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ABSTRACT 

 A network gateway is a mechanism which provides protocol translation and/or validation 

of network traffic using the metadata contained in network packets. For media applications such 

as Voice-over-IP, the portion of the packets containing speech data cannot be verified and can 

provide a means of maliciously transporting code or sensitive data undetected. One solution to 

this problem is through Voice Activity Detection (VAD). Many VAD’s rely on time-domain 

features and simple thresholds for efficient speech detection however this doesn’t say much 

about the signal being passed. More sophisticated methods employ machine learning algorithms, 

but train on specific noises intended for a target environment. Validating speech under a variety 

of unknown conditions must be possible; as well as differentiating between speech and non-

speech data embedded within the packets. A real-time speech detection method is proposed that 

relies only on a clean speech model for detection. Through the use of Gammatone filter bank 

processing, the Cepstrum and several frequency domain features are used to train a One-Class 

Support Vector Machine which provides a clean-speech model irrespective of environmental 

noise. A Wiener filter is used to provide improved operation for harsh noise environments. 

Greater than 90% detection accuracy is achieved for clean speech with approximately 70% 

accuracy for SNR as low as 5dB.  
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CHAPTER 1  INTRODUCTION 

1.1 Motivation 

 In the past decade, voice communications systems have seen a large shift from traditional 

telephony based exchanges to internet based methods such as Voice-over-IP (VoIP). The simple 

phone calls that once were are now integrated into private and public computer networks where 

voice is exchanged simultaneously with video and data. This large scale shift has given rise to a 

variety of voice encoding schemes used to reduce bandwidth as well as various data 

encapsulating protocols in which the information is transported.  

 To allow for protocols on one communication system to interact with others, network 

gateways have been developed to provide a “translation” functionality between protocols and 

encoding schemes as well as provide a decision capability for allowing data to pass between 

networks. Using metadata (data describing the packet) defined within a network protocol, a 

decision can be made as to whether or not a particular data packet can pass through the gateway. 

If the metadata of the packet matches or falls within a specified range, the packet is accepted else 

it is rejected. For voice communications, this functionality is currently limited to the use of data 

fields surrounding the voice data, leaving the field containing the sampled speech unchecked.  

 The inability to ensure that packetized voice data actually contains speech can create a 

vulnerability as well as provide a means of transporting data for reasons other than intended. If 

the system was designed to handle only voice communications, it should be carrying voice and 

nothing else. One example of this would be the ability to pass a computer virus or malware 

disguised as voice between networks of different security levels. In this case the supposed “voice 
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data” might not be voice at all, but rather binary data that when converted to an analog waveform 

would be meaningless audible noise. Another potential threat would be steganographic type 

attacks in which the goal is to embed or “hide” data within video or audio samples as a form of 

undetectable communications. In this case, the analog audio would seem as nothing more than a 

normal conversation.  

 In order to combat these attacks, one of two ways might be considered. One approach 

would be to employ “reactive” detection methods in which known steganographic techniques are 

detected followed by an action on the packet. If one were to know attack types ahead of time, 

“proactive” methods could be employed in which the audio is modified, rendering the hidden 

messages or data useless while minimizing the impact on audio quality. In either case, if 

steganographic techniques are improved upon both of these methods may be rendered useless. 

The advantage of the proactive approach would allow for a greater efficiency as simple 

techniques can be employed allowing for real time operation, whereas the reactive approach 

would require all known verification techniques to be implemented. Although specific 

steganographic techniques are not discussed here, the proposed method could be considered a 

proactive solution. 

 In order to allow for gateways to effectively make decisions on the speech packets, a 

logical approach would be to identify whether or not the packets contain speech. This particular 

area of interest requires the researcher to investigate methods of speech detection and is the basis 

of this thesis. 
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1.2 Introduction 

 Many methods have been developed in order to provide a solution to the speech detection 

problem. Although the “application” in this thesis differs from many, the necessity to detect 

speech on a communications channel has been driven by several major areas of research. 

Bandwidth reduction techniques have been developed in which speech detection (also called 

Voice Activity Detection or VAD) serves as a key component by allowing bit-reducing encoding 

schemes to act on the portions of an audio stream that contain speech while omitting the pauses 

which are replaced with comfort noise at the destination. Noise reduction and echo cancellation 

techniques have been enabled through speech detection by allowing noise characteristics and 

filters to be computed during periods of non-speech since speech can interfere in modeling the 

channel characteristics. Speech recognition engines have relied on speech detectors to provide a 

so-called “endpoint detection” in which only periods of speech are considered for processing 

thereby reducing the load of the recognition system. In all cases, the goal is essentially the same 

while the method for implementation differs depending on the requirements of the application 

 For any system that requires the detection of certain characteristics of a signal, whether it 

be audio, images or sensor data, most can be described in terms of two components: a feature (or 

set of features) and a detector. Particularly for speech, the complexity of features chosen can be 

as simple as frame energy to more complex approaches such as cepstral coefficients or wavelets. 

The detection of patterns can range from simple methods such as fixed or adaptive thresholds to 

more complex approaches using machine learning. Determining which components will be 

appropriate for this particular application is the main challenge of this thesis. 
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 One of the major areas of concern when developing a VAD is determining how decisions 

are affected by varying noise types and levels. The noise that is of concern could be either 

background noise or embedded data, however for this thesis they may be categorized as one in 

the same – non-speech. The noises can be stationary or non-stationary with signal-to-noise ratios 

(SNR) below 0dB considered in literature where accuracy of the VAD is tested under these 

conditions. In order to combat the effects of noise, developing features that are unaffected by 

noise have been a major area of interest. Since communications networks cannot foresee all 

possible environmental characteristics, the ideal detector should have the ability to discriminate 

between human speech and all other noises. 

1.3 Design Requirements 

 Since the gateway needs to pass packetized audio in real time, it is important that the 

decision be made in real time. Therefore the desired approach must be able to make decisions at 

the frame level using not more than 30-40ms of data. Likewise, the algorithm should be 

computationally efficient so as not to induce too great of a delay in the audio stream since 

gateways can support many channels simultaneously. With the advent of modern computer 

technology such as mutli-core processers and offloading to Graphical Processer Units (GPU) the 

number of computational cycles required is not of great concern. The system should be able to 

operate in a varying degree of noise levels and discriminate against non-speech sounds, although 

it is expected that some overlap of speech and non-speech sounds may exist. For an English 

speaking person, the approach should be independent of gender, dialect and relative talking 

speed. The following provides a summary of these requirements: 
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 The system should provide a speech/non-speech decision based on a short duration of 

time 

 The system should be computationally efficient for use in a real-time system 

 The system should be robust to noise and other non-speech interference 

 The system should be independent of the speaker (i.e. male, female, fast/slow talker) 

1.4 Thesis Contributions/Goals 

 The main goal of this thesis is to develop a method for detecting speech on a 

communications network that is robust to noise of unknown characteristics. Since the 

background noise of each speaker location can vary, it is desired that speech be modeled using 

features that allow for discrimination from non-speech sounds. In order to accomplish this task, 

utilizing a machine learning approach to achieve accurate modeling and decision boundaries 

seems a fitting approach. Through exploration of various detection and recognition methods, the 

Gammatone Cepstral Coefficients (GTCC) was found to provide a noise robust feature set that 

shows improved noise immunity over traditional features by utilizing human-perception and 

speech production methods. Since the job of a speech detector is to provide a binary decision, the 

Support Vector Machine (SVM) has been chosen due to its direct ability to provide a 

speech/non-speech decision, while also providing excellent machine learning properties and low 

computational complexity. Since it was found that the standard two-class SVM relies heavily on 

a descriptive data set characteristic of the noise, a one-class SVM (OC-SVM) was explored 

which attempts to provide a speech only model. 
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1.5 Thesis Outline 

 The structure of this thesis is as follows. Chapter 2 introduces the research performed as 

part of this thesis by presenting various methods commonly used for speech detection in 

communications systems. Chapter 3 discusses the design of the system in by providing the 

technical aspects of each system component as well as discussing potential considerations for 

integration into an operational environment. Chapter 4 provides a description of the components 

used to evaluate the proposed VAD; testing and measurement criteria used to determine the 

performance of the speech detector; and simulation results and discussion. Chapter 5 summarizes 

the thesis and discusses possibilities for future work. 
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CHAPTER 2 RESEARCH 

2.1 Overview 

 A number of features have been developed over the years in order to provide a 

meaningful representation of speech. The most common methods include time domain, 

frequency domain, speech modeling, statistical and autocorrelation. Additionally, several 

industry standards have been proposed which utilize a combination of these methods. As stated 

in the previous chapter, noise is a problem which exists in every environment, so as the 

requirements for applications become more stringent with regards to noise, the features must 

become more complex. Additionally, in order to obtain a feature set that is more descriptive of 

speech, one or more of these features must be used simultaneously. To detect the incoming 

speech signals, an appropriate detection scheme that uses the chosen feature set for decision must 

also be considered.  

 The details in this chapter provides an overview of many of the common features used in 

speech detection as well as the challenges in detecting these features based on the application 

described in this thesis. Also, related works are discussed which provide a formulation for the 

considered approach. The research presented here is merely a highlight of popular methods and 

is not inclusive of all possible detection/classification methods and variations. 

2.2 Speech Features 

2.2.1 Time Domain 

 The simplest and most efficient algorithms that have been used for speech detection are 

energy and zero crossing rate. Both are time domain algorithms that perform relatively well in 



8 

 

high SNR environments, but quickly suffer as background noise levels increase. Additionally, 

neither method provides a useful means of discriminating against speech and non-speech sounds 

making them primarily useful for detecting onsets and offsets of non-stationary signals with 

relatively stationary background characteristics. However, since many speech applications do not 

expect or care about non-speech noises, these methods can be useful in distinguishing between 

voiced and unvoiced sounds [1] in a clean speech environment. 

 The Short Time Energy (STE) of a signal is one of the most prevalent features used in 

speech detection [2] and is defined as 

 
              

 

   

 (1) 

where x(n) is the input signal and N is the length of the signal being measured. In order to detect 

a specific energy level, the STE can be compared against a fixed or varying threshold to 

determine when speech has occurred. A fixed threshold can be used when prior information 

about the communication channel is known, assuming the background noise is relatively 

stationary. An adaptive approach can be implemented by calculating the energy in the channel 

during the first few hundred milliseconds of a transmission which can be fixed as the threshold 

value for the entire length of the signal or by computing a long-term average during periods of 

non-speech.  

