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ABSTRACT

Novel two dimensional nanoscale materials like graphene and metal dichalcogenides (MX2) have

attracted the attention of the scientific community, due to their rich physics and wide range of po-

tential applications.

It has been shown that novel graphene based transparent conductors and radiofrequency transistors

are competitive with the existing technologies. Graphene’s properties are influenced sensitively by

adsorbates and substrates. As such not surprisingly, physical properties of graphene are found to

have a large variability, which cannot be controlled at the synthesis level, reducing the utility of

graphene. As a part of my doctorate dissertation, I have developed atomic hydrogen as a novel tech-

nique to count the scatterers responsible for limiting the carrier mobility of graphene field effect

transistors on silicon oxide (SiO2) and identified that charged impurities to be the most dominant

scatterer. This result enables systematic reduction of the detrimental variability in device perfor-

mance of graphene. Such sensitivity to substrates also gives an opportunity for engineering device

properties of graphene using substrate interaction and atomic scale vacancies. Stacking graphene

on hexagonal boron-nitride (h-BN) gives rise to nanoscale periodic potential, which influences its

electronic graphene. Using state-of-the-art atomic-resolution scanning probe microscope, I cor-

related the observed transport properties to the substrate induced extrinsic potentials. Finally in

efforts to exploit graphene’s sensitivity to discover new sensor technologies, I have explored non-

covalent functionalization of graphene using peptides.

Molybdenum disulfide (MoS2) exhibits thickness dependent bandgap. Transistors fabricated from

single layer MoS2 have shown a high on/off ratio. It is expected that ad-atom engineering can

be used to induce on demand a metal-semiconductor transition in MoS2. In this direction, I have
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explored controlled/reversible fluorination and hydrogenation of monolayer MoS2 to potentially

derive a full range of integrated circuit technology. The in-depth characterization of the samples is

carried out by Raman/photoluminescence spectroscopy and scanning tunneling microscopy.
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(b) Optical image of Bernal-stacked bilayer graphene device on h-BN (area

highlighted by red dots) and SiO2 (area highlighted by yellow dots). . . . . . 83

Figure 5.4: Left figure shows a non-contact AFM image of multi-terminal Hall bar de-

vice of bilayer graphene on h-BN. Right shows high resolution image in a
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Figure 7.1: (a) Infrared spectrum of GBP in powder form, showing both amide I and amide II
bands. (b) Infrared spectrum of GBP in D2O, showing the amide I band. Red and blue curves
are obtained by fitting two Lorentzian functions to the experimental data. The peaks are located at
1673 and 1648 cm−1. The green curve is the result of sum of these functions.

Figure 7.2: AFM topographic image of graphene (a) before and (b) after incubation with the
peptide. (c) Topographic AFM image of HOPG incubated with the peptide.

Silicon oxide surface appears unaffected by incubation, indicating that the adsorption only oc-

curs specifically on graphene. The height difference to the substrate, measured by using height

histograms, increases from 0.46± 0.33 to 1.45± 0.54 nm upon incubation, suggesting that the ad-

sorbed layer is 0.99 ± 0.63 nm thick. This thickness is similar to that observed when a dodecamer

peptide was adsorbed onto carbon nanotubes.[134] Graphene and graphite possess same surface
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chemical structures, and the interactions of these surfaces with peptides are expected to be similar.

The AFM image of HOPG incubated with the GBP is shown in Figure 7.2(c). A similar meshlike

layer appears on the HOPG surface upon incubation. Furthermore, the thickness of the adsorbed

layer on HOPG is measured to be 1.10 ± 0.45 nm,[144] indistinguishable from the thickness of

the peptide layer on graphene. As such, these AFM images show that the identical adsorbed layer

is formed on graphene and HOPG, as expected. The adsorbed layer on HOPG is used to obtain

enhanced optical spectra below.

Figure 7.3(a) compares Raman spectra of graphene before and after incubation with the peptide.

