
University of Central Florida University of Central Florida 

STARS STARS 

Electronic Theses and Dissertations 

2013 

Multi-physics Model Of Key Components In High Efficiency Multi-physics Model Of Key Components In High Efficiency 

Vehicle Drive Vehicle Drive 

Shao Hua Lin 
University of Central Florida 

 Part of the Electrical and Electronics Commons 

Find similar works at: https://stars.library.ucf.edu/etd 

University of Central Florida Libraries http://library.ucf.edu 

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted 

for inclusion in Electronic Theses and Dissertations by an authorized administrator of STARS. For more information, 

please contact STARS@ucf.edu. 

STARS Citation STARS Citation 
Lin, Shao Hua, "Multi-physics Model Of Key Components In High Efficiency Vehicle Drive" (2013). 
Electronic Theses and Dissertations. 2764. 
https://stars.library.ucf.edu/etd/2764 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
https://network.bepress.com/hgg/discipline/270?utm_source=stars.library.ucf.edu%2Fetd%2F2764&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/2764?utm_source=stars.library.ucf.edu%2Fetd%2F2764&utm_medium=PDF&utm_campaign=PDFCoverPages


MULTI-PHYSICS MODELING OF KEY COMPONENTS IN HIGH EFFICIENCY 

VEHICLE DRIVE  

 

 

 

 

 

by 

 

SHAOHUA LIN 

B.S. in Electrical Engineering, University of Central Florida, 2005 

M.S. in Electrical Engineering, University of Central Florida, 2007  

 

 

 

 

 

 

A dissertation submitted in partial fulfillment of the requirements 

 for the degree of Doctor of Philosophy 

in the Department of Electrical Engineering and Computer Science 

in the College of Engineering and Computer Science 

at the University of Central Florida 

Orlando, Florida 

 

 

 

 

 

Fall Term 

2013 

 

Major Professor: Thomas Wu 

 

 

  



ii 

 

 

 

 

 

©2013 Shaohua Lin 

 

 

 

  



iii 

 

ABSTRACT 

Hybrid Electric Vehicles (HEVs) and Electric Vehicles (EVs) are crucial technologies for 

the automotive industry to meet society’s demands for cleaner, more energy efficient 

transportation. Meeting the need to provide power which sustains HEVs and EVs is an 

immediate area of concern that research and development within the automotive community 

must address. Electric batteries and electrical motors are the key components in HEV and EV 

power generation and transmission, and their performance plays very important role in the 

overall performance of the modern high efficiency vehicles. Therefore, in this dissertation, we 

are motivated to study the electric batteries, interior permanent motor (IPM), in the context of 

modern hybrid electric/electric drive systems, from both multi-physics and system level 

perspectives. Electrical circuit theory, electromagnetic Finite Element Analysis (FEA), and 

Computational Fluid Dynamic (CFD) finite volume method will be used primarily in this work. 

The work has total of five parts, and they are introduced in the following. 

Firstly, Battery thermal management design is critical in HEV and EV development. 

Accurate temperature distribution of the battery cells during vehicle operation is required for 

achieving optimized design. We propose a novel electrical-thermal battery modeling technique 

that couples a temperature dependent battery circuit model and a physics-based CFD model to 

meet this need. The electrical circuit model serves as a heat generation mechanism for the CFD 

model, and the CFD model provides the temperature distribution of the battery cells, which can 

also impact the heat generation of the electrical battery model. In this part of work, simulation 

data has been derived from the model respective to electrical performance of the battery as well 
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as the temperature distribution simultaneously in consideration of the physical dimensions, 

material properties, and cooling conditions. The proposed model is validated against a battery 

model that couples the same electrical model with a known equivalent thermal model. 

Secondly, we propose an accurate system level Foster network thermal model. The 

parameters of the model are extracted from step responses of the CFD battery thermal model.  

The Foster network model and the CFD model give the same results.  The Foster network can 

couple with battery circuit model to form an electric-thermal battery model for system simulation. 

Thirdly, IPM electric machines are important in high performance drive systems. During 

normal operations, irreversible demagnetization can occur due to temperature rise and various 

loading conditions. We investigate the performance of an IPM using 3d time stepping 

electromagnetic FEA considering magnet’s temperature dependency. Torque, flux linkage, 

induced voltage, inductance and saliency of the IPM will be studied in details. Finally, we use 

CFD to predict the non-uniform temperature distribution of the IPM machine and the impact of 

this distribution on motor performance.  

Fourthly, we will switch gear to investigate the IPM motor on the system level. A 

reduced order IPM model is proposed to consider the effect of demagnetization of permanent 

magnet due to temperature effect. The proposed model is validated by comparing its results to 

the FEA results. 

Finally, a HEV is a vehicle that has both conventional mechanical (i.e. internal 

combustion engine) and electrical propulsion systems. The electrical powertrain is used to work 

with the conventional powertrain to achieve higher fuel economy and lower emissions. 
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Computer based modeling and simulation techniques are therefore essential to help reduce the 

design cost and optimize system performance. Due to the complexity of hybrid vehicles, multi-

domain modeling ability is preferred for both component modeling and system simulation. We 

present a HEV library developed using VHDL-AMS.  
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CHAPTER 1: INTRODUCTION 

Hybrid electric vehicle and electric vehicle are the future trend of automotive industry. 

Among the extensive research in the related areas in HEV/EV development, battery [1]-[25] and 

permanent magnet motor [26]-[50] modeling have been two of the most important topics because 

they provide sustaining power for both HEV and EV on the road. In this dissertation, our primary 

research interests are modeling battery and interior permanent magnet (IPM) motors on both 

device and system levels from multi-physics perspective. 

One of the major challenges in battery development is battery thermal management 

design. Without optimized cooling design, high temperature rise or local hot spots could lead to 

battery degradation and thermal runaway. The existing models can either provide temperature 

distribution or heat generation. However, a model that predicts both is highly desirable. 

Therefore, we propose a novel electrical-thermal modeling technique that couples a temperature 

dependent battery circuit model and a CFD model. The circuit model serves as a heat generation 

mechanism for the CFD model, and the CFD model provides the temperature distribution of the 

battery cells, which can affect the heat generation of the electrical battery model.  

Thermal network model and battery circuit model are coupled to study the battery 

performance considering temperature effect. Thermal capacitance and thermal resistance are 

used in the thermal network model. In order to obtain accurate results, the number of thermal 

capacitors and resistances is large to achieve good accuracy there the thermal network model can 

be quite complex to calibrate. To replace the thermal network, we propose a Foster network 

thermal model.  Foster network model also consists of capacitors and resistors, however they do 
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not have the same physical meaning like those in the traditional thermal network, instead they 

represent the transfer function of the thermal system. We extract the values of the capacitors and 

resistors in the Foster network from the step responses of the battery thermal system, which can 

be obtained either from CFD simulation or testing. The results of Foster network are the same as 

the CFD model but it is simulation time is comparable to the traditional thermal network 

therefore it is suitable for system simulation with very high accuracy.    

Interior permanent magnet (IPM) motors [51]-[75] are widely used in various high-

performance electric and hybrid electric vehicles. When an IPM machine is overloaded or after a 

short circuit, irreversible demagnetization may occur due to a strong demagnetizing field and/or 

temperature increases. Demagnetization can significantly reduce the magnet’s ability to create 

flux, which, in turn, decreases the electric machine’s overall efficiency. Overloading and 

temperature rise can happen independently or simultaneously during a fault or during normal 

operation. Temperature gradients in the magnet often cause different parts of the magnet to 

demagnetize non-uniformly. We will study the temperature effects on the IPM motor’s electrical 

and mechanical performance. 

Finite Element Analysis (FEA) [75]-[100] is one of the most popular tools used to carry 

out study and design of IPM.  FEA provides detailed electrical and magnetic performance of the 

IPM considering material properties, excitation, physical dimensions, and etc. Therefore, FEA is 

well suited for IPM designers to design and optimize the machine. However, for system level 

simulation, the speed of FEA is not ideal. For system level simulation, we are concerned about 

the performance of the entire system rather than just the IPM. So it is desirable to have an IPM 
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model that is accurate enough to capture the main characteristic of physics, but runs at circuit 

simulation speed.  Also, the permanent magnet materials are temperature dependency should be 

included. Therefore we propose a reduced order IPM model that considers the magnet 

temperature dependency. We will validate the proposed model using the FEA results. 

Including electrical powertrain into the conventional vehicle drive system has increased 

the research costs. Computer based modeling and simulation techniques are therefore essential to 

help reduce the design cost and optimize system performance. We present a new HEV library 

developed using VHDL-AMS. The library provides reusable and extensible generic components 

for further design.  

1.1. Organization of the Dissertation 

In Chapter 2, the implementation of the proposed multi-physics battery model is provided. 

The model can predict battery temperature distribution and heat generation. 

In Chapter 3, an LIT thermal model is presented for battery. The method is simple but very 

accurate. The implementation and validation of the proposed model will be provided. 

In Chapter 4, the change in the performance of IPM motor as temperature increases and 

load changes will be studied in details using FEA and CFD. 

In Chapter 5, we propose a novel reduced order temperature dependent IPM model which 

is suitable for system level simulation. We will discuss the implementation and validation in 

details.   

In Chapter 6, we introduce the VHDL-AMS modeling library for vehicles.  
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In Chapter 7, the conclusion of the dissertation is drawn.   
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CHAPTER 2: ELECTRICAL THERMAL BATTERY MODELING 

2.1. Background 

HEV and EV are crucial technologies for the automotive industry to meet society’s 

demands for cleaner, more energy efficient transportation. Meeting the need to provide power 

which sustains HEVs and EVs is an immediate area of concern that research and development 

within the automotive community must address. Considering this power concern, extensive 

efforts have been undertaken to develop battery modeling methodologies that can expedite 

industrial implementation. One of the major challenges in battery development is battery thermal 

management design. Without optimized cooling design, high temperature rise or local hot spots 

could lead to battery degradation and thermal runaway. Therefore the usage of physics-based 

simulation method to obtain battery’s temperature distribution is required for HEV/EV battery 

thermal management design.  

