds to the surface of the nanoparticle, we were able to developed 

a competitive assay that accurately measured the dissociation constant of protein – 

protein, protein – live-cell receptors, and small molecule – toxin interactions. 

 Our bMRs assay provided various advantages over the currently used techniques 

such as surface plasmon resonance (SPR), titration calorimetry, and radioligand binding 

assay. For instance, the bMRs assay does not need the binding of either the ligand or the 

protein onto a solid support, a requirement for SPR that neglects the effect a real 

conditions such as avidity that may be found on a cell’s surface. Also, as opposed to 

titration calorimetry and radioligand binding assay, our system does not require 

expensive instrumentation or the use of radioactive materials.  

 Overall, we introduced a novel method to measure the dissociation constants of 

molecular interactions over a wide range of affinities using magnetic relaxation. 
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Experiments with different categories of interactions showed that significant accuracy 

can be achieved when using this methodology as compared to traditionally established 

methods. Furthermore we established a method that is capable of measuring dissociation 

constants on the cellular surface while the cells are suspended in solution. Also the 

previously unknown KD values of different carbohydrate-CTB interactions as well as two 

newly discovered interactions between small molecules and Tetanus toxin C fragment 

were reported. Lastly, it is likely that the reported method could facilitate the study of KD 

values by taking advantage of the robustness and stability that MRnS possesses.  

 Taking the merits of our method into consideration, this study is important 

because it uses a platform technology, based on magnetic nanoparticles, that can be used 

to study multiple kinds of molecular interactions including those between toxins and 

small molecules. Since the surface of bMRs can be easily modified to carry any ligand of 

choice, the applications of this technique can be expanded to just about any kind of 

molecular interaction. This can facilitate and accelerate the discovery of new interactions 

in the field of therapeutics, specifically when identifying new inhibitors for toxins. The 

discovery of small molecules that bind and inhibit toxins is of great importance due to the 

prevalent damage associated with toxins. Using the magnetic relaxation method we could 

easily identify and measure new interactions between small molecules and toxins, 

without the need of special instrumentation or radioactive regents. Furthermore, this 

method will allow for quick and effective measurements that can be performed in 

solution, without the need of having the toxin attached to a metal support.
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CHAPTER III: SCREENING OF A SMALL-MOLECULE LIBRARY 

AGAINST THE ANTHRAX TOXIN VIA MAGNETIC 

RELAXATION. 
 

 

Introduction 

 

An Anthrax infection usually has a deadly and devastating effect on the host 

before it can be correctly detected and successfully treated. Anthrax is a bacterial 

infection from the gram-positive Bacillus anthracis that propagates through the release of 

bacterial spores. Historically, Anthrax infections have been of little danger to humans 

since they typically occur in animals that eat or inhale spores while grazing
22

. Yet, the 

weaponization of the bacterial spores has made this disease a potential danger to 

humans
71

. There are two types of anthrax, subcutaneous
8
 which occurs when the spores 

enter a surface wound and inhalation, which occurs when the spores are directly inhaled. 

Subcutaneous anthrax is a mild disease treatable with antibiotics while inhalation anthrax, 

the weaponized type, tends to be fatal in 90% of cases
72

. Once the spores are inhaled, the 

bacteria is able to reproduce and starts to damage healthy cells by the release of the 

anthrax toxin. The anthrax toxin is composed of three proteins: (i) anthrax protective 

antigen (APA), (ii) anthrax lethal factor (ALF), and (iii) anthrax edema factor (AEF) that 

work in combination to effectuate the lethality associated with the disease. Out of the 

three proteins the first two are of greater importance due to the indispensable role that the 

protective antigen plays in internalizing the two factors into healthy cells, and the rapid 

and devastating effect that the lethal factor has on host cells
73-75

.  
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After infection, the disease progresses in different stages (Table 2).
76

 The 

common development of the disease starts with the incubation period, a time in which the 

spores settle into the body, usually lasting less than one week but can extend up to two 

months and culminates with the initial onset of symptoms. These symptoms manifest in 

the form of low-grade fever, nonproductive cough, malaise, profound sweats and chest 

discomfort. This followed by a subsequent phase that starts with a 1-5 days period in 

which the patient experiences an abrupt onset of high fever and severe respiratory distress 

due to the release of the anthrax toxins into the blood stream. Sometimes the subsequent 

phase is delayed by 1-3 day period of improvement in the symptoms. The subsequent 

phase ends with the patient going in to shock, which lasts 24-36 hours and culminates in 

death. Experiments in mice have revealed that death occurs within a couple of hours after 

signs of infection are observed.  In humans, the subsequent phase lasts up to 10 days after 

the initial symptom onset due to the slower progressing of the disease. Therefore the 

subsequent phase is crucial for the treatment of anthrax in humans as this is the period in 

which the disease can be detected and treated. 

Table 2. Progression of anthrax in humans. 

Stage Duration Symptoms 

Incubation period 
<1 week, my last up 

to 2 months 
None 

Onset of Symptoms 1-5 days 

Low-grade fever, 

nonproductive cough, 

malaise, profound sweats  

and chest discomfort 

Subsequent Phase 1-5 days 
High fever, severe 

respiratory distress. 

Shock 24-36 hours Death 
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Current diagnostic technologies lack the speed needed to identify the disease on 

time, and modern antibiotics are effective at killing the bacterium but have no effect on 

the destructive toxins left behind long after the bacteria is eliminated
77

. With symptoms 

similar to those of other diseases, faster diagnostic systems are needed to quickly treat the 

infection in the early stages of the disease.
76

 Furthermore, not only the bacterium needs to 

be eradicated from the body, but the toxins that are left behind also need to be inhibited in 

order to arrest further damage to healthy tissue. Therefore, there is need for fast and 

reliable detection methods as well as more effective therapeutic approaches that focus on 

detecting and inhibiting the bacterial toxins instead of just killing the bacterium. In 

particular, nanoparticle-based diagnostics can offer a sensitive, robust, portable, and low-

cost detection system while also potentially being used to inhibit the anthrax bacterial 

toxins.   

Existing treatment options for anthrax are limited to a few antibiotics such as 

ciprofloxacin, doxycycline and penicillin that target and eliminate the bacterium but have 

no effect on the destructive toxins that can stay in the circulation a couple of days after 

the infection is eliminated
78

. On the other hand there are various detection methods that 

can successfully identify the bacterium, yet none of these methods are fast enough to 

improve the prognosis of an infected patient
77

. Currently available detection methods 

include traditional microscopy studies in which the bacteria is grown for 1-2 days and 

then stained and observed via microscopy.  Further confirmatory tests are usually 

required and tend to prolong the time for diagnosis by several days. More recent methods 

use nucleic acid-based detection assays, which rely on PCR amplification and require the 

use of specialized primers or probes that have to be carefully selected to avoid any cross-
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reaction with other related species during the amplification. Although this method can 

provide a faster diagnosis, a bacterial culture is still required to isolate the nucleic acids 

adding a couple of days to obtain results. Due to the rapid progress of the disease, a 

detection method with a faster turn around time is needed. This was particularly observed 

during the 2001 U.S anthrax attacks in which 5 out of the 11 cases of inhalation anthrax 

ended in death with a subsequent phase lasting approximately 5 days.
72

 During this time, 

only 1 of the 5 anthrax infections was confirmed before the death of the patients, making 

the need for a fast detection method that does not rely in bacterial culture of outmost 

importance.  

One alternative is to directly detect the anthrax toxin in the blood stream. This 

will bypass the need for a bacterial culture as well as significantly reduce the time needed 

for an efficient diagnosis. Additionally, a detection method that directly targets the toxin 

can also be used to inhibit its activity without the need of additional therapeutics. A 

nanoparticle that selectively binds to a toxin and the binding results in a detectable signal 

that is sensitive and quantifiable can be used as a detection assay. Furthermore, if the 

binding event occurs at or near the catalytic site of the toxin, therefore affecting the 

pathogenic tissue damaging of the toxin, then it can also be used as a therapeutic.  With 

the expansion of nanotechnology, systems that offer theranostic (therapeutic and 

diagnostic) capabilities have been more widely used due to the multi-platform approach 

inherent of nanotechnology. The development of polymeric coated nanoparticles have 

allowed for theranostics with fast detection times as well as therapeutic cargoes usually 

stored within the polymeric coating. Specifically, superparamagnetic iron oxide 

nanoparticles (IONP) theranostics have been used to successfully treat and detect cancer 



44 

cells.
37

 As a detection method, IONP based systems have been used as Magnetic 

relaxation nanosensors (MRnS) that have the capability of analyzing and detecting 

different pathogens within a couple of hours. Recently, MRnS have been used to detect 

several biological agents such as cells, toxins and DNA fragments in complex samples.
30, 

38, 40, 79, 80
 Detection occurs after the specific binding of a target to the surface of the 

MRnS produces a change in the water proton spin-spin relaxation time (T2) of the 

sample.
36

 MRnS can be tailored to detect a range of multiple targets by engineering the 

ligands in the surface of the nanoparticle. These ligands can be small peptides, antibodies, 

DNA fragments or small molecules. Specifically, antibodies and small molecules have 

been identified to bind and inhibit the anthrax toxins, particularly the APA and ALF, 

allowing for the opportunity to use MRnS to detect and inhibit the anthrax toxins. There 

are various commercially available antibodies that target the APA as well as several 

small molecules inhibitors of the ALF.
19, 81, 82

 The drawback with the identified ligands is 

that they tend to be expensive to produce, in the case of antibodies, or are complex to 

synthesize, as it is the case for small molecules. Therefore there is a need for the 

identification of new anthrax toxins-binding ligands that have the capability to inhibit the 

toxin and are cost-efficient and readily available.  

In order to achieve this undertaking an economic and readily available small-

molecule library will be screened against the APA and ALF using MRnS as the detection 

method. Each candidate in the library will be chemically coupled to the surface of MRnS 

(Figure 11) and the change in magnetic relaxation as the small molecules interact with 

either toxin will be measured. If the small molecule that is attached to the MRnS binds to 

the toxins, a significant change in T2 will be observed allowing the identification of a new 
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toxin binder. The affinity of the newly identified molecule to either anthrax toxin will 

then be evaluated by measuring the dissociation constant using the magnetic relaxation 

method used in the previous chapter. As these small molecule-carrying MRnS bind to the 

components of the anthrax toxin, they could be used not only to detect, but also 

potentially be used to treat the disease. 