Bare graphene exhibits a strong Raman signal around 1580 cm−1 due to its G band.[139] Incuba-

tion with the peptide produces increased signals at both 1700- 1600 and 1570- 1520 cm−1 regions,

consistent with the amide I and amide II modes of the peptide. The peak near 1350 cm−1, cor-

responding to the D-band, does not increase in intensity as shown in Figure 7.3(b). The ID/IG

ratio is proportional to the defect density, [88] and as such, the spectra show that absorption of the

peptide does not damage the graphene lattice, consistent with the expected noncovalent interaction

between graphene and the peptide.

ATR-FTIR spectroscopy was used to increase the signal-to noise ratio to further analyze the nature

of the adsorbed layer. Spectra display absorption bands peaking near 1670 and 1550-1540 cm−1

for the adsorbed peptide layer, as shown in Figure 7.4. The peak at 1580 cm−1 is due to the G band

in graphite.[139] The spectral locations of 1670 and 1550-1540 cm−1 bands due to the adsorbed

layer are consistent with the amide I and II bands and represent the first spectroscopic evidence

that the adsorbed layer is indeed the GBP. The enhanced signal also reveals more details of the

nature of the adsorbed peptide. The amide I band is blue-shifted to around 1670 cm−1 , compared

to 1660-1650 cm−1 for the peptide in the powder form shown in Figure 7.1(a). Normally, the α

-helical amide I mode of peptides in aqueous media is around 1655-1650 cm−1.[140],[145],[146].
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Figure 7.3: Raman spectroscopy of graphene before and after incubation with the peptide (a)
between 1750 and 1525 cm−1 and (b) 3200 and 1100 cm−1. Intensities are normalized with respect
to the intensity of the G band.

Figure 7.4: ATR-FTIR spectra of HOPG before and after incubation with the peptide.
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The amide I band of the 310-helical structure is typically at 1665 cm−1,[141],[147] and the ad-

sorbed layer may be conformed to a 310 -helix structure. In addition, since the main contribution

to the amide I mode comes from the peptide backbone C=O stretching vibration, higher amide

I wavenumber (frequency) may also indicate stronger C=O bonds, which corresponds to weaker

intra- or intermolecular hydrogen bonding. Blue-shifted amide I bands observed for αII -helical

structures in proteins and model polypeptides have also been attributed to weakened helical hydro-

gen bonding.[148],[149],[150],[151],[152] Therefore, the increased amide I wavenumber of the

adsorbed peptide indicates that the peptide- graphite/graphene interaction induces the GBP to con-

form to a 310- or αII -helix structure.

To understand the observed structural changes of the GBP at the atomic level, we utilized the MD

simulation approach using the AMBER ff 99SB force field.[153] The five most probable initial

structures of the GBP were predicted using I-TASSER software.[154](32) Five structures were

first refined by performing MD simulations in vacuum. After 200 ns simulations, the radius of gy-

ration of structures converged. The conformation of the native GBP at the lowest potential energy

exhibits a highly ordered α -helix structure by forming i + 4→ i hydrogen bonding betweenH4-

H8 and L5- M9 pairs as shown in Figure 7.5(a). This predicted helical structure is in agreement

with our FTIR data on the GBP powder. Placing the peptide in the center of a water box with 1.2

nm TIP3P water layer in each direction, five independent molecular dynamics simulations were

performed for 90 ns (40 and 50 ns in ntv and npt configuration, respectively) using various initial

velocity. In contrast to the ordered helical structure in powder form, strong hydrophilicity of the

histidine residues destabilizes the α -helical structure and transforms the GBP to a distorted α -

helical structure as shown in Figure 7.5(b). The distorted GBP resembles 310 -helix by forming i +

3→ i hydrogen bonding between H4-W7 and L5- H8 pairs as shown. Such transformation in the

aqueous environment is consistent with our FTIR spectra.
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Figure 7.5: Molecular dynamics based structure of GAM peptide (a) in vacuum, (b) in water, and
(c) on a 5 nm × 5 nm graphene sheet. For clarity, only part of the graphene sheet is displayed.

