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ABSTRACT 
 

Research was conducted on broadband, anti-reflective coatings for fused silica and chalcogenide 

substrates in the infrared region of light.  Using chemical preparation to create nano-porous 

through nano-particle based sol-gel solutions, the alteration of optical properties including 

refractive index and optical thickness was conducted.  The nano-particles can modify the coating 

surface to allow only zero-order diffracted wave propagation reducing scattering while a partially 

graded profile of refractive index due surface evaporation lessened the precise phase relations of 

typical homogeneous coatings.  My study of silica and titania sol-gel, and hybrid mixtures of the 

two were used to obtain the optical properties of the materials.  The choice of experiments were 

rooted in theoretically calculated values, and parameters were selected based on quarter 

wavelength thickness and square root of refractive index theories of destructive cancellation of 

rebound waves for reduction of reflection.  The fused silica system required anti-reflection in the 

region of 1.0-1.6 micrometer wavelength of the near-infrared.  The base, uncoated transmission 

in this region is ~91%.  A maximum transmission of 98% and no less than 97.3% over the entire 

region of interest was achieved.  The chalcogenide system required anti-reflection in the regions 

of 1.0-1.6 and 3.5-5.0 micrometers of the near- and mid-infrared.  The base, uncoated 

transmission of these regions is 61.9%.  A maximum of 95% transmission was achieved for the 

1.0-1.6 region and 87% for the 3.5-5.0 region.  Solutions and coatings were characterized by 

Scanning Electron Microscope, Atomic Force Microscopy, X-ray Photoelectron Spectroscopy, 

particle size, elipsometry, UV-Vis-NIR, and FTIR to reveal the science behind the development 

and synthesis of nano optical coatings. 
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INTRODUCTION 
 

Anti-reflective coatings have been used for many years to reduce reflection off the surface of 

transparent materials.  Examples of this can be found in many applications such as solar cells, 

windshields for cars, and glazing for windows applications including cathode ray tubes, 

windows, and glasses1.  The advantages of retaining this light lost can be seen in energy bills in 

the case of solar cells, efficiency of operation of cathode ray tubes, or general comfort in glasses. 

 

Much research has been conducted on sol-gel coatings for use as an anti-reflective coating fused 

silica glass.  It can be found in application as windows in a house or a car window.  A unique 

property of the fused silica type of glass is its base (uncoated) transmission of approximately 

ninety percent of the light in the visible spectrum, of normal incidence to its surface [Figure 1].  

Later I will discuss the angles away from normal and other regions of the electromagnetic 

spectrum more relevant to this research.  This transmission allows for an acceptable amount of 

light to pass through a sheet of this glass without extra coatings or processing.  This, however, is 

not ideal and even in a common application, such as eye glasses, a slight reduction in 

transmission can hinder sight, so it is a goal that every effort be made to increase transmission of 

optical glass in a low cost and effective manner. 
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Figure 1: Transmission spectra of Fused Silica (uncoated) 
 

The loss of transmission is either absorbed or reflected and discussion in the section entitled 

“Anti-reflective Theory” will display the equations and concepts that prove this.  In the case of 

fused silica, the absorbance of visible and infrared light is negligible leaving reflectance as the 

reason for scattering the 9-10 percent of light missing in the transmission spectra.  With the 

application of an anti-reflective coating designed specifically for this type of glass and the 

particular wavelengths of light incident, above 99% transmission is possible in the visible 

spectrum1 2 3.   
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The second material of interest to this research is a type of glass called chalcogenide.  

Chalcogenide glasses are non-oxide glasses made up of group IV & VI elements, group II & VI 

elements, or other combinations thereof and have semi-conducting properties4 5.  Of interest to 

this research is their transmission throughout the infrared region while other research focuses on 

the materials unique non-linear refractive index6 7.  Further, such materials have high chemical 

stability7.  Common applications of this unique glass substance include night vision systems and 

thermal imaging.  Both applications exploit the excellent transmission of the chalcogenide glass 

throughout the infrared region of light8.  Most studies found in literature are concerned only with 

the mid-infrared transmission of the chalcogenide glass.  In many cases, this is most important 

range and also the best for transmission properties.  Lacking is a low cost method of improving 

the transmission characteristics of chalcogenide glass in the near-infrared region, such as 

1064nm for CO2 lasers. 