 The Zero-Crossing Rate (ZCR) of a signal is determined by the average number of times 

the signal crosses zero over a given period of time [1], [3] and is defined as 

 
                             

 

   

 (2) 
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 Its usefulness lies in the fact that it can discriminate against tonal sounds commonly found in 

voiced speech where the value of the ZCR would be much lower than for unvoiced speech. Since 

unvoiced speech is similar to that of a stationary noise process, discriminating against unvoiced 

speech and noise becomes a difficult task at low SNR ranges. As with the energy feature, the 

ZCR can also be compared against a threshold or range of values for detection purposes.  

2.2.2 Frequency Domain 

 Various frequency domain based features have been developed that take into account the 

shape and statistical properties of the signal spectrum. These features have been used in studying 

speech/music discrimination [4] by exploiting the differentiating musical properties of sound and 

have also been showed to be useful for speech detection tasks [5]. Such measures include 

centroid, roll-off, and flux [6]; flatness [7]; and band energy ratios [8][9], each of which are 

defined below. 

 Spectral centroid measures the center of mass or “brightness” of a sound. Percussive and 

high frequency sounds push the energy towards the higher bands while speech tends towards the 

lower bands. The centroid C for the i
th

 frame can be computed as  

     
        

   

      
   

 (3) 

where M is the magnitude of the n
th

 frequency bin and N is the total number of bins in the 

positive frequency range. For voiced speech, the magnitude spectrum will weight heavier on the 

lower frequency bins and for unvoiced speech the bins will be weighted more equally.  

 Spectral roll-off is the frequency for which the sum of the lower band is a certain 

percentage of the total band energy, where the percentage can range from 85 to 95. It represents 
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a “right-skewness” of the spectrum where a higher value indicates a larger spread of energy. The 

roll-off frequency Rf for the i
th

 frame can be computed using a cumulative sum such that 

      

  

   

        

 

   

 (4) 

where P is the percentage as expressed in decimal form. This can equivalently be thought of as 

the slope of the spectrum. If the spectrum is flat or the majority of the energy is in the upper half 

of the spectrum, the larger the value.  

 Spectral flatness, also known as Weiner Entropy, is an indicator of how “random” a 

signal is, where a high value indicates more randomness and a lower value indicates the presence 

of tonal qualities. It is mathematically defined as the ratio of the geometric mean to the 

arithmetic mean of the spectrum and is computed as 

           
       

   

 

 
 

      
   

 (5) 

For white noise the flatness measure approaches one and for pure tones it approaches zero. 

 Spectral flux is measured as the L1 or L2 norm between the magnitude spectra of 

consecutive frames and captures the temporal deviations of the spectrum. The flux F for the i
th 

frame can be computed as  

                        
 

   

 (6) 

where N is the normalized energy between the current and previous frames. 

 A band energy ratio is the ratio of the normalized energy of any specified band to the 

normalized energy in the total measurement band. Depending on the application, a specific band 



11 

 

may or may not be useful, however in [9] a low-band to full-band energy ratio (LFER) metric 

was introduced which takes into account the fact that more energy is distributed in the lower 

frequency bands for speech. The authors used a cut-off frequency of 1.5 kHz and defined the 

ratio to be  

       
  

  
 

(7) 

where El is the total energy in the low passed version of the signal and Ef is the total energy of 

the measured spectrum. 

2.2.3 Statistical 

 Several features have been developed using statistical approaches to include Higher 

Ordered Statistics (HOS) and Maximum Likelihood (ML) estimation. The HOS method 

estimates the third and fourth order moments of the signal and relies on the assumption that the 

background noise is approximately stationary [10]. If the background noise is in fact stationary, 

the higher order moments will be approximately zero for background noise and non-zero for 

speech signals. When discriminating between speech and non-speech sounds is critical for 

operation, this approach will fall short since many other non-speech sounds can also be non-

stationary in the environment resulting in false detections. Likewise, in higher SNR 

environments unvoiced sounds may blend with the background noise causing higher miss 

detection rates, however this may be overcome by combining additional features [9]. 

 An alternative statistical approach [11] uses an ML estimate of the SNR for each bin of 

the DFT which contributes to a Likelihood Ratio Test (LRT) of two conditions: noise only and 

speech in the presence of noise. The SNR estimate assumes that each DFT bin is a Gaussian 
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random variable where the noise and speech have different statistics. The result of the LRT is 

then compared against a predetermined threshold for detecting the presence of speech. 

2.2.4 Speech Production and Human Perception Modeling 

 Some of the most popular methods for speech recognition tasks utilize features that are 

based on models of the human speech process. The performance of these methods have been 

further improved by incorporating front ends that mimic the human auditory system in order to 

improve operation at low SNR. Human speech production is typically represented as a source 

and filter model (discussed further in Chapter 3) in which a voiced or unvoiced stimulus is 

convolved by a filter that represents the vocal tract and position of the mouth. For the recognition 

task, the modeling of the filter is of interest since each position of the mouth can represent a 

unique sound. 

 The filter modeling has been performed in two main ways: Linear Prediction (LP) and 

through Cepstrum computation. The LP approach [12] utilizes an adaptive inverse filtering 

technique to recover the filter response while the Cepstrum [13] approach converts the 

convolution of the source and filter to a summation where the filter is then extracted. The LP 

approach has been a popular method used in speech coding tasks while the cepstrum has been 

more popular in recognition tasks. In general, the Cepstrum can be thought of as a compression 

and decorrelation (due to DCT) of the spectrum such that the LP (or any spectral representation) 

can also be converted to the Cepstrum for further processing. Compression occurs because the 

number of useful Cepstral coefficients for recognition tasks are in the range of 6 to 20 (energy 

compaction property) which is typically much less than the number of DFT bins. Decorrelation 
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occurs since the energy contained in the transformed signal has a greater and more equal spread 

across all useful coefficients which can be a useful property for classification tasks. 

 Several popular methods have been considered for adding a noise robust component to 

the speech production model. The common theme among these approaches is the use of a filter 

bank followed by a non-linear operation applied to the energy contained in each band. The 

theory behind such an approach stems from the physiological makeup of the human auditory 

system in which the location and impulse response of hair cells along the basilar membrane act 

as a bank of band-pass filters which allow for reliable detections in the presence of masking 

noise.  

 The Perceptual Linear Prediction (PLP) method [14] is similar to LP with the addition of 

several pre-processing steps. A set of Bark warped band-pass filters are first applied to the power 

spectrum where the output of each filter is summed and a cube root operation is then applied to 

each. The filters in this case are flat on top with exponentially shaped skirts of increasing 

amplitude with increasing frequency. A more popular approach uses a Mel-warped filter-bank of 

equal amplitude triangular filters and is typically used in conjunction with the Cepstrum to give 

the Mel Frequency Cepstrum Coefficients (MFCC). In this case the energy in each band is log 

compressed. As the physiological responses of the auditory system has been studied extensively, 

realistic band-pass shapes have been proposed, such as the Gammatone filter [15], in order to 

provide a more accurate and improved representation of the human auditory system. The shapes 

of the filters take their response from the Gamma function used in the computation. Application 

of the Discrete Wavelet Transform (DWT) [16–18] provides a physiological-like response since 
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the cascaded structure of high and low pass filtering with resampling simulates a warped band-

passed spectrum. 

2.2.5 Autocorrelation 

 Several autocorrelation measures have been proposed. In [19] the normalized 

autocorrelation coefficient of unit lag is considered as a feature. In [20] a sub-band 

autocorrelation approach is presented in which the speech signal is first processed by a bank of 

band pass filters and then the autocorrelation of each is computed at a lag equal to the inverse of 

the center frequency of each filter. 

2.2.6 Additional Features 

 Formant tracking has been considered as a speech detection method due to the fact that 

shapes made by formants are unique to speech signals. The formants of speech signals are the 

spectral peaks which make up voiced sounds and can take shapes that are straight, convex and 

concave over small durations of time and for different sounds. In [21] the author used this fact to 

track local peaks using the DFT of the LPC domain over specified periods of time. In order for a 

segment of audio to be considered as speech, it must meet certain criteria such as minimum and 

maximum duration for each shape type, minimum duration for a local formant and maximum 

difference between peaks of formants. Each of these values is tuned to obtain optimal 

performance. Although this approach utilizes information that is unique to speech, it requires 

large durations of time in order to capture this information which may not be reasonable for real-

time communications. 
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 The authors in [22] presented a feature called Zero Crossings with Peak Amplitudes 

(ZCPA). This feature considers computing the upward going crossings at the output of individual 

filters in a filter bank. The peak amplitude between upward zero crossings are log compressed 

and then assigned to frequency bins where the assignment to a bin is determined by the inverse 

of the time period between crossings. The peak amplitudes belonging to the same bin are 

summed and then the corresponding bins of each filter are summed which results in a singular 

frequency histogram. The strength of this approach is that it focuses on extracting the energy of 

dominant frequencies in a sub-band whereas the other sub-band methods, such as MFCC, focus 

on the energy in the entire sub-band which includes energy from broadband noise. The authors in 

[23] show that this feature slightly outperforms the perceptual features presented in section 2.2.4, 

however at the cost of 20 times the computational complexity. 

2.2.7 Commercial Implementations 

 Several standards have been developed to provide a common mechanism for speech 

detection among communications systems. The International Telecommunications Union (ITU) 

introduced one of the first major standards in 1996 known as G.729 [24] which describes the 

implementation of a Voice Activity Detector (VAD) and Comport Noise Generation (CNG) used 

for Discontinuous Transmission (DTX) of voice.  

 The G.729 VAD uses the ZCR as well as several features derived from the LP 

computation which includes Line Spectral Frequencies (LSF), full-band energy and low-band 

energy. The use of LP based features allows for reduced computational load since the 

autocorrelation computation which solves for the LP coefficients can be used for both encoding 

and VAD. The LSF speech feature is an alternative form of the LP coefficients that allows for 



16 

 

reduced quantization error in speech coding [25]. The full and low band energies are calculated 

directly from the autocorrelation coefficients where the full band energy is the same value as the 

STE feature and the low band energy is typically the energy below 1 kHz.  

 The implementation of this VAD uses an adaptive detection approach where initial 

parameters are computed at the start of a transmission and then updated during periods of non-

speech. Rather than use the features directly, “difference features” are computed for each frame 

using the instantaneous values and the running average of each. These difference features are 

then compared against a series of predetermined boundary conditions.  

 The ETSI published standards around the same time as the ITU that would be used for 

the purpose of voice compression in GSM cellular networks. The features and detection used by 

the ETSI are more robust than the G.729 since they do not rely on time domain related features 

and LP parameters which are both shown to have poor noise performance [26]. The ETSI 

published two options in the same standard where the second option has better performance 

while sacrificing computational efficiency [27]. 

