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ABSTRACT 

Computer simulation is a popular method that is often used as a decision support tool in 

industry to estimate the performance of systems too complex for analytical solutions. It is a tool 

that assists decision-makers to improve organizational performance and achieve performance 

objectives in which simulated conditions can be randomly varied so that critical situations can be 

investigated without real-world risk. Due to the stochastic nature of many of the input process 

variables in simulation models, the output from the simulation model experiments are random. 

Thus, experimental runs of computer simulations yield only estimates of the values of 

performance objectives, where these estimates are themselves random variables. 

Most real-world decisions involve the simultaneous optimization of multiple, and often 

conflicting, objectives. Researchers and practitioners use various approaches to solve these 

multiobjective problems. Many of the approaches that integrate the simulation models with 

stochastic multiple objective optimization algorithms have been proposed, many of which use 

the Pareto-based approaches that generate a finite set of compromise, or tradeoff, solutions. 

Nevertheless, identification of the most preferred solution can be a daunting task to the decision-

maker and is an order of magnitude harder in the presence of stochastic objectives. However, to 

the best of this researcher’s knowledge, there has been no focused efforts and existing work that 

attempts to reduce the number of tradeoff solutions while considering the stochastic nature of a 

set of objective functions. 

In this research, two approaches that consider multiple stochastic objectives when 

reducing the set of the tradeoff solutions are designed and proposed. The first proposed approach 

is an a posteriori approach, which uses a given set of Pareto optima as input. The second 
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approach is an interactive-based approach that articulates decision-maker preferences during the 

optimization process. A detailed description of both approaches is given, and computational 

studies are conducted to evaluate the efficacy of the two approaches. The computational results 

show the promise of the proposed approaches, in that each approach effectively reduces the set 

of compromise solutions to a reasonably manageable size for the decision-maker. This is a 

significant step beyond current applications of decision-making process in the presence of 

multiple stochastic objectives and should serve as an effective approach to support decision-

making under uncertainty. 
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CHAPTER 1:  

INTRODUCTION 

1.1 Overview of Multiobjective Optimization 

Succeeding in business, no matter how it is segmented, means winning in the global 

marketplace. From the executive manager of a large company to managers of small, privately-

held companies – and even not-for-profit institutions – managers cannot anticipate success in 

business without a clear understanding of how critical decisions can be translated into a 

competitive advantage. 

Many real-world problem scenarios tend to use a decision-making process that seeks 

tradeoff, or compromise, solutions rather than to seeking a single global optimal solution, as 

these critical decisions often involve multiple, often conflicting, objectives that must be 

addressed simultaneously. Multiobjective decision problems, unlike single objective decision 

problems, address a number of objective functions to be minimized and/or maximized. There are 

many mathematical programming techniques for multiobjective optimization. Most of the recent 

work focuses on the approximation of the Pareto optimal solution set (Abraham, Jain, & 

Goldberg, 2005). In other words, instead of identifying a single global solution, multiobjective 

optimization results in a number of tradeoff (or compromise) solutions for the set of objectives. 

This set of tradeoff solutions is known as the set of non-dominated Pareto optimal, or Pareto 

efficient, solutions (Coello, 2006). See Figure 1.1. A Pareto optimal solution is non-dominated if 

none of the objective functions can be improved without the degradation in one or more of the 

other objectives (Winston, 2003). Without additional preference information, all solutions in the 

set of Pareto optima can be considered equally good mathematically. 
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Figure  1.1: Objective space assuming that two objectives are to be minimized. The red points 

represent the Pareto front, or efficient frontier. 

 

1.1.1 Pareto Optimality Methods 

There are several multiobjective optimization approaches that are Pareto-based that 

generate the approximate Pareto frontier. However, it is only within the last two decades that 

researchers and practitioners have realized of the potential of using evolutionary algorithms 

(EAs) in this area, as this family of stochastic optimization metaheuristic search methods can 

effectively generate a set of Pareto optima (Coello, 2001). These algorithms have proven 

themselves as general, robust and powerful search mechanisms. Particularly, they possess several 

characteristics that are desirable for real-world problems involving multiple conflicting 

objectives, and intractably large and highly complex search spaces (Wang, Zhang, Gao, & Li, 

2008). Furthermore, EAs are less susceptible to the shape or continuity of a Pareto front. For 

example, they can easily deal with discontinuous or concave Pareto fronts. 
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1.2 Using Simulation Modeling 

Simulation is a powerful tool and often the tool of choice that enables decision-makers in 

research and in business to evaluate and improve organizational performance. The ability to 

model a physical process on the computer, incorporating the uncertainties and non-stationary that 

are inherent in virtually all real dynamic systems provides an advantage for analysis and 

decision-making. Decision-makers frequently use simulation within their organizations to model, 

evaluate and compare proposed, often complex and mathematically intractable, designs of their 

systems and processes with the goal of optimizing a particular performance objective (or set of 

performance objectives). When using computer simulation, the output from a model is stochastic 

since input probability distributions are used to characterize the stochastic behavior of 

subcomponents within the simulation model. Usually the model’s performance results are 

reported in terms of means and standard deviations (or, in terms of confidence intervals at some 

level of significance). The confidence intervals are generated when multiple independent 

replications are run for a particular simulation evaluation. The confidence intervals represent the 

precision of the estimate of the true population value of the performance measure, or set of 

performance measures of interest. 

 

1.3 Challenges of and the Need to Improve Decision-Making 

Simulation is used frequently in decision-making, especially within an optimization 

framework. Simulation optimization typically requires a large number of simulation evaluations 

due to the stochastic components of simulation models (Syberfeldt, Ng, John, & Moore, 2009). 

In the presence of multiple objectives, each solution in the set of Pareto optima is an estimate of 
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a non-dominated solution value represented by both a mean and a standard deviation. Therefore, 

care must be taken when considering dominance among the compromise solutions in the set. 

Furthermore, the solution of a multiobjective optimization problem consists of a large set 

of compromise solutions. From a practical standpoint, the decision-maker needs only one 

solution.  The set of compromise solutions can be extremely large, potentially overwhelming the 

decision-maker in his/her task of selecting the most appropriate solution. Choosing a candidate 

solution over the others or reducing the number of candidate solutions to select from is not a 

simple task. This problem can be challenging when presented with an extraordinarily large set of 

potential compromise solutions. Therefore, some intelligent means of reducing and organizing 

the set of solutions in the presence of stochastic objectives is required. 

 

1.4 Research Gaps 

There are a limited number of researchers who attempt to generate the set of Pareto 

optimal solutions while considering the stochastic nature of the objective functions. Other 

researchers focus on reducing the number of Pareto optimal solutions generated by a Pareto-

based solution approach. These include approximating the number of Pareto optimal solutions 

(e.g., Boonma & Suzuki, 2009; Chen, Han, Liu, Jiang, & Zhao, 2012; Hendriks, Geilen, & 

Basten, 2011; Trautmann, Mehnen, & Naujoks, 2009), and using clustering analysis to reduce 

the number of Pareto optimal solutions to a smaller set (e.g., Aguirre, Taboada, Coit, & 

Wattanapongsakorn, 2011; Aguirre & Taboada, 2011; Noghin, 2011; Zio & Bazzo, 2011). 

To the best of this researcher’s knowledge, the literature provides a little work for 

reducing the number of the Pareto optimal solutions while considering the stochastic nature of 

the objectives. New efforts concerning improvement of decision-making for multiple objective 
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problems and the need to reduce and organize the set of non-dominated solutions in the presence 

of stochastic objectives may benefit the decision-maker and provide a contribution not only to 

the practitioner body of knowledge, but also to the research community. 

 

1.5 Objectives of This Research Investigation 

This research aims to improve the decision-making under uncertainty and specifically 

focuses on the multiobjective optimization problem in order to reduce and organize the usually 

large set of candidate tradeoff solutions in the presence of stochastic objectives. In short, 

improve the decision-making solution identification and selection process when faced with 

multiple stochastic objectives. In addition, this research builds a framework that allows reducing 

and organizing the set of non-dominated solutions while considering the stochastic nature of the 

objective functions. 

It is important to note that the decision-maker should provide preference data to ensure 

that the set of solutions with which the decision-maker is presented are, first, feasible and, 

second, suitable. Approaches of the articulation of decision-maker preferences may be done 

either before (a priori methods), during (interactive methods), or after (a posteriori methods) the 

decision-making process, which is typically the optimization of an objective function (or a set of 

objective functions). The focus in this investigation is a posteriori approaches and interactive 

approaches. In a posteriori approaches, the decision-maker selects a solution from a given 

generated set of tradeoff solutions based on his/her preferences. In interactive approaches, the 

decision-maker preferences guide the optimization process as the set of tradeoff solutions is 

being generated. The following are the primary objectives of this research investigation. 
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Objective 1: Design an a posteriori decision-making solution selection process in the presence of 

multiple stochastic objectives; and 

 

Objective 2: Design an interactive decision-making solution selection process in the presence of 

multiple stochastic objectives. 

 

1.6 Contributions of this Research Investigation 

This investigation contributes quite significantly to the body of knowledge and advances 

the state-of-the-art in solving multiobjective decision problems. The research addresses the 

challenging problem of decision-making under uncertainty, especially in the presence of multiple 

stochastic objectives. It effectively deals with stochastic objectives and reduces the number of 

the tradeoff, or compromise, solutions effectively. 
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CHAPTER 2:  

REVIEW OF EXISTING RESEARCH LITERATURE 

2.1 Introduction 

Several multiobjective optimization approaches exist that generate finite sets of Pareto 

optima, and these sets often contain a very large number of Pareto optimal solutions, which can 

be overwhelming to the decision-maker in the task of selecting the most appropriate solution to 

implement. Only a few researchers have proposed methods to generate Pareto optimal solutions 

while considering the stochastic nature of the objective functions (e.g., Boonma & Suzuki, 2009; 

Chen et al., 2012; Hendriks et al., 2011; Trautmann et al., 2009). In order to be adequately 

representative of the possibilities and tradeoffs, the number of the Pareto optimal solutions under 

stochastic objectives may be too large for decision-makers to practically consider. In this 

chapter, a review of existing work in reducing and organizing the number of the Pareto optimal 

solutions for better decision-making is given. 

 

2.2 Multiobjective Optimization 

Most real-world decision problems involve the simultaneous optimization of multiple 

objectives that are to be minimized or maximized. The multiobjective optimization problem, in 

its general form, considers a solution x of a vector of n decision variables (i.e.,    where i = 1,…, 

n) and m objectives, where m > 1.  The problem can be generally expressed as follows: 

Minimize/Maximize    (x),                          m = 1, 2, …, M; (2.1) 

 
         Subject to         (x) ≥ 0,                              j = 1, 2, …, J; (2.2) 

                                   (x) = 0,                             k = 1, 2, …, K. (2.3) 
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    (x) ≤    (x) ≤   

    (x),                             i = 1, 2, …, n;  (2.4) 

where gj(x) and hk(x) are constraints. Additionally, a solution x is feasible if it satisfies all of the 

J and K constraints. 

In general, the solutions in multiobjective optimization problems are not uniquely 

determined.  In fact, particularly in the case where two or more objectives conflict, usually many 

solutions exist that satisfy all relevant objectives; hence the most desirable solution, or at least, 

the best compromised solution, is selected from among them. 

 

2.2.1 The Decision Space and the Objective Space 

The solutions to a multiobjective optimization problem is usually depicted as a decision 

variable space in the overall search space, as shown in Figure 2.1 (left). It is clear that not all 

solutions in the rectangular decision space are feasible. Every feasible solution in this space can 

be mapped to a solution in the feasible objective space shown in Figure 2.1 (right) (Deb, 2001). 

 

Figure  2.1: The feasible decision variable space (left) & the feasible objective space (right). 
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In the feasible objective space, all solutions on the curve shown in Figure 2.1 (right) are 

called Pareto optimal solutions, or non-dominated solution set. The curve formed by joining 

these solutions is known as Pareto optimal front, or the efficient frontier (Coello, Aguirre, & 

Zitzler, 2007). It is important to note that the feasible objective space not only contains Pareto 

optimal non-dominated solutions, but also solutions that are dominated. So, the entire feasible 

solution search space can be divided into two sets of solutions – Pareto optimal and non-Pareto 

optimal ( Deb, 2001). 

 

2.2.2 Pareto Dominance 

The concept of Pareto dominance is of extreme importance in multiobjective 

optimization, especially when some or all of the objectives are in conflict (Pareto, 1971). In such 

a case, there is no single point (solution) that yields the best value for all objectives. Instead, the 

best solutions, often called a Pareto or non-dominated set, are a group of solutions such that 

selecting any one of them in place of another will always sacrifice quality for at least one 

objective, while improving at least one other (Guanqi, Wu, Bo, Wenbin, & Cheng, 2012; Le & 

Landa-Silva, 2007). 