When molecular dynamics simulations were performed on five different systems consisting of the

peptide and 5 Å ∼ 5 nm graphene sheet terminated with hydrogen at its edges as described previ-

ously, [136] the results converged after 40 ns and the GBP was observed to conform to graphene

surface as shown in Figure 7.5(c) with an interaction energy of -106 ± 5 kcal/mol. The indole and

imidazole side chains of tryptophan and histidine residues appear to parallel to the graphene sheet,

distorting the helical structure and weakening the hydrogen bonding. Such calculated behavior

is also consistent with our ATR-FTIR measurement of the adsorbed GBP on HOPG. Finally, to

elucidate the binding mechanism, the representative structure as shown in Figure 7.5(c) was mu-

tated and minimized. Tryptophan, histidine-4, or histidine-8 was substituted with alanine. The

minimized interaction energies for the wild peptide, tryptophan to alanine, histidine-4 to alanine,

and histidine-8 to alanine are - 126 ± 0.2, - 112 ± 0.2, - 115 ± 0.4, and - 123 ± 0.1 kcal/mol,

respectively. These interaction energies imply that tryptophan is needed for efficient binding to

graphene.

In conclusion, our vibrational spectroscopy and atomic force microscopy data show that the GBP,

identified earlier using phage display,[135] binds noncovalently to graphene and HOPG. Direct
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transmission FTIR spectra indicate that the peptide forms secondary structures both in powder

form and in an aqueous medium. The dominant structure in the powder form is α -helix, which

undergoes a transition to a distorted helical structure in aqueous solution. AFM images indicate

that identical adsorbed layers are formed upon incubation on graphene and HOPG. Raman spectra

show that incubation does not cause any chemical perturbation to graphene, implying that the pep-

tide functionalizes graphene noncovalently as expected. The ATR-FTIR spectra of the adsorbed

layer on HOPG indicate that the GBP is in a helical conformation, which is different from α -helix,

due to its interaction with the surface. Our result thus provides new insights into how the peptide

interacts with the graphene surface and serves as an important experimental confirmation of MD

simulations, which are essential in designing peptide- graphene sensors with high sensitivity and

selectivity. Finally, the result also shows that our approach can be useful for further studies of a

wide variety of graphene-binding peptides.

7.2 Functionalizing molybdenum disulfide (MoS2) with peptide

In last section I have demonstrated functionalization of graphene with peptide for production of

highly selective and sensitive sensors. However the absence of intrinsic band gap and poor on-off

ratio (∼10-100), hinders the realization of graphene based sensors for practical applications. This

has accelerated efforts to either open band gap in graphene [155],[156] or explore other 2D mate-

rial like metal dichalcogenides, MX2 like MoS2, WS2, etc. [157],[158]

Single layer molybdenum disulfide-based FETs have been reported to have mobility of 200 cm2

/ Vsec and on/off ratio of 108 [37] with a band gap of 1.8eV.[157] This makes it more appealing

for electronics applications as compared to graphene. Like graphene, MoS2 is also intrinsically

sensitive to its environment and must be chemically-functionalized to impart it with the analyte

selectivity required for all sensors. Peptides, which possess specific affinity to the desired analyte,
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are one of the more promising candidates for functionalizing MoS2. Hence here I have investigated

peptide binding on MoS2 using Raman spectroscopy, photoluminescence spectroscopy and atomic

force microscopy at room temperature.

Single layer MoS2 samples used in this study were obtained from the mechanical exfoliation

of bulk MoS2, purchased from SPI Supplies. The typical size of the exfoliated samples was 5

µm× 3µm. We have also used large area monolayer MoS2 on sapphire prepared by dip coating

method, where substrate is dipped in a solution containing Mo solution and then subjected to sul-

furization [159]. For peptide incubation, we choose the dodecamer peptide, GAMHLPWHMGTL

to study its binding on MoS2. Peptide solution in deionized water was prepared at concentration

of 200 µg/mL. MoS2 samples were immersed in peptide solution for 10 mins, then washed with

deionized water and gently blown dry with N2 gas. The Raman and photoluminescence data was

collected using Renishaw Raman spectrometer with 532 nm laser (spot size diameter ∼ 1µm) at

power density 0.032 mW/ µm2.