 The ETSI Option 1 considers several features to include sub-band energy levels (using 

DWT strategy) and pitch, as well as tone detection for informational tones and complex signal 

analysis for sounds such as music [28]. The energy levels of nine bands are computed across the 

speech range of 0 to 4 kHz using a sub-band filtering technique where each successive filtering 

stage is decimated for more efficient computation. Energy levels of the current frame are 

compared against a long term estimate of the noise. Pitch detection is computed using an 

autocorrelation method in which the lag with the maximum peak is determined. A pitch flag is 

set if consecutive frames contain similar pitch. The lag at which the maximum occurs is then 
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used for tone detection in which the energy of the signal at the determined lag is also considered. 

For complex signal analysis, the maximum of the autocorrelation of the high pass filtered speech 

is determined and is smoothed using a first order filter. Tone detection and complex signal 

detection flags are set if they exceed predetermined thresholds. The purpose of detecting these 

different types of signals is so that they are not replaced by comfort noise which is considered to 

be annoying. 

 The ETSI Option 2 utilizes estimates of the background noise and channel energy to 

compute instantaneous and long-term SNR’s. The instantaneous SNR is then quantized and 

converted into a voice metric value which is compared against a threshold that is determined by 

the long term SNR. A power spectral estimate is also computed to determine when a noise 

estimate update is appropriate. 

  The ETSI also published a feature extraction standard for use in distributed speech 

recognition [29], in which speech features are computed on a client computer that are then 

compressed and transmitted across a network for processing on a server. The approach utilizes 

three measurements of the DFT of the output of a two-stage Wiener filter as input to the VAD. 

The first measurement considers energy values across the whole spectrum while the second 

considers energy values in a sub-region of the spectrum where the fundamental pitch is likely. 

The third measurement considers the variance of the energy in the lower half of the spectrum to 

account for “acceleration” associated with speech onset. The output of each measurement is 

combined and the decision is stored into a buffer which acts as a look ahead for decision 

smoothing. 
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2.3 Detection 

 The most basic form of detection is that which employs a singular threshold value based 

on the known noise properties of the channel. Although efficient, this method does not tell us 

much about the signal being detected in the sense that no unique description has been achieved. 

Employing multiple features, each with their own threshold, can help to narrow the possibilities 

of signals that will be accepted, yet obtaining these threshold values is still a difficult task when 

environmental characteristics vary and there are a large number of features. In order to remove 

the need for the standard hard threshold as well as provide a more descriptive representation of 

the signal, a machine learning approach is considered in order to “model” the desired signal such 

that detections that do not fit the model will be rejected. 

 There are an overwhelming number of machine learning methods that can be used to 

employ detection. These methods can be supervised, unsupervised, semi-supervised and so on 

such that sampled data can be used to train a classifier which delineates the features as belonging 

to one of two or more classes. For speech detection these classes can be speech or non-speech; or 

even voiced, unvoiced and silence. Since the application in this thesis deals with determining 

whether or not speech is present, the number of possible machine learning approaches can be 

narrowed to those that deal with binary decisions. A popular method for providing binary 

decisions is the Support Vector Machine (SVM) which was introduced in [30]. The SVM is a 

computationally efficient classifier that can be easily optimized for complex descriptions and 

provides good generalization for datasets that are either under or oversampled. For this reason 

the SVM was explored for use in the speech detection system. 
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2.3.1 Support Vector Machine 

 The SVM is a two-class classifier that is trained using pre-labeled data from two separate 

classes and determines an optimal hyper-plane for separation. Since the data must be labeled 

prior to training, it is known as a supervised method for classification. For speech detection, the 

SVM can be trained on speech and noise such that a binary decision can be provided for both 

clean and noisy speech. Several works were identified which utilizes various features in 

conjunction with an SVM for speech and non speech classification. 

 In [31] the author proposes using MFCC, ZCR, energy and several spectral features to 

distinguish between speech and non-speech over a one second window. The mean and standard 

deviation of these features are computed over smaller windows within this time frame which is 

used as the final feature vector for decision. In [32] the author considers the use of Long Term 

Spectral Divergence which is decomposed into sub-band SNR approximations as features. In 

[33] the same author proposes using a Wiener filter in conjunction with sub-band power which 

achieves comparable results to [32]. The author in [34] considers using the raw speech samples 

as features for endpoint detection of clean speech when trained on clean speech, then provides 

results when trained and tested with additive noise. In [35] the author considers wavelet de-

noising in conjunction with sub-band power, ZCR and pitch frequency. The same author also 

considers the AMR-WB and NB commercial features [36] and then considers modifying the 

AMR sub-band computation using wavelets [37]. In [38] the MFCC are again considered with 

the addition of the difference and double-difference coefficients. In [39] the author considers 

using the a-priori SNR, a-posteriori SNR and predicted SNR as features (similar to the Sohn 

LRT features) and in [40] considers the SNR outputs presented by Sohn in [11].  
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 For all previous works described, agreeable detection performance is achieved for clean 

and low SNR environments. However, it is important to notice that when measurement of noise 

performance is considered, the training set was inclusive of the noise being tested. For the 

application presented here, the noise statistics can be produced from a variety of potentially 

undetermined environmental conditions. Likewise, embedded non-speech data (i.e. files, images 

etc.) within the speech frames can also be considered noise that can be produced in an unknown 

number of ways. It is obvious from these facts that training with all possible noise is not a 

feasible task, although one could obtain a rich dataset of noise and assume it as being “good 

enough”. With this in mind a different approach is taken where knowledge of clean speech only 

conditions are used to train a classifier such that non-speech is rejected and noise robustness is 

obtained through the use of noise reduction and selection of features.  

2.3.2 One-Class Support Vector Machine 

 The downside of the two-class SVM approach to VAD is the need to have training 

samples which are representative of the various types of noise in many operating environments. 

Instead of trying to understand all possible noises, one can ask: Is it possible to detect speech in 

many conditions by only knowing what clean speech looks like? Leveraging the various 

strengths of the standard SVM, the One-Class SVM (OC-SVM) provides a promising means of 

such a task. One approach to the one-class classification problem using an SVM was presented in 

[41] where an optimal hyper-sphere is used to describe the data. Another approach was presented 

in [42] which finds a hyper plane that maximizes the distance of the data from the origin. In 

either case, the main idea behind this theory is that only a description of the desired signal is 



21 

 

available such that when the signal is detected it is accepted while all others are considered 

outliers and are rejected.  

 One speech based application using an OC-SVM is speaker verification. In [43] the 

authors consider both speaker verification and identification where each speaker is trained on 

their own classifier using LP coefficients. Training/testing utterances are quantized using K-

Means and classification is performed in a one-against-one strategy where each speaker has a 

classifier assigned for each other speaker. Training on both negative and positive examples is 

presented where the positive examples are that of the speaker and the negative is another 

speaker. In [44] the authors consider a speaker recognition application using LP and MFCC 

coefficients in a one-against-many strategy without considering other speakers for training. 

Instead they use the other speakers to tune each classifier so as to reduce the overall 

classification error. They compared their performance in relation to a Gaussian Mixture Model 

(GMM) and then in [45] they combined their approach with a GMM to further improve 

performance. 

 Another speech application considered is sound classification. In [46] the authors use a 

K-means like procedure to iteratively assign and train several OC-SVM’s over a training set for 

speech/music discrimination. The features considered are the mean and standard deviation of 

MFCC, pitch, brightness and spectrum power captured over many frames for a large duration of 

time. The authors do not discuss effect of duration or the number of clusters used in 

classification. In [47] the authors classify short duration sounds where each sound is assigned a 

different classifier. The MFCC’s are captured in several frames over the sound duration and a 

distance measure is formulated to efficiently assign the sound to the appropriate class. The same 
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authors presented an identical procedure in [48] with the addition of several features to include 

ZCR, energy, spectral centroid and roll-off, MFCC, LPCC, PLP and wavelets.  

 Speaker segmentation for audio diarization was considered in which the changes in active 

speakers is detected in an audio stream. In [49] the authors approach the problem by considering 

a sliding window that is split into two halves. At each increment, one half is used to train an OC-

SVM and the other half is used to test. If the prediction is true then the entire window contains 

the same speaker, otherwise a transition is assumed at the halfway point of the window. 

Overlapping frames comprise the large window and the features considered are MFCC and 

DWT. A similar diarization application is single/multi-speaker discrimination in an audio stream 

[50]. The authors consider the mean and log variance of spectral flux, spectral centroid, ZCR, 

and Cepstrum as well as the mean of kurtosis. The audio is analyzed over one second durations 

where both frames and durations are overlapping. The performance of the features was 

considered separately as well as together, and it was found that the combination gave the best 

result. 

2.4 Summary 

 From the survey of OC-SVM applications, it is obvious that computing the statistics of 

the features over a long duration is desirable in addition to the use of multiple classifiers. This is 

likely due to a limitation of a single OC-SVM to model complex datasets such as speech. By 

using the statistics over a longer period of time the complexity of the model is reduced. Since 

operating in real time is a desirable requirement, long duration statistics is not feasible, and 

therefore more instantaneous decisions must be made.  
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 Besides using noise performance as a criterion for feature selection, maintaining scale 

invariance against differing speaker amplitudes is also desirable. It can be shown that for a given 

utterance at different amplitudes, the Cepstrum coefficients (excluding 0
th

) are scale invariant. 

Likewise, any statistical representation, such as those presented in the frequency domain, is also 

scale invariant. Therefore both Cepstrum and frequency features were considered. For this thesis 

the Gammatone approach was selected due to its improved noise performance over the Mel-

frequency approach.  
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CHAPTER 3 DESIGN & IMPLEMENTATION 

3.1 Overview 

 This chapter is dedicated to the design details of the proposed speech detector. The 

technical aspects of each component are presented along with a discussion of each. A high-level 

diagram of the overall system design can be seen in Figure 1.  

 

Figure 1: Proposed System Design 

 The figure presented is a very common scheme when performing signal detection tasks. 

In fact, the pre-emphasis and STFT approaches were taken straight from the literature since they 

are commonly used steps in recognition. Additionally, the features chosen have also been studied 

extensively in the literature for recognition tasks and it is their state-of-the-art performance 

which is the driving force behind their choice in this application.  Noise reduction is also a 

common step in many recognition tasks and is an essential component of the system.  

