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ABSTRACT 

 
As urban population across the globe increases, the demand for adequate 

transportation grows. Several strategies have been suggested as a solution to the 

congestion which results from this high demand outpacing the existing supply of 

transportation facilities. 

High –Occupancy Toll (HOT) lanes have become increasingly more popular as a feature 

on today’s highway system.  The I-95 Express HOT lane in Miami Florida, which is 

currently being expanded from a single Phase (Phase I) into two Phases, is one such 

HOT facility. With the growing abundance of such facilities comes the need for in-

depth study of demand patterns and development of an appropriate pricing scheme 

which reduces congestion. 

This research develops a method for dynamic pricing on the I-95 HOT facility such as 

to minimize total travel time and reduce congestion. We apply non-linear 

programming (NLP) techniques and the finite difference stochastic approximation 

(FDSA), genetic algorithm (GA) and simulated annealing (SA) stochastic algorithms to 

formulate and solve the problem within a cell transmission framework. The solution 

produced is the optimal flow and optimal toll required to minimize total travel time 

and thus is the system-optimal solution.  

We perform a comparative evaluation of FDSA, GA and SA non-linear programming 

algorithms used to solve the NLP and the ANOVA results show that there are 

differences in the performance of the NLP algorithms in solving this problem and 

reducing travel time. We then conclude by demonstrating that econometric 
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forecasting methods utilizing vector autoregressive (VAR) techniques can be applied to 

successfully forecast demand for Phase 2 of the 95 Express which is planned for 2014. 
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CHAPTER1. INTRODUCTION 

 

1.1 Review of Congestion Pricing Domestic and International Implementations 

In this section of the proposal we review the current state of the congestion pricing 

literature, which is a strategy for reducing the ever-present problem of traffic 

congestion and commuter delay in today's urban cities. Traffic congestion in the 

United States is a major source of financial loss for business and commerce due to lost 

time and productivity. 

 

In the United States the ten most congested locations occur in urban regions such as 

Los Angeles California, Houston Texas, Chicago Illinois, Washington D.C., Atlanta 

Georgia and Phoenix Arizona and these ten locations by themselves result in a 

cumulative annual delay in excess of 200,000,000 hours of time delay. Since we know 

that lost time equals lost money we can see that there is a significant financial cost 

associated with congestion, which must be addressed. 

 

When faced with scarce resources, governments often are unable to build new roads 

or freeways to meet all the transportation demand for their cities or urban regions 

and must find other means to improve efficiency of the road facilities, which serve 

their community. The method of congestion pricing is one such effective method, 

which has been applied in major metropolitan areas to successfully reduce congestion 

and improve throughput on highways. Some examples of locations where congestion 

pricing which have been successfully implemented include London, Stockholm, 
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Singapore and US-91 in San Diego California. 

 

In London England the problem of congestion was addressed by implementing a 

surcharge for driving a vehicle within the city perimeter during certain hours during 

the day. The driver who planned to use these city streets would purchase a pass for a 

predetermined price and thus would gain access to these city locations during peak 

hours. The enforcement method used was- a network of cameras which would take 

photographs of vehicles registration when they passed certain points in the network. 

The date and time would be matched with a database of eligible drivers and toll 

would be deducted from the drivers pass. 

 

If an ineligible driver were using the city streets during peak hours their information 

would be recorded and they would be issued a toll or citation. The implementation of 

congestion pricing in London was an immediate success in reducing traffic by 15%-20% 

in the city. The drivers, which had been displaced due to the implementation of 

congestion pricing, were shifted in their mode of transportation to mass transit 

(subway tube) since ridership on buses and subway increased an equal an amount as 

the reduction (15%) on highways. 

 

In Singapore, the downtown area adopted a peak-hour toll to reduce traffic 

congestion. The drivers use an electronic card to pay the toll, which is read by a card 

reader and deducts the price from their balance. In addition cameras record vehicle 

information and are used for enforcement. Another technique used was that of 
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variable pricing which was applied to some freeways to charge tolls based on demand 

at different times of the day. One application of congestion pricing which was more 

recent (circa 2006) was the implementation of regional (or cordon) pricing in 

Stockholm, Sweden. In this implementation, certain areas of the city are designated 

restricted areas and charge a toll for entry or use of those streets. This resulted in a 

significant drop (21 %+) of traffic in those areas and also a corresponding reduction in 

accidents and a shift in transport mode from single-occupant (driver) vehicles to mass 

transit and taxis. 

 

Germany has also been a major location of implementation of congestion pricing 

techniques. One such implementation involved truck tolling using GPS. Trucks and 

commercial carriers were refitted with Global Positioning devices (GPS), which was 

used to determine their location in any region. These devices were also able to 

determine the corresponding toll charges for that location and deduct the appropriate 

toll from their toll account. Although this GPS/toll system is fairly expensive when 

compared with the basic transponder in use in most congestion pricing schemes, it 

removes the need for a toll collection facility, thus the system cost is reduced.  

 

1.2 Congestion Pricing in the US 

 

Since the early 1990's congestion pricing has been implemented in the United States. 

SR-91, San Diego California 

One of the most widely known implementations is that of State Road 91 in San Diego, 
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California. 

In this implementation State Road 91 is divided into two separate sections using 

flexible vertical plastic strips (pylons): One with tolled lanes and another with non-

tolled lanes. The tolled lanes charge the drivers a fixed charge for the privilege of 

using these express lanes. Based on the demand observed, these charges are revised 

periodically every three months. 

 

I-95, Miami Florida 

Another example of congestion pricing occurs on the I-95 corridor in Miami-Dade 

County. In this scheme, users are charged a variable fee to drive in the I-95 Express 

lanes between the I-395 and the Golden Glades Interchange. The goal of this project 

is to maintain a speed of 45mph in the express lanes and the fee will increase as 

demand increases in order to maintain this speed. Buses and high-occupancy vehicles 

with 3 or more passengers are allowed to use the express lanes for free. 

 

Atlanta Georgia 

Similar tolling schemes are planned or instituted on highways in Georgia. Some 

studies, which are ongoing in this region include: 

I-85 High-Occupancy Toll lanes. These lanes will run from Doraville to Gwinnett county 

Georgia. Motorcycles and Emergency vehicles will be exempt from the toll. 

I-75 High-Occupancy Toll Lanes. The prices on this region will be dynamically change 

based on the demand. 

I-20. Current High-Occupancy Vehicle Lanes will become High-Occupancy Toll Lanes, 
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Prices will vary with demand. 

 

District of Columbia 

In Washington D.C., the study was completed on variable pricing along the I-270. This 

study examined the feasibility of using Express (Toll) lanes in place of or in 

conjunction with the current HOV lanes. 

1.3 Congestion Pricing Strategies 

As mentioned before, congestion pricing can be implemented in several ways and with 

a variety of different objectives. In most cases congestion Pricing is implemented 

using the following four techniques: 

(1) HOT -High-occupancy Toll Lanes. Vehicles must have a minimum number of 

occupants in order to use the lane. Otherwise they are charged a toll. 

(2) Express Lanes. All Vehicles are charged a toll to uses these lanes during peak 

periods. 

(3) Cordon Pricing. An entire region such as the downtown area is tolled. All vehicles 

entering this area must pay a predetermined toll to drive on these streets during 

certain hours. 

(4) Area Wide Charges. These are tolls based on mileage (per-mile) driven in a 

certain area. 

 

When implementing congestion pricing, the method to choose depends on the goal of 

the authorities involved. Thus a thorough study must be done to determine the effect 

of any proposed congestion pricing method on the section of roadway in terms of 
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improved efficiency, throughput or reduction in dangerous accidents. The choice of 

the amount of toll to set will be a significant factor in the amount of the reduction in 

traffic. If the toll is set too low, there will be little or no reduction in the traffic and 

congestion will remain. Another factor to consider is whether there are enough 

alternate routes for drivers to switch to when the toll is implemented during the peak 

periods. 

 

Congestion pricing methodologies can be applied to many other industries such as 

electricity demand, and telecommunications demand. Congestion pricing models have 

been developed for highway toll collection, airline revenue management and also 

shipping access to ports/docks. In addition congestion pricing models can be 

formulated with different objectives such as to minimize travel time, or minimize 

system optimal travel time. Congestion pricing models may also be formulated to 

maximize toll revenue, maximize throughput, or maintain a constant speed given 

increasing demand. As these cases are all different we see that there may be a variety 

of objective functions and constraints for the congestion pricing problem some of 

which may be non-linear mathematical programming problems. 

 

1.4. Thesis  Organization 

In this dissertation  we will perform a preliminary review based on the different 

categories of the congestion pricing problem. We will perform the literature review in 

Chapter 2 based on these different model formulations and solution methods and also 

review three specific implementations of congestion pricing (HOT lanes, Express 



  

7 

 

Lanes) across the US. The three implementations which are included in the literature 

review are  

(1) State Road 91(91Express) San Diego California. 

(2) Katy Freeway (I-10) in Houston Texas 

(3) 95Express HOT lanes in Miami, Florida 

 

 These specific implementations are reviewed based on official reports on studies 

done for the USDOT and their findings in regard to specific performance measures. 

The 95 Express HOT lanes report by the team at the University of Florida was 

reviewed in-depth since this is the location of interest for this study. By performing a 

systematic review we can show what areas are unexplored and where we can make 

the greatest contribution to the congestion pricing research. 

 

Chapter 3 introduces current congestion pricing methodologies and discusses the 

concepts of discrete choice models, utility and non-linear programming. Section 3.5 

deals with large-Scale, Non-linear Optimization problems and outlines seven 

algorithms which have been utilized to solve this type of problem. 

In Chapter 4 we formulate the problem and apply the model to I-95 Express to obtain 

preliminary results. Sample calculations and determination of optimal toll prices are 

also discussed. 

 

In Chapter 5 we discuss travel demand forecasting and introduce a new method called 

GARCH (Generalized Auto-Regressive Conditional Heteroskedasticity) which may be 
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applied to real-time data. 

Chapter 6 provides a summary and outlines the research conclusions and discusses the  

results of the analysis tasks and sub-tasks involved in this study. 

 

 

1.5 Summary 

 

In this introduction we reviewed some implementations, problem formulations and 

solution methodologies which are widely applied to the congestion pricing problem. 

We have seen that over the past 15-20 years several international and domestic 

regional authorities have implemented congestion pricing as a means to reduce 

congestion and accidents. We discussed four types of congestion pricing schemes 

including HOT lanes, Express Lanes, Area-Wide (mileage) pricing, and Cordon Pricing 

schema. 

 

Overall, most implementations of congestion pricing have been reportedly successful. 

However, much more can be done to improve what is known about congestion pricing 

schemes.  

 

Currently the USDOT uses software tools for Decision making for congestion pricing. 

The main tools are-:Policy Options Evaluation Tool for Managed Lanes (POET-ML), Tool 

for Rush Hour User Charge Evaluation (TRUCE 3.0), and TRUCE-ST. None of these tools 

incorporate  subsidies for low-income drivers or models the behavior of the system 
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when funds are transferred from users of the HOT lanes to users of the free lanes, 

(such as in the FAIR system adopted in New York). This will be another possible area 

for future research into optimization pricing. 

Other problem approaches may be taken other than those previously mentioned. The 

Federal Highway administration of the US Department of transportation embarked on 

implementation of congestion pricing projects in four major metropolitan areas (see 

http://www.ops.fhwa.dot.gov/publications/fhwahop11030/cm_primer_cs.htm 

(retrieved 05/12/13) 

1. Dallas Ft Worth 

2. Puget Sound 

3. Minneapolis, St. Paul 

4. San Francisco Bay area 

 

In all these study implementations, the FHWA adopted a four step process model to 

help forecast travel demand for use with their congestion pricing scheme. This four 

step model include: (1) Travel Demand, (Trip Generation) (2) Trip Distribution (3) 

Mode choice and (4) Route Choice. The FHWA found that this four step model alone is 

insufficient to develop an effective congestion pricing scheme in any of these four 

implementations and have refined these steps to include additional information. Some 

changes included using data to improve sensitivity of model to re-routing of traffic.  

Use of travel survey and household income data were also applied to improve the 

basic four step model. The FHWA also conducted before and after studies to obtain 

accurate results for mode choice and travel demand forecasts. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Introduction 

Congestion Pricing models have been studied for several years. However, congestion 

pricing technology and Electronic Tolling Mechanisms such as Auto ID, RFID and digital 

camera enforcement technology was not widely implemented until approximately 20 

years ago. With the implementation of these technologies came the concept of 

“Managed lanes” and the analytic studies to evaluate the effectiveness of these 

pricing schemes. 

 

Ukkusuri et. al performed a comparative analysis of congestion pricing technologies 

and their implementations. The authors identified different performance criteria for 

evaluation and utilize these criteria in a formal evaluation framework (ELECTRE IV) 

algorithm to rank different technologies. The basic methodology of the ELECTRE IV 

algorithm is divided into three main sections, (1) construction of strong and weak 

outranking relations, (2) construction of downward and upward ranks and (3) 

determination of final ranks. 

 

Some of the congestion pricing technologies used in their evaluation include: RFID 

(Radio Frequency ID), Manual Toll Booths, Automatic Number Plate Recognition 

(ANPR), Dedicated Short Range Communication, GPS and Infrared Communications 

(IR). The authors conclude that using their performance criteria, RFID ranked first in 

of the list of six technologies tested with GPS and Infrared tied for third place and 
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Manual Toll Booth (MTB) ranking last in terms of performance with the ELECTRE IV 

algorithm. 

 

Labi and Issariyanukula (2011), examine the exploitation of real-time technology for 

use in congestion Pricing (CP) implementation. Their NEXTRANS report discusses the 

financial and technical feasibility of Congestion Pricing of Dynamic Congestion Pricing 

as a revenue generation source in Indiana.  

 

The authors compared both static and dynamic congestion pricing(CP) techniques and 

compare them with the base case of building a new untolled (free lane) 

The results of their study demonstrated that with static pricing efficiency decreases, 

whereas with dynamic congestion pricing efficiency and throughput increases. 

Dynamic pricing provides a reduction in overall user cost, an increase in traffic 

volume and reduction in the duration of the peak period, as compared to the base 

case of two free lanes.  

 

Modi et al. investigated the implementation of dynamic congestion pricing(CP) along 

the I-95Express in Miami FL. Their report answered several important questions 

including  whether motorists shift their travel times in anticipation of toll volatility 

during the day. The authors compared dynamic pricing (DP) method to time-of day 

(TOD) pricing to determine which method performs better in the HOT lanes along 

95Express. The study examined how the number and placement of entry points and 

exit points affect the operations of the Express lanes along I-95. The tolling 
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algorithms implemented for 95express evaluated as well as other possible enhanced 

algorithms which are applicable to the express lanes were presented. 

 

The I-95 Express algorithm, as presented by the authors is based on a look-up table 

which uses traffic densities as well as the changes in measured traffic densities to 

determine an optimal toll price to meet the objectives of the I-95 express authorities. 

One of these objectives is to maintain free-flow conditions along the Express lanes, 

which is considered to be a speed of 45mph or above. 

 

The I-95 express lanes are monitored by 31 loop detectors which provide real-time 

information on speed, density and traffic volume to an automated system and 

displayed to an operator. This information is updated every 15mins and the toll is 

adjusted accordingly at these intervals. The toll price varies from as low as $0.25 to 

as high as $7.25 depending on traffic conditions. 

 

The authors of the University of Florida study present the I-95 Express tolling 

algorithm and toll look-up table, which is based on level-of service (LOS) from A-F, 

traffic density and also change in traffic density as parameters in the final toll 

determination. Using a cell transmission macroscopic model (Daganzo,1994) the 

authors analyze travel demand and express lane user behaviors as relates to 

departure times and volatility of toll rates. 

A capacity analysis was performed on the effect of delineators used for the 95express 

lanes and the results show that the capacity of the general purpose (GP) lanes 



  

13 

 

increased after delineators were set up and tolling started in the express lanes, the 

capacity of GP lane1 in vicinity of entry/exit points reduced after delineators 

installed and tolling started. Similarly, results for the effect of delineators on the HOT 

lanes were determined. It was found that capacity of the HOT lanes reduced after 

tolling started. Speed of HOT lanes vary depending on the vicinity of entry/exit 

points. 

The study presents the optimization Objective Function procedure for the I-95Express 

Lanes: 

Maximize: S =    ]0,45_min[*_ ii SpeedELMspeedGP ..(1) 

where :GP_speed(i) is the speed on the General purpose lanes at  

interval I, EL_speed(i) is the speed on the express lanes at interval I, and M is a 

penalty parameter. For this objective M is set to be equal to 100. 

 

2.1.1 Dynamic Pricing Algorithm of I-95 Express (Phase 1) 

The I-95 Express Lanes utilize a look-up table based on traffic density during each 

time(i) and the change in traffic density between time (i) to time (i+1). When the 

magnitude of the change in traffic density is sufficient, the toll will be increased or 

decreased according to the pre-determined values in the table. The algorithm is 

presented here as outlined in the University of Florida Study (Modi et. al): 

(1) Calculate average traffic density of HOT lane D(t). D(t) may be corrected for 

factors such as entry/exit point or weaving. 

(2) Calculate the change in density ΔD = D(t)-D(t-1). Where D(t) is the traffic 
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density at time t and D(t-1) is the density at time t-1. 

(3) Determine the toll adjustment amount ΔR from the Delta Setting Table(look-up 

table) 

(4) Calculate the new toll amount as : R(t) = R(t-1) +  ΔR 

(5) Compare the new toll amount with the minimum and maximum toll amounts in 

the Level -of-service Table. If the new toll amount is greater than the 

maximum value, then use the maximum toll in the table. If the new toll 

amount is less than the minimum value, then use the minimum value. 