Figure 7.6 (a), (b) shows the atomic force microscopy topographic image of exfoliated single layer

MoS2 on SiO2 before and after incubation with peptide. Clearly after peptide incubation, the MoS2

surface is covered by meshlike layer, whereas the MoS2 remains unchanged. The thickness of this

layer is about 1.10± 0.25 nm, consistent with observed thickness and structure of peptide adsorbed

on the graphene/ graphite surface. The surface chemistry of bulk MoS2 and single layer MoS2 is

same so as expected similar meshlike layer was obtained upon peptide incubation on bulk MoS2.

The topographic atomic force microscopy image of peptide on bulk MoS2 is shown in Figure

7.6(c). Additionally, we also incubated deionized water on the MoS2. Atomic force microscopy

topographic images at different spots did not show any meshlike layer. This clearly points out that

like graphene, peptide is preferentially binding to MoS2 surface.
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Figure 7.6: AFM topographic image of single layer MoS2. (a) before and (b) after incubation with
peptide. (c) AFM topographic image of bulk MoS2 after incubation with peptide.

Figure 7.7: The photoluminescence signal for single layer MoS2 with and without peptide. The
data was acquired at exposure time 10sec and 4 accumulations.

Figure 7.7 compares the photoluminescence signal (PL) of single layer MoS2 before and after

peptide incubation. The single layer MoS2 has a PL peak at 1.86 eV arising from exciton peak,

which corresponds to direct band gap transition at K point in the Brillouin zone. Peptide adsorption

on MoS2 leads to about 80 % quenching of the PL intensity. The Raman data acquired after peptide

incubation on bulk and exfoliated MoS2 does not show any amide I and amide II peak at 700-1600

and 1570-1520 cm−1 regions corresponding to peptide as shown in Figure 7.8.
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Figure 7.8: Raman spectroscopy of MoS2 before and after incubation with the peptide between
18000 and 1500 cm−1.

Since the Fourier transform infrared (FTIR) Spectroscopy is complementary to Raman spectroscopy,

so we carried out FTIR measurements on bulk MoS2 and dip coated monolayer MoS2 before and

after peptide incubation. Strangely again no amide peak was obtained for adsorbed peptide layer.

Although AFM topographic images clearly indicates peptide binding to MoS2 surface, the optical

spectroscopy does not reveal the structure of the peptide binding to the MoS2.
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APPENDIX A: PROCEDURES FOR UHV LIQUID HELIUM CRYOSTAT

CHAMBER
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A.1 Pump down

a. Close the venting valve (1.33” metal seal valve, Do not over tighten).

b. Open the turbo pump valve.

c. Turn on the mechanical pump.

d. Turn on the turbo pump cooling fan (USB cable).

e. Turn on the turbo pump.

f. Mount the RGA controller on the chamber.

g. Wait until the system pressure is below 1× 10−5 torr.

h. Turn on the filament, but don’t turn on the electron multiplier.

i. Perform leak check.

j. Make sure that helium gas is off after leak checking.

A.2 Bake out

a. Turn off the RGA and remove it from the chamber.

b. Remove any cooling water lines.

c. Remove the rubber band from the shutter magnetic coupling.

d. Chamber has been wrapped with the heater tape: make sure that it is still properly wrapped still.

(you might have to redo the wrapping on the helitran flange.)

e. Then cover the chamber with aluminum foil (especially carefully wrap the windows and ceramic

around RGA pins).

f. Plug the heating tapes and increase the voltage up to 32 V in steps of 10 V, after every 10 mins.

g. Wait 10 minutes to make sure that nothing is burning severely.

Optional: Bakeout of ion pump (only if ion pump has been vented)
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h. Open the ion pump gate valve.

i. Turn off the ion pump.

j. Plug in the cable labeled ”ion pump bakeout cable” straight into the wall.

k. Set TSP filament current to 30 A for the duration of the bakeout.

A.3 Chamber cool down after bake out

a. System pressure should be down to near 1× 10−7 torr.

b. Open the ion pump valve.

c. Close Turbo pump valve and then stop it.

d. Turn off the turbo pump cooling fan.

e. Also turn off the mechanical pump.

f. Turn off the heating.

g. Uncover the foil from the RGA pin area.

h. Restart the Temp controller if it shows an ”alarm”.

i. Set the temperature at 490K and start the heater (if necessary, graphene devices might blow up

so know what you are doing here.)

j. Turn off Variac

k. Before the chamber cools: Degas all filaments.
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A.4 Degassing Filaments

A.4.1 Residual Gas Analyzer (RGA)

a) Wait until the RGA feed through is cold.

b) Put the RGA controller on the chamber.

c) Turn on its filament and electron multiplier.

d) Analog scan: the presence of any O2 indicates a leak.