 

 

Figure 11. Synthetic procedure used to attach the small molecules to the 

nanoparticles.  

Naproxen is the molecule shown in the diagram.  Using a similar approach the small 

molecules of the library will be attached to iron oxide nanoparticles.  
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Selection of small-molecule library 

The first step towards screening the small-molecule library for its binding to the 

anthrax toxins will be to assemble the library using the following criteria. In order to 

achieve this, a list of 1000 commonly available carboxylic acid-bearing small molecules 

was compiled from Sigma-Aldirch. Molecules with carboxylic acids were chosen 

because this functionality would later be used to attach the molecule to the surface of the 

nanoparticle. The list was then reduced to 43 molecules based on a comparison of 

structural similarity to that of know inhibitors of the target proteins. Out of the 43 

molecules 34 were then selected based on price and availability. In order to ensure the 

biocompatibility of the small molecule library, all the compounds selected were common 

chemicals; most of them FDA approved drugs that are currently used in the field. By 

using small molecules that are already FDA approved, these small molecules could 

potentially be used to treat the effects of the anthrax toxin in the near future. 

 

Materials and Methods 

 

Reagents 

All reagents were of analytical reagent grade. Iron salts (Fe2Cl3  4H2O and 

Fe3Cl3  6H2O), Polyacrylic acid (PAA, MW 1.8 kDa), ammonium hydroxide, 

hydrochloric acid, propargylamine, N-hydroxysuccinimide (NHS), Bezafibrate, Sulindac, 

Ketoprofen, Indometacin, Ibuprofen, Retinoic Acid, (S)-(+)-6-Methoxy-α-methyl-2-

naphthaleneacetic acid, Homovanillic Acid, (±)-α-Lipoic acid, Sodium Deoxycholate, 

Nalidixic Acid, L-Mimosine from Koa hoale seeds, N-Hippuryl-His-Leu Hydrate, 
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Acemetacin, Mefenamic Acid, Cetirizine dihydrochloride, Furosemide, Enoxacin, 3-

Iodo-L-Tyrosine, Rebamipide Hydrate, Bumetanide, Aristolochic Acid I, Mycophenolic 

Acid, Etodolac, Fusaric Acid, R(+)-IAA-94, Tamibarotene, NS3694, Sivelestat sodium 

salt hydrate, Oxaprozin, GW9508, Raltitrexed monohydrate, Rhein, and Doxorubicin 

were obtained from Sigma Aldrich whereas EDC (1-ethyl-3- [3-

dimethylaminopropyl]carbodiimide hydrochloride) was obtained from Pierce 

Biotechnology. The Anthrax Lethal Factor and Anthrax Protective Antigen were obtained 

from List Biological Laboratories, INC.  

Synthesis of PAA coated Iron Oxide Nanoparticles. 

Iron oxide nanoparticles (PAA-IONPs) were prepared using a water based step-

wise synthetic procedure.  Three solutions were prepared; an iron salt solution (0.62 g of 

FeCl3. 6H2O and 0.32 g of FeCl2. 4H2O) in 2.0 mL of DI water and 100 µL HCl (100 μL 

of 12 N HCl; an alkaline solution containing 1.8 mL of 30% NH4OH solution in 15 mL 

of DI water; and a stabilizing polymer solution containing 820 mg of polyacrylic acid in 

5 mL of DI water. The step-wise synthesis of the PAA-IONP was started by the addition 

of the iron salt solution to the alkaline solution under vigorous stirring. The resulting dark 

suspension of iron oxide nanoparticles was then stirred for 30 seconds before addition of 

the stabilizing polymer solution. The mixture of the three solutions was stirred for 1 h. 

The resulting suspension of PAA-IONPs was then centrifuged at 4000 rpm for 30 

minutes and the nanoparticle-containing supernatant was filtered 20 times its volume 

with DI water to get rid of free polyacrylic acid and other unreacted reagents using a 

KrosFlow filtration system from Spectrum Labs (filtration column: PS/10kD). Finally, 

the PAA-IONP suspension was purified using magnetic column, washed with phosphate 
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buffer saline (pH = 7.4) and concentrated using the KrosFlow system. The iron 

concentration and magnetic relaxation of the PAA-IONPs was determined as previously 

reported [Josephson et. al. Bioconjugate Chem. 1999, 10, 186–191]. The successful 

coating of the IONPs with PAA was confirmed by the presence of a negative zeta-

potential (ζ = −98 mV) as well as the appearance of the acid carbonyl band at 1690 cm
-1

 

in the FTIR spectra of the nanoparticle. 

Propargylation of PAA-coated Iron Oxide Nanoparticles. 

To a suspension of PAA-IONP (50 mg Fe) in MES buffer (30 mL, pH = 6.5), a 

solution of EDC (115.2 mg, 0.6 mmol) and NHS (69 mg, 0.6 mmol) in MES buffer (2.5 

mL) was added and incubated under stirring for 3 minutes. To the resulting reaction 

mixture, propargylamine (33 mg, 0.6 mmol) in DMSO (0.75 mL) was added drop-wise 

under medium stirring and incubated for 6 h at room temperature. The resulting reaction 

mixture was then purified using a magnetic column and concentrated using KrosFlow 

filtration system to approximately 5 mg/ml Propargylated-IONP in PBS. The 

nanoparticles were stored at 4 °C. FT-IR data analysis confirmed the completion and 

success of the conjugation by the appearance of the amide N-H bending (1550 cm
-1

) and 

C=O stretching (1640 cm
-1

) as well as the alkyne CC stretching at 2260 cm
-1

. 

Synthesis of the Azide linker. 

A solution of 3-chloropropylamine hydrochloride (1 equiv., 54 mmol) and sodium 

azide (3 equiv, 162 mol) in DI water (40 mL) was heated at 80 °C for 15h. After 

removing most of the water by distillation under vacuum, the reaction mixture was 

cooled in an ice bath. The remaining solution was mixed with diethyl ether (75 mL) and 

KOH pellets (7 g) while keeping the temperature below 10 °C. After separation of the 
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organic phase, the aqueous layer was further extracted with diethyl ether (3 X 20 mL). 

The combined organic layers were dried over K2CO3 and concentrated and dried under 

vacuum to give an oily compound. The resulting compound 3-azidopropan-1-amine(85% 

yield) bp: 48-50 °C was characterized by 1 H NMR (300 MHz), δ 1.53 (s , 2H), 1.75 

(quint, 2H, J = 6.81, 2.82 (t, 2H, J = 6.8), 3.38 (t, 2H, J = 6.7). FTIR: N3 stretching band 

at 2100 cm
-1

. 

Coupling of the Azide linker to the small molecules. 

 A solution containing the small molecule (1 equiv.) and CDI (1.2 equiv) in the 

selected solvent (see table) was stirred for 3 hrs at 45 °C under a dried N2 atmosphere. 

After the time expired, the Azide-linker (1 equiv.) was added and the resulting solution 

was then stirred for 10 hrs at room temperature. The solvent from the reaction mixture 

was then evaporated via rotator evaporation and the remaining compound was purified by 

silica column chromatography using a MeOH/CHCl3 mixture (0-20% MeOH / 100-80 % 

CHCl3). The coupling of the azide linker to the small molecule was confirmed by FTIR 

by the appearance of the stretching band at 2100 cm
-1

 that is characteristic of the N3 

functional group. Table 2 describes the weights of each reagent used as well as the 

reaction conditions for each molecule. Three of the molecules proved to be insoluble in 

the solvents necessary for the reaction to be successful. These insoluble molecules are 

labeled as insoluble in Table 2 and no reaction was performed with them. The reaction 

involving one of the molecules was unsuccessful after several attempts to optimize the 

conditions. This molecule is labeled as NO RXN (no reaction) in Table 2. 
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Table 3. Conditions for the coupling of the azide linker to the small molecules 

Small Molecule  Solvent Wt. SM Wt. CDI 
Wt. Azide 

Linker 

N3 IR 

Band 

3-Iodo-L-tyrosine Insoluble Insoluble Insoluble Insoluble Insoluble 

Acetametacin CHCl3 92.3 mg 43.1 mg 22.2 mg 2096 cm
-1

 

Aristolochic Acid I THF 25 mg 14.2 mg 7.32 mg 2097 cm
-1

 

Bezafibrate THF 100 mg 53.7 mg 27.6 mg 2096 cm
-1

 

Butanemide THF 87 mg 46.5 mg  23.8 mg 2098 cm
-1

 

Ceterizine HCl THF 50 mg 21.0 mg 10.8 mg 2097 cm
-1

 

Deoxycholate Insoluble Insoluble Insoluble Insoluble Insoluble 

Doxorubicin THF 10 mg 3.35 mg 1.72 mg* 2098 cm
-1

 

Enoxacin Insoluble Insoluble Insoluble Insoluble Insoluble 

Etodolac CH2Cl2 10 mg 6.8 mg 3.5 mg 2093 cm
-1

 

Furosemide THF 99.1 mg 58.2 mg 30.0 mg 2097 cm
-1

 

Fusaric Acid CHCl3 91.5 mg 99.3 mg 51.1 mg 2093 cm
-1

 

GW9508 CH2Cl2 5.0 mg 2.8 mg  1.7 mg 2097 cm
-1

 

Homovanilic Acid THF 69 mg 73.7 mg 37.9 mg 2097 cm
-1

 

Ibuprofen CHCl3 98.3 mg 92.6 mg 47.6 mg 2093 cm
-1

 

Indometacin CHCl3 100 mg 54.3 mg 28.0 mg 2096 cm
-1

 

Ketoprofen CHCl3 100 mg 76.5 mg 39.4 mg 2093 cm
-1

 

L-Mimosine THF 25 mg 24.5 mg 12.6 mg 2102 cm
-1

 

Lipoic Acid CH2Cl2 100 mg 94.4 mg 48.5 mg 2092 cm
-1

 

