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ABSTRACT 

Trajectory planning is important in many applications involving unmanned aerial 

vehicles, underwater vehicles, spacecraft, and industrial manipulators. It is still a challenging 

task to rapidly find an optimal trajectory while taking into account dynamic and environmental 

constraints. In this dissertation, a unified, varying manifold based optimal trajectory planning 

method inspired by several predator-prey relationships is investigated to tackle this challenging 

problem.  

Biological species, such as hoverflies, ants, and bats, have developed many efficient 

hunting strategies. It is hypothesized that these types of predators only move along paths in a 

carefully selected manifold based on the prey’s motion in some of their hunting activities. 

Inspired by these studies, the predator-prey relationships are organized into a unified form and 

incorporated into the trajectory optimization formulation, which can reduce the computational 

cost in solving nonlinear constrained optimal trajectory planning problems. Specifically, three 

motion strategies are studied in this dissertation: motion camouflage, constant absolute target 

direction, and local pursuit.  

Necessary conditions based on the speed and obstacle avoidance constraints are derived. 

Strategies to tune initial guesses are proposed based on these necessary conditions to enhance the 

convergence rate and reduce the computational cost of the motion camouflage inspired strategy.   

The following simulations have been conducted to show the advantages of the proposed 

methods: a supersonic aircraft minimum-time-to-climb problem, a ground robot obstacle 

avoidance problem, and a micro air vehicle minimum time trajectory problem. The results show 

that the proposed methods can find the optimal solution with higher success rate and faster 
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convergent speed as compared with some other popular methods. Among these three motion 

strategies, the method based on the local pursuit strategy has a relatively higher success rate 

when compared to the other two. 

In addition, the optimal trajectory planning method is embedded into a receding horizon 

framework with unknown parameters updated in each planning horizon using an Extended 

Kalman Filter.  
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CHAPTER ONE: INTRODUCTION 

Background of Trajectory Planning Problems 

Trajectory planning plays a very important role in many applications including spacecraft 

[1]-[2], unmanned/micro aerial vehicles [3]-[6], ground robots [8]-[7], autonomous underwater 

vehicles [9], robotic manipulators [10]-[12], and image-guided neurosurgery [13].  A challenge 

with trajectory planning involves rapidly finding an optimal trajectory, while taking dynamic and 

environmental constraints into consideration [14]. To date, many methods have been developed 

to tackle this challenging problem.   

One class of methods [15]-[33] seeks global optimal solutions for nonlinear systems. In 

order to find the best solution among multiple local optima, a global search effort is required 

[29]. The current global search methods include the grid search method [32], successive 

approximation method [33], and heuristic or meta-heuristic methods [15]-[23].  These methods 

may not be efficient for many realistic complex trajectory optimization problems [29] due to the 

following two limitations: (i) they cannot always find converged solutions, and (ii) it is difficult 

to provide rigorous optimality proofs [29].   

Another class of methods [34]-[59] is used to find local optima by either: (i) indirect 

methods [36]-[44] or (ii) direct methods [45]-[59]. Indirect methods solve for local optimal 

solutions based on the Pontryagin’s Minimum Principle (PMP) [35]. These methods often cannot 

obtain a converged solution when there are severe inequality constraints (I.E.C.s). In addition, 

indirect methods are extremely sensitive to the initial guess of the co-state, which is hard to 

estimate [34], [43], [44]. Direct methods convert the nonlinear constrained trajectory 
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optimization problems to nonlinear programming (NLP) problems [34] by using different 

discretization methods. Examples of discretization methods include the Hermit-Simpson [57], 

Trapezoid [59], Runge-Kutta [58], and Pseudospectral approaches [49]-[50], [52]-[54]. Direct 

methods can easily incorporate equality constraints and inequality constraints, but the dimension 

of the achieved NLP problems is typically large which results in a high computational cost [14]. 

In [60], a method inspired by the motion camouflage (MC) phenomenon is investigated, in which 

the trajectory of a vehicle is optimized in a carefully selected or iteratively refined manifold 

defined by a virtual prey path and a reference point.  

 

Contribution of Dissertation 

Inspired by biological phenomena observed in hoverflies, ants and bats, a Unified Linear 

Algebraic (ULA) equation is derived to capture three motion strategies: Motion Camouflage 

(MC), Local Pursuit (LP), and Constant Absolute Target Direction (CATD).  The ULA equation 

is then used to formulate a varying subspace (or manifold) for a bio-inspired computational 

framework (BiCF), in which nonlinear constrained trajectory optimization problems can be 

rapidly solved. 

As with other direct methods, the proposed bio-inspired, varying manifold trajectory 

optimization method also transforms the infinite dimension problem to a NLP problem with 

finite dimension.  The dimension of this achieved NLP problem is smaller than those achieved 

by the other traditional direct methods, which significantly improves the optimal solution 

convergence rate and calculation speed.   

Strategies to enhance the initial guess of the optimizable variables are derived based on 
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the necessary conditions coming from the obstacle avoidance and speed constraints. These 

guidelines can enhance the convergent rate and reduce the computational time of the achieved 

NLP problem. 

The proposed trajectory optimization methods can generate an optimal trajectory rapidly. 

These methods are applied to several applications in this dissertation including a Micro Air 

Vehicle (MAV) with unknown aerodynamic parameters, a ground two-wheel drive robot and a 

supersonic aircraft. The simulations will show the capabilities of the proposed trajectory 

optimization method.  

 

Dissertation Outline 

The organization of this dissertation is shown as follows. Chapter 2 will introduce 

preliminary knowledge including the definitions of trajectory optimization and nonlinear 

programming, and the motion strategies observed in three species.  Chapter 3 will introduce the 

bio-inspired, varying manifold trajectory optimization method. Two non-trivial examples, a 

robot collision avoidance problem and a hypersonic aircraft minimum-time-to-climb trajectory 

planning problem will be conducted to show the capability of the proposed trajectory 

optimization method. The initial guess techniques for bio-inspired trajectory method based on 

the MC strategy will be discussed in Chapter 4. A Monte Carlo simulation of the MAV 

minimum time trajectory planning problem considering many obstacles shows the efficiency of 

proposed initial guess strategies. In Chapter 5, the proposed trajectory optimization method will 

be applied to a MAV 3D trajectory planning problem with unknown dynamic parameters. To 

deal with the uncertainties and noise, the trajectory planning algorithm is embedded into a 
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receding horizon framework.  An extended Kalman filter is applied to update the unknown 

aerodynamic coefficients for the next planning horizon.  Conclusions and future works are 

discussed in Chapter 6.  
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CHAPTER TWO: PRELIMINARY KNOWLEDGE 

Trajectory Optimization and Nonlinear Programming 

A typical trajectory optimization problem is also an optimal control problem [37].  It is to 

find the states x , controls u , and final time ft  (if it is free) that will minimize the cost function 

0

[ ( ), ] ( , , )
ft

f f
t

J φ t t L t dt  x x u      (1) 

in which the  inequality constraints 

( , , ) 0t g x u , 1pg       (2) 

and equality constraints 

( , , ) 0t h x u , 1qh       (3) 

are considered. The boundary conditions  

0 0[ ( ), ( ), , ] 0f ft t t t ψ x x , 
1lψ      (4) 

and the equations of motion 

( , , )tx f x u , 1nx , 1mu      (5) 

where q n l  , are considered as the equality constraints.  

Nonlinear programming (NLP) problem [61]-[63] requires finding the n  vector x  to 

minimize  

( )F x        (6) 

subject to the m  constraints 

 l u c c x c       (7) 
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and n  bounds 

l u x x x       (8) 

The equality constraints are imposed when 
l uc c .  

By extending to an infinite number of variables, the necessary conditions of NLP 

problem (i.e. Karush-Kuhn-Tucker (KKT) equation)) will approach the optimal control problem 

[62]. More detailed interpretation and proof can be found in [14].  

Converting an trajectory optimization problem to a NLP problem requires the time 

interval 0 , ft t    to be divided into a prescribed number of subintervals, , 1,2,...,kt k N , whose 

endpoints are called nodes. The parameters that need to solve in the NLP problem are the 

unknown controls and states at these nodes. Then, the cost function and the state/constraint 

equations in NLP problem can be represented by using these parameters and solved by any 

standard NLP software.  

 

Predator-Prey Relations in Bio-phenomenon 

Through millions of years of evolution, countless biological species have adopted simple 

yet effective behavior rules to accomplish their necessary tasks, particularly with respect to 

pursuit/evasion motion behavior [68]. Three natural behaviors to be used in the dissertation are: 

 Motion Camouflage (MC) observed in hoverflies: The predator flies on a path connecting 

the prey and a background reference point to conceal its motion from the view of the prey 

[69];  

 Constant Absolute Target Direction (CATD) motion observed in bats and sometimes in 
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dragonflies: The relative position between the predator and the prey keeps parallel to the 

initial relative position [70]-[72];  

 Local Pursuit (LP) motion observed in ants:  The velocity of the ant is always toward the 

position of the ant ahead of it [73]-[74]. 

In order to formulate the above behaviors, let us first define ax  as the position vector of 

predator, and px  as the position vector of prey. 

Motion Camouflage 

The motion relation of MC strategy is shown in Figure 1.  The background reference 

point is defined as rx , and the motion between predator and prey can be derived as [64] 

( ) = + ( ) ( ) ( )  x x x xa r p rt v t t t      (9) 

where v  shows the ratio of the relative distance between the prey and the reference point and the 

relative distance between the predator and the reference point.  0v   is defined as the path 

control parameter (PCP) since it controls the position of predator: 

 

Figure 1 MC motion [64] 
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Constant Absolute Target Direction 

As shown in Figure 2, to keep the relative position between the predator and the prey 

always parallel to the initial relative position, the formulation of the predator is governed by [64] 

 ,0 ,0( ) ( ) ( )a p a pt t v t  x x x x     (10) 

where the subscript 0 denotes the initial time. Note that to make the equation meaningful, 

,0 ,0a px x .  As the path control parameter, ( )v t  controls the distance between the prey and 

predator: 

 

Figure 2 CATD motion [64] 

 

Local Pursuit 

The LP motion is shown in Figure 3, in which the direction of predator’s velocity always 

points to the prey ahead. The formulation can be described as [64] 

( ) ( ) ( ) ( )a p at v t t t    x x x      (11) 

in which   represents the number of steps the prey ahead of the predator. Here, different from 

above two methods, ( )v t  is a speed control parameter that determines the magnitude of the 
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predator’s velocity. Given the position vectors of the prey and the predator, the speed of the 

predator becomes larger as ( )v t  increases. 

 

Figure 3 LP motion [64] 
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CHAPTER THREE: BIO-INSPIRED TRAJECTORY OPTIMIZATION 

METHOD 

The content of this chapter is modified from our journal paper [64]. As mentioned in the 

Chapter 1, some drawbacks existed in traditional direct trajectory optimization methods are: (1) 

the dimension of the converted Nonlinear Programming (NLP) problems are large; and (2) the 

computation complexity is high.  Thus, it is necessary to find a method to reduce computational 

complexity and cost of the converted NLP problems. 

Three kinds of motion strategies used by certain biological species have been illustrated 

and formulated in the Chapter 2. The common feature observed in these motion strategies is: “the 

predator only moves along paths in a certain subspace (or manifold).” Inspired by this 

observation, if consider the vehicle as a predator, the trajectory of the vehicle can be optimized in 

the subspace generated by a virtual prey [64].  The optimization time should be smaller than the 

most of the other existing methods which attempt to find a solution by searching all possible 

directions either locally or globally.  

 

Problem Definition 

Problem 1 (Nonlinear constrained optimal trajectory planning): An trajectory optimization 

problem requires to find the states x , controls u , and final time ft  (if it is free) to minimize a 

cost function 
0

[ ( ), ] ( , , )
ft

f f
t

J t t L t dt  x x u , while the inequality constraints ( , , ) 0t g x u and 

equality constraints ( , , ) 0t h x u  cannot be violated, as [54],  
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0, ,
min [ ( ), ] ( , , )

Subject to ( , , ) 0

( , , ) 0

ft

f f
tt

J t t L t dt

t

t

 





x u
x x u

g x u

h x u

    (12) 

As mentioned in the Chapter 2, the equality constraints include both dynamic equation and 

boundary conditions of the vehicle. 

Remark 1: For a wide variety of dynamical models, such as mobile robots, MAV/ UAV, etc., 

the state vector 1nx  includes two parts. The part of the state variables, which is relate to the 

“position” information of the system, is regarded as the “position” state vector as 
1an

a


x , and 

the remaining part, if exists, is regarded as the “state rate” vector 
( ) 1an n

sr

 
x .   

Remark 2: To solve Problem 1, the continuous states need to be discretisized, e.g. to N  nodes 

by using Legendre-Gauss-Lobatto (LGL) methods [54]. Thus, solve Problem 1 is equivalent to 

solve NLP Problem 2, defined as, 

0

(1)
, ,

0

min [ , ] ( , , )
2

Subject to ( , , ) 0

( , , ) 0

k k N

N
f

f k k k k
t

k

k k k

k k k

t t
J t L t w

t

t





 






x u

x x u

g x u

h x u

    (13) 

where 1,...,k N .  

Note 1: The solution of Problem 1 is equal to the limiting solution of Problem 2 as the number 

of discretized nodes N  approaches   [14].  

Remark 3: There are three widely experienced boundary conditions (BC): (1) BC1: only initial 

and final ax  are known; (2) BC2: known initial x  and final ax ; (3) BC3: known initial and final 

x . 
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Presentation of Prey Motion 

During the optimization, we cannot just simply mimic the motion strategies of the 

animal, e.g. optimizing the path of predator in a fixed subspace generated by the virtual prey, 

because an optimal solution may not be generated in a fixed subspace. Thus, to obtain an optimal 

trajectory, the subspace formed by the virtual prey needs to be simultaneously optimized [65].  In 

this dissertation, the prey path is represented by B-spline method of which the shape can be 

affined by only a small number of control points [66].  

For example, the thj  direction of the virtual prey “position” at node k , , , , 1,...,p j k ax j n , 

0,...,k N  is represented by a nonlinear rational B-spline curve of degree d  as [67] 

 , , , ,

0

cpn

p j k i d k j i

i

x B t P


 , 1,..., aj n , 0,...,k N    (14) 

where  , , 0,...,i d cpB t i n  are the thd  degree basis functions, , , 0,...,j i cpP i n  are the control 

points for the thj  direction of the virtual prey “position”, and 1cpn   is the number of control 

points. The B-spline representation of the virtual prey motion Eq. (14) can also be written in the 

vector form as 

p, j jBζ P , 1,..., aj n      (15) 

in which  ,[ ]i d kB B t , 0,..., cpi n , 0,...,k N , and ,0 ,[ ,... ]
cp

T

j j j nP PP  is the column vector of 

the control points. 