A.4.2 Ion Gauge

When the system has completely cooled down, the system pressure should reach below 1× 10−9

torr. If the system pressure remains high and if there is any oxygen partial pressure detected, check

for leak. First place you should check is the vent valve and move onto the most recent flange that

you have tightened.

A.4.3 Outgassing the hydrogen Cracker

a. Make sure that the sample shutter is closed.

b. For degassing the shroud apply voltage of about of 700 V and slowly increase the emission

current to 10 mA so that the power is 7 W.

c. Wait until the temperature is 200 degrees.

d. Turn off the emission current and voltage completely.

e. Start flowing compressed air through the cooling shroud.

f. Wait until the temperature is below 70 degrees and turn on the water flow.

g. Increase the filament current until the emission current is 50mA and voltage is 1000 V, so that
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the power is 50 W.

h. When hydrogen filament has out gassed sufficiently pass a little bit of hydrogen (so as to prevent

the backscattering).

i. Then let it cool.

A.5 Venting

a. Turn off the ion gauge filament.

b. Turn off all other filaments esp. check the hydrogen cracker; make sure that is completely off.

Filament current should be 0 and the system should be on standby.

c. Close the ion pump valve (keep the ion pump on though).

d. Close the turbo pump valve and turn off the turbo pump and mechanical pump if it is on.

e. Open the vent valve.

A.6 Transport Probe cool down

a. Order enough helium gas and *liquid for the experiment. Contact Air Gas by Wednesday morn-

ing for Friday delivery. 10 liters of LHe is usually enough to just cool to 4K. [Make sure to order a

standard 60 liter dewar (shorter) in order to reach the bottom of the dewar.] *Note: Since the liquid

helium recovery system is now installed in the department, there is no need to commercially order

liquid helium.

b. Make sure that the O-ring (orange viton o-ring) at the top of the helitran is still in place, if not

fix.

c. First check the Helium volume left in the storage dewar. 10 liters are enough for cooling down

to 4 K.
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d. Before you remove the transfer tube from the wall, slide down the storage dewar adaptor all the

way to the bottom of the transfer tube on the storage dewar side.

e. Situate the step ladder in the right place for you to insert the transfer tube in the storage dewar.

f. Depressurize the storage dewar and carefully insert the transfer tube in the dewar.

g. Before you insert the transfer tube into the liquid section, pressurize the storage dewar. Pres-

surize the dewar to 5 psi. Feel the helitran end of the transfer tube and make sure that some gas is

coming out.

h. Insert the transfer tube all the way into the storage dewar slowly. You may have to depressrize

as helium starts to boil off. Maintain the pressure at around 5 psi until 4 K is reached.

i. Insert the transfer tube (the Helitran side) and tighten the adjustment nut 4 turns from the pen

mark.

j. Connect the exhaust port to the flow meter. Open the flow meter valve completely. The flow

meter should read more than 2 if not try to pressurize the storage dewar or you need to unblock the

clog which have formed in the transfer tube.

k. Connect the exhaust port heater to a variac and set voltage to 36 volts.

l. After 30 minutes, liquid helium will start to transfer; at this point reduce the flow meter setting

to 6 to prevent cooling too fast.

m. After 4 K has been reached, reduce the dewar pressure to 2.5 psi and open the valve to the 2.5

psi relieving port on the dewar adaptor.

n. Adjust the adjustment nut to minimize the tip flow as written in the instruction manual.

o. Stabilize the temperature before measurement.
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APPENDIX B: PROCEDURE FOR THE GENERATION OF HYDROGEN

PLASMA USING SAMCO REACTIVE ION ETCHER (RIE)
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B.1 Turn on procedure

a. Turn on the pumps.

b. Check the N2 gas bottle pressure (P ∼ 5 psi).

c. Make sure that the valve is open (% 100) on MKS pressure controller.

d. Turn on RIE; first the breaker on the back, and then press ON button on front panel.

e. Press the START button on RIE.

