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 INTRODUCTION CHAPTER 1:

1.1 General Overview 

Today, the necessity of completing the projects timely, in-budget, and with high quality requires 

proper use of construction equipment in order to ensure the project’s success. Construction 

equipment alone places a great financial burden on the project and if not utilized efficiently will 

result in monetary loss. Among different classes of construction equipment, cranes are one of the 

most important lifting devices on the construction sites. Besides their expensive cost, they play a 

central role on construction sites, and often activities that rely on crane service fall on the 

project’s critical path. This implies that monitoring and analysis of crane operation has the 

potential to enhance the project productivity.  

 

Reducing the crane’s travel time yields to a shorter crane cycle, and consequently shorter delays 

are expected in receiving the material by the crews waiting for crane service. This will increase 

total productivity of the crane operation as well as those in need of the crane service (Shapira, 

Rosenfeld, & Mizrahi, 2008). One of the major causes of fatalities in construction phase is the 

use of cranes or derricks during the lifting operation (Beavers, Moore, Rinehart, & Schriver, 

2006). Therefore, reducing the crane operation time could also lead to a safer workplace as the 

risk of accident is significantly higher when the crane hook is moving. Previously, increasing the 

crane operation productivity has been investigated via two approaches: first, through optimizing 

facility layout in design phase by locating the tower crane and supply locations such that it 

reduces the total crane travel time. Second, through using adds-on technologies such as vision 
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system, collision detection system, etc. to help the crane operator better navigate the motions of 

the end manipulator especially when the operator line of sight is obstructed.  

 

Another potential way to reduce the crane travel time, which is the subject of this research, is to 

prioritize the crane service optimally in a tight working schedule when several requests are 

received simultaneously, while each request might have additional constraints such as priorities 

and deadlines. Traditionally, the operator uses his/her personal judgment or the help of an on-

duty superintendent to schedule the material lifting tasks; however, due to human involvement, 

this manual scheduling would not lead to an efficient schedule necessarily.  

1.2 Construction Crane Operations 

Crane operation cycle consists of two work modes: stationary and dynamic. Stationary mode is 

experienced during loading or unloading, when the hook does not have any motion. The dynamic 

mode is experienced when the hook is moving, including hoisting (vertical), trolleying (radial) 

and slewing (circular) movements. The total time associated with the crane’s dynamic mode 

comprises the crane’s travel time in a working cycle. Operators commonly activate both 

trolleying (radial) and slewing (horizontal) movements simultaneously, which are actuated by a 

single lever (joy stick) followed by the hoisting (vertical) movement. The stationary mode of the 

crane cycle operation is often significant in low-rise and mid-rise construction while the dynamic 

mode is often significant in high-rise buildings. 
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Traditionally, on a construction job site, the tower crane operator is in contact with the working 

deck and ground via radio communication. The signal men improve the crane’s operator limited 

line of sight by adopting a set of hand signals (will be described in more detail in 

section  1.4.3.1). Project Managers are in charge of every decision made during the project and as 

they are unable to handle the entire project, several superintendents are employed to monitor and 

coordinate the project in a hierarchical structure. Yet numerous important decisions are assigned 

to the laborers and operators without providing them with proper tools and information. For 

example, in tower crane operation, at any given time, requests might be sent to the crane operator 

to be fulfilled. In case of having several simultaneous requests, normally, the operator makes the 

decision of sequencing the requests, and most often, it is based on the FIFO (first-in-first-out) 

concept. At the best case scenario, requests are sent to the superintendent a day in advance and 

he schedules the crane operation for the following day.  Then, the schedule will be given to the 

crane operator early in the morning and the operator works based on the pre-planned schedule 

for the rest of the day. If there are any items that might put anyone’s safety at risk or cause delay 

to the project completion time, they will get immediate attention in coordination with the 

superintendent. In addition, parties or crews that fail to pre-plan their requested items for a 

timely submittal to the superintendent will have to wait until the next available crane time to get 

their items moved.  

 

The current primitive crane management is also dependent and centralized on superintendent 

decisions that might be biased. Human judgment might be insufficient to develop to optimal plan 

to fulfill the requests. The current material handling operation results in longer than optimal 
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operation time which can eventually alter the project’s critical path in a tightly-scheduled project, 

heavily involving with crane operations. Neither the crane operator, nor the superintendent can 

enhance the crane scheduling and operation without utilizing a computational power. A partial 

schedule for an example construction site for a part of a day is shown in Table 1(Brandt & 

Robinson, 2012). 

 

Table 1: An exemple of tower crane operation schedule 

Job description Time 

Formworks lifting to 10th floor deck (remove 

rubbish from deck to ground with trips down) 

7:00 to 8:00 a.m.  

Pluming materials to 6th floor 8:00 to 8:30 a.m.  

Chilled water pipes to 6th floor 8:30 to 9:00 a.m. 

Locate rebar to 10th floor 9:00 to 9:45 a.m. 

Raise column formwork  9:45 to 10:30 a.m.  

 

Current methods for crane operation scheduling are manual, time consuming and do not 

guarantee the optimal process. Therefore, the need for a decision support system, to automate the 

crane service scheduling is eminent. Use of an integrated, central computational unit that 

receives the requests from different participant (crews) on the site and considers various 

constraints for each request could potentially increase the productivity of crane operation and 

consequently the tasks that are tightly related to the service that the crane provides. The 

following advantages could be considered for such a system:  

 Transparency of the decision making process which is heavily dependent upon the 

on-duty superintendent ; 
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 Reduced the crane operation time by using a decision support system that utilizes 

structured reasoning approaches such as statistics and operations research in 

tandem with computer power to ensure the best possible practice for the work 

flow;  

 Reduce dependency on the on-duty superintendent; and  

 Reduced crew’s waiting time to receive material  

 

In short, the goal of this research is to develop a decision support system to reduce the 

dependability to assure optimality of crane operations. The new system is designed to be used in 

tandem with the existing technologies routinely used on the jobsites.   

1.3 Problem Description  

In heavy construction job sites with tight scheduling, where availability of material on 

installation points is directly related to the crane accessibility, low productivity of the crane has 

inverse impact on time and budget of the projects. Crane productivity is not only influenced by 

the crane operator’s skill in navigating the crane but also influenced by the decisions he/she or 

the in charge superintendent needs to make to fulfill the tasks. Assume that the crane operator 

receives several simultaneous requests from crews to receive material from different supply 

locations in the jobsite. The crane operator would use his or her visual assessment and personal 

judgment or at best case, would use the help of an on-duty superintendent to decide the order of 

tasks to fulfill. This decision-making process could be biased upon certain activities or may be 

fulfilled in the order that the requests were received (the request which comes first will be served 
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first (FIFO)). Because of human involvement, there are no conditions that lead consistently to the 

optimized working time for fulfilling the outstanding requests and as a result, longer operation 

time which can eventually -in a tight scheduled project which is involved heavily with crane 

operation- alter the project’s critical path. The following small-sized problem shows the 

complexity of decision making when simultaneous requests are received.  

1.3.1 Small Size Problem Illustration 

The following small-sized example is used to illustrate the complexity of the crane service 

sequence problem (CSSP). Assume that only three requests have been sent to the crane operator 

to be fulfilled at a specific time period. Figure 1 shows a bipartite travel time graph in which the 

weights on connecting arcs are travel time associated to them. In addition, solid lines in Figure 1 

represent outstanding material requests that must be fulfilled by the crane operator.  
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Figure 1: Travel time graph and service requests matrix for CSSP 
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As can be seen, crew 1 needs material from material storage 2; crew 2 needs material from 

material storage 3, and so on. Now the question for the crane operator is the order of nodes in 

bipartite graph that must be visited, starting from the crane’s initial location and returning to the 

same location, in order to fulfill all outstanding requests and minimize the travel times 

simultaneously. For this small-sized problem, there would be 3! (permutation of requests) 

different ways to fulfill the requests as depicted in Figure 2. In this specific problem there is only 

one optimal solution with regards to the total travel time that is equal to 27. Since the 

permutation grows significantly with the number of requests, the challenge is to design a robust 

computational and automated method to determine the optimal sequence of tasks that yields the 

minimum completion time. 
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Figure 2: Possible request fulfillment sequences and their total travel time (T.T) for the CSSP 

example 
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Noted that, in CSSP each crew may or may not send a crane service request to receive material 

from a specific storage area at a certain time.  