A solution A to a multiobjective problem is Pareto optimal if no other feasible solution is 

at least as good as A with respect to every objective and strictly better than A with respect to at 

least one objective. On the other hand, a feasible solution A dominates a feasible solution B to a 

multiobjective problem if A is at least as good as B with respect to every objective and is strictly 

better than B with respect to at least one objective. Solution A is non-dominated if it is not 

dominated by any solution, and the Pareto optimal solutions is the set of all non-dominated 

feasible solutions (Winston, 2003). Figure 2.2 illustrates the concept of Pareto dominance. 
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Figure  2.2: The concept of Pareto dominance. 

 

The definitions of Pareto optimality, Pareto dominance, Pareto optimal set, and Pareto 

frontier are now summarized from Coello (2001). 

 

Definition 2.1 (Pareto Optimality): A vector of decision variables   
    F is Pareto optimal if 

there does not exist another  
    F such that fi( 

 )   fi(   
 ) for all i = 1, . . . , k and fj( 

 )   

fi(   
 ) for at least one j (assuming minimization of both fi and fj). 

 

F is the set of all feasible solutions of the problem (i.e., where the constraints are satisfied). This 

definition says that   
  is Pareto optimal if there exists no feasible vector of decision variables 

 
    F that would decrease some objective without causing a simultaneous increase in at least 

one other objective. 
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Definition 2.2 (Pareto Dominance): A vector of decision variables  
  = (a1, . . . , ak) is said to 

dominate vector  
  = (b1, . . . , bk) (expressed as  

    
 ) if and only if a is partially less 

than b, i.e.,     {1, . . . , k}, ai   bi ˄      {1, . . . , k} : ai < bi. 

 

Definition 2.3 (Pareto Optimal Set): The Pareto optimal set ( 
 ) is defined as: 

 
  := {x                  

        
    }            (2.5) 

 

Definition 2.4 (Pareto Front): For a given multiobjective problem   
     and Pareto optimal set 

  , the Pareto front (p   ) is defined as: 

p    :={  
    

   (f1(x),…, fk(x)) | x    
 }           (2.6) 

 

2.3 Overview of Multiobjective Optimization Problems 

A number of multiobjective optimization methods have been developed over the years. 

Recent publications classified the multiobjective optimization problems as non-Pareto-based 

techniques and Pareto-based techniques (Azadivar & Lee, 1988; Azadivar, 1992; Carson & 

Maria, 1997; Kalyanmoy Deb, 2001; Fu, 1994; Marler & Arora, 2004; Swisher, Hyden, 

Jacobson, & Schruben, 2000) as shown in Figure 2.3. 

Non-Pareto-based techniques do not incorporate the concept of Pareto optimality and are 

categorized to classical no-preference methods (i.e., do not assume any information about the 

importance of the objectives). On the other hand, Pareto-based techniques use non-dominated 

solution ranking and selection methods to move the population towards the Pareto frontier. It is 

categorized as nature-inspired metaheuristic algorithms and classical preference-based methods. 



12 

The classical preference-based methods are categorized as a posteriori methods, a priori 

methods, and interactive methods. 
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Figure  2.3: Overview of multiobjective optimization problems. 
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2.3.1 Overview of Nature-Inspired Metaheuristic Algorithms 

Many of the more popular metaheuristics are nature-inspired, and almost all 

metaheuristics algorithms are suitable for global optimization (Rennard, 2007; Yang, 2010).  In 

addition, computer simulation incorporating metaheuristic search algorithms has become an 

indispensable tool for solving real-world optimization problems  (Yang, 2010). A number of 

researchers provide comprehensive reviews of nature-inspired metaheuristics algorithms and 

discuss their applicability to general combinatorial optimization problems (e.g., Yang, 2010). 

 

2.3.2 Overview of Evolutionary Algorithms 

Evolutionary algorithms (EAs) are based on the Darwinian principle of natural selection 

and reproduction wherein the probability of selection for reproduction is directly proportional to 

their rate of survival (i.e., their fitness) in their environment. In other words, individual solutions 

that are better able to perform tasks in their environment survive and reproduce at higher rate 

than those that do not perform those tasks as well. The idea of using the principles of natural 

evolution to solve optimization problems come out after a period of intensive research and 

experimentation in late 1960s and mid 1970s (Bäck, Hoffmeister, & Schwefel, 1991; Bäck & 

Schwefel, 1993). Since then, the use of computerized approaches that simulate the evolution 

process in an attempt to solve combinatorial optimization problems has steadily increased 

(Khuri, Bäck, & Heitkötter, 1994). 

EAs use a population of solutions in each iteration in order to find multiple tradeoff 

solutions when used in multiobjective optimization. This population of solutions is a sample of 

points in the solution search space. The ability to find multiple optimal solutions in one single 

simulation run makes EAs unique in solving multiobjective optimization problems (Deb, 2001). 



14 

This class of search procedures include a variety of techniques, such as genetic algorithms, 

evolutionary programming, evolution strategies, and genetic programming (Bäck, Schwefel, & 

Informatik, 1996; Syberfeldt et al., 2009), as shown in Figure 2.4. 

Evolutionary 

Algorithms

Genetic 

Algorithms

Evolution 

Strategies

Evolutionary 

Programming

Genetic 

Programming

 

Figure  2.4: Overview of evolutionary algorithms. 

 

2.3.2.1 Genetic Algorithms 

Genetic algorithms (GAs) are probably the most well-known evolutionary algorithms that 

have proven useful in a variety of optimization problems. Its individuals are traditionally 

represented in binary strings (Tsutsui & Ghosh, 1997; Yang, 2010). GAs are developed by 

Holland (1992) and his collaborators in the 1960s and 1970s. Figure 2.5 provide an overview of 

existing GAs that have been developed for multiobjective optimization and are categorized as 

non-Pareto-based (e.g., Hajela & Lin, 1992; Schaffer, 1984) and Pareto-based algorithms (e.g., 

Deb, Pratap, Agarwal, & Meyarivan, 2002; Fonseca & Fleming, 1993; Horn, Nafpliotis, & 

Goldberg, 1994). 
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Figure  2.5: Overview of genetic algorithms for multiobjective optimization. 

 

The non-Pareto-based approaches do not directly employ the concept of Pareto 

dominance, but are able to evolve multiple non-dominated solutions in parallel while the Pareto-

based approaches incorporate the concept of Pareto dominance. To find a set of non-dominated 

solutions approximating the Pareto optimal set, Goldberg (1989) suggests the non-dominated 

ranking and selection of the best individuals based on their rank. Goldberg’s non-dominated 

ranking procedure assigns Rank 1 to the non-dominated individuals and temporarily removes 

them from the population, then finds a new set of non-dominated individuals, Rank 2, and so on. 

The fundamental idea of this procedure is to assign equal probability of reproduction to all non-

dominated individuals (Coello, 2001; Goldberg, 1989). 

Genetic algorithms, like all procedures in the class of evolutionary algorithms, maintain a 

population of structures that represent a sample of search points in the space of potential 
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solutions to a given problem. They deal with various types of optimization whether the objective 

(fitness) function is stationary or non-stationary (change with time), linear or nonlinear, 

continuous or discontinuous, or with random noise. The core algorithmic procedure includes 

fitness evaluation, selection and reproduction, which involve crossover and mutation operations 

(Hajela & Lin, 1992). The non-dominated sorting genetic algorithm II (NSGA II) is a popular 

Pareto dominance based multiobjective optimization algorithm (Deb, 2001). It is a genetic 

algorithm searching for an approximation to the Pareto set of a multiobjective optimization 

problem by the successive computation of a series of generations of solutions (Deb et al., 2002). 

 

2.4 Multiobjective Optimization and Simulation-Based Decision-Making  

Most real-world decisions involve the simultaneous, optimization of multiple, and often 

conflicting, objectives. Due to the “satisficing” of the objectives, often a large set of 

compromise, or tradeoff, solutions that seek to balance the set of objectives are identified. This 

set of solutions characterizes the efficient frontier in the objective space from which the decision-

maker can select the most preferred solution. The best tradeoff solution is selected according to 

decision-maker (or, set of decision-maker) preferences and existing and future physical, 

technological and financial constraints.  In order to generate solutions that balance the multiple 

objectives, researchers and practitioners typically use procedures that generate the set of Pareto 

optima. 

Applications of the optimization of multiple objectives, in research and in practice, 

typically involve using metaheuristic search procedures in deterministic settings (e.g., Bae, Qiu, 

& Fox, 2010; Menon, Bates, & Postlethwaite, 2006; Milickovic et al., 2001; Pacheco, Casado, 
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Alegre, & Alvarez, 2008; Pop, Vlad, Chifu, Salomie, & Dinsoreanu, 2011; Tasgetiren, Pan, 

Bulut, & Suganthan, 2011). 

However, the success of these search procedures is not as consistent in noisy 

environments where the objective functions are stochastic such as when using simulation as the 

evaluator of the individual objective functions. Evolutionary algorithms (EAs) are generally 

believed to be able to handle deterministic or stochastic objective functions fairly well since 

promising areas of the search space are sampled several times (Li, Ji, Wu, & Xue, 2010; 

Togelius et al., 2010). 

Aguirre & Taboada (2011) address the multiobjective optimization problem and propose 

a two-stage algorithm with: (1) the optimization stage and (2) the post-Pareto analysis stage. The 

first stage focuses on obtaining a set of non-dominated solutions. An EA-based simulation 

optimization approach requires a large number of simulation evaluations due to the stochastic 

components not only of simulation model but also because of the stochastic features of EAs 

before a satisfactory solution can be found (Syberfeldt et al., 2009). The second stage of 

decision-making, known as “Pareto Analysis”, and it is as important as the optimization stage of 

finding an approximate set of non-dominated solutions. It involves the selection of one solution 

from the set of Pareto optima. Thus, choosing a single solution over the others or reducing the 

number of solutions to select from is not a simple task, and can be overwhelming when presented 

with an extraordinarily large set of potential compromising solutions. 

 

2.4.1 Multiobjective Optimization and Cluster Analysis 

Traditional Pareto analysis approaches produce large sets of non-dominated solutions 

effectively placing the decision-maker in a challenging position to select one solution over other 
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compromise solutions. Several studies propose ways to reduce the number of Pareto solutions to 

a reasonable number based on prior information known by the decision-maker. One approach is 

called the axiomatic approach. The decision-maker is ready to sacrifice some of the values 

according to his/her preferences on a set of objectives while to improve some of other values 

according to the preferred sets of the objectives (Noghin, 2011). 

Many researchers use clustering analysis to reduce the set of Pareto solutions. Clustering 

analysis is the task of constructing the m groups or clusters of qualitatively or quantitatively 

similar objects, directly from a set of n original objects. The clusters are generally non-

overlapping or mutually exclusive (Morse, 1980). Clustering analysis techniques can be used to 

organize and classify the solutions. Clustering the set of Pareto solutions and then selecting a 

preferred solution or set of solutions from each cluster to represent the original set of Pareto 

optima can help a decision-maker in his/her choice of the best solution to implement (Chaudhari, 

Dharaskar, & Thakare, 2010). Furthermore, a number of numerical studies that compare 

clustering algorithms to reduce the set of Pareto optimal solutions shows hierarchical clustering 

algorithms are highly recommended and preferable over the other clustering algorithms such as 

the direct clustering. Hierarchical algorithms are shown to perform reasonably well, such as the 

centroid clustering algorithm (Zitzler & Thiele, 1999; Zitzler & Thiele, 1998). 

Syberfeldt, Ng, John, & Moore (2010) propose an approach to reduce the set of Pareto 

optima in the presence of stochastic objectives using an evolutionary algorithm by re-sampling 

until the solution reaches to a given confidence level. The approach also clusters the set of Pareto 

optimal solutions in the presence of stochastic objectives. The set of Pareto solutions are 

clustered based on the difference in their mean values. In addition, Zio & Bazzo (2011) suggest a 

two-way procedure with providing a number of representative solutions that is presented to the 
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decision-maker. The original set of Pareto solutions are clustered into “families,” which are then 

synthetically represented by a “head-of-the-family” solution. The representative solutions are 

produced by considering their distance from an ideal solution (which optimizes all objectives 

simultaneously). In the latter situation, a fuzzy scoring procedure is applied for ranking solution 

alternatives. Moreover, Deb & Goel (2001) propose an evolutionary algorithm to produce a set 

of solutions then to check for the set of non-dominated solutions and finally cluster analysis is 

used to narrow down the set of Pareto optima. In the clustering stage, each solution belongs to a 

stand-alone cluster and then the distance between each cluster is calculated to find the centroids 

of each cluster by computing the Euclidean distance between the centroids. This algorithm 

considers clusters with minimum distance to be merged together into a bigger cluster. 

Nonetheless, the previous step is continuing until the desired number of clusters is recognized. 

Lastly, the solution closest in distance to the centroid of a cluster is retained and consider while 

all the other solutions from each cluster are neglected. 

Many have used the dynamic growing self-organizing tree (DGSOT) algorithm to 

perform post-Pareto analysis. The advantages of this algorithm shows that there is no initial 

number of clusters needed, optimal number of clusters is effective at each hierarchical level, and 

misclustered data are rearranged by reassigning data from previous hierarchical levels. 