 

The DTS look-up table (Table 1) as presented in the University of Florida Research 

study is reproduced below for convenience. This look-up table represents the optimal 

solution to the Maximization problem formulation of the congestion pricing problem 

along I-95 Express. The sub-ranges in the LOS categories i.e. 0-11 in LOS A are based 

on traffic conditions for this route. Also, the change in densities -1 to -6 and +1 to +6 

is based on experience in the delta jumps. 
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Table 1. EXPRESS DTS Look-up table(negative density (source: Modi et.al) 

LOS Traffic 

density 

(vpmpl) 

Change in Traffic Density 

-6 -5 -4 -3 -2 -1 

 

 

 

 

 

 

 

 

A 

0 -$0.25 -$0.25 -$0.25 -$0.25 -$0.25 -

$0.2

5 

1 -$0.25 -$0.25 -$0.25 -$0.25 -$0.25 -

$0.2

5 

2 -$0.25 -$0.25 -$0.25 -$0.25 -$0.25 -

$0.2

5 

3 -$0.25 -$0.25 -$0.25 -$0.25 -$0.25 -

$0.2

5 

4 -$0.25 -$0.25 -$0.25 -$0.25 -$0.25 -

$0.2

5 

5 -$0.25 -$0.25 -$0.25 -$0.25 -$0.25 -

$0.2

5 

6 -$0.25 -$0.25 -$0.25 -$0.25 -$0.25 -

$0.2

5 

7 -$0.25 -$0.25 -$0.25 -$0.25 -$0.25 -

$0.2

5 

8 -$0.25 -$0.25 -$0.25 -$0.25 -$0.25 -

$0.2

5 

9 -$0.25 -$0.25 -$0.25 -$0.25 -$0.25 -

$0.2

5 

10 -$0.25 -$0.25 -$0.25 -$0.25 -$0.25 -

$0.2

5 

11 -$0.25 -$0.25 -$0.25 -$0.25 -$0.25 -

$0.2
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LOS Traffic 

density 

(vpmpl) 

Change in Traffic Density 

5 

 

 

 

 

B 

12 -$0.50 -$0.50 -$0.50 -$0.25 -$0.25 -

$0.2

5 

13 -$0.50 -$0.50 -$0.50 -$0.25 -$0.25 -

$0.2

5 

14 -$0.50 -$0.50 -$0.50 -$0.25 -$0.25 -

$0.2

5 

15 -$0.50 -$0.50 -$0.50 -$0.50 -$0.25 -

$0.2

5 

16 -$0.50 -$0.50 -$0.50 -$0.50 -$0.25 -

$0.2

5 

17 -$1.25 -$1.00 -$0.75 -$0.50 -$0.25 -

$0.2

5 

18 -$1.25 -$1.00 -$0.75 -$0.50 -$0.25 -

$0.2

5 

 

 

 

 

 

 

C 

19 -$1.25 -$1.00 -$0.75 -$0.50 -$0.25 -

$0.2

5 

20 -$1.25 -$1.00 -$0.75 -$0.50 -$0.25 -

$0.2

5 

21 -$1.25 -$1.00 -$0.75 -$0.50 -$0.25 -

$0.2

5 

22 -$1.25 -$1.00 -$0.75 -$0.50 -$0.25 -

$0.2

5 

23 -$1.25 -$1.00 -$0.75 -$0.50 -$0.25 -

$0.2

5 

24 -$1.25 -$1.00 -$0.75 -$0.50 -$0.25 -

$0.2
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LOS Traffic 

density 

(vpmpl) 

Change in Traffic Density 

5 

25 -$1.25 -$1.00 -$0.75 -$0.50 -$0.25 -

$0.2

5 

26 -$1.25 -$1.00 -$0.75 -$0.50 -$0.25 -

$0.2

5 

27 -$1.50 -$1.25 -$1.00 -$0.75 -$0.50 -

$0.2

5 

28 -$1.50 -$1.25 -$1.00 -$0.75 -$0.50 -

$0.2

5 

29 -$1.50 -$1.25 -$1.00 -$0.75 -$0.50 -

$0.2

5 

 

 

 

D 

30 -$1.50 -$1.25 -$1.00 -$0.75 -$0.50 -

$0.2

5 

31 -$1.50 -$1.25 -$1.00 -$0.75 -$0.50 -

$0.2

5 

32 -$1.50 -$1.25 -$1.00 -$0.75 -$0.50 -

$0.2

5 

33 -$1.50 -$1.25 -$1.00 -$0.75 -$0.50 -

$0.2

5 

34 -$1.50 -$1.25 -$1.00 -$0.75 -$0.50 -

$0.2

5 

35 -$1.50 -$1.25 -$1.00 -$0.75 -$0.50 -

$0.2

5 

 

 

 

 

 

36 -$1.50 -$1.25 -$1.00 -$0.75 -$0.50 -

$0.2

5 

37 -$1.50 -$1.25 -$1.00 -$0.75 -$0.50 -

$0.2
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LOS Traffic 

density 

(vpmpl) 

Change in Traffic Density 

 

E 

5 

38 -$1.50 -$1.25 -$1.00 -$0.75 -$0.50 -

$0.2

5 

39 -$1.50 -$1.25 -$1.00 -$0.75 -$0.50 -

$0.2

5 

40 -$1.50 -$1.25 -$1.00 -$0.75 -$0.50 -

$0.2

5 

41 -$1.50 -$1.25 -$1.00 -$0.75 -$0.50 -

$0.2

5 

42 -$1.50 -$1.25 -$1.00 -$0.75 -$0.50 -

$0.2

5 

43 -$1.50 -$1.25 -$1.00 -$0.75 -$0.50 -

$0.2

5 

44 -$1.50 -$1.25 -$1.00 -$0.75 -$0.50 -

$0.2

5 

45 -$1.50 -$1.25 -$1.00 -$0.75 -$0.50 -

$0.2

5 

F >45 -$2.00 -$2.00 -$2.00 -$2.00 -$1.00 -

$0.5

0 
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Table 2.EXPRESS DTS Look-up table (positive density shift (source: Modi et.al) 

LOS Traffic 

density 

(vpmpl) 

Change in Traffic Density 

1 2 3 4 5 6 

 

 

 

 

 

 

A 

 

 

0 $0.25 $0.25 $0.25 $0.25 $0.25 $0.2

5 

1 $0.25 $0.25 $0.25 $0.25 $0.25 $0.2

5 

2 $0.25 $0.25 $0.25 $0.25 $0.25 $0.2

5 

3 $0.25 $0.25 $0.25 $0.25 $0.25 $0.2

5 

4 $0.25 $0.25 $0.25 $0.25 $0.25 $0.2

5 

5 $0.25 $0.25 $0.25 $0.25 $0.25 $0.2

5 

6 $0.25 $0.25 $0.25 $0.25 $0.25 $0.2

5 

7 $0.25 $0.25 $0.25 $0.25 $0.25 $0.2

5 

8 $0.25 $0.25 $0.25 $0.25 $0.25 $0.2

5 

9 $0.25 $0.25 $0.25 $0.25 $0.25 $0.2

5 

10 $0.25 $0.25 $0.25 $0.25 $0.25 $0.2

5 

11 $0.25 $0.25 $0.25 $0.25 $0.25 $0.2

5 

 

 

 

 

B 

12 $0.25 $0.25 $0.25 $0.50 $0.50 $0.5

0 

13 $0.25 $0.25 $0.25 $0.50 $0.50 $0.5

0 

14 $0.25 $0.25 $0.25 $0.50 $0.50 $0.5

0 

15 $0.25 $0.25 $0.50 $0.50 $0.50 $0.5

0 

16 $0.25 $0.25 $0.50 $0.50 $0.50 $0.5

0 

17 $0.25 $0.25 $0.50 $0.75 $1.00 $1.2
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LOS Traffic 

density 

(vpmpl) 

Change in Traffic Density 

5 

18 $0.25 $0.25 $0.50 $0.75 $1.00 $1.2

5 

 

 

 

 

C 

19 $0.25 $0.25 $0.50 $0.75 $1.00 $1.2

5 

20 $0.25 $0.25 $0.50 $0.75 $1.00 $1.2

5 

21 $0.25 $0.25 $0.50 $0.75 $1.00 $1.2

5 

22 $0.25 $0.25 $0.50 $0.75 $1.00 $1.2

5 

 23 $0.25 $0.25 $0.50 $0.75 $1.00 $1.2

5 

 24 $0.25 $0.25 $0.50 $0.75 $1.00 $1.2

5 

25 $0.25 $0.25 $0.50 $0.75 $1.00 $1.2

5 

26 $0.25 $0.25 $0.50 $0.75 $1.00 $1.2

5 

27 $0.25 $0.50 $0.75 $1.00 $1.25 $1.5

0 

28 $0.25 $0.50 $0.75 $1.00 $1.25 $1.5

0 

29 $0.25 $0.50 $0.75 $1.00 $1.25 $1.5

0 

 

 

 

D 

30 $0.25 $0.50 $0.75 $1.00 $1.25 $1.5

0 

31 $0.25 $0.50 $0.75 $1.00 $1.25 $1.5

0 

32 $0.25 $0.50 $0.75 $1.00 $1.25 $1.5

0 

33 $0.25 $0.50 $0.75 $1.00 $1.25 $1.5

0 

34 $0.25 $0.50 $0.75 $1.00 $1.25 $1.5

0 

35 $0.25 $0.50 $0.75 $1.00 $1.25 $1.5

0 
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LOS Traffic 

density 

(vpmpl) 

Change in Traffic Density 

 

 

 

 

 

 

 

E 

36 $0.25 $0.50 $0.75 $1.00 $1.25 $1.5

0 

37 $0.25 $0.50 $0.75 $1.00 $1.25 $1.5

0 

38 $0.25 $0.50 $0.75 $1.00 $1.25 $1.5

0 

39 $0.25 $0.50 $0.75 $1.00 $1.25 $1.5

0 

40 $0.25 $0.50 $0.75 $1.00 $1.25 $1.5

0 

41 $0.25 $0.50 $0.75 $1.00 $1.25 $1.5

0 

42 $0.25 $0.50 $0.75 $1.00 $1.25 $1.5

0 

43 $0.25 $0.50 $0.75 $1.00 $1.25 $1.5

0 

44 $0.25 $0.50 $0.75 $1.00 $1.25 $1.5

0 

45 $0.25 $0.50 $0.75 $1.00 $1.25 $1.5

0 

F >45 $0.50 $1.00 $2.00 $2.00 $2.00 $2.0

0 

 

 

 

 

 

 

The researchers at University of Florida (Modi et. al) describe a method for solving 

their Optimization Problem called a “GA Procedure”. In this method a large scale 

optimization problem is solved by utilizing a pool of individual solutions (“parents”), 
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which are then randomly selected to generate new solutions called “offspring” and 

the process repeats itself iteratively until the “optimal” solution is reached. 

The GA procedure as described in the University of Florida Study (Modi et.al) is 

represented in Figure 1. 
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    Figure 1. GA Algorithm Flowchart (source: Modi et.al) 
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As outlined in the 95Express report (Modi,et.al 2012), the GA Procedure is initialized 

with 10 randomly selected “individual” to start the iteration. 

 

These individuals are each a non-optimal solution to the problem which are then 

evaluated by the algorithm for fitness. The solution with the best fitness value is then 

selected to continue the iteration. Each step in the GA process is then followed until 

100 iterations are completed. After 100 iterations the best solution obtained is then 

considered the “optimal” solution to the problem.  

 

Carson(2005), outlines six steps for a successful monitoring and evaluation program 

for managed lane facilities: 

(1) Setting objectives for the system that reflect the programs desired performance. 

(2) Identifying performance measures to evaluate goals and objectives 

(3) Identifying data sources to utilize in the calculation of performance measures. 

(4) Defining proper evaluation methods for the data 

(5) Scheduling the periodic monitoring of the system. 

(6) Reporting results in an easily understood format. 

In the report, Carson made, specifically addresses the difference between managed 

lane operations and general freeway operations and developed best practices for 

managed lanes. The paper documented specific managed lane benefits which may be 

used to develop benchmarks for managed lane monitoring. 

The report described three factors which are influential in monitoring of managed 



  

25 

 

lane performance as: 

  (1) Accessibility, including number of entry and egress points 

(2) Hours of operation of the facility 

(3) Eligibility criteria, including toll rates, vehicle types and 

occupancies, etc. 

 

The author listed four methods for providing access to managed lanes. These are:(1) 

Direct Merges(2) Slip Ramps (3) Direct Access Ramps and(4) Direct Connections from 

other lanes. Seven different goals and Objectives for Managed lane facilities were 

outlined by the author in this report. They are: 

(1) MOBILITY/CONGESTION;GOAL: Increase mobility during recurring and non-

recurring congestion 

OBJECTIVES: Increase Speed, Increase Throughput, Decrease Travel times, Decrease 

Delay 

(2) RELIABILITY; GOAL: Increase reliability during recurring and nonrecurring 

congestion 

OBJECTIVES: Decrease travel speed or travel time variation. Increase “on-time” 

performance 

(3) ACCESSIBILITY; GOALS: Increase accessibility while reducing congestion 

OBJECTIVES: Maintain or increase lane-miles along facility,Decrease the number of 

facility restrictions 

(4) SAFETY; GOALS: Increase safety 

OBJECTIVES: Decrease frequency or severity of accidents. Decrease incident duration 
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(5) ENVIRONMENTAL;GOALS: Decrease impacts to the 

environmental/OBJECTIVES:Decrease air quality pollutants. Decrease noise pollution. 

SYSTEM PRESERVATION; Increase system  service life OBJECTIVES: decrease system  

deficiency. 

ORGANIZATIONAL EFFICIENCY; GOALS: Increase productivity. OBJECTIVES: Maximize 

revenue, minimize costs, and Increase system performance 

Carson (2005) provides a set of recommended Performance Measures for Evaluating 

ITS in the study. The recommendations include guidelines for Safety, Throughput & 

Capacity Productivity, Energy & Environment, Customer Satisfaction and Mobility. 

Table 3 documents the recommended measures. 

  Table 3.Recommended Dynamic Pricing Performance(Carson 2005)  

GOAL AREA PERFORMANCE MEASURE 

Safety Reduction in Overall Crash rate 

 Reduction in rate of fatal crashes  

 Reduction in rate of injury crashes 

 Improve Surrogate measures 

Mobility Reduction in travel time delay 

 Reduction in travel time variability 

 Improvement in surrogate measures 

Throughput/Capacity Increase in throughput or capacity 

Customer Satisfaction Difference between users expectation 
and experience in relation to product 

Productivity Cost Savings 

Energy&Environment Reduction in emissions. Reduction in 
fuel consumption. 

 

The study concluded with a review of different types of managed lane facilities, and 

notes that despite differences in the types of facilities, commonalities exist for the 
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development of monitoring and performance evaluation. The report notes that, 

generally, passenger focused managed lane facilities have an interest in increasing 

throughput as measured by average vehicle occupancy levels combined with an 

increase in vehicle travel speeds. 

 

The author specifically points out that HOT lanes “present unique opportunities for 

toll revenue” and other factors (such as environmental) may be placed in secondary 

interest in these facilities. A summary of the Performance measures across facility 

types including HOV, HOT, Exclusive Lanes (Passenger/Freight), mixed flow separation 

(Passenger/Freight), Lane Restrictions (Freight) as well as dual facilities 

(Passenger/Freight) concluded the investigation. 

 

Cambridge Systematics, developed and presented an Evaluation Plan Framework for I-

95 Express managed lanes (2009). In the report, they combine performance measures 

into three groups. Group 1 includes corridor performance and utilization. Group 2 

includes Operation and Efficiency, and group 3 includes Customer Satisfaction    

Group 1 performance measures are listed as: 

1. Traffic -Express lanes vs. General purpose lanes 

2. Transit-Express Bus Rapid Transit 

3. Other 

Group 2 performance measures are listed as: 

1. Operational Efficiency-Express lanes and GP (General Purpose) lanes 

2. Operational Efficiency- Bus and Rapid Transit-Express 
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Group 3 performance measures are listed as: 

1. Acceptance/Customer Satisfaction of  Express Lanes 

2. Acceptance/Customer Satisfaction level of Bust Rapid Transit  

 

For each evaluation measure, the performance metrics were listed and the 

Miami/FDOT objective and USDOT/UPA objective was listed. 

As an example, for the Traffic (EL vs. GP lanes) the performance metrics were listed 

as: Traffic volume, average speed, travel time saved, LOS, average vehicle occupancy 

(AVO), vehicle and person throughput. For the Miami/FDOT objective, included ML 

(express lane) optimization, congestion relief in Express lane, congestion relief in GP 

lane, maintain free flow, and express bus (BRT). The USDOT/UPA objectives listed 

were congestion, tolling, movement of goods and transit. 

 

Vaze and Barnhart (2012) investigate congestion pricing in airline industry. The paper 

documented a model of airline frequency in the environment of congestion pricing. 

Competition between airlines is viewed as a measure of the willingness of airlines to 

pay for airport slots. The paper evaluated the impact of congestion prices on the 

different stakeholders and looks into how the efficiency of congestion pricing schemes 

impact frequency competition in particular markets. The authors note that most 

models in the literature assume constant load factors and constant aircraft sizes, and 

this does not account for the significant factor of variability in the number of 

passengers per flight which plays a vital role in the effectiveness of congestion pricing 

for airlines. The paper found that marginal cost pricing is more effective than flat 
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pricing in reducing congestion without penalizing airlines exceedingly. 

 

Tuerk et al. (2012) studied the effect of London congestion charges on traffic volumes 

when the toll is increased from ₤5 to ₤8 in central London and also the 

implementation of the Western extension zone. 

The methodology employed by the authors involves difference-in-differences 

estimation to determine estimates of the effects of these interventions. The results of 

this study imply an 8% reduction in traffic due to the increase in congestion price and 

a 10% reduction in traffic due to the implementation of the Western extension zone. 

 

Franklin (2012) examines the role of contextual variables in the equity effects of 

congestion pricing. The potential for inequity effects of congestion pricing has come 

into focus as a possible hindrance for its implementation as a demand management 

strategy around the world. But many argue that contextual factors such as automobile 

access, work schedule, flexibility and spatial distribution of activities are independent 

variables in determining how the burden of the toll should fall on different sectors of 

the demographics. The paper uses structural equation modeling to apply to 

Stockholm's congestion (CP) implementation to estimate the roles of age, gender and 

income as independent variables. The finding of the paper indicates that only gender 

was a significant factor in total effects. But contextual factors such as access to car, 

possession of transit pass, and a workplace on the same side of the Stockholm cordon 

were significant mediating effects on the demographic variables effects on trips by 

automobile. 



  

30 

 

 

Zheng et al. (2012), studied the impacts of combining a macroscopic model of 

congestion network with an agent-based simulator to study dynamic cordon 

congestion pricing schemes. The agent-based simulator is able to represent complex 

travel behavior relating to departure time choice and heterogeneous users.  

The authors argued that traditional traffic simulators consider traffic demand as 

inelastic to level of congestion. While most congestion pricing (CP) models are 

sensitive to demand fluctuations and non-stationary conditions. In addition, most 

pricing models assume a deterministic homogeneous population. 

 

The paper showed how the output of a multi-agent based simulator is consistent with 

the physics of traffic flow dynamics. They then develop a dynamic cordon congestion 

pricing scheme, and their results showed that the travel time savings at both the 

aggregated and dis-aggregated level outweigh the costs. The traffic congestion within 

the cordon is reduced without being shifted to outside the cordon.   

The paper concluded that equity issues can be further investigated if provided with 

more information about income of agents. 

 

Ohazulike et al. (2012) performed a multi-objective congestion pricing analysis using 

a Game-theoretic approach in this paper. 

In this study, the authors developed a global optimization problem formulation for the 

congestion pricing (CP) problem. It included objectives for traffic congestion, air 

pollution, noise and safety as conflicting objectives in solving the problems of optimal 



  

31 

 

road pricing. Using a game-theoretic approach and the concept of Nash Equilibrium 

(NE) the authors extend the single objective (Stackelberg game) to that of multi-

authority game with conflicting objectives. The authors develop a road pricing 

scheme for this multi-objective problem formulation and prove that no pure Nash 

Equilibrium in general exists under these conditions. However, Nash Equilibrium (NE) 

may be possible in specific instances. The authors designed a system that produces a 

pure Nash Equilibrium while simultaneously inducing cooperative behavior among 

participants, thus resulting in optimal tolls. 