A particular physics based simulation method is CFD which has been quite popular for 

battery pack thermal management design as in [101]-[102]. CFD can accurately predict 

temperature distribution based on the given heat generation, fluid cooling conditions, geometry, 

material properties, and other essential parametric criteria. However, inherently CFD cannot 

accurately establish heat generating mechanisms that involves electrochemistry. Therefore, 

performing CFD analysis usually requires user to provide pre-defined heat source profile 

obtained from either measurement or other heat estimation methods. Notice obtaining the heat 

generation and temperature individually is very common in battery thermal management design, 

simply neglecting the coupling between them. This assumption could be invalid if the battery 

loading changes rapidly, which could happen during a normal drive cycle of the HEV or EV. 
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Electrochemical model is the most accurate model in terms of predicting heat generation 

because it describes the fundamental physics of the electrochemical process in battery cells 

[103]-[104]. However, this model requires in-depth knowledge of the electrochemistry, so it is 

not easy for thermal management design engineer to use on a daily basis.  

Battery circuit models have gained popularity in recent battery modeling research and 

development [105]-[109]. The parameters of the circuit models are usually curve fitted from 

measurement data. They can accurately predict electrical performance values such as heat 

generation, load voltage, battery run time, state of charge, non-linear capacity effect, and etc. 

Electrical circuit models are mature and are inherently well understood by electrical engineers; 

however, these methods that would afford a great deal of utility cannot provide temperature 

distribution which becomes exclusionary for such analysis to be used for battery thermal 

management design.  

The ability to offer battery thermal designers a methodology to systematically predict 

accurate heat generation within the battery cells and to provide temperature distribution 

simultaneously of the battery system would be a tremendous asset for HEV/EV battery thermal 

management design. This is the motivation to propose a methodology based on the preliminary 

work we first proposed in [110].  

We propose a novel electrical-thermal modeling technique that couples a temperature 

dependent battery circuit model and a CFD model. The circuit model serves as a heat generation 

mechanism for the CFD model, and the CFD model provides the temperature distribution of the 

battery cells, which can impact the heat generation of the electrical battery model.  
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2.2. Model Implementation 

The proposed electric-thermal battery analysis consists of a temperature dependent battery 

electrical circuit model and a CFD model. Both a circuit solver and CFD solver are required to 

undertake the analysis. The heat generated by the circuit model for each time step is sent to CFD 

model as the heat source. The CFD model utilizes this heat source to calculate the temperature 

distribution, and the averaged volumetric temperatures of the battery cells are sent back to the 

battery electrical circuit model to calculate the heat generation for the next time step. The heat 

and temperature are processed iteratively between the two solvers until the user defined 

termination of simulation time. The circuit model is implemented in Simplorer and the CFD 

model is implemented in Fluent. The battery electrical circuit model is referred to as the circuit 

model in this work; battery electrical circuit model coupled with the CFD model is called circuit-

CFD model. Circuit-CFD model is ultimately the proposed methodology for analysis. 

2.2.1. Temperature Dependent Circuit Model 

The model in [105] is selected as the base line circuit model due to its simplicity and general 

acceptance [111]-[115]. Figure 2.1 shows the circuit model. The circuit model as shown would 

drive a current load and the voltage designated as Vload across the current load will be defined as 

the load voltage of the battery. Iload is the current loading applied to the model, Rtransient_l and 

Ctransient_l represent the long time constant effect, Rtransient_s and Ctransient_s represent the short time 

constant effect, Rseries is the internal resistance, VOC is the open circuited voltage, Ccapacity is the 

battery capacity, and Rself_discharge models self-discharge effect. The value for Rself_discharge in the 

model is infinite because self-discharge time is much longer than the load discharging time. Note 

that on the left hand side of the circuit, Iload is connected in parallel with Ccapacity and Rself_discharge, 
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the voltage Vsoc across Ccapacity is the State of Charge (SOC) of the battery. Equations (1) to (6) 

identify the component values are functions of SOC Vsoc [106], except Iload. a1-6, b1-3, c1-3, d1-3, f1-3, 

and g1-3 are the coefficients of the functions. To demonstrate the proposed methodology, we used 

the values provided in [105]. How to generate these coefficients is out of the scope of the work, 

nevertheless, for any given new battery module, the coefficients should be re-generated. For 

instance, they can be obtained by using the least-squares method described in [116]-[119].   

 

 

Figure 2.1:  Circuit model of a single cell battery. 
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            (2.2) 
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 The circuit model in [105] is isothermal. To establish thermal dependence, the thermal 

effect in [106] is included. The temperature dependency α and rate factor β [106] on the SOC 

Vsoc is introduced by equation (7): 

           1   
1

         

 ∫ αβ

    

0

                  
 

(2.7) 

 

  

Additionally, a potential correction term, which is a function of battery temperature, is also 

included to the open-circuit-voltage according to [106]. In this work, we assume that the battery 

cell exhibits the temperature dependency and rate dependency in [106], which allows us to 

demonstrate the methodology. For any new given battery cell, these dependencies should be re-

established through procedures in [106]. 

Figure 2.2 shows the load voltage Vload of the modified single cell circuit model is temperature 

dependent under the above assumption. Let the modified model discharge at 1 A current to 3 V 

when its temperature is at 283, 293, 303, 313, 323, and 333
 
K. It is important to note that the 

battery can be damaged due to excessive temperature rise even though it can produce higher load 

voltage at higher temperature. Therefore monitoring the temperature of battery cells and ensuring 

the temperature is within the safety range during the entire operation is very important to 

protecting the battery cells. We will see later our model makes this possible. 
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Figure 2.2:  Load voltage of a single cell circuit model discharging at 1 A current load at 283, 

293, 303, 313, 323, and 333
 
K. 

Figure 2.3 shows how the cell discharges at 0.3, 0.5, 1, 1.5, 2 and 3 A at a temperature of 

293 K. The battery discharges faster at higher currents. 

  

0 500 1000 1500 2000 2500 3000
3

3.5

4

4.5

5

Time (s)

L
o

a
d

 V
o

lt
a

g
e

 (
V

) 

333 K

313 K

303 K

293 K

283 K

323 K



11 

 

 

Figure. 2.3:  Load voltage of a single cell circuit model discharging at 0.3, 0.5, 1, 1.5, 2, and 3 A, 

at 293 K. 

 The modified circuit model is both temperature and loading dependent; therefore, it can 

be used in the proposed circuit-CFD model. It is worth mentioning that we chose to combine the 

circuit models proposed in [105] and [106] as our model because of their general acceptance and 

simplicity. However, the proposed co-simulation methodology is not limited to this circuit model 

only. Other temperature dependent circuit models could also be used in the proposed circuit-CFD 

methodology. 

2.2.2. 3D CFD Physics Based Model 

The 3D CFD model of the single cell battery is shown in Figure 2.4. The blue area is the 

cooling fluid flow which is typically air or water, and the green cylinder is the battery cell. The 

radius of the battery cell is 20 mm, the height is 120 mm. Generally, the materials exhibit 

thermal dependence, but in this work, effective forced convection cooling is assumed and 

temperature variation is not expected to be large, so the material properties can be taken to be 
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temperature independent for simplicity. However, the proposed methodology is not limited to 

temperature independent materials. Fluid mass flow rate is assigned to the inlet boundary, and 

pressure boundary is assigned to the outlet. The initial temperature of the CFD model is 300 K.  

 

 

Figure 2.4:  CFD model of a single cell battery. 

Figure 2.5 displays a temperature distribution from the CFD model. The temperature is 

plotted on a cross sectional plane. The inner region of the cell has higher temperature, and it 

decreases towards the surface of the cell as an effect of the cooling fluid. CFD provides good 

insight into the thermal system, considering geometry, material properties, cooling condition, 

and etc. This insight is the primary reason for the use of CFD which is widely accepted in battery 

thermal management design in automotive industry. 
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Figure 2.5:  CFD temperature distribution of a single battery cell. The range is from 300K to 

329K.   

 

2.3. Methodology Execution and Validation 

In this section, we will execute and validate the proposed methodology. Figure 2.6 shows a 

temperature dependent 4-cell circuit model. The model consists of 4 single cell models in section 

II and they are connected in series to a current load Iload. The Load voltage Vload is defined as the 

voltage across Iload  similarly. 
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Figure 2.6:  4-cell circuit model. The 4 battery cells are in series connection. 

Figure 2.7 displays the load voltage of the 4-cell circuit model at 283 to 333 K, at 10
 
K 

increment, discharging by a constant current load of 1 A to 12 V. In addition, Figure. 2.8 shows 

6 instances of constant current discharge and the corresponding load voltages at a fixed 

temperature of 293 K.  

Single Cell Model
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Figure 2.7:  Load voltage of the 4-cell electrical circuit battery model discharging by 1 A current 

load at 283, 293, 303, 313, 323, and 333
 
K. 

 

Figure 2.8:  Load voltage of the 4-cell circuit model discharging at 0.3, 0.5, 1, 1.5, 2, and 3 A, at 

293 K.  

The results in Figure 2.7 and Figure 2.8 prove that the 4-cell circuit model is both temperature 

and current loading dependent, thus it is suitable for the proposed circuit-CFD model. 

0 500 1000 1500 2000 2500 3000
12

13

14

15

16

17

18

19

20

Time (s)

L
oa

d 
V

ol
ta

ge
 (

V
)

333 K

323 K

313 K

303 K

293 K

283 K

0 2000 4000 6000 8000 10000
12

13

14

15

16

17

18

Time (s)

L
o
a
d
 V

o
lt

a
g
e
 (

V
) 3 A

2 A

1 A

1.5 A

0.5 A

0.3 A



16 

 

Additionally, represented in the CFD domain, the 4-cell CFD model is shown in Figure 2.9. 

The dimensions of the cells are the same as the single battery cell. The cells are placed closely 

but not touching each other so the flow can provide effective cooling surrounding each cell. The 

flow region has increased to accommodate the four cells compared to the single cell case. The 4-

cell circuit model in Figure 2.6 and the 4-cell CFD model in Figure 2.9 are coupled as described 

in Section II. 

 

 

Figure 2.9:  4-cell CFD mesh.  