Therefore, the decision-maker can better analyze a smaller set of representative solutions instead 

of the whole Pareto front (Aguirre, Taboada, Coit, & Wattanapongsakorn, 2011; Aguirre & 

Taboada, 2011). Similarly, Sakata, Faceli, De Souto, & De Carvalho (2010) suggest a selection 

strategy to reduce the set of Pareto optimal solutions obtained from Pareto-based multiobjective 

genetic algorithms with an automatically adjustable threshold. The strategy facilitates a better 
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selection of the most evident partitions while no initial setting is required. The strategy presents a 

better set of solutions and maintains the diversity within the partitions in the reduced set. 

However, many of the approaches listed above are powerful to reduce the set of Pareto 

solutions but unfortunately without considering the uncertainty of the objectives. On the other 

hand few others considered the uncertainty of the objectives on their approaches to reduce the set 

of Pareto solutions to a smaller set but not consider the number of solutions at the smaller set or 

even to prioritize the representative solutions. 

 

2.4.2 Multiobjective Optimization and Decision Analysis 

The essential issue with multiobjective decision-making is deciding how best to strike an 

appropriate balance among a set of objectives such that an increase in value in one objective does 

not cause a decrease in value in another objective (Haimes, Li, & Tulsiani, 1990). Most of the 

existing work in the open research literature integrates multiobjective algorithms and decision 

analysis to approximate and visualize the robust set of Pareto optima such as Krishna & 

Baskaran (2007), McConaghy, Palmers, Steyaert, & Gielen (2009), and  Zhong & Li (2007). 

Many researchers have used the popular swing weighting approach among the other 

multi-criteria decision-making approaches in the presence of multiple objectives. Using swing 

weights, the decision-maker determines which solution are the most important, the second most 

important, etc. and also the degree to which each objective is more important than the others.  

These numbers are then normalized to sum to 1.0 (Clemen & Reilly, 2004; Weber, Eisenführ, & 

Von Winterfeldt, 1988). 
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2.5 Summary 

In summary, there is little work that addresses how to reduce the set of Pareto solutions in 

the presence of stochastic objectives. Furthermore, it can be concluded that the multiobjective 

optimization practitioners have yet to take full advantage of cluster analysis and/or decision 

analysis to improve the decision-making procedure by reducing the set of Pareto optima 

effectively in the presence of stochastic objectives. These include approximating the number of 

Pareto optimal solutions and using clustering analysis to reduce the number of Pareto optimal 

solutions to a smaller set. To the best of this researcher’s knowledge, the literature provides a 

little work for reducing the number of the Pareto optimal solutions while considering the 

stochastic nature of the objectives. New efforts concerning improvement of decision-making for 

multiple objective problems and the need to reduce and organize the set of non-dominated 

solutions in the presence of stochastic objectives may benefit the decision-maker and provide a 

contribution not only to the practitioner body of knowledge, but also to the research community. 
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CHAPTER 3: 

A POSTERIORI APPROACH FOR DECISION-MAKING WITH MULTIPLE 

STOCHASTIC OBJECTIVES 

3.1 Introduction 

In this chapter, an a posteriori approach is presented. This investigation specifically 

focuses on how to intelligently and effectively reduce the number of candidate compromise 

solutions while considering the stochastic nature of a set of multiple objectives. The approach 

effectively articulates the decision-maker preferences after the optimization process (i.e., an a 

posteriori analysis). The approach uses statistical analysis and clustering analysis on the Pareto 

optimal solutions in order to reduce the number of solutions to set of representative solutions that 

is presented to the decision-maker for final selection. 

 

3.2 Proposed Approach 

The proposed a posteriori approach to reduce the number of candidate Pareto optimal 

solutions consists of three sequential general phases – Reduce, Cluster, and Prioritize. Figure 3.1 

shows the logic of the a posteriori proposed approach. 
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Figure  3.1: General logic flow of the a posteriori approach. 

 

The proposed approach begins with a given set P of Pareto optima (or, tradeoff solutions) 

as input. The initial set of Pareto optima that is produced by an integrated simulation 

optimization computational framework that integrates the multiobjective optimization algorithm 

and a stochastic computer simulation model, which represents the decision setting and conditions 

of the problem to be solved, is used to generate the initial set of Pareto optima. The purpose of 

the multiobjective optimization algorithm is to generate candidate solutions in the form of 

vectors of values for the n decision variables. The purpose of the simulation model is to evaluate 

the relevant measures of performance that are to be optimized, and the measures of performance 

are represented by mean and standard deviation values (i.e., confidence intervals at a level of 

significance). 
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It is important to note here that, before the first Phase of the approach begins, the user of 

the proposed approach chooses a variability factor, v (between 0.5 and 1) where v is a normal 

probability of a stochastic p solution falling within an interval that is within k standard deviations 

of the mean of the solution values in P. In addition, the user of the approach converts all solution 

values in P to minimum or maximum as needed. 

 

3.2.1 Phase 1 – Solution Set Reduction 

Phase 1 is illustrated in Figure 3.2. As discussed previously, the proposed approach 

begins with an initial set of P Pareto optima as input. Figure 3.3 shows an example set P of 

Pareto optimal solutions (assuming a two-objective minimization problem). For each solution in 

the initial set P of Pareto optimal solutions, the lower confidence level (assuming minimization) 

in each of the m objective dimensions is computed. Note that, in case of maximization, 

objectives can be converted to minimization by multiplying the objectives by -1, without loss of 

generality. Using the associated standard deviations, the precision of the initial set P of Pareto 

optimal solution values is represented by the confidence intervals, computed using Eq. 3.1, along 

each objective space dimension, creating an upper and a lower limit for each Pareto optimal 

solution. Figure 3.4 shows the lower confidence limit curve that corresponds to each Pareto 

solution mean in the example Pareto optimal solution set. 
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Figure  3.2: Overview of Phase 1 of the proposed a posteriori approach. 
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Figure  3.3: Example set of Pareto optimal mean values. 

 

The confidence intervals are computed using 

     
 
     

 

  
 , (3.1) 

where    is the mean objective value from the n replications, s is the standard deviation of the 

objective value from the n replications,  is the level of significance, and t/2,n-1 is the upper /2 

critical value for the t-distribution with n-1 degrees of freedom. 

 

Figure  3.4: Set of Pareto optimal mean values and their lower confidence interval limit 

(assuming a minimization problem) for the example. 
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Next, the volume for each of the solutions in P with respect to each solution’s half-length 

for the m objectives is calculated as it serves as a guidance criterion for finding a reduced and a 

good approximations to the Pareto front (e.g., Beume, Fonseca, Lopez-Ibanez, Paquete, & 

Vahrenhold, 2009; Le & Landa-Silva, 2007). The volumes represent the stochastic boundary for 

each of the solutions in P. Then, the maximum volume among the solutions in P is identified, 

and each volume is normalized to a value between 0 and 1 using the ratio of each volume to the 

maximum volume. 

The original set P of Pareto optimal solutions is, then, reduced based on the variability 

factor v pre-specified by the user, as all the volume percentages are compared to v (Anderson, 

1986). For example, consider if, for a particular solution, the normalized volume is greater than 

v. Then, the solution is ignored from the original set P and is not considered further. However, if 

the solution’s normalized volume is less than or equal to v, then that solution is considered 

further in the analysis. The variability factor value chosen by the analyst can be varied, and the 

most appropriate value of v can be determined experimentally. The reduced set of original Pareto 

optimal solutions is then represented by P’. 

Now, for each of the remaining tradeoff solutions in P’, the sample size n in each of the 

m objective dimensions is calculated. The sample size is a representative portion for each 

original stochastic solution of the remaining original solutions now in P’ (Garza & Williamson, 

2001). The sample size n is computed using 

    
      

 
  . (3.2) 

where Z/2 is the upper /2 critical value for the normal distribution,   is the standard deviation 

of the objective value,  is the level of significance, and H is the half-width of the confidence 

interval. 
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The maximum sample size N among the m objectives is identified and is considered 

further in the analysis for each solution in P’. After that, each of the remaining solutions is 

replicated and replaced by N-time of solutions. These N-time solutions for each solution in P’ are 

generated by using the normal probability distribution for the random variate generation (Law, 

2007). The newly-generated solutions fall between the Pareto curve produced by the original 

solutions in P and the curve of the corresponding lower confidence limits, as shown in Figure 

3.5. 

 

Figure  3.5: Set of Pareto optimal solutions and their lower limits and new solutions for the 

example. 

 

Then, the non-dominated P” solutions among the new set of solutions are identified. 

Figure 3.6 shows an example of dominated and the set P” of non-dominated solutions. The non-

dominated solutions are considered for Phase 2. The logic of Phase 1 is shown using pseudocode 

in Figure 3.7. 
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Figure  3.6: The set of dominated and non-dominated solutions for the example. 

 

Pareto frontier P = {1, 2, …, p} 

Convert the objective value into minimum (if needed) 

For (i = 1 ≤ |P| ) 

Lower confidence level (LCLi) 

Volume (Vi) 

Maximum volume (MVi) 

Volume as percentage of the maximum one (PVi) 

Read variability factor v 

For (i = 1 ≤ |P| ) 

If (PVi ≤ v) 

P’= {1, 2, …, p’} 

Sample size (ni) 

Maximum sample size (Mn) 

For (i = 1 ≤ Mn × |P’|) 

New objective values F= {1, 2, …, Mn × p’} 

Non-dominated objective value P” = {1, 2, …, p”}  

Report the output (P”) 

Figure  3.7: Pseudocode for Phase 1. 

 

3.2.2 Phase 2 – Clustering 

The non-dominated solutions in set P”, and the desired number of clusters c are the input 

for Phase 2, which is briefly illustrated in Figure 3.8. Clustering analysis is applied to the 
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solutions in set P” identified in Phase 1. The centroid linkage method, which is an agglomerative 

clustering approach, is a widely-used approach for analyzing large datasets (Zitzler & Thiele, 

1999; Zitzler & Thiele, 1998), and it is used here. 

Set of Input Data: {the non-

dominated P” solutions, and the 

desired number of clusters c}

Cluster Analysis

Identify the P”’  

solutions
 

Figure  3.8: Overview of Phase 2 of the proposed a posteriori approach. 

 

In the centroid linkage method, a distance matrix between the data points is constructed. 

The centroid linkage method uses the squared Euclidean distance as the distance measure 

between two data points (i.e., tradeoff solutions) in the objective space. It calculates the distance 

between two clusters as the sum of distances between cluster means. Then, it involves merging 

clusters with the most similar mean vectors. In the centroid method, the centroid of a merged 

cluster is a weighted combination of the centroids of the two individual clusters, whereas the 

weights are proportional to the sizes of the clusters. This particular clustering approach requires 

the number of desired clusters to be pre-specified by the model analyst (Everitt, Landau, & 

Leese, 2001). The final set P”’ of solutions is identified according to the pre-specified number of 

clusters chosen by the analyst. The centroid is calculated for each of the final desired clusters, 

and then the closest point (solution) in distance to the centroid is considered for prioritization in 
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next Phase. The final set P”’ of solutions is presented in the form of a dendrogram to illustrate 

the arrangement of the clusters produced by hierarchical clustering approach. The dendrogram, 

or tree diagram, is a mathematical and pictorial representation of the complete clustering 

procedure, which illustrates the process and the partitions produced at each stage as shown in 

Figure 3.9. The logic of Phase 2 is shown using pseudocode in Figure 3.10. 
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Figure  3.9: Example of a dendrogram. 

 

Read P” = {1, 2, …, p”} 

Read desired number of clusters c 

Cluster analysis for P” with c 

Report the output P’” = {1, 2, …, c} 

Figure  3.10: Pseudocode for Phase 2. 

 

3.2.3 Phase 3 - Prioritization 

The set P”’ is the input for Phase 3, which is briefly illustrated in Figure 3.11. In general, 

evaluating and prioritizing large set of candidate solutions is a particularly difficult task for 
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decision-makers. Nonetheless, multiobjective decision-making approaches are usually used to 

select the most proper solution among the other available solutions (Noghin, 2011). 

Set of Input Data: 

{the P”’  solutions}

Decision-Making 

Analysis

Recommend Priority 

among the P”’  

solutions
 

Figure  3.11: Overview of Phase 3 of the proposed a posteriori approach. 

 

In this Phase, prioritization of the representative set of solutions in P”’, which are 

identified in Phase 2, is performed. Many researchers have used the swing weighting approach, 

among other multi-criteria decision-making approaches in the presence of multiple objectives. In 

general when using swing weights, the decision-maker determines the representative solutions 

that are the most important, the second most important, etc. as well as the relative degree of 

importance.  These numbers are then normalized to sum to 1.0 (Clemen & Reilly, 2004; Weber 

et al., 1988). The swing weighting approach is used for Phase 3 in order to prioritize the set of 

representative solutions. 

In this Phase, the decision-maker preferences on objectives are identified. For example, 

consider that a two-objective problem with a lower value of Objective 2 is the most desired, and 

then a lower value of Objective 1 is the second most desired. Second, a swing weight assessment 

is performed of the set of objectives of the problem. Table 3.1 summarizes the assessment of the 

two-objective example problem. The first row indicates the worst possible outcome, or the 
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outcome that is at the worst level on each of the attributes (solutions). Each of the succeeding 

rows “swings” one of the attributes from worst to best. 