 

Yang et al. (2012) formulate the pricing problem as a stochastic macroscopic traffic 

flow model, and developed the methodology to find a distance-based dynamic pricing 

strategy for managed toll lanes to maximize revenue. The authors propose a 

simulation-based algorithm to obtain optimal pricing in real time. 

The authors develop a partial differential equation for the traffic evolution in the 

general purpose (GP) lane. The authors claim that the dynamic distance-based 

algorithm developed in this paper can also be applied to other objective functions 

such as maximizing throughput. The authors also infer that their strategy will be 

applicable to the classical LWR model. 

 

Zhong et al. (2012) presented a paper titled “A reliability-based stochastic system 

optimum congestion pricing model under ATIS with endogenous market penetration 

and compliance rate”. 
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In their paper the authors divided all travelers into two classes. In the first class, 

travelers who follow ATIS advice are considered to be “equipped”. The other class of 

travelers is unaware or does not follow ATIS advice and is considered to be 

“unequipped” (or non-compliant). Travelers take pricing (CP), travel times and 

network reliability when making travel decisions about route choices. The ATIS market 

penetration according to the authors can be measured as an increasing function of the 

information benefit, and ATIS compliance   rates are given by the probability of the 

travel costs of equipped travelers being  less than or equal to that for unguided 

drivers. The authors formulated the model as an equivalent variation inequality 

problem, assuming that he origin-Destination (OD) pair travel demand is found from 

the minimal perceived travel cost between (OD) pair. 

 

Morgul and Ozbay (2011) investigate a simulation evaluation of a feedback-based 

dynamic congestion pricing strategy on alternate locations. 

The paper proposed a methodology for extending the concept of dynamic tolling to 

two neighboring tolled facilities. The authors argue that current tolling algorithms can 

result in highly fluctuating toll prices which vary widely and change frequently over 

short time intervals which can confuse and inconvenience travelers. 

The authors addressed the problem by proposing a less reactive tolling algorithm 

which is applied to two parallel routes in the New York/New Jersey metro area. 

The algorithm was tested on two tunnels between New York and New Jersey using a 

microscopic simulation of the traffic entering New York City. 
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Yang and Chu (2011) developed a stochastic model for traffic flow prediction and its 

validation. The authors also stated that such a model has applicability to congestion 

pricing problem. The authors argued that traditional deterministic traffic flow models 

such as the LWR model do not capture the full scope of factors such as erratic driver 

behavior or weather and need to be replaced with stochastic model. 

The proposed model uses partial stochastic differential equations to predict traffic 

evolution along the highway corridor. Authors calibrate and validate their model using 

real data and claim a higher power to predict traffic behavior than a deterministic 

model. 

 

Obey et al.(2011) investigated a mesoscopic simulation evaluation for dynamic 

congestion strategies for New York City crossings. In their study the authors performed 

a simulation -based evaluation of dynamic pricing at these crossings using a 

mesoscopic simulation model with a step-wise tolling algorithm. The authors 

presented an estimation of the Value of Time for different classes of travelers. In 

particular commercial and commuter traffic is studied to determine the Value of Time 

for tolling purposes. Value of Time for New York City region commercial vehicles is 

derived using a logit model of stated preference (SP) data. 

The authors conclude the paper with an analysis of simulated dynamic prices as 

compared with static pricing methods for this region. 

 

Michalaka et al.(2011) study titled “Proactive and Robust dynamic pricing strategies 

for High-Occupancy Toll lanes” developed new, robust system methodology for 
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dynamic pricing of toll lanes. The authors tested their algorithm on 95Express in 

Miami Florida. The authors observed that most studies in the literature are based on 

hypothetical situations and do not address the uncertainty involved in demand when 

calculating toll rates. The authors claimed to develop a robust approach to dynamic 

pricing toll rates along the I-95 based on real-time conditions. 

The approach consists of a scenario-based robust toll optimization. Simulation is 

conducted along the I-95 to demonstrate the new approach. 

In their paper the authors differentiated between the terms “congestion pricing” and 

the more narrow term of “dynamic pricing” which applies to time-varying toll rates 

based on measured demand in the system. 

 

Wadoo et al. (2011) presented a feedback based dynamic congestion pricing model, 

with alternate available routes. The model utilizes queuing theory and traffic 

conservation laws for its derivation. The model also uses fundamental macroscopic 

modeling relationships in its development. 

The authors used a logit model for the pricing and driver choice behavior relationship. 

The authors used this model to derive a feedback control law that uses real-time 

information to come up with the toll price. 

The paper then demonstrated the law using a simulation of the derived feedback 

control model. 

 

Klodzinski and Adler (2010) worked on development of travel demand forecasts for 

estimating express lane traffic and variable toll rates. 
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The authors argued that most existing regional traffic forecasting models do not 

provide hour-by-hour traffic volumes. 

Since toll calculations depend heavily on hour-by-hour traffic conditions it is vital to 

perform additional hourly analysis to provide the needed information to accurately 

calculate the toll.  The paper presented a spreadsheet based procedure which 

estimates hourly usage for the express lanes. This hourly forecast estimate is based on 

the daily forecast or period-specific forecasts by a regional forecasting model. 

The Express Lane Time of Day (ELTOD) forecast inputs are, total daily traffic volume, 

geometric configuration of the facility, and tolling policy. 

ELTOD solves for supply/demand equilibrium for each hour to estimate the split that 

occurs between general purposes (GP) and Express Lanes. 

 

Changes in the ELTOD parameters can be used to test a congestion pricing strategy for 

demand management and a required level of service in the express lanes. The ELTOD 

procedure was tested using a stretch of Interstate 75 in Southwestern Florida. 

Jang and Chung (2010) propose a method for dynamically determining toll prices in 

response to changes in traffic conditions. The pricing strategies include revenue 

maximization and delay minimization along the express lanes. They presented 

methods for estimating the parameters for the model and apply it to a 14-mile stretch 

along California Freeway in the San Francisco Bay area. 

The study concluded that utilizing all the available unused HOV lane capacity for HOT 

lanes do not maximize the revenue. Only a certain percent of the unused portion of 

the available should be used to convert into HOT lanes to achieve maximum revenue. 
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Gardner et al. (2010) examine the development of congestion pricing for 

Transportation Networks with Uncertain Supply and Demand. The authors were 

motivated to find what role uncertainty in supply and demand information play in 

transportation networks where tolling is practiced. 

 

The authors attempted to quantify the effect of providing information to travelers 

with/without tolling when there exists uncertainty in both supply and demand  

The paper used a scenario-based solution methodology where both users and the 

operator have flexibility to make travel choices based on the available information 

about supply and demand. The solution techniques were applied to the Sioux Falls 

transportation network. 

 

Zhong (2009) examines dynamic congestion pricing for multi-class, multi-modes 

transportation systems with asymmetric cost functions. 

The focus of the paper is to look into dynamic congestion pricing (CP) to determine 

optimal time-varying tolls for a queuing network. 

The authors utilize a combined Space time Expanded network and conventional 

equilibrium modeling techniques to develop multi-class, multi-mode and multi-

criteria traffic equilibrium model. Symmetric cost function model is extended to deal 

with the interactions between buses and cars. The authors concluded that there exists 

a link toll pattern that can be used to drive a multi-class, multi-mode, multi-criteria 

user equilibrium flow to system optimum when the system objective function is 

measured in money. 
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Lu and Mahmassani (2010) develop a “Dynamic Pricing with Heterogeneous users: Gap 

Driven solution Approach for Bicriterion Dynamic User Equilibrium Problem.” 

In this paper the authors discuss the BDUE (Bicriterion Dynamic User Equilibrium) 

problem and how it characterizes dynamic user equilibrium in networks representing 

path choice interactions of users with different Value of Time (VOT). The BDUE is seen 

as a better way of accommodating behavioral and policy realism in applying dynamic 

pricing schemes. The paper attempted to gain path-flow patterns satisfying the BDUE 

conditions by performing a study to adapt the gap-driven a simulation-based 

algorithmic framework to solve the DUE problem with a constant Value of Time (VOT). 

Essentially, the algorithm is (I) A column generation approach that integrates a 

simulation-based dynamic loading model which capture traffic dynamics and 

determines travel times for a given path-flow pattern.  

(ii) A path generation scheme that partitions the entire VOT and determines the 

multiple user classes and least cost paths for each user class. 

(iii) A multi class flow equilibrating method for updating the current path assignment 

The authors conclude by presenting results which show that convergence of their 

proposed algorithm is not affected by different VOT assumptions. 

 

Authors Iseki et al. (2010) examined the links between electronic roadway tolling 

technologies and road pricing policy objectives. 

In this paper the authors argue that there is no “best” tolling technology, but rather 

the optimal configuration depends on the policy objectives of the tolling effort. 
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Factors such as facility type, regional scope are major factors in the decision. 

The paper examined eight road Pricing programs. For each program, the authors 

examined three technical tasks, nine technology sets and six policy objectives. 

The paper found that there are two predominant factors which determine the type of 

roadway technology adopted: 

(1) Geographical scale of road network and 

(2) Complexity of fee calculation 

The authors conclude that issues facing implementation of road pricing technologies is 

less about the technologies or the road pricing objectives but more about the 

economics and political linking of the two. 

 

Brands et al. (2009) utilize a pattern Search algorithm to develop optimal toll design 

in dynamic traffic networks. Such a design problem is formulated as a bi-level 

mathematical program. The upper level minimizes an objective function i.e. average 

travel time in network and in the lower level a dynamic traffic assignment model is 

used to determine the effect of differentiated road pricing schemes on traffic. The 

paper focused on the upper level optimization problem and tests variants of a pattern 

search algorithm with a case study. In this study the authors showed that many 

different local minima exist and that the optimal prices are the same for each one. 

The case study tested several variants of the pattern search algorithm and shows that 

it may be beneficial to change more variables each iteration to achieve the optimal 

solution. 
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DeCorla-Souza (2009) investigated the concept for peak-period pricing along 

metropolitan freeway systems. The study examined the concept of pricing on all lanes 

of a freeway system and show that neither pre-set tolling (Time-of-day) nor dynamic 

tolling would provide for optimal pricing when all lanes of a freeway are tolled. The 

paper develops a concept that would allow for such freeway wide tolling on all lanes. 

The concept includes providing information to travelers about highway conditions 

before they leave home, and simultaneously ensuring maximum utilization of the 

freeway system with a pre-determined level of service set by policy. 

 

Lu and Mahmassani (2008) examine “Modeling user response to pricing: Simultaneous 

route and departure time Network Equilibrium with Heterogeneous Users.” 

The authors presented a generalized framework to incorporate route and departure 

time as well as heterogeneity. A multi-criterion simultaneous Route and Departure 

time user equilibrium (MSRDUE) along with a simulation-based algorithm. The model 

explicitly looks into travelers with different values of time (VOT). 

 

The authors formulated the problem as an infinite dimensional variational inequality 

problem and solved as a column -generation  based framework that embeds an 

alternative based algorithm that finds the VOT, VOESD(Value of early schedule delay), 

and VOLSD(Value of late schedule delay) breakpoints that define multiple user 

classes, and the least trip cost for each user class. A traffic simulator captured the 

traffic flow dynamics and determined travel costs experienced. The algorithm also 

included a path swapping alternative flow scheme to solve the restricted multi-class 
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SRDUE. The scheme is applied to an actual network which shows the importance of 

capturing user heterogeneity and time shifts.  

 

Mahmassani et al. (2005) Examine “Toll pricing and Heterogeneous users: 

approximation algorithms for finding bi-criterion time dependent efficient paths in 

large scale networks” 

This study examines the algorithms for finding exact and approximations for efficient 

time dependent shortest paths for use with dynamic traffic assignment applications 

to variable toll pricing networks. The authors presented a least cost generalized path 

algorithm which determines a complete set of efficient time-dependent path that 

considers travel time and cost simultaneously. 

Due to computational complexity exact solutions may not be practical for large 

networks. Approximation (heuristic) algorithms are devised and tested using the 

concept – a-efficiency in multi-objective shortest path problems within a binary 

search framework to find a set of extreme efficient paths to minimize expected error 

in the approximation. 

 

Experimental results showed that the computation time and size of the solution set 

are determined by parameters as the number of nodes in the network and number of 

time intervals. Test results showed that the approximation scheme is efficient for 

large-scale bi-objective time dependent shortest path applications.  

Sullivan (2000) evaluated the impacts of the State Road 91 Express lane Variable-Toll 

Facilities. 
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The SR 91 Express lanes opened in 1995 with four tolled lanes in both directions, and 

State Route 91 in Orange County California. The tolls vary on a fixed schedule, and 

are updated periodically based on monitored traffic conditions. 

The study began with approximately a year and a half of observations prior to the 

opening of the toll road to establish baseline of traffic conditions and demand, and to 

be able to compare before and after scenarios with and without the implementation 

of the toll. The report provided detailed traffic measurements on such parameters as 

vehicle occupancy counts, transit ridership information and travel surveys with 

commuters. 

The author performed data analysis on route choice (toll/no toll), average vehicle 

occupancy levels, transponder acquisition and also time of day choices for 

commuters. 

(See www.vta.org/expresslanes/pdf/cal_poly_exp_lanes_sr91_2.pdf retrieved 

06/14/13  

In the report, the author notes that several significant changes to the State Road 

91(SR91) toll road since it opened in 1995: 

(1) Change to toll schedule, which allowed for the charge to be changed on an 

hour by hour basis. Previously, the toll was a fixed amount throughout the four 

hour peak period on weekdays and the six hour peak period on Fridays. 

(2) Initially High Occupancy vehicles with more than 3 travelers (HOV3+) could use 

the toll road for free. In 1998 this rule changed so that HOV3+ users were now 

charged  

at a rate of 50% of the published toll.  

http://www.vta.org/expresslanes/pdf/cal_poly_exp_lanes_sr91_2.pdf


  

42 

 

(3) The opening of an alternate toll road in Oct. 1998 (Eastern Toll Road) which 

competes with the SR91 for travel to Irvine county 

(4) The intention of the California Private Transportation Company to sell the 

business to a non-profit entity. 

 

These changes have impacted the operation of the SR 91 toll facility and the report 

attempts to measure and document the resulting effects on the facility. 

The report described the SR 91 Express lanes as being located between the 91/55 

junction in Anaheim CA, and Orange County/Riverside line. The two express lanes (in 

either direction) are situated in the median of the freeway and are separated by soft 

pylons from the general purpose lanes. Prior to the opening of SR 91 Express lanes, 

delays of 40minutes were typical, delays were reduced to 10minutes after the 

construction of the new free lanes but have returned to higher levels again. 

 

The SR91 Express is a 10-mile long facility which was constructed as a for-profit 

private investment. Tolls on the SR 91X vary hour by hour and reflect the travel time 

savings of those in the toll lanes as compared to those travelers in the free lanes. 

Tolls vary from a low of $0.75 to a high of $3.75 during the Rush hour. 

A “frequent-user club” called the 91X Express club pay a flat fee of $15 per month 

and   receive a $0.75 saving off each tolled trip made. This plan typically results in an 

overall savings for travelers who use the 91Express lanes a minimum of 20 times per 

month. 

About 360,000 transponders had been issued by the time of the report (1999) and they 
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all utilize a read/write Radio Frequency (RF) tag technology 

The 91Express report concludes that the toll lanes are a well managed, well accepted 

alternative choice for many travelers who are willing to pay to avoid traffic 

congestion and enjoy a reliable travel time savings in Southern California. 

The author noted favorable impacts on the corridor due to greatly improved travel 

conditions and increase in vehicular traffic. 

 

The 91X corridor has also seen a dramatic increase in HOV3+ traffic since its inception 

which helps to improve throughput and reduce air pollution. 

The increase in Single Occupancy Traffic was seen to be due to three reasons 

(1) Traffic returning from parallel streets 

(2) New travelers who had previously avoided this overly congested roadway 

(3) A continuation of the SOV growth trend which had been present before the 

implementation of the 91Express lanes. 

In performing this study the author, adopted a methodology to analyze the data from 

the 91Xpress and extract useful information. 

The study methodology included observations of traffic conditions along the 91X 

freeway and some control sites. Information recorded included speeds, vehicle types, 

traffic counts and vehicle occupancies. 

 

Also included: observations of volumes along specific ramps and speed on parallel 

arterials. These values are used to estimate the amount of traffic diversion during 

peak hour toll-periods. The third type of observations included of ridership on public 
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transportation on ride-share programs. 

 

Travel survey data was collected to understand the traveler behavior especially during 

peak periods. Some surveys constitute a longitudinal group which was tracked over 

time. Others were a cross-section of commuters who were not tracked over time. 

Other observations used survey data to calibrate choice models. These were then 

transformed into price elasticity and travelers value of time. 

Opinion surveys were conducted to measure traveler satisfaction 

An investigation of accident trends and their causes (i.e. weaving at entrances and 

exits)An investigation into vehicle emissions was performed and compared to vehicle 

emissions along alternate roadways. 

 

The report is divided into seven chapters. In chapter 2 the author examines the 

observed impact on traffic and travel behavior. Traffic counts, speeds, observed 

vehicle occupancies are all documented for analysis. Chapter3 further investigates the 

travel surveys to determine travel behavior. Trends in public opinions and survey 

results are addressed in chapter 4. Chapter 5 of the report deals with modes of 

traveler choice and decision making about whether to use the toll lanes or not. This 

analysis also includes choices such as mode, time of day and transponder possession. 

Corresponding price elasticity is also reported in this chapter. 

In chapter 6 an analysis of collisions is performed and a comparison with another 

route (SR 57) is done to determine high accident rate locations. 

Chapter 7 of the report focuses on the emissions from vehicular travel on SR 91X and 
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compared to three alternative scenarios;(i) HOV lane substitution(ii) general purpose 

lane substitution(iii) “no build” alternative” 

 

The report is concluded in chapter 8 with the results and findings of the study 

performed by the author. The report concludes the analysis of the SR 91 Express lanes 

with several key findings. One of the key results is that an increasing number of 

travelers are willing to pay a toll to use the Express lane in SR91. However, even 

among those travelers who use the road very few use it every trip, and only do it as a 

necessity. Another key factor was that the demographic of the traveler who was most 

likely to use the Express lane was Female. High income, age and commuting to work 

were all significant factors in the acquisition and use of transponders to use the 

91Express lane. Thus women with high income use the toll lanes more often than men 

and other demographic groups, although all demographic groups have used the lanes 

at some point. The result of implementing the 91Expresss lane has increased the 

capacity of the freeway.  