The proposed circuit-CFD methodology obtains solutions using an analog circuit solver and a 

finite difference CFD solver. The solver executes iteratively in progression of solutions that are 

coupled through sequential processing and exchange of parameters with relative time steps. The 

circuit and CFD equations are not solved simultaneously; therefore, it is possible to have 
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numerical error propagate, accumulate, and lead to a divergent solution. Concerning this 

divergent possibility, an execution of the methodology is presented. The result of the proposed 

circuit-CFD model will be compared to the result of its equivalent circuit model where the 

electrical and thermal equations are modeled and solved in the circuit solver. 

The circuit-CFD model is composed of a battery electrical circuit model and a CFD model. If 

an equivalent circuit thermal model from the CFD model can be generated, it can be shown that 

the entire model can be modeled within the circuit domain through replacement of the CFD 

model with the equivalent circuit thermal model.  

There are many methods to effectively generate the equivalent model of physics based thermal 

systems [120]-[124]. In this work, we use the Linear Time Invariant (LTI) method in [20] to 

extract the equivalent thermal model owing to its simplicity or effectiveness. The circuit model 

and the LTI thermal model form the circuit-LTI model that can be solved simultaneously in the 

analog circuit domain. The circuit-LTI model is defined as the simultaneous model to signify its 

electrical and thermal equations are solved simultaneously. A LTI thermal model is therefore 

extracted from the 4-cell CFD model in Figure 2.9. The average temperature of each cell is the 

output of the LTI model, the input is the heat generated by the battery circuit model in Figure 2.6. 

The process and requirement of generating the LTI model can be found in [120].  

Next, 3 defined current loadings Load 1, Load 2 and Load 3 are applied to the circuit-CFD 

model and the simultaneous model. Load 1 is constant current, Load 2 is pulse current with 50% 

duty cycle, and Load 3 is from proprietary industrial measurement which has been conditioned 

as a profile shown in Figure 2.10.  
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Figure 2.10:  3 current loadings. The duration of each is 2000 seconds. Load 1 is 1A constant 

current. Load 2 is pulse current with 50% duty cycle. Load 3 is a scaled measurement data. 

 

The load voltages of both models under the 3 current loading profiles are benchmarked in 

Figure 2.11.  The results exhibit very good agreement, notably the differences in the curves are 

less than 1%. The differences can be explained as numerical error of the proposed model, and the 

differences are well within generally accepted tolerances for purposes of engineering. The 

excellent agreement between the circuit-CFD model and simultaneous model validates the 

proposed circuit-CFD modeling methodology.  
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(a) Load voltages under Load 1. 

 

(b) Load voltages under Load 2. 
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(c) Load voltages under Load 3. 

Figure 2.11:  4-cell load voltage comparison between circuit-CFD model and simultaneous 

model under 3 current loadings 

Figure 2.12 shows the temperature distribution of the 4-cell circuit-CFD model at 1600 s, 

1620 s, 1640 s, and 1660 s time instants during Load 3 discharging in Figure 2.11 (c). The 

temperature distributions of cells are different spatially, and the distributions change with as time 

as well. Due to the heat generation mechanism as provided through the circuit model and the 

capability of CFD to predict the temperature distributions of the system, the value of the 

proposed methodology for HEV/EV battery thermal management design is apparent. On the 

other hand, it is worth noting the simultaneous model can provide electrical terminal results as 

shown in Figure 2.11, as well as the average cell temperature, but it cannot provide temperature 

distribution like the proposed model due to its lumped nature. This is also the drawback of any 

lumped thermal model used in thermal management design. Further supporting analysis will be 
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presented in section IV when CFD temperature results using the proposed methodology for 

detailed inspection of 6-cell and 16-cell circuit-CFD models are reported. 

 

 

Figure 2.12:  Temperature distribution results from the 4-cell circuit-CFD model. The 

temperature distribution is recorded during Load 3 discharging, and it is presented at 1600, 1620, 

1640, and 1660 s. 

2.4. More CFD Results and Scalability of the Proposed Circuit-CFD Model 

This section presents a 6-cell and a 16-cell battery model. The 6-cell circuit-CFD model is 

shown in Figure 2.13. The 6 single cells are connected in series electrically. The cell dimension 

is same as the single cell model and the 6 cells are arranged in similar fashion as the 4-cell model 

spatially. The temperature distributions on the cross-section of the 3D CFD model at 8 different 

instants of time during a constant resistive load discharge process are shown in Figure 2.14. The 
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electrical terminal results are omitted here because they are similar to those in Figure 2.11, and 

we will focus on the CFD nature of the proposed model in this section. 

 

 

Figure 2.13:  6-cell circuit-CFD model.  

Initially in the discharging process, the battery cells heat up relatively quickly in 750 s and 

reach their first temperature peaks as shown in Figure 2.14(a) - 2.14(c). Subsequently, there is an 

extended period of time from 750 s to 4500 s where the temperature decreases slowly as shown 

in Figure 2.14(d) - 2.14(f). Observe that there is a non-uniform temperature distribution in the 

battery pack when the temperature is undergoing a slow temperature decline. Towards the end of 

the discharge process, a sudden temperature ramp-up occurs from 5300 s to 5700 s as shown in 

Figure 2.14(g) – 2.14(h). Cells exhibit different temperatures at different rates due to the unique 
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location of each cell in the battery pack. The proposed circuit-CFD model holistically predicts 

temperature distributions at various time instants within the physical geometry. 

 

 

(a) At 50 s. The discharging process starts here. 

 

(b) At 150 s. The temperature starts to increase. 
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(c) At 750 s. The temperature starts to increase rapidly to its first peak value. 

 

(d) At 2000 s. The temperature starts to decrease. 
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(e) At 3500 s. The temperature continues to decrease slowly. 

 

(f) At 4500 s. The temperature continues to decrease slowly. 
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(g) At 5300 s. The temperature starts to increase again. 

 

(h) At 5700 s. The temperature starts to increase rapidly to its highest temperature, which is very 

close to the end of the discharging process. 

Figure 2.14: The temperature contour on the cross section of the 6-cell battery model at 8 time 

instances during a discharging process. 

 

As far as the scalability is concerned, the proposed model can also be used to study battery 

packs with any larger numbers of cells, the only limiting factor is the availability of the computer 
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hardware. Also, the computation time of the proposed model is dictated by the CFD model 

because it is a field solver and it has many more unknowns than the circuit model, the circuit 

model will not have much overhead in addition to the CFD standalone model solving time while 

providing a dynamic heat generation mechanism. As an example, Figure 2.15 shows the circuit-

CFD model of a 16 battery cell model. The cells have similar dimensions as that in Figure 2.5 

and Figure 2.9. The temperature distribution at a time instant during the constant current 

discharge process is shown in Figure 2.16. The cells as indicated by the graphic identify the 

thermal distribution that is of concern to engineering application. The circuit-CFD methodology 

of analysis has made this possible.  

In summary, the proposed circuit-CFD methodology is scalable and can provide detailed 

temperature distribution for any number of cells while taking into account the dynamic heat 

generation aspect of the battery cells.   

 

Figure 2.15: 16-cell circuit-CFD model. 
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Figure. 2.16:  Temperature distribution of the 16-cell circuit-CFD model. 

2.5. Summary 

In conclusion, a novel circuit-CFD methodology of analysis has been proposed for 

HEV/EV battery thermal management design. The model consists of a heat generating electrical 

circuit model and a CFD model predicts temperature distribution. The functionality of the 

analysis provides temperature distribution of the battery while having an accurate runtime heat 

generation mechanism taken into account which is a function of temperature. The analysis can be 

used to predict electrical terminal performance but most importantly the temperature distribution 

that are due to various battery geometries, materials, current loadings, and cooling conditions. 

Implementation, simulation results and validation have been provided for the 4-cell battery 

model under 3 current loading conditions. Finally, a 6-cell and a 16-cell battery models have 
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been presented to show the flexibility and scalability of the proposed methodology for 

implementation in engineering design and development. 
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CHAPTER 3: LINEAR TIME INVARIANT THERMAL MODEL 

3.1. Background 

There have been many battery models emerged for electrical/hybrid vehicles.  There are in 

general two types of battery models, electrochemistry models [125]-[127] and system level 

electrical circuit models [128]-[130]. The electrochemistry models are known to be the most 

accurate models because they describe the electro-chemistry process. On the other hand, 

electrical circuit models are very poplar choices for system level simulation due to ease of use. 

They are built of R and C components. The battery circuit models are capable of predicting state-

of-charge, I-V characteristics, and dynamic behavior of a battery. If the impact of temperature on 

battery performance is considered, the electrical modes can be further divided into 2 groups. 

Isothermal battery models [128] are for low power application whose thermal effect is negligible. 

On the other hand, for high power applications such as electrical/hybrid vehicles, we use thermal 

network models [129]-[130] coupling with battery electrical models to take into account 

temperature impact on battery performance.  Thermal capacitance and thermal resistance are 

used in thermal network models. The number of thermal resistances and capacitances are usually 

quite large to get accurate results, which makes the model too complex to calibrate. If the 

number of components is reduced such that each battery cell has only one thermal node [129], 

the model could easily lose accuracy.   

In this part of the work, we propose a new thermal model using Foster network.  Foster 

network also uses resistances and capacitors to represent the transfer function of the thermal 

system but they do not have the same physical meaning as those in the traditional thermal 
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network. The way that the resistors and capacitors are connected and how their values are 

extracted are different from traditional thermal network models. The resistors and capacitors in 

thermal network models are arranged according to the actual arrangement of the battery cells, 

and their values are extracted respective to its governing physics or lab testing.  On the other 

hand, the component arrangement of the Foster network is the same once the Foster network 

order is chosen, in spite of the battery’s physical arrangement.  The values of the components in 

the Foster network are obtained by curving the steps responses of the battery thermal systems. 

The step responses can be collected either from measurement or by using CFD models under 

linear and time invariant assumptions.  To create an accurate traditional thermal network model, 

the engineer needs to have both in-depth knowledge of the thermal system on hand and good 

engineering judgment.  The Foster network takes systematic approach instead. We will show that 

a Foster network model can give identical results as the CFD model or testing would if the 

system is under linear and time invariant assumptions. The simulation time of the Foster network 

is comparable to that of the thermal network, which is orders of magnitude faster than CFD field 

simulation. In electronics cooling applications [131]-[132] the Foster network approach has been 

used for some time, nevertheless this is the first time we introduce it to battery cooling 

applications. 