 The main contribution of this thesis lies in the detection step where the OC-SVM is 

employed with other components to provide a speech detector that is robust to varying speakers 

and noise conditions. The method of detection provides a generic way to train a detector that is a 

representation of only speech such that all other non-speech noises are rejected. The selected 

features give a demonstration of this aspect, while not necessarily providing the best possible 

description of speech. In general, the noise reduction and feature components can be replaced to 

potentially improve upon the research proposed here. 
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3.2 Wiener Filter 

 The Weiner filter provides a noise suppression mechanism in which an estimate of the 

background noise is obtained and used to reduce the noise across the audio stream. Although the 

addition of a noise suppression step is undesirable, its inclusion serves multiple purposes. Firstly, 

any process which is sensitive to noise can most definitely benefit from noise suppression. From 

a perceptual point of view the human is able to naturally reduce background noise which 

improves the signal to noise ratio allowing for recognition of low-level signals. The binaural 

nature of human hearing (two ears) exhibits directional properties which is effective at reducing 

the level of interfering sounds. In the case of a monaural system, this cannot be achieved 

therefore simpler functionality must be employed. Second, the decrease and/or removal of noise 

reduces potential overlapping in the classification stage where noise patterns can intersect with 

portions of the speech model. This may occur due to under fitting in the speech model where the 

regression is fairly loose or through description of the signal where a poor or ineffective feature 

set has been chosen. Finally, from a steganalysis perspective the noise reduction can increase the 

bit error rate of potential watermarking or embedded data. 

  For annotation purposes, a lower case variable indicates a scalar or column vector (bold), 

while a bold capital letter indicates a matrix. Given a noisy speech signal y(n), 

 
                 (8) 

where x(n) is the clean speech signal, n(n) is an additive noise and n it discrete time, we would 

like to recover x(n). This can be accomplished by creating a filter g such that the estimate of x(n) 

is 
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      (9) 

where T indicates the transpose. Using a Minimum Mean Square Estimate (MMSE) approach as 

in [51], it can be shown that the optimal filter is 

 
      

      (10) 

where Ryy is the autocorrelation of the noisy signal y and rxy is the cross-correlation of the noisy 

signal and desired signal x(n). For signal processing applications, the autocorrelation and cross 

correlation can be approximated by a time-average estimate such that 

 
            (11) 

where Y is a block form of shifted samples and x is a vector of current and previous samples. 

This realization provides an approximation such that  

    
   

                 
      (12) 

In practice, the autocorrelation must be computed using the clean signal x(n) which can be 

calculated by subtracting an estimate of the noise from the input signal. The noise signal can be 

obtained from the first few hundred milliseconds of transmission and updated during periods of 

non-speech. 

3.3 Pre-Emphasis Filter 

 A pre-emphasis filter is a high pass filter which provides a gain in the upper half of the 

pass band and reduces low frequency interference such as AC hum caused by ground loops in a 
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communications system. It is commonly used in speech recognition systems to remove the mean 

and boost the high frequency components of speech signals. For computations that require an 

auto or cross correlation computation, the DC component degrades performance while also 

creating a bias for machine learning algorithms. The frequency response of voiced signals tends 

to roll-off with increasing frequency which makes the information there les prominent.  

 For implementation, a 1
st
 order FIR filter is typically employed with a difference equation 

in the form 

                    
(13) 

where α is set to .97. The response of this filter can be seen in Figure 2 below. 

 

Figure 2: Pre-emphasis Filter Frequency Response 

3.4 Short-Time Fourier Transform (STFT) 

 The STFT is a popular front-end processing stage for speech recognition and analysis 

problems the main steps for which can be seen in Figure 3. It consists of dividing a large or 

continuous amount of data into frames of finite duration, followed by the application of a time-
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domain window and then a Fast Fourier Transform (FFT). The choice of size for these frames is 

determined by the required time/frequency resolution of the signal being measured. If a small 

window is chosen (relative to the signal frequencies being measured) good time resolution is 

achieved at the cost of poor frequency resolution. In order to obtain accurate frequency 

measurements, the window must be long enough to measure the periodicity in the signal; hence 

small windows will achieve good resolution for higher frequencies and poor resolution for low 

frequencies. If lower frequency resolution is desired, the length of the window can be increased 

at the cost of poor time resolution. The time resolution has now become worse because for high 

frequency components many changes could have occurred over the course of the window 

duration and have now been combined into a single snapshot for that period of time. 

 

Figure 3: Short Time Fourier Transform (STFT) 

 For the processing of speech signals, a window size of 20 to 30 ms is typically chosen. 

This range of measurement achieves two things: the resolution needed to capture lower 

frequencies in the speech band (typically 0 to 4 kHz) and preservation of the short-sense 

stationarity of signal. The stationary property is important since many speech processing 

algorithms use this assumption to simplify computations where the statistics are assumed to be 

stationary. One example of an algorithm that relies on this property is Linear Predictive Coding 

which was mentioned in the previous chapter. 
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 When frame based frequency domain processing is used, applying a time-domain 

window function to the signal is necessary in order to reduce the effects of the discontinuities at 

the edges of the window. The use of a rectangular window (no window) causes the spectrum of 

the signal to be convolved by a SINC function in the frequency domain which adds “ringing” 

into the signal and creates products which do not actually exist in the signal. To reduce this 

effect, a window which has a maximum at the center of the frame and falls to zero at the edges is 

applied. For speech applications a Hamming Window is a popular choice since it provides the 

necessary attenuation at the edges of the frame which lowers the effects of ringing. The complex 

spectrum X(n) can then be computed as 

                     (14) 

where x(n) is the frames time domain signal and w(n) is the chosen window function equal to the 

size of the frame. 

 

Figure 4: Hamming Window 

 Since the features used in this design do not incorporate phase, the amplitude or power 

spectrum can then be computed. The power spectrum has been chosen since its computation is 
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commonly incorporated as part of the MFCC features which is the basis for implementing the 

GTCC features and is computed as 

                    (15) 

where * denotes the complex conjugate. 

3.5 Feature Extraction 

Based on the survey of feature extraction techniques conducted in Chapter 2, the filter 

bank approach seemed to be the best suited. This was primarily due to the performance seen by 

the MFCC features in speech recognition and detections applications. The advantage of using a 

filter bank is seen in its noise masking properties that are related to the physiological behavior of 

hearing. By band pass filtering individual portions of the spectrum and then using the energy in 

each, added distortion and other potential masking signals are smoothed and distributed among 

several filters which reduces their effect.  
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Figure 5: Feature Extraction 

Recent literature showed that the Gammatone Cepstral Coefficients (GTCC) can provide 

equal or better performance than MFCC due to the improved characteristics of the filter 

responses [23], [52–54]. In order to increase the dimensionality of the feature vector while 

maintaining scale invariance, several frequency based features were also utilized. Rather than 

compute their values directly from the DFT spectra, the output of the Gammatone filter bank was 

used instead to approximate these values which reduced the computational complexity. Finally, a 

log energy feature was used (also directly computed from the filter bank output) that provided a 

simple mechanism to detect silence. A high level diagram of these functions can be seen in 

Figure 5. 
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3.5.1 Gammatone Filter bank 

3.5.1.1 Theory 

 The Gammatone filter bank is a physiologically inspired representation of the auditory 

system front end [15]. The basilar membrane found in the cochlea is the mechanism which 

provides the conversion of acoustical sound into electrical impulses. As the sound wave moves 

along the basilar membrane, frequency selective stimulations occur as ripples with various 

lengths and amplitudes. Through biological investigation, it was found that these ripples can be 

decomposed into a multi-channel representation with impulse response envelopes similar to the 

gamma function. The time domain Gammatone filter defines the impulse response at different 

positions along the basilar membrane 

 
                               (16) 

where a represents the gain, n is the filter order, B is the filter bandwidth, fc is the center 

frequency and ϕ is the phase.  

 The Equivalent Rectangular Bandwidth (ERB) is a psychoacoustic measure of the width 

of the auditory filter at each point along the cochlea [55] and represents the bandwidth B in 

equation (16). The ERB for a given filter with center frequency fc is defined by 

 
      

  
    

 
 

        

   

 (17) 

where EarQ is an asymptotic filter quality at large frequencies and minBW is minimum 

bandwidth at low frequencies. Filter quality is a measure of its center frequency divided by the 

bandwidth. Several researchers have suggested different values for these parameters; however 
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the most widely accepted is provided by [56] in which EarQ is 1000/(24.7*4.37), minBW is 24.7 

and n is 1. The choice of these parameters is mainly due to the higher quality factor achieved at 

lower frequencies. 

 The filter bank design first begins by either defining the number of filters N or an overlap 

factor v, along with the low and high frequencies fl and fh which describe the analysis bandwidth. 

In the experiment portion of this thesis, we are interested in understanding the number of filters 

which gives the best detection performance. Therefore we begin our derivation assuming the 

number of filters is an input which results in a derived overlap factor. Given the number of 

desired filters, the overlap factor is defined as 

 
  

    

 
   

             

             
  (18) 

which specifies the amount of overlap (fraction of the ERB) needed to achieve a certain number 

of filters over the specified band [56]. A step factor close to zero indicates almost complete 

overlap while a step factor close to one indicates almost no overlap within the 3dB bandwidth. 

Finally, the center frequencies of each filter can be determined by  

                                  
 

  
     

      
 

(19) 

3.5.1.2 Implementation 

 Efficient implementation of the filter bank has been studied extensively. In [57], 

Schofield showed that the 4
th

 order Gammatone filter gave a very close fit to the human auditory 

filter shape. As a result this is typically the order used for most implementations in order to 

maintain accuracy while maximizing computational efficiency. In [58], Holdsworth et al. showed 



34 

 

that an n
th

 order Gammatone filter can be represented by a cascade of n 1
st
 order recursive filters 

which is derived using a pole mapping technique.  

 In [55], Cooke argued that the pole mapping technique can lead to a poor representation 

of linear system response in terms of magnitude, impulse and/or phase. An extensive study of 

different digital filter derivations was conducted and it was shown that the impulse invariance 

method provided the best preservation of magnitude and phase characteristics in comparison to 

pole mapping and bilinear methods. The 4
th

 order implementation presented, similar to 

Holdsworth et al., uses the concept of baseband filtering in which the spectrum is shifted to DC 

for each filter, low pass filtered and then shifted back. 

 In [55], Slaney argued that Cooke’s method requires the use of a complex exponential to 

shift the signal which is equivalent to the computational complexity of an 8
th

 order filter due to 

the need for both real and complex multiplication. Using Laplace analysis, Slaney showed that 

the 4
th

 order Gammatone filter could be represented as an 8
th

 order filter which was comprised of 

a cascade of four 2
nd

 order biquad recursive filters. Additionally, he showed that an all-pole 

version (removal of the zeros) could be constructed with only minor gain reduction in the lower 

frequency range at the improvement of half the computational complexity. 