 

The 91Express now carries 1400-1600 vphpl which is more than the capacity before 

the toll lanes were opened. Thus the attraction of traveling on a relatively congestion 

free road has induced more travelers to use the freeway compared to before the toll 

lane was operational. The 91 Express has received a largely favorable response from 

the general population of travelers, however, congestion has steadily increased in the 

region, especially with the opening of the ETR where the eight lanes merge into six 

lanes when intersecting with 91Express.  
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Katy Freeway in Houston Texas (nchrp_rpt_694) 

The Katy managed lanes are a High Occupancy Toll lane which is located along 

Interstate 10 in Texas. The KATY HOT lanes are 12 miles long and are located in the 

median of the I_10 highway in Houston's Harris County.  

 

The HOT managed lanes were launched previously as HOV lanes for vehicles carrying 2 

or more passengers. These HOV lanes were then converted to HOT lanes in April 2009. 

The toll for vehicles traveling the entire length of the freeway is $4.00 each way 

during the peak hours of 7:00am-9am (eastbound) and 5:00pm – 7pm westbound 

The KATY managed lanes are operated by the Harris County Toll Road Authority 

(HCTRA). HCTRA operates 100 miles of toll roads in the Houston area, including the 

Hardy toll road which features fixed tolls collected manually and electronically. 

The goals of the KATY freeway are listed in the NCHRP (report #694) as: 

(1) Not superseding toll rate covenants 

(2) Maintaining investment grade rating of “A” 

(3) Maintaining toll levels commensurate with toll rate policies associated with 

private toll road operators 

(4) Allowing for maintenance and improvement of the HCTRA systematic 

 

The HCTRA Evaluates the Performance of its managed lanes operation according to 

the guidelines developed by the USDOT in eight categories:(1) Traffic Performance, 

(2) Public Perception/Satisfaction (3) Users (4) System Operations (5) Environment (6) 



  

47 

 

Transit (7) Economics and (8) land Use 

The Traffic Performance is measured using vehicle volume and mode share (SOV, HOV) 

metrics. The Public Perception is measured using acceptance of system as fair. The 

System Operations are measured by total transactions, toll revenue, Average toll, 

O&M cost, violations/fines and collisions accidents. 

HCTRA as listed the area of streamlining its message signs as one possible area of 

improvement. 
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   Figure 2. I-95 EXPRESS ENTRY POINT (Photo courtesy of NCHRP) 
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2.2 I-95Express Lanes 

The I-95 Express High Occupancy Toll (HOT) Lanes are variable-price lanes which run 

along the I-95 in Miami, Florida. 95Express allows motorists the option to pay to use a 

less congested lane in order to reduce their travel times from I-395 (South entry) in 

Miami to Golden-Glades interchange in North Miami County. Additionally, Bus Rapid 

transit, registered carpools with 3 or more occupants (HOV3+) and registered energy 

efficient (electric) vehicles are allowed to use the HOT lanes free of charge. 

I-95 Express is being constructed in two phases. In the first phase, is located entirely 

in Miami-Dade County and is already fully operational. 

 

Phase 2 of 95Express will extend the HOT lanes northward into Broward County with 

additional entry/exit points allowing for long distance commuters to reduce travel 

times between counties. Phase two is expected to be completed in June 2014. 

One of the primary goals of the 95Express is to maintain a minimum speed in the 

express lanes at 45mph or above. This speed provides near free flow conditions for 

peak hour travel in both the northbound and south bound directions. 

Currently, there are three points of entry for the 95Express northbound lanes and five 

points of entry for the southbound lanes. The FDOT will convert a total of 21 miles of 

HOV lanes between I-395 in Miami and I-595 in Ft. Lauderdale. The project is being 

completed with a grant from the United Partnership Agreement of the USDOT. The 

goals of the I-95 Express CP lanes are: 
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(1) Minimize Travel time, Maximize throughput 

(2) Maintain a minimum speed of 45mph on the express lane to allow for free flow 

condition 

(3) Reduce congestion 

(4) Provide trip time reliability for commuters. 

(5) Increase Bus rapid transit ridership and carpooling 

(6) Meet increasing future travel demand. 

2.3 Performance Monitoring 

The Florida Department of Transportation has installed 31 electronic devices 

throughout the I-95 Express Lanes system which are capable of monitoring speed and 

volume at that location and reporting to the ETC computers in near-real time mode. 

The system has the ability to continue to report speed data even when one or more 

detectors are non-working or disconnected. FDOT monitoring system will also have 

the capability to select some of the detectors which are considered more reliable 

(due to smaller variance in errors) than others and use the information provided only 

by those devices for analysis. Volume data is typically collected at toll gantries. 

Crash data is also monitored by the FDOT along I-95 Express from police incident 

reports. 

 

Using Average vehicle Occupancy (AVO) and volumes, FDOT is able to calculate 

average throughput rates for the I-95 Express variable-priced managed lanes. 
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The Florida Turnpike Enterprise collects data on toll and revenue collected along the 

I-95Express. FDOT tracks maximum tolls and monthly revenue trends in order to 

report this information on the operations of the 95 Express systems. 

Figure 3 shows the proposed expansion of the 95 Express Lanes from Golden Glades 

Interchange north to I-595 in Broward County, Fl. The Phase 1 section is also shown 

(Yellow)  
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Figure 3.I-95 Express lanes (Phase1&Proposed Phase2. www.95express.com) 
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95 Express is a multi-modal facility and also the first in Florida. 95 Express handles 

over 290,000 vehicles per day volume and this is expected to grow significantly over 

the next 10 years. 

 

95 Express was created from the I-95 freeway without the need for widening the 

roadway or adding any new lanes. Thus infrastructure costs were kept to a minimum. 

The existing road was re-striped to add two new lanes and the HOV lane was 

converted to HOT managed lanes. 95 Express has installed loop detectors and ITS 

(Intelligent Transportation System) infrastructure to monitor traffic speed and volume 

along the I-95. The 95 Express has also installed a transponder based toll collection 

system (SUNPASS) for users to have tolls electronically deducted from their SUNPASS 

account. 95 Express operations have mad e a conscious decision not try to maximize 

revenue as its primary goal. The primary stated goal of the 95 Express is to maximize 

throughput and relieve traffic congestion along the I-95 corridor in Miami. 

95 Express installed operational tools to meet its stated objective of maximizing 

throughput with the ability to integrate with the tolling mechanisms which change the 

tolls based on measured traffic density. The 95Expres management Center FDOT 

district six (see FDOT District six 2009 Midyear UPA report)I-95 Express has developed 

and acquired software to meet the objectives and implement dynamic pricing 

capabilities. The dedicated software titled “Express lane Watcher (ELW) reads input 

from the 95 express monitoring system to determine traffic density and demand 

throughout the system. 
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This real-time data is compared to historical data to calculate the tolls based on 

demand for the express lanes. The Express Lane Watcher (ELW) Software uses an 

algorithm which enables it to follow the project objectives and generate toll rates 

and these rates are updated every 15minutes. Along with the Express Lane Watcher 

Software, an operator is assigned to monitor the toll recommendations from the 

software and validate the recommendations throughout road conditions as determined 

by CCTV cameras which are mounted along the corridor. 

 

The Express lane Watcher software has the ability to extract data for analysis and 

reporting on the performance of the 95 Express lanes. The software also performs 

monitoring functions on the actions of the operator as the tolls are being update. 

The data collection effort is a combined effort between FDOT (district six) and Florida 

Turnpike Enterprise. Through the use of 29 detectors, the system is able to capture 

speed information along 95Express. Volume data is recorded at the toll gantry when 

vehicles use their SUNPASS transponder to enter the 95Expresss lanes. 

 

The FDOT District six  95 Express Phase 1A Midyear evaluation report contains data 

presented as bar graphs for Speed Express Lane(EL) as well as General Purpose(GP) 

lanes, travel times and reliability. 

Volume data, Throughput, safety, and maximum Revenue is also reported for each 

midyear report starting in 2009. 
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 This information is widely available on various websites including 

www.95express.com and also on FDOT websites which link to district 6 information.   

 

As mentioned previously tolls are calculated using the algorithm on the ELW software 

and shared through the Florida Turnpike Enterprise (FTE) to the SUNPASS system so 

that SUNPASS knows how much to deduct for each non-exempt vehicle passing through 

the system. As mentioned before exempt vehicles such as registered car pools and Bus 

Rapid Transit (BRT) are not charged a toll.  FTE summarizes all the trip and toll 

information into reports which are then presented to district six and disseminated to 

the public through their website. 

 

The 95 Express implementation plans provided a good source of lessons to use in the 

implementation of other express lanes around the country. The 2009 Mid-year report 

(see FDOT district six Phase1A 2009 Mid-year reports) outlines some important facts in 

terms of lessons learned in the roll out of the 95 Express. Some of these expressed in 

the report include: 

 

Project: Defines a strong project vision. Have a clear understanding of the project's 

purpose and goals provides for consistent decision making throughout. The regional 

long distance commuter is identified as the target market for the 95 Express lanes 

Establish Project Schedule: An aggressive schedule was adopted by the UPA. As a 

result functions of planning, design criteria and operations were completed 

http://www.95express.com/
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simultaneously rather than in a singular manner. 

Institutional Approach: Develop concept of Operations early on. This concept driven 

approach provides guidance for planning, design and implementation, of the express 

lane. Project Management: The 95 Express involved professionals from a variety of 

agencies. It is important that in order for the project to progress smoothly, that 

individuals be able to take directions from the project manager directly independent 

of which agency they were affiliated with Information Sharing/ Technical Data: 

Technical Issues involved in integrating transit in the program included facility access, 

and circulation, bus operations, and procurement of new transit vehicles. 

 

  Tolls along the 95Express HOT lanes vary between $0.25 and $7.25 at peak hour. The 

toll is set depending on the traffic density along the I-95 corridor at any point in time. 

The traffic density is continuously monitored with loop detectors which provide near 

real-time data on traffic volume, speeds, and density.  This information is then fed 

into a computer system which calculates the toll based on the reported traffic density 

and change in density.  Before a toll is charged a final toll determination is made by a 

toll operator who has access to closed circuit TV visual verification of road conditions. 

2.4 Evaluation and Performance Measurement  

According to the National Cooperative Highway Research Program (see www.nchrp.gov 

NCHRP report#694), congestion pricing performance can be evaluated with several 

different measures. 

Some of the main measures include: Traffic Performance, Public Perception, Facility 

http://www.nchrp.gov/
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users, System Operations, Effect on Environment, Transit, Economics and Land Use. 

 

Traffic Performance    

Traffic Performances are probably the most obvious of the performance measures, 

since these are directly related to the motorist’s perception of whether there has 

been an improvement in congestion and travel time along the express lanes. 

Traffic Performance includes such measures as: Level of Service (LOS), average speed, 

travel times, and time saved (by using the express lanes as compared to the general 

purpose lanes). Value of Time (VOT), average vehicle occupancy, vehicle volumes and 

Average delay. 

Public Perception 

 Public Perception relates to the awareness level of the public to the general 

operation of the toll facility, the typical toll levels, and also the level of satisfaction 

that the pricing scheme is fair and effective in improving congestion along the 

corridor. 

Facility Users 

Facility Users includes such information as demographic of typical user, mode of 

transport (HOV, SOV, etc.), vehicle make, and frequency of facility use. 

System Operations 

System Operations include general measures such as toll revenue, O&M cost, average 

toll, number of transactions, safety, number of accidents, percent of time facility is 
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available. 

Environment 

Environmental characteristics include (1) Air quality, (2) Noise 

 

Transit 

Transit includes such factors as, ridership, percent on-time arrivals, service quality 

and reliability. 

Economics 

Several economic factors are used to evaluate performance of the congestion pricing 

(CP) scheme. Some of these are cost/benefit analysis, gross product for the region 

affected by the express lanes, commercial costs and prices, retail traffic and sales. 

Land Usage 

Land Usage factors include housing buyer’s decision making process, and also 

commercial facility location planning. 

Information about the performance of the I-95 Express is made public through a 

number of websites. One of the major sources of information websites is 

www.95express.com which provides monthly reporting on Intelligent Transportation 

Systems (ITS) monthly usage reports, 95Express Performance Reports, as well as DMS 

signage reports. 

Some factors of interest which are measured and graphed in the 95Express 

Performance Evaluation reports include, average speed, peak period speed (peak 

http://www.95express.com/
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period defined as 6am-9am southbound and 4pm-7pm northbound). Weekend Speed 

and Express Lane Speed is also 

monitored as described and reported on a monthly basis. 

Volume data is collected and presented for both the express lane and the general 

purpose lanes, Average weekday and weekend traffic volumes for the express lanes as 

peak period and maximum weekday traffic values are presented as bar graphs in the 

report. Toll Revenue values including monthly revenue and number of transactions are 

available for the public to review. 

  

General Information available on the 95Express websites indicate that  

1. The Express Lanes serviced 1.7M total vehicle trips in May 2012, bringing the 

total to approximately 54million trips.  

2. Had total toll revenue of $42.4million for the year 2012 

 

This review of the current literature has shown that various analytical approaches 

have been taken to solve the congestion pricing problem. The I-95 Express Phase I has 

been examined by researchers at the University of Florida using Genetic Algorithm. To 

the best of our knowledge, there is no study of the I-95 Express Phase 2 congestion 

pricing nor is there any study which has applied the Simulated Annealing SPSA, or 

FDSA algorithms to the I-95 Express. These methods have been shown to produce 

better results for other applications and thus it would be expected that these 

algorithms will again be a better approach for the 95 Express and produce superior 



  

60 

 

results than Genetic Algorithm. This proposal intends to pursue the application of 

these algorithms and perform a simulation of their performance. 
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CHAPTER 3.   CONGESTION PRICING MODELS 

 

When we decide to implement a congestion pricing model, we are forcing the 

consumer to make a choice between two (or more) alternatives: saving time by using 

the toll lanes with less traffic or saving money by using the free lane. Thus the 

roadway is divided into two route alternatives or possibly two time alternatives (if the 

entire road is tolled at peak hour and not tolled or tolled less at other times during 

the day). The consumer must make a discrete choice to determine which 

transportation option is best for them. Many models have been developed to analyze 

this discrete choice problem. A good review of discrete choice models is provided in 

Ben-Akiva and Lerman (1985). 

 

3.1 Discrete Choice Analysis 

Route choice is often closely associated with mode choice since drivers which use the 

free lanes in a congestion pricing location may decide to change their mode to 

Express bus or carpool ride to take advantage of the High-Occupancy toll lanes. Again, 

the mode choice problem has been addressed in detail in the literature. Some good 

sources of reference on mode choice include Ben-Akiva and Richards (1975), Atherton 

and Ben-Akiva (1975), Parody (1976) and Daly and Zachary (1979). 

Since we know that the discrete choice model has econometric implications it is 

useful to obtain a background of econometric discrete choice models. For a good 

treatment of econometric discrete choice models see McFadden(1982), 

Ameniya(1981), or Manski(1981).In some problems, the choice to be made by the 
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consumer includes a combination of two or more variables. Thus for example, Instead 

of choosing one of two routes, the consumer must choose from alternatives which are 

described by both time and route. Thus each choice includes both the time of day and 

choice of toll or no-toll routes. These types of problems are formulated using the 

Multidimensional Choice model. A Multidimensional Set of alternative choices can be 

demonstrated by the following example. (See Ben -Aviva and Legman 1985). 

Suppose we have: 

R = {r1,r2,r3,......r(n)}  = all possible route choices   (2) 

 

and 

T ={t1,t2,t3,........t(n)} =all possible modes of travel   (3) 

Then the set: 

 

RxT ={(r1,t1),(r1,t2).......(r1,tn)..(r2,t1),(r2,t2),.........(r(n),t(n)}  (4) 

 

represents the set of all possible of route /time combinations. 

Multidimensionality extends to any number of dimensions. It could include (along with 

route choice and time) other variables such as mode (SOV Express Bus), final 

destination as well as other travel attributes. 

When the set of alternatives is multidimensional the Nested logit model can then be 

applied to formulate and solve the problem 
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3.2 Utility Theory 

 

The consumer, when faced with the choice of making a decision on which route or 

alternative to take, must first assess the value of each selection to him or her and 

then after weighing the relative gains will choose the alternative which is worth the 

most to them. Thus, consciously or subconsciously, the consumer places a value on 

choosing the toll lane versus a non-toll lane and when that value is high enough, will 

decide to select that alternative and reject the other alternatives. This concept of 

valuing alternative choices is considered utility. 

 

The utility theory is closely related and may be considered a component of discrete 

choice analysis. 

The utility theory defines a utility function (U(x)) which is dependent on a number of 

explanatory (independent) variables to assign a quantitative value to each particular 

selection. So for example 

U(1) = c(1) +αt(1)  (general form of utility function)  (5) 

or  

U(1) = -0.75 +3t(1)..............----------------->utility of choice 1(toll lane)(6) 

 

U(2) = 0.25 -5t(2)..............------------------>utility of choice 2(free lane)(7) 

 

where t(1) = time of travel for route 1 and t(2) = time of travel for route 2. 
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if U(1)>U(2) then then we say that the consumer(driver) is more likely to choose route 

1 than route 2. 

Utility theory has been well developed in the consumer choice literature and several 

references are available to provide a good treatment. 

Small and Verhoef(2007) present a formulation of the maximum Utility as constrained 

optimization problem: 

 

Max u(x,X)  

subject to  y = px + P'X 

where: 

x=choice under consideration 

X=Vector of all possible alternatives 

y=income 

p=price of choice x 

P= price Vector 

 

A review of the theory of expected utility theory is provided by Fishburn (2010). 

Utility maximization is addressed by Aleskerov, Bouyssou and Monjardet (2007). Many 

authors in the literature show the direct connection between utility theory and Game 

theory in econometric modeling.  Thus one may be well served to apply game-

theoretic methods to solving the transportation congestion pricing and route choice 

problems as well. 
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3.3 The Cell Transmission Model 

The cell transmission model (CTM) as developed by Daganzo(1993) is an analytic 

technique which models the highway as being divided into equal length sections 

called “cells”. This allows for the modeling of traffic flow along the highway link (eg. 

HOT lane) to be analyzed more precisely by writing equations for the flow into each 

cell and out of each cell at any point in time, t. The cells are numbered from i=1 to 

N, starting from upstream section where the traffic enters the network link to the 

downstream ending cell where the traffic leaves the link. 

 

The length of the cell is chosen such that it is equal to the distance traveled by a 

typical vehicle (traveling at average speed) during one clock tick. The cell 

transmission model is robust in that the cells can vary from small lengths to distances 

in excess over 1km(see Daganzo, 1994). 

Thus if we assume that the dynamic pricing is updated every 15 minutes (as on 

95Express) the cell length will be approximately 12 miles. 

The equation of state for each cell is: 

n I (t+1) = n i (t) + y i(t) –y I (t+1)…………………………………    (8) 

The above recursive equation states that the cell occupancy at time t+1 (n I (t+1) )   is 

equal to the occupancy at time t, (n i (t) )  plus the inflow into cell I during time t,( y 

i(t) )  minus the outflow from the same cell during time t,( y I (t+1)) . The cell 

transmission model assumes an “output cell” at the end of the link of infinite capacity 

and also a “source cell” at the input of the link with infinite capacity. 