 

Table  3.1: Swing weight assessment for the two-objective example problem. 

Attribute Swing 

from Worst to Best 
Consequence to Compare Rank Rating Weight 

(Benchmark) 100, 50 3 0 0.00 = 0/140 

  : Objective 1 10, 50 2 40 0.29 = 40/140 
  : Objective 2 100, 5 1 100 0.71 = 100/140 

Total 140 1.00 

 

Then, the objectives are rank ordered. For instance, for this example, there are three 

hypothetical set of solutions to compare, and it is safe to assume that the benchmark solution – 

the one that is worse on all objectives – is ranked third (worse) overall. The others are compared 

to determine which ranks first (best), and second. The ratings of the objectives are based on 

decision-maker preferences. The rating for the Benchmark objective is 0 and the rating for the 

most preferred objective is 100. The rating for the other objectives must fall between 0 and 100. 

With these assessments of the objectives, the table is completed and weights can be calculated. 

The weights are the normalized ratings that sum to 1.0. 

Next, the overall utility for each representative Pareto optimal solution in set P”’ is 

calculated. For example, the utilities for the alternatives in P”’ are shown in Table 3.2, which are 

calculated using Eq. 3.3 to Eq. 3.6. 

 

Table  3.2: The feasible alternatives (solutions). 

Representative Solution Objective 1 Objective 2 

1 100 5 

2 75 30 

3 45 50 

4 10 25 
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U (100, 5) =   (0)  +   (1)   = 0.714 (3.3) 

U (75, 30) =   (0.13) +   (0.17)   = 0.157 (3.4) 

U (45, 50) =   (0.22)  +   (0.10)   = 0.135 (3.5) 

U (10, 25) =   (1)  +   (0)   = 0.286 (3.6) 

 

Finally, with the utilities calculated, priority among the representative tradeoff solutions 

can be determined, as shown in Table 3.3. Figure 3.12 graphically shows the probability to have: 

 All objectives worst that not in favor of the priority by the decision-maker, 

 All objectives best, and 

 Some objectives are best and other is worst. 

Phase 3 steps can schematically be represented as the pseudocode shown in Figure 3.13. 

 

Table  3.3: The feasible alternatives (solutions) with priority. 

Representative Solution Objective 1 Objective 2 Utility Priority 

1 100 5 0.714 1 

2 75 30 0.157 3 

3 45 50 0.135 4 

4 10 25 0.286 2 

 

 

Figure  3.12: Graphic representation of swing weight procedure. 
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Read P’” = {1, 2, …, c} 

Decision-making analysis for P”’ 

Recommend priority among P’”  

Figure  3.13: Pseudocode for Phase 3. 

 

3.3 Summary 

The a posteriori approach presented in this chapter effectively articulates the decision-

maker preferences after the optimization process in the presence of multiple stochastic 

objectives. The a posteriori approach allows reducing and organizing the set of non-dominated 

solutions considering the stochastic nature of the objective functions.  
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CHAPTER 4: 

COMPUTATIONAL STUDY: SOLVING THE (s, S) INVENTORY PROBLEM BY THE 

A POSTERIORI APPROACH 

4.1 Introduction 

This chapter applies the proposed a posteriori approach to a well-known inventory 

problem. A numerical simulation model of the inventory problem is integrated with a 

multiobjective evolutionary algorithm. The non-dominated sorting genetic algorithm II (NSGA 

II) is used to optimize the decision variables and generate the set of Pareto optimal solutions. The 

a posteriori proposed approach begins with this set of tradeoff solutions as input. 

First, in this chapter, the details of the inventory case study problem are presented in 

Section 4.2. Then, in Section 4.3, the computational results after applying the proposed approach 

is presented and discussed. Next, Section 4.4 summarizes the results from the empirical analysis 

of identifying the most appropriate variability factor v. Then, Section 4.5 presents the 

computational results when only clustering analysis is applied to the set P of original Pareto 

optimal solutions. Finally, Section 4.6 shows the computational results when a simulation 

optimization approach is applied to the case study problem. Section 4.7 summarizes the chapter. 

 

4.2 Case Study: The (s, S) Inventory Problem 

The (s, S) inventory problem involves a random demand distribution and the goal of 

identifying a reorder point s and order-up-to point S that for the demand distribution that 

optimizes (i.e., balances) inventory costs. The little s and the big S in this inventory problem are 

the decision variables. 

For the sake of this case study, it is assumed that a company sells a single product and 

would like to determine how many units it should have in inventory for each of the next n 
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months, where n is a fixed input parameter. The time between demand realizations are 

independent and identically distributed (IID) exponential random variables. The value of the 

demand realizations are assumed IID random variables, independent of when the demand occurs 

with 

D =  
                  
                  

                  
                  

         (4.1) 

where w.p. is read “with probability.”  

At the beginning of each month, the company reviews the inventory level and decides 

how many items to order from its supplier. The first decision variable s is the minimum level 

reached by the inventory is the minimum order level. The second decision variable S is the 

maximum level of the inventory. If the company orders Q items, it incurs a cost of K+iQ, where 

K is the fixed ordering cost and i is the incremental cost per item ordered. If Q = 0, no cost is 

incurred. When an order of quantity Q is placed, the time required for it to arrive (called the 

delivery lag or lead time) is a random variable. The company uses a stationary (s, S) inventory 

policy to decide how much to order, i.e, 

Q =  
                
                     

         (4.2) 

where I is the inventory level at the beginning of the month. 

When a demand realization occurs, it is satisfied immediately if the inventory level is at 

least as large as the demand. If the demand exceeds the inventory level, the excess of demand 

over supply is backlogged and satisfied by future deliveries. When an order arrives, it is first 

used to eliminate as much of the backlog (if any) as possible. The remainder of the order (if any) 

is added to the inventory (Hopp & Spearman, 2011). 
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The company is interested in minimizing H(s, S), the average holding cost per period, and 

B(s, S), the average shortage cost per period. 

                (4.3) 

                (4.4) 

 

4.3 Application of the Proposed A Posteriori Approach to the Case Study 

The simulation framework for the (s, S) inventory with backlogging model integration 

with the NSGA II MOEA is illustrated in Figure 4.1. In this case example, a two-objective, two-

variable minimization problem is considered. The average holding cost per period and the 

average shortage cost per period are the objectives. Suppose that, for this problem, four 

representative solutions are desired. The a posteriori approach begins with a given set P of 

Pareto optimal solutions as input. The user of the approach chooses a variability factor, v 

(between 0.5 and 1). Recall that v is a normal probability of the tradeoff solutions falling within 

the interval within k standard deviations of the set P of Pareto optimal solution values (means). 

 

4.3.1 Generation of the Set of Pareto Solutions 

The simulation optimization integrated framework is comprised of the NSGA II 

multiobjective evolutionary algorithm component and the inventory simulation component. The 

algorithm iteratively generates decision variables (s, S). Evaluation of the decision variables are 

performed by the inventory simulation model. The NSGA II optimization algorithm generates 
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pairs of the two decision variables known as the inventory (s, S) policy. These decision values 

are passed to the inventory simulation model to generate and replicate the objective function 

values (i.e., H (s, S): inventory holding cost per month and B (s, S): inventory shortage cost per 

month). The inventory simulation model returns the mean of the objective function values and 

corresponding standard deviation values to NSGA II. NSGA II generates and passes the new 

decision variable values to the inventory simulation model in order to compute the mean 

objective function values and corresponding standard deviation values.  NSGA II then reports the 

set of Pareto (i.e., reports the mean of the objective function values and the corresponding 

standard deviation values, and the associated decision variable values). 
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Figure  4.1: Overview of the simulation optimization framework for the (s, S) inventory with 

backlogging model. 
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4.3.2 Parameter Settings for the Simulation Model and NSGA II 

Various decision parameter values are set for the inventory simulation model and NSGA 

II. This section summarizes the parameters settings and range of initial values of the parameters. 

The parameter values specified for the NSGA II and the inventory simulation model are 

summarized in Table 4.1 and Table 4.2 respectively. 

 

Table  4.1: Decision and search control parameter values for NSGA II. 

Parameter Value 

Population size 100 

No. of generations 100 

No. of objective functions 2 

No. of constraints 0 

No. of real variables 2 

Lower & Upper limits of the 1st real-coded variable 20, 60 

Lower & Upper limits of the 2nd real-coded variable 40, 100 

The cross-over probability 1.0 

The mutation probability for real-coded vectors 0.5 

Distribution Index for real-coded crossover 20 

Distribution Index for real-coded mutation 5 

No. of binary-coded variable 0 
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Table  4.2: Parameter values for the (s, S) inventory simulation model. 

Parameter Value 

No. of replications 100 

Initial inventory level 60 

No. of months 120 

Mean of inter-demand 0.1 

Setup cost $32.00 

Incremental cost $3.00 

Holding cost $1.00 

Shortage cost $5.00 

Minimum delivery lag (month) 0.5 

Maximum delivery lag (month) 1.0 

 

The variability factor value v is varied to identify its appropriate setting with 

experimental values 65%, 75%, and 85%. In addition, the input values and parameters for Phase 

2 are shown in Table 4.3. Recall that the input values for Phase 3 are the output of Phase 2. 

 

Table  4.3: Parameter values for Phase 2. 

Parameter Method/Value 

Linkage method Centroid 

Distance measure Squared Euclidean 

Number of clusters 4 

 

Suppose that, for this problem, four representative solutions are desired. The a posteriori 

approach begins with a given set P of Pareto optima as input, and the user chooses a variability 

factor, v (between 0.5 and 1). Figure 4.2 shows the original decision space and Figure 4.3 shows 

the original Pareto optimal front generated by using a simulation multiobjective optimization 

approach that uses multiobjective evolutionary algorithms and discrete-event simulation. Each 

point on the curve (as shown in Figure 4.3) is generated after running n = 100 independent 
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simulation replications. For each solution along the curve, the confidence interval along each 

dimension in objective space is computed. 

 

Figure  4.2: Decision space for the decision variables s and S. 

 

 

Figure  4.3: Objective space for the original mean objective functions (100 Pareto optimal 

solutions). 

 

Phase 1 of the a posteriori approach starts with computing the lower confidence limit 

curve (shown in green in Figure 4.4) for each Pareto point (shown in red in Figure 4.4). Here, for 
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illustration, a level of significance  = 10% is assumed. Also, the lower confidence limit is 

computed since this is a minimization problem. 

 

Figure  4.4: Original mean objective function values and the original lower confidence values. 

 

Then, for each of the solutions in set P, the area for each point is computed. Each area 

value is normalized to a value between 0 and 1 using the ratio of each area to the maximum area 

value. Next, the number of original P solutions (based on the variability factor v) is reduced. For 

illustration, v = 0.65. 

For each of the remaining P’ solutions in the set of compromise solutions, the sample size 

in each of the m objective dimensions is calculated, noting the maximum sample size. Then, new 

solutions for each of the remaining original P’ solutions are generated. The new solutions are 

bounded between original Pareto optimal front and the original lower confidence curve, as 

shown in Figure 4.5. Afterward, the reduced set of non-dominated solutions (say, P’) among the 

new solutions is identified, as shown in Figure 4.6. 
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Figure  4.5: The new P’ solutions (in blue). 

 

 

Figure  4.6: The new dominated and non-dominated P’ solutions. 

 

Phase 2 involves and applies the centroid linkage hierarchical clustering to the set of P’ 

non-dominated solutions to group the reduced set P” of solutions. Figure 4.7 shows the non-
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the dendrogram. The centroid is calculated for each of the four clusters, and then the closest 

point (solution) in distance to the centroid is considered. These solutions are shown in Table 4.4 

and in Figure 4.9. 

 

Figure  4.7: The set P’ of non-dominated solutions, assuming four clusters. 
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Figure  4.8: The dendrogram assuming four clusters. 

 

Table  4.4: The non-dominated and feasible solutions for the problem. 

Representative Solution H(s,S) B(s,S) 

1 $52.345 $0.006 

2 $35.757 $0.010 

3 $21.097 $0.679 

4 $12.118 $5.411 
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Figure  4.9: The non-dominated and feasible solutions for the problem. 

 

Phase 3 of the a posteriori approach prioritizes the representative solutions identified in 

Phase 2. The swing-weighting approach is used in the a posteriori approach. Considering the 

current problem, assuming a lower value of B(s, S) is desired first, and then a lower value of H(s, 

S) is desired second. Table 4.5 shows the prioritized solutions using the swing weighting 

approach. Table 4.6 shows the assessment of the swing weights. 

 

Table  4.5: The feasible solutions with priority. 

Priority H (s, S) B (s, S) 

1 52.345 0.006 

2 35.757 0.010 

4 21.097 0.679 
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Table  4.6: The assessment of swing weights. 