3.2.  Battery Thermal LTI Representation  

The battery pack can be considered as a system. A system is an entity that takes inputs and 

generates outputs [133]. The inputs signals are functions of time in this application. For battery 

application, the heats dissipated in the battery cells is the inputs, and the temperatures at specific 

locations the outputs.  
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If a system is linear and time invariant (LTI), the system will possess two interesting 

characters. Firstly, its impulse response can completely describe the system itself.  For a single 

input single output system, its output response can be obtained by convolving the input with the 

impulse response when the system is initially at rest [134]. Secondly, two systems are identical if 

their impulse responses are identical. According to the second character, we can describe a LTI 

thermal system using a LTI Foster network, if their impulses or step responses are identical. To 

obtain the thermal responses such as temperatures of the battery system, we can solve the Foster 

network of the system using the circuit simulator, which are ordinary differential equations, 

instead of the partial differential equations. For simplicity, we will study a single battery cell 

system. Then a six and a sixteen battery cells modules will be presented to demonstrate the 

application of the method on more complex systems. 

3.3.  Foster Network Model for Single Battery Cell 

In this section, we will discuss a one cell battery system that has only one input and one 

output. Figure 3.1 illustrates the CFD model of the system. The model has one pressure outlet 

and one flow inlet.  The middle of the domain is the battery cell.  This is a standard conjugate 

heat transfer problem where the convection heat transfer takes away the heat generated by the 

battery cell.   
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Figure 3.1: Single cell battery cooling system. 

 

The time varying power consumed in the battery cell is the input and the time varying 

volumetric average temperature cell is the output.  Under the assumptions of constant flow rate, 

constant specific heat, constant density, constant transport properties, and linear boundary 

conditions, the system can be considered as a LTI system.  Examples of linear boundary 

conditions are temperature and heat flux boundary conditions. Example of non-linear boundary 

condition is radiation boundary. Constant density and properties are good assumptions for water 

cooling and forced air cooling battery thermal systems in a narrow range of temperature variation.  

We will present a benchmark comparing the results from a Foster network and a non-linear CFD 

model of the same battery module.  The results will ensure the Foster network has good accuracy 
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and practical value. Radiation can be ignored under the assumption of narrow temperature range 

and furthermore, constant pump speed can realize frozen velocity fields.   

The battery thermal system is an LTI system under these assumptions above. Therefore it 

can be characterized by its impulse response, which in this case is the history of temperature rise 

of the battery cell given it is excited by a unit heat source at time equals zero.  In our study, we 

obtain the impulse response from CFD simulation, but it can also come from lab testing. Figure 

3.2 shows an impulse response of the system.  

 

Figure 3.2: A typical impulse response curve. 

 

According to linear system theory, the system output can be obtained by convolving the 

impulse response with the transient input, the convolution equation is given as (3.1), and the 

output is the volume average temperature of the battery cell in our study.                      
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      
t

dthxty
0

  
(3.1) 

where x is the input which is a time domain power dissipated, y is the output temperature, and h 

is the impulse response of the system.  The convolution is usually written as: 

     thtxty *  (3.2) 

The temperature history under some arbitrary input using CFD and convolution are 

compared in Figure 3.3. The excellent agreement proves that impulse response completely 

characterizes the thermal system.  Convolution method can reduce the simulation time in order 

of magnitude compared to the CFD method. 

 

 

Figure 3.3: Comparison between CFD and convolution results 
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To generate temperature output of the thermal system from an arbitrary waveform input, 

the convolution method above is much faster than CFD calculation. However, when the system 

has multiple outputs and inputs, it is not convenient. Instead, obtaining a LTI model to represent 

the thermal network appears to be a better approach. A Foster network is one kind of LTI models, 

which is accurate, fast, and can be co-simulated with an electrical battery circuit model.  

A Foster network is a LTI electrical circuit network, if it has the same step response as 

the thermal system, then it can represent the thermal system. Its parameters can be curve-fitted 

by using step responses. In this approach, we enforce the Foster network to have the same step 

response of the battery thermal system.  Non-linear least squares method can be used to perform 

the fitting task.  Figure 3.4 shows a typical Foster network.  The number of RC pairs can be 

changes, as well as the RC values. 

 

 

Figure 3.4: A typical Foster network. 
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In Figure 3.4, the current source is the time varying heat dissipation, and the voltage 

across the current source is the predicted temperature. Figure 3.5 compares the results between 

Foster network and CFD of a sin wave heat loss input. The agreement in results shows that the 

Foster network is an accurate representation of the battery thermal network. 

 

 

Figure 3.5: Comparison between CFD and Foster network results 

 

 In a thermal system that has more than one heating elements, we can have both self-

heating as well as cross-heating phenomena.  The self-heating step response can be fitted easily. 

On the other hand, the fitting of cross heating needs additional mathematical manipulation. This 

is because of the different natures of the self and cross heating responses. Figure 3.6 and Figure 

3.7 show the typical self and cross heating step responses, respectively. The self-heating curve 

has positive slope at the start of the curve and its shape is similar to first order RC response.  
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However the cross-heating’s slope starts at zero, which makes sense because the heat generated 

from one cell takes time to reach the second cell.  The step output of a Foster network is given by 

the following equation:  
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          (3.3) 

 

, where the number of RC pairs is m, and Ri and τi can be found by using curve fitting.  The 

Foster network does not allow slope equals to zero therefore it cannot model the cross-heating 

curves.  If we allow for negative values for R in the curve fitting, we can fit the curve very well 

with Foster network. Negative R is correct mathematically, but it will not work in circuit 

simulation because there is no negative resistance.  To overcome this problem, R will be limited 

to positive values only, then we subtract the voltage of R, which would otherwise have been 

negative to fit the cross heating. This way, the R values are positive which is understandable by 

the circuit solver, but they will have negative voltage contribution.   
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Figure 3.6: A typical step response of self-heating 

 

 

Figure 3.7: A typical step response of cross-heating 

 

3.4.  Foster Network for A Battery Module 

If the thermal system is linear, then we can use superposition to predict thermal 

performance of a multiple cell battery module. For example, the temperature of a battery cell can 
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be calculated by summing up the contributions from all the battery cells in the system.  Equation 

(3.4) is the mathematical representation of superposition. 
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(3.4) 

where yi is the output, the average temperature at the ith battery cell; xi is the input, the power 

consumed at the ith battery cell; * here denotes convolution as shown in equation (3.2);  hij in the 

represents the impulse response of the jth heat input on the ith temperature output. The impulse 

response matrix completely represents the system mathematically.  To determine hij, we excite 

one cell at a time.  For instance, battery cell number j is excited only with a unit impulse, then 

the temperature rise as a function of time at battery cell number i becomes the hij. We can define 

the inputs and output anywhere of interest in the thermal system. In other word, the matrix in 

(3.4) is not necessary a square matrix. 

 As discussed before, Foster network method can be more user friendly than the 

convolution method. To create a Foster network for a MIMO (Multiple Input and Multiple 

Output) system, we actually need to create Foster network matrix. In Figure 3.8, we have a six 

cell battery module where we define 6 power inputs and 6 temperature outputs. Therefore the 

Foster network matrix contains 36 elements, where each element is a Foster network 

theoretically.  In practice, the effect of some cross heating element is very small therefore can be 

ignored, which results in matrix size smaller than 36. The Foster network for this battery system 

is shown in Figure 3.9.  The Foster network of each matrix element is represented by two sets of 

RCs.  And some cross heating elements are neglected because their effects are negligible.  Figure 
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3.10 compares CFD and Foster network results.  Foster network and CFD give the same solution. 

The solution time of Foster network is less than 30 second and CFD takes 30 minutes on the 

same computer. 

 

Figure 3.8: A battery system with six battery cells. 
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Figure 3.9: Foster network model for the six cell system 
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Figure 3.10: Comparison between FLUENT results and Foster network results for three battery 

cells 

   CFD model has to be a LTI system in order to have the same results as the Foster 

network. However, the real battery thermal systems are highly nonlinear.  Next we will see how 

well the Foster network model compares to the non-linear CFD model.  We use the same six cell 
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battery module.  A Foster network model is generated from the step responses of the LTI CFD 

model. Another CFD model of the same battery module that considers nonlinear effects such as 

ideal gas law for density, temperature dependent material properties under the same flow rate is 

generated.  The results of the Foster network and the realistic CFD model are compared in Figure 

3.11 under sinusoidal heat generation.  We choose to show the temperature of cell one, the other 

cells have similarly results.  The difference in results is 2% due to non-linearities when the 

temperature rise of the cell is about 90 K.  2% is within good engineering acceptance because 

usually battery cells will have a temperature rise less than 90K, which will result in error less 

than 2%.   

 

 

 
 

Figure 3.11: Comparison of Foster network model with FLUENT non-linear CFD model. 
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3.5. Complete battery circuit model 

We can use battery circuit model to study the electrical performance of the battery module. 

A popular battery circuit model [128] is shown in Figure 3.12. A thermal model can be co-

simulated with the battery circuit model to consider the thermal effect.  Thermal network model 

is usually coupled with the battery circuit model.  Thermal network model is usually not accurate 

because the number of components of the model is small for simplicity, and the heat transfer 

coefficient is assumed to be constant for each battery cell. In order to improve the accuracy of 

the thermal network model, large number of components are needed therefore makes it difficult 

to calibrate.  The thermal network model can be replaced by Foster network model without 

losing accuracy.  One advantage of thermal network over the Foster network is that it does not 

require the battery thermal system to be LTI system.  Nevertheless, we have shown that for 

battery application, Foster network is accurate results even considering non-linear effects.  