The Cell transmission model defines three variables related to flow from one cell (i-
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1)into the adjacent cell (i): 

 

ni-1(t)  the number of vehicles  in cell i-1 at time t, 

Qi(t)  the capacity flow into i for the time interval t , 

Ni(t)-ni(t) the amount of empty space in cell I at time t. 

Where Ni(t) = maximum number of vehicles that can be present in cell i at time t 

The flow xi(t) is then= min{ ni-1(t), Qi(t), Ni(t)-ni(t)}  

That is for each pair of adjacent cells:         

)()()(
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         (9) 

These are cell transmission constraints for pairs of adjacent cells on each link. 

 

3.3.1 Telecommuting Option 

When the congestion pricing strategy is selected (HOT lane, Express Lane, etc), the 

driver is faced with making a choice between using the tolled lanes and using the free 

lanes. But there is also a third option which the driver has: trip cancellation. The 

driver may decide that he or she is unable to pay the toll and also that they are not 

willing to spend the enormous amount of time in the free lane since their time could 

be used more efficiently. 

 

For workers who are required to provide a service due to an employment contract, 

they do not have the option to simply cancel their trip to work and thus they may 
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choose to instead to telecommute once the decision has been made to place a toll on 

their route to work. This is an option which is not included in many models in the 

literature. Many route-choice models only include an analysis of the different routes 

available (tolled and untolled) and provide a congestion pricing analysis on the basis 

of these alternative routes.(see Mokhtarian and Saloman, 1994). Although there are 

many studies in the literature which examine workers choice to telecommute,(see 

Bagley 1994, and DeSanctis 1984),  there only a few  studies which look  at drivers 

choosing to telecommute given that a previously untolled route has now been 

tolled(see Bernardino 1994). 

 

Drivers can choose to telecommute for a variety of reasons and congestion or tolling is 

only one. Thus the problem formulation must consider this factor when determining 

the route-choice behavior (see Hartman et. Al 1991). Also of importance is the level 

of productivity while telecommuting as compared with the level of productivity while 

at the work location. These and other requirements are important considerations 

when the driver considers the adoption of the telecommuting option if it is available.  

 

3.4 Solution Methodologies 

 

Before a solution method can be applied we must have a well-defined and well 

formulated problem. As mentioned previously, the congestion pricing problem can be 

formulated into a variety of optimization frameworks. These may take the form of 

maximizing toll revenue, maximizing throughput, minimizing travel time, or 
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maintaining a constant speed along the managed lanes. In these types of problems the 

objective function must be clearly defined with the constraints which are imposed by 

the physical environment (such as number of lanes available for use, width and 

geometry of these lanes etc.). In addition, the decision makers may set their own 

constraints such as budgetary restrictions or time restrictions etc. In the event the 

problem is linear, then appropriate linear programming formulations and methodology 

can be used to solve the problem 

These linear programming problems take the general form: 

  

 Max Y= nn xcxcxc .............)( 2211   

subject to  

  kX   

Where 

Y= profit function 

 x(i)= explanatory (independent) variables  for Y 

X= vector of independent variables 

K= constant 

These types of linear programming problems can be solved using well known Simplex 

Algorithms (see Hillier& Lieberman,2001). 

For many congestion pricing problem formulations, the problem is non-linear and will 

need alternate solutions for non-linear problem types. 

Some methods to solve non-linear programs include interior point methods and 

algorithms (see Benson, Shanno and Vanderbei, 2000). Other methods for solving non-
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linear problems include branch and bound method (see Bertsikas,1999), Avriel (2003). 

 

3.5 Non-Linear Optimization Problems 

In many real-world applications the formulation of the optimization problem can 

become very unmanageable due to the large number of variables and the presence of 

a non-linear objective function or nonlinear constraints. In these cases an exact 

solution to the problem is unlikely due to the length of time and number of 

calculations involved. One example of this type of problem is the traveling salesman 

problem (TSP). In this problem, a salesman must visit a fixed number of cities in the 

shortest possible amount of time or distance. For 10 or 20 nodes in the network this 

problem can be formulated and solved exactly in a reasonable amount of computing 

time. However as the number of nodes increases, the problem becomes non-

polynomial bounded (NP) and other heuristic approaches must be employed to 

approximate the solution. This is the case with the congestion pricing (CP) 

optimization problem.  

 

In this section we will discuss some methods to approach an approximate solution to 

this problem. The literature has examples of applications of such methodologies as 

simulated annealing, GA algorithm, LOQO (an interior point method), KNITRO and 

SNOPT (a quasi-Newton algorithm),among others. 

3.5.1 Non-Linear Optimization Solution Methods. 

In this section we will review and describe some of the more popular solution 

algorithms for large-scale non-linear optimization problems.  
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LOQO (see Benson et al. 2002) is a mathematical programming formulation as follows: 

 

Minimize f(x) 

subject to: hi(x) >0.    I = 1,2,3,........m 

the LOQO algorithm involves derivatives therefore the functions f(x) and hi(x) are 

assumed to be twice continuously differentiable. 

LOQO allows for bounds on variables, equality constraints and ranges on inequalities. 

The initial step in the LOQO algorithm is to add slack variables to the inequality 

constraints: 

Minimize f(x) 

subject to  h(x) -w = 0,     w>0 

where h(x) and w are vectors representing the values of hi(x) and wi 

Denoting the Lagrangian multiplier for the system by y, Newton's method is employed 

to iterate to triple values of (x,w,y). 

LOQO then computes step directions Δx, Δy, Δw, and proceeds to a new point : 

 

   x(k+1) =xk)    +   α(k) Δx(k) 

   w(k+1) =w(k) +  α(k) Δw(k) 

   y(k+1) = y(k)  + α(k) Δy(k)
 

  

 

where the value α(k) 

 
 is chosen such that w(k+1) >0, and y(k+1)  >0. 

 

KNITRO is an interior point algorithm which uses quadratic programming and trust 
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regions to solve the sub-problems at each iteration. A trust region strategy is a 

method to handle both convex and non-convex spaces. 

The Sequential Quadratic Program (QP) is used to handle non-linearity in the problem. 

After obtaining the step (Δx, Δw) from vertical and horizontal steps,KNITRO checks a 

pre-defined “merit function” to determine if it provides sufficient reduction in the 

function to proceed in this direction. 

 

SNOPT is a sequential quadratic programming (QP) algorithm that seeks a solution 

through solving a sequence of quadratic programs. The problem is formulated and 

solved in two phases. In the first phase, Phase 1 is the feasibility phase where the 

problem of minimum constraint violation is solved. Phase 2 is the optimality phase, 

where the values of x and w (of the original problem formulation) from the solution to 

Phase 1 is used as the starting point for Phase 2.   

SNOPT works well when n-m is relatively small (in the hundreds), where n= number of 

variables and m is the number of constraints. 

 

3.6 AMPL SOFTWARE 

The algorithms discussed previously can be implemented and tested using the AMPL 

programming language. AMPL is described simply as a modeling language for 

mathematical Programming. AMPL has a comprehensive framework to model large 

scale linear and non-linear optimization problems with variables which are either 

discrete or continuous. AMPL is specifically suited to handle problems involving 

maximizing or minimization of algebraic expressions subject to constraints expressed 
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as inequalities. 

 

Other mathematical programming languages include LINDO, LINGO, CPLEX and MPL. 

Spreadsheet optimizers such as EXCEL provide optimization routines for solving 

relatively small-scale linear programming (LP) and non-linear programming (NLP) 

problems, however, the AMPL interface is far richer in the functionality, in the ease of 

use and entering of information, and also in its capacity to handle problems with 

number of variables (n) and number of constraints (m) in the thousands. 

KNITRO for Mathematica is a solver for large scale non-linear optimization problems 

it can handle a variety of applications from different industries. Some examples of 

typical large scale problems which are suitable for KNITRO for Mathematica include: 

 Mixed Integer Programs (MIP) 

 Mixed Integer Non-linear Programs(MINLP) 

 Least squares(linear and non-linear) 

 Linear Program(LP) and Quadratic Programming 

(For more information on KNITRO for Mathematica visit www.wolfram.com) 

In one study comparing and testing the LOQO, KNITRO and SNOPT algorithms, the 

authors have used AMPL to formulate and run test problems. The results of speed to 

convergence on optimality were compared where a solution was attained. 

AMPL language was utilized for this test since AMPL is the modeling language which 

provides second derivatives to the solver. Test problems included in the study 

(Benson, Shanno and Vanderbei, 2002) were equality constrained quadratic program 

(QP), inequality constrained quadratic (QP), mixed constrained QP, unconstrained QP, 
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as well as the same four categories for non-linear Programs (NLP) 

Benson et al(2002) summarize the results of their tests with the following conclusions: 

 For problems which have all equality constraints the problem should not be 

converted to inequality constraints and solved with algorithm such as LOQO. It 

should be solved directly. 

 On the other hand when the problem has all inequality constraints, the 

problem should be solved with an interior-point algorithm such as LOQO. 

 When the constraints are mixed, no clear cut guidance as to which algorithm to 

use exists. 

 SNOPT works best on a reduced space of the variables feasible solutions and 

thus it is efficient in solving problems with small degrees of freedom (i.e. (n-m) 

is relatively small) 

 

 The authors conclude the tests of these three algorithms with the observation “ So 

far the results on the efficiency of state of the art algorithms are quite encouraging”. 

Other simulation based algorithms exist in the literature which is significant to discuss 

for possible application to this problem. 

Two of these are fairly similar and are described by Kleinman,Spall and Naiman 

(1999).  The first is called the Finite Difference Stochastic Approximation Algorithm 

(FDSA) and the second is called the Simultaneous Perturbation Stochastic 

Approximation (SPSA). 

3.7 General Description of Stochastic Approximation. 

 For a detailed treatment of stochastic approximation see Kleinman et al. (1999). In 
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this section we introduce FDSA algorithm and SPSA algorithm. 

We let: 

L(θ) = E[f(θ,ω )]         (10) 

be the function we want to minimize and ω be the representation of randomness in 

the system. F is a performance measure. And let g(θ) be the gradient of L with 

respect to (θ), 

Stochastic approximation proceeds by finding a local optimum (θ*)  by starting at (θ^) 

and performing iterations according to the schedule below: 

)ˆ(ˆˆ
1 kkkkk ga            (11) 

where gk  is an estimate of the gradient g, and ak is a sequence of positive scalars 

such that  

 ka            (12) 

The difference between the FDSA algorithm and the SPSA algorithm lies in the way the  

gk  is defined. 

 

3.7.1 FDSA Algorithm 

For FDSA algorithm the lth component of the gradient is defined as : 

kklklkkl cyyg 2/)()ˆ(ˆ            (13) 

 

where ck represents a sequence of positive scalars such that ck -------> 0 and  

 22
kk ca            (14) 
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 and y+ 
kl    and  y- 

kl  represent components of noise in the loss function and are 

measured as : 

  // ,/)ˆ(( kllkkkl ecfy           (15) 

for l = 1,2,......p 

Also el   represents the lth unit vector, and ωl+/-
k      represents randomness in the 

system. 

 

On the other hand the SPSA algorithm which was developed by Spall (Spall, 1987) 

In the SPSA algorithm the gradient function is defined in this manner: 

let Δk element of Rp  be a vector p of mutually independent random variables, such as 

for example Bernoulli (+/- 1)random variables each with probability of outcome of 

one half. 

 

 

The lth component of the gradient is: 

   

kkklklkkl cyyg   2/)()ˆ(ˆ           (16) 

 

 where : 

   // ,/)ˆ(( kllkkkl ecfy          (17) 

    

In this case there are only two measurements of the loss function required to obtain 

one estimate of the gradient. (As opposed to 2p measurements for the FDSA 

algorithm) The authors (Kleinman et al. 1999) then perform a test of performance of 
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the FDSA and SPSA algorithms using Common Random Numbers (CRN). The authors 

describe the method of Common Random Numbers (CRN) as a method which is used to 

reduce the variance of difference estimates in stochastic optimization problems. 

The gradients of the objective functions are often determined by these differences as 

generated by the CRN technique. 

 

The authors conclude that the method of using Common Random Numbers will 

increase the rate of convergence for both the FDSA and SPSA algorithms to achieve 

optimality at a faster rate in significantly less time and computations.  

The study also demonstrates that when the number of iterations of function 

evaluations for the FDSA and SPSA algorithms are equal, that the SPSA algorithm gives 

smaller errors than the FDSA algorithm. 

Kleinman et al. (1997) describe an application of the SPSA algorithm to the 

optimization of air transportation network by minimizing the gate delay for a multi-

airport network. 

 

The paper discusses the strategy of holding airplanes at the gate for a short period of 

time (gate delay) in order to avoid the more costly airborne congestion delay costs. 

This airline network consists of thousands of flights and the task of determining how 

much gate delay is optimal can be very prohibitive. 

The author demonstrates how the SPSA algorithm can be used to process gate delay 

costs from a simulation package (SIMMOD) and produce optimal gate holding 

strategies. Air traffic delay consists of three components, (i) gate delay, (ii) delay 
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while taxiing and (iii) airborne delay. 

 

The problem of assigning the correct amount of gate delay to each flight in a network 

of thousands of daily flights is a large scale, non-linear optimization problem. 

Software packages exist for simulating various portions of the operations of the flights 

in the network, including macroscopic, and mesoscopic detail but these simulations 

do not provide an optimal solution independently. These simulation packages, such as 

SIMMOD simply input a user defined gate-holding policy and process the information 

given by the user about the network to output the corresponding delay costs for that 

policy. Other algorithms such as FDSA are also used to solve this type of large scale 

optimization problem, however, SPSA has been shown by the authors to be superior to 

FDSA in that it only requires two measurements of the objective function in order to 

estimate the gradient, while FDSA requires 2p measurements to estimate the 

gradient, where p is the number of parameters. 

 

In their paper Kleinman et al. (1997) set up the problem with 4 airport locations with 

flights departing and arriving at all airport pairs except between airport# 2 and #4. 

Each airport consisted of one gate and one runway. The structure of the network was 

input into SIMMOD for analysis. 

The authors defined their objective function as follows: 

  L(θ) = mg (θ) +2.38mt (θ) +3.86 ma (θ)    (18) 

 

where mg (θ)=total number of minutes of gate delay 
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mt (θ) =total# of minutes of taxiing delay and  

ma (θ)= total number of minutes for airborne delay  

 

The results of the report begin by assigning no gate holding  (θ) = 0 for each flight 

then after applying the SPSA algorithm the total delay way improved in the network. 

The authors performed 20 runs with 30 iterations for each run. 

The initial objective function value (total delay) was 8796 while after applying the 

SPSA algorithm this total delay was reduced down to 7618, ( approximately a 13.4% 

reduction in total delay). 

3.7.2 Simulated Annealing (SA) 

Simulated Annealing is a method for approximating the optimal solution for large 

scale non-linear optimization problems.  

Simulated annealing takes its name from the physical process of annealing, where 

metals are treated and altered to achieve a certain desired shape. 

In Simulated annealing the solution is altered from one point to the next point until a 

near optimal solution is reached. The search for the desired solution proceeds by 

starting with an initial feasible solution and then moves to another point solution 

based on some search criteria. If this solution is better (as measured by the value of 

the objective function) then the search in this direction continues with another 

iteration. If the solution is worse, then a new gradient or search direction must be 

used and a new solution point determined. In simulated annealing a probabilistic 

search method is used to determine the search path. This alteration process 

(annealing) continues until some stopping criteria is reached, at which point the 
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“optimal” solution is said to be achieved. Convergence to the optimal solution is not 

guaranteed using simulated annealing. 

 

3.7.3 Genetic Algorithms (GA) 

Genetic Algorithms are a form of random search algorithms which do not use a 

derivative or gradient approach to arrive at the optimal solution. As mentioned 

previously, Genetic Algorithms work by simulating the biological processes of 

population evolution such as natural selection, mutation, crossover and new solution 

(individual).  

The process starts out with a set of possible solutions called “individuals” or parents. 

These parents are selected according to some fitness criteria (i.e. being a feasible 

solution to the optimization problem. The individual which is deemed the most fit is 

then “selected” to regenerate and produce “offspring” or new solutions. Random 

numbers are used to generate the pairs of “parents to produce new “offspring”. 

After a crossover process, and a subsequent mutation of the parent solution, a new 

solution or “offspring” is obtained. This process is then restarted and the fitness of 

these new solutions is evaluated against the fitness criteria for providing new or 

better solutions. 

 

This iterative process is continued until some pre-determined stopping criteria is 

achieved and at this point the “optimal” solution is achieved. In many cases, a 

stopping criterion is defined simply by a fixed number of iterations of the algorithm, 

for example 100 iterations.  

As mentioned before, with this type of random search algorithm, there is no 
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guarantee of convergence to the global optimum and any solution arrived at could be 

a local optimum. 

3.8 Tolling Methodology 

The dynamic nature of demand on the HOT lanes requires careful consideration to 

develop the proper tolling methodology. 

The main goal is reduce congestion and travel times along the corridor for any given 

demand. Although we cannot directly change the total demand for the freeway, we 

can adjust and control the demand flow on a tolled lane using price elasticity. 

3.8.1 Price Elasticity 

The economic concept of price elasticity tells us how one variable will change in 

percentage as we increase or decrease another variable such as price. 

Thus price elasticity relates the demand for a commodity or service to its price. 

It is well known that as price for the HOT lanes increase, this will discourage some 

users from traveling on this lane since it is not worth it for them to pay this cost for 

this service. 

 

These users are mostly the travelers who are using the freeway for personal or non-

work purposes. These users will instead choose to use the general purpose (GP) lanes 

which are free at peak hours and reduce the congestion in the HOT lanes for the 

premium users who must be at a certain destination at a certain time. 

Thus in developing our tolling methodology we will use price elasticity to accurately 

control the flow of traffic on the HOT and GP lanes to near optimal values and 

minimize congestion. 
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Burris (2003) defines the price elasticity of travel demand as: 

 

  E = (Q2 –Q1)/Q1         (19) 

    (P2-P1)/P1 

Where  

Q2 =demand level 2 

Q1 =demand level 1 

P2 =price level 2 

P1 =price level  

 

According to Burris (2003) the price elasticity of demand can be subdivided into 

several components including: operating cost (fuel, oil, etc.), tolls, travel time, 

insurance costs and parking availability costs. 

The Transportation Research Board http://www.vtpi.org/elasticities.pdf ),Spear, 

et.al. (2010) estimates that price elasticity due to tolls vary in the range from -0.1 to 

-0.4. Which means that for every 10% increase in toll price the demand will decrease 

in range  between 1% to 4%. 

 

 For freeways such as the 95Express, a price elasticity value of -0.25 is a reasonable 

estimate.   The process of developing an optimum tolling scheme begins with first 

determining what the optimal flows are on the HOT and GP lanes, these flows can be 

determined for a given total demand D, for the highway such as to minimize travel 
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time, T. As a result of determining the optimal split of traffic, one can then determine 

the base toll for the HOT lane for this demand using the toll equation developed by 

Hobeika (2003).  