 In [59], [60] Hohmann formulated a complex version of the Gammatone impulse 

response using the impulse invariance method and provided analysis for its all-pole version. By 

adding the complex component, which represented the Hilbert transform of the impulse 

response, Hohmann showed that reconstruction could be performed which has applicability in 

areas such as hearing aids.  
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 In [61], Ma introduced an improved computational version of the Cooke method in which 

the complex exponential used for frequency shifting was reformulated in terms of the previous 

sample rather than the current. In doing so, only one complex exponential calculation is needed 

for the first sample, and the remaining exponential calculations can be computed by a simple 

multiplication. Doing so provided in efficiency gain of 4 over Cooke’s original version.  

 The implementations previously mentioned are typically performed in the time-domain in 

order to extract the envelope of the impulse response for further processing. However, we are 

simply interested in the energy contained in each filter band which will be used to formulate the 

feature vector. To aid in improving computational efficiency, [62] provided a frequency domain 

formulation of the Slaney implementation in which the magnitude frequency response of each 

filter is contained in a matrix allowing for simple and efficient computation of the filter energies 

given the DFT of the input signal. Given a matrix G which contains the rows of DFT bins for 

each filter and a column vector x which contains the DFT bins of the input signal, the vector of 

energies e can be computed as 

 
     (20) 

or represented in its summation formulation as 

                                  

 

   

 

 

(21) 

where N is the number of DFT bins and L is the number of filters. 
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3.5.2 Cepstral Coefficients 

 A popular method for speech analysis is through the representation of speech production 

as a “source/filter” convolution model. The source is a stimulus which produces sounds that can 

be classified as either voiced or unvoiced. Voiced sounds are represented as a train of pulses 

which mimic the glottal excitations in the vocal tract while unvoiced sounds are represented as a 

white noise process. Air from the lungs is pushed through the vocal tract and mouth which 

represents the filter. Various lengths and shapes of the vocal tract and mouth determine the 

specific sounds that we make. 

 

Figure 6: Speech Production Model 

 In speech recognition tasks, it is common to isolate the filter since it can be used to 

represent the fundamental sounds that makeup words. This is typically performed using LPC 

analysis or through cepstrum computation, the latter of which is considered here. Computing the 

cepstrum can be seen as a deconvolution process in which the convolution is converted to a 

summation such that the filter information can be easily extracted. Given the process seen in 

Figure 6, a sound y is represented by the source convolved with the filter 

 
               (22) 
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where * denotes the convolution. If we take the log of the DFT of y(n), the convolution becomes  

 
                               (23) 

where a capital letter denotes the DFT of the associated time signal. Finally, the inverse DFT is 

performed to compute the complex cepstrum 

 
                  (24) 

For speech recognition tasks, maintaining phase is not a typical practice and therefore the inverse 

DFT is simplified by taking the DCT of the signal which handles on the real portion of the DFT. 

 The output cepstrum can now be viewed as a summation of the source and filter where 

the lower portion represents the filter and the upper portion the source. For the purpose of 

recognition, the first 10 to 13 coefficients have been shown to provide the most significant 

contribution to performance and can be filtered by simply applying a binary mask. In practice 

however this filtering can be performed in the DCT computation by only computing the desired 

number of coefficients. 

3.5.3 Frequency Features 

 The frequency features considered here are those described in section 2.2.2 with the 

exception of spectral flux since temporal features are not being considered as a whole due to 

real-time constraints. The formulation for each is the same as those described in equations (3), 

(4), (5) and (7) with the exception that the DFT bins are replaced by the filter bank energies. 
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3.5.4 Energy Feature 

 The energy feature considered is defined as the log of the sum of filter energy outputs and 

is expressed as 

 
                

 

   

  (25) 

where E(l) is the energy of the l
th

 filter output.  

3.6 Detection 

 Using the features extracted from the speech signal, several components are used for 

detection. First, the OC-SVM provides the main pattern recognition mechanism that determines 

the presence of speech. One interesting property was noticed during informal testing of clean and 

noisy speech. For clean speech both silence and speech were accepted indicating that it operated 

at what would be considered a high true and false positive rate. For noisy speech it responded 

like a true VAD in the sense that silence with noise was rejected while speech was accepted. This 

response was indicative of the outlier detection nature of the OC-SVM. In terms of traditional 

speech detectors this property is not desirable, yet for the application presented in this thesis it is 

the ideal operation.  

 In order to add to the design such that the response was that of a traditional VAD, a 

simple fixed threshold energy detector was employed. The threshold was determined during the 

training process in which the silence frames not used in training were instead used to compute 

the average energy of the pauses and silence given clean speech signal. When the outputs of both 

detectors are compared with a logical AND function, the result is that of a normal VAD. Finally, 
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the weighted filter was added to combine adjacent overlapping decisions. The high level diagram 

can be seen in Figure 7. 

 

Figure 7: Detection Computation 

3.6.1 Support Vector Machines 

 The Support Vector Machine (SVM) is a popular learning tool for binary classification 

which operates by producing an optimal hyper-plane between two datasets of different classes. 

The term “support vector” is derived from the fact that data points selected during training form 

the plane that best describes the data. When the data cannot be linearly separated, a “kernel” is 

first applied to the input which provides a transformation to a higher dimensional space where 

the data becomes linearly separable. The optimal selection of the kernel is based on the particular 

data set being considered and in the case of speech classification the Radial Basis Function 

(RBF) kernel has been shown to provide good performance (Section 2.3).  The plane formed in 

the higher dimensional space now corresponds to a non-linear boundary in the original input 

space.  

 A one-class SVM (OC-SVM) provides a similar function, but instead uses the support 

vectors to describe only the data provided for a single known class. Several formulations for the 
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decision boundary have been presented. In [41] Tax et al. uses the concept of hyper-spheres 

where the maximal sphere around the data is selected. In [42] Scholkopf et al. formulates an 

optimal hyper-plane which maximizes the distance between the data and the origin. In the case of 

non-linear separation using an RBF kernel, the result of each is nearly identical resulting in a 

non-linear boundary around the data. For the purposes of this thesis, only the RBF kernel is 

considered and the formulation provided by Tax is presented. 

3.6.1.1 One-Class SVM 

 In order to use the two-class SVM, data for both the target class and the distribution of 

data outside of the class must be available. One way to handle this is to take samples of data for 

which the target class does not exist. Alternatively, the One-class SVM (OC-SVM) can 

overcome this challenge by requiring only the data for the target class. In the case of speech 

detection, the goal is to model the speech using only clean speech samples such that noise that 

does not have the same characteristics as speech is rejected. Given a training set {xi}, i = 1,…N, 

where each represents a feature vector, we define an error function for a sphere of radius R and 

center a to be 

 
                 

 

 

 (26) 

where C is the tradeoff between the simplicity of the model and error, and ξ is a slack variable. 

The role of the cost parameter will be discussed in Chapter 4. The goal is to minimize the radius 

of the sphere subject to the constraint 

 
             (27) 
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The above problem is reformulated as a Lagrangian which incorporates the constraints on the 

sphere 

 
                            

        
                 

 

 

 

 

 

 

 (28) 

where α and γ are the Lagrange multipliers. We minimize L w.r.t. R, a, and ξ by setting the 

partial derivatives to zero which gives the following constraints 

 
     

 

 

 (29) 

 
        (30) 

 
          (31) 

Equation (29) states that the sum of all Lagrange multipliers should equal 1. Equation (30) states 

that the center of the sphere is a weighted sum of the features vectors and the Lagrange 

multipliers. Equation (31) is a constraint on the range of values that the Lagrange multipliers can 

take which is simplified further by removing γ and setting 0 ≤ αi ≤ C. Substituting Equations (29) 

thru (31) into equation (28) gives 

 
                         

 

   

 

 

 (32) 

Finally, L is maximized which gives the final set of αi that is used for classification. 

 Values of xi that satisfy the constraint in Equation (27) within the boundary will 

correspond to αi = 0 and those that are on the boundary will correspond to αi > 0. When 

evaluating a new feature vector, only the values of xi on the boundary are considered and 
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therefore they are referred to as “support vectors”. The acceptance of a new feature vector z is 

then determined by 

                                    

 

   

 

 

    (33) 

where R can be pre-computed by 

 
                                   

 

   

 

 

 (34) 

3.6.1.2 Non-linear modeling 

 As previously mentioned, when the data is not linearly separable in the feature space a 

kernel function can be applied which provides a transformation to a higher dimensional space 

such that it is linear separable. Many kernels have been proposed in the literature; however the 

selection of kernel must be determined explicitly through trial and error for a specific target data 

set. For speech applications using SVM’s, the RBF kernel is the most widely used since it has 

been shown to provide the best fit for the nonlinear boundaries of speech. A generic formulation 

for a kernel K is defined as  

 
                       (35) 

which is the inner product of the input data transformed by a kernel function ϕ. The RBF kernel 

is defined as 

 

                      
 
     

(36) 

where s is a free parameter that can be used to tune the fit of the model to the data and ||.|| 

represents the norm (distance) between two vectors.  
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 For small values of s, the kernel output is approximately zero and all samples are 

considered as support vectors. The result is an extremely tight fit and no new sample will be 

accepted. When s is large, the kernel output approaches one and very few samples are considered 

as support vectors. The result is a very loose fit in which all or most samples are accepted. The 

optimal value of s can be chosen using cross-validation in which the expected error of the model 

for each value is iteratively computed over the entire test sequence. This approach for tuning the 

model is considered in this thesis and will be further discussed in chapter 4. The kernel function 

is integrated into the original OC-SVM formulation by replacing the dot products with K such 

that  

 
                                

 

   

 

 

    (37) 

3.6.2 Silence Detection 

 Since the OC-SVM provides a true decision for clean speech, including silence, a simple 

silence detector was added in order to gain typical VAD operation under low noise conditions. In 

addition to the operational performance, this also provides a way to reduce computational load, 

since classification is not necessary if silence exists. The threshold was determined implicitly 

from the training sequence using the average energy of the silence frames and can be raised or 

lowered at runtime if desired. 

3.6.3 AND Function 

 When the output of the energy detector goes high, the use of an AND function is 

necessary to combine the decisions. The following truth table describes the input and output 

conditions of this function. 
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Table 1: AND Function Truth Table 

OC-SVM Energy Output 

0 0 0 (Silence) 

0 1 0 (Noise Detected) 

1 0 0 (Silence) 

1 1 1 (Speech Detected) 

 In the case that the silence detector is low, the final decision is low. Although unlikely, 

this provides a means to mitigate a potential false alarm as in the 00 condition. When the silence 

detector is high, control is handed to the OC-SVM where the prediction determines the output of 

the AND function. 