Remark 4: The number of control points is not necessarily the same as the number of 

discretization nodes. Since the prey path is virtual, a much smaller number of control points are 

enough to define a flexible virtual prey motion, while a larger number of discretization nodes, 
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where the performance index and constraints are evaluated, are needed to define the actual 

vehicle’s trajectory. 

The thl  derivative of , ,p j kx  can be shown either in the scalar form as [67] 

 , ,

, ,

0

, 1,..., , 0,...,
cpl n

p j k l

m d k j m al
m

d x
B t P j n k N

dt 

        (16) 

or in the matrix form as 

( ) ( )

,

l l

p j jBζ P  , 1,..., aj n       (17) 

in which  ( ) ( )

,[ ], 0,..., , 0,...,l l

m d k cpB B t m n k N    and the superscript ( )l  represents the thl  

derivative.  

Property 1: For a non-periodic knot vector,    0, 0 , 1
cpd n d NB t B t   and  , 0k d NB t  , 

1,..., 1cpk n  . 

The other detail information of B-spline method can refer to [66]-[67]. 

 

MC based Trajectory Optimization 

Problem Formulation 

Assuming a vehicle (e.g. MAV, UAV, ground robot, etc.) as a predator, by using the MC 

strategy, its trajectory can be represented by a virtual prey path px , a reference point rx , and 

PCPs v . According to MC motion rule (Eq.(9)), finding the higher order derivatives of ax  is 

easy. For example, the 1
st
 and 2

nd
 derivatives can be represented as 
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( ) ( )( ( ) ) ( ) ( )

( ) ( )( ( ) ) 2 ( ) ( ) ( ) ( )

a p r p

a p r p p

t v t t v t t

t v t t v t t v t t

  

   

x x x x

x x x x x
   (18) 

After discretized by using LGL method, Eq.(9) and Eq. (18) become 

 1 , 1,...,a, j p, j N j aI j n    ζ ζ      (19) 

and 

 

 

, 1,...,

, 1,...,

a, j p, j j p, j a

a, j p, j j p, j p, j a

j n

j n

   

    

ζ ζ ζ

ζ ζ + 2 ζ ζ

 

 
   (20) 

respectively, where an  is the position dimension of the vehicle, ,j r jxξ 1 , 1,..., aj n , of which 

( 1) 1N 1  is a vector and all of its elements equal to one, and ,r jx  is the thj  component of the 

reference point. , , ,0 , ,,...,T

a j a j a j Nx x   ζ  and , , ,0 , ,,...,T

p j p j p j Nx x   ζ . The derivative of the PCP 

variable matrix   is 

 / / , 0,..., , 1,2,...r r r r

kd dt diag d v dt k N r       (21) 

As mentioned in the Chapter 2, after convert Problem 2 to a NLP problem, the 

unknowns are the state and control variables at the nodes 0,...,k N .  Thus, excludes ax , ax  

and ax , the other state rates variables srx  and control variables also need to be expressed in 

terms of rx , v , and px .  They can be calculated either by inverse dynamics of the vehicle or 

varying manifold based feedback linearization method. Here, only the varying manifold method 

will be introduced.  

If the dynamic of a vehicle is written as  

( ) ( ) x f x g x u       (22) 
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by assuming that the output model is ( ) a y h x x , and the relative degree is l , a manifold can 

be constructed as  

1 1

1 1
( )

l l

p r rl l

d d
v

dt dt

 

 
    

y
s = x x x     (23) 

For a vehicle to stay on the varying manifold, the derivative of s  should be zero, thus,  

( ) 0
l l

p r rl l

d d
v

dt dt
      

y
s x x x     (24) 

since the relative degree of y is l , it can be represented by Lie derivatives as 

( ) 1( ) ( )l l lL L L  f g fy h x h x u .  Also since the reference point in the varying manifold is constant, 

Eq. (24) can be used to solve for the control variables (i.e. the equivalent control) that can drive 

the vehicle on the manifold 

1
1

1
1

0 0

( ) ( ) ( )

( ) ( ) ( )

l
l l

p rl

l kkl l
pl k l k l

l p r lk l k
k k

d
L L v L

dt

dd v
L L C C v L

dt dt







 


 

 
        

 

  
      

  
 

g f f

g f f

u h x x x h x

x
h x x x h x

 (25) 

All the states and control variables are now in terms of px , rx  and v , equivalent with 

Problem 1, trajectory optimization problem is now to solve, 

(Problem 3) 

0, , ,
min [ , , , ] ( , , , )

Subject to ( , , , ) 0

( , , , ) 0

f

p r f

t

p r f p r
tt

p r

p r

J t L t dt

t

t

 





x x v
x x v x x v

g x x v

h' x x v

  (26) 

Note that now equality constraints ( , , , ) 0p r t h' x x v  only include boundary conditions, because 

the dynamic equation of the vehicle has been already considered when calculating states and 

control variables. 
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After discretized and represented virtual prey motion by B-spline method (Eq. (17)), 

solving Eq. (26) is equivalent to solving NLP Problem 4, 

,

0

, , ,
, , ,

0

,

,

min [ , , , ] ( , , , )
2

Subject to ( , , , ) 0

( , , , ) 0

j r j

N
f

N r j N f j k r j k k
x t

k

j r j

j r j

t t
J x t L x t w

x t

x t





 






P v

P v P v

g P v

h' P v

  (27) 

where, ,0 ,[ ,... ]
cp

T

j j j nP PP , and 0[ ,..., ]T

Nv vv .  

Boundary Conditions Incorporation 

The boundary conditions in the proposed method can be incorporated when calculating 

certain control points or PCPs.  This section will talk about how to incorporate the three 

boundary conditions (illustrated in the Remark 1).  

Lemma 1: For BC1, the initial and final PCPs can be selected as 1.  The first and last control 

points of the virtual prey motion are ,0 , ,0j a jP x  and , , ,cpj n a j NP x , respectively, where 1,..., aj n . 

Proof. In the MC strategy (Eq. (9)), the initial and final PCPs can be selected as 1.  Then the 

initial and final positions of the vehicle and virtual prey satisfy ,0 ,0a px x  and , ,a N p Nx x .  

Representing the virtual prey motion in B-splines,  , ,0 , 0 ,

0

cpn

p j m d j m

m

x B t P


  and 

 , , , ,

0

cpn

p j N m d N j m

m

x B t P


 , 1,..., aj n .  Utilizing Property 1, ,0 , ,0j a jP x  and 

, , , , 1,...,
cpj n a j N aP x j n  . 

Lemma 2: For BC2, the initial and final PCPs can be selected as 1, and the first and last control 

points are ,0 , ,0j a jP x  and , , ,cpj n a j NP x , 1,..., aj n . 1v  should satisfy  
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 
1

' '

1 , ,0 , 01 , ,0 , ,0 , 0 0 , 0 ,

0, 1 0

( ) ( )
cpnN

p k r k a k p k r k j j l d k l

j j l

v x x D x x x D v v B t P


  

  
        

  
    (28) 

in which k  is an arbitrary selected direction of ax  but satisfies , ,0 ,p k r kx x .  Here the subscript 

in 'D  denotes the entry of the matrix.  D  is the differentiation matrix in the LGL pseudospectral 

discretization, and '

02 / ( )fD t t D   [49], ,1, 1,..., ,m aP m n m k   satisfies 

 
 

 
 

'

,1 , ,0 , ,0 , 0 , 0 ,

0, 1 0, 11, 0

, ,0 , '

, ,0 , ,0 , 0 , 0 ,

0, 1 01, 0 , ,0 ,

1
( )

( )
( )

( )

cp

cp

nN

m a m p m r m j j l d m l

j j l ld

nN
p m r m

a k p k r k j j l d k l

j j ld p k r k

P x x x D v B t P
B t

x x
x x x D v B t P

B t x x

   

  

  
    

  

         
     

 

 

   (29) 

Proof: Known the boundary “position states” of the vehicle, based on Lemma 2, 0 1Nv v  , 

and ,0 , ,0j a jP x  and , , ,cpj n a j NP x .  

Based on (Eq. (9)), the initial velocity of the vehicle is ,0 0 ,0 0 ,0( )a p r pv v  x x x x . Let’s 

select the thk  component of this equation , ,0 0 , ,0 , 0 , ,0( )a k p k r k p kx v x x v x    if  , ,0 ,p k r kx x .  

Approximating the PCP vector using the pseudospectral collocation method and representing the 

virtual prey motion in B-spline as shown in Eq. (14), the following equation can be achieved 

 '

, ,0 , ,0 , 0 0 , 0 ,

0 0

( )
cpnN

a k p k r k j j l d k l

j l

x x x D v v B t P
 

        (30) 

Equation (30) can be rearranged to calculate 1v  as in Eq. (28). 

If 1an  , 1v  calculated from different directions should be the same, i.e.,  



 18 

 

 

'

, ,0 , , ,0 , ,0 , 0 0 , 0 ,

0, 1 0

'

, ,0 , , ,0 , ,0 , 0 0 , 0 ,

0, 1 0

( ) ( )

( ) ( )

cp

cp

nN

p k r k a m p m r m j j l d m l

j j l

nN

p m r m a k p k r k j j l d k l

j j l

x x x x x D v v B t P

x x x x x D v v B t P

  

  

  
       

  

  
        

  

 

 

  (31) 

where, , [1,..., ]am k m n  . Since 0 1v  , ,1mP , , [1,..., ]am k m n   can be calculated from Eq.(29) 

instead of being optimized.  

Lemma 3: For BC3, the initial and final PCPs can be selected as 1, ,0 , ,0j a jP x  and , , ,cpj n a j NP x , 

1,..., aj n .  1v  and 1Nv   have to satisfy 

 

1
' '

1 01 , ,0 , 0( 1) , ,0 ,

' '

1 1 , , , ( 1) , , ,

'

, ,0 0 , ,0 , 0 , 0 ,

0, 1 0
1

'

, , , , ,

0, 1

( ) ( )

( ) ( )

( )

( )

cp

p k r k N p k r k

N N p k N r k N N p k N r k

nN

a k j p k r k j l d k l

j j l
j N

a k N Nj p k N r k j

j j
j N

v D x x D x x

v D x x D x x

x D x x v v B t P

x D x x v





 

  
 

 
 

   
   

     

  

 

 

 , ,

0
1

cpnN

N l d N k l

i

v B t P


 
 
 
 
 

 
 
 

 

   (32) 

in which the thk  direction is selected such that the matrix inversion in Eq. (32) exists. ,1mP  and 

, 1cpm nP  , 1,..., ,am n m k   satisfy 
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   

   

 

 

,1

, 1

'

, ,0 0 , ,0 , , 0 ,
1

0, 1 0; 1
1 11, 0 1, 0

1, 1, '

, , , , , , ,

0, 1 0;; 1
1

( )

( )

cp

cp

cpcp

cp

m

m n

nN

a m j p m r m j l d m l

j j l l
j N l nd n d

N
d N n d N

a m N Nj p m N r m j l d N m l

j j l l
j N

P

P

x D x x v B t P

B t B t

B t B t
x D x x v B t P




   
   



   
 

 
 

  

  

 
  
     

 



   

   

1

1
' '

1, 0 1, 0 01 , ,0 , 0( 1) , ,0 ,

' '

1 , , , ( 1) , , ,1, 1,

' '

01 , ,0 , 0( 1) , ,0 ,

( ) ( )

( ) ( )

( ) ( )

cp

cp

cp

cp

n

l n

d n d p m r m N p m r m

N p m N r m N N p m N r md N n d N

p k r k N p k r k

N

B t B t D x x D x x

D x x D x xB t B t

D x x D x x

D

 



 





 
 
 
 
 
 
 
 

    
    

      

 




 

 

1

' '

1 , , , ( 1) , , ,

'

, ,0 0 , ,0 , , 0 ,

0, 1 0
1

'

, , , , , , ,

0, 1 0
1

( ) ( )

( )

( )

cp

cp

p k N r k N N p k N r k

nN

a k j p k r k j l d k l

j j l
j N

nN

a k N Nj p k N r k j l d N k l

j j i
j N

x x D x x

x D x x v B t P

x D x x v B t P





  
 

  
 

 
 

   

 
   

 
 
 

   
 
 

 

              (33) 

Proof: Based on Lemma 3, 0 1Nv v  , ,0 , ,0i a jP x , and , , , , 1,...,
cpj n a j N aP x j n  .  The velocities 

of the vehicle are calculated by ,0 0 ,0 0 ,0( )a p r pv v  x x x x  and , , ,( )a N N p N r N p Nv v  x x x x , 

respectively. Let’s select any thk  component of these two equations.  Similar to the proof of 

Lemma 2, when approximating the PCP vector in the pseudospectral discretization and the 

virtual prey motion in the B-spline curve, Eq. (32) can be achieved. 

The selection of the thk  component should guarantee that the matrix inversion in Eq. (32) 

exists.  If 1an  , 1v  and 1Nv   calculated from different directions should be the same, following 

the same procedure used in proofing Lemma 2, Eq. (33) can be derived. 
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Optimization Algorithm  

Since all of the boundary conditions have been incorporated to solve the certain PCPs and 

control points, the equality constraints are eliminated. Thus, Eq. (27) is equivalent to solving, 

(Problem 5)  ,

0

, , ,
, , ,

0

,

min [ , , , ] ( , , , ) , 1,...,
2

Subject to ( ', , , ) 0

j r j

N
f

N r j N f j k r j k k a
x t

k

r j

t t
J x t L x t w j n

x t





  




P v

P' v' P' v'

g P v'

 (34) 

where, ,, ,r jxP' v'  and t  are considered as optimizable parameters and can be solved by 

nonlinear programming methods. Parameters 'v  and 'P  under three boundary conditions are 

summarized in Table 1 . 