 

However, the actual traffic flows on the HOT and GP lanes may vary widely from this 

optimum, and thus we will assess an adjustment (either increase or decrease) in toll 

pricing to cause a desired change in the flow due to price elasticity. 

The dynamic toll is thus consisting of two parts: 

 Toll  = base (b) + percent (p) 

 

Base toll can be determined from the travel time vs toll relationship developed by 

Hobeika. 

Hobeika’s  toll formula is : 

 Toll  = VOT*(Tcongested  -TT)       (20) 

 

Where : 

Tcongested  = Congested travel time as determined from travel time equation 

TT  =  Free –flow travel time 

VOT  = Value of Time 

 

The methodology is outlined below: 

3.8.2 Toll Algorithm  

The following steps are implemented to determine the optimal congestion price due 
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to dynamic time-varying demand on I-95 Express HOT lanes. 

1) Input total demand flow D (veh/hr) for each 15 minute period. Initialize toll = 

$0.50. Please note that there is a minimum toll on I-95Express even if there is no 

traffic present.  

2) Determine formula for travel time along HOT lane and GP lanes (Use Akcelik 

equation). Denote total travel time along HOT lane as T1 and total travel time along GP 

lanes as T2. 

 

3) Sum travel time functions T = T1   +T2       to obtain total travel time for all demand 

(both HOT lane and GP lanes) for period. 

 

4) Use non-linear programming (NLP) algorithm to minimize total travel time T 

subject to relevant constraints. 

 

5) Solution of non-linear program yields the optimal optimal flows for the HOT lane 

(x1) and the GP lanes (x2), which minimize total travel time. 

 

6) If x (actual)>x1 , then calculate time, Tcongested using travel time formula. Determine 

difference Tcongested - T(opt). 

 

7) If x (actual)≤ x1 , and T(opt) >  Tactual , Use ( T(opt) -  Tactual )  to determine change in toll. 

 

8) From formula for toll (see Lee and Hobeika, 2003),  
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toll = VOT*(Topt - Tfree-flow ) = base toll (b) 

 

Note that the actual flow (and travel times) on the HOT lanes can be greater or less 

than the optimal (since calculated optimal T is for the SUM of HOT lanes and GP lanes 

combined).  

Thus if the actual flow on HOT lanes is greater than the optimal then the change in 

toll can be found from: 

  Change in toll Δt = p=4b*(Tcongested -T (opt)/T (opt) 

Which represents the amount by which base toll is to be increased. 

If the actual flow (and travel times) on the HOT lanes is less than the optimal then 

the toll is: 

 

  change in toll Δt = 4b*( T(opt) -  Tactual )/T(opt) 

which represents amount by which toll is to be decreased. 

 

9) Return to step 1 and repeat process for next 15-minute period. 
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CHAPTER 4.  MODEL FORMULATION AND RESULTS 

 

4.1 Objective Function 

 
The congestion pricing problem can be formulated in terms of either a maximization 

or minimization type problem. The actual form of the objective function is dependent 

on the goals of the authorities involved. 

 

The goal is typically a maximization of throughput or minimization of travel times 

along the corridor. Maximization of revenue, although possible is not a typical 

objective and in some cases may not lead to minimum congestion. 

For our cases we will consider the objective to minimize travel time along the link.  

4.1.1 Akcelik Travel Time Function 

Several Freeway Travel-Time functions have been developed over the years.   

Two of these are : 

(1) Akcelik Travel Time function and  

(2) BPR Travel Time function 

 

The Akcelik Travel time function takes the form: 

t = 

    (21) 
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where:  

t = average travel time per unit distance (hours/mile)  

t(0) = free-flow travel time per unit distance (hours/mile)  

T = flow period, i.e., the time interval in hours, during which an average arrival 

(demand) flow rate, v, persists  

Q = Capacity  

x = the degree of saturation i.e., v/Q  

Ja = the delay parameter. 

 

 

Figure 5. Akcelik Travel Time Function (source: www.sidrasolutions.com) 
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Figure 6. Speeds v Demand for five Road classes( www.sidrasolutions.com.) 

 

Figure 5 shows the road classes we consider and they are: 

(1) Road class 1: Freeway, (2) Road class 2: Arterial 1, (3) Road Class 3: Arterial 2, 

(4) Road class 4: Rural 2-Lane Hwy, and (5) Road class 5: Rural 1- lane 

I-95 Express would be classified as a Class 1 road for this research. 

Table 4.Model parameters of 5 Road Classes (source:www.akcelik.au) 

    
Road 
class   1 2 3 4 5 Akcelik 

Zero-flow speed given 
>>   v0 km/h 120 100 80 60 40 80 

Flow (analysis) period 
given >>   Tf h 1.00 1.00 1.00 1.00 1.00 1.00 

Capacity (max. flow) 
given >>   Q veh/h 2000 1800 1200 900 600 800 

                  

Zero-flow travel time >>   to h/km 0.00833 0.01 0.0125 0.016667 0.025 0.0125 
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4.1.2 BPR Travel Time Function 

The second travel time function which we consider is the BPR (Bureau of Public 

Roads) equation. This takes the form: 

The standard equation for the BPR curve is: 

Congested Time= [Free Flow Travel Time] *[1+0.15 * (v/c)4]   (22) 

 

Or  T =T0[1+0.15 * (vk/c)4] 

where v/c = Volume/Capacity Ratio 

 

We choose to implement the Akcelik Travel time function for this research proposal due to its 

applicability to the 95 Express. 

 

4.2 Problem Formulation 

The goal of the 95 Express is to minimize the total travel time along the I-95 corridor for 

both the express lanes (EL) and the general purpose lanes (GP). 

To express this mathematically we will sum the travel times for ALL the demand flow 

entering the corridor: 

 

Thus Total travel time = +       (23) 

We then substitute the travel time equations into equation above to obtain the following  

Travel time optimization problem, including cell transmission constraints.  

Since we are formulating the general model we will consider a multi-period time horizon 

with  

Time periods numbered from k=1 to n. Each time period represents a 15min interval on the 

HOT lanes.  
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Minimize T = 

 
 
 
 

Subject to constraints: 
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where x1k   and x2k  are the flows in time period k on the Express Lane and general 

purpose Lane respectively, and D is the total demand. 

 

The variables    x1ik   and x2ik   are flows in route 1(express lane) and route 2(GP lane) 

in cell I in time period k respectively. These are cell transmission variables. 

Nik   , nik   , and Qik   , are the maximum occupancy in cell I at time period k, the 

actual occupancy in cell I in time period k and the maximum flow capacity into cell I 

in time period k respectively. Please note that in our application, we consider the I-95 

HOT lane to consist of a single cell, with a source cell before, and output cell 

following. 

 

The first constraint is a statement of the conservation of flow. Thus the total demand 

is equal to the sum of the flows along the express lanes and the general purpose 

lanes, combined. The second constraint is due to the FDOT speed requirement, which 

dictates that speed on the express lanes must be at least 45mph. 

The entering demand is assumed to be known for each 15-minute period. 

 

Basic Assumptions:   

In formulating the model the following basic assumptions were used to facilitate the 

analysis: 

1. Demand Flow D, is known for each 15 minute period 

2. Density is measured by loop detectors and updated every 15mins 
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3. No queuing occurs on the express lanes (we constrain the speed to be >45mph) 

4. The capacity does not change during the period.(Q  = 2000vphpl) 

5. The same number of vehicles exits any access point as enter it thus the flow along 

the corridor is the flow at entry point. 

 

The non-linear function minimization is carried out using MATLAB. The results are the optimal  

flow values (x1k and x2k) for the express lane (EL) and general purpose lane (GP), which 

minimize the total travel time along the corridor given the constraints. 

Knowing the optimal flow values we calculate the travel time along the express lane. 

Since travel time is related to toll amount, we can calculate the appropriate toll value using 

the following equation: 

 

  Travel time t = TT + toll/VOT 

Where TT = free –flow travel time 

VOT = Value of time. This value is usually taken to be $15-$25/hr depending on location. In 

this study we use VOT = $20/hr. 

 

We perform the function minimization for demand values ranging from 2000vph to 12000 vph 

and determine the travel times. The toll is then calculated for each combination of demand 

and density which minimizes total travel time. If this toll amount is less than $.25 we round 

up to the next $.25, since toll increments are in values of $.25. 

The figure below shows average toll rates during the year 2010 as reported by 

www.95express.com for the months January to June on I-95 Express HOT lanes. 

The blue lines on Figure 6 plot average toll for peak period in the corresponding month and 

the yellow lines plot the maximum tolls during the same months. 

http://www.95express.com/
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Figure7  Average Toll 95 Express 

 

 

 

 

 

 

 

 

 

 

 



  

94 

 

 4.3 Results and Sample Calculations 

The following figures (figures 7, 8, and 9) are the Function minimization plots for a demand 

value of 3000 vph 

4.3.1 Simulated Annealing Example 

 

Demand = 3000vph. Cap(EL) = 4000,density = 25 
toll = $0.04<$0.25 ie raise toll by $0.25 
Toll = $0.50+$0.25=$0.75 
 
 
 

Demand Capacity 

(EL) 

Optimal HOT 

Flow(x1) 

Optimal GP flow(x2) Density Base 

Toll 

3000 4000 1217 1782 25 $0.75 

 

Figure 8.  SA Example Calculation 
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4.3.2 Genetic Algorithm Example 

 

 

Demand Capacity 

(EL) 

Optimal HOT 

Flow(x1) 

Optimal GP 

flow(x2) 

Density Base 

Toll 

3000 4000 1175 1825 25 $0.75 

Figure 9. GA Example Calculation 
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4.3.3 FDSA Example 

 

Deman

d 

Capacity 

(EL) 

Optimal HOT 

Flow(x1) 

Optimal GP flow(x2) Density Base 

Toll 

3000 4000 1225 1775 25 $0.75 

 

Figure 10. FDSA Example Calculation 

 

 

The optimal flows as generated by the three algorithms for the demand range of 

3,000 vph to 14,000 vph are shown in Table 4.  
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Table 5. Optimal Flows by Algorithm, Demand 

Total 
Demand 
Veh/hr 

Capacity 
(EL) 
Veh/hr 

Algorithm HOT flow (x1) 
(Optimal) 

GP flow (x2) 
(Optimal) 

Base 
Toll 
($) 

3000 4000 SA 1217 1782 0.75 

3000 4000 GA 1175 1825 0.75 

3000 4000 FDSA 1225 1775 0.75 

6000 4000 SA 1988 4012 1.00 

6000 4000 GA 1892 4108 1.00 

6000 4000 FDSA 1800 4200 1.00 

10000 4000 SA 3475 6525 1.50 

10000 4000 GA 3460 6540 1.50 

10000 4000 FDSA 3375 6625 1.50 

12000 4000 SA 4550 7450 4.00 

12000 4000 GA 4525 7475 3.75 

12000 4000 FDSA 4000 8000 3.75 

14000 4000 SA 5770 8230 7.00 

14000 4000 GA 5175 8825 7.00 

14000 4000 FDSA 5175 8825 7.00 
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4.4 Application of Tolling Algorithm 

 

The tolling algorithm previously developed can now be applied to the demand values 

Of D= 3000, 6000, 10,000, 12,000 and 14,000 as shown in the above examples to 

determine the final toll for optimal minimized travel time. 

Having applied the stochastic approximation algorithms to solve the problem, the 

next step in the toll algorithm is to determine the adjustment to the toll based on the 

deviation of the actual flow on the HOT lane from the optimal flow. 

The calculations for the demand levels mentioned above and simulated actual flows 

are shown Table 5. 

 

In this table, each value for total demand is repeated once, to signify two different 

dates or times when the same demand is observed with a different value for the 

actual flow on the HOT lane. This Actual HOT Flow value is used to calculate the 

deviation  (Xcongested  -Xopt) which is  then used by the toll algorithm to determine 

Adjusted toll.  

 

For the first 4 rows in Table 6, the actual and optimal flow ratio x/Q (Q=capacity HOT 

lanes =4000vph) are less than 0.6. Thus there is no congestion and t=t (0). No need to 

adjust toll.. For the last row flow is greater than capacity, do not reduce toll, as this 

will increase congestion. 
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Table 6. Application of Toll Algorithm 

 

 

4.5 Comparative Evaluation of GA, FDSA and SA Algorithms. 

The three algorithms used to solve the non-linear program (NLP) were evaluated using 

statistical analysis methods to determine if there are any significant differences 

between the optimal flows recommended by each and the travel times produced by 

applying each solution. 

The problem was constructed as a 2-way ANOVA using travel time as the dependent 

variable and ALGORITHM and DEMAND LEVEL as the explanatory variables. 

4.5.1 VISSIM SIMULATION  

 

The algorithm was tested in VISSIM MODELING SOFTWARE, using the Simulation menu 

option. We manually input the demand and flow values from each algorithm to 

determine the simulated travel time output. 

Total Demand 
D 

Opt. HOT 
flow 

Actual HOT 
Flow 

Base 
Toll(b) 

Adjusted 
toll p 

Final 
Toll 
T($) 

      

3000 1217 1520 0.75 n/a 0.75 

3000 1217 1295 0.75 n/a 0.75 

6000 1988 2150 1.00 n/a 1.00 

6000 1988 1750 1.00 n/a 1.00 

10000 3475 3600 1.75 0.2431 1.99 

10000 3475 3525 1.75 0.09929 1.85 

12000 4000 4500 4.00 1.7778 5.78 

12000 4000 3750 4.00 -1.0667 2.94 

14000 5770 5800 7.00 0.1448 7.15 

14000 5770 5500 7.00 n/a 7.00 
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PTV-VISSIM is a transportation software tool used to model travel along a 

transportation network. Within the VISSIM network, one can model the flow along 

highways, arterials, intersections and roundabouts. VISSIM allows also the modeling of 

the surrounding environments such as buildings, parks, and pedestrian traffic. 

VISSIM allows the user to define the distribution of traffic which is allowed on any link 

in the network. Thus for example, one can define a portion of a network in such a 

way as to allow trucks from driving in certain lanes. See  Figure 11 example. 

 

Figure 11. VISSIM representation of HOT&GP lanes 
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In VISSIM, one can simulate the flow of traffic on a highway by first defining a network 

using the option to construct a set of links. The links can be connected by using 

“connectors” which originate at one link and end at another link. Vehicle types are 

defined and proportions of each type are also defined for each link as well s the 

vehicle speed distribution. Figure 11 shows a VISSIM vehicle Input menu.  

 

Figure 12. VISSIM Vehicle Inputs 

 

VISSIM has menu bar at the top of the user interface with several menu options. 
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One of these options is the simulation menu. 

Within the Simulation Menu one can set up and run a simulation of a network for a 

specific period of time. Figure 12 shows the Simulation Menu. 

 

 

 

Figure 13. Vissim Simulation Menu 

 

Once the simulation parameters are selected, the simulation can begin by selecting 

“Continuous” or “Single Step” run.  

The Evaluation files to be output are selected to include Travel Time. 

A sample (partial) travel time output file from VISSIM is shown in below: 
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4.5.2 Travel Times Data Collection 

 

File:     c:\programdata\ptv_vision\vissim530\examples\test1.inp 

Comment:   

Date:     Thursday, May 23, 2013 9:11:27 PM 

VISSIM:   5.30-09 [30156] 

 

 Time;   No.;   veh; VehTy;  Trav; 

1202.4;     3;     5;   100;1189.0; 

1234.3;     3;     8;   100;1217.7; 

1246.3;     3;     3;   100;1236.5; 

1260.0;     3;    17;   100;1237.6; 

1266.0;     3;    43;   200;1222.5; 

1273.9;     2;     1;   100;1263.5; 

1281.2;     3;    44;   100;1237.3; 

1285.5;     2;     2;   100;1274.8; 

1293.9;     2;    12;   100;1273.6; 

1295.6;     2;     4;   100;1281.2; 

1305.5;     3;    94;   100;1230.5; 

1307.8;     2;    31;   100;1269.9; 

1313.7;     2;    28;   100;1279.5; 
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1317.9;     3;    18;   200;1293.8; 

1319.5;     3;    25;   100;1290.2; 

1320.9;     3;    51;   100;1274.3; 

1322.3;     3;    67;   100;1264.2; 

1323.8;     3;    70;   100;1263.7; 

1325.2;     3;    88;   100;1254.0; 

1326.5;     3;    83;   100;1256.5; 

1327.8;     3;    26;   100;1295.0; 

1329.2;     3;    47;   100;1283.1; 

1330.7;     3;    96;   100;1255.4; 

1331.5;     3;    23;   100;1303.9; 

1332.1;     3;   126;   100;1230.1; 

1332.7;     3;    48;   100;1286.8; 

1336.5;     3;    10;   100;1318.5; 

1337.9;     3;    20;   100;1313.2; 

1338.1;     2;    32;   100;1299.4; 

1348.3;     3;   137;   100;1239.0; 

1352.4;     3;   190;   100;1188.5; 

1366.2;     3;   216;   100;1179.4; 

1368.4;     3;    16;   100;1346.2; 

1369.8;     3;    22;   100;1343.0; 

1371.1;     3;    41;   100;1328.8; 

1373.2;     3;   203;   100;1194.8; 
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1379.0;     2;     7;   100;1360.7; 

1380.1;     3;   183;   100;1221.5; 

1381.3;     3;   205;   100;1200.9; 

1386.4;     2;    34;   100;1346.5; 

1397.5;     3;   221;   100;1206.4; 

1399.4;     2;    33;   100;1360.2; 

1409.5;     2;    35;   100;1368.6; 

1411.8;     3;    53;   100;1363.3; 

1419.6;     3;    50;   100;1372.2; 

1423.6;     3;    84;   100;1352.4; 

1425.4;     2;     6;   100;1409.1; 

1426.8;     3;    92;   100;1352.7; 

1426.8;     2;     9;   100;1408.7; 

1428.2;     3;   100;   100;1348.8; 

1428.2;     2;    13;   100;1406.3; 

1429.5;     3;   104;   100;1346.7; 

1430.9;     3;   125;   100;1328.8; 

1432.4;     3;   144;   100;1313.4; 

1437.4;     2;    11;   100;1416.1; 

1438.9;     2;    14;   100;1416.1; 

1440.3;     2;    19;   100;1414.7; 

1441.7;     2;    27;   100;1406.6; 

1443.1;     2;    37;   100;1401.3; 
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1444.4;     3;    59;   100;1390.2; 

1445.9;     3;    81;   100;1377.9; 

1447.4;     2;    29;   100;1410.5; 

1447.9;     2;    15;   100;1423.8; 

1448.7;     2;    39;   100;1405.5; 

1449.4;     2;    24;   200;1421.4; 

1449.5;     3;    36;   100;1328.8; 

1450.1;     2;    45;   100;1404.2; 

1450.8;     3;   163;   100;1312.2; 

1451.3;     2;    38;   100;1408.2; 

1451.6;     2;    60;   100;1396.6; 

1452.2;     3;    86;   100;1307.5; 

1452.7;     2;    40;   100;1408.2; 

1453.0;     2;    62;   100;1396.7; 

1453.4;     3;   255;   100;1223.5; 

1453.6;     3;   235;   100;1245.0; 

1453.7;     3;   139;   100;1266.4; 

1454.1;     2;    49;   100;1406.4; 

1454.4;     2;    42;   100;1409.2; 

1454.4;     3;    80;   100;1386.7; 

1455.1;     3;   254;   100;1226.3; 

1455.6;     2;    54;   100;1406.4; 

1455.8;     3;   120;   100;1357.5; 
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1455.8;     2;    52;   100;1407.5; 

1455.9;     3;   288;   100;1198.1; 

1457.1;     2;    56;   100;1406.2; 

1457.2;     2;    55;   100;1406.3; 

1457.2;     3;    21;   100;1354.8; 

1458.5;     2;    46;   100;1411.9; 

As an example the Simulated Annealing algorithm was initially used to solve the non-

linear programming problem. Thus we use the optimal result from this algorithm in 

the first simulation to find the simulated travel times and costs for the I-95 express 

(HOT) lanes and the general purpose (GP) lanes. 