Attribute Swing from Worst to Best Consequence to Compare Rank Rate Weight 

(Benchmark) 52.345 5.411 3.00 0.00 0.00 

H (s, S) 12.118 5.411 2.00 75.00 0.43 

B (s, S) 52.345 0.006 1.00 100.00 0.57 

Total 175.00 1.00 

 

The overall utility for the four representative Pareto optimal solutions is determined as 

shown in Eqs. 4.5-4.8. The value of the corresponding weight or the relative utility shows how 

the prioritized solutions are identified. Eqs 4.5 and 4.8 shows how the weight values shown on 

Table 4.6 are calculated for H(s, S) and B(s, S). 

U (52.345, 0.006) = H (0)  + B (1)  = 0.57 (4.5) 

U (35.757, 0.010) = H (0.34)      + B (0.58)  = 0.48 (4.6) 

U (21.097, 0.679) = H (0.57)      + B (0.01)  = 0.25 (4.7) 

U (12.118, 5.411) = H (1)  + B (0)  = 0.43 (4.8) 

 

4.4 Selection of the Appropriate Variability Factor Values v – An Empirical Analysis 

In the application of the proposed a posteriori approach, a reasonable variability factor of 

v = 65% is used. However, the most appropriate value of the variability factor must be identified. 

Therefore, the variability factor value is varied using the experimental values of v = 65%, v = 

75%, and v = 85%. Table 4.7 and Figure 4.10 show the feasible solutions with priority for the 

different variability factor values under the a posteriori approach. In this empirical analysis, four 

representative solutions are desired, and the swing weight approach is used in the comparison. 
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Table  4.7: The feasible solutions with priority for the different variability factor setting. 

Priority 
v = 65% v = 75% v = 85% 

H(s, S) B(s, S) H(s, S) B(s, S) H(s, S) B(s, S) 

1 52.345 0.006 31.960 0.001 29.161 0.012 

2 35.757 0.010 9.403 9.348 8.644 11.475 

3 12.118 5.411 14.285 2.925 13.494 3.541 

4 21.097 0.679 22.966 0.119 23.454 0.182 

 

 

Figure  4.10: The feasible solutions with priority for the different variability factor setting. 

 

Table 4.7 and Figure 4.10 show the feasible solutions with priority by variability factor of 

65% performs well when considering the current inventory problem, assuming a lower value of 

B(s, S) is desired first, and then a lower value of H(s, S) is desired second. The average value of 

1.527 for B(s, S) with v = 65% is lowest compared to the other value for B(s, S) with different v 

settings of 3.098 and 3.830. 
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4.5 Application of Clustering Analysis Only to the Case Study 

The modified centroid linkage method is applied to the full original set of Pareto optimal 

solutions shown in Figure 4.3. Recall, that the centroid linkage method uses the squared 

Euclidean distance as the distance measure between two data points (i.e., solutions) in the 

objective space. Figure 4.11 shows the original set of Pareto assuming four clusters, and Figure 

4.12 shows the original set of Pareto dendrogram using four clusters. The centroid is calculated 

for each of the resulting clusters, and then the closest point (solution) in distance to the centroid 

is considered. These solutions are shown in Table 4.8 and represented in Figure 4.13. 

 

Figure  4.11: The original set of Pareto assuming four clusters. 
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Figure  4.12: The original set of Pareto dendrogram assuming four clusters. 

 

Table  4.8: The original non-dominated and feasible solutions for the problem. 

# H (s, S) B (s, S) 

1 53.000 0.047 

2 29.754 0.439 

3 14.991 5.298 

4 9.938 14.138 
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Figure  4.13: The original non-dominated and feasible solutions for the problem. 

 

In assessing the performance of the a posteriori approach versus clustering algorithm 

only using the modified centroid hierarchical algorithm, the performance measures of the 

clustering analysis internal evaluations are used (Table 4.9). Based on the assessment, the a 

posteriori approach performs far better than using the clustering algorithm only. The Dunn Index 

is 0.76 for the a posteriori approach, and the Davies-Bouldin Index is 0.27 for a posteriori 

approach. Considering the Dunn Index, a higher index value is desired, and considering the 

Davies-Bouldin Index, a lower index value is desired. 

 

Table  4.9: Summary of the internal evaluation index scores. 

 
Dunn Index Davies–Bouldin Index 

Proposed Approach 0.76 0.27 

Clustering Algorithm 0.54 0.42 

 

4.6 Application of Simulation Optimization to the Case Study 
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simulation model is similar to that shown in Table 4.2. However, for the simulation optimization 

approach, the population size is four since the desired number of representative solutions is four 

for this case study. Table 4.10 and Figure 4.14 show the feasible solutions for the two different 

approaches – the proposed a posteriori approach and the simulation optimization approach using 

NSGA II. 

 

Table  4.10: The feasible solutions for the different approaches. 

A Posteriori Approach with v = 65% 
Simulation Optimization Approach 

Using NSGA II (Population Size of 4) 

H(s, S) B(s, S) H(s, S) B(s, S) 

52.345 0.006 40.721 0.050 

35.757 0.010 23.164 1.375 

21.097 0.679 11.219 9.618 

12.118 5.411 8.966 18.925 

 

 

Figure  4.14: The feasible solutions for the different approaches. 
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S) is desired first, and then a lower value of H(s, S) is desired second. The average value of 1.527 

for B(s, S) with a posteriori approach is lowest compared to the simulation optimization 

approach value for B(s, S) of 7.492. In addition, the results of the a posteriori approach and the 

simulation optimization approach show similar spread in the representative solutions along the 

Pareto frontier. 

 

4.7 Summary 

The objective of this study is the improvement of the decision-making selection process 

in the presence of stochastic objectives. The three-phased a posteriori approach reduces a large 

set of tradeoff solutions to a manageable number of representative solutions while considering 

the stochastic nature of the objective functions. Prioritization in support of the representative 

solutions is considered to assist the decision-maker in identifying the most appropriate solution. 

The a posteriori approach does not consider decision-maker preferences a priori except when 

identifying the final number of representative solutions. 

The a posteriori approach is appropriate to use for either deterministic or stochastic set of 

objectives and the availability of the set of Pareto optima solutions is required since the approach 

is applied after the optimization process. 

The results discussed herein show the promise of the a posteriori approach. The a 

posteriori approach compared to the cluster analysis approach and compared to a simulation 

optimization approach (assuming a population size of four) show better results for the interest of 

decision-maker. 
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CHAPTER 5: 

AN ENHANCED A POSTERIORI APPROACH FOR DECISION-MAKING WITH 

MULTIPLE STOCHASTIC OBJECTIVES 

5.1 Introduction 

In this chapter, an enhanced a posteriori approach is presented. The enhanced a 

posteriori approach consists of two phases. First, a complete set of Pareto optima is reduced 

while considering the stochastic nature of the objectives. Second, prioritizing the reduced set of 

Pareto optima after the optimization process for the decision-maker is performed. 

 

5.2 Proposed Approach 

Figure 5.1 shows the logic of the enhanced a posteriori approach. The logic is similar to 

that of the proposed approach described in Chapter 3 sans the “Cluster” step. In other words, the 

enhanced a posteriori approach begins with a given set of P Pareto optima as input. The 

reduction of the candidate set of compromise solutions is performed while considering the 

statistical precision of the performance measures and preferences on objectives by the decision-

maker. Second, the reduced set of solutions is prioritized to assist the decision-maker in 

identifying the most appropriate compromise solution. 
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Figure  5.1: General logic flow of the enhanced a posteriori approach. 

 

5.2.1 Phase 1 – Reduction 

At the beginning, the values of the m objectives of interest are generated by applying an 

appropriate optimization algorithm to the problem and generating a set of Pareto optima. Each 

Pareto optimal solution is represented by a mean value and a standard deviation value in each of 

the objective space dimensions. The original set P of Pareto optima is the input for Phase 1, 

which is briefly illustrated in Figure 5.2. 
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Figure  5.2: Overview of the enhanced a posteriori approach Phase 1. 

 



59 

Figure 5.3 shows the set P of Pareto optima (assuming a two-objective minimization 

problem). Using the associated standard deviations, the precision of the set of P Pareto optima 

mean values are represented by the confidence intervals along each objective space dimension, 

creating an upper and a lower limit for each Pareto optima solution. 

First, for each of the solutions in the set P of compromise solutions, the confidence 

interval (assuming minimization) in each of the m objective dimension is calculated. In case of 

maximization, the objectives can be converted to minimization objectives by multiplying the 

objective values by -1, without loss of generality. Additionally, the preferred objective    

(assume Objective 2) is identified by the decision-maker. 

 

Figure  5.3: Initial set of Pareto optima with confidence intervals along the objective space 

dimensions. 

 

Second, the set of    solutions is sorted from largest to smallest, and then the overlapping 

confidence intervals among the whole set are identified as shown in Figure 5.4. Third, the 

marginal error values associated to all the objectives but the preferred one are calculated. One 

solution is selected among each set of overlapping confidence intervals for the set of    solutions 

by identifying the smallest marginal error value associated to the other objectives but the 

preferred objective (Hart, Michie, & Cooke, 2007; Mendenhall & Sincich, 2012; Willén, 1976). 
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In case of more than one confidence interval with the smallest marginal error value, more than 

one solution is selected among each set of overlapping confidence intervals for the set of    

solutions. Fourth, the second and the third steps are repeated until there are no more overlapping 

confidence intervals in the set of    solutions. 

 

Figure  5.4: Overlapping confidence intervals for Objective 2. 

 

Fifth, the set of    solutions (except the preferred objective) is sorted now from largest to 

smallest and then the overlapping confidence intervals among the whole set are identified as 

shown in Figure 5.5.  

Sixth, the marginal error values associated to the preferred objective is calculated. One 

solution is selected among each set of overlapping confidence intervals for the set of    solutions 

by identifying the smallest marginal error value associated to the preferred objective. In case of 

more than one smallest marginal error value is equal, more than one solution are selected among 

each set of overlapping confidence intervals for the set of    solutions. 
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Seventh, the fifth and then the sixth steps are repeated again until there are no more 

overlapping confidence intervals in the set of    solutions. 

 

Figure  5.5: Overlapping confidence intervals for Objective 1. 

 

Eighth, the fifth, the sixth, and the seventh steps are repeated for each objective but the 

preferred one (if there are more than two objectives to study for the problem). Now, the reduced 

set of Pareto    is considered for Phase 2, which is the set of solutions without overlapping 

confidence intervals that are recognized after the optimization process. Phase 1 steps can 

schematically be represented as the pseudocode shown in Figure 5.6. 
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Objective Function   ,  n = {1, 2, …, n} 

Preferred Objective    

Pareto frontier P = {1, 2, …, P} 

 

For (i = 1 ≤ |  |) 

Lower confidence level (      
Upper confidence level (      
If (Overlapping confidence intervals) 

Minimum Margin of Error among other objective function values Fn 

Identify the solutions 

    = {identified solutions from previous step and solutions without overlapping 

         confidence intervals} 

End For 

Repeat “For” loop with    until all solutions are without overlapping confidence intervals 

 

For (i = 1 ≤ |  |) 

Lower confidence level (      
Upper confidence level (      
If (Overlapping confidence intervals) 

Minimum Margin of Error among other Objective function values    

Identify the solutions 

    = {identified solutions from previous step and solutions without overlapping 

         confidence intervals} 

End For  

Repeat “For” loop with P* until all solutions are without overlapping confidence intervals 

 

Report the output (Reduced P*) 

Figure  5.6: Pseudocode for Phase 1. 

 

5.2.2 Phase 2 – Prioritization 

Phase 2 of the enhanced a posteriori proposed approach is similar to Phase 3 of the 

original a posteriori proposed approach shown in Chapter 3. The reduced set of    solutions is 

the input for Phase 2, which is a stage that is performed after the optimization process. In 

general, evaluating and prioritizing large set of candidate solutions is a particularly difficult task 

for decision-makers. Nonetheless, multiobjective decision-making approaches are used to select 

the most proper solution among the other available solutions (Noghin, 2011). Figure 5.7 

illustrates Phase 2 of the enhanced a posteriori approach. 
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Set of Input Data: 

{the reduced P*  

solutions}

Decision-Making 

Analysis

Recommend Priority 

among the P*  

solutions
 

Figure  5.7: Overview of the enhanced a posteriori approach Phase 2. 

 

In this Phase, prioritization of the representative    solutions identified in Phase 1 using 

the popular swing weight approach. Using swing weights, the decision-maker determines which 

solutions are the most important, second most important, etc. and also by how many times it is 

more important.  These numbers are then normalized to sum to 1.0. The swing weight approach 

is considered for this Phase. 

First, preferences on objectives are identified by the decision-maker (assume a two-

objective problem with a lower value of Objective 2 is desired first, and then a lower value of 

Objective 1 is desired second). 

Second, create a table like the one in Table 5.1 for the problem. The first row indicates 

the worst possible outcome, or the outcome that is at the worst level on each of the attributes 

(solutions). Each of the succeeding rows “swings” one of the attributes from worst to best. With 

the table constructed, the assessment can begin.  
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Table  5.1: Swing-weight assessment. 