1.4 Crane Operation Literature Review  

1.4.1 Hoisting Time or Hook Travel Time  

Often, the objective of the crane optimization problem is to reduce cost of the crane operation 

through minimizing the path the hook traverses in order to fulfill certain tasks.  Therefore, first 

step in such studies is to define the hook travel time between initial and target nodes. Predicting 

hook travel time for crane-dependent activities enable site managers to improve utilization of the 

crane activities. Accuracy in prediction of the crane travel time leads to a better scheduling and 

planning of construction projects especially where the crane plays a critical role in the project. In 

modeling the crane operation time, two approaches have been used by researchers so far: 

analytical and statistical models (Leung & Tam, 1999).  

1.4.1.1 Statistical  

In statistical model, the main quantifiable factors in crane’s hook travel time is identified based 

on the expert knowledge from field studies, and a regression model that examines the 

contribution of different variables will be developed. Leung and Tam (1999) used multiple linear 

regression models to predict the hoisting time for the crane operation. Tam et al. (2002) 

developed a nonlinear neural network to predict the relationship between identified factors as 

dependent variable and transportation time as independent variable.  Tam and Tong (2003) used 

artificial neural network to predict hoisting times combined with genetic algorithm to get an 



9 

 

enhanced tower crane and supply points locations among possible locations while demand points 

were fixed, considering having a limited type of materials. 

1.4.1.2 Mathematical or analytical  

The number of factors considered in analytical method is limited compare to the statistical 

prediction model. The factors that have been used by researchers are loading and unloading 

geographical positions, crane specifications such as trolley speed in different directions (vertical, 

angular and radial) and a few factors to consider site layout and operator skills. To the best 

knowledge of authors Zhang et al. (1999) developed a mathematical model for the first time 

using Cartesian coordination of the supply, demand and crane locations. Since 1996, this 

mathematical model has been remained almost intact and is used in different researches with no 

or minor changes (Huang, Wong, & Tam, 2011; C. M. Tam, Tong, & Chan, 2001; Zhang et al., 

1999).  

1.4.2 Crane Location Optimization  

Assume a construction site with one in-service crane; several crews are waiting to receive 

material representing demand nodes, and several warehouses or material supply locations 

representing supply nodes at the job site. The general approach in crane location optimization is 

that the demand locations are determined, and based on the site layout, structural design and 

spatial constraints, potential crane and supply locations will be defined. Among different 

alternatives, the optimal supply and crane locations will be determined using different 

optimization methods in order to minimize the total crane travel time. Zhang et al. (1996) used 
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stochastic simulation model to optimize the location of a single tower crane. They predicted 

requests frequency based on the work schedule as an input for their simulation model. Zhang et 

al. (1999) used the same approach for location optimization of a group of tower cranes. They 

first classified the tasks into different groups based on their closeness to the cranes, and then 

Monte-Carlo simulation is used for each crane to find the crane location. Tam et al. (2001) used 

genetic algorithm to find the optimized location for supply points and one crane location among 

permissible points by minimizing the transportation time. Mathematical approach was used for 

hook travel time in the aforementioned research.  Tam and Tong (2003) used artificial neural 

network to predict hoisting times combined with genetic algorithm to get an enhanced tower 

crane and supply locations among possible locations while demand locations are fixed, 

considering having a limited type of materials. Huang et al. (2011) used analytical method for 

calculating the hoisting time and formulated the problem as a mixed-integer-linear programming 

and used commercial package LINGO to solve the problem.  
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Table 2: Researches in tower crane hoisting time prediction and location optimization in litreture 

Hoisting 

Time 

Prediction 

Objectives Solution Methods Citations 

S
to

ch
a

st
ic

 

Predicting hoisting time linear regression model (SPSS) Leung  and Tom (1999) 

Predicting hoisting time 

Nonlinear neural network(s), general 

regression neural network & group 

method of data handling 

Tam, Leung, Liu (2002) 

Hoisting time prediction & 

tower crane location 

optimization 

Artificial neural network &genetic 

algorithm 
Tam and Tong (2003) 

M
a

th
em

a
ti

ca
l 

Single tower crane location 

optimization 
Monte Carlo simulation 

Zhang , Harris & 

Olomolaiye (1996) 

Group of tower crane 

location optimization 
Mathematical formulation 

Zhang, Harris, Olomolaiye 

& Holt, (1999) 

Supply location optimization 

around tower crane 
Genetic algorithm Tam, Tong, & Chan, (2001) 

Tower crane and supply 

locations optimization 
Mixed integer programming 

Huang, Wong, & 

Tam,(2011) 

 

1.4.3 Planning of Physical Crane Motion  

Cranes are among the most expensive piece of equipment in many construction projects as well 

as freight terminal operations, shipyards, and warehouses. Despite their wide range of 

application, a vast majority of cranes still in use do not feature the advanced automation and 

sensor technologies. A typical crane operator uses visual assessment of the jobsite conditions 

which may be enhanced through a signalperson on the ground. 

 

Technologies have been used to improve crane coordination, in navigating the motions of the 

end manipulator (i.e. crane hook) and other body parts (e.g. boom, jib, trolley) from the moment 
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a load is picked up until it is delivered to the desired location, is categorized into three sections: 

vision enhancement to provide the crane operator with a better view from lifting location and 

probably eliminate the need for a signal person, Automatic or semi-automatic navigation to 

ensure a smooth maneuvering and motion planning & collision avoidance to provide operator 

with an efficient path and improve job-site safety by avoiding collision incidents. 

1.4.3.1 Vision enhancement  

Although the tower crane operators have a bird’s eye view of the job-site, they are yet unable to 

view the entire working area clearly due to the distance between crane operator and the lifting 

point that may reach even to a couple of hundreds feet’s. In addition to distance that exacerbates 

the operator vision, obstacles also obstruct the operator’s line of sight (refers to blind spot) that 

necessitate the use of vision enhancement tools. As the construction process progresses, 

obstructions are increasing which adds to the visibility problem. Job site conditions such as poor 

lighting also limit crane operator vision.  The aforementioned problem has been partially 

addressed using signal person, and adoption of a set of hand signals to facilitate the 

communication. In some cases that the operators do not have a direct line of sight to the signal 

person due to existence of a large obstruction, and thus using a third person (tag man) in a 

location where both signal person and crane operator can see him/her is necessary. He/she is 

responsible to convey the signals from signal person to the crane operator (Everett & Slocum, 

1993b). This practice has miscommunication issues which may lead to low productivity, safety 

problems and finally accident if not addresses properly.  
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To reduce the disadvantages of the current practice, Everett & Slocum (1993a) used a video 

camera which was installed at the tip of the mobile crane’s boom pointing straight down with an 

angle adjustment mechanism, and a monitor in the crane operator’s cab enabled with zooming 

function to enhance the crane operator’s vision (CRANIUM). They reported a saving of 16-21% 

in crane’s travel time by using this system. More recently Shapira et al. (2008) reported a 

practice of mounting a live video system on tower cranes in order to tackle this problem as well. 

The system had a moving trolley that could move horizontally along the crane jib with a high-

resolution autofocus video camera, and a control screen installed in the cab. The mean saving 

time for the total travel time was reported 14-29%, while the saving percentage for total crane 

cycle time (including loading and unloading) was 11-26%.  