 

The test plan is shown in the Table 6 including sample data: 
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Table 7.Travel Time Data Collection Table: FDSA 

 

Demand D (vph) HOT flow (x1) GP flow (x2) Travel Time 

2000 1000 1000 25445.45 

3000 1225 1775 38838.11 

4000 1690 2310 53980.51 

5000 1750 3250 65987.44 

6000 1850 4150 83461.9 

13000 4750 8250 275414.78 

14000 5175 8825 290450.04 

15000 5625 9375 333229.16 

16000 5850 10150 342491.29 

 

The same process is performed for the GA Algorithm and the results are recorded in 

Table 7. 

Table 8. Travel Time Data Collection Table GA 

Demand D (vph) HOT flow (x1) GP flow (x2) Travel Time  

2000 1000 1000 26848.31 

3000 1175 1825 38482.09 

4000 1690 2310 53117.18 

5000 1750 3250 65628.14 

6000 1892 4108 83461.9 

13000 4750 8250 290596.35 

14000 5175 8825 304179.19 

15000 5625 9375 333229.16 

16000 5850 10150 342491.29 

 

Finally the values and results for the Simulated Annealing   Algorithm are also 

recorded in Table 8. 
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Table 9. Travel Time Data Collection Table: Simulated Annealing 

 

Demand D (vph) HOT flow (x1) GP flow (x2) Travel Time  

2000 800 1200 24931.39 

3000 1217 1782 38479.42 

4000 1498 2502 53103.55 

5000 1580 3420 67095.93 

6000 1850 4150 83461.9 

13000 4818 8182 312855.92 

14000 5770 8230 294573.57 

15000 5346 9654 319565.91 

16000 5975 10025 343296.05 

 

 

The results from the three algorithms are then compared to determine the best 

choice for 

implementation and also for use in the statistical  analysis. 

 

4.6  Analysis of Variance  

 

The results of the three algorithms were analyzed using ANOVA to determine if there 

is any difference in the travel time or cost. We want to determine the minimum travel 

time and the method which produces this result to a significant (95%) level. 

ANOVA is a statistical technique which can be used to find the analysis of variance 

between and within the groups of three or more.  
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One way ANOVA can be used with the three groups (three algorithms) to test the 

travel times.  

The ANOVA method is related to the estimation of how much variance there is in the 

population. The actual variance in each population may be unknown, but this can be 

estimated by sampling the population and using the sample variance as the estimate 

of the population variance. 

ANOVA compares the differences in the sample variances to find out if there are any 

statistically significant differences between the group samples. 

 

 
 

4.6.1 TWO-WAY ANOVA 

 
The 2-WAY ANOVA results are shown below (see Appendix for ANOVA worksheet data): 

Table 10.2-way ANOVA 

 
 
Individual Value Plot of TRAVEL TIME vs ALGORITHM, DEMAND  
Welcome to Minitab, press F1 for help. 
Retrieving project from file: 'C:\Documents and Settings\Computer\My 
Documents\hot_95.MPJ' 

  
Two-way ANOVA: TRAVEL TIME versus ALGORITHM, DEMAND  
S = 836062   R-Sq. = 99.38%  R-Sq. (adj.) = 99.24% 
 
  
 

Source DF Ss MS F P 

ALGORITHM 2 4.87951E+12   2.43975E+12     3.49   0.034 

DEMAND 8 1.21419E+16   1.51774E+15   2171.30   0.000 

INTERACTION 16 2.98281E+13   1.86426E+12    2.67   0.001 

ERROR 108  7.54919E+13   6.98999E+11   

TOTAL 134 1.22521E+16    
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Figure 14. Main Effects Plot 
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Figure 15. Travel Time vs Algorithm,Demand 
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Figure 14 shows that for demand levels between 2000 -6000vph the three algorithms 

behave quite similarly. However, for higher demand levels (13,000vph and above), the 

SA algorithm produces different results from the other two. 
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Figure 16.Interaction Plot for Travel Time 

 

The results of the 2-WAY ANOVA shows that the algorithm is significant in determining 

travel time.  Also the interaction between algorithm and demand is a significant 

factor. In general one can conclude that when demand is greater than capacity the 

FDSA and GA algorithms produce travel time results which are lower than the 

simulated annealing algorithm in solving this problem. Prior analysis showed that for 

demand values less than or equal to capacity, there is no significant difference 

between the algorithms in terms of their performance. 

 



  

114 

 

CHAPTER 5. DATA COLLECTION AND DEMAND FORECASTING 

 

5.1 Data Collection 

The demand for usage of the 95Express lanes can be determined based on forecasted 

information. With the upcoming implementation and opening of Phase 2 of the 

95Express, it may be suitable to perform an analytic forecast to assess the demand for 

Tolled Express lanes in Broward County. Most forecasts currently in use have daily 

usage and demand data which is used to forecast demand for future time periods. 

 

The data collection efforts in this study consist of accessing data from three primary 

data warehouses for 95 Express. The FDOT district six maintains data from its 31 

detectors along the I-95 Express managed lanes on speeds and traffic densities. As 

mentioned before, the Florida Turnpike Enterprise collects information on the traffic 

volume based on tolled usage SUNPASS and exempt vehicles (such as hybrid-electric 

vehicles) at entry points to the 95 Express. A Third source of data is the STEWARD data 

warehouse maintained by the University of Florida on traffic for all districts within 

the state of Florida. This database can be queried and reports obtained on different 

traffic patterns at different points along the I-95 and other highways in Florida. A 

regular schedule of observational data of traffic patterns will also be recorded on 

travel times at different times (peak hour and off-peak hours) on the managed toll 

lanes at locations on the 95 express.  
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Three years of historical data is used for this dynamic pricing study to calibrate the 

parameters of the algorithms and to assist with the dynamic forecasting model 

utilized.   With a dynamic pricing environment, where prices are changing every 

15minutes a daily forecast is not sufficient to provide accurate information for travel 

demand at different periods throughout the day. 

The existence of loop detectors which provide near real-time information increases 

the flow of information and capabilities of operators to know what the typical 

demand scenarios are on an hourly basis. 

 

Thus to capture the richness of this data and properly utilize this information in a 

forecast, a new forecasting technique must be employed which is capable of 

capitalizing on the wealth of data from the detection devices. 

One such method, which has been utilized successfully in the econometric world for 

more than 20 years, is the GARCH algorithm. 

 

GARCH (Generalized Auto-Regressive Conditional Heteroskedasticity) is a type of 

regression modeling which has been used in stock pricing and economic modeling. 

Developed by  Robert Engle and Bollerslev, GARCH essentially removes restrictions on 

classical linear regression models. In particular, Linear regression models assume that 

the error term has variance which does not change with time i.e. stationary. However, 

in the real world, this is hardly ever true, and thus the Classic Linear Regression 

model is always plagued by large errors due to the inaccuracies in the model. 

GARCH Assumes non-stationary error terms, hence its heteroskedasticity, and utilizes 
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the large volume of real-time data to calculate extremely accurate forecasts for 

demand management. The 95 Express presents a good test-bed for the application of 

a forecasting algorithm such as GARCH and will benefit significantly from its 

improvement in accuracy in light of the proposed extension of the tolled dynamic 

pricing lanes into Broward County Florida. 

 

The expected demand for such services as 95Express in this new region should be 

carefully assessed in order to determine the proper tolls and change in pricing for this 

new effort. It cannot be assumed that what happened successfully in Phase 1 of this 

project will necessarily carry over to similar success for Phase 2 of the project. An in-

depth analysis should be performed with cost/benefit ratios to determine how best to 

proceed with the construction, implementation and operation of Phase 2 of 

95Express. 

 

GARCH has been applied successfully to applications outside of econometric models. 

GARCH has been successful in improving forecast accuracy in supply chain systems, by 

reducing bullwhip effect and modeling demand with high level of accuracy as demand 

moved through the different stages of a multi-echelon supply chain system. 

In one case, GARCH was applied to model a supply chain system demand for spare 

parts and was instrumental in reducing the forecast error from 21% down to 6.7%.  

These types of improvements can be transferred to successfully applied to travel 

demand  for tolled express lane service along the I-95 in Broward County. 

GARCH works well with the auto-ID technology which is typically used along tolled 
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roadways to collect the toll. In prior implementation of the GARCH algorithm, the 

data was read directly from RFID (Radio Frequency ID) tags in a point of sale 

environment and fed into the manufacturing warehouse setting to a dedicated 

computer system which was able to adjust the forecast dynamically in near real time. 

This type of dynamic updating is necessary for this dynamic pricing algorithm to 

determine optimal prices on the 95Express toll road. 

 

For a good description of an application of GARCH see Datta et al. (2009). This paper 

addresses forecasting and risk analysis in supply chain management and discusses how 

reduced variation in forecasting errors can reduce the risk and costs associated with 

inaccurate forecasting information.  

 

In terms of application of GARCH to 95Express, one does not want to over-price the 

toll road based on inaccurate information from the data, since this will drive potential 

travelers away from using the express lane and reduce revenues. 

Thus tolls set too high or too low can result in reduced revenues and inefficient 

operations on the 95express toll road. It is important that the toll be set at the right 

level for the user who needs to get to their destination in a reasonable amount of 

time. The accuracy of the demand information in critical in setting the toll at the 

correct level and maximizing throughput and revenue, in order to operate the express 

lanes profitably. 
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5.2 Demand Forecasting 

GARCH (Generalized Auto-Regressive Conditional Heteroskedasticity) is a type of 

Vector Auto Regression (VAR) technique which is ideally suited for problems where 

there is a high level of volatility in the data. Examples include stock pricing where 

intra-day demand can vary widely and corresponding prices can also change greatly on 

an hourly basis. GARCH is able to manage the complexity in such volatile 

environments where classic linear regression models would produce huge errors due 

to its inherent assumptions of stationarity. Vector Auto Regression is a multivariate 

model which allows for regression on multiple variables simultaneously. 

 

Vector Auto Regressive models allow variables to be dependent not only on its own 

past values but also the past values of all values in the model. 

The inaccuracies in classic linear regression models are derived from multiple sources, 

not only from unrealistic assumptions, but also from batch data (usually on a weekly 

or monthly basis) which are of poor quality and do not capture the large increases or 

decreases within the smaller time periods (hour by hour). 

  

 The standard GARCH(p,q) model with Gaussian shocks has the form: 

yt= b0+ bxt+ εt  
   

where   
εt/Ψs= Normal 0,ht
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and 

ht= α0+ Σqα iε(t− i)
2 + Σpβεi h(t− 1)

    

 

  

Where ht= variance of the error  εt 

 

One method of estimating GARCH model parameters is by finding values which 

maximize the log -likelihood function: 

Log -Likelihood function : 

Likelihood function:  

 )/)(log(2/1 2
i

i
i bbLF    

This GARCH process is described by q+1 coefficients (), p coefficients (i), as well 

as the endogenous /exogenous variables yt

 

 and xt.    

 

Other types of GARCH models include asymmetric GARCH (AGARCH) and exponential 

(EGARCH). 

GARCH model parameters can be estimated by maximizing the conditional log-

likelihood function (MLE). 

An initial approximation for the parameter vector is used to start the process and 

numerical optimization is then applied to iterate to an acceptable solution. 
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The performance or accuracy of the GARCH forecast can be measured by the 

Statistics o Fit. Statistics of Fit examines how well the forecast performs by 

comparing the forecast with the actual data. 

Some measures of performance include: 

(1) Mean Square Error (MSE) 

(2) Mean Average Percentage Error (MAPE) 

(3) Aikiki Information 

Using data from the STEWARD database, we demonstrate how the GARCH model can 

be used to predict volatility in the transportation demand on I-95 Express. 

The STEWARD database allows for the selection of a range of dates at a particular 

station along 95 Express to view or download the actual Traffic volume as recorded by 

detectors.This data was downloaded for October 2012 and analyzed in EXCEL. 

The following graph shows the daily volume for October 27, 2012 at the station 

located at the I-95 NB HOT ramp at NW 46th St. (see Appendix for data.) 
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Figure 17. 95 Express 24hr demand 

 

The WMA forecast was developed from this daily demand to predict demand profile to 

predict demand for future day. The hourly demand is sub-divided into four 15min 

perids and the period # is noted on the X-Axis. Thus for a 24hr period there are 24*4 = 

96 periods for which demand is recorded. 

Demand volumes are plotted on the Y-axis of the figure. 

Figure 17 shows the Weighted Moving Average Forecast. 
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Figure 18.  WMA Forecast 
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The EWMA forecast for the same day and station is generated and shown in Figure18.  

 

Figure19. EWMA Forecast 
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A  GARCH(1,1) model was calibrated for this data and the parameter estimates are 
shown here: 
 

Table 11. GARCH Model Fit 

 

GARCH(1,1) 
  

Goodness-of-fit 
   Param Value 

 
LLF AIC CHECK 

 
µ 0.00 

 
64.38 -122.75 1 

 
α0 0.00 

    

 
α1 0.17 

    

 
β1 0.82 

    

 
β1 0.98 

     

 
 
 
 
 

 
Residuals (standardized) Analysis 

   

 
AVG STDEV SKEW KURTOSIS Noise? Normal? ARCH? 

 
-0.04 0.97 -0.33 -0.05 TRUE TRUE FALSE 

Target 0.00 1.00 0.00 0.00 
   SIG? FALSE FALSE FALSE FALSE 
    

 
 
 
 

Volatility forecast were calculated for a 24 period time horizon and is shown below. 

Table 12. Volatility Forecast 

 

Step Mean STD TS UL LL 

1 0.004405 22026.46579 22026.46579 683.3545 
-

683.34569 

2 0.004405 20097.00505 21083.81853 666.0829 
-

666.07408 

3 0.004405 18363.36968 20217.71627 649.5128 
-

649.50394 

4 0.004405 16803.42508 19420.49979 633.6092 
-

633.60036 
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5 0.004405 15397.76547 18685.36555 618.3392 
-

618.33043 

6 0.004405 14129.35198 18006.26288 603.672 
-

603.66317 

7 0.004405 12983.20182 17377.80418 589.5782 
-

589.56934 

8 0.004405 11946.12103 16795.18664 576.0302 -576.0214 

9 0.004405 11006.47416 16254.12367 563.0021 
-

562.99332 

10 0.004405 10153.98574 15750.78491 550.4694 
-

550.46057 

11 0.004405 9379.568638 15281.7436 538.4087 
-

538.39993 

12 0.004405 8675.175636 14843.93039 526.7983 -526.7895 

13 0.004405 8033.670754 14434.5928 515.6174 
-

515.60856 

14 0.004405 7448.717656 14051.25946 504.8463 -504.8375 

15 0.004405 6914.68265 13691.70876 494.4666 
-

494.45778 

16 0.004405 6426.550294 13353.94108 484.4607 
-

484.45185 

17 0.004405 5979.849854 13036.15444 474.8119 
-

474.80307 

18 0.004405 5570.591139 12736.72287 465.5045 
-

465.49568 

19 0.004405 5195.208444 12454.1774 456.5236 
-

456.51475 

20 0.004405 4850.511504 12187.18922 447.8549 
-

447.84612 

21 0.004405 4533.64253 11934.55474 439.4852 
-

439.47636 

22 0.004405 4242.038528 11695.18243 431.4015 
-

431.39269 

23 0.004405 3973.398207 11468.08107 423.5918 
-

423.58303 

24 0.004405 3725.652877 11252.3494 416.0447 
-

416.03586 

 
 
 

 
These results show that GARCH is applicable to forecasting demand from time-series 

transportation data. This represents a new approach to transportation model 

forecasting and can be applied to improve forecast accuracy over other methods. 
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CHAPTER 6. CONCLUSION 

 

In this research we have completed a review and analysis of a broad range of topics 

related to dynamic pricing in the USA. In the initial phase of the research we embark 

on a review of congestion pricing implementations in the United States and 

international. We then look into different types of congestion pricing strategies (HOT 

Express lanes, Cordon pricing, etc.) which have been   

utilized across these implementations. 

The main research goals of this dissertation are threefold: 

(1) Develop an efficient tolling algorithm for reducing congestion on I-95 HOT lanes 

(2) Evaluate and compare the performance of three stochastic NLP algorithms 

(FDSA, GA, and SA to solving the dynamic programming problem, and  

(3) Provide an efficient forecast of total demand D, which can be used to plan for  

Phase 2 of 95Express implementation. 

The first goal of developing an efficient tolling algorithm was completed by adopting 

a system-optimal approach to the problem. By utilizing the well-known Akcelik travel 

time equation, we were able to formulate the dynamic programming problem into a 

Non-Linear-Program (NLP) with the objective of minimizing total travel time along the 

corridor. 
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The Cell Transmission Model (see Daganzo, 1992) was applied to construct and analyze 

the flows into and out of the HOT lanes and GP (general purpose lanes) for each time 

period. Because this model is robust we can utilize large cell lengths approaching that 

of the HOT lane in Phase I of the study. The approach to the problem is to determine 

the optimal flows along the HOT and GP lanes for each Demand D, in time period k 

which will minimize the total travel time and thus provide a system-optimal solution. 

The tolling algorithm thus developed uses these flows to determine congested travel 

time along the HOT lanes. These travel times are then supplied to Hobeika’s (see Lee 

and Hobeika, 2003) toll equation to calculate the optimal toll for this demand D. 

