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ABSTRACT 

Signal representation and data coding for multidimensional signals have recently received 

considerable attention due to their importance to several modem technologies. Many useful 

contributions have been reported that employ wavelets and transform methods. For signal 

representation, it is always desired ·that a signal be represented using minimum number of 

parameters. The transform efficiency and ease of its implementation are to a large extent 

mutually incompatible. If a stationary process is not periodic, then the coefficients of its 

Fourier expansion are not uncorrelated. With the exception of periodic signals the expansion 

of such a process as a superposition of exponentials, particularly in the study of linear 

systems, needs no elaboration. In this research, stationary and non-periodic signals are 

represented using approximate trigonometric expansions. These expansions have a user

defined parameter which can be used for making the transformation a signal decomposition 

tool. It is shown that fast implementation of these expansions is possible using wavelets. ' 

These approximate trigonometric expansions are applied to multidimensional signals in a 

constrained environment where dominant . coefficients of the expansion are retained and 

insignificant ones are set to zero. The signal is then reconstructed using these limited set of 

coefficients, thus leading to compression. Sample results for representating multidimen

sional signals are given to illustrate the efficiency of the proposed method. It is verified that 

for a given a number of coefficients, the proposed technique yields higher signal to noise 

ratio than conventional techniques employing the discrete cosine transform technique. 
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1 . INTRODUCTION 

1.1 Background 

The use of digital data has increased at a rapid pace over the past decade. Digital signal 

and image processing generally creates significant number of large files containing digital 

data. Very often, these must be archived or exchanged among different users and systems. 

Computer-generated data has become an extensive source of digital data, particularly for 

special effects in advertising and entertainment. In case of digital images, the reason is 

obvious: representing images in digital form allows visual information to be easily 

manipulated in useful and novel ways. Computers' emerging ability to manipulate and 

display images and video increases their information=-handling potential by orders of 

magnitude. As the computers' utility as an information source grows, it opens a host of 

applications opportunities in communications, education, and image archiving. The mul

timedia market is characterized by numerous manufacturers, each using its own technology 

for digital audio and video, script languages, communication protocols, operating system 

extensions, and so on. Hardware limitations can stand in the way of implementing these 

applications in different environments. Thus, it has become necessary to find efficient 

representations for digital data in order to reduce the memory required for storage, improve 

the data access rate from storage devices, and reduce the band-width and/or time required 

for transfer across communication channels. The key that unlocks the potential of 

computer-based video is digital compression. In the literature, the terms source coding, 
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digital.coding, data compression, band-width compression, and signal compression are all 

used to connote the function of achieving a compact digital representation of a signal, 

including the important subclass of analog signals such as speech, audio, and image. A wide 

range of techniques have emerged in the recent past and new techniques continue to emerge 

for efficient storage and transfer of digital data. Data compression techniques exploit 

r~dundancy and irrelevance by transforming a data file into a smaller file from which the 

· . · original file can later be reconstructed, exactly or approximately. The ratio of the two file 

sizes specifies the degree of compaction or compression ratio. The times required for file 

compression are not negligible. The algorithms that achieve the densest compaction are not 

usually the fastest, so choices must be made for each application. This chapter is divided 

into four main sections. In section 1.2, we present overview of information theory and 

concepts. Section 1.3 presents classification of compression techniques. In section 1.4, we 

present scope of this dissertation. 

1.2 Information Theory and Concepts 

Information theory gives some important concepts that are useful in digital repre

sentation of signals. Some of these concepts are used in image quantization, image transforms 

and image data compression. 

Suppose we have a memoryless source of messages that uses an alphabet 

{ak},k = 0, 1, .. ,K -1 where K is total number symbols in that alphabet with ak being the 

symbolS. Suppose further that the probability of occurrence of each symbol is known and 

denoted as P(ak). In a message from a memoryless source, the ordering of the symbols in 

the message is unimportant; only their presence in the message matters. Shannon [1,2] 
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defined a measure of the information imparted by the occurrence of the symbol ak in a 

message as: 

(1.1) 

This definition implies that the information conveyed is large when an unlikely message is 

generated. The entropy of the message source, defined by: 

K-I 

H = E{l(ak)} = - L P(ak) log[P(ak)] 
k=O , 

(1.2) 

specifies the average information content (per symbol) of the messages generated by the 

source. If we choose 2 as the base for the logarithm, the units of entropy are bits per symbol. 

A coding scheme removes all redundancy from the message if it produces an average word 

length that is equal to the entropy of the mes'sage source. The concept of memory less source 

is too restrictive for most practicar purposes. Instead ·a source with memory is often used. 

Such a source is known as Markov process; A pth order Markov process is a source in which 

the probability of occurrence of a source symbol ak depends upon a finite number p of 

preceding symbols. It is also useful to associate the Markov process with some state, which 

depends on preceding p symbols. 

According to Shannon's noiseless coding theorem [3,4], it is possible to code without 

distortion a source of entropy H bits using an average of H + E bits/message, where E > 0 is 

an arbitrarily small quantity. An alternative form of this theorem states that it is possible to 

code the source with H bits such that the distortion in the decoded message could be made 

arbitrarily small. While the noiseless coding theorem provides the extension of a code that 

can achieve the rate approaching the source entropy, it however does not provide the code. 

Generally, variable length codes are employed with source extensions to reach the desired 
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performance. Some of the known techniques are Shannon-Fane, Huffman and modified 

Huffman coding techniques. 

In analog-to-digital conversion of data, it is inevitable that the digitized data would 

have some error, however small, when compared to analog sample. Rate distortion theory 

provides some useful results, which tell us the minimum number of bits required to encode 

the data, while admitting a certain level of distortion and vice versa. Intuitively, we expect 

that, the more information we transmit, the better the reproduced quality will be. As a simple 

example, consider the operation of quantization using differing accuracies (number of bits). 

Clearly, if we decide to quantize with an accuracy of 10 bits, the approximate version of 

the signal will be much closer to the original signal than if we choose ·a 3-bit quantizer. 

However, in any given sampling interval, we pay the penalty (in terms of transmission 

capacity) of having to transmit ten digits instead of three to achieve the higher quality. In 

general, the central region of the curve relating rate and distortion will have a negative slope, 

as shown in Fig. 1.1. For very low rates of information transmission, the distortion reaches 

a maximum value Dmax' which in case of continuous distribution, will be total signal energy. 

Clearly, if the allowable distortion in the received signal is equal to the signal energy, then 

we may as well not bother to transmit the signal at all, and the rate will then be zero. At the 

other end of the distortion scale, as we require better and better reproduced signal quality 

(lower and lower distortion), then the rate must increase and, in the continuous case, become 

infinite if perfect reproduction is desired. 
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1.3 Classification of Compression Techniques 

Signal compression plays a crucial role in many important and diverse applications, 

including video teleconferencing, remote sensing, document and medical imaging, facsmile 

transmission, and the control of remotely piloted vehicle applications. The purpose of data 

compression is to remove different redundancies such as statistical redundancy and sub

jective redundancy from the data so that it takes less time to transmit and less space to store. 

From mathematical point of view, statistical redundancy amounts to transforming a data 

array into a statistically uncorrelated data set. Subjective redundancy, on the other hand, 

can be used to reduce transmission bit rate by using a number of bits that are necessary for 

subjectively acceptable signal quality at the receiver. There are many approaches to com

pression. However, they can be categorized into two main groups: lossless and lossy. Fig. 

1.2 depicts three basic components of a general compression scheme: ( 1) signal 

decomposition or transformation, (2) quantization, and (3) symbol encoding. The signal 

decomposition is usually a reversible operation and is performed to eliminate redundant 

information from the data. This stage is used in both lossless and lossy techniques. The next 

stage, quantization, is a many-to-one mapping found only in lossy techniques, and it is the 

point where errors are introduced. The type or degree of quantization has a large impact on 

the bit rate and the reconstructed signal quality of a lossy scheme. Examples of quantization 

strategies include uniform or nonuniform scalar quantization or vector quantization. The 

final stage is a means for mapping the symbols (values) resulting from decomposition and/or 

quantization stages into a strings of O's and 1 's, which then can be transmitted or stored. 

This mapping may be as simple as using fixed-length code, such as a Huffman code or an 

arithmetic code, as a means of achieving rates close to the fundamental information-theoretic 
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limits. The three components shown in Fig. 1.2 often mutually interact, and their joint 

optimization is a complicated task. As a result, they are often optimized individually based 

on assumed inputs. 

1.3 .1 Lossless Compression 

In lossless compression also known as reversible compression, the reconstructed signal 

is numerically identical to the original signal on sample to sample basis. This compression 

scheme is ideal since no information is compromised, but the amount of compression 

achieved is much less than lossy compression. Some compression applications require the 

reconstructed signal to be lossless. Some examples are seismic signals, and-medical imaging 

applications where diagnostic accuracy can not be compromised. Lossless data compression 

algorithms fall into two broad categories: dictionary-based techniques and statistical 

methods. 

Dictionary-based techniques generate a compressed file containing fixed-length codes 

(usually 12 to 16 bits), each of which represents a particular sequence of bytes in the original 

file. Some of the commonly used dictionary-based data compression techniques are run

length encoding (RLE) and Lemp le, Ziv and Wal sh (LZW) algorithm. RLE achieves con

siderable compaction when used on images having few gray levels or images of objects 

residing on constant background. In an image being stored line by line, a series of pixels 

having the same gray-level value is called a run. One can store a code specifying that value, 

followed by the length of the run, rather than simply storing the same value many times 

over. This is run-length encoding. Under worst conditions (for example, where every pixel 

differs from its neighbors) RLE can actually double the size of the file. LZW technique is 
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an extended version of original LZ technique first described by Lemple and Ziv [5,6]. Like 

RLE, it effects compression by encoding strings of characters. However, unlike RLE, it 

builds up a table of strings (particular sequence of bytes) and their corresponding codes as 

it encodes the file. The first time a string not already in the table occurs, it is stored in full, 

along with the code that is assigned to it. Thereafter, when that string occurs again, only its 

code is stored~ This squeezes redundancy out of the file. A file of 8-bit bytes can be encoded, 

for example, into 12-bit codes. Of the 4,096 possible codes, 256 of them represent all possible 

single bytes. The remaining 3,840 are assigned to strings as they are encountered in the data 

during compression. Not only is the string table built dynamically during compression, but 

it need not be stored with the compressed file. The decompression algorithm can reconstruct 

string table from the information in the compressed file. 

Statistical methods implement data compression by representing frequently occurring 

characters in the file with fewer bits than they do less commonly occurring ones. Huffman 

coding[7], introduced in the 1950s, is a lossless statistical method that always finds a 

variable-length code with minimum redundancy. It uses a binary encoding tree for repre

senting commonly occurring values in few bits and less common values in more bits. 

Dynamic Huffman coding constructs the encoding tree on the fly, during the compression 

processcsJ. More advanced statistical methods [9-1 O] can achieve higher compression ratios, 

but at the cost of increased encoding and decoding times. 

Apart from two main lossless compression categories discussed briefly above, there 

are other techniques such as: 

1. Bit plane coding: Consider a signal where each sample is represented by K bits. By 

selecting a bit from each position of a binary representation of each sample, a binary signal 
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called bit plane is created, thus decomposing the entire signal into K planes. Each of these 

planes can then be encoded using a lossless binary compression technique such as Joint 

Bi-level Information Group (JBIG), Gray codes, run length codes or adaptive binary 

arithmetic coder such as Q-coder. 

2. Predictive Coding: This coding technique uses correlation between adjacent samples. 

Here attempt is made to predict the value of a given sample based on the value of its previous 

neighbors. In theory, lossless coding technique is capable of encoding a signal at a bit rate 

close to its entropy. A practical implementation of this general approach is called lossless 

differential pulse code modulation (DPCM). 

13.2 Lossy Compression 

In lossy compression aJso known as irreversible compression, the degradations are 

allowed in exchange for a reduced bit rate. As a result much higher compression ratios can 

be achieved as compared to lossless compression. It is important to note that these degra

dations may or may not be visually apparent. Some of the most common lossy compression 

techniques include: 

1. Predictive Coding 

2. Subband Coding 

3. Transform Coding 

Predictive coding, carried out in the spatial (data) domain, is statistical in nature and 

mainly based on the assumption that the signal elements in the same neighborhood tend to 

have similar amplitudes. We may therefore, use the value(s) of one or more earlier elements 

(which have been previously coded) to form a prediction of the present element. This pre-
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dieted value is subtracted from the actual value of the present element. This difference is 

then coded and transmitted or stored. The entire signal is reconstructed by adding the 

difference signal to the prediction carried out in the decoder. This scheme is shown in Fig. 

1.3. The only error (ignoring external channel effects) involved is in quantizing the difference 

signaL This technique, however, is sensitive to variations in input data statistics and also to 

channel errors·. 

Transform coding which is a, loosely speaking, a frequency domain process, is also 

statistical in nature. Transform coding is one of the well known approaches to efficient 

waveform representation at medium to low bit rates. To what extent a particular transform 

will support data compression depends upon both the transform and the nature of the images 

being compressed. The practicality of an image coding scheme depends on the computational 

work load of the encoding and decoding steps, as well as the degree of compression obtained. 

The availability of a fast implementation algorithm can greatly enhance the appeal of a 

particular transform. The goal of transform coding is.to decorrelate the signal, resulting in 

the energy being distributed among only a small set of coefficients. In this way, many 

coefficients can be discarded after quantization and prior to encoding. A transformation can 

be viewed as a decomposition of the original block of signal into a set of basis functions. 