1.4.3.2 Automatic or semi-automatic Navigation  

In many construction sites, cranes are involved in a repetitive operation to lift material between 

two specific locations (e.g., concrete mixer and casting area). In this case, a significant portion of 

the cycle time is spent on maneuvering the crane’s hook manually. One of the potential uses of 

automation is to release workers mind from repetitive tasks since performing repetitive tasks 

over a long period would lead to ignorance, distraction, and carelessness, which were identified 

as the most common causes of defects (Josephson & Hammarlund, 1999). With the same 

objective, Rosenfeld (1995) developed a prototype using automatic navigation in crane’s 

maneuvering. The prototype was built and tested on an overhead gantry crane in laboratory 

environment. The system had the capability of memorizing different pre-planned benchmarks 

and the operator was able to interrupt as needed. Total travel time saving was reported to be 
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within the range of 15 to 50%. Subsequently, Rosenfeld and Shapira (1998) examined the 

feasibility of utilizing semi-automatic control devices on the existing tower cranes and their 

potential to enhance the productivity. They also conducted a cost-benefit analysis and alleged 

that “as the cost of high-technology components continues to decline and that of construction 

labor continues to rise”, therefore installing semi-automatic navigation systems on existing 

tower cranes are technologically feasible and economically possible. Their system was tested on 

a small scale tower crane model and on an indoor 5-ton full scale electric overhead traveling 

crane. The observed saving in travel time using this system was reported 15-40%.  

1.4.3.3 Motion Planning and Collision Avoidance  

To consider the constraints imposed by the workspace where the crane operates, and take into 

account the possibility of collisions between crane and surrounding objects, path planning 

methods are borrowed from mechanical engineering and computer science to address this 

problem (Spong, Hutchinson, & Vidyasagar, 2006). In motion planning, construction cranes are 

considered as a multi-degree-of-freedom robotic manipulator, and the problem is to determine a 

path between initial and end positions while avoiding collision with objects in its workspace
1
. 

After the path is selected, inverse kinematic methods are often used to find the required crane 

motions. The inverse kinematic problem is to determine the value of joints variables given the 

end-effector position and orientation. On the contrary, forward kinematic is the inverse problem 

which is to determine the end-effector position and orientation in terms of joint variables. 

                                                 

 

1
 The workspace of a manipulator is total space that the end effector can cover as manipulator executes all possible 

motions.  
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Forward kinematic always has a unique solution whereas inverse kinematic may or may not have 

a solution. Even if a solution exists, it may or may not be unique. Several researchers have done 

elaborative studies in this field (AlBahnassi & Hammad, 2012; S. Kang & E. Miranda, 2006; 

Lei, 2011; Olearczyk, 2010; Sivakumar, Varghese, & Ramesh Babu, 2003).  

 

 

Figure 3: Motion planning in workspace (ShihChung Kang & Eduardo Miranda, 2006)  

 

Table 3 shows the summary of studies that has been done in physical crane motion planning 

section.  
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Table 3: Summary of studies in planning of physical crane motion section 

Category Objective Solution Methods Citations 

V
is

io
n

 

en
h

a
n

ce
m

en
t Travel time 

reduction/safety 

Mounting camera system (mobile 

crane, 16-21%) 

Everett & Slocum 

(1993) 

Travel time 

reduction/safety 

Mounting camera system (tower 

crane, 14-29%) 

Shapira, Rosenfeld & 

Mizrahi (2008) 

S
em

i/
a

u
to

m
a

ti
c 

n
a

v
ig

a
ti

o
n

 

Travel time reduction 
Navigation system (indoor overhead, 

15-50%) 
Rosenfeld (1995) 

Feasibility study 

Navigation system (small scaled 

tower crane model and indoor 

overhead crane, 15-40%) 

Rosenfeld & Shapira 

(1998) 

M
o

ti
o

n
 

p
la

n
n

in
g

, 
a

n
d

 

co
ll

is
io

n
 

a
v

o
id

a
n

ce
 

Travel time calculation 

considering obstacles 
Motion planning & inverse kinematic Kang & Miranda (2006) 

Collision avoidance/ 

safety 
Motion planning & simulation 

AlBahnassi & Hammad 

(2012) 

 

1.5 The gap in body of knowledge  

The missing link between these two bodies of research (optimization of crane layout pattern, 

planning of physical crane motions) that have been discussed so far is the need for a tool that 

helps the crane operators to decide the sequence of fulfilling service requests send by working 

crews on the jobsite that yields to maximum production rate, and minimum operations time and 

consequently cost. This phase is happening before the operator starts actuating the crane. This 

gap of knowledge has been identified in the present research and is referred to the decision- 

making phase. In this phase, the operator prioritizes crane service requests and create a job 

sequence list given constraints such as idle times of working crews, significance of ongoing 

crew’s tasks, task deadline, and total resource idle times. Figure 4 shows the schematic overview 
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of major areas with high potential for automation in crane operations. Crane Layout Pattern and 

Planning of Physical Crane Motion were addressed in the literature review sufficiently. 

 

Decision Making 
Phase

Planning of 
Physical Crane 

Motion

Crane Layout 
Pattern

Design Phase

Construction Phase

Before crane actuation 

While crane actuation

 

Figure 4: Schematic Overview of Crane Automation Process 

 

The direction of arrows in Figure 4 relates to the flow of information during the crane operation 

life span in a job site. The Crane Layout Pattern phase occurs before the project start date, in 

which the main objective is to find the optimized location for tower crane(s) as well as supply 

locations with regards to the current or future demand locations. As soon as the crane operation 

starts and requests for crane operation arise as the project progress, two other phases of crane 

automation process (Decision Making Phase and Planning Physical Crane Motion) are working 

to fulfill the requests. For example, given a list of outstanding requests to be fulfilled, in 

Decision Making Phase the optimal order of fulfillment will be calculated, and based on that the 

crane is moving toward the specified node using the Planning of Physical Crane Motion phase. 
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Figure 5 shows an overview of different crane operation related researches. In this section we 

focus on creating the decision making phase. 

Supply Location Optimization
Crane Location Optimization
Hoisting Time Prediction

Crane Layout 
Pattern

Vision Enhancement 
Automatic or Semi-automatic 
Navigation
Motion Planning and Collision 
Avoidance

Planning of Physical 
Crane Motion 

Crane Service Sequence 
Problem 

Decision Making 
Phase

 

Figure 5: Crane Operation Automation Potential Section 

 

1.6 Research Objectives 

In order to address the limitation in the current state of knowledge, the overall goal of this 

research is to: 

Design a robust decision making tool to aid the crane operator directly to fulfill the requests 

considering the dynamic and evolving construction work condition in order to yield the minimum 

completion time and consequently increase the efficiency of the project. 

 

In order to achieve the main objective, the following milestones are pursued:  

 Study the required parameters for tower crane travel time prediction and develop an 

applicable yet easy to use model as a basis for other goals of the research. 

 Investigate the feasible Operations Research methods to formulate the Crane Service 

Sequence Problem (CSSP).  
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1.8 Dissertation Outline 

This dissertation is organized into five main chapters. Chapter 1 was a general overview of the 

current crane operation methods followed by a discussion of problem complexity. In chapter 2, 

an innovative method is devised to convert crane service sequence problem to a well-known 

combinatorial optimization problem. The solution to this optimization problem is the optimal 

sequence with minimized crane travel time. Chapter 3 describes a special genetic algorithm 

designated to provide an efficient output in a practical computational time for the crane service 

sequence problem when requests having additional constraints. Chapter 4 discusses the details of 

the decision support system developed and implemented in this research. Finally, chapter 5 

documents the results and presents a comprehensive summary of the dissertation, the main 

contributions of the research, and recommendation for future studies. The information presented 

in the chapters of this dissertation is supplemented by additional coding details in several 

appendixes. 
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 ENHANCED CRANE OPERATIONS IN CONSTRUCTION CHAPTER 2:

USING SERVICE REQUEST OPTIMIZATION 

Cranes play a major role in relocation of materials in horizontal and vertical directions on 

construction job sites. They are among the high-demand equipment in construction operations 

due to their key role in providing material for downstream. Thus, they have been the focus of 

research on using new technologies as well as utilizing scheduling and optimization methods to 

improve crane operation efficiency. This chapter develops a service requests sequence 

optimization model for tower crane operations efficiency improvement. The suggested model 

uses integer programming and modifies the classical Traveling Salesman Problem (TSP) 

formulation for optimizing construction tower crane operations. Numerical examples 

demonstrate the mean saving time of 20-30% in total travel time depending on the number of 

simultaneous requests.   