 

Figure 3.12: An electrical circuit model for a battery cell 
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3.6. Summary 

We can represent battery thermal system by Foster network or Foster network matrix if the 

thermal system is LTI system. The simulation results of Foster network model are in excellent 

agreement with CFD model. However, the simulation time of Foster network is order of 

magnitude shorter than CFD simulation time. To obtain a Foster network, we need to use the 

CFD model of the battery or experimental testing on the actual battery module to collect the step 

responses,  and the model is created by using least squares curve fitting method.  The Foster 

network can also be coupled with battery circuit model in place of the traditional thermal 

network without losing accuracy. We have also shown that the Foster network results is within 2% 

difference comparing to the nonlinear CFD model results with a 90K temperature increase.  
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CHAPTER 4: MULTI-PHYSICS INTERIOR PERMANENT MOTOR 

MODELING 

4.1. Background 

PM electric machine are very important in high performance drive systems such as hybrid 

and electrical vehicles, and etc. During normal operations, irreversible demagnetization can 

occur in magnets due to temperature rise and various loading conditions [135]. However, these 

effects have not been presented in the form of IPM’s electric machine quantities in literature. 

Therefore, we are motivated to investigate the performance of an IPM electric machine due the 

temperature rise and loading variations. We propose to use 3d time stepping electromagnetic 

FEA integrated with the temperature dependent permanent magnet model proposed in [136] to 

study the phenomena. Finally, the non-uniform temperature distribution of the magnets is taken 

into account by using CFD solution. 

Figure 4.1 (a) shows the N5211 rare earth magnet material from Dexter Magnetic 

Technologies [137], which provides the intrinsic and normal BH curves from -20 
o
C to 80 

o
C.  

These curves can be approximated according to the thermal dependent magnet model in (4.1) 

and (4.2).   and β  are the coefficients of the model and they are either provided by the 

manufacturer or computed by standard curve fitting technique. Br is remanence, Hci is intrinsic 

coercivity, T is the magnet temperature, and T0 is the reference temperature of one intrinsic BH 

curve. The derived curves are shown in Figure 4.1 (b). 

)0(1[)0()( TTTrBTrB                                                      (4.1) 
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)]0(1[)0()( TTTciHTciH                                                    (4.2) 

The derived ones and the original data curves are in good agreement. The BH curves at other 

temperature can also be calculated from the model. We will discuss the temperature effects on 

the IPM performance in details in the next section. 

 

 

(a)  BH curves on N5211 data sheet 
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(b) BH curves generated by the temperature dependent magnet model 

 

Figure 4.1: The intrinsic and normal BH curves of rare earth material N5211  

 

4.2. Results and Analysis 

The Toyota 2004 Prius IPM motor [138] is used to demonstrate the temperature effects on 

the magnets as well as the IPM performance. The motor is modeled in ANSYS Maxwell 3D time 

stepping finite element software. The motor is controlled by three phase balanced currents, we 

define the control angle as the electrical angle from the d-axis in the rotor reference, the phase 

peak current is 233 A, and the rotor shaft speed is 3000 rpm. The magnet material used in the 

model is N5211 and we assume the magnets have uniform temperature distribution for now.  

Figure 4.2 shows the torques of the motor at various temperatures when the control angle 
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is 120 degree. To validate the thermal-dependent magnet model, we obtained torques by using 

the normal BH curves for 20–80 
o
C from Figure 1(a). Then we compare them with the torques by 

using the thermal-dependent magnet model at the same temperatures, both results are in good 

agreement and shown as the first 4 curves in Figure 4.2. Notice that there are dots superposed on 

the curves and they are the solutions using the BH curves of the data sheet. It can be seen that the 

torque decreases as temperature increases whereas the torque ripple decreases.  

 

 

Figure 4.2: Torque vs time at various temperatures. 

 

Figure 4.3 provides the magnetic flux density of the rotor for 20, 120, and 150 
o
C, in this 

case the control angle is 120 degrees. The magnetic flux density B of the magnets as well as the 

rotor core decreases as the temperature rises. The decrease in magnet flux density means the 



51 

 

magnets are losing its capability of producing flux when operating at the same magnetic field 

intensity. This is the reason the torque reduces as temperature rises.  In addition, decrease in 

rotor flux density indicates the motor loses its saliency because the d-axis reluctance is reduced. 

We will look at the saliency in details later on. We will focus on what has occurred in the 

magnets first.  

We then place a measurement point at the center of the magnet on the left, as shown in 

Figure 4.3(c). The B and H values at the measurement point are plotted on Figure 4.4 at various 

temperatures. The B and H values of the point are drawn in thicker lines, and the N5211’s 

normal BH curves are drawn in the thinner curves. When the temperature is below 90 
o
C, the 

measurement point operates in the linear region of the BH curves. In the linear region, the 

demagnetization is reversible. When it is above 90 
o
C, the measurement point starts working in 

the recoil regions, which means irreversible demagnetization has occurred. Also in Figure 4.3(b), 

the B values at the upper right corners of the magnets are lower than the centers of the magnets. 

This is because the corners are closer to air in the slots such that the fringing fields in the slots 

demagnetize the corners first. Therefore the corners of the magnets are more susceptible to 

demagnetization than the center of the magnet. In other word, if the center of the magnet is under 

irreversible demagnetization, approximately half of the magnet is also under irreversible 

demagnetization. 

The time average torque of the IPM is plotted against temperature in Figure 4.5 when the 

control angle is 60, 90 and 120 degrees. The three curves decrease at the same constant slope 

from 20 to 90 
o
C. However, the 120 degree curve decreases faster than the other two curves 
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when it is above 90 
o
C. Also our analysis earlier indicated that at 90 

o
C a significant part of the 

magnet is under irreversible demagnetization at 120 degree control angle. Therefore, the torque 

vs temperature curve in Figure 4.5 decreases at an increasing slope indicates significant 

irreversible demagnetization has occurred in the magnet. Notice irreversible demagnetization 

occurs at 90 
o
C for the 120 degree curve, however it will occur above 120 

o
C for the 60 and 90 

degree curves. IPM machines are known to operate at control angle greater than 90 degree to 

gain additional reluctance torque [139], which also makes the IPM more susceptible to 

irreversible demagnetization at lower temperature. 

 

(a) 20 
o
C 
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(b) 120 
o
C 

 

 

(c) 150 
o
C 

 

Figure 4.3: Rotor magnetic flux density at 20, 120, and 150 
o
C. 
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Figure 4.4: Operating points of the measurement point at various temperatures 

In addition, when it is above 135 
o
C, the 120 degree curve approaches the 90 degree 

curve. The machine has lost most of its reluctance torque, in other word, its saliency.  
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Figure 4.5: Torque v.s. temperature for control angle 120, 90, and 60 degrees 

In Figure 4.6, the torque vs control angle is plotted at 20, 120 and 150 
o
C. Notice the 

maximum torque angle varies for each curve. At 20 
o
C, the maximum torque angle is 140 degree. 

At 120 
o
C it is 120 degree. Finally at 150 

o
C it is 150 degree. The knowledge of the maximum 

torque angle is very critical for Maximum Torque Per Amp (MTPA) control in the constant 

torque region. 
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Figure 4.6: Torque vs control angle at 20, 120, and 150 
o
C 

 

The current and flux linkage are plotted in Figure 4.7. The current is solid curve whereas 

the flux linkage is the dotted curve. The flux linkage is moving in phase with the current as 

temperature rises. This is because the magnet is weakened and the resultant flux is dominated by 

the armature reaction. Figure 4.8 shows the induced voltage of phase under various temperatures. 

The induced voltage waveform shifts to the left and increases as temperature rises and it means 

less voltage will be available in field weakening region at higher temperature. 
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Figure 4.7: Phase A current and flux linkage at 20, 120, and 150 
o
C   

 

Figure 4.8: Phase A induced voltage when the magnet temperature is 20 
o
C, 120 

o
C, and 150 

o
C 
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Next, we will investigate the change in IPM’s saliency versus temperature. Figure 4.9 

shows d-q inductance Ld and Lq, as well as the saliency ratio Lq/Ld, at 120 degree control angle. 

Ld increases and approaches to Lq as temperature rises. The saliency ratio is closer to 1. These 

are evidences that the IPM loses its saliency as temperature increases. 

In Figure 4.10, the control angle is equal to 90 degree. Ld and Lq are getting closer 

before 105 
o
C and eventually they are equal at 105 

o
C. Above 105 

o
C, Ld is greater than Lq, and 

the saliency ratio goes less than 1. This means the motor not only loses it saliency, but also go 

one step further reversing its saliency - d axis becomes q axis, q axis becomes d axis as 

temperature increases. 

 

Figure 4.9: Ld, Lq and Lq/Ld vs Temperature at 120 degree control angle 
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Figure 4.10: Ld, Lq and Lq/Ld vs Temperature at 90 degree control angle 

 

The analysis has been based on the assumption the magnet has a uniform temperature. In 

real applications, there could be temperature gradient in magnets [140]. To predict the 

temperature gradient effects on the IPM, we therefore create a CFD model in Fluent. The CFD is 

coupled to the time stepping electromagnetic 3D FEA. The coupled simulation takes 4-5 

iterations to converge. The non-uniform temperature distribution of the entire IPM is shown in 

Figure 4.11. The temperature gradient on the magnet is shown in Figure 4.12 and its 

corresponding B vectors are plotted in Figure 4.13.    
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Figure 4.11: Temperature distribution of the IPM motor 

 

 

Figure 4.12: Temperature distribution of the magnets 
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Figure 4.13: Flux density vector of the magnets 

 

Finally, Figure 4.14 gives the comparison of the torque for 20 
o
C,   135 

o
C and the 

coupled solution. Notice the difference between the results differ up to 30%. Therefore, 

obtaining the temperature distribution is necessary to accurately predict the torque of the IPM 

machine. 
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Figure 4.14: Comparison of torques 

 

4.3. Summary 

We have shown that the torque of IPM decreases as temperature increases due to reversible 

and irreversible demagnetization. And when the control angle is greater than 90 degree, the 

magnets of IPM are more susceptible to irreversible demagnetization due to temperature rise. 