 Table 1 Parameters 'v  and 'P  in the MC Based Optimization Procedure  

BC MC Motion Rule 

1 , 1,..., 1iv i N  , 

, 1,..., 1, 1,...,j,i cp aP i n j n    

2 , 2,..., 1iv i N  , 

, 1,..., 1, [1, ]k,i cp aP i n k n    

, 2,..., 1, 1,..., ,m,i cp aP i n m= n m k    

3 , 2,..., 2iv i N  , 

, 1,..., 1, [1, ]k,i cp aP i n k n    

, 2,..., 2, 1,..., ,m,i cp aP i n m= n m k    

                               

CATD based Trajectory Optimization 

Problem Formulation 

Assuming a vehicle (e.g. MAV, UAV, ground robot, etc.) as a predator, by using the  

CATD strategy, its trajectory will be described by the position of virtual prey ( )p tx , initial 
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relative position between the prey and predator  ,0 ,0a px x  and PCPs ( )v t , as shown in Eq. (10)

. Then, higher order derivatives of ax , such as the 1
st
 and 2

nd
 order derivatives, are represented 

as, 

 

 

,0 ,0

,0 ,0

( ) ( ) ( )

( ) ( ) ( )

a p a p

a p a p

t t v t

t t v t

  

  

x x x x

x x x x
    (35) 

Remark 5: ,0 ,0a px x ,0 , ,0j a jP x  is required. This can be relaxed as an inequality constraint of 

,0 ,0a p   0 x x  in which   is a vector constitute by small positive numbers. 

After discretization, Eq. (10) and Eq. (35) become 

, 1 , , 1,...,a j N p j j aI j n  ζ ζ ξ     (36) 

and 

, 1 ,

, 1 ,

, 1,...,

, 1,...,

a j N p j j a

a j N p j j a

I j n

I j n





  

  

ζ ζ ξ

ζ ζ ξ
    (37) 

Here, , ,0 , ,0j a j p j ξ ζ ζ , in which , ,0 , 0( )a j a jx tζ 1  and , ,0 , 0( )p j p jx tζ 1 . 

To describe srx  and control variables in terms of   ,0 ,0a px x , v , and px , we can use 

either inverse dynamics or varying manifold based feedback linearization method, depends on 

whether the system is control affine. Similarly, only the varying manifold method will be 

introduced. When the dynamic of the vehicle is a control affine system (defined in Eq.(22)) and 

the output model is ( ) a y h x x , a manifold can be constructed as  

 
1 1

,0 ,01 1
( ) ( )

l l

p a pl l

d d
t v t

dt dt

 

 
   
 

y
s = x x x     (38) 
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where l  is the relative degree.  To maintain a vehicle staying on the varying manifold, the 

derivative of s  should be zero, thus,  

 ,0 ,0( ) ( ) 0
l l

p a pl l

d d
t v t

dt dt
     
 

y
s x x x     (39) 

With the similar derivation in the MC rule, the control variables in LP rule can be calculated by 

 
1

1

,0 ,0

1
1

,0 ,0

0 0

( ) ( ) ( ) ( )

( ) ( ) ( )

l
l l

p a pl

l kkl l
pl k l k l

l a p lk l k
k k

d
L L t v t L

dt

dd v
L L C C v L

dt dt







 


 

 
         

 

  
      

  
 

g f f

g f f

u h x x x x h x

x
h x x x h x

 (40) 

After all the states and control variables being represented in terms of px ,  ,0 ,0a px x  

and v , equivalent with Problem 2, trajectory optimization problem is now to solve, 

(Problem 6) 

0, ,
min [ , , ] ( , , )

Subject to ( , , ) 0

( , , ) 0

f

p f

t

p f p
tt

p

p

J t L t dt

t

t

 





x v
x v x v

g x v

h' x v

  (41) 

Note that similarly as MC rule, now equality constraints ( , , , ) 0p r t h' x x v  only include 

boundary conditions, because the dynamic equation of the vehicle has been already considered 

when calculating states and control variables. If combine with Eq. (17)), solving Eq. (41) will be 

equivalent to solving Problem 7, 

0

,
, ,

0

min [ , , ] ( , , ) , 1,...,
2

Subject to ( , , ) 0

( , , ) 0

j

N
f

N N f j k k k a
t

k

j

j

t t
J t L t w j n

t

t





  






P v

P v P v

g P v

h' P v

  (42) 

where, ,0 ,[ ,... ]
cp

T

j j j nP PP , and 0[ ,..., ]T

Nv vv .   
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Boundary Conditions Incorporation 

This section will talk about how to incorporate the three boundary conditions (illustrated 

in the Remark 1) by using CATD motion rule.  

Lemma 4: 
0v  in the CATD motion rule need to be 1. 

Proof: According to Eq. (10), when 0t  ,  ,0 ,0 0 ,0 ,0( )a p a pv  x x x x  valid only when 0 1v  . 

Lemma 5: For BC1, (1) 0 1v  , ,0jP  could be guessed as any value but ,0 , ,0j a jP x , 1,..., aj n ; 

(2) if Nv  is guessed, the last control point , , , , ,0 ,0( )
cpj n a j N N a j jP x v x P   . 

Proof: If 0 1v  , ,0px  is overlapped with ,0ax  ; The final position is , , ,0 ,0( )a N p N N a pv  x x x x . 

Thus if given Nv , ,p Nx  must satisfy , , ,0 ,0( )p N a N N a pv  x x x x . Based on Property 1, 

,0 , ,0j a jP x  and , , , , ,0 ,0( )
cpj n a j N N a j jP x v x P   , 1,..., aj n . 

Lemma 6: For BC2, 0 1v   and given any Nv , , , , , ,0 ,0( )
cpj n a j N N a j jP x v x P   , ,0 , ,0j a jP x , 

1,..., ai n . 1v  satisfies 

 
1

' '

1 , ,0 , ,0 01 , ,0 , 0 , , ,0 , ,0 0

0 0
1

( ) ( )
cpn N

a k p k a k l d k l a k p k j j

l j
j

v x x D x B t P x x D v


 


 
 

       
 
 

    (43) 

in which the thk  component must be selected such that , ,0 , ,0a k p kx x .  ,1mP , where 

1,..., ,am n m k  , must satisfies 
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 
 

 
 

'

,1 , ,0 , ,0 , ,0 0 , 0 ,

0 0, 11, 0
1

'

, ,0 , ,0 01 '

, ,0 , ,0 , ,0 0 , 0 ,'
0 01, 0 , ,0 , ,0 01
1

1
( )

( )
( )

( )

cp

cp

nN

m a m a m p m j j l d m l

j l ld
j

nN
a m p m

a k a k p k j j l d k l

j ld a k p k
j

P x x x D v B t P
B t

x x D
x x x D v B t P

B t x x D

  


 


 
 

    
 
 

        
    

 

 





 (44) 

Proof: Based on Lemma 5, 0 1v   and given any Nv , ,0 , ,0j a jP x , and 

, , , , ,0 ,0( )
cpj n a j N N a j jP x v x P   .  The initial velocity of the predator can be simplified as 

,0 ,0 0 ,0 ,0( )a p a pv  x x x x . The thk  component of this equation is select as 

, ,0 , ,0 0 , ,0 , ,0( )a k p k a k p kx x v x x   .  Approximating the PCP vector using the pseudospectral 

collocation and representing prey motion with a B-spline curve, the following equation can be 

achieved 

  '

, ,0 , 0 , , ,0 , ,0 0

0 0

( )
cpn N

a k l d k l a k p k j j

l j

x B t P x x D v
 

       (45) 

Equation (45) can be rearranged to calculate 1v  as Eq. (44). If 1an  , since 1v  calculated from 

different directions should be same, i.e. for , [1,..., ]am k m n  , 

 

 

1
' '

, ,0 , ,0 01 , ,0 , 0 , , ,0 , ,0 0

0 0
1

1
' '

, ,0 , ,0 01 , ,0 , 0 , , ,0 , ,0 0

0 0
1

( ) ( )

( ) ( )

cp

cp

n N

a k p k a k l d k l a k p k j j

l j
j

n N

a m p m a m l d m l a m p m j j

l j
j

x x D x B t P x x D v

x x D x B t P x x D v



 




 


 
 

      
 
 

 
 

       
 
 

 

 

   (46) 

Simplify Eq. (46), ,1mP , [1,..., ]am n , m k , can be calculated instead of being optimized as 

shown in Eq. (44). 
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Lemma 7: For BC3, 0 1v   and given any Nv , ,0 , ,0j a jP x , and , , , , ,0 ,0( )
cpj n a j N N a j jP x v x P   . 1v  

and 1Nv   should satisfy 

 

1
' '

1 01 , ,0 , ,0 0( 1) , ,0 , ,0

' '

1 1 , ,0 , ,0 ( 1) , ,0 , ,0

'

, ,0 0 , ,0 , ,0 , 0 ,

0, 1 0
1

'

, , , ,0 , ,0

( ) ( )

( ) ( )

( )

( )

cp

a k p k N a k p k

N N a k p k N N a k p k

nN

a k j a k p k j l d k l

j j l
j N

a k N Nj a k p k j

j

v D x x D x x

v D x x D x x

x D x x v B t P

x D x x v





 

  
 

   
   

     

  



 

 

 , ,

0, 1 0
1

cpnN

l d N k l

j i
j N

B t P
  
 

 
 
 
 
 

 
 
 

 

   (47) 

in which the thk  component must be selected such that the matrix inversion in Eq. (47) exists. 

,1mP  and , 1m NP  , 1,..., ,am n m k  , satisfy Eq. (48) 

Proof: Based on Lemma 5, 0 1v   and given any Nv , ,0 , ,0j a jP x , and 

, , , , ,0 ,0( )
cpj n a j N N a j jP x v x P   . The initial and final velocities of the vehicle are calculated by 

,0 ,0 0 0 ,0( )a p a, pv  x x x x  and , , 0 ,0( )a N p N N a, pv  x x x x , respectively. Selecting the thk  

component of these two equations, and approximating the PCP vector in the pseudospectral 

collocation and the prey motion in the B-spline, Eq. (47) is achieved. The selection of the thk  

component should guarantee that the matrix inversion in Eq. (47) exists.  If 1an  , 1v  and 1Nv   

calculated from different directions should be same, therefore Eq. (48) can be obtained. 
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 

   

 

 

,1

, 1

'

, ,0 0 , ,0 , ,0 , 0 ,1
0, 1 0, 1

1, 0 1, 0 1 1

1, 1, '

, , , ,0 , ,0 , ,

0, 1 0,
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d n d j N l N
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a m N Nj a m p m j l d N m l

j j i
j N
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P

x D x x v B t P

B t B t

B t B t
x D x x v B t P




   

    



  
 

 
 

  

  

 
  
     

 



 

   

1
1

1
' '

1, 0 1, 01 , ,0 , ,0 0( 1) , ,0 , ,0

' '

1 , ,0 , ,0 ( 1) , ,0 , ,01, 1,

' '

01 , ,0 , ,0 0( 1) , ,

( ) ( )

( ) ( )

( ) (

cp

cp

cp

n

l
l N

d n d a m p m N a m p m

N a m p m N N a m p md N n d N

a k p k N a k

B t B D x x D x x

D x x D x xB t B t

D x x D x


 



 





 
 
 
 
 
 
 
 

    
   

      






 

 
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' '

1 , , , ,0 ( 1) , , , ,0

'

, ,0 0 , ,0 , ,0 , 0 ,

0, 1 0
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'

, , , ,0 , ,0 , ,

0, 1 0
1

)

( ) ( )

( )

( )

cp
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p k

N a k N p k N N a k N p k

nN

a k j a k p k j l d k l

j j l
j N

nN

a k N Nj a k p k j l d N k l
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D x x D x x

x D x x v B t P

x D x x v B t P





  
 

  
 

 
 

   

 
   

 
 
 

  

 

 

  


  (48) 

Optimization Algorithm  

After all of the boundary conditions have been incorporated to solve the certain PCPs and 

control points, all of the equality constraints are eliminated. Now, Eq. (42) is equivalent to 

solving, 

(Problem 8)  

0

,
', ,

0

min [ , , ] ( , , ) , 1,...,
2

Subject to ( ', , ) 0

N
f

N N f j k k k a
t

k

t t
J t L t w j n

t





  




P v'

P' v' P' v'

g P v'

 (49) 

where, ,P' v'  and t  are considered as optimizable parameters and can be solved by nonlinear 

programming methods. Parameters 'v  and 'P  under three boundary conditions are summarized 

in Table 2. 
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 Table 2 Parameters 'v  and 'P  in the CATD Based Optimization Procedure  

BC CATD ( ,0 , ,0 , 1,...,j a j aP x j n  ) 

1 , 1,...,iv i N , 

, 0,..., 1, 1,...,j,i cp aP i n j n    

2 , 2,...,iv i N , 

, 0,..., 1, [1, ]k,i cp aP i n k n    

, 0,2,..., 1, 1,..., ,m,i cp aP i n m= n m k    

3 , 2,..., 1iv i N  , 

, 0,..., 1, [1, ]k,i cp aP i n k n    

, 0,2,..., 2, 1,..., ,m,i cp aP i n m= n m k    

 

Remark 6: The reason to optimize k,0P  even though it can be any value to satisfy Eq. (10) is that 

it will affect the speed of the virtual prey and will further affect the speed of the vehicle. 

 

LP based Trajectory Optimization 

Problem Formulation 

When a vehicle (e.g. MAV, UAV, ground robot, etc.) is assumed as a predator which 

chases a virtual prey by the LP strategy, its trajectory will be described by a virtual prey ahead of 

it. Since the prey is a virtual one when using the methods proposed in this research, the value of 

  will not affect the solution and thus can be regarded as zero. Therefore the LP strategy can be 

modified as  

( ) ( ) ( )a a pt v t v t x x x     (50) 

Then, the higher order derivatives of ax , such as the second derivatives, can be 

represented as, 
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( ) ( ) ( ) ( ) ( )a p a p at v t t v t t         x x x x x     (51) 

After discretization, we can get following equations, 

' 1

, ,( )a i p iD   ζ ζ        (52) 

   
1 1

' ' 1 '

, , ,( )a j p j p jD D D
 

         ζ ζ ζ    (53) 

And 

 

 

' 1

' 1
1, ,' ' 1

1
' 1 ' ' 1

, ,

( )
( )

2 ( )

2( ) ( )

a j p j

p j p j

D
D

D D

D D D









 

     
   

         

         
  

ζ ζ

ζ ζ

   (54) 

Different from VMC and CATD method, it is convenient to use inverse dynamics method 

to determine srx  and control variables in terms of v  and px .   

Now, equivalent with Problem 2, trajectory optimization problem by using LP method is 

to solve, 

(Problem 9) 

0, ,
min [ , , ] ( , , )

Subject to ( , , ) 0

( , , ) 0

f

p f

t

p f p
tt

p

p

J t L t dt

t

t

 





x v
x v x v

g x v

h' x v

  (55) 

Note that similarly as MC rule, now equality constraints ( , , , ) 0p r t h' x x v  only include 

boundary conditions, because the dynamic equation of the vehicle has been already considered 

when calculating states and control variables. If combine with Eq. (17)), solving Eq. (13) will be 

equivalent to solving Problem 10, 
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0

,
, ,

0

min [ , , ] ( , , ) , 1,..., , 1,...,
2

Subject to ( , , ) 0

( , , ) 0

j

N
f

N N f j k k k a a
t

k

j

j

t t
J J t L t w j n j n

t

t





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




P v

P v P v

g P v

h' P v

 (56) 

where, ,0 ,[ ,... ]
cp

T

j j j nP PP , and 0[ ,..., ]T

Nv vv .   