In case of sinusoidal transforms (such as Fourier transform), the basis functions consist of 

sines and/or cosines with different spatial frequencies, and each transform coefficient is 

proportional to the fraction of energy in the original block at that particular frequency. It is 

important to realize that the transform operation by itself does not achieve any compression, 

but by changing the representation of the information contained in the signal block, it makes 

the data more suitable for compression. Compression is achieved by subsequent steps of 
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quantization and encoding of the transform coefficients. Input-dependent transforms are 

hard to implement, but they also have the best input decorrelating and variance ordering 

properties. A practical transform for the purpose of signal compression should have a strong 

decorrelating effect, should preferably consist of signal-independent basis functions, and 

should have a fast implementation. Combined with other compression techniques, signal 

transforms allow the transmission, storage, and display of images and video sequences that 

otherwise would be impractical. 

The uneven distribution of ·signal energy in frequency domain has made signal 

decomposition an important practical problem. The recent activity in signal decomposition 

is driven by signal processing and coding applications. More recently, the wavelet transform 

with a capability for variable time-frequency resolution has gained a considerable attention 

as an elegant mul~iresolution signal pr9cessing tool. The basic concept is to divide the signal 

spectrum into its subbands and, ~hen, to treat those subbands individually for the purpose 

of signal representation or coding. This technique has two desirable features. First, moni

toring of signal energy within subbands is possible and then the subbands can be ranked 

and processed independently. Second, the subband decomposition leads to multiresolution 

signal decomposition of the signal spectrum. The signal can thus be represented at each 

resolution. Therefore, the basic objective in signal analysis is to devise a transformation that 

represents a signal features simultaneously in time and frequency. 

There are other lossy compression techniques such as block truncation coding and 

vector quantization. The most commonly used error measures are root mean square error 

(RMSE) and signal to noise ratio {SNR). It should however be noted that small RMSE or 

higher SNR does not necessarily mean better subjective quality of reconstructed signals. 
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1.3 .3 Compression Standardization Activities 

Digital video coding technology has developed into a mature field and a diversity of 

products has been developed targeted for a wide range of emerging applications, such as 

video on demand, digital TV /HDTV broadcasting, and multimedia image/video database 

services. With the increased commercial interest in video communications the need for 

international image and video coding standards arose. Standardization of video coding 

algorithms holds the promise of large markets for video communication equipment. From 

the beginning of 1980' s, standardization activities started within CCITT, followed by CCIR 

and ISO later on. The outcome of these activities are CCITT Recommendations H.120 and 

H.261, CCIR Recommendations 721 and 723, ISO 10918 (JPEG), -and ISO 11721 

(MPEG-1 ). ISO 13818 (MPEG-2) has just been drafted and ISO MPEG-4 is in its developing 

phase. The JPEG and MPEG standards both describe the content of information objects 

only. They cannot describe the interrelationship between the different pieces of a multimedia 

presentation. The definition and standardization of such structure information is the purpose 

of the Multimedia and Hypermedia Information Coding Experts Group (MHEG). 

Since the aim of standardization is to foster implementations of image and video coding 

equipment, the capability of current state-of-art technology needs to be taken into account. 

Therefore, international standards do not necessarily represent the basic technical solutions, 

but rather attempt to achieve a compromise between the amount of flexibility supported by 

the standard, the implementation complexity required and compression efficiency achieved. 

In this section, we briefly describe JPEG, MPEG standards. 
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1.3.3.1 Joint Photographies Experts Group (JPEG) 

The Joint Photographies Experts Group (JPEG), sponsored jointly by the International 

Standards Organization (ISO) and CCITT, . has established an open (published, non

proprietary) algorithm for compression of still images£111
• It achieves compression ratios of 

15-25 without a significant loss of visual quality. With a slight sacrifice of quality, 40-to-1 

compression, or more, is possible. The JPEG standard includes two basic compression 

methods, each with various modes of operation. A DCT based method is specified for lossy 

compression, and a predictive method for lossless compression. 

JPEG, to meet the requirement for a lossless mode of operation, has chosen a simple 

predictive method. A predictor combines the value of up to three neighboring samples (A, 

B, and C) to form a prediction of the sample indicated by X in Fig. 1.4. The prediction is 

then subtracted from the actual value of sample X, and the difference is encoded without 

any loss by either of the entropy coding methods-Huffman or arithmetic. The eight predictors 

are listed in Table 1.1. Selections 1,2, and 3 are 1-D predictors and selections 4,5,6, and 7 

are two dimensional predictors. Lossless codecs typically produce 2: 1 compression for 

images with moderately complex scenes. 

The following is the brief outline of JPEG baseline methodl121
• Fig. 1.5. Shows sim

plified block diagram of JPEG encoder and decoder. JPEG encoder is straight forward. It 

converts image detail to a spatial frequency representation using a 2-D discrete cosine 

transform (DCT). It quantizes the components with different degrees of granularity, 

reflecting the human visual system's spatial frequency sensitivity, then encoding using 

variable length (entropy) coding. JPEG decoder, on the other hand, does the reverse process 

for reconstruction. 
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If the image is in color, the JPEG algorithm first converts from RGB components to 

luminance and chrominance components and discards half the chrominance information. 

Then it uses the DCT for block transform coding, discards high-frequency coefficients, and 

quantizes the remaining coefficients to reduce the data volume further. Finally, it applies 

RLE and Huffman coding to finish the compression task. JPEG decompression is simply 

the reverse of JPEG compression, making the algorithm symmetrical. 

1.3.3.2 Moving Pictures Experts Group (MPEG) 

An open algorithm, developed by the Motion Picture Experts Group (MPEG), com

presses full-motion video (motion pictures with sound). It is similar in concept to the JPEG 

algorithm, except that it also exploits the redundancy between consecutive video frames. 

The resulting compression ratios of 100: 1 make it practical for transmitting color video with 

sound over one mega bit per second channels and storing digital video clips of reasonable 

duration on disk drives[131 • The basic idea is to apply JPEG to specific frames called I frames 

and then prediction based techniques in the temporal direction. This produces the B and P 

frames. The prediction also incorporates motion compensation for better efficiency. A given 

image's prediction may be based on future . images as well as past ones, so the encoder must 

reorder images to put reference images before the predicted ones. The decoder puts the 

images back into display order. MPEG-1 is frame based and aims at bit rates 0.5-1.5 

Mbits/sec. The MPEG-2 incorporates the concept of scalability. It is field based and aims 

at bit rates up to 15 Mbits/sec. Basically, MPEG-2 can be seen as a superset of the MPEG-1 

coding standard and was designed to be backward compatible to MPEG-1 i.e., every 

MPEG-2 compatible can decode a valid MPEG-1 bit stream. MPEG-4 started its activities 
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in July 1993 with the charter to develop a generic video coding algorithm mainly targeted 

for a wide range of low bit rate multimedia applications. A wide range of algorithms are 

currently discussed as possible candidates for the future MPEG-4 and H.263/L standards. 

Many of the algorithms are based on so-called "second-generation coding techniques" for 

example object oriented based coding schemes, model based coding techniques, and seg

mentation based coding techniques. Many of the schemes divert significantly from suc

cessful hybrid DCT /DPCM coding concept employed in the current H.261, MPEG-1, and 

MPEG-2 standards. 

1.4 Scope of Dissertation 

The dissertation is organized as follows: 

In chapter 2, we present an approximate Fourier expansion (AFE) of 1-D sampled, 

stationary and non-periodic signals. Furthermore, some mathematical properties of the 

expansion are derived along with error analysis. Additionally, we extend this expansion to 

an approximate cosine expansion (ACE) and show that for purposes of data compression 

with minimum error reconstruction of 1-D signals, the performance of ACE is better than 

AFE. The performance of this technique is compared with existing orthogonal transform 

techniques. 

In chapter 3, we explore the capability of an approximate Fourier expansion (AFE) as 

signal decomposition tool. This expansion has a user-defined parameter which can be used 

for multiresolution decomposition of the signal. In this section, 1-D signals and images will 

be decomposed using an approximate Fourier expansion (AFE), and later these decomposed 

signals can be represented using an approximate cosine expansion (ACE). Signal, thus, is 
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represented at each resolution. Furthermore, the transformation efficiency of these 

approximate trigonometric expansions will be analyzed using first order Markov process 

and compared with existing techniques. Simulation results will be presented and compared 

with single transform alone and using a single transform in conjunction with wavelets. 

In chapter 4, we apply and test an approximate Fourier expansion (AFE) to images 

and multispectral imagery. In order to apply this technique to multidimensional signals such 

as images and multispectral imagery, we test and compare the capability of these expansions 

with existing 2-D signal coding techniques. Furthermore, this technique is applied to images 

and multispectral imagery for coding purposes. Simulation results will also be presented. 

In chapter 5, we present conclusions of this research. Recommendations for further 

research are also presented. 
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Fig. 1.4. JPEG lossless prediction 

Value Prediction 

0 No Prediction 

1 A 

2 8 

3 c 

4 A+B+C 

5 A+((B-C)/2) 

6 B+((A-C)/2) 

7 (A+B)/2 

Tabel 1.1. JPEG predictors for lossless coding 
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2. SIGNAL REPRESENTATION USING THE APPROXIMATE 

TRIGONOMETRIC EXPANSIONS 

2.1 Introduction 

With the continuing growth of modem communications technology, demand for data 

storage and transmission is increasing rapidly. The efficiency, complexity as well imple

mentation of a compression algorithm are particularly important in its hardware imple

mentation. Transform coding is one of the well known approaches to efficient waveform 

representation at medium to low bit rates. The goal of transform coding is to decorrelate the 

signal, resulting in the energy being distributed among only a small set of coefficients. In 

this way, many coefficients can be discarded after quantization and prior to encoding. A 

transformation can be viewed as a decomposition of the original block of signal into a set 

of basis functions. In case of sinusoidal transforms (such as Fourier transform), the basis 

functions consist of sines and/or cosines with different spatial frequencies, and each 

transform coefficient is proportional to the fraction of energy in the original block at that 

particular frequency. It is important to realize that the transform operation by itself does not 

achieve any compression, but by changing the representation of the information contained 

in the signal block, it makes the data more suitable for compression. Compression is achieved 

by subsequent steps of quantization and encoding of the transform coefficients. The optimal 

decorrelation transformation is the Karhunen-Loeve transform (KLT)°.41 . The KLT has the 

property that for any integer L :::;; N , where L is the size of the transform and N is the size 

of data vector, it packs the maximum average energy into some L coefficients[151
• Unfor

tunately, no efficient computation of KL T exists, and also it does not have desirable prop-
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erties of trigonometric series. Another complication in applying KL T is that its basis 

functions are not fixed, but are data dependent. Input-dependent transforms are hard to 

implement, but they also have the best input decorrelating and variance ordering properties. 

A practical transform for the purpose of signal compression should have a strong decorre

lating effect, should preferably consist of signal-independent basis functions, and should 

have a fast implementation. For stationary random sequences there are other unitary 

transforms which approach to energy packing efficiency of the KL T. Examples are discrete 

cosine, Fourier and sine transforms. These transforms are members of a large family of 

sinusoidal transforms all of which have a performance equivalent to KL T as the size N of 

the data vector approaches infinityf161
• 

Considerastationaryprocessx(t)withautocorrelationRx('t)andpowerspectrumSx(c:o). 

If x(t) is periodic with period T (and so is the Rx('t) with period T) then the process x(t) can 

be expanded into Fourier seriesP7
J as: 

(2.1) 

where the coefficients ck are orthogonal (and uncorrelated) random variables, and are given 

by: 

T 

2 

1 J -jkro0 t 
ck= T x(t)e dt 

T 

2 

and their variance is related to the series expressions: 

00 

n =-oo 

Sx(c:o)=21t I ak8(c:o-kc:o0 ) where ak=E{lckl 2
} 

k =-co 
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We will now show that if Rx( 't) is not periodic then the coefficients are no longer orthogonal. 

To prove this, we expand Rx('t- t) in a Fourier series in the interval(-~,~) as: 

n =-oo 

where Plt) is given by: 

T 

2 

1 J -jkro -r 
Pk(t)=T Rx('t-t)e 

0 

d't 
T 

2 

From (2.2) we have: 

T 

2 

* 1 J * -jkro -c 
c~ (t) = T x('t)x (t)e 0 

d't 
T 

2 

T 
1-rl <2 

Taking expected values, we obtain: 

T T 

2 2 
* 1 J * -jkro -c 1 J -jkro -c 

E { c0 (t)} = T E {x('t)x (t)}e 
0 

d't = T Rx('t- t)e 0 d't = pk(t) 
T T 

Using (2.2) we can also write: 

T 

2 

* 1 J * jmro t 
ckcm = T c0 (t)e 

0 

dt 
T 

2 

Taking expected values and using the result from (2.6), we get: 

T T 
2 2 

* 1 J * jmro ~ 1 J jmro t E{ckcm} = T E{c~ (t)}e 
0 

dt = T Pk(t)e 0 dt 
T T 
2 2 
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i.e., the expected value of eke; equals the mth coefficient in the Fourier series expansion of 

the function ~k(t). If Rx('t) is periodic with period T, then Rx('t) in equation (2.3) can be 

written as: 

00 jkro
0

('C-t) 
Rx("C-t) = L ake 

k =-oo 

Putting this value in (2.5), we get: 

In this case, the equation (2. 7) becomes: 

(2.8) 

If Rx('t) is not periodic, then the coefficients ck are no longer orthogonal but the expected 

value of eke; equals the mth coefficient in the Fourier series expansion of the function ~k(t) 

(see equation 2.7). It can be shown that if T --7 oo then ck are approximately uncorrelated. 