Attribute Swing 

from Worst to Best 
Consequence to Compare Rank Rating Weight 

(Benchmark) 100, 50 3 0 0.00 = 0/140 

  : Objective 1 10, 50 2 40 0.29 = 40/140 

  : Objective 2 100, 5 1 100 0.71 = 100/140 

Total 140 1.00 

 

Third, the outcomes are rank ordered. It gives the option to prioritize the objectives. For 

example, “3” is placed in the “Rank” column for the first row in Table 5.1. There are three 

hypothetical set of solutions to compare, and it is safe to assume that the benchmark solution – 

the one that is worse on all objectives – is rank third (worse) overall. The others are compared to 

determine which ranks first (best), and second.  

Fourth, fill in the “Rate” column in the table. Two of the ratings are predetermined; the 

rating for the Benchmark solution is 0 and the rating for the top-ranked solution is 100. The 

rating for the other must fall between 0 and 100. With these assessments, the table is completed 

and weights are calculated. The weights are the normalized ratings and they add up to 1.0. 

Fifth, with the weights determined, the overall utility for different alternatives or 

outcomes is calculated. For example, the utilities for the alternatives (reduced set of    solutions) 

shown in Table 5.2 are calculated and shown in Equation 5.1-5.4. 

 

Table  5.2: The feasible alternatives (solutions). 

Representative Solution Objective 1 Objective 2 

1 100 5 

2 75 30 

3 45 50 

4 10 25 
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U (100, 5) =   (0)  +   (1)   = 0.714 (5.1) 

U (75, 30) =   (0.13) +   (0.17)   = 0.157 (5.2) 

U (45, 50) =   (0.22)  +   (0.10)   = 0.135 (5.3) 

U (10, 25) =   (1)  +   (0)   = 0.286 (5.4) 

 

Sixth, with the utilities calculated, priority among the alternatives (solutions) is 

considered as shown in Table 5.3. Figure 5.8 graphically shows the probability to have: 

 All objectives worst that not in favor of the priority by the decision-maker, 

 All objectives best, and 

 Some objectives are best and other is worst. 

Phase 2 steps can schematically be represented as the pseudocode shown in Figure 5.9. 

 

Table  5.3: The feasible alternatives (solutions) with priority. 

Representative 

Solution 
Objective 1 Objective 2 Utility Priority 

1 100 5 0.714 1 

2 75 30 0.157 3 

3 45 50 0.135 4 

4 10 25 0.286 2 
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Figure  5.8: Graphic representation of swing-weighting procedure. 

 

Read Reduced Set of    = {1, 2, …, c} 

Decision-making analysis for    

Recommend priority among     

Figure  5.9: Pseudocode for Phase 2. 

 

5.3 Summary 

The enhanced a posteriori approach effectively articulates the decision-maker 

preferences after the optimization process and is intended to design a decision-making solution 

selection process in the presence of multiple stochastic objectives. The enhanced a posteriori 

approach allows reducing and organizing the set of non-dominated solutions considering the 

stochastic nature of the objective functions. The enhanced approach consists fewer phases and 

compared to the original a posteriori approached described in Chapter 3. This is why the 

enhanced a posteriori approach is constructed. 
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CHAPTER 6: 

COMPUTIONAL STUDY: SOLVING THE (s, S) INVENTORY PROBLEM BY THE 

ENHANCED A POSTERIORI APPROACH 

6.1 Introduction 

This chapter applies the enhanced proposed a posteriori approach to a well-known 

inventory problem. A numerical simulation model of the inventory problem is integrated with a 

multiobjective evolutionary algorithm. The non-dominated sorting genetic algorithm II (NSGA 

II) is used to optimize the decision variables and generate the set of Pareto optimal solutions. The 

enhanced a posteriori proposed approach begins with this set of tradeoff solutions as input. The 

detail of the inventory case study problem is presented in Section 4.2 in Chapter 4.   

First, the computational results after applying the proposed approach are presented and 

discussed in Section 6.2. Next, Section 6.3 shows the computational results when a simulation 

optimization approach is applied to the case study problem. Finally, Section 6.4 summarizes the 

chapter. 

 

6.2 Application of the Proposed Enhanced A Posteriori Approach to the Case Study 

The simulation framework for the (s, S) inventory with backlogging model integration 

with the famous NSGA II is considered for this case study. In this study, a two-objective, two-

variable minimization problem is considered. The average holding cost per month and the 

average shortage cost per month are the objectives. The enhanced a posteriori approach begins 

after the optimization process with a given set of P Pareto optima solutions and reduces them. It 

is applied to enhance the decision-making process. 
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6.2.1 Generation of the Set of Pareto Solutions 

The simulation optimization integrated framework is comprised of the NSGA II 

multiobjective evolutionary algorithm component and the inventory simulation component. The 

algorithm iteratively generates decision variables (s, S). Evaluation of the decision variables are 

performed by the inventory simulation model. The NSGA II optimization algorithm generates 

pairs of the two decision variables known as the inventory (s, S) policy. These decision values 

are passed to the inventory simulation model to generate and replicate the objective function 

values (i.e., H (s, S): inventory holding cost per month and B (s, S): inventory shortage cost per 

month). The inventory simulation model returns the mean of the objective function values and 

corresponding standard deviation values to NSGA II. NSGA II generates and passes the new 

decision variable values to the inventory simulation model in order to compute the mean 

objective function values and corresponding standard deviation values.  NSGA II then reports the 

set of Pareto (i.e., reports the mean of the objective function values and the corresponding 

standard deviation values, and the associated decision variable values). 

 

6.2.2 Parameter Settings for the Simulation Model and NSGA II 

Various input values are used for the inventory simulation model and NSGA II. The 

parameter values specified for the NSGA II and the inventory simulation model are shown in 

Table 4.1 and in Table 4.2 respectively in Chapter 4. The parameter used is chosen by the analyst 

for the purpose of running and evaluating the enhanced a posteriori approach. 
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The enhanced a posteriori approach begins after the optimization process with a given set 

of P Pareto optima solutions as input. The approach consists of two phases. Phase one is built by 

using the Microsoft excel (i.e., to reduce the original set of Pareto solutions). Phase two uses the 

Microsoft excel for the decision analysis (i.e., swing weighting approach). Figure 6.1 shows the 

original decision space and Figure 6.2 shows the original Pareto optimal front generated by using 

a simulation multiobjective optimization approach that uses multiobjective evolutionary 

algorithms and discrete-event simulation. Each point on the curve (as shown in Figure 6.2) is 

generated after running n = 100 independent simulation replications. As such, the points 

(solutions) along the Pareto frontier are the mean objective values across the replications, and 

each has an associated standard deviation along each dimension in the objective space.  

 

Figure  6.1: Decision space for the decision variables. 
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Figure  6.2: Objective space for the original mean objective functions (100 solutions). 

 

Using the standard deviations, the precision of the mean objective values of the Pareto 

points (solutions) is represented by the confidence interval along each dimension computed using 

     
 
     

 

  
 , (6.1) 

where    is the mean objective value from the n replications, s is the standard deviation of the 

objective value from the n replications,  is the level of significance, and t/2,n-1 is the upper /2 

critical value for the t-distribution with n-1 degrees of freedom.  

Phase 1 of the enhanced a posteriori approach starts after the optimization process with 

computing the upper and lower confidence limit for each Pareto point (solution) using Eq. 6.1 

(Mendenhall & Sincich, 2012). Here, for illustration, a level of significance  = 10% is assumed. 

In addition, the preferred objective B (s, S) (assume objective 2) is identified by the decision-

maker. 
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First, the set of B (s, S) solutions is sorted from largest to smallest and then the 

overlapping confidence intervals among the whole set are identified. On the other hand, the 

marginal error values associated to H (s, S) is calculated. One solution is selected among each set 

of overlapping confidence intervals for the set of B (s, S) solutions by identifying the smallest 

marginal error value associated to H (s, S). The first iteration reduced the original set of Pareto P 

(100 solutions) to 36 solutions as shown in Figure 6.3. 

 

Figure  6.3: Graph of the set of Pareto optima (i.e., 36 compromise solutions). 

 

Second, the previous step (first step) is repeated again to make sure that there are no more 

overlapping confidence intervals for B (s, S) solutions. The second iteration reduced the previous 

set of Pareto (36 solutions) to 29 solutions as shown in Figure 6.4. 
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Figure  6.4: Graph of the set of Pareto optima (i.e., 29 compromise solutions). 

 

Third, the previous step (first step) is repeated again to make sure that there are no more 

overlapping confidence intervals for B (s, S) solutions. It is founded that there are no more 

overlapping confidence intervals for the B (s, S) solutions. 

Fourth, the previous step (first step) is repeated again but now for H (s, S) solutions to 

check for overlapping confidence intervals within H (s, S) solutions. The third iteration reduced 

the previous set of Pareto (29 solutions) to 26 solutions as shown in Figure 6.5. 
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Figure  6.5: Graph of the set of Pareto optima (i.e., 26 compromise solutions). 

 

Fifth, the previous step is repeated again until there are no more overlapping confidence 

intervals for the H(s, S) solutions. It is found that there are no more overlapping confidence 

intervals for the H(s, S) solutions. Therefore, the final reduced set of Pareto    is considered for 

Phase 2, which is the set of solutions without overlapping confidence intervals that are identified 

after the optimization process, as shown in Figure 6.5 and Table 6.1. 
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Table  6.1: The reduced set of Pareto optimal solutions (i.e., 26 compromise solutions). 

Solution H(s, S) B(s, S) 

1 9.339 16.531 

2 9.700 15.002 

3 9.941 13.715 

4 10.217 12.801 

5 10.561 11.265 

6 11.159 9.372 

7 12.401 8.176 

8 12.778 7.294 

9 13.553 6.329 

10 14.415 5.627 

11 15.222 4.946 

12 16.077 4.418 

13 16.785 3.906 

14 17.830 3.150 

15 19.654 2.347 

16 21.384 1.861 

17 22.333 1.540 

18 23.422 1.233 

19 25.198 0.944 

20 26.146 0.820 

21 29.754 0.439 

22 30.944 0.313 

23 32.745 0.225 

24 34.673 0.160 

25 37.414 0.088 

26 53.000 0.047 

 

Phase 2 of the enhanced a posteriori approach prioritizes the representative solutions 

identified in Phase 1 using the swing weight approach. Considering the current problem, 

assuming a lower value of B(s, S) is desired first, and then a lower value of H(s, S) is desired 

second. Table 6.2 shows the prioritized solutions using the swing weight approach. Table 6.3 

shows the assessment of the swing weights. 
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Table  6.2: The feasible solutions with priority. 

Priority H (s, S) B (s, S) 

1 9.339 16.531 

3 9.700 15.002 

5 9.941 13.715 

6 10.217 12.801 

7 10.561 11.265 

8 11.159 9.372 

9 12.401 8.176 

10 12.778 7.294 

11 13.553 6.329 

13 14.415 5.627 

14 15.222 4.946 

15 16.077 4.418 

16 16.785 3.906 

18 17.830 3.150 

19 19.654 2.347 

21 21.384 1.861 

22 22.333 1.540 

24 23.422 1.233 

25 25.198 0.944 

26 26.146 0.820 

23 29.754 0.439 

20 30.944 0.313 

17 32.745 0.225 

12 34.673 0.160 

4 37.414 0.088 

2 53.000 0.047 
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Table  6.3: The assessment of swing weights. 

Attribute Swung from Worst to Best Consequence to Compare Rank Rate Weight 

(Benchmark) 53.000 16.531 3 0 0.0000 

H (s, S) 9.339 16.531 2 75 0.4286 

B (s, S) 53.000 0.047 1 100 0.5714 

Total 175 1 

 

The overall utility for different feasible solutions is determined as shown in Eqs. 6.2-

6.27. The value of the corresponding weight or the relative utility shows how the prioritized 

solutions are identified. Eqs 6.2 through 6.27 shows the swing weight calculations. 