3.6.4 Weighted Filter 

 In an actual system implementation, real-time decisions can be made on the frames with 

any amount of overlap desired. As the purpose of the overlap is to capture as many snapshots of 

the speech signal as possible for training, such a step may not be necessary during the detection 

process. Depending on the processing capability of the system, the amount of overlap can be 

adjusted to provide more or less data points for decision smoothing. If there is no overlap then 

the final decision on each frame is merely the decision output by the classifier with the tradeoff 

of potentially not capturing that portion of the speech signal which was previously modeled 

which may lead to reduced performance. 

A benefit to an increased overlap during detection is the addition of more data points 

which can improve detection accuracy by capturing more of the speech signal just as it did in 

training. In order to make the overlapped decisions useful, a weighting filter is considered. The 
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decision made on a single frame can be considered a combination of the adjacent frames when 

there is an overlap. The final output decision after weighting is defined by 

           

   

   

     (38) 

where d is the output decision of the AND function, i is the frame number and w is the weights. 

For this thesis, w was chosen to be 

             (39) 

 The weighting values selected are based on the fact that the overlap used in the 

simulation section is set to 50%, which implies that frames adjacent to the current frame each 

contribute to their adjacent frames. If a greater overlap was chosen a longer filter would be 

necessary. The downside to this approach is the introduction of a single frame delay which is 

tolerable. The plus side is that for higher noise environments, it provides a way of slightly 

improving the detection rate by decreasing miss detections. 

Once the weights are applied, a simple threshold can be used to determine how the 

current frame is affected by the adjacent frames. If a threshold of 1 is used, the filter allows the 

current frame to pass if any frame is 1. This will account for miss detections while letting false 

positives through and slightly increasing the detections around onsets and offsets of speech. A 

threshold of 2 will pass only if adjacent or consecutive detections are 1 which aims to mitigate 

false positives by requiring that speech be present in adjacent frames. Finally, a threshold of 3 

will only pass when all detections are 1 which would decrease false positives and make the 

decisions around onsets and offsets of speech tighter. A threshold of 1 was chosen to provide the 

best performance at lower SNR. 
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3.7 Other considerations 

 The addition of a VAD that can accurately model speech allows the gateway to determine 

if speech is present and therefore can make the decision to let a network packet pass or not. In an 

actual communications system, a VAD alone may not provide a complete solution since the 

audio would be broken during speech pauses and silence. Since the goal is to only pass speech 

and block everything else, additional components such as a comfort noise (CN) generator would 

allow for silence and pauses to be filled in order to maintain a natural conversation. Additionally, 

improved performance at higher noise levels is typically accomplished by adding temporal 

smoothing. Although not considered in this thesis, temporal smoothing is a decision buffering 

method that typically employs a state machine which uses a priori information about speech 

duration to filter out false positives and miss detections.  

 The proposed design inadvertently provides the potential to prevent or reduce 

steganographic attacks. In [63], the author describes several signal processing techniques that can 

be implemented in VoIP systems in order to prevent hidden message passing. These methods 

include adding white noise and/or jitter, inducing random packet loss, resampling and frequency 

shifting. Based on the system design, the VAD directly creates sample loss although it is 

somewhat deterministic since the goal is to remove pauses and silence. The implementation of 

the CN generator would provide a noise addition which is a similar to adding white noise. Also, 

the author in [64] suggests that wiener filtering can provide an attack against embedded 

watermarks, which allows the wiener filter described here to serve a dual purpose.   
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CHAPTER 4 EXPERIMENTS 

4.1 Setup 

 In order to test the performance of the design, custom signal processing algorithms as 

well as several open-source tools were used in a MATLAB environment. Multiple audio 

corpuses were selected to allow for analysis of the training process which helped derive an 

appropriate method for tuning the VAD and verify its performance. A high level diagram of the 

training and testing process can be seen in Figure 8. First, the TIMIT database was used to train 

the OC-SVM. Next, samples of several noise types from the NOISEX-92 database were used to 

derive selection criteria such that a minimal amount of noise would be accepted by the model. 

Finally, the OC-SVM was validated against speech from the NOIZEUS corpus and simulated 

noises for analysis. This chapter describes each of the components associated with this 

evaluation and presents the results and discussion. 

 

Figure 8: Simulation Setup 

4.1.1 Audio Corpus 

 Several audio corpuses were utilized in order to validate the performance of the proposed 

VAD. To train the OC-SVM, the TIMIT database provided samples of clean speech without the 
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presence of noise. The goal was to establish a well trained, clean speech model using a noise-

robust feature set such that features extracted from noisy speech would be a near representation 

of the clean features. The NOISEX-92 database helped to provide an understanding of how well 

the speech model would reject noises of various types in order to establish a method for tuning 

the VAD. To test the model, the NOIZEUS database and several simulated noises were utilized 

in order to understand the out of database performance for clean and noisy speech as well as see 

how well the model rejects other noises not considered in the tuning process.  

4.1.1.1 TIMIT Corpus 

 The TIMIT database is a clean speech corpus consisting of 6300 phonetically-rich 

sentences spoken by 630 speakers with 8 different dialects. Its original purpose was for the 

development and evaluation of speech recognition systems, however it can now be widely found 

in literature for the general purpose of developing speech processing algorithms. The database is 

partitioned into training and testing data and is provided at a sample rate of 16 kHz. Since the 

application is concerned with speech data only, the data was resampled to 8 kHz in order to 

match the typical audio bandwidth found on VoIP. For training purposes, one male and one 

female was randomly selected from each dialect region to provide a total of 16 sentences. More 

utterances were considered, however the added data did not contribute to performance. Filtering 

the data set in this fashion allowed for variability in the dialect and gender of the speaker while 

keeping the amount of data low to prevent over-fitting.  
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4.1.1.2 NOIZEUS Corpus 

 The NOIZEUS database is a speech corpus consisting of 30 phonetically rich clean-

speech sentences produced by three male and three female speakers. Each sentence is combined 

with several different noise types at various noise levels making this database useful for 

measuring and comparing the performance of speech enhancement algorithms. The noise types 

include babble, car, hall, restaurant, street, airport, train station and train with SNR’s of 15, 10, 5 

and 0 dB for each. The data is provided at 16 kHz was resampled to 8 kHz for use in testing. 

Each clean speech utterance was hand labeled in order to validate the performance of the 

proposed VAD at various SNR levels. 

4.1.1.3 NOISEX-92 Corpus 

 The NOISEX-92 database provides various noise recordings for different environmental 

sounds and includes white and pink noise; HF channel noise; speech babble; factory floor noise; 

jet cockpit sounds; Destroyer ship engine and operations room; tank noise; machine gun; and a 

Volvo car. The recordings are provided at ~20 kHz and are resampled to 8 kHz similar to the 

other databases. Approximately one second of audio was extracted from each noise type which 

was used to measure the acceptance rate under different training configurations such that and 

appropriate setting could be selected. 

4.1.1.4 Matlab ADT 

 In order to manage the TIMIT data for training, a tool called MATLAB ADT (Audio 

Data Toolbox) [65] was utilized. It was developed by the Technion Electrical Engineering 

Department to provide a simple and efficient means of extracting data from various corpuses 
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without the hassle of manually parsing the data. The use of this toolbox allowed for a significant 

reduction in implementation time while also allowing for iterative evaluations to be performed in 

an efficient manner. 

4.1.2 Training & Testing Setup 

4.1.2.1 Data Scaling and Normalization 

 Scaling and normalization are sometimes essential pre-processing steps which allow for a 

machine learning algorithm to function properly. In particular it is common to perform this for 

the SVM. To ensure that the features considered contribute equally to training, each was scaled 

between 0 and 1. This was performed by shifting each direction up by the minimum value in that 

direction and then dividing by the maximum in each direction. After scaling, the mean of each 

direction was subtracted and then scaled to unit variance. The values computed from scaling and 

normalization were then saved and applied to each of the test sequences. 

4.1.2.2 Data Labeling for Supervised Training and Testing 

 As part of the training portion of the simulation, labeling the data was an essential step of 

the supervised training process. Although each of the sentences within the database is mainly 

comprised of speech, pauses and silence were still undesirable. Since the OC-SVM requires a 

supervised training set and the TIMIT database does not provide this, it was necessary to develop 

a method for speech extraction. Relying on the fact that the TIMIT is a clean speech corpus with 

a minimal amount of background noise, an energy method was employed.  

 This was accomplished by comparing the instantaneous energy against a long term 

average of the background noise energy. The decision threshold was computed as the ratio of 
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instantaneous to background variances and a value of 1.1 was used for the TIMIT database. The 

selection of this value was set low enough such that silence and true pauses could be avoided 

while still including voiced and unvoiced segments of speech. 

 The implementation was as follows. An initial energy computation was made during a 

small period of time at the beginning of the audio file in order to initialize the noise average. The 

energy of each successive frame of small duration was then compared against the noise average 

to determine if speech was present. Using this method, each sample in the frame was assigned a 

1 if speech was present and a 0 if it was not. If the frames were determined to not contain speech, 

the energy contribution was used to update the long term average. During frame based 

Gammatone feature extraction in training and testing, if 75% of the samples in a frame was 

labeled as a 1 the entire frame was labeled as a 1; otherwise the frame was labeled with a -1.  

 The testing portion of the data was hand labeled using Audacity which provides a means 

for adding and exporting labels to an audio sequence. These labels were then imported into the 

Matlab workspace to be used as the true decisions.  

4.1.2.3 SVM Implementation 

 Several open source tools are available which provide SVM functionality in the form of 

software libraries that are useful for accelerating research projects. Although understanding the 

inner workings of the SVM is important, the goal of this thesis was not to reinvent the wheel, but 

rather focus on utilizing its strength as a machine learning tool in order to evaluate the proposed 

design. The advantage of this is reduced implementation time by utilizing code that has been 

developed and peer tested. Several implementations were considered and are listed as follows: 
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1. Native MATLAB functionality 

2. SVM-Light 

3. LIBSVM 

 Even though all implementations provide MATLAB functionality, the LIBSVM tool was 

chosen for several reasons. The code base offers support for several SVM algorithms to include 

the standard two-class implementation and as well as both OC-SVM’s found in the literature. An 

additional benefit was the availability of extensive documentation through the LIBSVM website
1
 

and online support through online forums
2
.  

4.1.3 Performance Analysis 

 Identifying the measurement criteria for evaluating the performance of the VAD is 

critical to this research. Many methods exist for capturing this data to include individual 

prediction errors, accuracy & precision, Receiver Operating Characteristic (ROC) curves and 

various speech clipping criteria. Prediction errors are the result of inaccurate modeling that 

occurs when the classifier makes a wrong decision. Accuracy describes the number of correct 

decisions made and is directly related to the prediction errors. The ROC curve provides a way of 

visualizing the tradeoff between accuracy and error as certain parameters or thresholds are varied 

throughout their usable range. Speech detectors can induce clipping in various parts of speech, 

primarily those that are unvoiced and contain a weak amount of energy. To capture this type of 

performance, front-end, mid and back-end clipping can also be measured. For this thesis, the 

prediction errors are computed over a range of parameter values to tune the OC-SVM; accuracy 

is considered to measure performance over various noise conditions as well as verify consistency 

in the training model; and speech clipping is discussed within the results. 