Mefenamic Acid CHCl3 100 mg 80.7 mg 41.5 mg 2094 cm
-1

 

Mycophenolic acid THF 50.0 mg 30.4 mg 15.63 NO RXN 

N-Hippuryl-His-Leu THF 25 mg 11.3 mg 7.0 mg 2097 cm
-1

 

Nalidixic Acid CHCl3 100 mg 83.8 mg 43.1 mg 2097 cm
-1 

Naproxen CHCl3 100 mg 84.5 mg 43.5 mg 2096 cm
-1

 

NS3694 THF 5.0 mg 2.71 mg 1.39 mg 2095 cm
-1

 

Oxaprozin THF 5.0 mg 3.31 mg 2.0 mg 2094 cm
-1

 

R(+)-IAA-94 CHCl3 10 mg 5.4 mg 3.4 mg 2096 cm
-1

 

Raltiterexed  THF 10 mg 4.1 mg 2.0 mg 2099 cm
-1

 

Rebamipide CH2Cl2 5.0 mg 2.62 mg 1.6 mg 2098cm
-1

 

Retinoic Acid THF 50 mg 32.4 mg 16.7 mg 2099 cm
-1

 

Rhein CHCl3 50 mg 34.2 mg 17.6 mg 2096 cm
-1

 

Sivelestat THF 5.0 mg 2.24 mg 1.15 mg 2101 cm
-1

 

Sulindac CH2Cl2 100 mg 54.5 mg 28.1 mg 2094 cm
-1

 

Tamibarotene CHCl3 5.0 mg 2.8 mg 1.7 mg 2097 cm
-1

 

* A different azide-linker was used, 3-azidopropanoic acid. 
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Attaching the Small Molecules to the MRnS. 

 To synthesize Small molecules-carrying MRnS click chemistry was used to 

couple the propargyl groups on the nanoparticles to the azide on the small molecules. 

Briefly, propargylated poly(acrylic acid)-coated nanoparticles (3 mg, 2 mg/mL, 1 equiv.) 

were added to a low stoichiometric ratio of azide-functionalized small molecules (5 

equiv.) with the purpose of attaching approximately 5 small molecule per nanoparticle.  

The reaction was initiated at room temperature in the presence of catalytic amount of CuI 

(0.01 µg in 500 µL of bicarbonate buffer, pH 8.5), and further incubated for 12 h at room 

temperature. The final reaction mixture was purified with a magnetic column (LS25, 

Miltenyi) using DMSO as the elutant. The small molecule-carrying nanoparticle 

preparations were stored at room temperature until further use. Confirmation of the 

successful conjugation of the small molecules to the nanoparticles was achieved through 

either UV-Vis absorption spectroscopy or Fluorescence spectroscopy, depending on the 

spectroscopic profile of each individual molecule. 

Assay for the screening of the small molecule library against APA and ALF. 

An analyzing solution consisting of 10 µL of the Small molecule-carrying MRnS 

and 2,000 µL DI water was prepared. Samples containing different concentrations of free 

toxin (APA or ALF, 2 pM to 20 nM, in 1X PBS buffer) were prepared and 2 µL of each 

sample was added to 200 μL of the MRnS analyzing solution (Small molecule-MRnS). A 

negative control sample was prepared in the same fashion, adding 2 µL fresh 1X PBS 

buffer instead of toxin (0 M APA or ALF control sample). Magnetic relaxation 

measurements were performed every 15 minutes of incubation at room temperature for 1 

hour. Transverse (T2) proton relaxation times measurements were obtained using a 
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Bruker Minispec mq20 NMR analyzer operating at a magnetic field of 0.47 T and at 37 

°C. 

 

Results 

 

After choosing the molecules they were chemically coupled to an azide liker via 

carbonyldiimidazole chemistry by taking advantage of their carboxylic acid groups. Out 

of the 34 molecules selected, there were four molecules that either did not react or were 

insoluble in all of the available solvents for a successful reaction (Table 2). The 

remaining 30 molecules were verified via FTIR for the appearance of the stretching band 

of the N3 at 2100 cm
-1

 that is characteristic of the N3 functional group in the azide linker 

(Figure 12). 

 
Figure 12. Representative FTIR spectra for the N3 modification of the small-

molecule library.   

All of the selected molecules displayed the appearance of the 2100 cm
-1

 stretching band 

of the N3 after the azide-linker was chemically coupled to the small molecule. This was 

indicative of the successful modification needed to attach the small molecule to the 

nanoparticle.  
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After the small-molecule library was selected and functionalized for click 

chemistry, the next step was to prepare the SM-MRnS conjugate. Briefly, polyacrylic 

acid coated iron oxide nanoparticles (75 nm, R2: 230 mMs
-1

) were synthesized and 

surface-functionalized with a small linker containing propargyl groups. The addition of 

propargyl groups to the surface of the IONPs was verified by observing a gain in the zeta 

potential (ζ) from – 98.8 mV to -57 mV. This increase is attributed to the addition of 

propargyl-linkers to the surface of the nanoparticle, which utilize carboxylic acid groups 

and consequently reduce the overall negative charge on the surface. Once the IONPs 

were ready for click chemistry the next step was to make them a MRNS by clicking the 

small molecules to their surface. This was achieved by reacting the propargyl-coated 

IONPs with the Azide-coupled small molecules in the presence of catalytic amounts of 

copper iodine. The successful addition of the small molecule to the surface of the 

nanoparticle was verified by either fluorescence or absorbance spectroscopy, depending 

on the spectroscopic characteristics of the small molecule in question. For small 

molecules with strong UV-VIS absorption, a UV-VIS spectrum of the small molecule 

and the SM-MRnS conjugate was collected and analyzed for the presence of the small 

molecule in the nanoparticle (Figure 13B).  Similarly, if the small molecule exhibited a 

strong fluorescence at a particular wavelength, the small molecule and the SM-MRnS 

conjugate was analyzed by fluorescence spectroscopy using a fluorescence 

spectrophotometer (Figure 13A).  The IONPs by themselves are not fluorescence and 

have a very low absorbance, therefore making it easy to distinguish the small molecule 

on the surface of the IONP (Figure 13).  
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Figure 13. Spectral Characteristics of the Small Molecules before and after 

attachment to the nanoparticle.   

The successful attachment of all the small molecules to the surface of the nanoparticle 

was verified by either fluorescence or absorbance emission depending on the spectral 

characteristic of the nanoparticle that was attached. A: Fluorescence spectra of a small-

molecule and its corresponding MRnS. B: Absorbance spectra of a small molecule and it 

corresponding MRnS. 

 

Binding detection of the small molecules to the toxin.  

 In order to detect which of the candidates bound to the APA and ALF the library 

of small-molecule MRnS was screened against both toxins. The screening was performed 

by measuring the ∆T2 of the various MRnS as they interacted with either APA or ALF. A 

successful binding interaction was acknowledged after changes in T2 were observed with 

increasing concentration of toxin. The changes in T2 were attributed to the toxin binding 

to the SM-MRnS conjugate. A binding to the surface of the nanoparticle affects the time 

(T2) that it takes for surrounding water protons to relax to their original state therefore 

allowing us to detect the interaction between the toxin and the SM-MRnS conjugate. A 

positive result was then further confirmed by measuring the dissociation constant KD 

between the identified small molecule and the target toxin. The KD measurements were 
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performed using magnetic relaxation as described in Chapter 2. A competitive assay with 

different concentrations of free small molecule (competitor) and fixed concentrations of 

toxin (target) and SM-MRnS conjugates (labeled ligands) was used to determine the 

dissociation constant. The competition between the free ligand and the label ligands for 

finding to the toxin provided us with a method for us to measure the KD values of the 

studied interactions. The results of the screening (Figures 14-44) are displayed in the 

following section with information on each of the selected molecules as well as the 

results of the magnetic relaxation measurements. Molecules that were identified to bind 

the toxins will also include the results of the KD measurements. 
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Figure 14. Studies with Sulindac. 
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Results of Sulindac-MRnS screening with APA and ALF (Figure 14): 

The screening of sulindac-MRnS yielded positive results for both the Anthrax 

Protective Antigen and the Anthrax Lethal Factor. Upon binding to the APA we observed 

a limit of detection of 0.02 nM and a maximum change of -13.3 on the ∆T2 (Figure 14A). 

For this interaction we measured a KD of 3.34 uM (Figure 14C). Similarly, a strong 

interaction of sulindac with ALF was also detected with a maximum change of -13.9 in 

∆T2 and a limit of detection of 1 nM (Figure 14B). The ALF-Sulindac interaction yielded 

a KD of 2.8 µM (Figure 14D). As seen in the previous figure, using Sulindac as a ligand 

on the surface of the MRnS provided a sensitive probe that allowed for the detection of 

both component of the anthrax toxin in the nanomolar range. These finding provide the 

opportunity to use a currently FDA approved drug for the fast detection  (45 minutes) of 

APA and ALF. Furthermore, the inhibition potential towards the proteins, especially the 

enzymatic-active ALF needs to be evaluated in order to postulate Sulindac as a possible 

treatment for the anthrax toxin.  
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Figure 15. Studies with Ketoprofen. 
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Results of Ketoprofen-MRnS screening with APA and ALF (Figure 15): 

The screening of the Ketoprofen-MRnS yielded positive results for Anthrax 

Protective Antigen. Upon binding to the APA a maximum change of -14.9 on the ∆T2 

was observed with a limit of detection in the 0.02 nN (Figure 15A). For this interaction 

we measured a KD of 7.7 µM (Figure 15C). On the other hand, significant interaction of 

ketoprofen with ALF was observed (Figure 15B). The data in the previous figure 

suggests that Ketoprofen-MRnS can be used as a sensitive probe to detect APA below the 

nanomolar range.  
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Figure 16. Studies with Ibuprofen. 
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Results of Ibuprofen-MRnS screening with APA and ALF (Figure 16): 

The screening of the Ibuprofen-MRnS yielded positive results for the detection of 

the Anthrax Protective Antigen. Upon binding to the APA we observed a limit of 

detection of 2 nM and a maximum change of -16.9 on the ∆T2 (Figure 16A). The 

negative change in ∆T2 indicates the formation of clusters, which can be a result of 

multiple nanoparticles binding to either the same or different parts of the APA.  For this 

interaction we measured a dissociation constant of 50.8 µM (Figure 16C). On the other 

hand, no significant interaction between Ibuprofen and ALF was observed (Figure 16B). 