Also the maximum torque control angle may differ at various temperatures. In addition, the flux 

linkage and induced voltages increases with temperature. Interestingly, The IPM motor tends to 

lose its saliency as temperature rises, or even reverse its saliency, depending on the operating 

control angle. Finally, a non-uniform temperature distribution could change the machine 

performance significantly. Therefore detailed thermal model is necessary to capture the non-

uniform thermal effects on the IPM performance. In conclusion, temperature dependency of the 
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magnets of the IPM has significant impact to its performance. Therefore it should be studied 

carefully in any IPM machine design. Our future work is to study the temperature effects on 

other quantities such as core loss, eddy loss in the magnet, efficiency, and etc.  
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CHAPTER 5: REDUCED ORDER IPM MODEL CONSIDERING PM 

TEMPERATURE DEPENDENCY 

5.1. Background 

IPM motors have been very popular because of high power density and high efficiency 

characteristics, especial in HEV and EV applications. The operation of the motors is complicated, 

to study and understand it, the knowledge of the field distribution and material saturation level 

are required. FEA is the most popular tools to carry out study and design of the IPM.  FEA 

provides detailed field distribution, electrical and magnetic performance of the IPM considering 

material properties, excitation, and physical dimensions because FEA solves the partial 

differential Maxwell equations. Therefore, FEA is well suited for IPM designers to design and 

optimize the machine. However, for system level simulation, the speed of FEA is too slow. For 

system level simulation, we are concerned about the performance of the entire system rather than 

just the IPM itself. So it is desirable to have an IPM model that is accurate to capture the main 

characteristic of physics, but runs at circuit simulation speed.  The permanent magnet materials 

are temperature dependent, which can affect the IPM performance significantly, therefore we are 

motivated to propose an IPM reduced order model that considers the magnet temperature effect 

based FEA results. We will validate the proposed model using the FEA results. 
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5.2. Existing PM Models 

The most popular PM model is called the dq model. The dq model is obtained by using the 

dq theory. The dq theory is a reference frame transformation, after the dq transformation, the 

sinusoidal inductances of the motor will become constant, the dq fluxes are decoupled 

mathematically, and dq voltages are only coupled through the speed voltage term. The dq motor 

equations under balanced excitation are shown as: 

        
   

  
      

 

(5.1) 

        
   

  
        

 

(5.2) 

    
 

 

 

 
             

 

(5.3) 

For PM motor, the dq fluxes are:  

            (5.4) 

        (5.5) 

Therefore (5.1) to (5.3) can also be written in terms of the inductances: 

          
   

  
                                                               (5.6) 

          
   

  
                                                    (5.7) 

    
 

 

 

 
[      (     )    ]                                                (5.8) 

(5.6) to (5.8) together with (5.9) are often used to model PM machines. 
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(5.9) 

IPM is one special kind of PM machine, so it can also be modeled by these equations. There are 

in general two types of IPM models and we will introduce them in the following. 

5.2.1. Analytical Linear and Non-linear IPM models 

Analytical linear IPM model uses the equations (5.6) to (5.9) directly. For IPM, Ld is less 

than Lq, and they are both constants. So linear model takes into account the saliency of the IPM, 

but it cannot account for non-linear saturation phenomenon.    

Non-linear linear IPM models also use equation (5.6) to (5.9), the Ld and Lq parameters 

are based on non-linear material BH curve. The model takes into account saliency and non-linear 

material saturation. However, the non-linear saturation usually is still not accurate due to the dq 

cross coupling effect, and localized saturation.  

5.2.2. IPM Model Based on FEA 

The IPM model based on FEA also uses equations (5.6) to (5.9), though it is inductances 

are calculated from FEA, and the inductances are functions of id and iq: 

    (     ) (5.10) 

    (     ) (5.11) 

  

This phenomenon is known as the cross coupling effect. Figure 5.1 and 5.2 show an 

example of the FEA Lq and Ld inductances as functions of id and iq.  As a result, we can find 

that the torque is also a function of id and iq in Figure 5.3. 
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Figure 5.1 Ld is a function of both id and iq 

 

Figure 5.2: Lq is a function of both id and iq 
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Figure 5.3: Torque is a function of id and iq. 

 

It is often overlooked that the magnet flux linkage is also a function of id and iq, in 

another word, it is current dependent. Magnet flux linkage obtained at no load is often used, 

which is a constant. It can be found in Fig.5.3, magnet flux is a function of iq.  
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Figure 5.4: PM flux linkage is a function of iq 

This dependency can also be recognized if we re-arrange equation (5.7): 

               
   

  
                   

(5.12) 

We know Ld and Lq are functions of id and iq, so should be the magnet flux linkage. Therefore, 

to model it correctly, magnet flux linkage should also be extracted from FEA. This requires 

additional post-processing calculation. The FEA based model is well known to be accurate, but it 

does not consider the temperature impact on the magnet material which could be substantial.   

5.3. The Proposed Temperature Dependent IPM model 

To avoid additional calculation for getting magnet flux linkage and incorporate 

temperature dependence of the permanent magnet, we propose a new model that uses equations 

(5.1) to (5.3), we write them here again:  
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(5.1) 

        
   

  
      

 

(5.2) 

    
 

 

 

 
            

 

(5.3) 

From (5.4) we know that the magnet flux is included in the d axis flux linkage, therefore 

in our model there is no need to calculate it explicitly. 

            (5.4) 

We extract the d and q flux linkages from FEA at different ids, iqs, and temperatures, so 

the flux linkages are functions of 3 variables, id, iq and temperature. For completeness, 

resistance should also be a function of temperature.   

     (                 ) (5.13) 

    (                 ) (5.14) 

                             (5.15) 

Once we collect the flux linkages, the model is implemented using VHDL-AMS language. 

The detailed implementation of the proposed model is provided in the next section.  

5.4. Implementation of The Proposed Model 

We use the Toyota Prius 2004 IPM motor as the FEA 2D model and it is shown in Figure 

5.5. The PM material is N3521 as shown in Figure 5.6. 



71 

 

 

Figure 5.5: IPM FEA model 

 

Figure 5.6: PM material N3521 
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We perform a parametric study for id = -400 to 400A, iq = -400 to 400A, Temperature = 

20, 40, 60, 90, 120, 150 °C, total of 1734 variations to capture all the possible operation 

conditions. 

For each variation, the 3 phase flux linkages of the motor model will be calculated from 

FEA. Figure 5.7 shows the flux linkages for id = 0 A, iq = 100 A, and temperature = 20 °C.  

 

Figure 5.7: 3 phase flux linkages in abc reference frame for id = 0 A, iq = 100 A, temperature = 

20 °C 

Apply dq transformation to convert the flux linkages from abc reference frame into dq reference 

frame using (5.15): 

[

  

  

  

]  
 

 
[

                                  

                                     
         

]  [

  

  

  

] 

 

(5.15). 

 

 

Notice    is zero for balance excitation ia + ib + ic = 0. 
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The d and q flux linkages is shown in Figure 5.8. 

 

Figure 5.8: d and q flux linkages for id = 0 A, iq = 100 A, temperature = 20 °C 

 

The average dq flux linkages will be used for the proposed motor model. The flux 

linkages are function of id, iq, and temperature. Figure 5.9 and 5.10 illustrate this. 

 

Figure 5.9: Q axis flux linkage is a function of id, iq at 20 °C and 150 °C 
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Figure 5.10: D axis flux linkage is a function of id, iq at 20 °C and 150 °C 

 

As a result, from (5.3) we know that torque should also be a function of temperature. 

Figure 5.11 shows the torque curves vs time. Notice for the same current excitation, the motor 

generates different torque curves at different temperatures. Figure 5.12 shows that the average 

torque contours at 20 °C and 150 °C. 
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Figure 5.11: Torque is a function of temperature 

 

Figure 5.12: Average Torque is a function of id, iq, and temperature 

In the proposed model, we will collect the average d and q flux linkages of the IPM 

motor at 6 temperature values. These values will be used in 3D-lookup table to construct the 
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120, and 150 °C are shown from Figure 5.13 to Figure 5.24. In the 12 figures, clearly we find the 

flux linkages are current dependent and temperature dependent, so is the proposed IPM motor 

model. 

 

 

 

 

 

Figure 5.13: D-axis flux linkage at 20 °C 
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Figure 5.14: D-axis flux linkage at 40 °C 

 

Figure 5.15: D-axis flux linkage at 60 °C 
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Figure 5.16: D-axis flux linkage at 90 °C 

 

Figure 5.17: D-axis flux linkage at 120 °C 
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Figure 5.18: D-axis flux linkage at 150 °C 

 

Figure 5.19: Q-axis flux linkage at 20 °C 
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Figure 5.20: Q-axis flux linkage at 40 °C 

 

Figure 5.21: Q-axis flux linkage at 60 °C 
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Figure 5.22: Q-axis flux linkage at 90 °C 
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Figure 5.23: Q-axis flux linkage at 120 °C 

 

Figure 5.24: Q-axis flux linkage at 150 °C 

VHDL-AMS (IEEE 1076.1-1999) is an industry standard multi-domain behavioral 

description language for modeling and simulation. It is a language extension of the IEEE 
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standard hardware description language VHDL (IEEE 1076-1993) with the ability to model 

analog and mixed signal systems. With VHDL-AMS, designers can describe the structure and 

the functionalities of components and systems at different levels, from the most abstract 

behavioral description to detailed device level models. Unlike the input-output based causal 

block oriented modeling approaches used elsewhere, VHDL-AMS provides a more straight-

forward and convenient way to model the continuous time dynamics from interconnected 

components, also known as acausal modeling. With acausal modeling, designers do not need to 

pre-design the computational flow through the system. Well-defined components can be 

connected directly to represent the system structure. This approach improves reusability of the 

component models and also makes helps the designer develop more complex hierarchical 

complex systems.  