2.1 Introduction  

Today, with the necessity of timely, on-budget and high quality operations in construction 

projects, effective use of construction equipment is essential to successful completion of projects. 

Construction equipment alone places a great financial burden on projects and can cause 

economic losses if not utilized efficiently. Cranes are among the costly construction equipment, 

playing an important role in construction sites, especially in high-rise building projects. 

Activities that depend on cranes are usually on the project’s critical path. Thus, improving crane 

operations can enhance project performance significantly.  
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Construction cranes are classified into tower and mobile cranes. Tower cranes are popular due to 

their high horizontal and vertical reachability, as well as their small footprint, especially in dense 

areas around the world (Shapira, Lucko, & Schexnayder, 2007).  Crane operation cycle consists 

of two work modes: stationary and dynamic. Stationary mode is experienced during loading or 

unloading when the hook does not have any motion. Dynamic mode is experienced when the 

hook is moving, including hoisting (vertical), trolleying (radial) and slewing (circular) 

movements. The total time associated with the crane’s dynamic mode comprises the crane’s 

travel time in a working cycle.  

In this paper, we investigate the impact of prioritizing the crane-service sequence on the overall 

crane’s travel time using a Traveling Salesman Problem (TSP)-based optimization model 

tailored specifically for construction tower crane operations. This model can assist on-site 

managers and crane operators in reducing crane travel time through crane-service sequence 

optimization.  It should be noted that reducing crane travel time yields to a shorter crane cycle 

and consequently shorter delays for downstream crews in receiving the material which increases 

total productivity of crane operations as well as those activities in need of crane services (A. 

Shapira et al., 2008).  

2.2 Background 

Automating, planning and scheduling crane operation in order to improve total operation 

efficiency is of major interest due to the fact that cranes are the most instrumental material 

handling and lifting equipment in building construction. Their importance is not only due to their 

high cost but also due to the central role they play in transporting material on project sites. 
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Previous research on crane operation improvement mostly falls into two categories: crane layout 

pattern optimization and physical crane motions planning (A. Zavichi & Behzadan, 2011). 

 

Crane layout pattern optimization deals with finding the optimum crane’s location among 

available alternatives in order to satisfy criteria such as balancing workload and reducing crane 

total operation time, or minimizing spatial conflicts between cranes and other moving resources 

on the site. Zhang et al. (Zhang et al., 1996) used a Monte-Carlo simulation model to optimize 

the location of a single tower crane. In another study, Zhang et al. (Zhang et al., 1999) performed 

a location optimization for a group of tower cranes. Tam et al. (C. M. Tam et al., 2001), Tam and 

Tong (C. M. Tam & Tong, 2003), and recently Huang et al. (Huang et al., 2011) used various 

optimization techniques to optimize the locations of a single tower crane location and several 

supply points, keeping demand locations fixed. 

 

Physical crane motions planning aims to develop methods and tools to help the crane operator 

navigate the motions of crane from the load pick up to delivery. The technologies and methods 

which have been used to improve physical crane motions planning can be categorized into three 

categories: vision enhancement to provide a better view from job site for the crane operator and 

eliminate the need for a signal person (Everett & Slocum, 1993a; A. Shapira et al., 2008); 

automatic or semi-automatic navigation to ensure a smooth maneuvering between loading and 

unloading locations (Rosenfeld, 1995; Rosenfeld & Shapira, 1998); and motion planning and 

collision avoidance to provide a path between loading and unloading locations while avoiding 
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collision with objects surrounding the crane (S. Kang & E. Miranda, 2006; Lei, 2011; Olearczyk, 

2010; Sivakumar et al., 2003).  

 

Another potential way to improve the crane operation efficiency is minimizing the distance and 

time the crane travels through appropriate ordering of the sequence of locations the crane hook 

must visit in order to fulfill the service requested by the crews on a job site. A brute-

force/exhaustive search method with the capability of analyzing up to 15 simultaneous requests 

was proposed by Zavichi and Behzadan (A. Zavichi & Behzadan, 2011). This method addressed 

the problem of determining the sequence of items to be relocated from their existing locations to 

their newly assigned locations using a tower crane, such that the total travel time is minimized. 

With the same objective, this paper presents a general mathematical model based on the well-

known Traveling Salesman Problem (TSP) method for sequencing crane service requests without 

any limitation in the number of requests in order to minimize the total crane travel time and 

consequently to reduce total idle time for on-site crew and equipment.  

2.3 Crane Service Sequencing Problem (CSSP)  

Low efficiency of crane operations has inverse impacts on time and budget of the project. Crane 

operations efficiency is not only influenced by crane operator skills in navigating the crane but 

also by decisions the operator makes during operations. When there are several concurrent 

service requests, the crane operator uses his personal judgment, or uses the help of an on-duty 

superintendent to determine the sequence of crane activities. This decision-making process could 

be biased towards certain activities or operator’s judgment, or may be simply based on the order 
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system, installed on an in-door overhead crane. 15-40% saving in maneuvering time was 

reported by these researchers. Shapira et al. (2008) reported the application of a mounting live 

video system on tower cranes in order to improve crane operations efficiency, resulting in 14-

29% saving in the total travel time (aviad Shapira et al., 2008). Table 10 summarizes the 

previous research on reducing crane operation time. 

 

Table 10: Past research on crane operation time estimation and improvement 

Objective(s) Method 
Time saving 

(%) 
Citation 

Predicting crane hoisting 

time 
Linear regression model NA Leung  and Tom (1999) 

Single tower crane location   

optimization 

Monte-Carlo simulation 

 

20-40% 

 

Zhang et al. (1996) 

 

Group tower crane location 

optimization 
Monte-Carlo simulation 10-40% Zhang et al. (1999) 

Supply location 

optimization around tower 

crane  

Genetic algorithm-based 

optimization 
18% Tam et al. (2001) 

Tower crane and supply 

locations optimization 

Mixed integer 

programming 
7% Huang et al. (2011) 

Reduce travel time and 

increase safety 
Camera system utilization 14-29% Shapira et al. (2008) 

Decreasing maneuvering 

time 

Navigation system 

utilization 
15-40% Rosenfeld & Shapira (1998) 

 

 

The objective of this Chapter is to design a functional crane operations decision support system 

(DSS) which integrates data collection and processing into a physical crane model in order to 
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PMX starts with two randomly selected parents, and determines two positions randomly along 

the chromosome (crossover points). Genes between these two crossover points are directly 

inherited by the offspring. Since changing genes directly between two crossover points lead to 

illegal chromosomes with missing or repeated genes, PMX follows the following procedure: 

each gene between the crossover points in one parent is directly mapped onto the position held 

by this element in the other parent. The gene value that has been occupied by the mapped 

elements is transferred to the location that has the mapped element value in it to retain the 

legality of the chromosomes. This procedure will continue until all elements between the 

crossover points are mapped. Figure 35 shows PMX procedure with crossover for the first three 

genes (Fogel, 1988; Starkweather, McDaniel, Mathias, Whitley, & Whitley, 1991; Üçoluk, 

1997). 

 

 

Figure 35: PMX with one crossover point 

 

The mutation operator is the random modification on individual chromosomes and is used to 

enhance the diversity and provides a chance to escape from local optima. Operators used in this 

algorithm consist of inversion, swap, and insertion operators (Yu et al., 2011). The inversion 
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operator chooses two random points in the chromosome and reverses the order of the genes 

between them (Melanie, 1999). The swap operator uses 2-opt heuristic to substitutes the value of 

two randomly chosen nodes in order to improve the constructed tour (Croes, 1958), and finally 

the insertion operator inserts the value of a randomly selected gene into another location in the 

string. Figure 36 shows the schema of the mutation operators.  