The data in the previous figure suggests that Ibuprofen-MRnS can be used as a fast and 

sensitive probe to detect APA at the nanomolar range. 
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Figure 17. Studies with Naproxen. 
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Results of Naproxen-MRnS screening with APA and ALF (Figure 17): 

The screening of the Naproxen-MRnS yielded positive results for the screening of 

Anthrax Lethal Factor. This positive result was confirmed by the binding of the 

Naproxen-MRnS to the ALF with a maximum change of -14.9 on the ∆T2 and a limit of 

detection of 0.1 nN (Figure 17B). For this particular interaction we measured a KD of 

10.8 µM (Figure 17C). On the other hand, no significant interaction between Naproxen 

and APA was observed (Figure 17A). The data in the previous figure suggests that 

Naproxen-MRnS can be used as a sensitive probe to detect ALF below the nanomolar 

range. Additionally further experiments evaluating the potential of Naproxen to inhibit 

the enzymatic activity ALF need to be carried out in order assess the capability of 

Naproxen as a treatment for ALF. 
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Figure 18. Studies with Fusaric Acid. 
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Results of Fusaric Acid-MRnS screening with APA and ALF (Figure 18): 

The screening of the Fusaric Acid-MRnS yielded positive results for the screening 

Anthrax Lethal Factor. This positive result was confirmed by the binding of the Fusaric 

Acid-MRnS to the ALF with a maximum change of -19.7 on the ∆T2 and a limit of 

detection of 0.02 nN (Figure 18B). For this particular interaction a KD of 4.5 µM was 

measured (Figure 18C). Conversely, no significant interaction was observed between 

Fusaric Acid and APA (Figure 18A). The data in the previous figure suggests that 

Fusaric Acid-MRnS can be used to detect ALF with a sensitivity below the nanomolar 

range. Additionally further experiments evaluating the potential of Fusaric Acid to inhibit 

the enzymatic activity ALF need to be carried out in order assess its capability as a 

treatment for ALF. 

 

 

 



66 

 
 

Figure 19. Studies with Acemetacin. 

The screening of Acemetacin-MRnS provided negative results for both the APA and 

ALF.  The lack of a MRnS signal with increasing concentration of either protein suggests 

that binding did not occur between Acemetacin and the components of the anthrax toxins. 
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Figure 20. Studies with Aristolochic Acid. 

The screening of Aristolochich Acid-MRnS provided negative results for both the APA 

and ALF.  The lack of a MRnS signal with increasing concentration of either protein 

suggests that binding did not occur between Aristolochich acid and the components of the 

anthrax toxin. 
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Figure 21. Studies with Bezafibrate. 

The screening of Bezafibrate-MRnS provided negative results for both the APA and 

ALF.  The lack of a MRnS signal with increasing concentration of either protein suggests 

that binding did not occur between Bezafibrate and the components of the anthrax toxin. 
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Figure 22. Studies with Bumetanide. 

The screening of Bumetanide-MRnS provided negative results for both the APA and 

ALF.  The lack of a MRnS signal with increasing concentration of either protein suggests 

that binding did not occur between Bumetanide and the components of the anthrax toxin. 
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Figure 23. Studies with Ceterizine. 

The screening of Ceterizine-MRnS provided negative results for both the APA and ALF.  

The lack of a MRnS signal with increasing concentration of either protein suggests that 

binding did not occur between Ceterizine and the components of the anthrax toxin. 
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Figure 24. Studies with Doxorubicin. 

The screening of Doxorubicin-MRnS provided negative results for both the APA and 

ALF.  The lack of a MRnS signal with increasing concentration of either protein suggests 

that binding did not occur between Doxorubicin and the components of the anthrax toxin. 
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Figure 25. Studies with Etodolac. 

The screening of Etodolac-MRnS provided negative results for both the APA and ALF.  

The lack of a MRnS signal with increasing concentration of either protein suggests that 

binding did not occur between Etodolac and the components of the anthrax toxins. 
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Figure 26. Studies with Furosemide.  

The screening of Furosemide Acid-MRnS provided negative results for both the APA and 

ALF.  The lack of a MRnS signal with increasing concentration of either protein suggests 

that binding did not occur between Furosemide acid and the components of the anthrax 

toxin. 
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Figure 27. Studies with GW9508. 

The screening of GW9508-MRnS provided negative results for both the APA and ALF.  

The lack of a MRnS signal with increasing concentration of either protein suggests that 

binding did not occur between GW9508 and the components of the anthrax toxin. 
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Figure 28. Studies with Homovanillic Acid. 

The screening of Homovanillic Acid-MRnS provided negative results for both the APA 

and ALF.  The lack of a MRnS signal with increasing concentration of either protein 

suggests that binding did not occur between Homovanillic Acid and the components of 

the anthrax toxin. 
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Figure 29. Studies with IAA-94. 

The screening of IAA94-MRnS provided negative results for both the APA and ALF.  

The lack of a MRnS signal with increasing concentration of either protein suggests that 

binding did not occur between IAA-94 and the components of the anthrax toxin. 
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Figure 30. Studies with Indometacin. 

The screening of Indometacin-MRnS provided negative results for both the APA and 

ALF.  The lack of a MRnS signal with increasing concentration of either protein suggests 

that binding did not occur between Indometacin and the components of the anthrax toxin. 
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Figure 31. Studies with Lipoic Acid. 

The screening of Lipoic Acid-MRnS provided negative results for both the APA and 

ALF.  The lack of a MRnS signal with increasing concentration of either protein suggests 

that binding did not occur between Lipoic Acid and the components of the anthrax toxin. 
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Figure 32. Studies with Mefenamic Acid.  

The screening of Mefenamic Acid-MRnS provided negative results for both the APA and 

ALF.  The lack of a MRnS signal with increasing concentration of either protein suggests 

that binding did not occur between Mefenamic Acid and the components of the anthrax 

toxin. 

 



80 

 
 

Figure 33. Studies with L-Mimosine. 

The screening of Mimosine-MRnS provided negative results for both the APA and ALF.  

The lack of a MRnS signal with increasing concentration of either protein suggests that 

binding did not occur between Mimosine and the components of the anthrax toxin. 
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Figure 34. Studies with N-Hippuryl-His-Leu Hydrate (N-Benzoyl-Gly-His-Leu).  

The screening of N-Hippuryl-MRnS provided negative results for both the APA and 

ALF.  The lack of a MRnS signal with increasing concentration of either protein suggests 

that binding did not occur between N-Hyppuryl and the components of the anthrax toxin. 
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Figure 35. Studies with Nalidixic Acid. 

The screening of Nalidixic Acid-MRnS provided negative results for both the APA and 

ALF.  The lack of a MRnS signal with increasing concentration of either protein suggests 

that binding did not occur between Nalidixic Acid and the components of the anthrax 

toxin. 



83 

 
 

Figure 36. Studies with NS3694. 

The screening of NS3694-MRnS provided negative results for both the APA and ALF.  

The lack of a MRnS signal with increasing concentration of either protein suggests that 

binding did not occur between NS3694 and the components of the anthrax toxin. 
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Figure 37. Studies with Oxaproxin. 

The screening of Oxaprozin-MRnS provided negative results for both the APA and ALF.  

The lack of a MRnS signal with increasing concentration of either protein suggests that 

binding did not occur between Oxaprozin and the components of the anthrax toxin. 
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Figure 38. Studies with Raltitrexed. 

The screening of Raltitrexed-MRnS provided negative results for both the APA and ALF.  

The lack of a MRnS signal with increasing concentration of either protein suggests that 

binding did not occur between Raltitrexed and the components of the anthrax toxin. 



86 

 
 

Figure 39. Studies with Rebamipide. 

The screening of Rebamipide-MRnS provided negative results for both the APA and 

ALF.  The lack of a MRnS signal with increasing concentration of either protein suggests 

that binding did not occur between Rebamipide and the components of the anthrax toxin. 
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Figure 40. Studies with Retinoic Acid. 

The screening of Retinoic Acid-MRnS provided negative results for both the APA and 

ALF.  The lack of a MRnS signal with increasing concentration of either protein suggests 

that binding did not occur between Retinoic Acid and the components of the anthrax 

toxin. 
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Figure 41. Studies with Rhein. 

The screening of Rhein-MRnS provided negative results for both the APA and ALF.  The 

lack of a MRnS signal with increasing concentration of either protein suggests that 

binding did not occur between Rhein and the components of the anthrax toxin. 
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Figure 42. Studies with Sivelestat. 

The screening of Sivelestat-MRnS provided negative results for both the APA and ALF.  

The lack of a MRnS signal with increasing concentration of either protein suggests that 

binding did not occur between Sivelestat and the components of the anthrax toxin. 
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Figure 43. Studies with Tamibarotene. 

The screening of Tamibarotene-MRnS provided negative results for both the APA and 

ALF.  The lack of a MRnS signal with increasing concentration of either protein suggests 

that binding did not occur between Tamibarotene and the components of the anthrax 

toxin. 
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Table 4. Summary of the screening of the Small Molecules against APA and ALF. 