If we replace the limits of integration in (2.5) by ±oo we commit an error that is small for 

large T i.e., using equation (2.6), we get: 

00 

T~k(t) = J Rx('t- t)e -jkro0'd't + e(t, T) 

Let 't-t = t' so that 

00 

T~k(t) = e-ik'"0
' J Rx(t')e -jkro/dt; +e(t, T) 
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This simplifies as: 

Inserting this into q.7), we get: 

· From this we conclude that 

S (kro ) if k = m 
TE{c c *} = { x 

0 

km 0 ifk-:t:.m 
(2.9) 

Therefore, E{I ckl 2
} tends to zero as~ for T ~ oo, where as the covariance.E{ckc~} tends to 

zero faster. In other words, the correlation coefficient p of the random variables tends also 

to zero: 

This means that for large Tthe coefficients in (2.2) are approximately uncorrelated. In order 

to restore the orthogonality of the coefficients, various orthogonal transforms can be used, 

thus losing desirable properties of the trigonometric series. The choice of a particular 

transform in a given application depends on the amount of reconstruction error that can be 

tolerated and the computational resources available. In order to retain the computational 

advantages of FFT and achieve decorrelation at the same time, we explore the capabilities 

of approximate Fourier expansion in the next session. Our goal is to present an approximate 

expansion of sampled signals into a Fourier series with exactly uncorrelated coefficients. 
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2.2 Approximate Fourier Expansion with uncorrelated coefficients 

In this section, we present approximate Fourier expansion (AFE). For continuous-time 

non-periodic signals, an approximate Fourier expansion with theoretically uncorrelated 

coefficients. can be expressed asc171
: 

(2.10) 

where ck are random variables given by: 

(2.11) 

For sampled signals, we extend the approximate Fourier expansion asr181
: 

(2.12) 

where c/ s are given by: 

00 
sin( won ) . 

Ck 
= ~ X (n) 2 e-jkWon' k £..J =0,±1, .. ,±M. 

n =-oo 1tn 
(2.13) 

where M is maximum number of coefficients to be computed. With signals of finite length 

N and ro0 = ~7t, we can write discrete approximate Fourier expansion asc181
: 

N-1 sin( 7) -/7' 
ck= L x(n) e , k = 0, 1, ... ,L-1 

n =0 1tn 
(2.14) 

where N is the length of the signal, Lis a positive real number and is given by L = 27t where 
(1)0 

ro0 is resolution in frequency domain. It will be shown later that depending on the value of 
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ro
0

, the coefficients ck could be periodic or pseudo-periodic. The signal x(n) can be 

reconstructed asr181
: 

L-1 /1tkn 
i(n) = I eke L (2.15) 

k=O 

If the signal x(n) is of finite duration N = L, then the pair of equations (2.14) and (2.15) can 

be viewed as a DFT pair of the signal x (n) sin~7) i.e., the signal x (n) windowed by the main 

lobe of the sine function. The error introduced in the reconstruction can be minimized by 

increasing the value of L. Alternatively, a post-reconstruction strategy can be devised to 

offset the effect of windowing. One way is to do an inverse windowing technique as: 

1 L-1 n1t /1tkn 
i(n)=L I ck . (n1t)e L 

k=O sm -
L 

But this technique has· its disadvantages. In a constrained environment where signal is 

transformed to a certain domain and a reduced set of coefficients is used for reconstruction, 

the inverse windowing will enhance channel introduced noise as well as quantization noise. 

Another way of reducing the windowing effect is to compute very large number L of 

coefficients where L is a multiple p of signal length N, and then decimate the coefficients 

by that multiple p. This way, the net number of coefficients is equal to N and first null of 

sin( T) falls at p times N away from the origin, reducing the windowing effect on the signal. 
nn . 
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2.3 Properties of Approximate Fourier Expansion 

In this section, we examine some important properties of this expansion[19
•
201

• We 

consider only the case of one-dimensional sampled signals. 

(a) Mean value of coefficients: 

E{c} = {E{x(n)} for k = 0 
Property: k 0 otherwise (2.16) 

Proof· 

From equation (2.13): 

00 sin(ro n 12) · 
E{ck} = E{x(n)} I, o e -1kroon 

n =-oo 1tn 

The summation term in above equation represep,ts the Fourier transform of sin( ro;•) evaluated 
sinl ~on) 7tnro ro 

at ro = kro0 • Since the Fourier transform of--;!-- is bandlimited between -
2
° and 

2
°, 

hence the right hand side of above equation is zero except when k = 0 where it has the value 

of 1, the property is proved. 
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(b) Correlation of coefficients: 

Property: The coefficients of the AFE are uncorrelated. 

Proof-

Consider the ideal bandpass filters of center frequency kro0 and bandwidth ro0 as in 

Fig. 2.1: 

1 (k --2
1 

Jro0 < ro < (k +-2
1 

Jro0 Hk(ro) = { 
0 otherwise 

where -1t :::; ro:::; 1t is a frequency variable. The corresponding impulse response is given by: 

If x(n) is the input to this filter, the ou~put of kth bandpass filter will be: 

00 jkro (n -t) 
yk(n) = L x('t)e 0 

't=-oo 1t(n -'t) 

At n = 0 we have: 

00 
-jkro -r 

Yk(O) = L x('t)e 
0 (2.17) 

t=-oo 

Since individual filters are non-overlapping, their outputs ck and cm are orthogonal ·i.e., 

-(2.18) 

Since from property (a), E{ck} = O except at k = 0, we conclude that the coefficients are 

also uncorrelated. 
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(c) Periodicity: 

Property: If ro0 =~'and Lis a rational number, then the coefficients ck and the reconstructed 

signal i(n) will be periodic. 

Proof' 

From (2.14) it is evident that if the complex exponential is periodic, then the coefficients 

will be periodic in k. If L = ~where P, Q are integers and L is a rational number, then e -jz•ik• 

will be periodic with period P. From (2.15) it can be noticed that the reconstructed signal 

will be also periodic with the same period. Under these conditions, the upper limit of the 

summation in (2.15) can be P. In the special case where Lis an integer (Q = 1), then the 

period will be L. It should also be noted that when Lis an irrational number, then there will 

be a "pseudo-periodicity" in the coefficients with period P = int{L }, i.e., the coefficients 

within a pseudo-period P will not be equal, but approximately similar. From this it can be 

concluded that an integer value of L will always result in a computation of less number of 

coefficients. 
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( d) Mean value of reconstructed signal: 

Property: E {.i(n)} = E {x(n)} (2.19) 

Proof 

Using equation (2.15): 

We know from property (a): 

E{c}={E{x(n)} for k=O 
k 0 othenvise 

At k=O and using this result, we have in mean-square sense: 

E{i(n)} = E{c
0

} = E{x(n)} 

This equation suggests that reconstructed signal i(n) gives mean square approximation to 

x(n). 
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( e) Mean square value of coefficients: 

(k + l/2)ro
0 

Property: E{icti 2
} = 2~ J S,(oo)doo (2.20) 

(k - l/2)ro
0 

Proof" 

Consider the ideal bandpass filters of center frequency kro0 and bandwidth co
0 

as in 

Fig. 2.1: 

1 (k --
2

1 Jro0 < CO< (k +-
2
1 Jco0 Hk(ro) = { 

0 otherwise 

where -7t ::; ro ::; 7t is a frequency variable. 

The power spectrum of output of the sub-filter k is given by: 

Taking inverse Fourier transform of both sides, we get: 

1t 

E{Jyk(n)l 2}= 2~f Sx(ffi) JHk(ro)J
2 e1""'dro 

-1t 

Using the limits of Hk(ro), we get, at n~O: 

Using result in equation (2.17): 
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(k + 112)000 

2 1 f E{lc I }=-
k 21t 

dro 
(k-112)000 

which is area under kth pulse. If 000 is very small so that Sx(ro) is constant Sx in that interval 

then: 

which means that we are sampling the spectrum of original signal at sufficient number L of 
. s 

frequency points with area of each impulse as f. 

(f) Mean square value of reconstructed signal: 

Property: E {I .i(n )1 2
} = E {I x(n )1 2

} (2.21) 

Proof" 

From equation (2.15): 

E{IX(n )1 2
} = £{:~: c/'"•" :~~ cme -Jmro,n} 

Using 000 = 2; with Las an integer, therefore: 

.2* . 

Since /T are orthogonal over period L fork "# m , therefore we have at k = m: 
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L-I 

E{li(n)l 2} = L E{I ckl 2} 
k=O 

Using property (e), we get: 

(k + l/2)C0
0 

L-1 

E{li(n)l 2} = L 
k=O 2~ J Sx(ro) dro (2.22) 

(k- l/2)co
0 

If ro0 is very very small so that L = 
2

1t is sufficiently large for minimum reconstruction error 
(J)o 

and Sx(ro) is constant in that interval ro0 , then the above equation becomes: 

1t 1t 

E{l.i(n)l 2}= 2~J Sx(ro) dro=;1tJ Sx(ro) dro 
-1t -1t 

E{I x(n )1 2
} = E{I x(n )1 2

} 
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g) Spectrum of reconstructed signal: 

L-1 

Property: Sx(ro)=N L E{lckl 2}8(ro-kto0 ) (2.23) 
k=O 

Proof 

Assume that signal is of finite length N, then applying Fourier transform on equation 

(2.15): 

N-1 

X(ro) = L i(n)e-jron 
n =0 

"" L-1 { N-1 -j(ro-kro )n} 
X(ro) = L ck L e 

0 

k=O n=O 

The term in brackets on right hand side evaluates to 

ro = kro 0 

otherwise 

Therefore: 

L-1 

Sx(ro) = E{IX(ro)l 2} = N I E{I ckl 2}8(ro-kro0 ) 

k=O 

This means that the Fourier transform of the recovered signal is a series of impulses with 

resolution of ro0 • The area under each impulse equals the area under Sx(ro) in an interval of 

length ro0 centered at ro = kro0 • For an arbitrary lowpass signal, the Sx(ro) is given in Fig. 

2.2. 
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(h) Autocorrelation of reconstructed signal: 

Property: Rx(n) = R/n) (2.24) 

Proof 

Since E{ckcm} = 0, except at k=m. Therefore: 

L-l 

R:lt) = L, E {I ckl 
2

} 
k=O 

Using property (e), we get: 

As 0:>0 -t 0, we have: 

Since the expected value of the reconstructed signal (property 'd') is a constant and the 

autocorrelation of i(n) does not depend on time n, hence the recovered signal is wide-sense 

stationary. 
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(i) Trigonometric properties: 

Properties: The approximate Fourier expansion has all properties of a trigonometric series 

expansion, namely: 

linearity, time shift, scaling, translation, conjugate symmetry, rotation, separability. 

Proof-

If we define 

. (ro0 n) sm -
x'(n) =x(n) 

2 

1tn 

and write ro0 = ~' where Lis an integer then: 

where ck's are given by: 

n =-oo 

These equations are similar to discrete Fourier transform, hence they also possess all trig-

onometric series properties. 
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2.4 Error Analysis 

In this section, we will compute the mean square error between original and recon-

structed signal. The main objective here is to evaluate an upper bound on ro0 so that error 

does not exceed certain percentage of the average power of x (n). We define the mean square 

error as: 

ems E{lx(n)-i(n)l 2} 

ems = 2E{I i(n)l 2}-2E{lx(n)i(n )*I} (2.25) 

Here, We have used the property (f) that E{I x(n )1 2
} = E{I i(n )1 2

}. Using ck= Yk(O) (output 

of sub-filter k) as shown in equation (2.17), we get: 

,•· . * 
But cross-power-spectrum of x(n) and Yk(n) equals Sx(m)Hk(ro); therefore: 

Summing along all coefficients, we get: 

(k + 1/2)o>
0 

(k + 112)w
0 

1 L-1 f j(w-kw )n 1 L-1 f 
E{x(n).;((n)}=

2
1t k~o Sx(co)e 

0 dco= 21tk~o Sx(co)[cos(co-kco0 )n+jsin(co-kco0 )n]dco 
(k - l/2)o>

0 
(k -112)w

0 

Since Sx(ro) is an even function therefore second term in above equation equates to zero: 
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(k + l/2)ro
0 

1 L-1 f 
E{x(n)i*(n)}=-

2 
L 

1tk=O 
(k- l/2)ro

0 

S/ro) dro 

· Pu.tting this value and the result from equation (2.22) in equation (2.25), we get: 

: . 1 L-1 (k +Jl/2)coo 

e -:--- . L, . Sx(ro) [1-cos(ro.....:kro0 )nl dro 
ms. 1t k=O 

. (k ~ 112)<00 . 

(2.26) 

For an arbitrary low pass signal, this equation is plotted in Fig. 2.3a. The second part ~f this 

equation depends on n and is generated by E{lx(n)x*(n)I }. This shows that the x(n) and 

i(n) are individually but not jointly wide-sense stationary. If they were, the mean-square 

error ems would be independent of time. 