 

Figure 36: Mutation operators 

4.4 Experimental Results 

We carried out the numerical experiment on an Intel Core i5 processor (i5-520M / 2.4 GHz) with 

a 4 GB RAM, and application software was developed using MATLAB’s graphical user 

interface (GUI). A prototype site layout with 50 randomly generated coordinates, using a 

uniform distribution, scattered around a central tower crane with 70 meter operation radius, is 

considered. The elevation of nodes varies from zero to ten meters representing the jobsite 

elevation difference. Requests are generated randomly using a uniform distribution. In the GA, 

size of population (    ) is set to 100. Tournament parameter is 4 and crossover probability ratio 

is 0.5. If crossover is selected, the top two fittest chromosomes are selected for reproduction in 
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order to produce two offspring; or else for mutation only one chromosome is selected. In 

mutation, the probability of inversion, swap, and insertion is 0.33 and one offspring will be 

produced. This procedure will be repeated until 100 chromosomes are produced during the next 

generation. Finally, the number of iteration is set to 200 as the stopping criterion.  

4.4.1 Computational Experiment: GA Performance Comparison with Conventional Heuristics 

Methods  

In the first set-up, the performance of the GA algorithm is compared to the FIFO (First-in-First-

Out) and Earliest Deadline First (EDF). In FIFO, requests are fulfilled based on their arrival 

time. In EDF, request with the earliest deadline will get priority over others and fulfilled first. 

For now, priority constraint is disregarded as none of the conventional scheduling methods 

consider deadline and priority constraints at the same time. Deadlines are assigned randomly to 

the demand node in every request -considering every request consists of a supply and a demand 

node- in a range of zero to    ̅, where   is the number of requests and  ̅ is the average travel 

time between requests for the set of requests in the system. Penalty coefficient ( ) is set to two 

(refer to Chapter 4 for choosing the penalty function coefficient calculation).  

 

Fitness value for FIFO, EDF, and the proposed GA algorithm to solve crane service sequence 

problem are compared by solving the problem of 10 requests for 100 iterations. Figure 37 shows 

the comparison between the aforementioned scheduling methods. Vertical axis shows the fitness 

value which is the sum of the total operation times and deadline deviation penalty. Deadline 

deviation penalty is the deviated time from deadline, and is considered as the penalty that is 

added to the total operation time. Based on Figure 37, FIFO is by far the worst scheduling 
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method when it comes to considering deadlines in the operation as it does not have any means to 

reflect deadline. EDF however is very good when the only constraint is deadline compared to the 

FIFO. The proposed GA outperforms the other two algorithms and presents the saving of 18% 

and 45% compared to the EDF and FIFO respectively. 

 

 

Figure 37: Comparison of the fitness value based on FIFO, EDF, and the proposed GA method 

 

The fitness value, compared in Figure 37 consists of two portions: operation time and violation 

time. If we are interested in comparing the operation time portion between the scheduling 

methods, still about 15% saving is expected. In addition, no distinct significance can be seen 

between FIFO and EDF methods in terms of operation time. The results are depicted in Figure 

38. 

 



98 

 

 

Figure 38: Operation time comparative result between FIFO, EDF, and GA 

 

Another byproduct of implementing the proposed GA approach is reducing the number of 

deadline violations; however, the direct objective of the GA was to reduce the fitness value and 

not directly reducing the number of deadline violation. The average numbers of deadlines that 

are met are compared for three algorithms in Figure 39. As can be seen, FIFO is not 

recommended to be used while deadlines are associated to the requests. The proposed GA works 

closely compare to EDF in terms of the number of deadlines that are met. However, EDF is 

slightly better on average as its primary goal is to meet the deadlines.  
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Figure 39: Deadline violations based on FIFO, EDF, and GA methods 

4.4.2 Computational Experiment: Dynamic Sequencing  

In this setup, the effects of considering intermittent requests in the system are considered and are 

compared to the situation in which the intermittent requests are not accepted until the current 

batch in the system is being fulfilled. The assumption is that the system will be updated for 

intermittent requests after each request is fulfilled. In other word, operator cannot leave the 

current request until it gets fulfilled.  
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Combined Batch 

Batch Sequencing

Dynamic Sequencing
 

Figure 40: Dynamic sequencing versus batch sequencing scheduling 

 

For this purpose, a primary batch is created randomly with   number of requests with their 

associated deadlines and priority. Another batch with the same characteristic is created as well. 
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Both batches are optimized separately with the proposed GA method. In addition, the time to 

fulfill batches sequentially is compared to the time when the intermittent requests are accepted. 

The problem is run for 100 iterations and the average operation time for both sets is compared. 

When the number of batch requests equals to 10, the comparison is shown in Figure 41. 

 

 

Figure 41: Comparison of operation time based on batch scheduling and dynamic scheduling 

 

In a short time period, the dynamics of request’s sequencing might have adverse effect on the 

operation time; however, it will reduce the total operation time in the long run. In this case, on 

average, a saving of 20% is expected. In short period of time, an increase in the operation time is 

expected by considering the intermittent requests due to the fact that intermittent requests with 

deadlines will interrupt the efficient path that has been chosen by GA. Since the requests are 

addressed at the time they are received, fewer deadlines will be missed which results in less 

penalty accumulated which adds to the efficiency of the project in the long run.  
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Table 11 shows the results for 10 requests. Requests are classified based on their priorities and 

the requests with higher priorities are addressed earlier in the system. In each class, GA finds the 

best sequence based upon the objective of minimizing the time and reducing the deadline 

violation. The clock column shows the time at which the request is being fulfilled. If the request 

is fulfilled before the deadline, the deadline constraint is met and “ok” appears in the check 

column.  

 

Table 11: A sample output for 10 requests 

REQUESTS 
NODES PRIORITIES DEADLINES CLOCK CHECK 

1    38 ->   21  2 3 1.310185  OK 

2    47 ->   14  2 4 3.85625  OK 

3    25 ->   14  2 16 6.306111  OK 

4    49 ->   36  2 17 8.842222  OK 

5    12 ->   38  2 19 11.833472  OK 

6    19 ->   32  1 6 12.703194  - 

7    36 ->   25  1 9 14.937824  - 

8    32 ->   33  1 12 16.702731  - 

9    27 ->   37  1 19 19.031713  - 

10    39 ->   38  1 27 21.327315  OK 
 

4.5 Cost Benefit Analysis of the Proposed Optimization Method 

Crane cycle time entails loading/unloading and travel times. Each portion’s share in a crane 

cycle depends majorly on two parameters: (1) the type of the load and (2) the height of the 

structure under the construction (A. Shapira et al., 2008). In addition, other parameters such as 

weather, crane hoisting speed, crew productivity, and operator competence are also determinant 
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in crane cycle time. In high-rise building, hoisting speed is the governing factor, and the type of 

the load is less important in determining overall cycle time. 

 

Traveling portion of the crane cycle, which is the focus of this study, can vary significantly from 

a small percentage (e.g. 10%) in low-rise buildings with loading large/heavy framework panels 

to very high percentage (e.g. 80%) in high-rise buildings. This research mainly contributes to the 

high-rise buildings in which the percentage of traveling time out of the crane cycle time is high. 

However to be conservative, traveling portion is assumed 50% of the total crane cycle (     ). 

Based on the analysis presented in this research whether it is CSSP with deadline or without, on 

average, 30% of the traveling time portion can be saved by using this system (     ). 

 

In general, tower crane utilization in construction job sites is estimated to be 50% to 80% 

(Hasan, Bouferguene, Al-Hussein, Gillis, & Telyas, 2013; Kay, 2001; Rosenfeld & Shapira, 

1998). Shortening the crane cycle not only has effect on increasing the crane productivity but 

also could lead to reducing the total project duration. This is mainly because the tower crane, 

during its busy schedule, very soon becomes the bottleneck of the project that will determine the 

project production rate, and thus enhancing the crane operation will not only increases the crane 

utilization but also expedites the work that are related to crane operations (e.g. workers that are 

waiting for material), and it leads to more efficient job site operations (A. Shapira et al., 2008). 

Utilization is considered 65% for calculation purpose (      ). 