 Small Molecule Library 
Anthrax Protective 

Antigen (PA) 

Anthrax Lethal 

Factor (LF) 

1 Sulindac Kd= 3.34 µM Kd= 2.8 µM 

2 Ketoprofen Kd= 7.70 µM - 
3 Ibuprofen Kd= 50.8 µM - 
4 Naproxen - Kd= 10.8 µM 

5 Fusaric Acid - Kd= 4.5 µM 

6 3-Iodo-L-tyrosine Insoluble Insoluble 

7 Acemetacin - - 
8 Aristolochic Acid I - - 
9 Bezafibrate - - 
10 Bumetanide - - 
11 Ceterizine HCL - - 
12 Deoxycholate Insoluble Insoluble 

13 Doxorubicin - - 
14 Enoxacin Insoluble Insoluble 

15 Etodolac - - 
16 Furosemide - - 
17 GW9508 - - 
18 Homovanilic Acid - - 
19 Indometacin - - 
20 L-Mimosine - - 
21 Lipoic Acid - - 
22 Mefenamic  Acid - - 
23 Mycophenolic acid No Reaction No Reaction 

24 N-Hippuryl-His-Leu - - 
25 Nalidixic Acid - - 
26 NS3694 - - 
27 Oxaprozin - - 
28 R(+)-IAA-94 - - 
29 Raltiterexed  - - 
30 Rebamipide - - 
31 Retinoic Acid - - 
32 Rhein - - 
33 Sivelestat - - 
34 Tamibarotene - - 

 

Molecules shaded in gray were not screened since the necessary chemical modifications 

were not feasible or their solubility did not allow for reactions to occur. 
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Conclusions  

 

 We have assembled a small-molecule library composed of commercially 

available molecules, most of them being FDA approved drugs. 

 We assembled a small-molecule-MRnS library by coupling each of the small 

molecules on the surface of MRnS using click chemistry. 

 Thirty small-molecule-MRnS were screened for binding against the Anthrax 

Protective Antigen and Anthrax Lethal Factor using magnetic relaxation as the 

detectable signal.  

 Three molecules, sulindac, ketoprofen and ibuprofen were identified to bind the 

APA with concentrations in the micromolar range. 

 Three molecules, sulindac, naproxen and fusaric acid were identified to bind the 

ALF with concentrations in the low micromolar range. 

 The results from screening the library provided five new sensitive magnetic 

probes that can be used to detect the anthrax toxins into the nanomolar range. 

 

Discussion 

 

 The lack of toxin-targeted therapeutics together with the devastating 

consequences that bacterial toxins have on their hosts, have created a need for drugs that 

directly target and inhibit bacterial toxins. With the emergence of antibiotic-resistant 

bacteria and the increasing threat of bacteriological weapons over the last decade, there 

have been increasing interests in the development of therapeutics that can treat toxins. 

Yet, the lack of incentive for pharmaceutical companies due to the expenses associated 
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with the development and government-mandated review process of a new drug have 

hampered the development of any toxin therapeutic. Several approaches have been 

investigated but none of them have progressed farther than preliminary animal studies in 

a laboratory setting. Specifically in the case of Anthrax, a rapidly progressing disease that 

kills by the release of potent toxins, several toxin inhibitors have been identified but have 

not moved forward to clinical use. 

 With the purpose of filling this void in toxin therapeutics, we came up with a 

system to find currently available and FDA approved drugs that can be used to treat and 

detect bacterial toxin pathogenesis. Using drugs that are currently used to treat other 

diseases will lessen the time and expenses required for the FDA to approve these drugs 

for the treatment of the anthrax toxin since it makes the approval process less stringent. In 

order to achieve this task, we decided to screen a library of small molecules against two 

protein components of the anthrax toxins (ALF and APA). The anthrax toxin was chosen 

as a model system due to its rapid and devastating progress as well as its potential to 

infect a large number of individuals due to its development as a biological weapon. In 

order to evaluate the interactions between the small molecules and the proteins we 

resorted to magnetic relaxation nanosensors (MRnS), a system that has been traditionally 

used to sensitively and accurately detect several pathogens in the past. By conjugating 

each of the small molecules to the surface of a MRnS we created a small molecule-MRnS 

library that was screened for binding to both the Anthrax Protective Antigen (APA) and 

the Anthrax Lethal Factor (ALF). Upon completion of the screening, we identified 5 

commonly available molecules that bound either the APA, ALF or both. Furthermore, we 

measured the dissociation constant between these small molecules and the proteins 
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yielding strong affinities in the micromolar range.  One interesting fact is that four of 

these molecules are non-steroidal anti-inflammatory drugs that can currently be 

purchased at any pharmacy.  

Even though the screening identified 5 small molecules that can bind to the 

components of the anthrax toxin, work is still needed to evaluate whether they can inhibit 

the toxin. The proteins screened play a crucial role in the development of Anthrax, 

specifically APA is responsible for introducing the Edema Factor and the ALF into the 

cells, while ALF is the one responsible for killing the cell. Studies in mice have shown 

that ALF is a necessary component for cell death, therefore finding inhibitors for this 

specific protein it of outmost importance when trying to stop the damage of the anthrax 

toxin. Overall, our screening system proved useful for finding interactions between toxins 

and small molecules. By changing to other ligands on the surface of the MRnS, this 

system can be used for the screening of other bacterial toxins providing a virtually 

unlimited platform for the screening of bacterial toxins. 
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CHAPTER IV: AUTOMATED DOCKING STUDIES OF THE 

SMALL-MOLECULE LIGANDS WITH THE ALF AND APA 
 

 

Introduction  

 

The anthrax toxin is composed of three virulent factors: (i) anthrax protective 

antigen (APA), (ii) anthrax lethal factor (ALF), and (iii) anthrax edema factor (AEF) that 

work in harmony to effectuate the lethality associated with the disease
7
. Upon release 

from the bacterial spores, APA is responsible for introducing both the AEF and ALF into 

macrophages. A zinc-dependent metalloproteinase, ALF causes cell death by targeting 

and cleaving the N-terminus of Mitogen Activate Protein Kinase Kinase (MAPKK) 

within the cells. This results in the inability of the MAPKK to phosphorylate its substrate 

Mitogen Activated Protein Kinase (MAPK), which consequently leads to a downstream 

altered signaling pathway that results in apoptosis of macrophages and dendritic cells
84, 

85
. The exact mechanism by which ALF kills the cells remains unknown and it is believed 

that ALF inhibition of macrophages’ MAPKK ultimately helps to establish infection 

since it essentially destroys the cells (macrophages) responsible for removing the 

damaged cells in the lungs. Structurally, anthrax lethal factor is composed of four 

domains (Figure 44)
86

.  Domain I plays a crucial role in the toxin because it contains the 

biding site for the APA. It is through this domain that ALF binds to APA, a vital step in 

the internalization into the target cell. Domain II of the protein does not have any special 

roles and it acts more as a connecting structure between the other domains. Domain III is 

composed of α-helical bundle that create a hydrophobic surface with Domain IV, strictly 
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restricting access to the active site of other potential substrates. Domain IV contains the 

catalytic site where Zinc is located. This is the domain that is responsible for the 

enzymatic activity of the protein against MAPKK and therefore is a target for inhibitors 

of the ALF. 

 

Figure 44. X-Ray structure of the Anthrax Lethal Factor colored by domain. 

Structure depicting the four domains of ALF. MAPKK-2 is shown in red at the catalytic 

pocket.
86

 

 

Although the Anthrax Protective Antigen does not directly kill macrophages, it is 

responsible in the internalization of the other two factors (Figure 45)
83

. In order to 

achieve this, the APA must go through some structural changes that will transform it into 
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a pore-forming protein. In its original state, the Protective Antigen is an 83 kDa (PA83) 

protein that binds to either of the two known Anthrax Toxin Receptors (ANTXR1/2) on 

the surface of the cells. Upon binding, PA83 is activated by a furin protease that results in 

the cleavage of a 20 kDA fragment (PA20) from the N-terminus of PA83. The newly 

created 63 kDa piece (PA63) heptamerizes with other PA63s to form a ring shaped 

heptameric complex, known as the prepore. This prepore can then bind up to three 

molecules of ALF and/or Anthrax Edema Factor (AEF), which are consequently 

internalized into the cytosol.  

 

 
 

Figure 45. Function of the APA in the role of the Anthrax Toxin.  

Upon binding to the ANTXR the APA is proteolytically activated by a member of the 

furin proteases. This allows the formation of the prepore which results in the 

internalization of the ALF and AEF into the target cell.
83

  

 

 

 

Structurally, the APA is also comprised of four domains (Figure 46)
87

. In Domain 

I is where the furin cleavage occurs resulting in the formation of PA63. Domain II is 

essential in the formation of the transmembrane pore that is used to introduce ALF and 



98 

AEF into the cytosol. It is believed that Domain III’s role is to mediate the self-

association of PA63 into the heptamer, thus having an important role in the protein’s 

oligomerization. The last piece of this protein, domain IV, is mostly secluded from the 

rest of the protein and it its role is to bind the ANTXR cellular receptors. 

 

 

Figure 46. Structure of the Protective Antigen colored by domain. 

Structure of the APA and its four domains. Domain I is divided into a and 

indicating the 20 kDa fragment that is displaced after furin-mediated cleavage. The 

purple-shaded region indicates the piece of Domain I that stay as part of PA63. The two 

purple spheres within the purple shaded region represent calcium atoms.
87

  

 

 

 

Detailed knowledge of protein-ligand interactions is essential when predicting 

binding sites on proteins. Computational molecular docking methods are continually 

evolving in order to provide accurate descriptions of the interactions between protein and 
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ligands at the atomic level
88

. Technically, molecular docking is the computational 

technique of placing a small molecule  (ligand) into the pocket of a protein (receptor) in 

order to estimate its binding affinity. With modern software and advanced computers, 

these methods are capable of predicting molecular interactions under a broad range of 

conditions and constrains with impressive assertiveness
89

. However, these capabilities are 

often accompanied by a great technical difficulty when it comes to operating the software 

that often require expensive and complex supercomputer clusters.  

Introduced in 1998 by the Olson’s laboratory at the Scripps Research Institute, 

AutoDock
90

 is a program that allows the study of molecular docking with relative ease. 

Its ability to run across different platforms and in low-budget computers along with its 

effectiveness makes it the most cited docking software in the research community. An 

effective tool capable of quickly and accurately predicting bound conformations and 

binding energies between ligands and receptors, Autodock played a role in the 

development of the first clinically approved HIV integrase inhibitor
91

. The program is 

capable of predicting where a ligand is going to fit into the large conformational space 

around a protein by using a grid-based method. A three-dimensional grid that covers all 

the surfaces and atoms of the protein is used to evaluate the binding energies of the trial 

conformations to every point in the grid. In order to search for the best conformation, 

Autodock uses a Lamarckian genetic algorithm
90

. This algorithm allows the conformation 

to mutate and compete in a manner similar to biological evolution, consequently selecting 

the conformation with the lowest binding energies. 