Boundary Conditions Incorporation 

This section will talk about how to incorporate the three boundary conditions (illustrated 

in the Remark 1) by using LP motion rule.  

Lemma 8: For BC 1, the “position state” of predator (i.e. the actual vehicle) at all discretized 

nodes except the first and last ones are calculated using 

   , ,1 , ,0 , 1 , , , 1,...,a i LP i LP a i LP N a i N aM B M ζ M ζ i n


    ζ P    (57) 

in which '( )LPM D  , and ,1LPM , , 1LP NM  , and LPM  are the first, last, and remaining 

columns of LPM , respectively.  , ,0a iζ , , ,a i Nζ , and ,a iζ  are respectively the first, last, and 

remaining “position state” variables of the vehicle in the thi  direction.   


 denotes the pseudo-

inverse operation. 

Proof. According to LP strategy, ' 1

, ,( )a i p iD   ζ ζ , 1,..., ai n . Let us define 

'( )LPM D  . For BC 1, the LP strategy , ,LP a i p i iM B   ζ ζ P  can be re-arranged as 

,1 , ,0 , , 1 , ,LP a i LP a i LP N a i N iM x M M x B   x P , which further can be rearranged as Eq. (57). 

Lemma 9: For BC 2, ,0 , ,0 , ,0 0/j a j a jP x x v  , 1,..., aj n , and the vehicle’s “position state” at all 

the discretized nodes, except the first and last nodes will be calculated using Eq. (57). 
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Proof.  The vehicle’s “position state” at all the discretized nodes, except the first and last nodes, 

will be calculated using Eq. (57). According to the initial condition in LP, 

, ,0 , ,0 , ,0 0/p j a j a jx x x v  , and Property 1 in the B-spline representation, 

,0 , ,0 , ,0 , ,0 0/i p i a i a iP x x x v   , 1,..., aj n .         

Lemma 10: For BC 3 (LP), the vehicle’s “position state” at all the discretized nodes, except the 

first and last nodes, will be calculated using Eq. (57), ,0 , ,0 , ,0 0/j a j a jP x x v  , and  

, , , , , /j N a j N a j N NP x x v  , 1,..., aj n . 

Proof.  The proof is the same as that of Lemma 9, thus it is not listed here.  

Optimization Algorithm  

After all of the boundary conditions have been incorporated to solve the certain PCPs and 

control points, all of the equality constraints are eliminated. Now, Eq. (56) is equivalent to 

solving, 

(Problem 11)  

0

,
', ,

0

min [ , , ] ( , , ) , 1,...,
2

Subject to ( ', , ) 0

N
f

N N f j k k k a
t

k

t t
J t L t w j n

x t





  




P v'

P' v' P' v'

g P v'

 (58) 

where, ,P' v'  and ft  are considered as optimizable parameters and can be solved by nonlinear 

programming methods. Parameters 'v  and 'P  under three boundary conditions are summarized 

in Table 3. 

 Table 3 Parameters 'v  and 'P  in the LP Based Optimization Procedure  

BC LP motion rule 

1 , 0,...,iv i N , 

, 0,..., , 1,...,j,i cp aP i n j n   
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BC LP motion rule 

2 , 1,...,iv i N , , 1,..., , 1,...,j,i cp aP i n j = n  

3 , 1,..., 1iv i N  , 

, 1,..., -1, 1,...,j,i cp aP i n j = n  

 

Summary 

Unified Linear Algebraic 

A unified linear algebraic (ULA) formulation, describing the relationship between the 

positions of predator and prey, is now summarized for three motion strategies (MC, CATD and 

LP) in this section. 

The positions of predator ax  (i.e. the actual vehicle) and prey 
1an

p


x  (a virtual one) 

are discretized using high order discretization methods, for example the Legendre-Gauss-Lobatto 

(LGL) method [49], as , , ,0 , ,,...,T

a j a j a j Nx x   ζ  and , , ,0 , ,,...,T

p j p j p j Nx x   ζ , where 1,..., aj n  is 

the thj  direction of the “position state” and the third subscript 0,..., N  denotes the discretization 

node. Superscript “T” means the transpose operation. 

With the above defined notations, the following Lemma about the ULA formulation is 

proposed. 

Lemma 11: The “position state” of predator (i.e. the actual vehicle) in the MC, CATD, and LP 

motion strategies is abstracted as 

( , ) ( )a, j p j p, j b jA A ζ v ξ ζ v ξ , 1,..., aj n     (59) 

The detailed representations of matrices pA  and bA  in Eq. (59) depend on the chosen 

motion strategies and will be later introduced.  In Eq. (59), 0 1[ , ,..., ]T

Nv v vv =  is the discretized 
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version of a one-dimensional path control parameter (PCP) vector ( )v t . jξ  represents a set of 

optimizable constants with a finite dimension that are used in the MC and CATD motion 

strategies. 

The first derivative of predator’s “position state” is 

( , ) ( , ) ( )a, j p j p, j p j p, j b jA A A  ζ v ξ ζ v ξ ζ v ξ , 1,..., aj n    (60) 

while the second derivative is  

( , ) 2 ( , )

( , ) ( )

a, j p j p, j p j p, j

p j p, j b j

A A

A A

 

 

ζ v ξ ζ v ξ ζ

v ξ ζ v ξ
, 1,..., aj n          (61) 

The detailed descriptions of ULA formulation for the MC, CATD, and LP strategies (i.e. 

( , )p jA v ξ , ( )bA v , and jξ ) are summarized in Table 4.  In the table, the PCP variable matrix 

{ }diag  v  is a diagonal matrix. I  is an identity matrix. D  is the differentiation matrix in the 

LGL discretization, and '

02 / ( )fD t t D   [49]. 

Table 4 ULA in Different Motion Strategies 

Motion 

strategies 
ULA ( , )p jA v ξ  ( )bA v  jξ  

MC  1a, j p, j N jI    ζ ζ ξ    1NI    ,r jx 1  

CATD 1a, j N p, j jI  ζ ζ ξ  
1NI     , ,0 , ,0a j p jζ ζ  

LP 
' 1( )a, j p, jD     ζ ζ  ' 1( )D    0 0 

 

The detail proof of Table 4 is shown below. 
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Lemma 12: In MC, ( )p jA  v ξ, , 1( )b NA I  v , and ,j r jxξ 1 , 1,..., aj n .  ( 1) 1N 1  is a 

column vector with all the elements equal to one, and ,r jx  is the thj  component of the reference 

point. 

Proof. Comparing Eq. (19) and Eq. (59), ( )p jA  v ξ, , 1( )b NA I  v , and ,j r jxξ 1 , 

1,..., aj n . 

Remark 7: Following the Lemma 12, when the MC strategy is applied, the derivatives used in 

Eqs. (60)-(61) are ( )pA  v , ( )pA  v , ( )bA  v , ( )bA  v , and so on.  

Lemma 13: In the CATD strategy observed in bats and dragonflies, 1( )p j NA I v ξ, , ( )bA  v , 

and , ,0 , ,0j a j p j ξ ζ ζ , in which , ,0 , 0( )a j a jx tζ 1  and , ,0 , 0( )p j p jx tζ 1 . 

Proof: Comparing Eq. (36) and Eq. (59), 1( )p j NA I v ξ,  and ( )bA  v . 

Remark 8: Following Lemma 13, when the CATD strategy is applied, the derivatives used in 

Eq.(60)-(61) are ( ) 0p jA v ξ, , ( ) 0p jA v ξ, , ( )bA  v , ( )bA  v , and so on. 

Lemma 14: In the LP strategy, ' 1( ) ( )p jA D   v ξ,  and ( ) 0bA v . 

Proof: According to Eq. (52) and Eq. (59),
' 1

, ,( )a i p iD   ζ ζ , 
' 1( ) ( )p jA D   v ξ, , and 

( ) 0bA v . 

Remark 9: Due to Eqs. (53)-(54) and Eq. (59),  

 
1

' ' 1( , ) ( )p jA D D


      v ξ    (62) 

and, 
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 

' 1

' 1
1

' ' 1

( )
( , ) ( )

2 ( )
p j

D
A D

D D








    
   

         

v ξ    (63) 

Framework of Bio-inspired Trajectory Optimization Method 

The procedure of Bio-inspired Trajectory Optimization Method will be summarized in 

this part. 

Assumption 1: In P1 (Defined in 2.1), the mapping from ( , )a tx  to ( , )srx u  is assumed to be 

injective [75], that is, u  and srx  can be solved using ax  explicitly. 

The “position state” 
1an

a


x  in Problem 1 (P1) is intentionally limited in an iteratively 

refined subspace (or manifold) defined by the ULA formulation (Eq. (59)). As mentioned in 

Assumption 1, all the control and state variables in P1 are functions of ( )v t , ( )p tx , and possibly 

ξ  and ft . Thus, the performance index to be optimized is 2 2( , , , )fJ J t v P ξ' '  now. The I. E. C. 

is 2( , , , ) 0ft g v P ξ' ' . (P2)  Here 2J  and 2g  are discretized versions. 

The steps involved in BiCF are summarized in Algorithm 1.   

Algorithm 1 : BiCF 

Steps in the 

Initialization  

Step 0: Select one of the three motion strategies: MC, CATD, or LP. 

Step 1: 

Provide related initial guesses of optimizable parameters for certain 

strategy, e.g. PCPs, reference point, control points of virtual prey 

motion. 

 

 

Steps inside 

the NLP  

Step 2: 
Calculate the remaining parameters by using the appropriate 

necessary conditions discussed in Section 3.3. 

Step 3: Construct the virtual prey motion using B-splines (Eq. (14)). 

Step 4: 
Compute the predator (vehicle’s) motion by using predator-prey 

relations discussed in Section 3.1  

Step 5: 
Calculate the control variables by using the dynamics equation of 

vehicle. 

Step 6: Check the performance index 
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Algorithm 1 : BiCF 

Step 7: Check the inequality constraints 

Step 8: 

Generate a new initial guess of optimizable parameters and go back 

to Step 2, if the maximum number of iterations and the convergence 

criterion are not reached.  Otherwise, the optimization is terminated. 

 

Optimization and Dimension Analysis 

Theorem 1: The solution of Problem 1 (P1) is equal to the limiting solution of Problem 2 (P2) 

obtained through the procedure described in Algorithm 1, which is optimal as the number of 

discretized nodes N  and the number of control points cpn  approach  . 

Proof. In P1, the continuous or piecewise continuous state x  and control u , and possibly the 

final time ft  are solved to minimize the performance index 1 1( , , )fJ J t x u , subject to the E.C.s. 

1( , , ) 0t h x u  and the I.E.C.s. 1( , , ) 0t g x u . 

Based on Assumption 1, srx  and u  can be calculated using ax . Through Step 4 of 

Algorithm 1, the state vector ax  is represented in the ULA formulation (1) as a function of the 

PCPs ( )v t , px  (the “position state” of the virtual prey), and ξ  (the finite dimensional set of 

constant but optimizable parameters).  The virtual prey, PCPs, and possibly final time span over 

the full search space of P1. Therefore, solving P1 is in fact to solve problem P3: minimizing 

3 3( , , , )p fJ J v t x ξ  subject to 3( , , , ) 0p fv t h x ξ  and 3( , , , ) 0p fv t g x ξ . Here ξ  includes all jξ , 

1 a= ,...,nj . 

In Step 3 of Algorithm 1, since the solution is assumed to be piece-wise differentiable, 

the virtual prey motion can be represented by the B-spline. Then the system is evaluated at the 
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discretized node. As shown in [52], solving P3 is approximately equivalent to solving the 

following problems P4 as the numbers of discretized nodes and the control points increase. P4: 

solving the control points P , the PCP v , and possibly ξ  and ft  to minimize 

4 4( , , , )fJ J t v P ξ , subject to 4( , , , ) 0ft h v P ξ  and 4( , , , ) 0ft g v P ξ . 

Following Step 2 of Algorithm 1, certain control points and PCP nodes in Set CS  can be 

calculated instead of being optimized using the necessary conditions derived based on the 

boundary conditions; therefore, solving P4 is equivalent to solving P2: minimize 

2 2( , , , )fJ J t v P ξ' ' , subject to 2( , , , ) 0ft g v P ξ' ' . The nonlinear dynamics have already been 

considered when solving the “state rate” and control variables.  The boundary conditions are 

considered in the necessary conditions (Step 2 of Algorithm 1). 

Based on the above discussions, P1 to P3 and P4 to P2 are equivalent. P3 to P4 is 

approximately equivalent as described next. 

We assume that the optimal solution achieved in P4 is * * * *{ , , , } cpn

f NtP v ξ  with N  

discretized nodes and cpn  control points, and the superscript “*” denotes the optimum.  As N  

and cpn  increase, a sequence of optimal solutions can be achieved in P4. As proven in [52], if 

there exists an optimal solution * * * *{ , , , }p fv tx ξ  for the continuous version of P2, the following 

limits converge uniformly for * *lim { ( ) } 0cp

cp

n

p N
N
n

B



 x P , 
* *lim{ ( ) ( ) } 0N

N
v t


 v , 

* *lim{ ( ) } 0N
N

 ξ ξ , and
* *lim{ ( ) } 0f f N

N
t t


  , and the performance indices equal each other.  

Here () cpn

N  denotes the solution when N  and cpn  are used, and ()N  is the case when N  is used. 
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Therefore, the limiting trajectory in solving P4 is equivalent to solving P3 as the numbers of 

discretized nodes and the control points increase to infinite.  The parameters to be optimized here 

* * * *{ , , , } cpn

f NtP v ξ  are different from those of [52], however, the procedure of the proof is the 

same. 

Remark 10: It is not practical to choose an infinite value for the number of the control points 

and the discretized nodes.  Also in many cases, as the number of optimizable parameters 

increases in the NLP, the convergence gets more difficult.  Therefore, a tradeoff exists among the 

solution optimality, convergence rate, and computational cost.   

The problem dimension of the achieved NLPs is compared to the other two methods as 

shown in Table 5. The first approach is a baseline method (BL), in which the “position state” in 

P1 is discretized using popular pseudospectral collocation methods such as the methods in [49]. 