To summarize:  

       : Mean percentage of tower crane traveling time (out of total crane cycles) 
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       : Fraction of tower crane traveling time that is saved through using this crane 

sequence optimization 

        : Mean tower crane utilization  

 

By using the proposed system, saving time for the entire crane operation is on average 10% 

which is the product of three parameters (     ). This number is used for further economic 

analysis.  

 

A similar study for economic feasibility of the crane operation is done by Rosenfeld and Shapira 

(Rosenfeld & Shapira, 1998). We are conducting the same analysis procedure with the updated 

cost of the operation. The costs are extracted from two sources: 1- California Department of 

Industrial Relations for hourly labor wages (Relations, 2013), and 2- Labor surcharge and 

equipment rental rates for California’s Department of Transportation (Transportation, 2013).  

Saving in crane operation has impact mainly on two major parts. First, saving is in crane 

operation attributed to shortening crane cycle time. Second, higher labor productivity is expected 

due to shortening the crane operation. Other advantages such as: transparency in the operation 

process, eliminating the need for full time scheduler, expediting the total operation by reducing 

the waiting time in system are other benefits of this system that are conservatively ignored for 

financial analysis as there are no simple calculation to find their impacts.  

  

Saving related to the crane operation costs can be divided into four categories:  
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1. Annual ownership cost: This is depreciated cost of buying a crane throughout its useful 

life span. 

2. Operation cost: includes fuel, maintenance, license fees, and insurance.  

3. Operator cost: This is the salary of the crane operator.  

4. Labor cost: cost of the laborer working directly with the crane.  

 

These elements are calculated in the following:  

4.5.1 Annual ownership cost 

Tower cranes are often owned by the contractor especially in the U.S. unlike mobile cranes that 

are often procured by rental companies and subcontractors (Shapira & Glascock, 1996). This is 

basically due to the fact that tower cranes stay longer in the project and rental rates and 

mobilizing costs are high and thus are not economic to rent (Rosenfeld & Shapira, 1998; 

Sullivan, Wicks, & Luxhoj, 2009). In order to calculate the time dependent annual cost of the 

tower crane, U.S. Army Corps of Engineers pamphlet is used as the reference (Engineers, 2011). 

The methodology described in the following is only applies to equipment that prime contractors 

or subcontractors either own or control. For this purpose equivalent uniform annual cost of 

ownership is calculated, and the salvage value, if any, that may be recovered at the end of asset 

useful life is deducted accordingly (Newnan, Eschenbach, & Lavelle, 2004): 

                        [
       

        
]    [

 

        
]   (23) 

Where:  

 : Present value of crane or the purchase price 
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 : Future value or salvage price of the crane, is defined as the price for which the crane can be 

sold at a particular time in future  

 : Nominal interest rate  

 : Crane economic life in years, or duration which the investment is made 

 

The first component in annual ownership cost is the annual equivalent payment for the crane 

purchase price during the crane’s working life span. The second component is the annual 

equivalent credit for the predicted salvage or sell price that represent the depreciation of the 

equipment. Using the following parameters, annual ownership cost is estimated $51,155. 

   = $650,000; Tower cranes range in price from $200,000 to over $6 million each 

depending on size. For a good average purchase price, $650,000 is used as an average 

price (Carbeau, 2012). 

   = $130,000; residual value of heavy equipment such as cranes are mainly unknown 

(Lucko & Vorster, 2003). US Army Corps of Engineers (Engineers, 2011) suggested 

20% of its initial purchase price as the salvage value of the tower crane.  

   =5.6 %; this value is extracted based on the historical data between 1962 to 2012 

nominal interest rate using U.S. treasury market data base (System, 2013).  

  =20 years; 20 years is considered for useful life of tower crane (Engineers, 2011). 

4.5.2 Operation cost 

Major operation costs entail fuel, maintenance, license and insurance the will be estimated in the 

following annually: 
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 Annual fuel cost for a tower crane with an electric motor is calculated using the following 

formula (Engineers, 2011): 

 
         

  
                                        

  

  
    (24) 

 

Fuel factor is 0.24 for electrical tower crane and it takes into account the conversion rate for 

      in the formula. The horsepower is sum of the all the tower crane’s engines horsepower 

(Table 12). Driving units (467KW) for heavy-load 4000 HC 100 LIEBHERR tower crane is used 

to calculate the horsepower using 1.34 as conversion factor. Energy cost range between $0.2 to 

$0.5 per kilowatt hour depends on the time of the year. Conservatively, $0.2/hr is used as the 

energy cost.  

 

Annual average operating hours per year is determined by reducing the maximum normal 

working hours (40 hours per week, 52 weeks per year) to consider the adverse impact of: 

weather, equipment down time, holidays and etc. and is considered 1800 hrs./year for tower 

cranes (Engineers, 2011). The calculation yields to $54,067 annual fuel cost. 

 

Table 12: Driving units for a 400 HC 100 LIEBHERR tower crane 

Hoist gear  Slewing gear Trolley travel gear 

340 KW 6 15 KW 37 KW 

 Total Power= 467 KW 

 

 Service and maintenance is considered to be 6% of the purchase price ($39,000) 

(Rosenfeld & Shapira, 1998). 
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 Registration and insurance is estimated to be 2% of the purchase price ($13,000) 

(Rosenfeld & Shapira, 1998). 

4.5.3 Operator cost 

Operator cost is estimated to be $110,000 considering $65 hourly wage for tower crane operator 

(Relations, 2013). 

 

Therefore, total cost for crane operation is sum of the aforementioned elements and is: 

$51,155+$54,067+$39,000+$13,000+$110,000 = $267,222. This leads to $148.5 per hour 

operating rate including the operator’s salary.  By using the request sequence optimization, 10% 

saving in total operation is expected which is                      per year. 

4.5.4 Reducing labor cost 

Reducing the crane time and increasing the productivity of operation has direct effect on the 

laborer working directly with the crane operation. Four laborers are considered to be working in 

loading and unloading area and thus the annual saving for them is: 

Saving=       (
  

    
)    (

 

  
)                           

Total saving of using this system is estimated conservatively to be                 

            . 
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4.6 Conclusions 

The temporary aspect of construction projects and the involved dynamics prevent one-time 

operations planning to be effective and hence continuous update of the operations schedule based 

on the latest conditions of the job site is essential to guarantee the success of the project. In this 

Chapter, a DSS was developed that helps the operator in crane operation scheduling. The real-

time sequencing feature which allows for considering intermittent requests, showed to be 20% 

more efficient regardless of the scheduling method, resulting in significant economic savings.   
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 CONCLUSION  CHAPTER 5:

5.1 Introduction 

The temporary aspect of construction projects and the involved dynamics might prevent efficient 

operations. Equipment operations and efficiency of individual pieces of equipment are major 

players in determining the overall project productivity and cost, and improper planning of them 

will lead to wasting the project resources. Cranes, by far, are one of the most expensive pieces of 

equipment in many construction projects as well as freight terminal operations. Since cranes play 

a major role in construction operations, expediting their operations would have direct impact on 

the operation efficiency.  

 

The main motivation of this research was to overcome the existing problem in crane operation 

scheduling. Conventional scheduling in fleet management, including cranes, is manual, and very 

dependent to human judgment. Since human judgment combined with his/her ability to decision 

making can result in sub-optimal decisions, a decision support system (DSS) was developed to 

help the on-site scheduler or directly the crane operator in his/her routine operation.  

5.2 Research Contributions 

The following list summarizes the individual research challenges successfully addressed and 

described in the preceding chapters: 

 Tower crane travel time prediction model: A mathematical tower crane travel time 

prediction model was developed as the basis for implementation of this research and was 

used repetitively for analysis purpose in Chapters 3, 4, and 5.  
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 An optimization technique to improve efficiency of the crane operations via prioritizing 

job requests was proposed in Chapter 3. An exact combinatorial optimization method, 

which is a modification of the “Traveling Salesman Problem (TSP)”, was proposed for 

minimizing construction crane travel time by optimal ordering of crane movement 

sequences. The suggested optimization model results in 20-30% saving in travel time in 

comparison with the conventional First-In-First-Out approach in fulfilling the requests. 