One specific feature that makes Autodock useful is that it allows for blind-

docking studies. Under these kinds of studies, the software predicts the binding sites of 
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small molecules on proteins by searching for locations through out the entire structure. 

This is of particular importance because it allows researchers to predict where a ligand is 

binding to a receptor on a newly discovered interaction. In the case of the work being 

presented in this thesis it will allow us to predict and evaluate the binding sites on the 

Anthrax Lethal Factor and Anthrax Protective Antigen of the previously discovered 

interactions. 

 

Materials and Methods 

 

Materials  

 AutoDock 4.2 and AutoDockTools 1.5.4 were downloaded from the Scripps 

Research Institute’s website (http://autodock.scripps.edu). The ligand structure of  

sulindac, sulindac sulfide, sulindac sulfone, ibuprofen, and naproxen were downloaded 

from the protein data bank’s ligand expo (http://ligand-expo.rcsb.org). Ketoprofen and 

Fusaric Acid were drawn in ChemDraw as mol format files imported into Autodock. The 

ALF (1J7N) and APA (1ACC) structure were downloaded from the protein data bank.  

Blind Docking Studies 

 Blind docking studies were performed using the default parameters in AutoDock 

4.2. Briefly, a three-dimensional grid that covered all the atoms of either protein was 

prepared. For the ALF this cubed shaped grid measured 126,90,114 points in the xyz 

planes and had a spacing of 0.78611 Å. The grid for APA measured 126, 104, 72 points 

in the xyz plane and had a spacing of 0.825 Å. After the affinity maps were generated 

from each of the grids, the docking search was performed using AutoDock’s  Lamarckian 
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genetic algorithm on its default settings. The logs containing the results from the docking 

experiments were analyzed and visualized using AutoDockTools.  

 

Results 

 

Docking studies with Anthrax Lethal Factor 

Sulindac: 

 Our experimental results suggest the possible binding of sulindac to ALF. As we 

had seen in Chapter 3, magnetic relaxation studies involving sulindac-MRnS conjugate 

and ALF revealed that sulindac was binding to ALF. Therefore using computational 

docking studies, we investigated, which area on ALF would most preferably bind 

sulindac. The docking studies predicted that different sulindac conformations bound to 

different sites around ALF. Predominantly, we observed different interactions within 

domain III and IV with two of the conformations binding around or to the enzymatic 

pocket (Figure 47, A). Due to its hydrophobicity it is expected that sulindac will bind to 

places within the highly hydrophobic domain III. From these predictions we selected the 

conformation with the lowest binding energy, which predicted that sulindac would 

preferentially bind to the catalytic site with a binding energy of -9.0 kcal/mol (Figure 47, 

B). The binding of sulindac to the catalytic site suggests that sulindac would be capable 

of inhibiting ALF. Upon close analysis of this interaction we were able to evaluate the 

interacting residues with the parts of the small molecule (Figure 47, C). According to 

AutoDock, residues GLN642 and GLN646 interact directly with the oxygen atom and the 

from the sulfoxide group. The oxygen from HIS645 is interacting with the terminal alkyl 

groups leading off from the sulfoxide. On the other side of the molecule, PRO661, 
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LEU658, TYR659, and HIS690 are interacting with the fluoro-indene moiety of sulindac, 

while the Zn
2+

 atom on ALF is interacting with the carbonyl group from the carboxylic 

acid group. These multiple interactions along with its hydrophobicity make sulindac an 

ideal candidate for an inhibitor of ALF.  

 

 

Figure 47. Results from docking studies between sulindac and ALF. 

Structures of sulindac bound to ALF. A: The green dots represent possible binding sites 

for sulindac on ALF. B: The conformation with the lowest binding energy was observed 

to bind at the catalytic site of ALF. C: Sulindac interacting with the different residues at 

the catalytic site. This image shows how sulindac directly interacts with Zn (green dot) 

and other residues of the enzymatic pocket. The spheres represent the atomic interactions 

between the residues and sulindac. 
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Sulindac Sulfide and Sulindac Sulfone: 

The results from Sulindac-ALF docking studies prompted us to further study this 

interaction. It is known that sulindac the non-steroidal anti-inflammatory drug (NSAID) 

is a sulfoxide prodrug that upon oral administration is transformed by the liver into two 

forms; the reduced sulfide analog and the oxidized sulfone analog. Its sulfide form is the 

active COX 1/2 inhibitor while the sulfone has no anti-inflammatory activity
92-95

. 

Specifically, sulindac is converted in the liver to a sulfide that is excreted in the bile and 

reabsorbed by the intestines
96

. This metabolized form is the active drug that remains in 

circulation and binds to its natural target the COX 1/2 enzymes. Since we are considering 

sulindac as a potential inhibitor of ALF and because of the metabolic modifications 

inherent to this drug, we therefore also performed docking experiments between the 

sulindac metabolites and ALF. Experiments with Sulindac Sulfide revealed similar 

results to those of sulindac with an even greater number of binding conformations at 

enzymatic pocket (Figure 48, A). After examining the most favorable binding 

conformation, we observed that sulindac sulfide preferably binds to the catalytic site with 

a binding energy of -9.3 kcal/mol (Figure 48, B). Upon close inspection of this 

interaction, we observed several residues such as LEU658, TYR659, and HIS690 

interacting with the fluoro-indene moiety as were also observed with sulindac (Figure 

48, C). The lower binding energy along with the multiple but congregated interactions 

observed between sulindac sulfide and ALF, suggest that this primary metabolite of 

sulindac can potentially be a stronger inhibitor of ALF than sulindac. Furthermore 

experiments with sulindac sulfone provided very similar results to those observed with 

both sulindac and sulindac sulfide. Most of the possible binding sites for sulindac sulfone 
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in ALF can be found on the enzymatic pocket and the hydrophobic domain III (Figure 

49, A). Examination of the conformation with the lowest binding energy revealed that 

Sulindac sulfone prefers to bind to the catalytic pocket as well as its analogs (Figure 49, 

B). The predicted binding energy for this interaction was of -8.3 kcal/mol, a higher 

amount than that of both of its analogs. Close examination of the binding residues 

revealed that LEU658, TYR659, and HIS690 are also the main residues interacting with 

the fluoro-indene moiety as it was observed with sulindac and sulindac sulfide (Figure 

49, C). As well as with sulindac and sulindac sulfide these results suggest that sulindac 

sulfone can also potentially inhibit ALF. 

 

 
Figure 48. Results from docking studies between sulindac sulfide and ALF. 

Structures of sulindac sulfide  bound to ALF. A: The green dots represent possible 

binding sites for sulindac sulfide on ALF. B: The conformation with the lowest binding 

energy was observed to bind at the catalytic site of ALF. C: Sulindac sulfide interacting 

with the different residues at the catalytic site. 
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Figure 49. Results from docking studies between sulindac sulfone and ALF. 

Structures of sulindac sulfone bound to ALF. A: The green dots represent possible 

binding sites for sulindac sulfone on ALF. B: The conformation with the lowest binding 

energy was observed to bind at the catalytic site of ALF. C: Sulindac sulfone interacting 

with the different residues at the catalytic site. 

  

 

Fusaric Acid: 

Next, we studied fusaric acid, which was also identified to bind the ALF via 

magnetic relaxation. The blind docking studies predicted that this molecule also bound to 

the enzymatic pocket in domain IV. Additionally, a great number of conformations bound 

in the space between domains I and II (Figure 50, A). The conformation with the most 

favorable binding was observed at the catalytic centre in domain IV with a binding 

energy of -6.2 kcal/mol (Figure 50, B).  Examination of the residues predicted to bind 

fusaric acid revealed that VAL660, LEU658 and TYR659 interacted with the butyl chain 

leading off the pyridine at the center of the molecules. Also, TYR728, GLU35 and the Zn 

interacted with the carboxylic acid end of fusaric acid (Figure 50, C). Although not a 
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particular strong interaction between ALF and fusaric acid was predicted, the results 

suggest that fusaric acid can potentially inhibit ALF. 

 

 

Figure 50. Results from docking studies between fusaric acid and ALF. 

Structures of fusaric acid bound to ALF. A: The green dots represent possible binding 

sites fusaric acid on ALF. B: The conformation with the lowest binding energy was 

observed to bind at the catalytic site of ALF. C: Fusaric acid interacting with the different 

residues at the catalytic site. 

  

 

Naproxen: 

The last molecule that was evaluated for binding to ALF was naproxen. Results 

form the AutoDock studies predicted  that naproxen bound to several locations on the 

ALF, with a concentrated population in the space between domains I and II. Interestingly, 

naproxen also bound to parts of the APA binding domain (Figure 51, A). This is a crucial 

observation since binding to this site could potentially inhibit ALF from binding to APA, 

ultimately stopping ALF from entering the cell. The conformation with the strongest 
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interaction was observed in the space between domains I and II and had a binding energy 

of -4.3 kcla/mol (Figure 51, B). Although, the binding of naproxen to the PA binding 

domain suggest a possible inhibitory mechanism, the high binding energies do not make 

this interaction a favorable one therefore reducing the possibility  that naproxen may 

inhibit the binding of ALF to APA. 

 

 

Figure 51. Results from docking studies between naproxen and ALF. 

Structures of naproxen bound to ALF. A: The green dots represent possible binding sites 

naproxen on ALF. B: The conformation with the lowest binding energy was observed to 

bind at the space between domains I and II. 

 

 

 

Docking studies with Anthrax Protective Antigen. 

 For our second set of experiments we studied the docking possibilities between 

the anthrax protective antigen and the three molecules identified to bind it in Chapter III. 

According to the magnetic relaxation studies, all three molecules sulindac, ibuprofen and 

ketoprofen bound to APA. This resulted in a decrease in the ∆T2 that was observed in the 

magnetic relaxation studies.  