The above is a worst c~se estimate assuming that Sx( ro) is concentrated at the end points 

of each integration, interval i.e from (k - 112)000 to (k + 112)000 • If SxCro) does not vary 

appreciably in these intervals, then equation (2.26) can be modified by replacing Sx( ro) by 

a constant in each integration interval as: , 

This can be simplified as: 

(2.27) 
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This means that in the limit as 00
0 

tends to zero, mean square error approaches zero in 

mean-square sense. We can also deduce from equation (2.27) that in order for mean square 

error not to exceed certain percentage of average power of x(n ), the first null of sine function 

in equation (2.27) shall fall very far away from origin. 

Upper bound on error: 

In equation (2.15) if ro0 n < 1t for every n in (0,N-1) where N is the length of the signal, 

then from equation (2.26) we have: 

= 2 

(J)o 

for every ro such that! ro - kro0 I < 2· Therefore, 

Rearranging the right hand side of the above equation, we get: 

1t t00

n J 2~ J S,(ro)dro e ~4sin 4 
-1t 

{ 00
0 n J e ~4sin 4 E{lx(n)l 2} (2.28) 

This equation means that in order for mean square error not to exceed certain percentage of 

the average power of x (n ), 000 should be chosen such that 

(2.29) 
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This equation is plotted in Fig. 2.3b for various value of L, which shows that relatively larger 

values of L yield lower mean square error in the reconstructed signal. 

2.5 Approximate Cosine Expansion 

In this section, we develop an approximate cosine expansion (ACEi211 from an 

approximate Fourier expansion (AFE) and show that for the same L it introduces less 

reconstruction error than discrete approximate Fourier expansion (AFE) with the advantage 

that the coefficients are real. 

Consider Fig. 2.4(a) and Fig. 2.4(b), which represent sampled data, and the recon

structed signal after applying an AFE. It should be noted that L used was an integer and 

sufficiently large for minimum reconstruction error. Since the AFE coefficients and the 

reconstructed signal are periodic with period L, Fig. 2.4(b) contains severe discontinuities 

between the segments and these result in spurious spectral components. This discontinuity 

can be removed by making the data to be transformed symmetric, i.e by folding it about the 

vertical axis (along the origin) as shown in Fig. 2.4(c), and then overlapping the two halves 

by one element. Folding the data has given us an even function to transform. We now apply 

an AFE of length 2L to the data of length 2N. Note that the axis of symmetry in Fig. 2.4(c) 

lies at the point n =-~i.e., 1/2 point to the left of the signal at the origin. Therefore, applying 

an AFE to the signal in Fig. 2.4(c), we get: 

. (n'Tt) . 21tk(n+~) 
N-1 sm 

2
L _1 __ 2 

ck= I · x(n) e 2
i 

n =-N n'Tt 
(2.30) 

Since x(n) is real and even, therefore: 
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N-1 sin(~;) [ 7tk(2n + 1) J 
ck= 2 I, x(n) cos , k = 0, 1, .. . ,L -1 

n=O n1t 2L 
(2.31) 

The x(n) is reconstructed using equation (2.15) as: 

Since ck' s are real and even as they are generated by symmetric extension of input signal, 

therefore: 

" L- 1 1tk(2n + 1) 
x(n) = 2 k~o ck cos 2L (2.32) 

Letting L1 = 2L, then equation (2.31) can be rewritten as: 

[ 
. ( n1t) 21tkn 7tk] N-1 sm z: -j- -j-

c - 2 Re ~ I LI LI 
k - ""' x(n) e e 

n =0 n1t 
(2.33) 

The term in the brackets is similar to ck in equation (2.14) (with L replaced by L1) multiplied 

by an exponential term. Since L1 =2L ,thereforeco0 = ~1t = z· This means that first null of 
1 

sin(~) will fall at 2L instead of at L. In other words, the error introduced in the reconstructed 

signal will be less than the error due to applying AFE on the signal. 
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2.6 Simulations 

In this section, we will test and verify the results obtained in section 2.1 through 2.5. 

The performance of the expansions will be evaluated using objective fidelity criterion. An 

objective fidelity criterion is the mean square signal to noise ratio (SNRms). Here we define 

mean square signal to noise ratio as: 

N-lN-1 

L L (xr)2 

. 0 . . 0 y 
l = J = 

SNRms = N-1 N-1 (2.33) 

L L (X· .-£. ·)2 
l,j l,j 

i=Oj=O 

Since the performance of these expansions depends on the choice of ro0 = ~,these expansions 

were applied to a length (N=128) of a speech signal and "Lena" image, and SNRxus was 

computed for various values of L. Results are shown in Figs. 2.6 and 2. 7. Fig. 2.5 displays 

a segment of original speech signal under test, whereas Figs. 2.6a, 2.6b and 2.6c, 2.6d show 

the reconstructed speech signal using AFE and ACE respectively for two different values 

of L. Similarly, Fig. 7a displays original "Lena" image of size 256x256, where as Fig. 7b, 

Fig. 7 c and Fig. 7 d, Fig. 7 e display reconstructed "Lena" image using AFE and ACE 

respectively for two different values ·of L. It is obvious from Figs. 2.6 and 2.7 that smaller 

values of ro
0 

produce closer approximations·. This is expected since smaller values of ro0 

result in finer sampling resolution, where as larger values of ro0 produce a coarse resolution 

resulting in a large error. Fig. 2.8 shows SNRxus of the reconstructed speech signal when L 

varies from low to high in AFE reconstruction of the speech signal. It is clear from this Fig. 

that relatively larger values of L yield higher SN~s· 

In order to compare the performance of ACE with discrete cosine transform (DCT), 

we tested the cross correlation and variance of DCT and ACE coefficients by applying ACE 
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and DCT on blocks of a speech signal. We took blocks of 128 samples of speech signal and 

applied DCT and ACE with L= 128 on each block. In order to compute cross correlation and 

~ariance of coefficients, we computed cross correlation of each coefficient with other 

coefficients in a block and the result was averaged across all of the blocks in a speech signal. 

The result in shown in Fig. 2.9 as an intensity image. It is obvious from the Fig. 2.9 that 

intensity of the image off the diagonal in Fig. 2.9b is very low as compared to Fig. 2.9a 

which demonstrates that ACE gives relatively better decorrelation than DCT. The variance 

of the coefficients can be obtained by plotting diagonal elements of the intensity image. 

This result is shown in Fig. 2.10. It is obvious from Fig. 2.10 that variance of ACE coefficients 

is less than that of the DCT coefficients. 

From all these results, it can be claimed that ACE can be applied to 1-D signals for 

coding applications. We will explore this further in the next chapter. 
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Fig. 2.1. Ideal bandpass filter 
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Fig. 2.2 Spectrum of reconstructed signal 
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Fig. 2.3a. Mean square error of an arbitrary lowpass signal 
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Fig. 2.3b Upper bound on mean square error for various value of L 
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Fig. 2.4 (a) Signal length for analysis, (b) Data domain equivalent of AFE coefficients, 

( c) Data folded to eliminate discontinuity 
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Fig. 2.5 A segment of original speech signal 
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Fig. 2.6a Speech signal reconstructed with L=128 
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Fig. 2.6b Speech signal reconstructed with L=150 
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Fig. 2.6c Speech signal reconstructed wit L=128 
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Fig. 2.6d Speech signal reconstructed with L=150 
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Fig. 2. 7 a Original "Lena" image, N=256x256 

Fig. 2.7b "Lena" image reconstructed with L=256, using AFE 
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Fig. 2. 7 c "Lena" image reconstructed with L=280, using AFE 

Fig. 2.7d "Lena" image reconstructed with L=256, using ACE 
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Fig. 2.7e "Lena" image reconstructed with L=280, using ACE 
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Fig. 2.8 SNRms vs. L 

54 



Fig. 2.9 Cross-correlation of DCT (left Fig.) and ACE (right Fig.) coefficients 
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Fig. 2.10 Variance of DCT/ ACE coefficients 
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3 . MULTIRESOLUTION SIGNAL DECOMPOSITION USING THE 

APPROXIMATE FOURIER EXPANSION 

3 .1 Introduction 

Digital data nowadays, in contrast to a decade or so ago, is available in a wide variety 

of resolutions, and a spectrum of applications exists in which there is requirement to 

(re )generate basically the same data at different levels of definition. Thus it may be required 

(notwithstanding the different aspect ratio) to reproduce high definition television images 

on standard definition displays, transmit segments of a television or video conferencing 

image at a reduced resolution over a video-telephone system, or an image reproduced initially 

at low resolution may require that resolution to be gracefully improved with time in an image 

browsing facility. In the latter case, such progressive transmission reproduces a low reso-

lution image quickly, after which detail can be built through time as the viewer desires, and 
.t • • \ • 

coding schemes can be arranged to process an image broken down into a low detail version 

together with a signal representing the otherwise lost definition, the two components being 

added during the reconstruction stage at the receiver. There is a general interest, therefore, 

in developing algorithms which compute versions of the same picture at different resolutions, 

together with an additional detail signal which represents what is lost in going from one 

level of resolution to another, lower, one and which, when added to the latter, allows 

reconstruction of the former. The present high degree of interest in wavelet decomposition 

of signals in one or more dimensions into subsets at various levels of resolution has naturally 

led to applications in the areas of signal coding. The basic idea is to divide the signal fre

quency band into a set of uncorrelated frequency bands by filtering and then to encode each 
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of these sub bands using a bit allocation rationale matched to the signal energy in that subband. 

The subband coder achieves energy compaction by filtering serial data whereas transform 

coding utilizes block transformation. If the subbands have little spill over from adjacent 
. . · . 

bands (as would be.case if the subband filters have sharp cutoffs), the quantization noise in 

a given band is limited largely to that band. This permits separate, band-by-band allocation 

of bits, and controls of this noise in each band. 

The _purpose of transform coding is to decompose a set of correlated signal samples 

into a set of uncorrelated spectral coefficients with energy concentrated in as few coefficients 

as possible. The uneven distribution of signal energy in frequency domain has made signal 

decomposition an important practical problem. The recent activity in signal decomposition 

is driven by signal processing and coding applications. More recently, the wavelet transform 

with the capability for variable time-frequency resolution has gained a considerable attention 

as an elegant multiresolution signal processing tool. The basic concept is to divide the signal 

spectrum into its subbands and then treat those subbands individually for the purpose of 

signal representation or coding. This technique has two desirable features. First, monitoring 

of signal energy within subbands is possible and then the subbands can be ranked and . 

processed independently. Second, the subband decomposition leads to multiresolution signal 

decomposition of the signal spectrum. The signal can thus be represented at each resolution. 

Therefore, the basic objective in signal analysis is to devise a transformation that represents 

signal features simultaneously in time and frequency. 

Discrete approximate trigonometric expansions were, in last chapter, analyzed as 

signal transformation tool for encoding applications. These approximate trigonometric 

expansions have a user-defined parameter which can be used for making the transformation 

57 



a signal decomposition tool. In this chapter, we explore the capability of an approximate 

Fourier expansion (AFB) as a decomposition tool for 1-D signals and images. Furthermore, 

the decomposed signals will also be represented by an approximate cosine expansion (ACE) 

which is actually an approximate Fourier expansion (AFB) of a symmetric extension of the 

signal. Thus approximate Fourier expansion can be used as a single tool for signal 

decomposition as well as representation technique as compared to subband decomposition 

combined with single or mixed transforms. 

This chapter is organized as follows: In section 3.2, we briefly discuss multiresolution 

decomposition of the signal. In section 3.3, we explore the capability of the approximate 

Fourier expansion as a signal decomposition tool. Specifically, we present system inter

pretation of an approximate Fourier expansion (AFE) using generalized harmonic analysis. 

In section 3.4, we present d.etermination of transformation efficiency using first order 

Markov process. Section 3.5 presents simulation results carried out on 1-D signals and 

images. 

3 .2 Multiresolution Signal Decomposition 

Many of the developments preceding wavelet analysis came in a field generally called 

multiresolution analysis. These developments were intended to combat the limitations of 

the Fourier transform. Filter bank theory used in wavelet analysis offers a convenient means 

of representing signals composed of oscillatory components, such as musical notes and tone 

bursts. These components include several (or many) cycles of the oscillation within their 

duration. In image analysis, however, the localized components of interest often are not 

truly oscillatory, in that they include only one cycle or even just part of a cycle. Examples 
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include lines, edges, and spots. The objects in an image are observed to occur at different 

scales. An edge, for example, can be either a sharp transition from black to white or one 

that occurs gradually over a considerable distance. In general, a multiresolution approach 

to image representation or analysis seeks to exploit this idea. 

Cartography illustrates the approach. Maps are commonly drawn at different scales. 

The scale of a map is the ratio of the size of an actual territory to that of its representation 

on the map. At large scales, as on a globe, major features such as continents, oceans, country 

boundries are visible, while details become visible and larger features are lost. Thus, to be 

able to navigate to a point at a distant location, one needs a set of maps drawn at different 

scales. 

Wave let transforms have developed along these multiresolution lines. As with time

frequency analysis, a signal is represented in a two-dimensional space, but here the vertical 

axis is scale rather than frequency. Scaling is achieved by dilating and contracting the basic 

wavelet to form a set of basis functions. The ability of the wavelet transform to operate at 

various scales (resolution levels) has afforded an efficient technique, which is closely related 

to Burt and Adelson' sl221 work, for multiresolution analysis and which can, in fact, be viewed 

as an implementation of a particular kind of subband decomposition. The design of the 

Laplacian pyramidr221 provided the inspiration that later led to the discrete wavelet transform. 