                                                 
1
 http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 

2
 http://www. kernel-machines.org 
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4.1.3.1 Understanding the Errors 

 Analyzing the prediction performance for any classifier begins with hypothesis testing in 

which the null and alternative hypotheses are clearly defined. For the OC-SVM VAD, the null 

hypothesis (H0) indicates the presence of noise, while the alternative hypothesis (H1) indicates 

the presence of speech. The decision output by the classifier is compared against the ground truth 

label and measured for accuracy. Table 2 below summarizes the possible outcomes and a more 

detailed explanation is provided in the Appendix. 

Table 2: Hypothesis Test Outcomes 

 
Labeled as Noise 

 (H0 True) 

Labeled as Speech 

 (H0 False) 

Speech Detected 

(H0 Rejected) 

False Positive 

(Type I Error) 
True Positive 

Noise Detected 

(H0 Accepted) 
True Negative 

False Negative 

(Type II Error) 

The prediction errors are divided into two types: 

1. Type I Error – the classifier detects speech when the true label is noise 

2. Type II Error – the classifier detects noise when the true label is speech 

 The Type I Error is concerned with the performance of the classifier in terms of how well 

it rejects noise while the Type II Error is concerned with how well it accepts speech. In [41], the 

author describes a method for estimating the Type II Error for the OC-SVM explicitly from the 

training data
3
. Using a leave-one-out cross validation method, it is shown that the expected value 

of the error can be approximated by 

                                                 
3
 The author aligns the definition of the null-hypothesis with the target pattern. For speech detectors, it is common to 

align the null-hypothesis with negative labeled data (noise) therefore the Type I and Type II Errors are reversed here 

as compared to the author definition. 



54 

 

                 
   

 
 (40) 

where #SV is the number of support vectors that describe the data and N is the amount of 

training data. As this equation is merely an approximation, it only describes the upper bound on 

the Type II Error. The true error will be larger since the model is not an exact representation of 

the data, however use of this equation allows for visual tuning of the classifier. With the Type II 

Error for an OC-SVM defined, the cost parameter C and the RBF width parameter s can be 

determined by identifying an acceptable amount of speech rejection while minimizing the noise 

acceptance.  

 As stated previously, C is a cost associated with classification and provides a soft 

mechanism for solution convergence that can take values greater than 1/N. If C is small, the 

upper bound on the Lagrange multipliers is small therefore more of the data will be considered in 

the boundary decision in order to satisfy Eq. (31). If C is large, the upper bound for the Lagrange 

multipliers is large; therefore the description will be achieved with fewer support vectors. When 

the RBF kernel is used, the value of s provides similar functionality and therefore it is 

recommended that C be fixed to a predetermined value. For the experiments presented here the 

value of C was set to .1 such that a tight description, where all data points can be defined as an 

SV, is achieved for small values of s. 

 With the RBF width as our free parameter, the Type II Error can be plotted across a range 

of values as seen in Figure 9. From this plot we see that as the value of s increases, the number of 

SV’s decrease which decreases the speech rejection rate. By using a value of .1 for C, the curve 

converges close to 0 at which point the data is described by the minimum number of support 
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vectors required to accept approximately 100% of the data. If the value of the C were reduced 

towards 1/N, the expected value of the error would be greater thereby limiting the minimum 

achievable error rate. 

 

Figure 9: Type II Error vs. RBF Width 

 Since minimizing the Type II error is equivalent to increasing the probability of accepting 

speech, a high value of s would seem desirable. However, increasing s comes at the cost of 

increasing the Type I Error which allows for significant overlap between speech and noise. 

Understanding this trade-off requires knowledge of the Type I Error performance which can only 

be obtained through either simulating or capturing the noise distribution surrounding the training 

data. In order to visualize the impact of the Type I Error on the speech model, various noise 

types from the NOISEX-92 database were plotted with varying RBF width as seen in Figure 10. 
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Figure 10: Type I & Type II Error vs. RBF Width 

 With examples of Type I Errors plotted for varying RBF width, it can be seen that the 

noise intersects with the speech model for low values of s and rises quickly to 100% error for 

most noises as s increases. Choosing a value of s below this intersection would reject most of the 

noise, but also reject most of the speech. In [66] the authors show that the Type I Error can be 

decreased by increasing the dimensionality of the model. In order to accomplish this for speech 

detection, more features must be included in the description. Alternatively, a noise reduction 

method such as the Wiener filter can provide a means of reducing this error as seen in Figure 11. 
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Figure 11: Type I & Type II Error vs. RBF Width (Wiener Filtered) 

 From this plot it becomes obvious that incorporating the Wiener filter provides a 

significant improvement in the Type I Error allowing an appropriate value of s to be chosen such 

that much of the noise is rejected while maintaining an accurate speech model. Even for large 

values of s many of the noise types have a low probability of error. Although the Wiener filter 

requires additional computational resources, its inclusion allows for a significant increase in RBF 

width which reduces the computational complexity of classification. It is expected that 

increasing the dimensionality of the model would further reduce the error rate and will be 

considered for future analysis to ensure meaningful features are chose so as to not negatively 

impact performance. 

4.1.3.2 Error Measurement 

 The accuracy the speech model can be measured based on the results from hypothesis 

testing. To capture performance in the experiments, the measurements considered include the 
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True Positive (TP) Rate and False Positive (FP) Rate which is typically used in ROC analysis. 

The TP Rate is defined as 

          
  

 
 (41) 

which measures the total number of accurate speech detections out of the total number of frames 

labeled as speech. The FP Rate is defined as 

          
  

 
 (42) 

which measures the total number of speech detections out of the total number of frames labeled 

as noise. The ideal performance in any condition would have a TP Rate of 100% and an FP Rate 

of 0%. 

 Traditionally, an ROC curve is the most popular method used to evaluate a speech 

detector. It was not considered here for several reasons. First, the error analysis presented here 

provided a similar functionality by allowing for the optimal selection of the free parameter s. 

Second, the ROC curve is commonly found in literature when a comparison is being performed 

against other speech detection algorithms which were not considered in this thesis.  

4.2 Experiments 

 For all experiments, the test data was sampled at 8 kHz with a 25ms window and 50% 

overlap. Before testing under clean and noisy speech conditions, the first experiment performed 

helped to provide insight into the effects of the feature set with respect to noise rejection. Once 

the ideal number of features was selected, the speech model was then tested under clean speech 

conditions in order to identify a suitable range for s that gives a good TP and FP rate as well as 
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verify that the speech model provided an unbiased representation of speech. Following this, a 

narrower range of s was then chosen such that speech acceptance and noise rejection could be 

viewed over many noise conditions and SNR levels. Finally, for a given value of s the speech 

detector was validated against several non-speech and multiplicative noises to understand the 

performance under such conditions. 

4.2.1 Experiment 1 - Tuning the Feature Set 

 Although increasing the number of features may improve performance it may also hurt 

performance. To understand this property, the chosen features were varied in number with a 

large value for s such that the lowest expected error could be obtained. For this experiment the 

number of cepstral coefficients was varied from 5 to 13 and the number of Gammatone filters 

was varied from the number of cepstral coefficients plus 1 to 21 for each number of cepstral 

coefficients.  In all cases the frequency features were not removed. 

 

Figure 12: Feature Tuning 
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 In Figure 12 it can be seen that then when the number of Gammatone filters is one to 

three more than the number of cepstral coefficients the error is lowest. Likewise, as the number 

of cepstral coefficients is increased the error around this point decreases overall. Based on the 

plot it can be seen that the optimal number of cepstral coefficients is 11 and the number of 

Gammatone filters is 12 to 14. Several iterations showed that 13 Gammatone filters gave a 

consistent result. 

4.2.2 Experiment 2 - Validating the Speech Model 

 With the optimal number of features selected, the next step was to understand the 

selection for s which gives the best overall performance under clean speech conditions. Using the 

errors described in section 4.1.3.2, each of the clean speech utterances from the Noizeus database 

were processed and the average TP Rate and FP Rate was recorded separately for male and 

females at several values of s. The ROC was not used in this case so as to display the value of s 

over the measurements. 
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Figure 13: Clean Speech TP and FP Rate Tradeoff 

 Several important things can be noticed from Figure 13. First, males and females were 

plotted separately in order to ensure that the model equally captured both. For a value of s greater 

than 5, a TP rate greater than 90% is achieved and both plots are nearly identical while the FP 

Rates vary by approximately 11%. This difference in FP Rate can be partially attributed to the 

manual labeling in which the amplitudes of the signals were used, where the male voices may 

have been easier to transcribe and therefore a lower FP Rate was obtained. Inspection of the 

labeling showed that the predictions around the onsets and offsets of utterances had more 

overhang with the females as compared to males. Second, the test sequences used here were out 

of database indicating that there was effectively no bias on the training set from the TIMIT 

corpus. Lastly, it can be seen the TP Rate of the curves follow the Type II Error curve from 

Figure 9 quite nicely which reinforces the expected value of  the error given the out of database 

testing. 
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 Given the range of s that provides greater than 90% accuracy it can be seen that a tradeoff 

still exists for Type I errors. In terms of ROC analysis this indicates that for larger s the TP Rate 

and FP Rate are higher while for a lower s the TP Rate is slightly lower and the FP Rate for noise 

may be lowered by as much as 20% as seen in Figure 11. Thus a decision must be made based on 

the desired operating characteristics. In the case of the application presented here, a lower s 

would be desirable in order to reduce the number of Type I errors as much as possible, assuming 

that all communications are operating under reasonable noise conditions. In the case of a 

traditional speech detector, a higher TP Rate would be desired so as to allow more noise such 

that speech with additive noise is accepted by the detector thus increasing the acceptance rate of 

speech under high noise conditions.  