                           U (9.339, 16.531) = H (0)       + B (1)            = 0.5714 (6.2) 

                            U (9.700, 15.002) = H (0.96)   + B (0.00)       = 0.4144 (6.3) 

                            U (9.941, 13.715) = H (0.94)   + B (0.00)       = 0.4046 (6.4) 

                            U (10.217, 12.801) = H (0.91) + B (0.00)       = 0.3938 (6.5) 

                            U (10.561, 11.265) = H (0.88) + B (0.00)       = 0.3814 (6.6) 

                            U (11.159, 9.372) = H (0.84)  + B (0.00)       = 0.3615 (6.7) 

U (12.401, 9.372) = H (0.75)  + B (0.01)  = 0.3260 (6.8) 

U (12.778, 7.294) = H (0.73)  + B (0.01)  = 0.3169 (6.9) 

U (13.553, 6.329) = H (0.69)  + B (0.01)  = 0.2995 (6.10) 

U (14.415, 5.627) = H (0.65)  + B (0.01)  = 0.2824 (6.11) 

U (15.222, 4.946) = H (0.61)  + B (0.01)  = 0.2683 (6.12) 

U (16.077, 4.418) = H (0.58)  + B (0.01)  = 0.2683 (6.13) 

U (16.785, 3.906) = H (0.56)  + B (0.01)  = 0.2453 (6.14) 

U (17.830, 3.150) = H (0.52)  + B (0.01)  = 0.2330 (6.15) 
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U (19.654, 2.347) = H (0.48)  + B (0.02)  = 0.2150 (6.16) 

U (21.384, 1.861) = H (0.44)  + B (0.03)  = 0.2015 (6.17) 

U (22.333, 1.540) = H (0.42)  + B (0.03)  = 0.1965 (6.18) 

U (23.422, 1.233) = H (0.40)  + B (0.04)  = 0.1925 (6.19) 

U (25.198, 0.944) = H (0.37)  + B (0.05)  = 0.1871 (6.20) 

U (26.146, 0.820) = H (0.36)  + B (0.06)  = 0.1856 (6.21) 

U (29.754, 0.439) = H (0.31)  + B (0.11)  = 0.1953 (6.22) 

U (30.944, 0.313) = H (0.30)  + B (0.15)  = 0.2146 (6.23) 

U (32.745, 0.225) = H (0.29)  + B (0.21)  = 0.2409 (6.24) 

U (34.673, 0.160) = H (0.27)  + B (0.29)  = 0.2826 (6.25) 

U (37.414, 0.088) = H (0.25)  + B (0.53)  = 0.4106 (6.26) 

                             U (53.000, 0.047) = H (1)       + B (0)       = 0.4286 (6.27) 

 

6.3 Application of Simulation Optimization to the Case Study 

In this section a comparison between the results of the problem generated by using the 

enhanced a posteriori approach, the original a posteriori approach (with v = 65%) and the 

simulation framework for the (s, S) inventory with backlogging model integration with the 

NSGA II are illustrated. The parameters used for the simulation model is similar to that shown in 

Table 4.2 in Chapter 4. However, for the simulation optimization approach, the population size is 

four since the desired number of representative solutions is four for this case study. Tables 6.4 

and Figure 6.6 show the feasible solutions for the different approaches. 
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Table  6.4: The feasible solutions for the different approaches. 

Original A Posteriori 

Approach with v = 65% 

Enhanced A Posteriori 

Approach 

Simulation Optimization 

Approach (Population Size of 

4) 

H (s, S) B (s, S) H (s, S) B (s, S) H (s, S) B (s, S) 

52.345 0.006 53.000 0.047 40.721 0.050 

35.757 0.010 37.414 0.088 23.164 1.375 

21.097 0.679 9.700 15.002 11.219 9.618 

12.118 5.411 9.339 16.531 8.966 18.925 

 

 

Figure  6.6: The feasible solutions for the different approaches. 

 

Table 6.4 and Figure 6.6 show the feasible solutions for the different approaches, whereas 

the enhanced a posteriori approach is performing reasonably well when considering the current 

problem, assuming a lower value of B(s, S) is desired first, and then a lower value of H(s, S) is 

desired second. The results with the enhanced a posteriori approach show better spread for the 

representative solutions compared to the results with the original a posteriori approach. In 
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improved compared to the original a posteriori approach value for H(s, S) of 30.329. The 

enhanced a posteriori approach shows faster and less complex analysis compared to the original 

a posteriori approach. 

 

6.4 Summary 

The objective of this study is the improvement of the decision-making selection process 

in the presence of stochastic objectives. With the enhanced a posteriori approach, preference 

information is applied by the decision-maker after the optimization process, and the enhanced a 

posteriori approach is appropriate to use for stochastic set of objectives and the availability of 

the set of Pareto optima solutions is required since the approach is applied after the optimization 

process.  The results discussed herein show the promise of the enhanced a posteriori approach. 

The enhanced a posteriori approach compared to the other approaches show better results in 

general. 
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CHAPTER 7: 

AN INTERACTIVE APPROACH FOR DECISION-MAKING WITH MULTIPLE 

STOCHASTIC OBJECTIVES AND COMPUTIONAL STUDY 

7.1 Introduction 

In this chapter, an interactive proposed approach for this research investigation is 

presented. This investigation specifically focuses on how to intelligently and effectively reduce 

the number of the candidate of compromise solutions while considering the stochastic nature of 

the objective functions. The interactive approach effectively articulates the decision-maker 

preferences during the optimization process (an interactive) and intends to design a decision-

making solution selection process in the presence of multiple stochastic objectives. The 

interactive approach uses statistical analysis on the Pareto optimal solutions in order to reduce 

the number of solutions to a set of representative solutions that is presented to the decision-

maker for final selection. 

The interactive approach begins during the optimization process with articulated 

information that guide the optimization process to generate a bias set of Pareto optima 

considering the decision-maker preferences. A computational model that integrates 

multiobjective optimization and inventory simulation model that represents the problem to be 

solved is one way to produce the set of noisy Pareto optima. The computational model 

represented by simulation is constructed to compute a set of stochastic measures of performance, 

which represent the measures that are to be optimized. The interactive approach begins during 

the optimization process and then a two phases are considered after the set of Pareto optima is 

generated. First, reduction of a complete set of Pareto optima is performed considering the 

variation in the output. Second, prioritizing the reduced number of compromised solutions for 
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the decision-maker is performed. The detail of the inventory case study problem is presented in 

Section 4.2 in Chapter 4.   

First, in this chapter, the details of the interactive proposed approach are presented in 

Section 7.2. Then, in Section 7.3, the computational results after applying the proposed approach 

is presented and discussed. Next, Section 7.4 shows the computational results when a simulation 

optimization approach is applied to the case study problem. Finally, Section 7.5 summarizes the 

chapter. 

 

7.2 Proposed Approach 

In this interactive proposed methodology, an innovative approach that begins during the 

optimization process and then effectively reduces and prioritizes the set of Pareto solutions while 

considering the stochastic nature of m objective functions is developed. Figure 7.1 shows the 

logic flow of the interactive approach.  

Prioritrize

Desired Number of Pareto 

Solutions with Priority

Pareto Set

Reduce

Input

Output

Phase 1

Phase 2

Optimization Problem by 

NSGA-II with priority on 

preferred objective

 

Figure  7.1: General logic flow of the interactive approach. 
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At the beginning, the interactive approach start during the optimization process and then 

a bias set of Pareto optima is generated considering the decision-maker preferences. After that, 

the reduction of the candidate set of compromise solutions (set of Pareto optima) is performed 

while considering the statistical precision of the performance measures under study and 

preferences on objectives by the decision-maker. Next, the reduced set of solutions is prioritized 

to assist the decision-maker in identifying the most appropriate compromise solution. The two 

phases considered after the optimization process are similar to the one described in section 5.2. 

 

7.2.1 The interactive approach and the optimization process  

The interactive approach uses the preference information progressively during the 

optimization process. Many researchers have made an effort to integrate the decision-maker 

preferences while solving for the optimization problems, which is embedded in the optimization 

algorithm to lead a decision maker (DM) to the most preferred solution of her or his choice (Deb 

et al., 2002; Deb, Sinha, Korhonen, & Wallenius, Oct.; He & Gao, 2009; Konak, Coit, & Smith, 

2006; Nojima & Ishibuchi, 2009, 2010). 

The interactive approach integrates the decision-maker preferences with NSGA II while 

solving for the optimization problem as shown in Figure 7.2. The interactive approach with 

NSGA II steps can schematically be represented as the pseudocode shown in Figure 7.3. The 

approach prioritizes the preferred objective by decision-maker among the other objectives during 

the optimization process. In the selection operation step in NSGA II, the individual with 

minimum preferred objective value is considered among the other individuals in the same 
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population to generate the new population. At the very end, the set of Pareto optima solutions is 

generated as biased to the preferred objective. 

Start
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population 

Gen = 0

Front = 1

Is population 
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objective F* by 
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individuals
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Sharing in 
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minimum 
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Figure  7.2: The interactive approach with NSGA II. 
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Initialize population 

Identify preferred objective 

 Generate random population – size M 

 Evaluate objective values 

 Assign rank based on Pareto dominance 

 Generate child population 

  Tournament selection 

   Select individuals with minimum preferred objective value 

  Recombination and mutation 

For i = 1 to G 

 With parent and child population 

  Assign rank based on Pareto dominance 

  Generate sets of non-dominated fronts 

  Loop by adding solutions to next generation starting from “first” until M individuals  

found 

  Determine crowding distance between points on each front 

 Select points (elitist) on the lower front (with lower rank) and are outside a crowding distance 

 Create next generation 

  Tournament selection 

   Select individuals with minimum preferred objective value 

  Recombination and mutation 

 Increment generation index 

End loop 

Figure  7.3: Pseudocode for the interactive approach with NSGA II. 

 

7.3 Application of the Proposed Interactive Approach to the Case Study 

The simulation framework for the (s, S) inventory with backlogging model integration 

with the famous NSGA II is considered for this case study. The interactive approach integrates 

the decision-maker preferences with NSGA II while solving for the optimization problem is 

shown in Figure 7.2.  In this study, a two-objective, two-variable minimization problem is 

considered. The average holding cost per month and the average shortage cost per month are the 

objectives. The interactive approach begins during the optimization process to produce a set of P 

Pareto optima solutions biased to the preferred objective identified by the decision-maker and 

then to reduces them to a smaller set of solutions. It is applied to enhance the decision-making 

process. The case study is described in detail in Section 4.2 in Chapter 4. 
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7.3.1 Generation of the Set of Pareto Solutions 

The interactive approach begins during the optimization process and then a biased set of 

Pareto optima to the preferred objective is generated. The interactive approach integrates the 

decision-maker preferences with NSGA II while solving for the optimization problem is shown 

in Figure 7.2. 

The simulation optimization integrated framework is comprised of the NSGA II 

multiobjective evolutionary algorithm component (Figure 7.2) and the inventory simulation 

component. The algorithm iteratively generates decision variables (s, S). Evaluation of the 

decision variables are performed by the inventory simulation model. The NSGA II optimization 

algorithm generates pairs of the two decision variables known as the inventory (s, S) policy. 

These decision values are passed to the inventory simulation model to generate and replicate the 

objective function values (i.e., H (s, S): inventory holding cost per month and B (s, S): inventory 

shortage cost per month). The inventory simulation model returns the mean of the objective 

function values and corresponding standard deviation values to NSGA II. NSGA II generates and 

passes the new decision variable values to the inventory simulation model in order to compute 

the mean objective function values and corresponding standard deviation values.  NSGA II then 

reports the set of Pareto (i.e., reports the mean of the objective function values and the 

corresponding standard deviation values, and the associated decision variable values). 

 

7.3.2 Parameter Settings for the Simulation Model and NSGA II 

Various input values are used for the inventory simulation model and NSGA II. The 

parameter values specified for the NSGA II and the inventory simulation model are shown in 
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Table 4.1 and in Table 4.2 respectively in Chapter 4. The parameter used is chosen by the analyst 

for the purpose of running and evaluating the interactive approach. 

The interactive approach begins during the optimization process and then a biased set of 

Pareto optima to the preferred objective is generated. After that, reduction of the candidate set of 

compromise solutions is performed while considering the statistical precision of the performance 

measures under study and preferences on objectives by the decision-maker. Next, the reduced set 

of solutions is prioritized to assist the decision-maker in identifying the most appropriate 

compromise solution. The biased set of Pareto optima is obtained by the simulation optimization 

algorithm. The two phases considered after the optimization process are illustrated in section 5.2. 

The interactive approach is built by using the C++ computer language (i.e., to prioritize the 

preferred objective among the other objectives during the optimization process). 

The interactive approach begins during the optimization process with preferred objective 

specified by the decision-maker. Assume that, a lower value of B (s, S) “objective 2” is desired 

by the decision-maker. Figure 7.4 shows the original decision space and Figure 7.5 shows the 

original Pareto optimal front generated by using a simulation multiobjective optimization 

approach that uses multiobjective evolutionary algorithms and discrete-event simulation. The 

generated set of Pareto optima is biased to the preferred objective B (s, S) as desired by the 

decision-maker. Each point (solution) on the curve (as shown in Figure 7.5) is generated after 

running n = 100 independent simulation replications. As such, the points (solutions) along the 

Pareto frontier are the mean objective values across the replications, and each has an associated 

standard deviation along each dimension in the objective space.  
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Figure  7.4: Decision space for the decision variables. 

 

 

Figure  7.5: Objective space for the original mean objective functions (100 solutions). 
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Using the standard deviations, the precision of the mean objective values of the Pareto 

points (solutions) is represented by the confidence interval along each dimension computed using 

     
 
     

 

  
 , (7.1) 

where    is the mean objective value from the n replications, s is the standard deviation of the 

objective value from the n replications,  is the level of significance, and t/2,n-1 is the upper /2 

critical value for the t-distribution with n-1 degrees of freedom.  

Thus the two phases, after the optimization process, are previously described in section 

5.2 and they are considered for this problem. Phase 1 starts after the optimization process with 

computing the upper and lower confidence limit for each Pareto point using Eq. 7.1 (Mendenhall 

& Sincich, 2012). Here, for illustration, a level of significance  = 10% is assumed. In addition, 

the preferred objective B (s, S) (assume objective 2) is identified by the decision-maker. 