As a further background leading to the discrete wavelet transform, a time-frequency tech

nique called subband coding, originally developed for compact coding of digitized audio 

signals, seeks to decompose a signal (or an image) into narrow-band (bandpass filtered) 

components and represent these, without redundancy, in such a way that it is possible to 

reconstruct the original signal without errorl23
-
251

• Mallatl261 defined a discrete wavelet 
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transform algorithm, which applies two-band subband coding in an iterative fashion and 

builds the wavelet transform from bottom up, that is, computing small-scale coefficients 

first. 

At the first stage, subband coding is applied on the signal. After the first step of subband 

coding, the lower subband signal is once again subjected to halfband subband coding. This 

leaves us with the N/2-point upper halfband signal and two N/4-point subband signals. The 

process is continued, at each step retaining the upper halfband signal and further encoding 

the lower halfband signal, until a one-point low band signal is obtained. The transform 

coefficients are then the low band point and the collection of subband coded upper halfband 

signals. This is shown in Fig. 3.1. The impulse response doubles in scale·-at each iteration. 

Thus, we have an orthonormal wavelet transform. The subband coding, which is basically 

a time-frequency transform technique, has been employed to define a time-scale wavelet 

transform. This algorithm is sometimes referred to as the fast wavelet transform (FWT), or 

Mallat' s herringbone algorithm, due to the appearance of the diagram in Fig. 3 .1. The inverse 

transform is obtained by reversing the process, as shown in Fig. 3.2. 

3.3 Signal Decomposition using the Approximate Fourier Expansion 

In this section, we explore the capability of the approximate trigonometric expansions 

as a signal decomposition as well as representation tool. We also present a system inter

pretation of the approximate Fourier expansion (AFB) using the Generalized harmonic 

analysis. Consider a stochastic process x(t) with generalized transform G(ro), where G(ro) 

of a stochastic process x(t) is defined byr171
: 
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00 -jro t -j01ir 

J
e 1 -e 

G(ro1)-G(ro2) = . x(t)dt 
-00 -]! 

(3.1) 

Where G ( oo) is determined from above equation within a constant. The above equation can 

further be simplified as: 

00 ~ ~ 00 

G(co1)- G(co2) = J x(t) J e-jw dco dt = J J x(t)e-j""dtdco 
012 012 -00 

If x(t) has a Fourier transform X(oo), then this means: 

(3.2) 

Further if 001 = oo + £, COi = oo - E so that 001 - ffii = 2£, we obtain from (3 .1) 

J
oo • ej£t - e -}Et 

G(oo+E)-G(oo-E) = e-JCJ)t . x(t)dt 
-00 "}t . . 

00 

f sin(Et) _. 
G(oo+E)-G(oo-E)= 2 t x(t)e 1wrdt 

This means that G ( oo + E) - G ( oo - £) is the ordinary Fourier transform of the process 

sin( Et) • 
2x(t)-, which means: 

t 

00 

sin(Et) () 1 J jrorG(ro+c:)-G(ro-c:)d --x t =- e ro 
~ 2n 2£ 

(3.3) 

With E -7 0, the left hand side tends to x(t). 

In order to give a system interpretation to G(oo), consider an ideal band-pass filter in 

Fig. 3.3: 
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Its impulse response is given as: 

With x(t) as input to this system, the output y(l)
1
,0_/t) is given by convolution summation as: 

At t = 0, the output will be 

oo -jro 't -jro 't , . 

f e i -e 2 

Yro rn .. (O) = . x('t)d't = G(co1)- G(co2) 
l~ ~ -.J't . 

In the same way if m1 > ffii ~ ro3 > co4 ~ ro5 > ro6, then we can form systems as shown in Fig. 

3.4. Clearly, these systems are disjoint. Therefore, with x(t) as common input, the resulting 

outputs are orthogonal processes. Therefore, 

E{ y(l) 1 roi(O)y~00/0)} = E{[G(ro1)-G(ro2)] [G*(m3)-G*(m4)]} = 0 

E{ Y~00/0)y;5(1)/0)} = E{[G(ro3)- G(ro4)] [G*(ro5)-G*(ro6)]} = 0 

(3.4a) 

(3.4b) 

It should, however be noted that ro3 - m4 or ro5 - ro6 may or may not be equal to m1 - ffii, that 

is, the systems do not necessarily have the same bandwidth. In other words, this leads to 

decomposing the signal into subbands. Returning to Fig. 3.4, if we make a bank of those 

bandpass filters with equal bandwidth of 2£, then we have decomposition of the signal into 

uniform subbands as shown in Fig. 3.5. Likewise, we can have non-uniform subband 
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decomposition if we can vary the bandwidth of the filter in Fig. 3 .3 for each system in Fig. 

3.4, as shown in Fig. 3.6. 

For discrete signal x(n) and M discrete bandpass filters as in Fig. 3.4, then the output from 

bank of M bandpass filters, we havel271
: 

00 

Yk(n) = L x(m)h(n -m)e 2jk(n-m)E = ck(n) k=0,1, ... ,M-1 
m =-oo 

where © 0 is user-defined bandwidth of each bandpass filter. For ideal bandpass filters with 

user-defined bandwidth 2£ = © 0 , the above equation becomes: 

00 sin[(n -m)rooJ jk(n-m)roo 
Yk (n) = m ~ -00 x (m) ( n _ m )1t e = ck (n) (3.5a) 

If we divide signal spectrum 21t by bandpa~s filter bandwidth © 0 then we have a bank of 

total L filters i.e., L = 2n. The ability of the above equation to operate at different values (or 
(1)0 " 

scales) of L makes it efficient technique to decompose signal into various bands using filters 

of an ideal frequency response. In another way, we can say that we are decomposing the 

signals using discrete wavelet transform employing filters of an ideal frequency response. 

For n = 0, the above equation reduces to approximate Fourier expansion (AFE) of discrete 

signalsc181
• 

00 sin(-mro_o ) .k 
" 2 -1 mro0 ck(O)= £.. x(m)---e =ck 

m =-oo m1t 
(3.5b) 

The equation (3.5a) means that we are decomposing the signal using AFE intoM subbands. 

If w0 = ~ and L varies with the values to the logarithmic base of 2 with maximum value of 

M where Mis a number of bandpass filters, then equation (3.5a) produces non-uniform 

sub band decomposition of the signal as shown in Fig. 3. 7. For L = 2, this is equal to sub band 
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decomposition of the signal using filters of an ideal frequency response. Since this process 

generates two subbands, one with low frequency content and the other with high frequency 

content of the signal, the low frequency component can be further decomposed thus gen

erating a dyadfo tree decomposition. In other words, this is equivalent to applying successive 

subband decomposition on _low-pass filtered signal at each decomposition level using 

appro;ximate Fourier expansion (AFE). The signal can thus be represented by different 

resolutions at each level of the tree. The details of multiresolution signal decomposition can 

be found in reference [28]. The difference between multiresolution signal decomposition 

using wavelets or perfect reconstruction filters and signal decomposition using AFE is that 

latter reconstruct the original signal with an error depending on L. But -the advantage of 

using AFE is that AFE can be implemented by an FFT algorithm. 

After decomposing the signal, subbands can be represented by a transform to improve 

the representation efficiency. In particular, subbanding has proved to be useful when used 

in conjuction with several other techniques. For example, subbanding has been widely used 

with the discrete cosine transform (DCT) for image compression. The amount of 

improvement due to subbanding depends upon a number of factors such as energy distri- . 

bution of the signal being considered, the choice of the frequency bands, the classes of 

signals in each band, etc. We will decompose 1-D signals and images in section 3.5. 
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3.4 Determination of Transformation Efficiency 

In this section, we determine the efficiency of the trigonometric expansions by using 

first order Markov process. This model represents the gross behaviour of image sources 

moderately.well, even though it fails if accurate modelling is required. Specifically, we will 

compute energy packing efficiency and the variance of the coefficients. In order to dem

onstrate the approach, we take first order Markov model asc291
: 

1 p p2 p N-l 

p 1 p p N-2 

'If= ' 
O«p<l. 

N- l N-2 p p . 1 

where 'JI above provides a useful model for the data covariance matrix corresponding to the 

rows and columns of an image matrix and p is inter-element correlation coefficient. The 

covariance matrix in the transform domain is denoted by 'I' and is given byC301
: 

(3.6) 

where A is the 2-D matrix representation of a transform and A* is its complex conjugate. 

Since AFE and ACE expansions have non-orthogonal basis functions and DFT and DCT 

are orthogonal transforms, we compare transform efficiency using equal number of trans-

form coefficients i.e., L =N. The basis functions of AFE and ACE for N=8 and L=8 are 

computed from following equations (see equation (2.14) and (2.31)): 

. (n7t) sm T -/~ 
AFE: ck n = e 

· nrt 
(3.7a) 
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ACE: 
_ sin(;;) [ 1tk(2n + 1) J 

ck n -2 cos 
2

L , n1t 
(3.7b) 

DFT: 
1 . 21Ckn 

-17 
c =--e 

k,n '1{N) 

.. ~ { nk(2n + 1)] 
DCT: ck,n = co-\J NCO 2N 

(3.7c) 

where C
0 

= }i if k = 0, and 1 otherwise (3.7d) 

The computed basis functions are shown in Table 1. We determine the transform efficiency 

of AFE, ACE, DFT and DCT by examining the diagonal elements of their respective 

transform domain covariance equation (19) (for p = 0.91, N=l6 and L=16), where A rep-

resents respective transformation matrix. The relative amount of energy in the first M of the 

total N diagonal components is given asc291
: 

M 

I. Y. k 
j,k=l ], 

11 - 1"=k ' ltransform - N ' (3.8) 

I. x.k ], 
j,k = 1 

where L:XJ,k is total sum of data covariance entries and L. Y1,k is total sum of transform 

covariances. We calculated the energy packing efficiency ofDCT, DFT, ACE and AFE by 

looking at diagonal elements of their transform covariance matrices when j = k and M varies 

from 1 to N and results are shown in Fig. 3.8. The best performance is given by ACE followed 

closely by DCT and AFE. The larger values of 11, even for relatively small values of M, are 

characteristics of all transforms and are the result of high inter-element correlation within 

the data. Good energy packing efficiency also demands that the magnitudes of the variances 

fall off rapidly with increasing coefficient order. In order to compare transform coefficient 

variances of DCT, DFT and approximate trigonometric expansions, we again analyzed the 
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diagonal elements of their respective transform domain covariance matrices. The diagonal 

elements of each transform domain covariance matrix are shown in Fig. 3.9 which shows 

that the performance of ACE is the best follow_ed by DCT and AFE. Owing to the symmetry 

inherent within the basis matrix, the AFE and DFT have pairs of coefficients of equal 

variance, and this accounts for the step-like trend of their curves. In order to demonstrate 

decorrelation efficiency of trigonometric expansions, we use the same first order Markov 

model by calculating the decrease in inter-element correlation in transform domain 

covariance matrix compared with that in data domain equivalent. The decorrelation effi

ciency is then given asr29l: 

N 

I Y. k 
j ,k= 1 J , 

'Tldecorrelation = 1 - N ' j -:;::. k 
I x.k 

j ,k= 1 J , 

(3.9) 

where IX1,k and L l} ,k are defined as above. We computed the decorrelation efficiency of 

approximate trigonometric expansions, discrete cosine and Fourier transforms for various 

values of N and p and the results are shown in Table 2. It is clear from the Table 2 that 

approximate trigonometric expansions provide better inter-element decorrelation than 

discrete cosine and Fourier transforms. 

Multispectral imagery has been used in geological applications to study the compo-

sition and dynamics of earth surf aces in cartography, mineral exploration, analysis of land 

utilization, weather and climate analysis, as well as agriculture and forestry applications. In 

most systems the image acquired by the senser is transmitted to a processing center on earth. 