The second approach is the B-spline based (BS) method [46], in which the “position state” in P1 

is directly represented by the B-spline curves.  The third approach is the proposed BiCF 

methods.  To have a fair comparison, the differential inclusion procedure is used in all these 

approaches such that the control and “state rate” variables are calculated by the “position” state 

variables.  

The optimizable parameters in the BL approach is on the order of  an N . The 

dimension of the BS approach is on the order of 1( )a cpn n , in which 1 1cpn   is the number of 

control points used in representing the “position state” 
1an

a


x . The number of optimizable 

parameters in BiCF is on the order of ( )a cpN n n  . 

Typically cpn  and 1cpn  are much smaller than N , therefore the BS based method and the 
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methods in BiCF have smaller dimensions. Here the E.C.s related to the dynamic equations have 

been eliminated. Furthermore, in BiCF the E.C.s about the boundary conditions can be 

eliminated via the necessary conditions. 

Table 5 Dimension Comparisons 

 Baseline  

Approach  

B-spline  

Approach 

Methods in 

BiCF 

Parameters ( )an N  1( )a cpn n
 

( )a cpN n n   

 

The problem dimension comparisons between the BS based approach and the proposed 

BiCF are further discussed in the following two cases. 

Case 1: if there is a small number of (or no) obstacles or only a few constraints in P1, small 

values of 1cpn  and cpn  are flexible enough to represent the trajectory.  

Case 2: If there are many obstacles and/or severe constraints, the proposed methods in BiCF 

only need a lower degree curve and fewer control points as compared with the BS based method. 

Explanation 1: Based on Eq. (15) and Eq. (59), the thj  component of the “position state” 

evaluated at node k can be approximated as 

 

, , , , , , , , ,

0 0

, , , , , , ,

0 0 0

( ) ( )

( ) ( )
cp

N N

a j k p k m j p j m b k m j m

m m

nN N

p k m j i d m j i b k m j m

m i m

x A , x A

A , B t P A

 

  

 

 
   

 

 

  

v v

v v

 

 

   (64) 

while in a typical BS based approach, the “position state” is represented by [46]. 

1

, , , ,

0

( )
cpn

a j k i d k j i

i

x B t P


       (65) 
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In Eq. (64), , ,p k mA  is the (k, m) element of matrix

 
pA . It can be seen in Eq. (64) that any control 

point , , 1,..., , 0,...,j i a cpP j n i n   has been used ( 1)( 1)cpn N   times to form , ,a j kx  in the full 

space, while in Eq. (65) , 1, 1,..., , 0,...,j i a cpP j n i n   is only used 1 1cpn   times.  Therefore under 

the same obstacles or constraints scenarios, Eq. (64) needs a much smaller
 

cpn  than 1cpn  in Eq. 

(65) to achieve the same curve flexibility condition. 

Explanation 2: When there are many obstacles and severe states and control variable 

constraints, the B-spline curve requires a larger number of control points 1cpn  and a higher 

degree curve to avoid those obstacles and constraints. In comparison, the proposed method in 

BiCF only needs a lower degree curve and fewer control points, because the obstacles can be 

avoided by varying the PCP values. 

Comparison of Bio-inspired Trajectory Optimization Method 

In this part, MC, CATD, LP, BS and BL methods will be compared through a robot 

minimum arrival time example. 

The minimum time trajectory is solved for a mobile robot to move from an initial 

position to another position, while avoiding collisions with many obstacles. The discretized 

performance index is  0

0

0.5
N

f i

i

J t t 


   , in which i  is the weight associated with the 

discretization node. The nonlinear dynamic model of the robot [76] is assumed to be 

cos 0

sin 0

0 1

x

y



  



     
     

 
     
          

     (66) 
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where the “position state” is the midpoint of the vehicle  ,
T

x y . The “state rate” is the direction 

of the vehicle  , which is calculated using 1tan ( / )y x  . v  and  , the speed and angular 

velocity of vehicle, are regarded as the control variables and computed by 

   

   

/ cos , cos 0

/ sin , cos 0

x
v

y

 

 


 


     (67) 

and 

     2 2 2 2/ , 0yx xy x y x y          (68)  

To compare the robustness of algorithms and solution optimality, a Monte Carlo 

simulation is used. In each Monte Carlo run, the same but randomly generated scenario is used in 

all the five methods. A total of 4,000 runs are used in three different computers.  

The testing area is defined to be 11 m  in both x and y directions. Ten to twelve obstacles 

with a radius varying uniformly within [0.4,0.8]m are generated randomly in the testing area. 

The initial position of the robot is uniformly distributed in the lower left corner of the test area 

(i.e. [0,1]m  in the x position and [1,5]m  in the y position, respectively). Accordingly, the final 

position of the robot is uniformly distributed in the upper right part of the test area (i.e. [9,10]m  

in the x position and [6,10]m in the y position, respectively). Without the loss of generality, the 

robot is initially heading towards the final position, and the initial speed is set to be 0.1 /m s . The 

robot has a maximum speed of max 0.1 /V m s  and a maximum turning rate of 135 / s , 

respectively. 

To improve the success rate, particularly for the BL method, an obstacle-free path is 

generated by the wavefront algorithm [77] without considering the nonlinear dynamics, and state 
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and control variable constraints.  

Twenty one discretization nodes are used in these five optimization methods. 5cpn   and 

3d   are selected for the MC, LP, CATD and BS methods.  The PCPs in the MC, LP and 

CATD methods are initially guessed to be 0.998, 1.1 and 0.001, respectively. In the CATD 

method, the start point of the virtual prey is randomly guessed to be [ 0.1, 0.1]m  ,  away from 

the initial position of the actual robot. In the MC method, the reference point is randomly set to 

be [ 120, 120]m  . The initial guess of the final time is  

0 max( ) ( ) /f a f at t t V x x         (69) 

In any of these methods, if a converged solution is not achieved within 100 iterations or 

5000 function evaluations, a failure case is counted against this method. Additionally, the 

minimum performance index among all five methods is regarded as the best solution. If the 

performance index from any other method is within 5% difference of the best solution, the 

solution found using this method is regarded as an optimal one; otherwise it will be regarded as a 

feasible solution only. 

The following observations are obvious from Figure 4. (i) The BL method has the highest 

failure rate among five methods. As analyzed in Section 3.5, the problem dimension achieved 

using the BL method is the highest, which practically makes the convergence more challenging. 

(ii) All the other four methods have a similar success rate and all are above 90%.  (iii) All the 

BiCF methods have higher successful rates in finding optimal solutions as compared with the BS 

method. (iv) LP strategy has a relatively higher success rate than MC and CATD strategies.  

Since when using a small number of control points and a lower degree, the BS method is not 

flexible enough as compared with the BiCF methods. 
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Figure 4 The failure, feasible, and optimal solution rates for five methods 

The average computational cost of the Monte Carlo simulation is summarized in Table 6. 

The average CPU time of BL method is the longest, and that of BS method is the shortest. The 

BiCF methods are only a little bit slower than the BS method. However, as shown in Figure 4, 

the methods in BiCF can achieve optimal solutions with a much higher success rate as compared 

with that of the BS method. 

Table 6 Average CPU Time of Monte Carlo Simulation 

Algorithm Average CPU Time 

BL 7.32 s 

BS  0.79 s 

LP 1.47 s 

MC 1.95 s 

CATD 1.69 s 

 

One example Monte Carlo run is shown here. Figure 5 shows the minimum time 

trajectories generated by five methods with 12 obstacles in the area. In Figure 5(b), the 

trajectories generated by the five methods are close to each other.  
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(b) 

Figure 5 One Monte Carlo run: (a) optimal trajectories found by five methods, (b) zoomed in 

for the dotted area in (a) 

 

As listed in Table 7, the performance index of BL method is the smallest but the CPU 

time is the highest, while the performance indices of three BiCF methods are within 0.3% 

differences with that of the BL method. The BS method has the lowest computation time but 

only generates a feasible solution.  

Table 7 The CPU Time and the Performance Index for One Run 

Algorithm CPU Time Performance Index 

BL 9.77 s 110.67 

BS 1.21s 111.95 

LP 1.43 s 111.09 

MC 1.57 s 111.04 

CATD 1.26 s 111.08 

 

Simulation Examples 

Two non-trivial examples are conducted to demonstrate the capabilities of the algorithms 

in BiCF: a supersonic aircraft minimum time-to-climb problem and a robot obstacle free 

trajectory planning problem. 
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All the simulations are conducted in the same computer with a frequency of 3.16 GHz 

and a RAM of 4 GB, and the MATLAB function “fmincon” (7.12.0.635 R2011a) is used as the 

NLP solver. 

Robot Obstacle Avoidance Trajectory Optimization  

In this example, the minimum time trajectory is solved for a two-wheel mobile robot to 

move from the initial position [1,1]T mnto the final position [9,9]T m , while avoiding collisions 

with obstacles. The discretized minimum time performance index is  0

0

0.5
N

f i

i

J t t 


   . The 

model of the two-wheel robot is governed by Eq. (66). The initial heading angle and speed of the 

vehicle are assumed to be 45and 0.1 /m s , respectively. The control variables are constrained 

by max 0.1 /v v m s   and max 135 / s    . The “state rate” variable is calculated using 

1tan ( / )y x  .  

Two scenarios with different obstacles are simulated to demonstrate the effectiveness of 

the methods in BiCF. The first case includes three obstacles:    
2 2

4 4 4x y    , 

   
2 2

6 7 1x y    , and    
2 2

8 6 1x y    . There are four obstacles involved in the 

second case:    
2 2

4 4 4x y    ,    
2 2

7.5 4 1x y    ,    
2 2

8 6 0.5x y    , and 

   
2 2

7 8 1x y    . The initial settings for both cases are the same.  

A randomly selected curve is used as the trivial guess of the robot trajectory.  5cpn   and 

3d   are tuned in the MC and CATD methods, while 4cpn   and 3d   are selected in the LP 

method. PCPs are guessed to be 1 in the MC method and 0.1 in the other two methods. The 
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initial position of the virtual prey is randomly guessed to be [1.01,1.01]m  in the LP method, and 

the reference point is randomly set to be [130, 120]m in the CATD method. The final time is 

arbitrarily assumed to be 130s in all three methods. 

The computational cost and achieved performance indices of the three-obstacle case are 

shown in Table 8.  The overall CPU runtimes for the BiCF methods increase as the number of 

the discretized nodes increases from 10 to 25 nodes; however the increase is small (MC: from 

2.91s to 5.44s; CATD: from 2s to 5.30s; and LP: from 2.02s to 5.13s). For example, in the 25-

node case, the maximum CPU time among all three methods is only 5.44 seconds. The 

performance indices are consistent for different node cases.  Due to the numerical precision 

issues, the results are slightly different, but the maximum difference is only 1.59%. 

Table 8 Collision Avoidance Problem (3 Obstacles) 

Algorithm Performance 10-node 15-node 20-node 25-node 

MC approach 
Index (s) 123.3 124.41 123.92 122.85 

CPU Time (s) 2.91 3.57 4.25 5.44 

LP approach 
Index (s) 123.86 124.06 124.01 123.73 

CPU Time (s) 2.02 2.82 3.77 5.13 

CATD approach 
Index (s) 124.16 124.84 124.38 124.81 

CPU Time (s) 2.00 2.16 3.95 5.30 

 

The results for the 4-obstacle case are shown in Table 9.  Analysis is the same as three-

obstacle case and omitted here.  The performance indices in Table 8 and Table 9 are different 

due to different number and position of obstacles involved.  The four-obstacle cases generally 

take a little bit longer CPU time to find the optimal trajectories. 
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Table 9 Collision Avoidance Problem (4 Obstacles) 

Algorithm Performance 10-node 15-node 20-node 25-node 

MC approach 
Index (s) 122.34 123.66 122.66 122.41 

CPU Time (s) 2.58 4.14 4.25 5.59 

LP approach 

Algorithm 

Index (s) 122.81 122.66 122.85 123.24 

Performance 10-node 15-node 20-node 25-node 

LP approach 

CATD approach 

CPU Time (s) 2.10 3.91 4.95 5.17 

Index (s) 122.82 123.17 122.85 122.34 

CPU Time (s) 2.44 3.4 4.42 5.60 

 

The minimum time trajectories for the 3-obstacle and 4-obstacle cases (25 nodes) are 

shown in Figure 6-Figure 7. It is worth noting that the trajectories obtained via these three 

methods are slightly different, because the minimum times achieved in the different motion 

strategies are slightly different. 
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Figure 6 Optimal trajectories for the 25-node case with 3 obstacles  
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Figure 7 Optimal trajectories for the 25-node case with 4 obstacles  

 

Supersonic Aircraft Minimum Time-to-Climb Problem  

The aircraft is assumed to be a point mass and governed by the following 3-DOF 

equations [78]  

cos cos cos sin

sin [( ) / sin ]

( cos ) / ( / cos ) /V h

x V y V

h V V T D W g

n g V n g V

   

 

   

  

   

  

   (70) 

where x , y , and h  are the down range, cross range, and altitude of the aircraft, respectively.  

V ,  , and   are respectively the speed, heading angle and flight path angle,.  The weight of the 

aircraft W  is assumed to be 15512.86kg [79]. The thrust T , vertical load factor Vn , and 

horizontal load factor hn  are the control variables. g  is the gravitational cost. D  is the drag and 

calculated by 
0

2 2 21/ 2 [ ]D LD V S C C


    , in which   is the atmospheric density, S  is the 

cross-section area,   is the angle of attack, and   is the drag due to lift factor. The zero lift drag 

coefficient 
0DC  and lift curve slope LC


 are functions of the Mach number M  that can be found 
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in [80]. 

The initial position and velocity of the supersonic aircraft are set to be [0,0,0]m  and 

[170,0,0] /m s .  The objective is to find the minimum time trajectory for the supersonic aircraft 

to climb from its initial position to the final position of[10000,5000,5000]m , with a desired final 

velocity of [100,100,100] /m s . The performance index in the LGL discretized form is 

 0

0

0.5
N

f i

i

J t t w


   , in which iw  is the weight for the thi  node.   , ,
T

x y h  is regarded as the 

“position state”, while its “state rate” srx  is [ , , ]TV   .  The control variables can be computed 

by 

( / sin )

/ cos

cos /

V

h

T V g W D

n V g

n V g



 

 

  

 



     (71) 

where 1tan ( / )y x    and 1sin ( / )h V  . The control variables are constrained by 

max0 89000T T N   , ,max 3.8V Vn n  , and ,max 3.8h hn n  . The constraints on the speed, 

flight angle, and heading angle are 0 500 /V m s  , 45  , and 45  , respectively. 