First, the set of B (s, S) solutions is sorted from largest to smallest and then the 

overlapping confidence intervals among the whole set are identified. On the other hand, the 

marginal error values associated to H (s, S) is calculated. One solution is selected among each set 

of overlapping confidence intervals for the set of B (s, S) solutions by identifying the smallest 

marginal error value associated to H (s, S). The first iteration reduced the original set of Pareto 

(100 solutions) to 31 solutions as shown in Figure 7.6. 
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Figure  7.6: Graph of the set of Pareto optima (i.e., 31 compromise solutions). 

 

Second, the previous step (first step) is repeated again to make sure that there are no more 
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Figure  7.7: Graph of the set of Pareto optima (i.e., 25 compromise solutions). 

 

Third, the previous step (first step) is repeated again to make sure that there are no more 

overlapping confidence intervals for B (s, S) solutions. It is founded that there are no more 

overlapping confidence intervals for the B (s, S) solutions. 

Fourth, the previous step (first step) is repeated again but now for H (s, S) solutions to 

check for overlapping confidence intervals within H (s, S) solutions. The third iteration reduced 
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Figure  7.8: Graph of the set of Pareto optima (i.e., 24 compromise solutions). 

 

Fifth, the previous step (first step) is repeated again to make sure that there are no more 

overlapping confidence intervals for H (s, S) solutions. It is founded that there are no more 

overlapping confidence intervals for the H (s, S) solutions. Therefore, the final reduced set of 
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Table  7.1: The reduced set of Pareto (24 solutions). 

Solution H (s, S) B (s, S) 

1 9.138 18.121 

2 10.853 10.158 

3 11.100 9.431 

4 11.737 8.724 

5 12.508 7.731 

6 13.303 6.734 

7 14.212 6.003 

8 14.931 5.403 

9 15.763 4.794 

10 16.051 4.344 

11 17.081 3.574 

12 17.807 3.133 

13 18.824 2.727 

14 20.264 2.296 

15 21.131 1.943 

16 21.506 1.704 

17 22.513 1.414 

18 25.068 0.851 

19 26.898 0.673 

20 28.156 0.511 

21 30.842 0.340 

22 31.804 0.255 

23 34.493 0.160 

24 38.353 0.074 

 

Phase 2 prioritizes the representative solutions identified in Phase 1. Many researchers 

have used the popular swing weighting approach among the other multi-criteria decision-making 

approaches in the presence of multiple objectives. Using swing weights, the decision-maker 

determines which solutions are the most important, second most important, etc. and also by how 

many times it is more important.  These numbers are then normalized to sum to 1.0 (Clemen & 

Reilly, 2004; Weber et al., 1988). The swing-weighting approach is used for Phase 2. 

Considering the current problem, assuming a lower value of B (s, S) is desired first, and then a 
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lower value of H (s, S) is desired second. Table 7.2 shows the prioritized solutions using the 

swing weighting approach. Table 7.3 shows the assessment of the swing weights. 

 

Table  7.2: The feasible solutions with priority. 

Priority H (s, S) B (s, S) 

1 9.138 18.121 

4 10.853 10.158 

5 11.100 9.431 

6 11.737 8.724 

7 12.508 7.731 

8 13.303 6.734 

10 14.212 6.003 

11 14.931 5.403 

12 15.763 4.794 

13 16.051 4.344 

15 17.081 3.574 

16 17.807 3.133 

17 18.824 2.727 

19 20.264 2.296 

21 21.131 1.943 

22 21.506 1.704 

24 22.513 1.414 

23 25.068 0.851 

20 26.898 0.673 

18 28.156 0.511 

14 30.842 0.340 

9 31.804 0.255 

3 34.493 0.160 

2 38.353 0.074 
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Table  7.3: The assessment of swing weights. 

Attribute Swung from Worst to Best Consequence to Compare Rank Rate Weight 

(Benchmark) 38.353 18.121 3 0 0 

H (s, S) 9.138 18.121 2 75 0.4286 

B (s, S) 38.353 0.074 1 100 0.5714 

Total 175 1 

 

The overall utility for different feasible solutions is determined as shown in Eqs. 7.2-

7.25. The value of the corresponding weight or the relative utility shows how the prioritized 

solutions are identified. Eqs 7.2 and 7.25 shows how the weight values shown on table 7.3 are 

calculated for H (s, S) and B (s, S). 

U (9.138, 18.121) = H (0.00)  + B (1.00)  = 0.5714 (7.2) 

                            U (10.853, 10.158) = H (0.84) + B (0.01)       = 0.3650 (7.3) 

U (11.100, 9.431) = H (0.82)  + B (0.01)  = 0.3573 (7.4) 

U (11.737, 8.724) = H (0.78)  + B (0.01)  = 0.3385 (7.5) 

U (12.508, 7.731) = H (0.73)  + B (0.01)  = 0.3186 (7.6) 

U (13.303, 6.734) = H (0.69)  + B (0.01)  = 0.3007 (7.7) 

U (14.212, 6.003) = H (0.64)  + B (0.01)  = 0.2826 (7.8) 

U (14.931, 5.403) = H (0.61)  + B (0.01)  = 0.2701 (7.9) 

U (15.763, 4.794) = H (0.58)  + B (0.02)  = 0.2573 (7.10) 

U (16.051, 4.344) = H (0.57)  + B (0.02)  = 0.2537 (7.11) 

U (17.081, 3.574) = H (0.53)  + B (0.02)  = 0.2411 (7.12) 

U (17.807, 3.133) = H (0.51)  + B (0.02)  = 0.2334 (7.13) 

U (18.824, 2.727) = H (0.49)  + B (0.03)  = 0.2236 (7.14) 
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U (20.264, 2.296) = H (0.45)  + B (0.03)  = 0.2117 (7.15) 

U (21.131, 1.943) = H (0.43)  + B (0.04)  = 0.2071 (7.16) 

U (21.506, 1.704) = H (0.42)  + B (0.04)  = 0.2069 (7.17) 

U (22.513, 1.414) = H (0.41)  + B (0.05)  = 0.2039 (7.18) 

U (25.068, 0.851) = H (0.36)  + B (0.09)  = 0.2059 (7.19) 

U (26.898, 0.673) = H (0.34)  + B (0.11)  = 0.2084 (7.20) 

U (28.156, 0.511) = H (0.32)  + B (0.14)  = 0.2218 (7.21) 

U (30.842, 0.340) = H (0.30)  + B (0.22)  = 0.2515 (7.22) 

U (31.804, 0.255) = H (0.29)  + B (0.29)  = 0.2888 (7.23) 

U (34.493, 0.160) = H (0.26)  + B (0.46)  = 0.3775 (7.24) 

U (38.353, 0.074) = H (1.00)  + B (0.00)  = 0.4286 (7.25) 

 

7.4 Application of Simulation Optimization to the Case Study 

In this section a comparison between the results of the problem generated by using the 

interactive approach, the enhanced a posteriori approach, the original a posteriori approach 

(with v = 65%) and the simulation framework for the (s, S) inventory with backlogging model 

integration with the NSGA II are illustrated. The parameters used for the simulation model is 

similar to that shown in Table 4.2 in Chapter 4. However, for the simulation optimization 

approach, the population size is four since the desired number of representative solutions is four 

for this case study. Table 7.4 and Figure 7.9 show the feasible solutions for the different 

approaches. 
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Table  7.4: The feasible solutions for the different approaches. 

Original A Posteriori 

Approach with v = 65% 

Enhanced A 

Posteriori 

Approach 

Interactive 

Approach 

Simulation Optimization 

Approach with 

Population Size of 4 

H (s, S) B (s, S) H (s, S) B (s, S) H (s, S) B (s, S) H (s, S) B (s, S) 

52.345 0.006 53.000 0.047 38.353 0.074 40.721 0.050 

35.757 0.010 37.414 0.088 34.493 0.160 23.164 1.375 

21.097 0.679 9.700 15.002 10.853 10.158 11.219 9.618 

12.118 5.411 9.339 16.531 9.138 18.121 8.966 18.925 

 

 

Figure  7.9: The feasible solutions for the different approaches. 
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simulation optimization approach value of 7.492 for B (s, S). In addition, the results with the 

interactive approach and the original a posteriori approach show approximately equal spread 

solutions. The interactive approach deals fairly well with stochastic objectives settings only. The 

interactive approach considers the decision-maker preferences during the optimization process 

while the original a posteriori approach and the enhanced a posteriori approach do not consider 

decision-maker preferences a priori. 

 

7.5 Summary 

The objective of this study is the improvement of the decision-making selection process 

in the presence of stochastic objectives. The interactive approach begins during the optimization 

process and effectively reduces and prioritizes the set of Pareto solutions while considering the 

stochastic nature of m objective functions. The interactive approach effectively articulates the 

decision-maker preferences during the optimization process and intends to design a decision-

making solution selection process in the presence of multiple stochastic objectives. The approach 

reduces a large set of tradeoff solutions to a manageable number of representative solutions 

while considering the stochastic nature of the objective functions. 

The interactive approach is appropriate to use for stochastic set of objectives and the 

availability of the set of Pareto optima solutions is not required since the approach is applied 

during the optimization process. 

The results discussed herein show the promise of the interactive approach. The 

interactive approach compared to the other approaches show pretty good results in general for 

the interest of decision-maker. 
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CHAPTER 8: 

SUMMARY AND FUTURE RESEARCH DIRECTIONS 

8.1 Research Summary 

This research aims to improve the decision-making process under uncertainty and 

specifically focuses on reducing and organizing the set of candidate compromise solutions in the 

presence of stochastic objectives. The research investigation is a modest attempt to bridge gap of 

reducing the non-dominated set of solutions while considering the stochastic nature of the 

objective functions. In Chapter 2, a review of existing work in reducing and organizing the 

number of the Pareto optimal (tradeoff) solutions for better decision-making is given. Chapter 3 

presents the framework of the a posteriori approach that effectively articulates the decision-

maker preferences after the optimization process. Chapter 4 shows computational results for a 

common (s, S) inventory problem. A numerical simulation model of the inventory problem 

integrated with a multiobjective evolutionary algorithm (MOEA) is considered. NSGA II is used 

to optimize the design variables and generate the set of compromise solutions. Chapter 5 presents 

an enhanced framework of the a posteriori approach. The approach uses statistical analysis on 

the Pareto optimal solutions in order to reduce the number of solutions to set of representative 

solutions that is presented to the decision-maker for final selection. Chapter 6 presents useful 

results for a (s, S) inventory problem also. The enhanced a posteriori approach begins after the 

optimization process with the original set of tradeoff solutions and reduces them. It is applied to 

enhance the decision-making process. Chapter 7 presents the framework of the interactive 

approach, whereas the enhanced a posteriori approach is extended and incorporated in an 

interactive optimization framework. In addition, it presents useful results for a (s, S) inventory 

problem by using the interactive approach. 
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In summary, objective of research is the improvement of decision-making selection 

process in the presence of stochastic objectives. The results show promise of the proposed 

approaches. Nevertheless, the a posteriori approaches do not consider decision-maker 

preferences a priori except when identifying the final number of representative solutions. 

Conversely, the interactive approach considers decision-maker preferences during the 

optimization process. 

The a posteriori and the interactive approaches are aimed to help the decision-maker to 

reduce the number of compromise solutions while considering the uncertainty objectives of real 

life problem specially when modeling them on computer simulation. The a posteriori approaches 

focus on the post Pareto analysis while the reduction of the compromise solutions took place 

after the original Pareto front is discovered after the optimization process. On the other hand, the 

interactive approach begins during the optimization process while considering the stochastic 

nature of the objective functions and then a biased set of Pareto optima to the preferred objective 

is generated. The interactive approach integrates the decision-maker preferences with NSGA II 

while solving for the optimization problem. 

The a posteriori approach described in Chapter 3 is appropriate to use for either 

deterministic or stochastic set of objectives and the availability of the set of Pareto optima 

solutions is required since the approach is applied after the optimization process. The enhanced a 

posteriori approach described in Chapter 5 is appropriate to use for stochastic set of objectives 

and the availability of the set of Pareto optima solutions is required since the approach is applied 

after the optimization process. The interactive approach described in Chapter 7 is appropriate to 

use for stochastic set of objectives and the availability of the set of Pareto optima solutions is not 
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required since the approach is applied during the optimization process. Thus, the strength of the 

approaches is the use of variability on stochastic problems. 

 

8.2 Future Research Directions 

The research investigation presented and the summary has laid sufficient foundation for 

possible extension of this investigation for future research. The future research seeks potentially 

to improve the decision-making procedure, and effectively reduces the set of Pareto optima in 

the presence of stochastic objectives. Some of the potential future works are as follows: 

 Apply the concept and the approaches to other disciplines such as civil, electrical, 

materials engineering and other technologies. 

 Enhance the proposed approaches to solve m-objective optimization problem. 

 Investigate and propose a prioritization approach for the set of Pareto optima without the 

decision-maker preferences. 

In brief, new efforts concerning improvement of decision-making for multiple objective 

problems and the need to reduce and organize the non-dominated set of solutions in the presence 

of stochastic objectives may benefit the decision-maker and provide a contribution not only to 

the practitioners’ body of knowledge, but also to the researchers. Pareto analysis is potential 

concept to integrate within the body of simulation optimization algorithms in the presence 

multiple objectives to facilitate the decision making process. 
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