B.2 Oxygen Pump Out and Leak Test

Pump out oxygen from system and oxygen lines and perform system leakage check before con-

necting hydrogen.

a. Make sure timer on RIE is set on 1hour or more.

b. Disconnect the oxygen line (quick connection) and cap with the white hose.Make sure Argon

and CF4 is closed.

c. Wait till pressure is less than 20 mTorr.

d. Open GV2 Valve to pump out Oxygen.

e. Ensure Oxygen valve V1 is closed and open the Oxygen valve V2 only.

f. Fully adjust mass flow controller pot all the way clockwise i.e. all the way open.

g. Allow the system to pump till below 20 mtorr.

h. Open the Oxygen valve V1 to pump air into the system (to make sure there is no oxygen in the

small hose left to the Oxygen valve V1).

i. Wait for a minute or so.

j. Close the Oxygen valve V1.

k. Watch mass flow controller to make sure that once the lines are pumped out of Oxygen the mass

130



flow meter should continue to read zero if there is no Oxygen leakage in lines. Once it is certain

that lines are not leaking then next step is to make sure SAMCO is not leaking.

l. For this, turn off the mass flow controller pot by turning it anticlockwise and close the vacuum

valve at the rear of SAMCO. Watch for system leaks (this step is to check any leak in the system)

Pressure shouldn’t increase substantially.

m. If no leakage, then proceed further.

n. Reopen the vacuum valve at rear of SAMCO.

B.3 Vent the system

a. Turn off GV2.

b. When pressure is less than 20 mTorr, press ”close” on MKS controller.

c. Wait until 0 % is shown on the position of butterfly valve.

d. Press ”RESET” on RIE. When alarm sounds press ”RESET” again.

e. Open the chamber and load your sample.

B.4 Pump down SAMCO again

a. Make sure timer on RIE is set on 1hour or more.

b. Open RIE vacuum valves; press Open on MKS pressure controller.

c. Wait till pressure is less than 20 mTorr.
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B.5 Hydrogen plasma

a. Turn on and flow the N2 gas into the pump at 5 liters/min. (N2 cylinder connected to the exhaust

of the pump in the utility corridor).

b. Open the H2 cylinder and flow H2(∼ 5psi).

c. Connect the H2 hose to the Oxygen valve V1.

d. Turn on GV2.

e. Open Oxygen valves V1 and V2.

f. Turn on mass flow controller pot clockwise to read 30 sccm and wait for 5mins to purge the

remaining segment of line of O2.

g. After 5mins turn down the mass flow controller pot to read the required flow of H2 (for e.g. 5

sccm)

h. When required pressure is achieved and stable, press ”RF ON” for desired time and check the

plasma in the view port on RIE to make sure plasma is generated.

i. After done using plasma close Oxygen valve V1 and open butterfly valve 100 % and turn the

mass flow controller pot to read 30 sccm and wait mass flow controller pot to read zero (i.e. till H2

is removed)

j. Then close mass flow controller pot and turn off Oxygen valve 2 and then GV2.

k. Turn off H2 gas from the cylinder and disconnect the line and let it be open to air

l. Turn off (close the cylinder) N2 purge gas going to pump.

B.6 Sample unloading

a. When pressure is less than 20 m Torr, press ”close” on MKS controller.

b. Wait until 0% is shown on the position of butterfly valve.
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c. Press ”RESET” on RIE. When alarm sounds press ”RESET”again.

d. Take out your sample and pump down the chamber again (STEP D)

B.7 Removal of remaining hydrogen and shut down procedure.

a. After disconnecting the H2 line, open the mass flow controller pot all the way open, so that air

goes in and open GV2 and Oxygen valves V1 & V2. Wait for 3-5 mins.

b. Turn off oxygen valve V1 and connect Oxygen hose.

c. Open oxygen valve V1 for 2-3 mins to bleed Oxygen through system.

d. Close oxygen valve V1; close the mass flow controller pot; close V2 and then turn off GV2.

e. Wait for pressure to go below 20 mTorr.

f. Hit Close on MKS controller.

g. Turn off SAMCO, controller and pumps.
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