The cases with 10, 15, 20, and 25 nodes are tested in each of the three methods in BiCF. 

Here a straight line is used as the initial guess of aircraft trajectory. Six control points ( 5cpn  ) 

and a degree of four ( 4d  ) are set for the B-spline curves. The reference point in the MC 

method is guessed to be [2000,2000,2000]m , while the initial position of the virtual prey in the 

CATD method is assumed to be [1,1,1]m .  The PCPs are guessed to be 1.   

The performance indices and the computational cost are shown in Table 10. The 
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following observations are apparent: (1) CPU runtimes are low and only grow slightly as N 

increases (MC: from 4.07s to 6.86s; CATD: from 4.33 to 8.37s; and LP: from 3.01 to 6.45s). (2) 

The performance indices of all three methods are consistent for different node cases, and the 

maximum difference is only about 3.85%.  

The trajectory solutions for different number of nodes and different motion strategies are 

similar. Therefore, only the 25-node case is shown in Figure 8-Figure 12.  Since the minimum 

times between different motion strategies are slightly different, the optimal trajectories for 

different methods are also slightly different. 

Figure 10-Figure 12 show the control and “state rate” variable time histories of the 

aircraft for the 25-node case. The thrust remains at the maximum level for most of the time in 

order to minimize the climbing time.  The constraints of the speed, flight path angle, heading 

angle, g-loads, and thrust are not violated.  The oscillations occurring in the beginning and final 

stages (Figure 10 and Figure 12) are caused by the Gibbs phenomenon in the pseudospectral 

discretization. 

Table 10 Minimum Time-to-climb Problem 

Algorithm Performance 10-node 15-node 20-node 25-node 

MC approach 
Index (s) 38.51 38.63 38.84 38.68 

CPU Time (s) 4.07 5.73 5.92 6.86 

LP approach 
Index (s) 38.19 38.61 38.87 38.8 

CPU Time (s) 3.01 5.03 5.86 6.45 

CATD 

approach 

Index (s) 39.66 39.44 39.17 39.54 

CPU Time (s) 5.02 4.33 5.52 8.37 
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Figure 8 Minimum time-to-climb problem for the 25-node case  
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Figure 9 Minimum time-to-climb problem plotted in the (a) down range-altitude and (b) cross 

range-altitude coordinates 
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Figure 10 Control and speed histories: (a) thrust and (b) speed 
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Figure 11 State variables histories: (a) heading angle and (b) flight path angle 
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Figure 12 G-load histories: (a) horizontal load factor and (b) vertical load factor 
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CHAPTER FOUR: INITIAL GUESS TECHNIQUE 

The computational cost associated with the Bio-inspired Computational Framework 

(BiCF) methods is small. As any other NLP problems, if the initial guess is not good, it is 

challenging for the optimization iterations to converge. This chapter will discuss initial guess 

techniques for BiCF method based on Motion Camouflage (MC) strategy. 

 

Background 

Different strategies have been proposed to enhance the initial guesses of: (1)  rocket 

trajectory optimization problems [81]-[82],  direct optimization methods can be applied to 

generate an initial guess, which is then used in indirect trajectory optimization approaches; and 

(2) aircraft landing trajectory optimization problems [83], a geometric path is computed based on 

the simplified Dubin’s car model is used as the initial guess, and then a time-optimal speed 

profile is generated.  

In this dissertation, to enhance convergence success rate and speed of BiCF based 

optimization algorithms, the initial guess of the reference point, control points and Path Control 

Parameters (PCPs) are placed or tuned according to the necessary conditions based on the 

obstacles and speed constraints. If the initially guessed path does not satisfy these conditions, the 

algorithm will return to the initial guess step without executing the optimization iteration.  Thus, 

the computational cost will be reduced by not wasting time in one optimization iteration if the 

chance of violating the obstacle avoidance and speed constraints is high. 
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Necessary Conditions Based on Velocity Constraints 

Necessary condition based on velocity constraint will be derived in this section. The 

derivation of lemmas is based on the assumption that a vehicle during trajectory optimization has 

speed requirement, as,  

max0 , 1,...,kV V k N        (72) 

Lemma 15: A necessary condition for a vehicle to satisfy the speed limitation maxkV V  at node 

k  by using Virtual Motion Camouflage (MC) strategy is 

2 2
2 2 2

, , , , max( ) ( ) 0T

p k r p k p k r p k kV V v      x x x x x     (73) 

Proof: To satisfy the speed constraint of max0 kV V  , i.e. 2 2

maxkV V , at node k , the velocity 

equation of the vehicle can be expressed using MC strategy (Eq.(18)), it requires 

2
2 2 2 2 2 2 2

max , , max , , , , max2 ( ) 0T T

k a k a k p k r k k p k r p k k k p kV V V v v v v V V         x x x x x x x   (74) 

Let’s define 
2

2 2 2

, , , , max, 2 ( ) ,T

k p k r k k p k r p k k k p kA B v C v V V  x x x x x . Then Eq. (74) is 

expressed as 2 0k kAv Bv C   . Based on the quadratic inequality [84], for Eq. (74) to be valid, 

2 4 0k k kB A C   is required and the solution to Eq. (73) is 

2 24 4
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  . Therefore the lower and upper bounds of v  are 
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 (75) 

and  
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2 2
2 2 2

, , , , , , max

,max 2
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 (76) 

respectively, in which 

2 2
2 2 2

, , , , max( ) ( ) 0T

p k r p k p k r p k kV V v      x x x x x    (77) 

must be satisfied. 

 

Initial Guess Techniques  

The initial guess techniques are based on the assumptions that the vehicle during 

trajectory optimization has both a speed requirement (Eq. (72)) and an obstacle avoidance 

requirement, described as,  

, , 1,....,a o i i or i n  x x     (78) 

where ,o ix  and ir  are the center position and radius of the thi  obstacle, respectively, and on  is the 

number of obstacles. 

For the scenarios with many obstacles, the convergence rate can be improved if the initial 

guess of vehicle’s path is collision free instead of a randomly generated path.  

Since the vehicle’s path in the dissertation is relying on the choice of the virtual prey 

path, a collision free corridor will be found for this path based on the wavefront method. In 2D 

space, the wavefront method can be directly used, but in 3D space, a third direction (i.e. up 

direction) is added to find 3D path. It is assumed that all the obstacles in 2D space can be 

approximated by circles. It is additionally assumed that the obstacles in 3D space are 

approximated using cylinders, and the vehicles will not walk/fly over the top of obstacles 
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without losing of generosity.  

Step 1: In 2D space, a collision free corridor will be found directly by wavefront algorithm [77] 

as shown in Table 11. In 3D space, a 2D collision free corridor will be first generated in the 

horizontal plane by using waterfront algorithm as shown in Table 11.  Then by assuming the 

virtual prey is ascending or descending continuously from an initial position until reaching a 

final position, the up direction of the 3D virtual prey path is a linearly interpolated. 

Table 11 Wavefront Algorithm Used in the Horizontal Plane 

Step # Content 

Step 1-1: 
Dividing east-north horizontal plane into rectangular cells along the east and 

north directions 

Step 1-2: Assigning “1” to the cell occupied by the initial position of vehicle  

Step 1-3: 

Assigning “i+1” to all eight neighbors surrounding the cell labeled with “i”, 

i=1,2,… until reaching the final position of the vehicle. In this process, if a cell 

is occupied by an obstacle, a big number is assigned (e.g. 1000). 

Step 1-4: 
By following the grid with the fastest decreased value from the destination grid 

until the initial grid is reached, a 2D obstacle-free path is obtained  

 

Step 2: The path generated in the Algorithm 1 is typically not smooth. Thus, an ad-hoc NLP is 

solved to smooth the generated obstacle free path. In this step the performance index is the 

length of the path generated in Algorithm 1 as 

0

M

i

i

J l


       (79) 

where M  is the number of interpolation nodes, which can be different from the LGL 

discretization nodes N . il  is the distance between each interpolated node. The only constraint 

involved in the trajectory smooth process is that the smoothened path should be obstacle 

collision free. 
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Note 2: In the MC strategy, the virtual prey path can be generated first because the initial 

position and the final position of virtual prey are overlapped with those of the vehicle, as shown 

in Lemma 1-Lemma 3. 

The initial guess of PCPs is suggested to first given the value equal to or very close to 1. 

According to Eq. (9), if we choose the initial guess of PCPs around 1, then the path of vehicle 

will be very close or overlapped to the path of prey. If the prey path is obstacle collision free, the 

path of vehicle will be collision free.  

Then, the following Lemma and remarks will be used to tune initial guess of PCPs if 

Lemma 15 is violated at certain nodes.  

Lemma 16: If the necessary condition at node k (Eq.(73)) is not satisfied, a strategy is to 

decrease PCP kv in the next initial guess as 

2 2, 0k kv v           (80) 

and 2  should be selected in the range of  
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   (81) 

Proof: Eq. (73) can be rewritten as  

2 2
2 2 2

, , , , max( ) / ( ) 0T

p k r p k p k r p k kV V v      x x x x x   (82) 

Due to the term 2 2

max ( )kV v  is always lager than 0, when Eq. (73) is not satisfied at node k , it 

indicates that 
2 2

2

, , , ,( ) /T

p k r p k p k r p kV    x x x x x  must be smaller than 0. To make Eq. (73) 
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satisfied, new PCP kv , Eq. (83) needs to be satisfied, 

2 2
2 2 2

, , , , max 2( ) / ( ) 0T

p k r p k p k r p k kV V v       x x x x x   (83) 

Then it can be easily get that 

2 2
2 2 2

max 2 , , , ,( ) ( ) /T

k p k p k r p k p k rV v V       x x x x x   (84) 

To satisfy Eq. (84), 2

2( )kv   should satisfy 
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   (85) 

which means 
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  (86) 

Thus, we can get 
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  (87) 

Though changing the position of reference point rx  is another choice to make Eq. (73) 

satisfied, rx  is not tuned here because the change of rx  at node k  will affect the values of Eq. 

(73) at other nodes.  
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Remark 11: Normally, minimum 2  in Eq. (87) value is chosen so that the adjustment of PCP 

will now affect the position of predator too much. If new PCP kv  make the position of predator 

fall into the thj obstacle area, then, we should choose a new 2 that satisfy 

 , ,

2 2

,

2( )
2

T

p k r o i r

k

p k r

v
 
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

x x x x

x x
    (88) 

so that the obstacle avoidance condition can be satisfied. 

Proof: According to Eq. (78), the obstacle avoidance constraint with the new PCP at node k  is 

2
2

, ,( ))o i r k p k r iv r   x x x x     (89) 

which can be further organized as 
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and then 

   

 

2 22

, , , ,

2 2
2 2

2 , , 2 2 , ,

2 ( )

2 2 ( )

T

o i r k p k r o i r k p k r

T

k p k r p k r p k r o i r i

v v

v r

 



     

          

x x x x x x x x

x x x x x x x x

 (91) 

To avoid the negative effects on obstacle avoidance, it is desirable to have 

 
2 2

2

2 , , 2 2 , ,2 2 ( ) 0T

k p k r p k r p k r o i rv         x x x x x x x x   (92) 

Since 2 0  , Eq. (92) can be further simplified as 
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Remark 12: In practice, sometimes, Eq. (93) may conflict with Eq. (81), which means, the value 

of 
 , ,

2

,

2( )
2

T

p k r o i r
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x x x x

x x
 is larger than 
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. In 

this case, empirical strategy is to choose  2  as the maximum value, 

2
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, in Eq. (81). 

Remark 13: As can be seen in Eq. (75) and Eq. (76), when PCP kv  decreases, the range of kv  

increases, which will have a higher chance to find proper PCPs to satisfy the speed limitation. 

Now, new guess of PCPs, together with calculated control points P'  and reference point, 

will be regarded as the optimizable parameters in the NLP problem. In case NLP software cannot 

find a converged solution, the reference point will be tuned along or against its original direction 

according to following Lemmas and Remarks.  

Lemma 17: If  , ,2 / 2
T

T

p k r k k p k r rv v   x e x x e  is positive. The new reference point r


x  can be 

tuned along the original direction as 
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x e x x e

x x + e    (94) 

with regard to certain node k, or the reference point can be tune against to its original direction as 

1
ˆ

r r r

   x x e  with 1 0  . The superscripts “+” and “-” denote the new and old reference 

points, respectively, and ˆ r
r

r







x
e

x
. 

Proof: The speed constraint maxkV V  after the reference is adjusted can be expressed using the 



 60 

reference point, PCP, and the prey motion as 

2
2

, , max( )k p k r k p kv v V  x x x     (95) 

which can be further expanded as 

2
2 2 2 2

, , , , max2 ( ) 0T

p k r k k p k r p k k k p kv v v v V V      x x x x x    (96) 

Representing the new reference point guess using the previous guess and the adjustment, 

Eq. (96) can be written and simplified as 
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To make Eq. (97) satisfied, the following equation  
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is desired.  Since 1 0  , the inequality Eq. (98) can be further simplified as 
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with 
 , ,2 2
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T
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
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, it means the 

second term in Right-Hand Side (RHS) of Eq. (97) must be larger 0, if the first term in Eq. (97) 

is negative enough, it is still possible that Eq. (97) with a small 1  is valid. Or, reference point 

can be tune against to its original direction.  

 To make speed constraint maxkV V  satisfied, with 1
ˆ

r r r

   x x e , Eq. (96) can be 

written and simplified as  
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To make Eq. (100) satisfied, the following equation  
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is desired.  Since 
 , ,2 2

0

T
T

k p k r p k r r k

k

v v

v
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

x e x x e
, if 1 0  , Eq. (101) will be satisfied. 

The structure of BiCF optimization algorithm based on MC strategy with the enhanced 

initial guess techniques is shown in Figure 13. The wavefront algorithm is first modified to find a 

3D collision free corridor for the virtual prey. This corridor is then smoothed by solving an ad-

hoc trajectory optimization problem and the control points P'  of the prey is calculated according 

to Eq. (15).  The speed of the vehicle will be checked if satisfy with speed necessary condition 

(i.e. Lemma 15). If the speed at certain node violates Lemma 15, PCP at that node needs to be 

amended according to Lemma 16 and Remark 11-Remark 12. Calculated the control points 

P' , together with initial guess of reference point and new PCPs, will be regarded as the 

optimizable parameters in the NLP problem. Followed the procedure described in the Section III, 

the trajectory optimization problem can be solved by any NLP software. In case NLP software 

cannot find a convergent solution, the reference points will be tuned to a new value according to 

Lemma 17, and the above procedure will be repeated until a convergent solution is found or 

maximum iteration times is achieved.  
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Figure 13 Enhanced initial guess technique for BiCF optimization algorithm based on MC 

strategy 

 

Simulation and Analysis 

To show the necessity of enhanced initial guess approach, this section will show the 

Monte Carlo simulations on MAV 3D trajectory optimization process.  The dynamic model is 

[103] 
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Here 3 1[ , , ]T

a E N Ux x x x  are the MAV east, north, and up positions in the wind 

coordinate, while 3 1[ , , ]T

s V   x  are the speed, flight path angle, and heading angle. T , n , 

and  are the thrust, g-load, and bank angle, respectively.  