 

Our methodology accounts for the actual dynamic flows on the HOT lanes and uses 

these deviations from optimal flows to adjust the toll using price elasticity. Thus, for 

example, when we solve our NLP problem we may obtain a value of 1200veh/hr for 

optimal flow along the HOT lane. However, the actual flow may be 1500veh/hr. We 

therefore use price elasticity to reduce the actual (1500veh/hr) to the 

optimal(1200veh/hr). The tolling algorithm first solves for the base toll using the 

optimal values and then also adjusts the toll based on the deviation of the actual flow 

from optimal using an appropriate amount determined by price elasticity which will 

reduce the flow to optimal values for the next time period. We have outlined this 

tolling algorithm and preliminary analysis with that due to the fact that we began 

with initial toll of $0.50,(as compared to current $0.25 initial toll) our proposed toll 

structure is comparable and slightly lower tolls than exists on I-95 Express.  
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The second goal of this dissertation is to evaluate and compare the performance of 

three NLP algorithms to solving the dynamic programming problem. The three NLP 

algorithms we chose to evaluate were the FDSA (Finite Difference Stochastic 

Approximation), Simulated Annealing(SA), and Genetic Algorithm(GA).  For this 

purpose, we employed MATLAB software to generate a coded version of the NLP 

problem, and then for fixed, known levels of demand and density, applied the three 

algorithms separately to produce the optimal solution. The optimal flows generated 

by each algorithm were then tabulated and the travel time was recorded. 

 

These travel times were analyzed in Minitab statistical software. The analysis 

performed consisted of a 2-way ANOVA to determine if there exists any significant 

difference in the algorithm’s performance in minimizing travel time. Thus the 

response variable of interest was travel time, and the factors (explanatory variables) 

were (1) Algorithm, and (2) Demand level. 

 

The travel time values were obtained by simulating the traffic flow along the network 

in VISSIM software. Having performed multiple simulation runs for each demand level 

varying from D=2000vph to D=16000vph, we sum the individual values to obtain the 

total travel time for all the flow during the period. These totals are then analyzed in 

ANOVA using the 2-way ANOVA method. 
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The results of the ANOVA analysis show that that there is significant difference in 

performance between the algorithms at certain level of demand. The data analysis 

provide evidence that with this problem formulation and simulated travel time, at 

demand level 13,000vph the FDSA and GA algorithms perform significantly better than 

the Simulated Annealing Algorithm. There was no apparent significant difference 

between the FDSA and GA and SA algorithms observed above 14,000vph. 

The results of the 2-WAY ANOVA show that for demand volumes less than capacity the 

three algorithms show no significant difference in performance. However, at demand 

volumes slightly exceeding capacity (of 12,000vph) the Simulated Annealing Algorithm 

produces travel times which are significantly higher than the other two algorithms. 

 

The third goal of this research is to accurately forecast demand flows on the corridor 

on an hourly basis. For this purpose we applied a new technique, which is based on 

the economic  forecasting of dynamic pricing in stock markets. 

The data for the month of October 2012 was utilized to perform this analysis. A 

GARCH volatility model was calibrated using the 15-minute demand data from the 

STEWARD database. We selected station data collected from district 6 on I-95 HOT 

lane northbound to perform the analysis. This data was used to calibrate a GARCH 

(1,1) model and volatility (%change) for intraday, hourly demand was forecasted in 

EXCEL. 
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The results show that econometric forecasting techniques can be successfully applied 

to transportation problems to identify and calibrate accurate models. 

In summary, this research brings a fresh approach to the topic of dynamic pricing. It 

demonstrates how system –optimal methodology can be applied to minimize travel 

time along the 95 HOT lanes and reduce congestion with an efficient tolling 

algorithm. This methodology is valuable for practitioners since it is highly portable. It 

can easily be applied to congested urban areas such as Washington DC, which already 

utilize HOT lanes, and other large cities such as Atlanta and Orlando. It also 

represents a new, improved approach to pricing on I-95 Express HOT lanes. We believe 

this tolling methodology is efficient and can be quickly implemented to current 

transportation HOT infrastructures and the I-95 phase 2 which will be completed 

sometime in 2014. 
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APPENDIX A. TRAVEL TIME MEASUREMENTS
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The following table is the Minitab Worksheet for the 2-WAY ANOVA analysis. 

DEMAND ALGORITHM TRAVEL 
TIME(MIN) 

2000 SA 24931.39 

2000 SA 25517.49 

2000 SA 25770.87 

2000 SA 27821.69 

2000 SA 27106.9 

2000 GA 26848.31 

2000 GA 24877.09 

2000 GA 26077.18 

2000 GA 25001.81 

2000 GA 25404.48 

2000 FDSA 25445.45 

2000 FDSA 25894.17 

2000 FDSA 25083.78 

2000 FDSA 25429.95 

2000 FDSA 25210.42 

3000 SA 38479.42 

3000 SA 37876.31 

3000 SA 38617.67 

3000 SA 37984.78 

3000 SA 37094.13 

3000 GA 38482.09 

3000 GA 37894.3 

3000 GA 38061.4 

3000 GA 37576.38 

3000 GA 40941.97 

3000 FDSA 38838.11 

3000 FDSA 41308.13 

3000 FDSA 40018.76 

3000 FDSA 39738.2 

3000 FDSA 40637.89 

4000 SA 53103.55 

4000 SA 53103.55 

4000 SA 53103.55 

4000 SA 53136.97 

4000 SA 53216.92 

4000 GA 53117.18 

4000 GA 54758.88 

4000 GA 53258.2 

4000 GA 52885.59 

4000 GA 52849.22 

4000 FDSA 53980.51 

4000 FDSA 52801.22 

4000 FDSA 52639.62 

4000 FDSA 53210.94 

4000 FDSA 52180.32 



  

133 

 

5000 SA 67095.93 

5000 SA 66953.06 

5000 SA 66195.16 

5000 SA 66471.19 

5000 SA 66939 

5000 GA 65628.14 

5000 GA 66603.19 

5000 GA 67161.1 

5000 GA 66008.16 

5000 GA 66878 

5000 FDSA 65987.44 

5000 FDSA 66494.64 

5000 FDSA 66992.74 

5000 FDSA 66979 

5000 FDSA 66927 

6000 SA 83461.9 

6000 SA 83461.9 

6000 SA 79714.64 

6000 SA 79714.64 

6000 SA 83461.9 

6000 GA 83461.9 

6000 GA 83477 

6000 GA 83512 

6000 GA 83419 

6000 GA 83562 

6000 FDSA 83429 

6000 FDSA 83501 

6000 FDSA 83461.9 

6000 FDSA 83452.79 

6000 FDSA 81441.06 

13000 SA 312855.9217 

13000 SA 387200.7417 

13000 SA 402751.3717 

13000 SA 251905.2133 

13000 SA 277209.9 

13000 GA 290596.345 

13000 GA 275414.78 

13000 GA 276006.4567 

13000 GA 279180.9717 

13000 GA 276762.755 

13000 FDSA 290596.345 

13000 FDSA 275414.78 

13000 FDSA 276006.4567 

13000 FDSA 279180.9717 

13000 FDSA 276762.755 

14000 SA 294573.5717 

14000 SA 324633.895 

14000 SA 336440.6733 

14000 SA 348480.0017 

14000 SA 294573.5717 

14000 GA 290450.0467 
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14000 GA 304179.1867 

14000 GA 299597.1667 

14000 GA 297015.165 

14000 GA 297015.165 

14000 FDSA 290450.0467 

14000 FDSA 304179.1867 

14000 FDSA 299597.1667 

14000 FDSA 297015.165 

14000 FDSA 297015.165 

15000 SA 319565.9133 

15000 SA 319565.9133 

15000 SA 319565.9133 

15000 SA 319565.9133 

15000 SA 319565.9133 

15000 GA 333229.1583 

15000 GA 333229.1583 

15000 GA 333229.1583 

15000 GA 333229.1583 

15000 GA 333229.1583 

15000 FDSA 333229.1583 

15000 FDSA 333229.1583 

15000 FDSA 333229.1583 

15000 FDSA 333229.1583 

15000 FDSA 333229.1583 

16000 SA 343296.0533 

16000 SA 346309.0417 

16000 SA 337040.9617 

16000 SA 353023.0383 

16000 SA 353041.2717 

16000 GA 342491.2967 

16000 GA 343681.685 

16000 GA 340587.28 

16000 GA 346185.8567 

16000 GA 333229.1583 

16000 FDSA 342491.2967 

16000 FDSA 343681.685 

16000 FDSA 340587.28 

16000 FDSA 346185.8567 

16000 FDSA 333229.1583 
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APPENDIX B. AKCELIK TRAVEL TIME CONSTANTS 
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 Akcelik Table of travel time constants (source: www.sidrasolutions.com) 

 

 
   Akcelik's time-

dependent 

   For Figure 2 

Degree of satn  Travel 
time 

 

   (s/km)  

x = q / Q z = x-1  t t / to 

   Akcelik () Akcelik () 

0.01 -0.990  45.0 1.0 

0.25 -0.750  45.6 1.0 

0.30 -0.700  45.8 1.0 

0.35 -0.650  46.0 1.0 

0.40 -0.600  46.2 1.0 

0.45 -0.550  46.5 1.0 

0.50 -0.500  46.8 1.0 

0.55 -0.450  47.2 1.0 

0.60 -0.400  47.7 1.1 

0.65 -0.350  48.3 1.1 

0.70 -0.300  49.2 1.1 

0.75 -0.250  50.3 1.1 

0.80 -0.200  52.1 1.2 

0.85 -0.150  54.8 1.2 

0.90 -0.100  60.0 1.3 

0.95 -0.050  71.4 1.6 

0.96 -0.040  75.4 1.7 

0.97 -0.030  80.2 1.8 

0.98 -0.020  86.2 1.9 

0.99 -0.010  93.3 2.1 

1.00 0.000  101.9 2.265 

1.01 0.010  111.9 2.5 

1.02 0.020  123.2 2.7 

1.03 0.030  135.8 3.0 

1.04 0.040  149.3 3.3 

1.05 0.050  163.7 3.6 

1.06 0.060  178.7 4.0 

1.07 0.070  194.2 4.3 

1.08 0.080  210.2 4.7 

1.13 0.130  293.7 6.5 

1.18 0.180  380.4 8.5 

1.23 0.230  468.4 10.4 

1.28 0.280  557.1 12.4 

1.33 0.330  646.2 14.4 

1.38 0.380  735.5 16.3 

1.43 0.430  824.9 18.3 
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APPENDIX C. MATLAB OUTPUT PLOTS 
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MATLAB PLOTS AND OUTPUT 

 

 
 

Simulated Annealing Plot D=950 veh/hr 

 
Simulated Annealing Solution D=2000vph 
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Demand = 6000, Cap(EL) = 4000, density =41 
 
t1 = TT + 0.0625*((x -1) +((x-1)^2 +(0.0016*(x)))^0.5) 

t1-TT=toll/VOT = 0.02134==>toll = 0.02134*20=$0.4269====>add. Toll = $0.50 
Toll=$.50+$.50 = $1.00 
 

Demand Capacity 

(EL) 

Optimal HOT 

Flow(x1) 

Optimal GP flow(x2) Density Base Toll 

6000 4000 1988 4012 41 $1.00 

 

 

 

 

 



  

140 

 

 

 

 
 

 

Demand = 10000 Cap(EL) = 4000, density = 75 
t1 = TT + 0.0625*((1-1) +((1-1)^2 +(0.0016*(x)))^0.5) 

Total toll =  $.50+$1.25 = $1.75 
 

Demand Capacity 

(EL) 

Optimal HOT 

Flow(x1) 

Optimal GP flow(x2) Density Base Toll 

10000 4000 3475 6525 75 $1.75 
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Demand Capacity Optimal HOT 

Flow(x1) 

Optimal GP 

flow(x2) 

Density Base Toll 

12000 4000 4000 8000 87 $4.00 

Demand Capacity 

(EL) 

Optimal HOT 

Flow(x1) 

Optimal GP 

flow(x2) 

Density Base Toll 

14000 4000 5770 8230 125 $7.00(max) 
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Demand Capacity 

(EL) 

Optimal HOT 

Flow(x1) 

Optimal GP flow(x2) Density Base Toll 

6000 4000 1892 4108 41 $1.00 
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Demand Capacity Optimal HOT 

Flow(x1) 

Optimal GP flow(x2) Density Base Toll 

10000 4000 3460 6540 75 $1.50 

 

 

 

 

 



  

144 

 

 

Demand Capacity 

(EL) 

Optimal HOT 

Flow(x1) 

Optimal GP flow(x2) Density Base Toll 

12000 4000 4000 8000 87 $3.75 
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Simulated Annealing Algorithm Plot D=4000vph 
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Simulated Annealing Algorithm Plot d=7000vph 
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Genetic Algorithm Plot and Solution D=8000vph 
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Genetic Algorithm Plot D and Solution =12000vph 

 

 

Demand Capacity 

(EL) 

Optimal HOT 

Flow(x1) 

Optimal GP flow(x2) Density Base Toll 

14000 4000 5175 8825 125 $7.00(max) 
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Demand Capacity 

(EL) 

Optimal HOT 

Flow(x1) 

Optimal GP flow(x2) Density Base Toll 

6000 4000 1800 4200  $1.00 

Genetic Algorithm Plot D and Solution D=6000 

 

Demand Capacity 

(EL) 

Optimal HOT 

Flow(x1) 

Optimal GP flow(x2) Density Base Toll 

10000 4000 3375 6625 75 $1.50 
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FDSA Plot and Solution D= 10,000 

 

Demand Capacity 

(EL) 

Optimal HOT 

Flow(x1) 

Optimal GP flow(x2) Density Base Toll 

12000 4000 4000 8000 87 $3.75 

 

FDSA Plot and Solution D= 12,000 

 

Demand Capacity 

(EL) 

Optimal HOT 

Flow(x1) 

Optimal GP flow(x2) Density Base Toll 

14000 4000 5175 8825 125 $7.00(max) 

 

Genetic Algorithm Plot  and Solution, D=14000 
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Simulated Annealing Plot, D=13000 
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Simulated Annealing Plot, D=15000 

 

 

 
 

 

Simulated Annealing Plot, D= 16000 
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APPENDIX D. VALUE  OF TIME CONSTANTS
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Value of Travel Time Table (source: USDOT) 
 

 

Category  Surface Modes*  
(except High-Speed Rail)  

Air and High-Speed 
Rail Travel  

Local Travel -  
Personal  
Business  
Intercity Travel -  
Personal  
Business  

$23.90  
$22.90  
$23.90  
$22.90  

$45.60  
$57.20  

 
 
 
 

Truck Drivers  $24.70  
Bus Drivers  $24.50  
Transit Rail 
Operators  

$40.40  

Locomotive 
engineers  

$34.30  

Airline Pilots and 
Engineers  

$76.10 
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APPENDIX E. STATION DATA I-95 HOT LANE
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Hourly Demand on I-95 Express Oct 27,2012 
 

Station:  

 

 
 

 
 

 

# DATE TIME TOTAL Demand 

1 10/27/2012 0:00:00 148 

2 10/27/2012 0:15:00 131 

3 10/27/2012 0:30:00 105 

4 10/27/2012 0:45:00 92 

5 10/27/2012 1:00:00 84 

6 10/27/2012 1:15:00 74 

7 10/27/2012 1:30:00 56 

8 10/27/2012 1:45:00 72 

I-95 HOT On-ramp to I-95 NB at NW 46 St (MM 5.20)
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9 10/27/2012 2:00:00 67 

10 10/27/2012 2:15:00 56 

11 10/27/2012 2:30:00 56 

12 10/27/2012 2:45:00 53 

13 10/27/2012 3:00:00 54 

14 10/27/2012 3:15:00 36 

15 10/27/2012 3:30:00 40 

16 10/27/2012 3:45:00 55 

17 10/27/2012 4:00:00 46 

18 10/27/2012 4:15:00 46 

19 10/27/2012 4:30:00 36 
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20 10/27/2012 4:45:00 41 

21 10/27/2012 5:00:00 46 

22 10/27/2012 5:15:00 55 

23 10/27/2012 5:30:00 51 

24 10/27/2012 5:45:00 56 

25 10/27/2012 6:00:00 63 

26 10/27/2012 6:15:00 75 

27 10/27/2012 6:30:00 85 

28 10/27/2012 6:45:00 87 

29 10/27/2012 7:00:00 99 

30 10/27/2012 7:15:00 123 
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31 10/27/2012 7:30:00 136 

32 10/27/2012 7:45:00 161 

33 10/27/2012 8:00:00 144 

34 10/27/2012 8:15:00 179 

35 10/27/2012 8:30:00 185 

36 10/27/2012 8:45:00 209 

37 10/27/2012 9:00:00 216 

38 10/27/2012 9:15:00 270 

39 10/27/2012 9:30:00 271 

40 10/27/2012 9:45:00 259 

41 10/27/2012 10:00:00 289 
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42 10/27/2012 10:15:00 311 

43 10/27/2012 10:30:00 323 

44 10/27/2012 10:45:00 340 

45 10/27/2012 11:00:00 323 

46 10/27/2012 11:15:00 355 

47 10/27/2012 11:30:00 352 

48 10/27/2012 11:45:00 370 

49 10/27/2012 12:00:00 344 

50 10/27/2012 12:15:00 355 

51 10/27/2012 12:30:00 377 

52 10/27/2012 12:45:00 340 
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53 10/27/2012 13:00:00 356 

54 10/27/2012 13:15:00 376 

55 10/27/2012 13:30:00 349 

56 10/27/2012 13:45:00 331 

57 10/27/2012 14:00:00 320 

58 10/27/2012 14:15:00 318 

59 10/27/2012 14:30:00 364 

60 10/27/2012 14:45:00 337 

61 10/27/2012 15:00:00 333 

62 10/27/2012 15:15:00 367 

63 10/27/2012 15:30:00 347 
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64 10/27/2012 15:45:00 305 

65 10/27/2012 16:00:00 354 

66 10/27/2012 16:15:00 327 

67 10/27/2012 16:30:00 295 

68 10/27/2012 16:45:00 305 

69 10/27/2012 17:00:00 331 

70 10/27/2012 17:15:00 323 

71 10/27/2012 17:30:00 278 

72 10/27/2012 17:45:00 342 

73 10/27/2012 18:00:00 318 

74 10/27/2012 18:15:00 352 
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75 10/27/2012 18:30:00 330 

76 10/27/2012 18:45:00 278 

77 10/27/2012 19:00:00 270 

78 10/27/2012 19:15:00 258 

79 10/27/2012 19:30:00 271 

80 10/27/2012 19:45:00 252 

81 10/27/2012 20:00:00 249 

82 10/27/2012 20:15:00 234 

83 10/27/2012 20:30:00 203 

84 10/27/2012 20:45:00 192 

85 10/27/2012 21:00:00 205 
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86 10/27/2012 21:15:00 179 

87 10/27/2012 21:30:00 203 

88 10/27/2012 21:45:00 208 

89 10/27/2012 22:00:00 224 

90 10/27/2012 22:15:00 212 

91 10/27/2012 22:30:00 205 

92 10/27/2012 22:45:00 216 

93 10/27/2012 23:00:00 179 

94 10/27/2012 23:15:00 209 

95 10/27/2012 23:30:00 152 

96 10/27/2012 23:45:00 165 
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