With equations (5.1),(5.2),(5.3) and (5.9), along with the non-linear temperature 

dependent flux linkages as shown in Figure 5.13 to Figure 5.24, we construct the proposed IPM 

model in VHDL-AMS model, 3d look up tables are used to present the flux linkages because the 

flux linkages are functions of id, iq, and temperature. Figure 5.25 shows the comparison between 

the results from the proposed model and FEA. The results have excellent agreement in all 

operation conditions under different temperatures, which validate the proposed IPM model. The 

proposed model runs at circuit simulation speed which is order of magnitude faster than the FEA 

simulation. One thing we should point out is that since we use the average flux linkages to model 

the machine, the torque ripples that we see in the FEA results will not be modeled, we should 

expect the proposed model to produce the average value of the torque as shown in Figure 5.26.  
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Figure 5.25: Comparison between FEA results and the proposed motor results 

 

 

Figure 5.26: Transient torque results of the proposed IPM model 
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5.5.  Summary 

IPM motor is both current and temperature dependent. To capture these phenomena, we 

proposed a new IPM model based on FEA that is suitable for system level simulation. The theory 

and detailed implementation has been presented, finally, we have validated the proposed model 

by showing the results of model are in excellent agreement with the FEA results. Even though 

the flux linkages are obtained from FEA in this work, however they can also be obtained from 

experiment testing. 
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CHAPTER 6: VEHICLE SYSTEM MODELING 

6.1. Background 

Energy efficiency and environment pollution issues are an increasing global concern. For 

the automotive industry, fuel economy and vehicle emissions are concerns for both 

manufacturers and customers. A HEV is a vehicle that has both conventional mechanical (i.e. 

internal combustion engine) and electrical propulsion systems. The electrical powertrain is used 

to work with the conventional powertrain to achieve higher fuel economy and lower emissions. 

However, this approach leads to increased design complexity and increased costs [141]-[142]. 

Computer based modeling and simulation techniques are therefore essential to help reduce the 

design cost and optimize system performance. Due to the complexity of hybrid vehicles, multi-

domain modeling ability is preferred for both component modeling and system simulation.  

In this work, we present a HEV library developed using VHDL-AMS. The library provides 

reusable and extensible generic components for further design.  

6.2. Library structure and library component 

The elements in the library can be classified into three main categories: data/control 

components, mechanical components and electrical components. 

6.2.1. Data/Control Components 

The data/control components include components for data processing, control and 

signal distribution purposes. There are four components in the data/control category: driving 

cycle, driver, central controller and motor controller.  
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The driving cycle component provides desired vehicle velocity for the vehicle to follow. 

It is achieved by using a 2-dimensional look-up table model which uses imported time-speed 

data from standard drive cycles [143]-[144]. 

The driver model represents the velocity tracking behavior, which is used to minimize the 

difference between vehicle velocity reference and the actual system calculated vehicle velocity. 

Two PI controllers are used to generate the control signals for propulsion and brake operations 

separately [145]. The driver also need to indicate what condition the vehicle is in (e.g. start, 

drive , stop) to help other controllers or components to take different behaviors in different stage. 

The central controller is the main controller to handle the control signal distribution. One 

of its functionalities is to define the power distribution of the mechanical and electrical 

propulsion and braking system. In this model, a simple engine on-off control is implemented to 

achieve simple HEV control strategy [145]. However, it is very easy for the user to customize the 

control strategy in different test case scenario. 

The motor controller is used to generate voltage and current for the DC motor based on 

desired motor torque and estimated motor rotational speed. It also gives the connection between 

battery and motor.  

6.2.2. Electrical Components 

The electrical components mainly contain the models for the electrical propulsion system. 

The DC motor and battery model are described as follow. 
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6.2.2.1 Electrical Motor 

The electrical motor model represents the mathematical modeling of the permanent 

magnet DC motor (PMDC) following [146]. The voltage over the DC motor can be given by (6.1) 

by using Kirchoff’s law: 

                 emf
m

amam V
dt

di
LiRV   

 

(6.1) 

 

                       

where Ra is the armature resistance, La is the armature inductance , Vemf is the back emf of the 

motor and im is the current through the DC motor. The generated motor torque can be given 

approximately by  

mim ikT   (6.2) 

 

where ki is the so-called motor torque constant. The back emf is also related to the mechanical 

part by 

meemf kV 
 

(6.3) 

where ke is the back emf constant, ωm is the rotational velocity of the motor. The motor dynamics 

is represented by  

mmm bJT     (6.4) 

 

where J is the system inertia, b is the friction coefficient. The system inertia is evaluated during 

the entire system simulation, and it changes when vehicle conditions change. 

6.2.2.2 Battery (VDA/FAT AK30 Library) 

The currently used battery model is not in the Simplorer HEV library, it is from 

VDA/FAT AK30 Library. It uses look-up tables to represent the battery characteristics 

(VDA/FAT 2013).  
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6.2.3. Mechanical Components 

The mechanical components mainly contain the models for the mechanical propulsion 

and brake systems as well as the connection/coupling parts for the mechanical-electrical 

combination. It includes the internal combustion engine, fuel tank, clutch, transmission, 

mechanical torque coupling, brake, wheel and vehicle body (chassis). 

6.2.3.1 Internal Combustion Engine (ICE) 

The internal combustion engine (ICE) model is a so-called mean value internal 

combustion engine model following [147]-[148]. It is mainly composed by three components, 

includes throttle body, intake manifold and engine cylinder. The air mass flow rate throttled into 

engine can be given by 

max
im

thr thr

atm

P
m m A f

P

 
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(6.5) 

where maxm is the maximum air mass flow rate with an entirely opened throttle. thrA is the 

normalized throttle area can be given by 
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(6.6) 

 

where d is the throttle pin diameter, D is the throttle bore and a = d/D; φ and φ0 are the throttle 

angle and the throttle angle at closed position, respectively. The pressure ratio can be given by 



90 

 

2

2 if 
2

1 otherwise

im im
im im

atm atm

t

at

a m

m

P P P
P P

f P P
P

 
 


  

  
 


 




 

 

(6.7) 

The air dynamics in the intake manifold can be given by 

t e
im

hrm
dm

dt
m  

 

(6.8) 

 

With isothermal assumption, we have 

and im
thr im im

im im

RT
T T P

V m
   

 

(6.9) 

 

  

where R is the gas constant. The mass flow rate to the engine is 

4

cyl vol im e d

e

im

n m

V

V
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 


  

 

(6.10) 

 

where cyln is the number of cylinders, e is the engine rotational velocity, dV is the cylinder 

displacement volume. vol is the volumetric efficiency of engine, can be given by 

     4 2 424.5 3.1 0.167 222 8.1 0.31 5210 0vol e im e im em m            (6.11) 

 

  

The fuel dynamics is described as  

e
f fi fi fc

AF

m
m m m

r
      

(6.12) 
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Where f is the fueling time constant. fcm and fim are the requested and actual fuel mass flow rate, 

respectively. AFr is the air/fuel ratio into the engine. The engine rotational dynamics can be 

describe as 

e e i f pJ T T T     (6.13) 

  

where eJ is the engine inertia; iT is the engine indicated torque given by 

e
i T AFI SI

e

m
T c c c


     

(6.14) 

where Tc is the maximum torque constant of engine for specified em . AFIc is the normalized air 

fuel influence coefficient given by 

  cos 7.3834 13.5AFI AFc r   (6.15) 

  

SIc is the normalized spark influence coefficient given by 

  
2.875

cosSIc SA MBT   
(6.16) 

  

where  SA MBT is the difference of spark advance from top dead center and the minimum 

spark advance for best torque. fT is the friction torque of engine given by 

0.1056f eT   (6.17) 

 

pT is the engine output torque to the clutch. 
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6.2.3.2 Fuel Tank 

The fuel tank model is a tank model to represent the fuel change and the fuel remain in 

the tank. The fuel consumption rate can be given by  

tankfuel

fuel

V

m
FR






 

 

(6.18) 

 

where fuelm is the mass flow rate of fuel consumption estimated from ICE model. fuel is the fuel 

density and tankV is the volume of the fuel tank. 

6.2.3.3 Clutch 

The clutch model describes a simple behavior of clutch based on the control signal lock 

from the controller. When lock is true then the torque and the rotational velocity is fully 

transferred, otherwise, the torque and rotational velocity are not transferred. A more detailed 

clutch model is under development. 

6.2.3.4 Transmission 

The transmission model simply represents the transmission performance based on given 

gear ratio data set (Ehsani, Gao and Emadi 2007). The equations can be given by 

outgearin r    (6.19) 

outgeartranin TrT   (6.20) 

 

 

where in  and inT are the rotational velocity and torque transferred from clutch, respectively; out  

and outT are the rotational velocity and torque transferred to mechanical torque coupling, 
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respectively; gearr is the gear ratio selected by central controller based on vehicle condition and 

tran is the transmission efficiency.  

6.2.3.5 Mechanical Torque Coupling 

The mechanical torque coupling model represents the torque coupling from the 

conventional powertrain line and electrical motor line following [149]. The torque coupling can 

be given by 

3 1 1 2 2 0TT k k T      (6.21) 

  

where 1T , 2T  and T3 are the torque from the electrical propulsion system, torque from the 

mechanical propulsion system and torque transfer to wheel, respectively. 1k  and 2k are 

coefficients depending on the coupling type. For pulley or chain assembly, 1 2 1/k r r  and 2 1k  , 

where r1 and r2 are the radii of pulley 1 and pulley 2 respectively. The rotational velocities can 

be given by 

         (6.22) 

            (6.23) 

  

where 1 , 2  and 3  are the rotational velocities from electrical propulsion system, mechanical 

propulsion system and transfer to wheel, respectively. 

 

6.2.3.6 Brake 

The brake model describes the performance of the vehicle brake system following [150]. 

The pressure in the master cylinder can be described as 
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  /mc in cs cf mcP F F F A    (6.24) 

  

 where inF is the input force to the brake system, given by 

in s maxF c f   (6.25) 

  

where sc is the control signal from the controller, maxf is the maximum force can be provided. csF

is the master cylinder spring pre-load, cfF is the seal friction in the cylinder and mcA is the area of 

master cylinder. The dynamics of the volume of displaced brake fluid can be given by 

 sgnb mc w q mc wV P cP P P    (6.26) 

  

where qc is the effective flow coefficient and the lumped fluid capacity of the brake system is 

given by 

3 223.4375 89.0625 356.25w b b bP V V V       (6.27) 

  

And the output torque can be given by  

  if 

0 otherwise

b w po w po

b

Pk P P P
T

 
 




 

 

(6.28) 

  

with 1.05bk  and 5.7143poP  . 

6.2.3.7 Wheel 

The wheel model describes the longitudinal direction wheel dynamics as well as the slip. 

The relation between friction and the slip is provided by empirical function. Only one wheel is 
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considered in the modeling for simplicity (the so-called quarter car model). The rolling resistance 

is moved to the chassis (vehicle body) part, together with all other driving resistance [151]-[152]. 