2 2 2 2 2

00.5 2 / ( )D nD V SC kk n W V S    represents the drag, where g  is the gravitational 

constant, W  is the weight of MAV, S  is the surface area, and   is the atmospheric density.  

The induced drag coefficient and the load factor effectiveness are denoted by k  and nk , 

respectively.   

In each run, the same but randomly generated scenarios are used in the MAV 3D 

trajectory optimization process with two different initial guess generation approaches: 1) in the 

first optimization process, the initial guess of control points are found based on MAV obstacle 

free corridor, and the choice of initial guess of reference points and PCPs are also chosen 

according to the necessary conditions mentioned in the Section III.C, and perturbation technique 

will be used to tune reference point if “fmincon” could not find convergent solution of achieved 

NLP problem; 2) in the second optimization process, the initial guess of control points are based 

on a straight line connecting the initial position and final position, and the reference points and 

PCPs are randomly guessed. It is worth noting that only the initial guess methods are different, 

and the optimization procedure, which are solved by the numerical NLP optimization solver 

“FMINCON”, are the same. A total of 3,000 runs are conducted in set of simulations.  

The MAV flying testing area is defined to be 600 m  in both x and y directions. 

Cylindrical buildings are in the testing area generated with a radius varying uniformly within 

20 ~ 30m  and a height varying uniformly within 50 ~ 90m . In the first experiment, the number 
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of buildings varies between two and five, while in the second experiment the number of 

buildings is between fourteen and sixteen. The level of constraints in the experiment 2 is severer 

than that in the experiment 1.  

The initial positions of the MAV in the two experiments are uniformly distributed in the 

lower left corner of the test area (i.e. [0,1]m  in the x position, [0,1]m  in the y position, and 

[0,25]m  in the z position respectively). Accordingly, the final position of the MAV is uniformly 

distributed in the upper right part of the test area (i.e. [590,600]m  in the x position, 

[590,600]m in the y position, [25,50]m in the z position respectively). Without the loss of 

generality, the MAV is initially heading towards the final position, and the initial speed is set to 

be 0.1 /m s . The constraints of the MAV motion are: (i) the flight path angle is bounded by +/-

45 , (ii) the maximum speed is 10 /m s , (iii) the maximum thrust is assumed to be 2.5N , and 

(iv) the bank angle   is within +/-10 .  Because the simulation goal in this section is to 

demonstrate the effectiveness of the enhance initial guess approach, the aerodynamic 

coefficients 0dC , k , and nk  are directly given as 0.015, 0.0158, and 0.4,  respectively .  

In both of the experiments, 15N  , 5cpn   and 3d  .  The initial guess of the final time 

is calculated by  

 0 max( ) ( ) /f a f at t t V x x        (103) 

In two different initial guess generation methods, if a converged solution is not achieved 

within 100 iterations or 5000 function evaluations in the “FMINCON”, a “failure” case is 

counted against this method. Additionally, the minimum performance index among all two 

optimization procedure is regarded as the best solution. If the performance index from other 
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initial guess method is within 5% difference of the best solution, the solution found using this 

method is regarded as an “optimal” one; otherwise it will be regarded as a “feasible” solution 

only. 

The results of two experiments are shown in Figure 7 and Table 3. The following 

observations are obvious: 1) compared with the MC strategy based varying manifold 

optimization approach with randomly initial guess, no matter how severe the constraints are, the 

optimization procedure with the enhanced initial guess can always solve 3D MAV trajectory 

optimization problem with highest success rate; 2) when the initial guess is randomly given, 3D 

MAV trajectory optimization procedure can be solved with high successful rate only when there 

are small number of obstacles; (3) compare with the optimization procedure with random initial 

guess, the CPU calculation time of optimization procedure with enhanced initial guess approach 

is less; and (4) the differences of CPU time between the optimization procedure with and without 

enhanced initial guess are higher when the number of obstacles is larger. 

 

Figure 7 the optimal, feasible and failure solution rate between the optimization procedure with 

and without enhance initial guess approach under different obstacle scenarios: a) 2~5 obstacles; 

b) 14~16 obstacles. 
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Table 5 Average CPU Time of Monte Carlo Simulations 

Algorithms Average CPU Time 

 Enhance initial guess 

approach 

Random initial guess 

approach 

1
st
 experiment 0.94 s 1.68 s 

2
nd

 experiment 1.45 s 4.56 s 
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CHAPTER FIVE: APPLICATION OF MC TRAJECTORY PLANNING 

METHOD ON MICRO AIR VEHICLE WITH UNKNOWN PARAMETERS 

In this chapter, the proposed trajectory optimization method will be applied to a MAV 3D 

trajectory planning problem with unknown dynamic parameters. The content of this chapter is 

modified from our conference paper [5].  

 

Background 

Recent advances in miniaturization have made Micro Air Vehicles (MAVs) a viable 

option for many applications, such as surveillance, information collection, and environment 

monitoring [85]-[90]. As a new generation of Unmanned Aerial Vehicles (UAVs), MAV is 

smaller, lighter, and more agile as compared to larger UAVs, which makes it very attractive in 

obstacle-laden urban environments. To date, majority of the MAV research has been focused on 

MAV designs considering different sensing and navigation methods [91]-[93]. However, for a 

MAV mission to be successful, trajectory planning and control capability is also crucial.  

MAV/UAV’s trajectory planning has been investigated in several works [94]-[101]. In 

[94]-[97], waypoints are generated between MAV’s initial and final positions, and then are 

connected using line segments. Voronoi diagram  is used to find threat locations, based on which 

feasible paths are generated along the edge of convex cells using search methods such as the k-

best first method and the A*method [100]. Receding horizon control methods divide a long 

horizon optimization problem into a series of short time-horizon optimization problems over a 

sliding window [101]. In each planning horizon, a local path planning algorithm, such as the 

spherical cone based path planning method, is implemented to lead the MAV toward the goal 
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while avoiding obstacles.  

An enhanced motion camouflage (MC) based varying manifold method for constrained 

optimal trajectory planning in each planning horizon. The MC optimization method has been 

presented in Chapter 3, in which the actual vehicle is regarded as a predator moving in a varying 

manifold formed by a virtual prey (typically the initial guess of the vehicle trajectory) and a 

reference point.  The optimization within the varying manifold is controlled by a one-dimension 

path control parameters (PCPs). The advantages of this method are: (1) the dimension of the 

converted nonlinear programming (NLP) problem within the varying manifold is very small; and 

(2) the dimension of the optimizable parameters representing the varying manifold is small. 

In addition to the open-loop trajectory optimization in each planning horizon, a linear 

quadratic regulator (LQR) is designed for the MAV to track the rapidly generated optimal 

trajectory. Meanwhile, the unknown aerodynamics will be estimated and updated in the next 

horizon.  Different from [102], in which the parameters of MAV models are identified off-line 

based on frequency responses using Schroeder sweeps, an extended Kalman filter (EKF) is 

applied to estimate the unknown parameters online.  

 

Receding Horizon Framework 

To respond to unexpected events such as pop-up obstacles in urban areas and to update 

unknown aerodynamic coefficients, the trajectory planning and control is casted into a receding 

horizon framework to form a close-loop scheme, as shown in Figure 14. In each horizon, an 

optimal trajectory is generated for MAV to fly from its initial position to the final position of the 

current horizon. The dynamic model used in the MAV trajectory planning is a nominal one, in 
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which the aerodynamic coefficients are estimated, no noise is considered, and non-affine terms 

are neglected.  In order to compensate the mismatches between the control commands calculated 

in the open-loop trajectory optimization and the real control commands needed by the MAV, at 

every sampling time of the control loop, the calculated open-loop control commands and state 

variables will be interpolated and fed into the regulator to compute the actual control commands 

for the MAV. In the mean time, a nonlinear filter will use the measured state variables and the 

control commands to estimate the unknown parameters, which are used to update the open-loop 

planning and LQR subsystems at the beginning of the next horizon.   

 

Figure 14 Receding horizon framework 

 

MAV Dynamic Model  

The MAV model is adopted from[103], and specific MAV parameters and aerodynamic 

coefficients are chosen from [104].  The 3D dynamic model is [103] 
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Here 3 1[ , , ]T

a E N Ux x x x  are the MAV east, north, and up positions in the wind coordinate, 

while 3 1[ , , ]T

s V   x  are the speed, flight path angle, and heading angle. T , n , and  are 

the thrust, g-load, and bank angle, respectively.  2 2 2 2 2

00.5 2 / ( )D nD V SC kk n W V S    

represents the drag, where g  is the gravitational constant, W  is the weight of MAV, S  is the 

surface area, and   is the atmospheric density.  The induced drag coefficient and the load factor 

effectiveness are denoted by k  and nk , respectively.  To obtain a control affine nominal model, 

new control variables are defined as [ , cos sin ]TT n ,n u , and the  MAV model is rewritten 

as 
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in which 
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and  

2

00.5 DD g V SC       (107) 

Note that to achieve the control affine nominal model, the drag term is simplified as D , and the 
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mismatches will be compensated by the tracking controller. Here  ( )a sf x , ( )s sf x and ( )sB x  

are smooth. 

 

MC Strategy Based Trajectory Optimization 

The cost function is assumed to be minimum time, which is represented as 

0

ft

t
J dt        (108) 

The following inequality constraints  1( , , ) 0t g x u  are considered including 
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    (109) 

where ,o ix  and ir  are the center position and radius of the thi  obstacle, respectively, and on  is the 

number of obstacles.  It is assumed that all the obstacles in the urban area are approximated using 

cylinders without loss of generality and the MAV will not fly over the top of obstacles. 

Boundary conditions and MAV dynamics are regarded as the equality constraints.  In each 

planning horizon, the initial state and final position state variables are known and defined as  

0 ,0 ,0 ,( ) [ , ] , ( )T

a s a f a ft t x x x x x     (110) 

The final velocity ( )s ftx  in the planning horizon is assumed to be free. 

The Virtual Motion Camouflage (MC) theory talked in the Chapter 3 is used to solve 

MAV trajectory optimization problem. Based on the Eq. (25), since the relative degree of ay x  

is 2, and the control variables for the MAV to stay on the manifold is  
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Excluded control variables, other state variables also need to be expressed using the position 

state.  In the MAV model, the state variables V ,  , and   can be found by  

   1 1

,3 ,2 ,1, sin / , tan /a a a a aV     x x x x x   (112) 

Now, all the state and control variables in the Eq. (105) can be expressed in terms of px , rx  and 

v .  Therefore, solving the MAV trajectory problem is equivalent to solving as the following 

constrained optimization problem 
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It is worth noting that the equality constraints 2( , , , ) 0a r v t '
h x x  now only include the 

boundary conditions, because the nonlinear dynamic has been considered in the process of 

finding the state variable sx and the equivalent control. 

To convert MAV trajectory optimization problem to a NLP problem, optimizable 

variables px  and v  are discretized along the time nodes  
0

N

k k
t


 with N ft t  and 1k kt t  .  To be 

more specific, the PCP variable v  can be discretized using the Legendre-Gauss-Lobatto based 

pseudospectral method. The virtual prey motion to be evaluated at the pseudospectral nodes is 

represented using a B-spline as  
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x t P j k N
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where  , , 0,...,i d k cpt i n   are the thd  degree basis functions evaluated at the pseudospectral 

time node kt , ,j iP  is the thi  control point for the thj  direction of virtual prey posit-ion, and 

1cpn   is the number of control points.  More information on B-splines can refer to [66]-[67]. 

Thus, when the number of control points and the number of pseudospectral node 

approach infinite, solving P2 is equivalent to solving P3 
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where , , ,[ , , ]T

i E i N i U iP P PP , 0,...,k N , and 0,..., cpi n .   

As mentioned in the Chapter 3, different boundary conditions, belonging to equality 

constraints, can be used to calculate certain PCP and control point nodes.  For the specific 

boundary condition in the MAV problem (i.e. the initial state x  and final position state ax are 

known), (i) the initial and final PCPs, 0v  and Nv , are set to be 1; (ii) the second PCP 1v  can be 

calculated  
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in which 1,0 0 0 0cos cosx V   , 2,0 0 0 0sin cosx V   , and 3,0 0 0sinx V  ; (iii) the first control 

point 0 1,0 2,0 3,0[ , , ]TP P PP  and the last control point 1, 2, 3,[ , , ]T

f f f fP P PP  equal to the initial 

position state 0x  and final position state fx , respectively.  (iv) Given ,1kP ,of which k is the 

selected east, north or up direction of 1P  , the other direction of 1P , ,1mP  , m k  can be 
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calculated by  
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where k  is an arbitrarily selected direction of MAV state x  and satisfies , ,0 ,p k r kx x .  In Eq. 

(116) and Eq. (117), '

0[2 / ( )]ij f ijD t t D   and D is the differentiation matrix. 

Since certain control points and PCP nodes can be calculated instead of being optimized 

as shown in the Eqs. (116)-(117), solving Eq. (115) is equivalent to solve 
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where 'P  includes , 1,..., 1, 1,...,k,i cp aP i n k n    and , 2,..., 1, 1,..., ,m,i cp aP i n m n m k    , 

and 'v  includes , 2,..., 1iv i N  . Note that now there are no equality constraints, since all of the 

boundary conditions are incorporated in the Eqs. (116)-(117). 

 

Trajectory Tracking and Parameters Estimation 

There are unknown parameters and uncertainties in the real model, this section will talk 

about the methods applied to estimate the parameters online and adjust the small difference 

between the real and nominal control commands.  

Linear Quadratic Regulator 

The open-loop control cannot be directly used in the real MAV due to the following 
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reasons: (i) the aerodynamic coefficients are not perfectly known, (ii) there are numerical 

mismatches among the pseudo-spectral discretization, b-spline representations, interpolation, and 

numerical integration, and (iii) the open-loop planned controller is not robust with respect to 

noises and uncertainties.  Therefore, a linear quadratic regulator (LQR) is designed here to reject 

the disturbance and mismatches. Let’s assume that the state and control variables are the 

summation of the nominal values (found from trajectory optimization) and the small disturbances 

[105] as  

ˆ
a a a x x x , ˆ

s s s x x x , ˆ u u u     (119) 

where “^” represents nominal value that are calculated in the last section. 