108 

 The first experiment of this set studied the docking of sulindac to APA. Results 

from the docking predictions showed that sulindac was binding to different sites 

throughout APA. Specifically, we observed a greater population of conformations that 

bound between domains I and II/III very close to the furin-mediated cleavage site on 

domain I (Figure 52, A). Further examination of these binding predictions revealed that 

the most favorable conformation with the lowest binding energy, -6.13 kcal/mol, binds 

near the cleavage site, an indication that sulindac can be a potential inhibitor of the furin-

mediated cleavage of APA (Figure 52, B). Similarly, the studies with ketoprofen and 

APA revealed very analogous results with most of the conformations binding at domain I 

around the cleavage site (Figure 53, A). For this particular interaction the conformation 

with the lowest binding energy, -5.48 kcal/mol, occurred between domains I and II below 

the furin-mediated binding site (Figure 53, B). The prediction that other conformations 

bind at that site could suggest that ketoprofen may also inhibit the furin-mediated 

cleavage of APA. 
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Figure 52. Results from docking studies between sulindac and APA. 

Structures of sulindac bound to APA A: The green dots represent possible binding sites 

of sulindac on APA. B: The conformation with the lowest binding energy was observed 

to bind at the furin-mediated cleavage site of domain I. 

 

 

 

Figure 53. Results from docking studies between ketoprofen and APA. 

Structures of ketoprofen bound to APA A: The green dots represent possible binding 

sites of ketoprofen on APA. B: The conformation with the lowest binding energy was 

observed to bind between domains I and II. 
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Lastly, we studied the interaction between Ibuprofen and APA. Results from these 

studies indicated that Ibuprofen binds to different sites on the APA (Figure 54, A). 

Particularly, these bindings were grouped around domains II and III, with the strongest 

interaction measuring -5.86 kcal/mol at the bottom of domain III (Figure 54, A).  

 

 

Figure 54. Results from docking studies between ibuprofen and APA. 

Structures of ibuprofen bound to APA A: The green dots represent all the possible 

binding sites of ibuprofen on APA. B: The conformation with the lowest binding energy 

was observed to bind at the bottom of domain III. 
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Conclusions 

 

 Studies with ALF suggested that sulindac, sulindac sulfide, sulindac sulfone and 

fusaric acid may be inhibitors of ALF due to their predicted binding at the 

catalytic site. 

 Results form the APA studies suggest that sulindac and ketoprofen have the 

potential to inhibit the furin-mediated cleavage of domain I on APA.  

 

Discussion 

 With the advancement of computers and the development scientific computational 

methods, scientists have gained a valuable tool that allows them to carry out an 

experiment without ever stepping into the lab. Experiments “in-silico” are carried out 

theoretically on a computer and can cover a broad range of applications. More 

commonly, these experiments focus on docking studies that predict with accuracy where 

a ligand (small molecule) binds to a receptor (protein or macromolecule). These types of 

experiments have proven crucial on the development of new drugs for diseases and even 

when investigating newly discovered interactions between ligands and receptors. In the 

previous chapter we screened a small molecule library for binding to the anthrax lethal 

factor and protective antigen via magnetic relaxation. We discovered five molecules that 

successfully bound to the surface of either/both proteins. Consequently, due to the 

experimental complexity associated with elucidating the binding site of a molecule on a 

protein, we relied on computational docking studies to predict these locations. 

 Using Autodock 4.2 to search for the most favorable binding conformation we 

were able to carry out blind docking studies of the small molecules and the components 
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to the anthrax toxin. Specifically, we focused on the ALF studies as this protein contains 

an enzymatic role that is devastating to target cells. Our computational docking results 

indicated that sulindac and fusaric acid both bind to the enzymatic pocket of ALF, 

suggesting that these molecules may inhibit its activity. Furthermore, because sulindac is 

a prodrug that is activated in the liver, we also conducted studies involving its 

metabolites: sulindac sulfide, the reduced form and sulindac sulfone, the oxidized form. 

Results with sulindac’s metabolites indicated that both forms also bind to the catalytic 

site, suggesting that they could inhibit ALF’s protease activity. Taken together, these 

results make sulindac the ideal candidate for a potential inhibitor of ALF, thus further 

experiments that test the ability of sulindac to inhibit ALF are needed.  

 The other protein studied, APA, is also critical for the development of the disease 

as its role is cellular recognition and transportation of the other two toxin fragments into 

the cytosol. Computational docking studies with APA revealed that as with ALF, the 

small molecules bind to the different sites throughout the protein. Particularly, sulindac 

and ketoprofen bind around a cleavage site that is crucial for the furin-mediated 

activation of APA. Upon cleavage at this site, the APA is able to assemble into a 

heptamer complex that allows the translocation of ALF and AEF into the cells. Further 

experiments that test the ability of sulindac and ketoprofen to inhibit this cleavage are 

needed in order to confirm their inhibitory potential. 
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CHAPTER V: INHIBITING THE ANTHRAX LETHAL FACTOR, 

DETERMINATION OF THE INHIBITION POTENTIAL OF 

SULINDAC, ITS DERIVATIVES AND FUSARIC ACID 
 

 

Introduction 

 

 The anthrax lethal factor (ALF) in one of the three virulent factors released by the 

anthrax bacterium upon infection of a host. Together with the anthrax edema factor 

(EDF) these virulent factors are responsible for damaging healthy macrophages. Out of 

the two damaging factors, ALF has been identified to play a critical role in cell death. 

Studies in animals have shown that mice infected with an anthrax strain lacking ALF 

survive 
97

. Furthermore, administration of ALF in conjunction with the anthrax protective 

antigen (APA) in animals induces vascular collapse similar to that observed during 

anthrax infections, results that point to the lethal effects of ALF
98

. After entering the 

cytosol via APA, ALF cause damage to the healthy cell by cleaving the N-terminus of 

mitogen-activated protein kinase kinase (MAPKK) preventing the phosphorylation of 

downstream MAPK.
99, 100

 This alteration modifies the MAPK signal pathways and 

eventually leads to cell death by an unknown mechanism.
101, 102

  

In the last decade since the anthrax attacks of 2001, very little has been elucidated 

about the role that ALF plays within the macrophage to induce cell death. Yet, very 

recently, studies from the Moayeri lab at the National Institute of Allergy and Infectious 

Diseases have revealed that ALF induces the caspase-1-dependent rapid programmed cell 

death (pyroptosis) of mouse and rat macrophages through activation of the NOD-like 

receptor (NLR) Nlrp1 inflammasome. In these studies LT (APA+ALF) cleaves rat Nlrp1 



114 

and this cleavage is required for toxin-induced inflammasome activation, IL-1 b release, 

and macrophage pyroptosis. This discovery is of critical biological relevance since it 

sheds light into the reason behind the rapid pathogenesis of ALF in cells
103-106

.  

Although the current treatment for anthrax infections is antibiotic treatments, 

modern medicine faces some critical limitations when combating infections. Antibiotics 

have proven very efficient in eliminating the bacterial infection but they lack the ability 

to destroy or inhibit the virulent factors released by the bacteria. Specifically, ALF can 

remain active in the body for days after the infection is eliminated with no way of 

inhibiting its destructive effects. In order to address this problem, several inhibitors of the 

enzymatic activity of ALF have been identified over the last decade. In order to identify 

inhibitors of ALF a variety of screening approaches such as library screenings, Mass 

Spectroscopy- based screenings and scaffold based NMR screening have been used
82

. 

Results from these screening have yielded mainly small molecules that can inhibit ALF 

in low micromolar to nanomolar concentrations. Yet, although valuable, these results 

have very little significance with regards to these molecules being used as actual 

therapeutics. There is a large expense associated with the governmental approval process 

that new drugs are required to undergo in order to become FDA approved. Additionally, 

the low occurrence of anthrax infections further discourages the interest of 

pharmaceutical companies since the expected return on investment is minimal. Therefore 

it will be crucial to be able to identify currently approved FDA drugs that are already 

being used in the clinics that can also inhibit ALF.  

In order to achieve this undertaking, in Chapter 3 we screened a small-molecule 

library of mostly FDA approved drugs for their binding to ALF.  This resulted in three 
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molecules sulindac, fusaric acid, and naproxen that were identified to bind ALF. Further 

computational docking studies predicted that sulindac and fusaric acid both bind to the 

enzymatic pocket, while naproxen did not. Herein, we will further investigate whether or 

not sulindac and fusaric acid are able to inhibit ALF. We will measure the enzymatic 

activity of ALF using a fluorogenic inhibition assay sold by Calbiochem that uses a 

substrate that upon cleavage by ALF is able to report a fluorescence signal (Figure 

55)
107

. This fluorescence reporter is dependent on the amount of ALF present and 

therefore will allow us to calculate the 50 % inhibition concentrations at (IC50) of our 

small molecules against ALF. 

 

Figure 55. Schematic representation of the fluorogenic inhibition assay.  

Upon cleavage of the N-terminal of the substrate by ALF, AMC is hydrolyzed 

and de-quenched.  
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Materials and Methods 

 

Reagents.  

Sulindac, Sulindac Sulfide, sulindac sulfone, fusaric acid, naproxen, HEPES, 

TWEEN 20, calcium chloride, and DMSO were obtained from Sigma-Aldirch.  Anthrax 

lethal factor and anthrax protective antigen were obtained from List Biological 

Laboratories, INC. The anthrax lethal factor protease substrate III, fluorogenic was 

obtained from Calbiochem.  

Anthrax Lethal Factor Protease Inhibition Assay, General Procedure. 

 In a florescence (black) 96-well plate, samples (100 µL) containing ALF (2 nM 

ALF) in a 40 mM HEPES at pH 7.2, 100 µM CaCl2, 0.05 % (v/v) buffer and different 

concentrations of inhibitors (Table 5) were prepared and incubated for 30 minutes. After 

the incubation period, 0.5 µL of fluorogenic anthrax lethal factor protease substrate III 

(470 µM, DMSO) was added to each sample and the fluorescence was measured every 10 

minutes for an hour. Fluorescence measurements were carried out using a Tecan infinite 

M200 pro at a 355 nm excitation and 460 nm emission. IC50 concentrations were 

calculated from the data collected. 

 

Table 5. Concentration range of the inhibitors used for the ALF protease inhibition 

assay. 