Significant research has taken place in techniques for compression of such images, as well 

as processing to recognize patterns of interest. In addition to using correlation between the 
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different pixels of the image in one spectral band, techniques have also been invented to 

utilize the cross correlation between the images in different spectral bands. Single band 

image compression relies mainly upon the spatial correlation of the image pixels to 

accompolish this task. Multiple, correlated spectral bands provide a third dimension in which 

redundancy can be exploited. This band to band redundancy permits one to apply various 

redundancy removing techniques. Examples of techniques applied to multispectral imagery 

include three-dimensional prediction technique[11 , spectral prediction followed by spatial 

decorrelation step like block discrete cosine transform (DCT) technique[21, and spectral 

decorrelation transform techniquesr31 • A comparative performance evaluation of various 

,multispectral compression techniques is given in [37]. In general, transform-based techniques 

outperform the classical predictive methods. A robust implementable compression algorithm 

for multispectral imagery with a selectable quality level is reported in [38]. This techniques 

employs one-dimensional Karhunen-Loeve transform (KL T) followed by two-dimensional 

block discrete cosine transform (DCT). The multispectral image set is spectrally decorrelated 

via the KL T to produce the eigen images. The resulting decorrelated images are then 

compressed using the JPEG algorithm. Since the KL T is data dependent therefore this 

algorithm is computationally intensive. In addition it adds an overhead information (like 

covariance matrix and eigen values) to the compressed imagery which needs to be trans

mitted to the decoder for correct reconstruction. A practical transform for the purpose of 

signal compression should have a strong decorrelating effect, should preferably consist of 

signal-independent basis functions, and should have a fast implementation. In order to 

demonstrate the spectral decorrelation across bands, we apply an approximate cosine 

expansion to a multispectral image set. In this experiment, ten spectrally correlated images, 
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each of size 256x256 with 8 bits per pixel, were used. Figure 3.10 shows two sample images 

used in this experiment. From a set of ten spectrally correlated images, each vector from 

spectrally correlated components from identical locations in each band is formed and an 

approximate cosine expansion (ACE) applied on it. The resulting output vectors are placed 

adjacent to one another, in the same order as the input vectors, to form the stack of the 

spectrally decorrelated image planes. Figure 3.11 shows first four spectrally decorrelated 

image planes associated with ten-band test image set. From Figure 3 .11, the compaction of 

data as a result of approximate cosine expansion is clearly evident as first two image planes 

contain significant amount of energy or information content. The remaining decorrelated 

image planes contain very little information and thus require substantially fewer bits to be 

coded. It should, however, be noted that relatively higher values of N would produce better 

results because relatively higher values of N yield better decorrelation between output vector 

elements as shown in Table 3 .2. In order to measure the spectral decorrelation, the correlation 

coefficient is computed across each pair of spectrally decorrelated image planes. The cor

relation coefficient is a useful and convenient method to measure the inherent spectral 

correlationc33
l. The correlation coefficient matrix is defined as the normalized covariance 

matrix i.e., the coefficient for each pair of bands is equal to their covariance value divided 

by the square root of the product of their individual variances. The computed correlation 

coefficient across each pair of spectrally decorrelated bands is shown in Table 3.3a. For 

comparison purposes, DCT was also applied on multispectral image set and correlation 

coefficient computed across each pair of spectrally decorrelated bands. The result is shown 

in Table ·3.3b. It is clear from Table 3.3a that the approximate cosine expansion (ACE) 

provides relatively better spectral decorrelation efficiency than discrete cosine transform 
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(DCT). 

In most practical situations, some amount of signal degradation can be tolerated. This 

poses a question, which is, what is the minimum bit rate required to encode a source while 

keeping the degradation below a certain level. The performance criterion for a coding scheme 

can also be measured by the minimum information rate R that can be achieved while still 

maintaining a fixed distortion D within the framework of the basis-restricted structure. 

Considering Gaussian sources along with the mean-square criterion, the rate-distortion 

performance criterion is given asl311
: 

(3.lOa) 

} M 
D = M _I, min(0, a) 

j=l 
(3.lOb) 

where e is distortion variable and the (Jj are the main diagonal terms of the transform domain 

covariance matrix 'Pin equation (3.6). We implemented equation (3.lOa) and (3.lOb) for 

AFE, DFT and DCT using equation (3.6) for M=l6 and p = 0.9, and the results are shown 

in Fig. 3.12, from which it is clear that the performance of ACE is the best followed by DCT 

andAFE. 
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3 .5 Simulations 

In this section, we present experimental results. In section 3.2, we briefly discussed 

multir~solution signal decomposition using wavelets. Specifically, we described Mallat' s 

discrete wavelet transform algorithm known as fast wavelet transform. Furthermore, we 

exp.lored _the capability of the approximate Fourier expansion as a signal decomposition 

tool."In·this section, we apply an approximate Fourier expansion (AFB) on 1-D signals and 

images in a manner similar to fast wavelet transform. As an example of 1-D signal, we used 

a segment with the length of 256 samples, of a speech signal and applied equation (3.5), on 

it, similar to non-uniform subband decomposition as shown in Fig. 3.7. In similar fashion, 

we applied equation (3.5) on "Lena" and "Shipyard" images. The approach, applied on each 

image and the segment of a speech signal, is as follows: 

Step 1: Equation (3.5) with L=2 is applied on an image in horizontal direction. This produces 

two output images. Since L=2, hence filtered output images have bandwidth of 

roo = ~ = 1t in horizontal direction. 

Step 2: Since one signal has maximum frequency of 1t, and ·another is confined between 

1t and 21t, therefore both signals can be decimated· by L=2. 

Step 3: The steps I. and 2 are repeated on both images in vertical direction. This process 

generates total four images. 

Step 4: The steps 1,2 and 3 can be applied repeatedly on lowpass filtered images as desired. 

Step 5: · Depending on the signal characteristics of the image at any level of decomposition, 

individual filtered subimages can be transform-coded using the approximate cosine 
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expansion (ACE) with L equal to the size of the subimage. 

Step 6: For reconstruction, each lower level can be reconstructed from its immediate higher 

level by the process inverse to steps 1,2,3,4 and 5. 

The results are shown in Fig. 3.13 through Fig. 3.16 for four levels of decomposition, and 

the corresponding reconstructed signals. Fig. 3.13 shows original, decomposed, and 

reconstructed signal of the segment of a speech signal under test. Fig. 3. l 3a shows a segment 

(N=256) of original speech signal.where as Fig. 3.13b, Fig. 3.13c, Fig. 3.13d, Fig. 3.13e, 

Fig. 3. l 3f, and Fig. 3 .13 g show decomposed signals corresponding to four levels of 

decomposition, and Fig. 3.13h shows reconstructed signal using the inverse process in a 

similar way as shown in Fig. 3.2. In the same way, the results for "Lena" image and 

"Shipyard" image are shown in Fig. 3.15 and Fig. 3.16 respectively. 

From above simulations, it can be observed that each decomposition of the signal 

generates a high-band signal, which, in most of the cases of signal coding applications, can 

be coarsely quantized. In section 3.4, we showed that for first order Markov processes and 

spectral decorrelation across bands in a multispectral imagery, the decorrelation efficiency 

and transform efficiency of the approximate cosine expansion (ACE) is better than the 

discrete cosine transform. This implies that, in a low bit rate application, decomposed signals 

can be represented by the approximate cosine expansion (ACE) for the purpose of coding. 

We will apply an approximate cosine expansion (ACE) to the decomposed signals in the 

next chapter. 
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f(x) 

h1(x) h1(x) h1(x) 

Q1(2x) 

Fig. 3.1. Forward fast wavelet transform algorithm 

Fig. 3 .2. Inverse fast wavelet transform algorithm 
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Fig. 3.3. Ideal bandpass filter 
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Fig. 3.4. A bank of bandpass filters 
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Fig. 3 .5 .. Uniform sub band decomposition 
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Fig. 3 .6. Non-uniform subband decomposition 
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Fig. 3. 7. Dyadic tree decomposition 
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0.0892 0.1059 0.1179 0.1242 0.1242 0.1179 0.1059 0.0892 

0.0892 0.0749 0 -0.0878 -0.1242 -0.0834 0 0.0631 

0.0892 0 -0.1179 0 0.1242 ·O -0.0159 0 

0.0892 -0.0749 0 0.0878 -0.1242 0.0834 0 -0.0631 

0.0892 -0.1059 0.1179 -0.1242 0.1242 -0.1179 0.1059 -0.0892 

0.0892 -0.0749 0 0.0878 -0.1242 0.0834 0 -0.0631 

0.0892 0 -0.1179 0 ·0.1242 0 -0.1059 0 

0.0892 0.0749 0 -0.0878 -0.1242 -0.0834 0 0.0631 

Table 3. la. Real part of AFE basis functions, N=8, L=8 

0 0 0 0 0 0 0 0 

0 -0.0749 -0.1179 -0.0878 0 0.0834 0.1059 0.0631 

0 -0.1059 0 . 0.1242 0 -0.1179 0 0.0892 

0 -0.0749 0.1179 -0.0878 0 0.0834 -0.1059 0.0631 

0 0 0 0 0 0 0 0 

0 0.0749 -0.1179 0.0878 0 -0.0834 0.1059 -0.0631 

0 0.1059 0 -0.1242 0 0.1179 0 -0.0892 

0 0.0749 0.1179 0.0878 0 -0.0834 -0.1059 -0.0631 

Table 3.1 b. Imaginary part of AFE basis functions, N=8, L=8 

0.1154 0.12 0.1232 0.1248 0.1248 0.1232 0.12 0.1154 

0.1132 0.0998 0.0684 0.0243 -0.0243 -0.0684 -0.0998 -0.1132 

0.1066 0.0459 -0.0471 -0.1153 -0.1153 -0.0471 0.0459 0.1066 

0.0959 -0.0234 -0.1208 -0.0693 0.0693 0.1208 0.0234 -0.0959 

0.0816 -0.0849 -0.0871 0.0822 0.0882 -0.0871 -0.0849 0.0816 

0.0641 -0.1177 0.024 0.1038 -0.1083 -0.024 0.1177 -0.0641 

0.0442 -0.1109 0.1138 -0.0478 -0.0478 0.1138 -0.1109 0.0442 

0.0225 -0.0667 0.1024 -0.1224 0.1224 -0.1024 0.0667 -0.0225 

Table 3. I c .. ACE basis functions, N=8, L=8 
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0.3536 0.3536 0.3536 0.3536 0.3536 . 0.3536 0.3536 0.35536 

0.3536 0.25 0 -0.25 -0.3536 -025 0 . 0.25 

0.3536 0 -0.3536 0 0.3536 0 -0.3536 0 

0.353.6 -0.25 0 0.25 -0.3536 025 0 -0.25 

0.3536 · ...:o.3536 0.3536 -0.3536 0.3536 -0.3536 0.3536 -0.3536 

0.3536 -025 0 0.25 -0.3536 025 0 -025 

0.3536 0 -0.3536 o. 0.3536 0 -0.3536 0 

. 0.3536 0.25 0 -025 -0.3536 -025 0 025 

Table 3.ld. Real part ofDFT basis functions, N=8 

0 0 0 0 0 0 0 0 

0 0.25 0.3536 025 0 -025 -0.3536 -025 

0 0.3536 0 -0.3536 0 0.3536 0 -0.3536 

0 0.25 -0.3536 0.25 0 -0.25 0.3536 -0.25 

0 0 0 0 ' 0 0 0 0 •. 
0 -025· -0.3536. -0.25 ' · o 025 -0.3536 0.25 

0 -0.3536 0 0.3536 0 -0.3536 0 0.3536 

0 -0.25 -0.3536 -025 0 025 0.3536 025 

Table 3.le. Imaginary part ofDFT basis functions, N=.8 

0.3536 0.3536 0.3536 0.3536 0.3536 0.3536' 0.3536 0.3536 

0.4904 0.4157 02778 0.0975 -0.0975 -02778 -0.4157 -0.4904 

0.4619 0.1913 -0.1913 -0.4619 -0.4619 -0.1913 0.1913 0.4619 

0.4175 -0.0975 -0.4904 -02778 0.2778 0.4904 0.0975 -0.4157 

0.3536 -0.3_536 -0.3536 0.3536 0.3536 -0.3536 -0.3536 0.3536 

02778 -0.4904 0.0975 0.4157 -0.4157 -0.0975 0.4904 -02778 

0.1913 -0.4619 0.4619 -0.1913 -0.1913 0.4619 -0.4619 0.1913 

0.0975 -0.2778 0.4157 -0.4904 0.4904 -0.4157 0.2778 ...c0.0975 

Table 3._lf. DCT basis functions, N=8 
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p 
DFT 
DCT 
AFE 
ACE 

N=8 N=16 N=32 
0.85 0.9 0.95 0.98 0.85 0.9 0.95 0.98 0.8 0.9 0.95 0.98 
0.831 0.883 0.94 0.975 0.782 0.839 0.911 0.962 0.772 0.816 0.886 0.948 
0.966 0.978 0.989 0.995 0.963 0.976 0.988 0.995 0.962 0.975 0.988 0.995 
0.982 0.986 0.99 0.992 0.991 0.993 0.995 0.997 0.996 0.996 0.997 0.998 
0.996 0.997 ·0.998 0.998. - 0:998 . 0.998 0.999 0.999 0.999 0.999 0.999 0.999 

Table 3.2. Decorrelation efficiency of ACE/DCT/AFE/DFT for various values of 
inter-element correlation 
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Fig. 3.8 Energy packing efficiency of ACE/DCT/AFE/DFf 
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Fig. 3.9 Variance of ACE/DCT/AFE/DFT 
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Fig. 3. lOa Sample multispectral image (Band 1) 

Fig. 3.lOb Sample multispectral image (Band 2) 
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Fig. 3. lOc Sample multispectral image (Band 3) 

Fig. 3. lOd Sample multispectral image (Band 4) 
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Fig. 3 .11 a First spectrally decorrelated image 

Fig. 3.1 lb Second spectrally decorrelated image 
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Fig. 3.1 lc Third spectrally decorrelated image 

Fig. 3.1 ld Fourth spectrally decorrelated image 
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-
1 