The slip ratio can be calculated as  

 
 








otherwise/

0 if/

vehvehw

vehwvehw

vvv

vvvv 
  

 

(6.29) 

 

where www rv   with w as the wheel rotational velocity and wr as the wheel radius. The wheel 

dynamics can be presented as  

longww
w

w frT
dt

d
J 


 

 

(6.30) 

 

where wJ is the inertia of the wheel, wT is the torque from mechanical coupling and longf is the 

longitudinal wheel friction force, which can be further obtained by  

      cosarctansin  vxxxxlong sbcdf  (6.31) 

where xxx dcb , and vxs are all fitted wheel constant.  is the grading angle and   can be obtained 

from 

     hxx

x

x
hxx Sb

b

e
Se   arctan1   

(6.32) 

where xe and hxS are constants fitted from test data. 

 

 

6.2.3.8 Vehicle Body 

The vehicle body (chassis) model simply describes the performance of vehicle body with 

consideration of rolling resistance, aerodynamic drag, grading resistance and dynamic behavior 
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of the chassis. The vehicle velocity is always assumed as positive in this model. The chassis 

dynamics can be presented as 

    gradvehwindrolveh
veh

veh fvfff
dt

vd
m  sgn


 

 

(6.33) 

 

where vehm is the mass of the vehicle and vehf is the force from wheel; the rolling force can be 

given by 

 coscgmf rrvehrol   (6.34) 

 

where the rolling resistance coefficient can be obtained by : 

160

1
01.0 veh

rr

v
c


  

 

(6.35) 

 

The aerodynamic drag force from wind can be given by 

 2
2

1
windvehdragfrontairwind vvcAf    

 

(6.36) 

 

where air is the air density, frontA is the vehicle front projection area, dragc is the air drag 

coefficient and windv is the wind velocity. The grading force can be obtained by 

 sin gmf vehgrad  (6.38) 
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6.3. Application example and simulation 

Three applications of hybrid electrical vehicle, conventional vehicle and electrical vehicle 

constructed by the library components are discussed in this section.  

6.3.1. Hybrid Electrical Vehicle  

The hybrid electrical vehicle application schematic is shown as Figure 6.1, it mainly 

contains 14 components: driving cycle, driver, central controller, motor controller, electrical 

motor, battery, and internal combustion engine (ICE), fuel tank, clutch, transmission, and 

mechanical coupling, brake, wheel and vehicle body.  

 

Figure 6.1: Hybrid electrical vehicle/conventional vehicle schematic 
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Figure 6.2: Given reference velocity vs. model calculated vehicle velocity of HEV application 

 

When starting simulation, the hybrid electrical vehicle model follows the provided 

velocity reference from the driving cycle component. Two parallel connected powertrains (the 

EM-Battery line and the conventional ICE line) are combined together to provide the 

propulsion and brake power for the vehicle. The fuel in the fuel tank is continuously consumed 

whenever the ICE is on. The battery will be charged when braking and will be discharged when 

provide power to the vehicle. The power distribution follows the desired control strategy defined 

in the central controller component. Figure 6.2 shows the comparison of the given reference 

velocity from driving cycle and the achieved simulated vehicle velocity for the hybrid electrical 

vehicle. The two velocities correspond closely as expected. The fuel remaining in the fuel tank 

and the battery state of charge (SOC) changes during the vehicle driving process of HEV 

application is shown in Figure 6.3 and Figure 6.4 shows the performance attributes of the ICE. 

The slip ratio and the torque from mechanical coupling of wheel during the driving cycle are 

shown in Figure 6.5.   
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Figure 6.3: Model calculated vehicle velocity vs. fuel remain and battery SOC of HEV 

application 

 
Figure 6.4: Throttle angle, volumetric efficiency, normalized throttle area and rotational speed of 

engine 
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Figure 6.5: Slip ratio and torque from wheel during the driving process 

  

6.3.2. Conventional Vehicle  

The conventional vehicle application has the similar structure as the HEV in Figure 6.1. 

The primary difference between the two configurations is that the ICE line is the only powertrain 

used to provide the propulsion and brake power when in the driving phase. The EM-Battery line 

is only used to help the vehicle start. In this application example, the battery is only discharged at 

the initial start point, and then keeps the same SOC (state of charge) as the vehicle is in the 

driving phase. The fuel in the fuel tank is continuously consumed since ICE is always in 

operation. The fuel remaining in the fuel tank and the battery state of charge (SOC) changes 

during the vehicle driving process of CV application are shown in Figure 6.6. From Figure 6.6, it 

is obvious that the motor line is disabled after start period. 
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Figure 6.6: Model calculated vehicle velocity vs. fuel remain and battery SOC of CV application 

6.3.3. Electrical Vehicle  

The structure of the pure electrical vehicle is shown in Fig 6.7. It is different from the 

CV/HEV applications; the mechanical powertrain is removed in this application example. The 

electrical vehicle application mainly contains 10 components: driving cycle, driver, central 

controller (for EV), motor controller, electrical motor, battery, clutch, brake, and wheel and 

vehicle body. In this application example, the EM-Battery line is the only powertrain used to 

provide the propulsion and brake power in the driving phase, the battery will be charged when 

brake and will be discharged when provide propulsion power to speed up the vehicle. The battery 

SOC change during the vehicle driving process of EV application is shown in Figure 6.8. 
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Figure 6.7: Electrical vehicle schematic 

 

Figure 6.8: Battery SOC of EV application vs. model calculated vehicle velocity 

  

 Finally, we incorporate the temperature dependent IPM model proposed in Chapter 5 into 

the HEV model, and command the HEV to follow the city drive cycle 75 as in Figure 6.9 at 
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magnet temperature 20, 80, 150 °C. The current profiles are shown in Figure 6.10 and Figure 

6.11. Higher the operating magnet temperature, higher current is used to supply the motor. 

 

Figure 6.9: City drive cycle FTP 75 
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Figure 6.10: Phase A current from 1325 to 1375 second at 20, 80, 150 °C 

 

 

Figure 6.11: Phase A current from 1350 to 1351 second at 20, 80, 150 °C 
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6.4. Summary 

The vehicle system becomes more and more complicated when involving the electrical 

propulsion part. Multi-domain, mixed-signal system level modeling and simulation techniques 

are critical for design and validation purposes. In this work, we presented a VHDL-AMS based 

HEV library. The mathematical implementation of the individual components is discussed. 

Simulation results of HEV, CV, and EV models are presented. We have also shown the proposed 

temperature dependent IPM motor can be used in the HEV system level simulation. 
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CHAPTER 7: CONCLUSION AND FUTURE WORK 

In this dissertation, the electrical battery and IPM motor has been studied from both 

device and system level perspectives considering multi-physics phenomenon. Fundamental 

vehicle system level simulation has also been presented.  

In Chapter 2, a novel circuit-CFD methodology of analysis has been proposed for 

HEV/EV battery thermal management design. The model consists of a heat generating electrical 

circuit model and a CFD model. The model provides temperature distribution of the battery 

while having an accurate runtime heat generation mechanism. The analysis can be used to 

predict electrical terminal performance but most importantly the temperature distribution that are 

due to various battery geometries, materials, current loadings, and cooling conditions. 

Implementation, simulation results, and validation have been provided for the 4-cell battery 

model under 3 current loading conditions. Finally, a 6-cell and a 16-cell battery models have 

been presented to show the flexibility and scalability of the proposed model for implementation 

in engineering design and development. 

In Chapter 3, we have shown that we can represent the battery thermal system as a Foster 

matrix if the system is a LTI system.  Foster network model gives the same results as the CFD 

model. The simulation time of the Foster network is order of magnitude less than that of the CFD 

model. However, to calibrate the Foster network model, step responses from either CFD 

simulation or lab testing are required. We have shown that the Foster network can replace the 

traditional thermal network, and the Foster network approach is more accurate. The Foster 

network will give identical results as the CFD model if the thermal system satisfies linear and 
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time invariant assumptions. However in reality, most thermal systems are nonlinear. We have 

shown for battery cooling applications, even with nonlinear effects, the results will only differ by 

2% with a 90 K temperature rise.  Most battery cooling applications will have temperature rise 

less than 90 K, therefore smaller than 2% difference in results can be expected. 

In Chapter 4, we have shown that temperature dependency of the magnets of the IPM has 

significant impact to its performance. The torque of IPM decreases as temperature increases due 

to reversible and irreversible demagnetization. And when the control angle is greater than 90 

degree, the magnets of IPM are more susceptible to irreversible demagnetization due to 

temperature rise. Also the maximum torque control angle may differ at various temperatures. In 

addition, the flux linkage and induced voltages increases with temperature. Interestingly, The 

IPM motor tends to lose its saliency as temperature rises, or even reverse its saliency, depending 

on the operating control angle. Finally, a non-uniform temperature distribution could change the 

machine performance significantly. Therefore detailed thermal model is necessary to capture the 

non-uniform thermal effects on the IPM performance.  

In Chapter 5, we acknowledged the IPM motor is load and temperature dependent and we 

have proposed a novel reduced order IPM model based on FEA that takes into account the PM 

temperature impact. The theory and detailed implementation has been presented, finally, we have 

shown that the proposed model result is in excellent agreement with the FEA results. 

In Chapter 6, we presented a VHDL-AMS based HEV library. The mathematical 

implementation of the individual components is discussed. Results are presented for typical 
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vehicle applications using the library components. We have also incorporated the proposed 

temperature dependent IPM model in the HEV simulation. 

In conclusion, vehicle systems become more and more complicated when involving the 

electrical propulsion, and batteries and IPMs are especially important in such systems because 

they provide sustaining power for the vehicles. While multi-domain, mixed-signal system level 

modeling and simulation techniques are used for design and validation, batteries and IPM motors 

should also be studied in great details on the device level considering the multi-physics 

phenomenon. The final system integration engineer must keep a good balance between the 

system level and device level studies to achieve an optimized vehicle drive design. For future 

work, we will develop accurate reduced order thermal model for the IPM, along with the 

proposed reduced order IPM model, we will strive to invent novel optimized control algorithm to 

achieve even higher efficiency. 
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