The optimization model’s performance is not highly sensitive to input parameters and 

different jobsite specifications. The small run time of the optimization model makes it 

useful in practice, helping with reducing the crane operations and crane-related activity 

costs considerably. The developed model optimizes the crane travel time only, which is 

the significant portion of crane cycle operations, especially in high rise construction and 

when loading and unloading nodes are not close.  

 Adding a deadline constraint makes the CSSP problem more challenging. Therefore, in 

Chapter 4, to include this constraint, a penalty-based genetic algorithm was proposed. 

The deadline constraint was relaxed through a penalty function. Computational results 

showed an average saving of 27% in total travel time by using the proposed method 

compared to the best practices on construction sites. In addition to saving in crane travel 

time, this method was working acceptably in term of deadline violations.  

 Chapter 5 developed a crane decision support system which integrates job site 

information and processing unit into a physical crane model in order to achieve the most 

time efficient service sequence scheduling. A very important feature of the proposed DSS 

is that the optimal task sequence is not calculated only once at the beginning of the 
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operation. Rather it is determined on a continous basis in order to take into account the 

evolving sequence of events in a typical project. A saving of on average 18% in long run 

is expected when intermittent request are accepted in the scheduling. In the same chapter 

priority of requests was also considered as an additional constraint and was addressed 

accordingly. 

5.3 Limitations and Future Research 

Similar to any other modeling study, this study had some limitations and simplifying 

assumptions that can be addressed in future studies. A general variant of the CSSP is when each 

supply material has several alternative locations. However, this research dealt only with a 

simplified version of the problem in which there is only one supply location for each material. 

Future studies can address this simplifying assumption. In the travel time prediction model, the 

travel time between two nodes was considered to be deterministic while travel time can vary in 

practice. Future studies can consider stochastic travel times. Given that the time savings increase 

with increased travel time resulting from elevation differences, future studies can investigate the 

effects of larger elevation differences (more than 10 meters) on travel time.  This study assumed 

that each loaded bucket can be sent to one target location only, i.e., the crane hook cannot visit 

multiple demand nodes after being loaded. Future studies might relax this assumption. While in 

this study travel time was assumed to be independent of the load, future studies can evaluate the 

effects of material weight on travel time.  
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APPENDIX:  

CRANE SERVICE SEQUENCING OPTIMIZATION BASE MODEL  



113 

 

Body Content 

clear all; 
%Number of Geographical Nodes on site 
NodeNo=50; 
%Number of requests [crews,material] 
RequestNo=10; 
%Initial Complete Travel Time Matrix 
InitTravelMat=Travel_Mat(NodeNo); 

  
FIFOTravelTimeMat=[]; 
SJFTimeMat=[]; 
GreedyTimeMat=[]; 
OptimalTimeMat=[]; 
FixedTravelTimeMat=[]; 
Time=[]; 
%%i is the number of iterations 
for i=1:1 

[Requests,RequestsMat,Requestsok]=Requests_Gen(NodeNo,RequestNo,InitTra

velMat); 

  
[FIFOTravelTime,FIFORequests,FixedTravelTime]=FIFO_Time(Requests,InitTr

avelMat); 
FIFOTravelTimeMat=horzcat(FIFOTravelTimeMat,FIFOTravelTime); 
FixedTravelTimeMat=horzcat(FixedTravelTimeMat,FixedTravelTime); 

  
[SJFTime,SJFSequence]=SJF_Time(Requests,InitTravelMat); 
SJFTimeMat=horzcat(SJFTimeMat,SJFTime); 

  
[GreedyTime,GreedySequence]=Greedy_Time(Requests,InitTravelMat,Requests

Mat); 
GreedyTimeMat=horzcat(GreedyTimeMat,GreedyTime); 

  
[OptimalTime,OptimalSequence,Distance,TimeElapsed]=Optimal_Time(Request

sMat,Requestsok,Requests,InitTravelMat); 
OptimalTimeMat=horzcat(OptimalTimeMat,OptimalTime); 

  
Time=horzcat(Time,TimeElapsed); 

  
end;  

  
FIFOMean=mean(FIFOTravelTimeMat); 
FIFOSD=std(FIFOTravelTimeMat); 
OptimalMean=mean(OptimalTimeMat); 
OptimalSD=std(OptimalTimeMat); 
GreedyMean=mean(GreedyTimeMat); 
GreedySD=std(GreedyTimeMat); 
SJFMean=mean(SJFTimeMat); 
SJFSD=std(SJFTimeMat); 
[Hypothesis,PValue]=ttest2(FIFOTravelTimeMat,OptimalTimeMat); 
TimeElapsedMean=mean(Time); 
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TimeElapsedSD=std(Time); 
FixedMean=mean(FixedTravelTimeMat); 
fprintf('*******************************\n') 
fprintf('Optimal Mean is:%10.2f \t S.D. is: %10.2f ', OptimalMean,OptimalSD ) 
fprintf('\n\n Greedy Mean is:%10.2f \t S.D. is: %10.2f', GreedyMean,GreedySD) 
fprintf('\n\n S.J.F. Mean is:%10.2f \t S.D. is: %10.2f', SJFMean,SJFSD ) 
fprintf('\n\n   FIFO Mean is:%10.2f \t S.D. is: %10.2f',FIFOMean,FIFOSD) 
fprintf('\n\nSaving Percentage:') 
fprintf('%10.2f ', (FIFOMean-OptimalMean)/(FIFOMean) ) 
fprintf('\nP-Value:') 
fprintf('%10.2f ', PValue ) 
fprintf('\nTime Mean:%10.2f\t Time SD %10.2f ', TimeElapsedMean, 

TimeElapsedSD ) 
fprintf('\nFixedTimePercentage:') 
fprintf('%10.2f ', FixedMean/FIFOMean ) 

 

 

Travel Time_Function 

function[InitTravelMat]=Travel_Mat(NodeNo) 

  
% %input: NodeNumber(number of randomly generated nodes)     
% %Outputs: Initial Travel Matrix for complete graph which is symmetric 
% %Polar Coordination Generation 

  
r=randi([10 70],NodeNo,1); 
teta=randi([0 360],NodeNo,1); 
z=randi([0 10],NodeNo,1); 
PolarCoord=horzcat(r,teta,z); 

 
%Polar Coordination Plot: 
Polar(teta*pi/180,r,'+') 

 
%Crane Specifications: 
VerVelocity=25;   %vertical trolley velocity (m/min) 
SwingVelocity=0.6; %revolution per minute 
RadialVelocity=60; %(m/min) 

  
MinHoistHeight=5;  %m 

  
 for i=1:max(size(PolarCoord)) 
      for j=1:max(size(PolarCoord)) 
          RadialT(i,j)=abs(PolarCoord(i,1)-PolarCoord(j,1))/RadialVelocity; 
          AngularT(i,j)=abs(PolarCoord(i,2)-

PolarCoord(j,2))/(SwingVelocity*360); 
          VerticalT(i,j)=(abs(PolarCoord(i,3)-

PolarCoord(j,3))+(2*MinHoistHeight))/VerVelocity; 
      end; 
  end;   
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  %Site Parameters and operator skills 
  Alpha=0.25; 
  Beta=1; 
  Gama=1; 

   
  %Horizontal travel time 
  HorizontalT=max(RadialT,AngularT)+Alpha*min(RadialT,AngularT); 
  %Total travel time 
  

InitTravelMat=Gama*(max(HorizontalT,VerticalT)+Beta*min(HorizontalT,VerticalT

)); 

 

Request Generation_Function 

function 

[Requests,RequestsMat,Requestsok]=Requests_Gen(NodeNo,RequestNo,InitTravelMat

) 

  
%REQUESTS :[CREWS, MATERIALS] 
%random crews 
H=randi([2 NodeNo],RequestNo,1); 
%random materials 
F=randi([2 NodeNo],RequestNo,1); 