Inhibitors Concentration Range 

Sulindac 0.005 – 5 mM 

Sulindac on MRnS conjugate 0.053 – 5.3 µM 

Sulindac Sulfide 0.010 – 1 mM 

Sulindac Sulfone 0.010 – 1 mM 

Fusaric Acid 0.1 – 10 mM 

Naproxen 0.1 – 10 mM 
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Results 

 

In our first set of experiments we investigated whether sulindac could inhibit the 

proteolytic activity of ALF. In order to achieve this task we used a fluorogenic ALF 

substrate (Calbiochem) capable of emitting fluorescence after cleavage by ALF. 

Specifically, this ALF substrate III peptide (Ac-Gly-Tyr-βAla-Arg-Arg-Arg-Arg-Arg-

Arg-Arg-Arg-Val-Leu-Arg-AMC) is a N-acetylated, C-7-amido-4-methylcoumarin 

(AMC) derivative of Mitogen-Activated Protein Kinase Kinase 2 (MAPKK2), which is 

the natural target for ALF. In the presence of ALF, the quenched substrate is cleaved at 

the N-terminal between the arginine residue and the C-7-amido-4-methylcoumarin 

derivative, restoring the proper conjugation to the chromophore and thus producing a 

readable fluorescence signal that is dependent on the amount of ALF present. On the 

other hand, if ALF is inhibited, the lack of protease activity does not cleave the substrate, 

causing it to remain in a quenched state.   For this study we incubated different 

concentrations of sulindac with ALF (2 nM) for 30 minutes before adding the fluorogenic 

substrate (2.35 µM). Time-course florescence measurements revealed that sulindac was 

inhibiting ALF in a concentration-dependent manner with complete inhibition observed 

below 1 mM of Sulindac (Figure 56).  
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Figure 56. Inhibitory profile of sulindac against ALF.  

Upon incubation of ALF (2 nM) with various concentrations of sulindac (0.005 – 5 mM), 

time-course experiments revealed that sulindac is capable of inhibiting ALF. Since the 

lower fluorescence intensity represents a higher inhibition, a concentration of 1 mM is 

enough to completely inhibit ALF. The control represents no sulindac added.   

 

 

Additionally, using a similar experiment but using the data collected at 50 

minutes after the addition of the fluorogenic substrate we were able to compute the 

inhibitory concentration at 50% (IC50) of sulindac against ALF, which was calculated to 

be 173 µM (Figure 57, A). These results provide evidence that sulindac is in fact binding 

to the catalytic site of ALF as predicted in the computational studies of Chapter 4. Next, 

we decided to investigate the inhibitory potential of the Sulindac-MRnS conjugate. Since, 

low concentrations of sulindac are binding to the catalytic site of ALF, we therefore 

hypothesized that the lower amount of sulindac on the surface of the nanoparticles would 
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be capable of binding to the pocket as well. Using the same inhibitory assay, we 

evaluated the inhibitory potential of Sulindac-MRnS, which produced a lower IC50 (230 

nM sulindac on the surface of the MRnS) than sulindac alone (Figure 57, B). This 

observed reduction in the IC50 might be attributed to the nanoparticle blocking the 

enzymatic pocket of ALF. Based on the computational studies of Chapter 4, this can be 

expected if a sulindac molecule that is attached to the nanoparticle binds the catalytic site, 

which will cause the nanoparticle to position itself in the opening of the binding pocket, 

thus blocking its entrance and inhibiting that ALF unit. A lower IC50 is observed when 

using the sulindac-MRnS conjugate as opposed to sulindac alone because just a few 

sulindac molecules on the surface of the MRnS are enough to position the nanoparticle at 

the opening of the enzymatic pocket. Additionally, with an IC50 of 230 nM, the Sulindac-

MRnS conjugate is more effective at inhibiting ALF than sulindac alone, a discovery that 

suggest that the nanoparticle conjugate could be a more effective therapy against ALF 

than the small molecule alone.  
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Figure 57. IC50 calculations of sulindac and sulindac-MRnS against ALF.  

A: A concentration of 173 µM inhibits 50% of the enzymatic activity of ALF. B: 

Whereas, when sulindac is attached to a MRnS, the IC50 is significantly reduced to 230 

nM. 

 

Since sulindac is a prodrug, we also investigated the inhibitory potential of its 

metabolites sulindac sulfide (reduced form) and sulindac sulfone (oxidized form). These 

two molecules are metabolic derivatives of sulindac their ability to inhibit ALF is of great 

importance if sulindac is one day used to treat ALF pathogenesis. Upon ingestion, 

sulindac is metabolized into sulindac sulfide (the active COX 1/2 inhibitor) with a very 

small portion of it being metabolized into sulindac sulfone (inactive). Since, the majority 

of sulindac is converted to sulindac sulfide, the ability of sulindac sulfide to inhibit ALF 

must be evaluated. Using our fluorogenic inhibition assay with different concentrations of 

sulindac sulfide (10 µM – 1 mM), revealed that the reduced form of sulindac is capable 

of inhibiting ALF at an even lower concentrations that sulindac itself. Our experiment 

concluded that sulindac is able to inhibit ALF with an IC50 of 19.1 µM (Figure 58, A). 
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Additionally, we also evaluated the inhibitory potential of sulindac sulfone. These 

experiments revealed that sulindac sulfone (10 µM – 1 mM) was able to inhibit ALF at a 

concentration above that of its parent molecule sulindac with an IC50 of 185 µM (Figure 

58, B). Taken together, these results show significant promise for the future use of 

sulindac as a treatment for ALF. Not only is sulindac capable of inhibiting ALF, but also 

its metabolic products strongly inhibit ALF with concentrations in the µM range. 

 

 

 
 

Figure 58. IC50 calculations of the metabolic derivatives of sulindac against ALF.  

A: Out of the two metabolites, sulindac sulfide produces the highest inhibition of ALF 

with an IC50 of 19.1 µM. B: Sulindac sulfone is also able to inhibit ALF but at a higher 

IC50 of 185 µM. 

  

 

 After evaluating the inhibitory capacity of sulindac and its derivatives, we 

concentrated on fusaric acid, the other molecule that was predicted to bind at the catalytic 

site by computational docking studies. Using different fusaric acid concentrations (100 

µM – 10 mM) for our inhibition assay, we were able to determine the inhibitory potential 

of this small molecule. With an IC50 of 530 µM, fusaric acid was able to inhibit ALF with 

a lower capability than sulindac and its derivatives (Figure 59, A). Furthermore, we 
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carried out inhibition experiments with naproxen (100 µM – 10 mM). Even though 

computational docking studies did not predict the binding of naproxen to the enzymatic 

pocket, we wanted to investigate whether this small molecule could affect ALF’s activity 

(Figure 59, B). Our studies revealed that naproxen failed to inhibit ALF, even at high 

concentrations (10 mM). Since naproxen failed to inhibit ALF, these results suggest that 

naproxen does not bind to the toxin’s enzymatic pocket as predicted by the computational 

studies of Chapter 4.   

 

 

Figure 59. Inhibitory capacity of fusaric acid and naproxen against ALF.  

A: Fusaric acid inhibits ALF with an IC50 of 530 µM. B: Even at concentrations as high 

as 10 mM naproxen does not inhibit ALF. The control in this graph represent no 

naproxen added. 
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Conclusions 

 

 The inhibitory potential of sulindac and its metabolites sulindac sulfide and 

sulindac sulfone was assessed revealing that sulindac, sulindac sulfide and 

sulindac sulfone are capable of inhibiting ALF in the micromolar range. 

 After evaluating fusaric acid and naproxen for the inhibition of ALF, fusaric acid 

was able to inhibit ALF while naproxen was not. 

 These results confirmed the computational docking studies from Chapter 4 which 

predicted that sulindac, sulindac sulfide, sulindac sulfone, and fusaric acid bind 

to the enzymatic pocket while naproxen does not.   

 

Discussion 

 

 The treatment for bacterial infections has traditionally focused on using 

antibiotics to eliminate the infectious pathogen. The emergence of multidrug resistance 

bacteria along with the evolutionary strengthening that have developed these organisms 

into more effective killers, has forced modern medicine to look for alternative therapies 

when dealing with bacterial infections. An approach that could potentially be beneficial is 

to treat the toxins that bacteria release, as these powerful toxins are solely responsible for 

damaging and killing healthy tissue. The fact that even after the organisms are eliminated 

bacterial toxins remain in circulation for a long time, makes this therapeutic approach 

desirable as it inhibits the disease from further damaging the host. Very few treatments 

currently exist that target bacterial toxins. This is due to an outdated culture of 
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pharmaceutical companies that avoid investing in the development of new drugs for 

diseases that are “partially” treatable by existing medicines.  

 In the case of inhalation anthrax, the only way of treating this deadly disease is by 

antibiotic therapy. This in itself is a big drawback because the toxins released by the 

bacterium are very toxic and can stay active in circulation for days after the elimination 

of the organism. Specifically, the anthrax lethal factor, one of the components of the 

anthrax toxin, has been shown to cause death in animals after a couple of hours of 

injection into the blood stream. For this reason the need for a drug that is able to inhibit 

the effect of the virulent factor is highly desirable. Although since the anthrax attacks of 

2001, many inhibitors of ALF have been identified, the low occurrence of inhalation 

anthrax together with the high cost of developing a new drug has placed treatment of 

ALF at a low priority of pharmaceutical companies.  

In order to circumvent these drawbacks we looked for currently available drugs 

that could inhibit ALF. After identifying possible candidates by binding studies, we study 

the capability of these drugs to inhibit ALF. Particularly, we identified a currently 

available non-steroidal anti-inflammatory drug (NSAID) that strongly inhibited ALF. 

Sulindac, marketed as Clinoril, is a prodrug that is currently used to treat a wide range of 

inflammatory conditions. Our studies revealed that this molecule and its metabolic 

derivatives were able to inhibit ALF in micromolar concentrations. This discovery is of 

great importance because it shows that a currently available FDA approved drug can be 

used treat the pathogenesis of a very deadly bacterial infection. Furthermore, this study 

serves as an example to follow since there may be many other bacterial toxins that can 

potentially be inhibited with currently available drugs.  
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