2 0.888 1 

3 0.912 0.927 1 

4 0.829 0.925 0.853 1 

5 0.881 0.918 0.915 0.882 1 

6 0.710 0.831 0.709 0.857 0.782 1 

7 0.838 0.885 0.884 0.780 0.819 0.679 1 

8 0.175 0.354 0.127 b.507 0.247 0.594 0.156 1 

9 0.720 0.743 0.761 0.693 0.721 0.571 0.627 0.129 1 

10 0.321 0.146 0.397 0.043 0.244 0.232 0.350 0.204 0.297 1 I 
2 ' 3 4 5 6 7 8 9 10 

-
1 

2 0.918 1 

3 0.914 0.961 1 

4 0.905 0.950 0.943 1 

5 0.895 0.932 0.927 0.933 1 

6 0.873 0.912 0.904 0.893 0.907 1 

7 0.855 0.893 0.896 0.867 0.841 0.857 1 

8 0.801 0.828 0.838 0.816 0.799 0.747 0.815 1 

9 0.739 0.778 0.775 0.768 0.740 0.727 0.663 0.692 1 

10 0.326 0.328 0.394 0.218 0.252 0.234 0.352 0.267 0.302 1 I 
2 3 4 5 6 7 8 9 10 

Table 3.3 Correlation coefficient across bands (Top table: ACE, Bottom table: DCT) 
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Fig. 3.12 Rate vs. Distortion relation of ACE/DCT/AFE/DFT 
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Fig. 3.13a Original segment of speech signal 

Fig. 3;13b Low band signal after first decomposition 
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Fig. 3. l 3c High band signal after first decomposition 
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Fig. 3.13d Low band signal after second decomposition 
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Fig. 3.13e High band signal after second decomposition 
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Fig. 3.13/Low band signal after third decomposition 
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Fig. 3.13g High band signal after third decomposition 
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. Fig. 3.13h Signal after reconstruction 
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Fig. 3.14 Original "Lena" image 

Fig. 3.15a Decomposed "Lena" image with four levels 
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Fig. 3.15b Reconstructed "Lena" image 
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Fig. 3.16a Original "Shipyard" image 

Fig. 3.16b Decomposed "Shipyard" image with four levels 
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Fig. 3.16c Reconstructed "Shipyard" image 
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4. COMPRESSION OF SIGNALS USING THE APPROXIMATE 

TRIGONOMETRIC EXPANSIONS 

4.1 Background 

Signal compression is achieved in two stages. The first is the basic representation level, 

where the energy is compacted in the fewest number of coefficients, and the second is the 

coding of these coefficients. The first three chapters of this research dealt with the first stage 

of signal compression i.e., discussion and analysis of the existing signal representation 

techniques as well as proposed method using the approximate trigonometric expansions. 

The second stage involves the coding of the resulting coefficients using an appropriate 

coding scheme. The main goal in this part of the research is explore the capability of the 

trigonometric expans.ions for coding of multidimensional signals. 

With a good coding scheme degradations are subtle, and their perception and impact 

changes from observer to observer, being dependent upon a host of individual and envi

ronmental parameters probably impossible to characterize consistently. The old arguments 

about the drawbacks of a mean square error (m.s.e) measure and its vague relationship with 

perceived picture quality are still valid, of course, and their are enough reports in the literature 

to correlate these two quantities in a positive direction to confirm this. The other measure 

used is signal-to-noise-ratio (SNR). A decade ago there was no consistency in the literature 

regarding an appropriate form of SNR to use for this purposec291
: the following three are 

possibilitiesc321
: 
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a; 
10log10 1 

dB 
- I (x -x)2 
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where there are N2 elements in the image, x and .i are arbitrary original and reconstructed 

signal elements, respectively, and cr2 is the variance of the input image. The equation ( 4 .1) 

relates the m.s.e to the image variance, the equation ( 4.2) relates it to image mean square 

energy, and equation (4.3) also called Peak SNR or PSNR relates it to maximum image 

energy (x=255 for an 8 bit image). With the move to an increased degree of interest in video 

coding, the equation ( 4.3) has become more common although the other two are occasionally 

used. In this research we will compare reconstructed signals and images using equations 

(4.2) and (4.3). 

Historically, there have been two ways in which selection of coefficients for further 

processing can be carried out. The first, zonal coding, involves the setting up of a number 

of zones of predet~rmined bit allocation, according to some coefficient energy versus error 

relation. The results obtained are, however, variable. But the drawback of this technique is 

that it takes no account of local variability of coefficient magnitudes because some of the 

coefficient blocks may correspond to signal blocks containing very active spatial activity. 

The alternative technique, threshold coding, establishes set of thresholds and coefficients 

larger than a predetermined level(s) are saved and processed further, those smaller being 
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deleted. Since larger coefficients are expected to contribute proportionally more to signal 

activity, this technique seems to be logical. But it has its disadvantage i.e., the decoder needs 

the addresses of the coefficients retained befor~ their transmission or storage. However, this 

is the method which has been chosen for the still picture coding standard. In this research, 

we will also employ threshold coding to transformed signals and images. 

4.2 Simulation-I 

In chapter 3, we explored the capability of the approximate Fourier expansion (AFE) 

for signal decomposition of the signals. In this section, we will apply an approximate cosine 

expansion (ACE) to decomposed speech signals for the purpose of compression. For the 

purpose of comparison, the discrete cosine transform (DCT) will also be applied to 

decomposed signals. 

We used three speech signals each sampled at 22kHz, with 8 bits per sample and PCM 
. . 

(pulse code modulation) format. The speech signals are: 

1. "Original". 

2. "This is the end of the demonstration". 

3. "In the five demonstrations that follow, the original signals where first processed with 

the window size of 11, then reprocessed with the window size of 25 and finally processed 

again with the window size of 37". 

In the simulation, (N=256) samples were considered for block processsing. Each of 

these blocks of speech signals is decomposed into 3 decomposition levels using an 
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approximate Fourier expansion (AFE) with L=2. The number of decomposition levels 

chosen was arbitrary. The method applied for decomposition is similar as described in section 

3.5. In this method, the low frequencies have a smaller frequency band as compared to the 

higher frequencies. This is specially useful for certain classes of signals e.g., voiced speech 

signals where the energy is concentrated at lower frequencies. It may be noted that band 

ranges for optimal compression are bound to vary according to signal statistics. Furthermore, 

the decomposed signals were subjected to following actions: 

1. Band 3 ( 128 samples) contains very little energy, and therefore was set to zero. 

2. Band 2 (64 samples) was represented by an ACE as well as DCT. 

3. Band 1 (64 samples) was also represented by ACE as well as by DCT. 

Before reconstructing the original block of the signal, the bands 1 and 2 were subjected to 

threshold coding depending upon the subjective and objective quality of the reconstructed 

signal. The different thresholds, each for DCT and ACE coefficients, were used to retain 

equal number of coefficients for comparison purposes. The following actions were taken 

on coefficients of all of the blocks of three speech signals: 

1. Band 2: 96% coefficients were set to zero. 

2. Band 1: 4% coefficients. 

This way, we achieve a coefficient reduction ratio (CRR) of 4 to 1. The rest of the coefficients 

were inverse transformed to yield back both subbands which were then combined using 
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synthesis operation as described in section 3 .5. In order to test the reconstructed signals 

using objective fidelity criterion, mean signal-to-noise-ratio (SNRms) and peak signal-to

noise-ratio (PSNR) were computed of each block and averaged across all of the signal blocks 

in each speech signal. The results are as follows: 

PSNR SNRais 

1. Signal-1: 

ACE: 27.2 dB 25.9 dB 

DCT: 25.9 dB 24.5 dB 

2. Signal-2: 

ACE: 34.3 dB 33.4 dB 

DCT: 33.1 dB 32.3 dB 

3. Signal-3: 

ACE: 30.9 dB 29.8 dB 

DCT: 29.7 dB 28.5 dB 

It is obvious that subband signals represented using an approximate cosine expansion (ACE) 

has higher SNR as compared to subbands represented by DCT in a constrained environment. 

Although, subband method employed uses filters of an ideal response i.e., they do not die 

out quickly from their central location, filters or wavelets of shorter length can be used for 

decomposing the signal into its subbands. The purpose here was to test that in a constrained 

environment, the ACE together with AFB can be used for representation of 1-D signals. 

Subband representation using ACE can be compared also with DCT representation 
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when signals are decomposed using filters of shorter length like Daubechies 4 (db4). The 

filter coefficients for "db4" are plotted in Fig. 4.1. In order to demonstrate the approach, we 

use the same procedure as followed for signal decomposition using an approximate Fourier 

expansion with L=2, and the results based on objective fidelity criterion (like PSNR and 

SNRms) of reconstructed signals are as follows: 

PSNR SN~s 

1. Signal-I: 

ACE: 30.5 dB 30 dB 

DCT: 29 dB 28.6 dB 

2. Signal-2: 

ACE: 30.9 dB 30.5 dB 

DCT: 29.6 dB 28.4 dB 

3. Signal-3: 

ACE: 30.4 dB 30.1 dB 

DCT: 29 dB 28.8 dB 

The improvement in signal-to-noise-ratio, in this case, can be attributed due to the fact that 

Daubechies wavelets use filters which die out quickly from their central location where as 

the approximate Fourier expansion (AFE) with L=2 uses filters which are (theoretically) of 

infinite length. The details of Daubechies wavelets of order N can be found in references 

[33]-[35]. 
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4.3 Simulations-II 

In previous section, we applied the approximate trigonometric expansions to speech 

signals_forthe purpose of compression. In this section, we explore the compression of images 

using the approximate trigonometric expansion. Based on local signal statistics, the user

defi~ned parameter L can be varied for the purpose of decomposition of the image in question. 

The d~composed sub-images can further be represented by the approximate trigonometric 

expansions for the purpose of coding. For comparison purposes, the block discrete cosine 

transform will also be applied to images. Performance of the reconstructed images will be 

evaluated by signal-to-noise-ratio. 

We used two images "Lena" and 'Shipyard" each of size 256x256 with 8 b_its of res

olution. Before decomposition of the test-images using ideal bandpass filters, we tested the 

approximate trigonometric expansions on the test-images and compared it with the discrete 

cosine transform. Three different thresholds, each for DCT, AFE and ACE coefficients, 

were used to retain equal number of coefficients. The number of coefficients retained was 

10% of the total NxN coefficients for all of the three cases. Results are shown in Fig. 4.2 

through 4.4. Poor SNRms in Fig. 4.2a and Fig. 4.2b accounts mainly for windowing effect 

present in the reconstructed images. Furthermore, AFB has one more disadvantage: its 

coefficients are complex, which requires proc~ssing of real as well as imaginary coefficients. 

It is clear from Fig. 4.2, Fig. 4.3 and Fig. 4.4 that ACE has better performance than DCT 

and AFB. This verifies our results in sections 2.5,2.6 and 3.4. It should, however, be noted 

that further · compression can be achieved by proper coding of the quantized coefficients 

such as Huffman and Runlength coding. 

Previous transformation did not involve block processing of the test-images, and 

100 



therefore did not take the local signal characteristics into account. The second disadvantage 

is that the possible -range of coefficient magnitude increases with transform orderr291
, and 

so, for a 256x256 transform, it is very large. The alternative approach, and more usual as 

suggessted in JPEG standard, is to use block transform. First the images are divided into 

subimages of typical size 16x 16. These subimages are subjected to the approximate cosine 

expansion (ACE). For comparison, the discrete cosine transform (DCT) is also applied to 

these subimages. Depending upon the coefficient reduction ratio (CRR), the retained 

coefficients were multiplied with quantization matrix and then rounded. The number of 

coefficients retained was 10% of the total coefficient~._ For reconstruction, the rounded 

coefficients· in. each block were inverse transformed using inverse discrete cosine transform 

(IDCT) and synthesis equation as given in equation (2.32) to yield back the approximated 

original images. The signal-to-noise-ratio of reconstructed images was computed and the 

results are shown in Fig. 4.5 and Fig. 4.6. It is obvious from these Figures that the signal

to-noise-ratio of images coded using approximate cosine expansion (ACE) is higher than 

the images coded using the discrete cosine transform (DCT). 

The block processing and coding of images, implemented as above, can further be 

improvised in two ways. First the test-images can be.decomposed based on signal statistics, 

using ideal bandpass filters as discussed in chapter 3. Second the decomposed images can 

be represented by the approximate cosine expansion (ACE), and then a set of the coefficients 

can be retained and quantized in each transformed block according to signal statistics. We 

applied the procedure similar to as described in section 3 .5. We decomposed each test-image 

into three levels. Each decomposition creates four subimages namely aOO, aOl, a02, a03. 

The decomposed images were subjected to following actions: 
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1. The subimages a01, a02, a03 of the first decomposition level were set to zero. 

2. The subimages a03 of the second decomposition level w·as set to zero. 

3. The subimages a02, a01 of the second decomp~sition level were transformed using the 

approximate cosine expansion with L equal to the size of the subimages. The number of 

coefficients retained was 30% of total 64x64 coefficients in each subimages. 

4. The subimages aO 1, a02 and a03 of third decomposition were transformed using the 

approximate cosine expansion with L equal to the size of the subimages. The number of 

retained coefficients was 97% of the total 32x32 coefficients in each subimage. 

The total number of.coefficients/samples retained came out to be 10% of the total 256x256 

samples in the image. For reconstruction, the .process applied is inverse to that applied during 

decomposition and transformation of the subimages. The signal-to-noise-ratio of the 

reconstructed image was computed and the result is shown in Fig. 4.6. It is clear from Fig. 