By neglecting the high order terms, the state equations are derived based on Eq. (105) 

and Eq. (119) as 

ˆ

ˆ ˆ
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and the small disturbance model is derived as 

ˆ
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   (121) 

in which 22 sA x  is reorganized from  
ˆ

ˆ
s

s s  
x

B / x x u .  The linear disturbance model is 

derived as 
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ˆ ˆ ˆ( , ) ( )s s  X = A x u X + B x u     (122) 

where the small disturbance state variable is defined as ,T T T

a s
     X x x .   

For MAV to track the designed trajectory under small control tuning, a standard LQ 

controller is designed for Eq. (122) with the following performance index [35] 

 
0

min 0.5 T T

l lJ dt


     X Q X u R u     (123) 

in which lQ  and lR  are the weighting matrices. T

l u R u in the Eq. (123) is used to make sure 

the control will not be tuned too much in practice, so that constraints on control variables will not 

be violated.  The boundary conditions are 0 0 0
ˆ( )t  X X X  and ( ) 0  X . According to, the 

optimal control commands *u  can be calculated through [35] 

* 1 *

l

   u R BP X       (124) 

where,  

* 1 *( ) ( )lt t      X A BR B P X     (125) 

and P  is solved by the matrix algebraic Riccati equation [35] 

1 0l l

     PA A P Q PBR B P     (126) 

Extended Kalman Parameter Estimation Method 

The aerodynamic coefficients may be unknown since they will be changed with the speed 

of MAV and the wind.  Here an extended Kalman filter (EKF) is designed to estimate the 

unknown coefficients. 

The aerodynamic coefficients 0dC , k , and nk  are seemed as unknowns. To estimate 
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these coefficients, a new state vector is defined as 0[ , , ]T

n dk C k x , and the augmented state 

vector is  , ,
T

sX x x x' .  Therefore the processing model and the measurement model are 

written as 

1( )

( , ) ( , ) ( )

'

s

s s s s +

  
       
  
     

f xx

x f x x B x x u w f X,u W

x w

,   y HX v   (127) 

where the noise vector  ,
T

W w w' . [ , , ]
n n

T

k k kw w ww'  is an artificial noise added to the MAV 

system that allows the EKF to estimate its new state x' .  3 1w  and 6 1v  are zero-mean 

Gaussian noises in the processing and measurement models, with the covariance matrices of 

       [ ]
T

E t t t   Qw w  and        [ ]
T

E t t t   v v R , respectively.  6 3H I 0 , 

where 6I  is an identity matrix with a size of 6 6 , and 30  is zero matrix with a size of3 3 . 

The continuous-time extended Kalman filter [106] is written as  

1

1

ˆ ˆ ˆ( , ) ( )

T

T T T





  



   

X f X u K y HX

K PH R

P FP PF LQL PH R HP

    (128) 

The matrices F  and L  are found by [106] 

ˆ( ) / |  
X

F f X X       (129) 

ˆ( , ) / |  
X

L f X W W      (130) 

As shown in Figure 15, at the beginning of each horizon, MC based BICF trajectory 

optimization is used to rapidly generate the optimal trajectory for MAVs based on the initial and 

final conditions and the updated aerodynamic coefficients.  At every sampling time of the control 
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loop, the calculated nominal control commands and state variables will be interpolated and fed 

into the LQR to compute the actual control commands for the MAV.  The EKF will use the 

measured state variables and the control commands to estimate the aerodynamic coefficients, 

which are used to update the planning and LQR blocks at the beginning of the next horizon. In 

Figure 15, the sampling rates of EKF and LQR are assumed to be the same here, but the 

sampling rates of EKF needs to be higher than LQR in practice to be converged quickly. It is 

worth noting that the discretized trajectory commands generated in the planning block will be 

interpolated before being used in the LQR. In Figure 15, “~” represents updated parameters, “^” 

represents estimated or nominal values, and the parameters without any special notation 

represent real values. 

Optimal 

Trajectory 

Finding

0 ,0, ,s fx x x

0
ˆ ˆ ˆ, ,n Dk k C
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model
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Figure 15 Outline of the rapid trajectory planning, estimation, and control in the receding horizon 

framework 

 

Simulation and Analysis 

Three re-planning events are conducted in the simulations. The 2
nd

 and 3
rd

 re-planning are 

triggered at 30s and 60s, respectively. Without losing generality, all the obstacles in the 
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simulated urban area, such as buildings and trees, are assumed to be encircled by cylinders with 

different height and radius.  The simulated urban area is shown in Figure 16.  The cylindrical 

obstacles, numbered from 1 to 6, are detected before the 1
st
 planning, while obstacles 7 to 12 and 

13 to 14 are assumed to be detected right before the 2
nd

 and the 3
rd

 trajectory re-planning, 

respectively.   

 

Figure 16 3D view of the simulated urban area 

The MAV is commanded to fly from the initial position of   1,1,20
T

m  to the final 

position of  600,600,50
T

m  with an initial speed of 5 /m s , a heading angle of 5 , and a flight 

path angle of 5 .  The constraints of the MAV motion are that (i) the flight path angle is bounded 

by +/- 45 , (ii) the maximum speed is 10 /m s , (iii) the maximum thrust is assumed to be 0.4N , 

and (iv) the bank angle   is within +/-10 .  The actual aerodynamic coefficients 0dC , k , and nk  

are 0.015, 0.0158, and 0.4,  respectively.   

The following settings are used in the trajectory planning blocks: 5cpn  , 3d  , and 15N  . 
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( ) 1t   and [ 1500, 1500, 180]T

r m   x  (after trial and error) are used as the initial guesses of 

PCPs and reference point. 

The weighting matrices in the LQ regulator are tuned to be 6100lQ   I  and 30.1lR   I  

( I  is the identity matrix), so that the closed-loop system can closely follow the commanded 

trajectory and be robust with respect to uncertainties. The step sizes used in the EKF and LQ 

regulator are selected to be 0.001s.  Because the EKF is designed to estimate the unknown 

aerodynamic coefficients 0dC , k , and nk , the covariance matrices of the process noise and the 

measurement noise are small and are set as {[0.01,0,0]}diagQ and 

{[0.1,0.1,0.1,0.001,0.01,0.01]}diagR , respectively. 

Part of the simulations results are shown here. In the 1
st
 planning horizon, the 

aerodynamic coefficients 0dC , k , and nk  are initially guessed to be 0.03, 0.005, and 0.5, 

respectively.  Figure 17 shows the rapidly generated optimal trajectories in the trajectory 

planning block with the actual flight trajectory achieved by the MAV after the control block 

overlapped.  T LQ regulator can closely track the planned optimal trajectory and is robust with 

respect the parametric uncertainties, linearization, and discretization mismatches.  The real MAV 

trajectory is shorter than the commanded one, because the optimal trajectory planning block 

computes the whole course for the MAV, while only the first section, around 30 s, is 

implemented by the MAV before the 2
nd

 reconfiguration is triggered.  
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Figure 17 3D view of the optimal trajectory planned and the actual MAV trajectory achieved in 

the 1
st
 horizon 

 

Figure 18 shows the estimates of 0dC , k , and nk  using the EKF . Initially 0dC , k , and 

nk  equal to the guessed values, but quickly they converge to the actual values. 
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Figure 18 Aerodynamic coefficients’ estimation via the EKF in the 1
st
 horizon: (a) 0dC , (b) k , 

and (c) nk  

Figure 19 shows the optimal control commands generated by the trajectory planning 

block and the actual control command. The control calculated by the optimal path finding block 

is different from what is needed by the MAV in reality due to the discretization mismatches. 
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Figure 19 The control calculated by the optimal path finding block and the actual control 

commands for the MAV in the 1
st
 horizon 

The simulated results during the 2
nd

 horizon which starts at 30s are shown in Figure 20 

through Figure 22Figure 21. The aerodynamic coefficients 0dC , k , and nk  have been updated to 

the true values estimated using the EKF in the 1
st
 horizon.   
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Figure 20 3D view of the optimal path command and the actual MAV path in the 2
nd

 horizon 
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Figure 21 Aerodynamic coefficients estimated using the EKF in the 2
nd

 horizon: (a)  0dC , (b) k , 

and (c) nk  

30 40 50 60 70 80 90
0

0.05

0.1

30 40 50 60 70 80 90
2.45

2.5

2.55

30 40 50 60 70 80 90
-5

0

5

In Reality 

Calculated by the Varying Manifold Method

In Reality 

Calculated by the Varying Manifold Method

Calculated by the Varying Manifold MethodIn Reality 

T
h
ru

st
 (

N
)

L
o
ad

 F
ac

to
r

B
an

k
 A

n
g
le

 (
 

)

Time (s)

(a)

(b)

(c)

30 40 50 60 70 80 90
0

0.05

0.1

30 40 50 60 70 80 90
2.45

2.5

2.55

30 40 50 60 70 80 90
-5

0

5

In Reality 

Calculated by the Varying Manifold Method

In Reality 

Calculated by the Varying Manifold Method

Calculated by the Varying Manifold MethodIn Reality 

30 40 50 60 70 80 90
0

0.05

0.1

30 40 50 60 70 80 90
2.45

2.5

2.55

30 40 50 60 70 80 90
-5

0

5

In Reality 

Calculated by the Varying Manifold Method

In Reality 

Calculated by the Varying Manifold Method

Calculated by the Varying Manifold MethodIn Reality 

T
h
ru

st
 (

N
)

L
o
ad

 F
ac

to
r

B
an

k
 A

n
g
le

 (
 

)
B

an
k
 A

n
g
le

 (
 

)

Time (s)

(a)

(b)

(c)

 

Figure 22 The control calculated by the optimal path finding block and the actual control 

commands for MAV in the 2
nd

 horizon 

The 3rd horizon is triggered at 60s in the simulation (Figure 23-Figure 25). The 

aerodynamic coefficients 0dC , k , and nk  used in the optimal path finding block are updated 

using the final value generated from the EKF in the 2
nd

 horizon.   
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Figure 23 3D view of the optimal path command and the actual MAV path in the 3
rd

 horizon 
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Figure 24 Aerodynamic coefficients estimation in the 3
rd

 horizon: (a)  0dC ; (b) k ; and (c) nk  
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Figure 25 The control calculated by the optimal path finding block and the actual control 

command in the 3
rd

 horizon 
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Table 12 shows the minimum arrival time calculated in three horizons and the CPU time 

used in calculating the optimal trajectories. It is worth mentioning that the minimum arrival time 

listed in the second and third horizons include the time lapsed in the previous horizons. Because 

not all of the obstacle are known a priori, the estimated arrival time calculated in these 3 horizon 

windows are different. Due to the time spent on detours to avoid the newly detected obstacles, 

the calculated minimum arrival time are different after updated in these three horizon windows. 

The CPU time using in the trajectory planning is 1.26 seconds in average, which shows the 

capability and efficiency of the proposed path planning method.  Also the CPU time used in 

planning the 1
st
 to 3

rd
 horizons is reduced because of the distance to the desired position is 

reduced. 

Table 12 The Minimum Time and Computation Cost in Trajectory Planning 

Horizon Minimum Time CPU Time in the Optimal Trajectory Planning 

1
st
 Horizon 88.54s 1.65s 

2
nd

 Horizon 89.21s 1.34s 

3
rd

 Horizon 89.25s 0.78s 
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CHAPTER SIX: SUMMARY AND FUTURE WORK  

In this dissertation, the bio-inspired, varying manifold based optimization methods are 

studied to rapidly solve nonlinear constrained trajectory optimization problems.   

The proposed trajectory optimization methods utilize predator-prey relations, in which a 

vehicle (e.g. ground robot, micro air vehicle, or unmanned air vehicle) is considered as a 

“predator” while the prey is represented by a virtual path (can be an initial guess). The vehicle’s 

trajectory is calculated in a simultaneously optimized manifold constructed by the virtual prey 

path and possibly other constant but optimizable parameters. Three “predator-prey” 

relationships: motion camouflage, local pursuit, and constant absolute target direction, are 

unified and investigated. Compared to some other traditional trajectory optimization methods, 

the computational cost of proposed method is lower.  

Strategies to enhance the initial guess of optimizable variables are derived based on the 

necessary conditions for a vehicle to satisfy both obstacle avoidance and speed constraints. These 

strategies can enhance the convergent rate and reduce the computational time of achieved NLP 

problem. 

The optimal trajectory generation simulations for a supersonic aircraft, ground robot, and 

micro air vehicle are conducted to show the capabilities of the proposed method. Specifically, 

Monte-Carlo simulations are conducted on a robot obstacle avoidance problem and a micro air 

vehicle 3D minimum-time flight problem. The first Monte Carlo simulation is used to compare 

the performance of the proposed methods, baseline optimization method, and B-spline based 

collocation method; while the second is to show the effectiveness of the proposed initial guess 

strategies.  
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To deal with the uncertainties and pop-up obstacles, the bio-inspired optimal trajectory 

planning method is embedded into a receding horizon framework. This method is applied to a 

micro air vehicle flight problem. In each planning horizon, the aerodynamic coefficients are 

updated and the micro air vehicle’s optimal trajectory is planned. Meanwhile, a linear quadratic 

regulator is designed for the micro air vehicle to track the generated nominal path and be robust 

with respect to uncertainties. An extended Kalman filter is used to estimate the unknown 

aerodynamic coefficients for the next planning horizon.  

The following conclusions can be drawn from this dissertation: (1) the bio-inspired 

trajectory optimization methods reduce the computational cost; and (2) the enhanced initial guess 

techniques increase the convergence rate and reduce the computational cost of the studied 

method. 

Currently, the bio-inspired trajectory optimization methods rely on the assumption that 

the control variables and state rates of vehicles can be represented using the position state 

explicitly.  In the future, research needs to be done on how to implement the proposed trajectory 

generation methods to complex systems where the dynamics cannot be fully inverted.  

Furthermore, simulation results show that the trajectory optimization method based on the local 

pursuit strategy has a relatively higher success rate compared to the other two approaches (i.e. 

the motion camouflage strategy and constant absolute target direction strategy). Therefore the 

advantages and disadvantages of these three strategies will be further studied theoretically.  In 

addition, the bio-inspired trajectory optimization methods are only applied on a single vehicle. 

Future research can be conducted to apply the proposed methods on multiple-vehicle control 
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problems.  The virtual prey can act as a virtual leader, while the other vehicles in the group can 

be regarded as the predators. 
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