4.2.3 Experiment 3 - Testing with Speech and Noise 

 In order to understand the noise performance for the range of s presented in the previous 

experiment, noise was added to the same clean speech utterances at various SNR levels for 

different noises. Each utterance was processed by the detector for all noises and then averaged 

over all utterances. In this manner, a general noise performance can be viewed irrespective of a 

particular type of noise. 
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(a) (b) 

Figure 14: Speech Detector performance for varying values of RBF width and SNR 

 In Figure 14 it can be seen that for decreasing value of SNR, the TP Rate decreases while 

the FP Rate stays relatively constant. This is as to be expected since adding noise to speech 

changes its characteristics causing the rejection rate to increase. Also, for increasing value of s 

both the TP Rate and FP Rate increase by nearly 10% over all SNR values which is quite 

significant. Audible hearing tests indicate that for lower SNR values the Wiener filter adds a 

musical distortion to the speech which is the likely reason that acceptance by the detector 

decreases. In terms of improvement, using a value of 10 for the RBF width would be a 

reasonable choice for a standard VAD since a higher noise acceptance is tolerable if it improves 

the speech acceptance rate. For the final experiment a value of s equal to 5 was chosen in order 

to see how well the noise is rejected when tuned to the more desirable value for this thesis. 

4.2.4 Experiment 4 - Testing against Noise Only 

 Several noises were simulated in order to test the performance of the system under non-

speech or multiplicative conditions. These noises include sine wave, square wave, speech 
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modulated with a square wave and a jpeg image which has been decoded as speech. The results 

for each are provided below. In the case of the non-image signals, each was produced at a sample 

rate of 8 kHz and duration of 1 second. 

  

(a) (b) 

Figure 15: Speech detector examples when the input signal is (a) a 1KHz square wave and (b) a 

1KHz sine wave 

 Example results for a square wave and sine wave can be seen in Figure 15 (a) and (b) 

respectively. For the square wave some false positives were present while for the sine wave no 

false positives were present. The output of the noise suppressor did a fairly good job of reducing 

the signal while in some areas it produced tonal segments which were accepted by the detector.  
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Figure 16: Speech detector output when input signal is speech modulated with a 1KHz Square 

wave 

 In Figure 16 an example of speech modulated with a 1KHz square wave can be seen 

before and after noise reduction. Since the square wave used was modulated by the entire speech 

sequence, the start of the transmission had relatively no components of the square wave and thus 

the Wiener filter was unable to capture the statistics of the noise. For the portions of the signal 

that did contain the square wave and speech, the detector was unable to differentiate it as non- 

speech and therefore it was accepted by the model. 
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Figure 17: Speech Detector output when input signal is Raw Decoded Jpeg data. 

 In the event that the voice packets are used to transport a non-speech signal, it would be 

ideal if the detector could prevent it from passing. To test this idea, a jpeg image as seen in 

Figure 18 (a) was considered as a stream of bytes which were mu-law decoded and processed by 

the speech detector. The image, represented as an audio signal, along with detector predictions 

can be seen in Figure 17. It is clear that many portions of the image data passed through the 

speech detector although detector oscillations indicate that it was likely on the edge of the model. 

The Wiener filtered and pre-emphasized image signal are shown in Figure 18 (b) where it can be 

seen that the image has been severely degraded to the point that only a faint figure of the original 

image is present. In this case the speech detector might be considered in line with the 

communications channel such that signal processing is applied to the incoming audio before 

passing through. Alternatively, the speech detector could be used as a simple indicator of speech 

presence and would require less consideration for implementation in terms of quality of service. 
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(a) (b) 

Figure 18: Raw Decoded Jpeg data (a) input to and (b) output of the speech detector. 

 False positive rates for each of the signals presented in this experiment can be seen in 

Figure 19. In all cases the FP Rates are less than 50% which reflects the noise analysis performed 

in section 4.1.3.1. Also included is the FP Rate for a compressed jpeg image which showed a 

much higher rejection rate than its uncompressed counterpart. The improvement on the 

compressed image is due to the fact that the encoded image data mimics a “white noise” signal 

since the DCT applied to the original image acts as a decorrelation stage. 
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Figure 19: False Positive Rates of the Various Noises 

4.3 Summary 

 The results show that the chosen method is a promising approach to speech detection. 

Although the OC-SVM must be tuned to provide a loose description of the speech data, the 

integration of the noise reduction stage improves the speech discrimination performance. 

Audible verification of the noise reduced speech showed musical distortion that made the speech 

not understandable yet still speech like. Use of a better noise reduction method may reduce this 

distortion making it more useful in an actual communications system. It is worth mentioning that 

the method of tuning presented can be extended further by fixing the value of s at the desired 

error and then using the radius of the sphere required to a test vector as a decision mechanism. In 

doing so, both s and the radius value could be optimized using a cross-validation procedure.  

 The computational complexity of the proposed design was considered in terms of time 

needed to process a single frame. For the implementation, optimization of the code was not 

considered and simulation was performed inside the MATLAB operating environment (non-
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MEX function). Given a 25ms window and 8kHz sample rate, a decision on each frame can be 

made in approximately 2.4ms which is less than the 12.5ms frames given a 50% overlap. 

Optimization of this implementation would further improve computational time required per 

frame.  
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CHAPTER 5 CONCLUSIONS 

5.1 Overview 

 The goal of this thesis was to design a speech detection system for network gateways 

deployed in VoIP based communication systems. The integration of such a speech detector can 

provide an additional measure for filtering voice data traffic between networks so as to prevent 

or reduce malicious transportation of non-voice data. Since current gateways can only validate 

data fields surrounding the speech samples, the research presented in this thesis aimed to fill this 

gap. Requirements were developed that helped choose the best speech feature and detection 

method to be used in the design. In doing so, this thesis provided a contribution by combining 

the noise robust Gammatone Cepstrum and frequency based features with a One-Class SVM 

which enabled a speech detector to be trained independent of environmental noise. 

 Several aspects of a speech detection system were considered to include feature 

extraction and detection methods. An overview of the most common feature extraction 

mechanisms was provided along with a brief discussion of the pros and cons of each. Through 

literature reviews, it was found that perceptual features based on the human auditory system 

exhibited the best performance in a noisy environment. Of the available perceptual features, the 

Gammatone Cepstral Coefficients were chosen based on improved noise performance over the 

widely used MFCC while maintaining equally efficient computational complexity. Additionally, 

frequency features were computed directly from the Gammatone filter outputs for increased 

dimensionality with little added cost. Exploiting the frequency domain allowed the Gammatone 

filters to be pre-computed for greater efficiency in a real-time environment. 
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 The SVM was chosen from the handful of machine learning tools available due to its 

inherent binary decision, computational efficiency and generalization properties. The downside 

to the basic two-class SVM is that both the speech samples and noise data must be available in 

order to achieve reasonable performance in environments with varying noise types. A high 

degree of performance can be achieved when the noise is known such as that of a car. Obtaining 

noise data for training can be cumbersome for complex environments and it is not possible to 

capture all potential environmental noise characteristics. Therefore an alternative detection 

method was desired that could avoid the need to train on the noise. Moving from a two-class 

SVM to a one-class SVM allowed the design to train independent of the noise by modeling only 

the data provided in the clean-speech corpus. However, the downside to the one-class approach 

was a noticeable cost of decreased performance with respect to noise overlap in the speech 

model. By adding a Weiner filter prior to classification the detection rate increased considerably, 

but at the cost of an additional pre-processing step.  

5.2 Future Directions 

 Improving the overall performance of the proposed speech detector can be achieved in 

several ways. The noise masking characteristics can be enhanced through the selection of a 

feature set which provides more accurate auditory modeling. One such feature would be the 

Gammachirp filter [67] which is a generalized form of the Gammatone filter that incorporates the 

asymmetric properties of the human auditory system providing better noise masking. The 

complexity would remain unchanged if frequency domain processing was used.  

 The addition of a dynamic nonlinear operation on the output of each filter could also 

increase noise performance [68] by exploiting AM-FM demodulation characteristics of speech. 
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Such a feature is believed to take place in the human auditory system. Inclusion of this would 

necessitate time domain processing in order to capture temporal and amplitude variations 

requiring an increase in computational cost. 

 Since the OC-SVM exhibited poor discrimination between speech and noise without 

noise suppression, using a larger feature vector by combing other speech based features could 

potentially enhance performance. Doing so might allow for removal of the noise suppression step 

while the disadvantage would be an increase in computational complexity. Utilization of the 

Gammatone energies could potentially be reused for such a task similar to the frequency 

features.  With more features added, a more in-depth performance analysis could be obtained in 

non-stationary environments where the filtering of human voice might act as a pre-processing 

step for DTX communications or speech recognition. Such a study of non-stationary noise 

response might also include comparing performance against other popular methods or 

commercial standards.  

 When a clean speech signal passes through the OC-SVM alone, the entire signal is 

classified as speech (including silence). As noise is added to the audio signal, the OC-SVM is 

pulled down to zero. This property can be described as an anomaly or outlier detection where 

trained conditions give a positive decision (clean speech and silence) while untrained conditions 

(noise) cause outliers and therefore a negative decision. Since increasing noise amplitude can 

reduce unvoiced detection considerably, detection boundaries should have a larger overhang of 

speech onsets and offsets to account for this. The anomaly detection property could potentially 

be used as an indicator of high noise which can be used for online tuning of a decision smoothing 

algorithm that becomes loose at high SNR and tight at low SNR.  
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 The main goal of this research was to provide a safeguard against potential misuse of the 

voice data that is transported in VoIP networks. During this research effort, alternative mitigation 

strategies were identified [63] in which the goal was to degrade the audio just enough to increase 

the bit error rate (BER) of a potential attack while minimizing the impact on audio quality. Use 

of a VAD as a prevention method was not described, most likely due to its deterministic nature 

that could allow for exploitation by only sending embedding data during periods of speech. 

However, no VAD is 100% accurate and therefore it can still provide some usefulness since 

some BER would be induced while also having the advantage of verifying that voice is present.  
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APPENDIX: HYPOTHESIS ANALYSIS 
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 The hypothesis tests performed for speech detection are defined as follows. The null-

hypothesis, H0, argues that noise is present while the alternative hypothesis, H1, argues that 

speech is present. If we hold one argument, either H0 or H1, to be ground truth then we can 

derive errors associated with each based on the classification predictions. 

 For analysis of speech detection performance, each audio sample in our test vector is 

labeled as one of two classes: speech (assigned a value of 1) or noise (assigned a value of 0). 

These labels provide the ground truth of our hypothesis. For each test vector, features are 

extracted and the processed by a trained classifier which provides a prediction. 

 Let’s first consider performance with regards to positive labels or H1. If the classifier 

predicts a sample to be noise when we not it is true, then a False Negative or Type II Error has 

occurred because the classifier has accepted H0 rather than H1. If the classifier predicts a sample 

to be speech then our classifier made the right decision and a True Positive has occurred because 

the classifier has accepted H1. We can do the same analysis for the negative labeled data or H1. If 

the classifier predicts noise, then a true negative occurs. If the classifier predicts speech than a 

False Positive or Type I Error has occurred. 
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