4.2 through Fig. 4.6 that the performance of ACE is better than DCT for the purpose of 

coding. Furthermore, the compression achieved due to ACE will be higher than due to DCT 

because the energy compaction of ACE is better than DCT as verified in section 3.4. 
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4.4 Simulations-III 

In section 3 .4, we discussed the removal of inherent spectral correlation in multispectral 

imagery using the spectral decorrelation transform techniques. We demonstrated also using 

an experiment that techniques employing the approximate trigonometric expansions for 

removing spectral correlation from multispectral imagery provides better results as com

pared to methods employing discrete cosine transform. In this section, we apply the 

approximate cosine expansion, (ACE) to a ·multispectral imagery set for spectral 

decorrelation. Furthermore, the decorrelated image planes will be decomposed and repre

sented by the approximated trigonometric expansions. For comparison purposes, the discrete 

cosine transform (DCT) will also be applied to the multispectral imagery set. 

The multispectral imagery 'set under test consists of 10 bands each of spatial size 

256x256 and 8 bits of resolution. Some ·sample images of the multispectral image set are 

shown in Fig. 3.10. The method applied for spectral decorrelation of the multispectral 

imagery is same as implemented in section 3.4. A 1-D vector from spectral correlated 

components from identical locations in each band is formed and an approximate cosine 

expansion applied on it. The resulting 1-D output vectors are placed adjacent to one another, 

in the same order as the input vectors, to form the stack of the spectrally decorrelated image 

planes. Fig. 3.11 shows first four spectrally decorrelated image planes associated with ten 

band multispectral test image set. For comparison purposes, discrete cosine transform was 

also applied on multispectral image set and decorrelated image planes were constructed. 

Since spectrally decorrelated bands are in floating point real numbers they must be quantized, 

to be subsequently coded by an image coding algorithm. For an 8-bit multispectral imagery, 

all decorrelated image planes can be linearly quantized into 8-bit images[381
• Although JPEG 
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based coding scheme could be used to code these decorrelated images, but the scheme would 

require modification of its parameters to suit the specific characteristics of the image sd381
. 

In chapter 3, we discussed capability of the approximate Fourier expansion to decompose 

signals using ideal bandpass filters~ Now, we apply this decomposition to decorrelated image 

set using algorithm similar to Mallat's discrete wavelet transform discussed in [26], and 

implemented in section 3 .5. 

Since image plane 1 contains most of the energy, it can be linearly quantized to 12 

bitsr381 • After linearly quantizing all of the remaining decorrelated image planes into 8 bits, 

we applied the approximate Fourier expansion (AFE) for the purpose of decomposition of 

the decorrelated images. The decorrelated image planes were decomposed into 3 levels. In 

all, following actions were taken on the decorrelated and decomposed image planes: 

1. Image planes 8,9 and 10 were set to zero. 

2. Image plane 4, 5, 6 and 7 were subjected to following actions: 

I. The sub images aO 1, a02, and a03 of the first and the second decomposition level 

were set to zero. 

ii. The subimage a03 of the third decomposition level was set to zero. 

iii. The subimage plane aOO, of size 32x32, was transformed using the approximate 

cosine expansion (ACE) with L equal to the size of the subimage. The number of 

retained coefficients, by threshold coding, was 730 of the total 32x32 coefficients. 

vi. The subimages aO 1 and a02 of the third decomposition level were transformed 
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using the approximate cosine expansion with L equal to the size of the subimage. 

The number of retained coefficients in each subirnage plane was 128 of the total 

32x32 coefficients in that subimage. 

3. Image plane 2 and 3 were subjected to following actions: 

i. The subimages aO 1, a02, and a03 of the first and the second decomposition level 

were set to zero. 

ii. The subimages aO 1 and a02 of the third decomposition level were transformed 

using the approximate cosine expansion with L equal to the size of the subimage. 

The number of retained coefficients in each subimage plane was 256 of the total 

32x32 coefficients in that subimage plane. 

iii. The subimage plane a03, of size 32x32, was transformed using the approximate 

cosine expansion (ACE) with L equal to size of subimage. The number of retained 

coefficients, by threshold coding, was 129 of total 32x32 coefficients. 

The total number of coefficients/samples retained in all of the decomposed image planes 

came out to be 72819 of the total 256x256x 10 samples in multi spectral image set. Hence 

the total ·coefficient/sample reduction ratio (CRR) for ten band multispectral imagery came 

out to be: 

_ {. } Number of samples in image set _ {. } 256x256xl 0 _ 
C.R.R - mt b f f. . I l . . . - mt - 9 Num er o coe 1c1ents samp es retained m image set 72810 

(4.4) 
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For reconstruction of the multispectral imagery, the process applied is inverse to that applied 

during decorrelation of multispectral image set, decomposition of each image plane and 

transformation of the subimages. The signal-to-noise-ratio of each reconstructe.d image in 

multispectral image set was computed and the result for first four bands is shown in Fig. 

4.7. For comparison purposes, the block discrete cosine transform was applied on the image 

planes decorrelated by the discrete cosine transform. Following actions were taken on the 

image planes: 

1. Image planes 8,9 and 10 were set to zero. 

2. Image plane 4, 5, 6 and 7 were subjected to the following actions: 

1. The block discrete cosine transform was applied with block size of 16x16. 

ii. The number of retained coefficients was 385 of total 256x256 coefficients in each 

image plane. 

3. Image plane 2 and 3 were subjected to the following actions: 

i. The block discrete cosine transform was applied with block size of 16x 16. 

ii. The number of retained coefficients was 858 of total 256x256 coefficients in each 

image plane. 

The total number of coefficients/samples retained in all of the decomposed image planes 
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came out to be 72819 of the total 256x256x I 0 samples in multispectral image set. Hence 

the total coefficient/sample reduction ratio (CRR) for ten band multispectral imagery came 

out to be 9. The method applied for reconstruction of the multispectral image set was similar 

as implemented in case of the approximate cosine expansion. The result for first four bands 

is shown in Fig. 4.8. It is clear from Fig. 4.7 and Fig. 4.8 that for multispectral image coding 

application, the approximate cosine expansion (ACE) yields higher signal-to-noise-ratio 

than discrete cosine transform (DCT). 
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Fig. 4.1 Coefficients of some of the Daubechies filters 
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Fig. 4.2a Reconstructed "Lena" image using AFE, SN~5=l4dB 

Fig. 4.2b Reconstructed "Shipyard" image using AFE, SNRms=l3.2dB 

109 



Fig. 4.3a Reconstructed "Lena" image using DCT, SNR.ns=32dB 

Fig. 4.3b Reconstructed "Shipyard" image using DCT, SNRms=30.2dB 
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Fig. 4.4a Reconstructed "Lena" image using ACE, SNRns=34dB 

Fig. 4.4b Reconstructed "Shipyard" image using ACE, SNRms=32.6dB 
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Fig. 4.5a Reconstructed "Lena" image using block DCT, SN~s=3l.4dB 

Fig. 4.5b Reconstructed "Shipyard" image using block DCT, SNRms=30dB 

112 



Fig. 4.6a Reconstructed "Lena" image using block ACE, SN~s=33dB 

Fig. 4.6b Reconstructed "Shipyard" image using block ACE, SNRms=31.8dB 
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Fig. 4.7a Reconstructed "Lena" image using AFE/ACE, SN~s=35.6dB 

Fig. 4.7b Reconstructed "Shipyard" image using AFE/ACE, SNRms=34.2dB 
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Fig. 4.8a Reconstructed band 1 using ACE, SN~s=34.5dB 

Fig. 4.8b Reconstructed band 2 using ACE, SNRms=35dB 
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Fig. 4.8c Reconstructed band 3 using ACE, SN~s=34.7dB 

Fig. 4.8d Reconstructed band 4 using ACE, SNRms=35.2dB 
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Fig. 4.9a Reconstructed band 1 using DCT, SN~s=34.2dB 

Fig. 4.9b Reconstructed band 2 using DCT, SNRms=33.2dB 
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Fig. 4.9c Reconstructed band 3 using DCT, SN~s=32.9dB 

Fig. 4.9d Reconstructed band 4 using DCT, SNRms=33.3dB 
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5 . CONCLUSIONS 

In this section, we summarize the contributions from this work, and propose some sug

gestions for the future research. 

5 .1 Summary of Contributions 

The research reported in this thesis focused on the development and testing of a coding 

algorithm along with its comparative evaluation to existing conventional techniques 

employing discrete cosine transform (DCT) for the purpose of coding. The proposed 

technique provides an additional flexibility of signal decomposition in addition to its ability 

of signal representation in a constrained environment. Extensive simulations confirmed the 

improvement offered by the proposed technique over conventional techniques employing 

a single transform. In summary, following contributions were made: 

1. In section 2.2, a discrete approximate Fourier expansion (AFE) for one dimensional, and 

non-periodic signals was proposed. Furthermore, some of the important properties of the 

discrete approximate Fourier expansion were derived, and it was shown that the discrete 

approximate Fourier expansion (AFE) yields relatively uncorrelated coefficients. In 

section 2.4, the mean square error between original and reconstructed signal (due to AFE) 

was computed. It was shown that mean square error of the reconstructed signal can be 

decreased if number of coefficients computed is larger than the length of the signal. This 

work is reported in [18-19]. 

2. In section 2.5, an approximate cosine expansion (ACE) was developed. It was shown 
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that for the same number of coefficients computed, the approximate cosine expansion 

(ACE) introduces less reconstruction error than the discrete approximate Fourier 

expansion (AFE) with the advantage that the coefficients are real. In section 3.4, the 

efficiency of the approximate trigonometric expansions was determined using the first 

order Markov process and it was shown that the spatial decorrelation, energy compaction 

and variance of coefficients of the approximate trigonometric expansions is better than 

the discrete cosine transform. This work has been reported in [ 19 ,21]. 

3. In section 3.3, the signal decomposition using the approximate Fourier expansion (AFE) 

was explored and it was shown that the filters other than the ideal bandpass characteristics 

can be used for signal decomposition. It was demonstrated that uniform or non-uniform 

signal decomposition can be achieved using the user-defined parameter of the approxi

mate Fourier expansion (AFE). Performance in terms of signal decomposition and 

representation (in a constrained environment) was evaluated using speech signals in 

section 4.2 and images in section 4.4, and it was shown that the performance of the 

approximate trigonometric expansion is superior to that of the discrete cosine transform 

(DCT). This work is reported in [20,27]. 

4. In section 4.3, the approximate trigonometric expansions were applied to images for the 

purpose of coding. Based on local statistics of the image, the user-defined parameter L 

of the approximate Fourier expansion (AFE) can be varied for the purpose of signal 

decomposition and representation of the image blocks. It was shown using testing of 

various images that the images coded using the approximate trigonometric expansions 

yield higher signal-to-noise.:.ratio than the images coded using the discrete cosine 

transform (DCT). Furthermore, the compression achieved using the approximate trigo-
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nometric expansions would be higher than using the discrete cosine transform (DCT) 

since the transformation efficiency of the approximate trigonometric expansion is 

superior to that of the discrete cosine transform for the first order Markov process. This 

work is reported in [ 19 ,21,]. 

5. In section 3.4, we applied an approximate cosine expansion (ACE) to the multispectral 

imagery for removing the spectral correlation from the multispectral image set. It was 

demonstrated that the spectral decorrelation efficiency as well as energy compaction of 

the approximate cosine expansion (ACE) is better than that of the discrete cosine 

transform (DCT). In section 4.4, we applied the appioximate trigonometric expansions 

to the multispectral imagery for the purpose of coding, and it was shown that the 

signal-to-noise-ratio of the reconstructed multispectral image set was higher than that of 

the reconstructed multispectral image set tested using discrete cosine transform (DCT). 

This work has been reported in [39]. 

Apart from the research reported in this dissertation, considerable research has been done 

regarding impulsive suppression from images and direct-sequence spread-spectrum systems 

using rank order filters. This work is reported in [40-42]. 

5 .2 Suggestions for Future Research 

The scope of future research using multiresolution decomposition and representation 

techniques is very large. Future research using the approximate trigonometric expansions 

will focus on development of practical coding systems using the capabilities offered by the 

expansions. Specific research tasks using these expansions are as follows: 
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1. This thesis research explored the capability of the approximate trigonometric expansions 

for signal representation and coding using ideal bandpass filters. Different filters such as 

Gaussian or Daubechies filters can be used instead of ideal band pass filters to overcome 

the inherent limitations of the ideal bandpass filters. 

2. In order to remove the windowing effect from the reconstructed signal, a post recon

struction strategy can be explored using adaptive signal processing techniques. 

3. There is a great temptation to use a correlation reducing procedure in the temporal direction 

in addition to the spatial plane to increase the overall efficiency of the coding process. 

Therefore, a logical step is to extend the operation to a further, mutually perpendicular, 

direction, and to carry out three-dimensional transform coding employing the approximate 

trigonometric expansions. A strategy can be devised to explore the possibility of using 

the approximate trigonometric expansions in interframe coding of images. 

4. The proposed technique can be applied to new applications such as color image repre

sentation and coding. 

5. The future research can be directed to mixed approximate trigonometric expan

sion/transform of the signals using different filters. 

6. The biorthogonal wavelet transforms have widely been us 

ed for signal decomposition and synthesis due to their symmetry properties. The bi orthogonal 
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wavelet transform allows the use of symmetric (even or odd) wavelets having compact 

support. Either wavelet can be used for the decomposition, provided that the other one is 

used for the reconstruction. The different filters leading to wavelets which are duals of each 

other, can be researched leading to biorthogonal approximate trigonometric expansion of 

the signal. 

7. Considerable research can be done in extending the approximate Fourier expansion (AFE) 

to higher order spectral analysis. 
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