  
Requests1=horzcat(H,F); 

  
kf=0; 
for i=1:max(size(Requests1(:,1))) 
    if Requests1(i,1)~=Requests1(i,2) 
        kf=kf+1; 
        Requests(kf,1:2)=Requests1(i,1:2); 
    end; 
end;        

  
Requestsok=vertcat([1,1],Requests); 

   
%RequestMat is 
for i=1:max(size(Requestsok)); 
    for j=1:max(size(Requestsok)); 
    RequestsMat(i,j)=InitTravelMat(Requestsok(i,1),Requestsok(j,2)); 
    end; 
end; 
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First-In-First-Out Method-Function 

function [FIFOTravelTime,FIFORequests,FixedTravelTime]= 

FIFO_Time(Requests,InitTravelMat) 

  
RequestsInRow=[]; 
for i=1:max(size(Requests(:,1))) 
    for j=2:-1:1 
        RequestsInRow=horzcat(RequestsInRow,Requests(i,j)); 
    end; 
end; 
RequestsInRow1=[1,RequestsInRow,1]; 

  
FIFOTravelTime=0; 
for i=1:max(size(RequestsInRow1))-1 
   FIFOTravelTime= 

FIFOTravelTime+InitTravelMat(RequestsInRow1(1,i),RequestsInRow1(1,i+1)); 
end; 
FIFORequests=RequestsInRow1; 

  
FixedTravelTime=0; 
for i=1:max(size(Requests(:,1))) 
    

FixedTravelTime=FixedTravelTime+InitTravelMat(Requests(i,2),Requests(i,1)); 
end; 

 

         

 Shortest Job First Method_Function 

 

function [SJFTime,SJFSequence]=SJF_Time(Requests,InitTravelMat) 

 
for i=1:max(size(Requests(:,1))) 
    RequestsSJF(i,1)=InitTravelMat(Requests(i,2),Requests(i,1)); 
end; 
SJF=horzcat(Requests,RequestsSJF); 
SJF1=sortrows(SJF,3); 

  
SJF1InRow=[]; 
for i=1:max(size(SJF1(:,1))) 
    for j=2:-1:1 
        SJF1InRow=horzcat(SJF1InRow,SJF1(i,j)); 
    end; 
end; 
SJF1InRow1=[1,SJF1InRow,1];    
SJFTime=0; 
for i=1:max(size(SJF1InRow1))-1 
   SJFTime= SJFTime+InitTravelMat(SJF1InRow1(1,i),SJF1InRow1(1,i+1)); 
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end; 
SJFSequence=SJF1InRow1; 

 

Nearest Neigbor First Method_Function 

function 

[GreedyTime,GreedySequence]=Greedy_Time(Requests,InitTravelMat,RequestsMat) 

  
RequestsMatGreedy=RequestsMat; 

  
for i=1:max(size(RequestsMatGreedy)) 
       RequestsMatGreedy(i,i)=100; 
  end;  
   Current=[1]; 
   GreedyCost=[]; 
   I=1; 
   RequestsMatGreedy(:,1)=100; 
for i=2:max(size(RequestsMatGreedy)) 
    [C,I]=min(RequestsMatGreedy(I,:)); 
    Current=horzcat(Current,I); 
    GreedyCost=horzcat(GreedyCost,C); 
    RequestsMatGreedy(:,I)=100; 
end; 
Requestsok=vertcat([1,1],Requests); 
CurrentInRow=[]; 
for i=2:max(size(Current)) 
    D=Requestsok(Current(1,i),:); 
    CurrentInRow=horzcat(CurrentInRow,D(1,2),D(1,1)); 
end; 
CurrentInRow=[1,CurrentInRow,1]; 
GreedyTime=0; 
for i=1:max(size(CurrentInRow))-1 
   GreedyTime= GreedyTime+InitTravelMat(CurrentInRow(i),CurrentInRow(i+1)); 
end; 
GreedySequence=CurrentInRow; 

 

 

CSSP Optimal Sequence_Function 

function[OptimalTime,OptimalSequence,Distance,TimeElapsed]=Optimal_Time(Reque

stsMat,Requestsok,Requests,InitTravelMat) 
tic 

 
%CONCORDE only works with Integer Numbers so decimals are changed to 
%integers by multiplying the RequestsMat *M1 
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%M1=10000 is a large number to make travel times, integers 

 
RequestsMat=1000*RequestsMat; 

  
%-10 is a low number to make sure that original node jumps to its dummy 
%node, for more information refer to TSP in Wikipedia, it represents (-

infinity) 
%cost matrix for Concorde must be positive integers  

  
for i=1:max(size(RequestsMat)) 
    for j=1:max(size(RequestsMat)) 
        if i==j 
            RequestsMat(i,j)=-9999; 
        end;           
    end; 
end; 

 
% a number represents (+infinity) to make ATSP to TSP, M2=100000, M1<M2 

 
Distance= [9999*ones(max(size(RequestsMat))) RequestsMat';RequestsMat 

9999*ones(max(size(RequestsMat)))]; 
Distance=Distance+9999; 

  
for i=1:max(size(Distance)) 
    Distance(i,i)=0; 
end; 

  
TSPfile=fopen('amir3.tsp','w'); 
a='%6.0f'; 
for i=1:max(size(Distance))-1 
    a=[a '%6.0f ']; 
end; 
a=[a ' \n ']; 

  
fprintf(TSPfile,'NAME: %10.0f REQUESTS and 1 

CRANE\n',max(size(Requests(:,1)))); 
fprintf(TSPfile,'TYPE: TSP\n'); 
fprintf(TSPfile,'COMMENT: %10.0f REQUESTS + 1 

CRANE\n',max(size(Requests(:,1)))); 
fprintf(TSPfile,'DIMENSION: %10.0f\n',max(size(Distance))); 
fprintf(TSPfile,'EDGE_WEIGHT_TYPE: EXPLICIT\nEDGE_WEIGHT_FORMAT: 

FULL_MATRIX\nEDGE_WEIGHT_SECTION\n'); 
fprintf(TSPfile,a,Distance); 
fprintf(TSPfile,'EOF'); 

  
fclose(TSPfile); 

  
system('concorde amir3.tsp'); 

  
TSPSol=fopen('amir3.sol','r'); 
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OptimalRouteRaw=fscanf(TSPSol,'%d'); 
fclose(TSPSol); 
 

OptimalRouteRaw2=OptimalRouteRaw(2:max(size(OptimalRouteRaw))); 
%***************************** 
%calculating time using Distance Matrix: this is the same time that 
%Concorde gives you 

  
OptVarRoute=[OptimalRouteRaw2+1 ;1]; 
VarTime=0; 
for i=1:max(size(OptVarRoute))-1 
    VarTime=VarTime+Distance(OptVarRoute(i),OptVarRoute(i+1)); 
end; 

  
%************************** 
if (OptimalRouteRaw2(2)~=max(size(RequestsMat))) 
    OptimalRouteRaw2(1)=[]; 
    OptimalRoute=flipud(OptimalRouteRaw2); 
    OptimalRouteRaw2=[0 ; OptimalRoute]; 
end; 

  
OptimalRoute01= OptimalRouteRaw2 + 1; 
OptimalRoute06=[ OptimalRoute01; 1]; 

  
OptimalRoute1=[]; 
for i=1:max(size(OptimalRoute06)) 
    if mod(i,2)~=0 
    OptimalRoute1=horzcat(OptimalRoute1,OptimalRoute06(i)); 
    end; 
end; 
OptimalRoute34=[]; 
for i=2:(max(size(OptimalRoute1))-1) 
    for j=2:-1:1 
        

OptimalRoute34=horzcat(OptimalRoute34,Requestsok(OptimalRoute1(i),j)); 
    end; 
end; 

  
OptimalRoute341=[1 OptimalRoute34 1]; 

  
TotalTravelTime=0; 
for i=1:max(size(OptimalRoute341))-1 
    

TotalTravelTime=TotalTravelTime+InitTravelMat(OptimalRoute341(i),OptimalRoute

341(i+1)); 
end; 
OptimalTime=TotalTravelTime; 
OptimalSequence=OptimalRoute341; 
TimeElapsed=toc; 
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