 

With the fused silica, the base transmission was adequate and the material has been used for 

many years’ in common everyday applications.  In the case of chalcogenide glass the base 

transmission is quite different.  Shown in Figure 2, the base transmission in the near- and mid-

infrared regions of light is very low at around 62%.  The range of interest of this anti-reflective 

coating has been extended beyond that of fused silica from the near-infrared into the mid-

infrared due to the superior non-absorption of light in these regions.  Although this has been 

accepted at first and in recent years alleviated in the mid-infrared region, the method of fixing 

this difficulty still remains expensive and hard to implement on diverse chalcogenide shapes and 

sizes.  Although the diverse shapes and sizes are not a primary objective of this research, in 

developing a solution for decreasing the cost off creation and application of anti-reflective 
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coatings on chalcogenide substrates, these issues are tangentially remedied.  As the coating 

technique is solution based, different shapes can easily be accommodated. 

 

Figure 2: Transmission spectra of Chalcogenide (uncoated) 
 

Although a more detailed comprehensive discussion of the anti-reflective theory is found later in 

this paper, an introduction into the theory reveals the fundamental difference in the basic optical 

properties between fused silica and chalcogenide glass, while showing that the creation of 

optimal anti-reflective coatings are intrinsically similar between these two materials.   

The increase of transmission is because of the reduction of light lost due to reflection.  To make 

an anti-reflective layer for one specific wavelength requires that the layer have a certain 

thickness and refractive index.  The coating must follow the formula ncoating = (nsubstrate)1/2 for the 
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coating refractive index9.  The proper combination of these creates out of phase reflections that 

rebound from the medium.  In general, a single quarter-wavelength coating with a refractive 

index that is the square root of the substrate is used to achieve full transmission10.  Multi-layer 

coatings can be used to expand the properties of a single layer, among many layers.  Using this 

theory, many layers of different thicknesses and refractive indices are layered to allow for 

different wavelengths9. 

 

Current anti-reflective coating techniques are limited to two broad categories.  The first involves 

the creation of a coating that has very high transmission for a certain wavelength of light.  This 

technique is very useful for applications that use particular wavelengths of light, as in lasers.  

The second type is termed broad-band coatings.  Some of the techniques used to create these 

functional coatings include multilayer coatings (MLC), sub-micron structures, and sol-gel 

derived anti-reflective (anti-reflective) coatings.   

 

The multilayer coatings are extremely effective for transmission across a large range of 

wavelengths.  The drawbacks of multilayer techniques are their intrinsic, complicated nature.  

The challenge is to maintain coating thickness while minimizing defects as each successive layer 

has an exponential chance of defect and defect propagation from a previous layer.  Further, 

multilayer coatings can be mechanically less strong when compared to singular layers, given 

similar materials and process parameters11.  Multi-layer coatings of where each layer is a 

different material have not been applied to this research, however a description of multi-layer 

theory and multi-layer coatings of the same material have been discussed thoroughly and 

applied, respectively. 
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The second type of broadband coating uses sub-wavelength structures in such a way that light 

scattering at the surface of the coating is minimized and transmission is therefore maximized2.  

By creating a structure that is smaller than the wavelength of the incident light the “…only the 

zero-order diffracted wave propagates” acting like a thin film2.  The use of this has been limited 

as sub-wavelength structures for visible regions would need to be of diameters approximately 

100-250 nano-meters (nm).  If this is attempted the surface would have to be processed using 

expensive, difficult, and time consuming techniques such as lithography or other patterning 

methods.  The theory is that the surface features larger than the wavelength of the light creates 

scattering.   

 

The third general type of broadband coating is sol-gel derived anti-reflective coatings.  Being the 

easiest to apply, they show the most potential in broadband applications.  Unlike MLCs, single 

layer sol-gel coatings are very mechanically sound and are simple to create with minimal defects.  

Also, are vaguely similar to sub-micron structured anti-reflective techniques, sol-gel derived 

anti-reflective coatings can be created in such a way to mimic the function of sub-wavelength 

structures through the use of nano-structured networks and nanometer sized particles, affecting 

both the refractive index and the light scattering of the coating.  The particles at the surface of 

the coating reduce the local average refractive index due to the voids of air between surface 

particles.  Or in other words, the sub-wavelength structures are inherent to the sol-gel process 

although not to the extent (depth of the channel created) to which sub-wavelength structures can 

be created.  This comparison to sub-wavelength structures is not entirely applicable except in 
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certain preparations due to the deep nature of sub-wavelength structures and the relatively 

shallow nature of sol-gel derived anti-reflective coatings. 

 

One of the most common sol-gel materials is SiO2 (silica) due to its extremely low refractive 

index of 1.42.  Compared to its pure, bulk form fused silica with a refractive index of 1.52, the 

refractive index of acid catalyzed sol-gel silica is one of the lowest refractive index materials.  

The creation of another material soon after sol-gel silica was magnesium fluoride with a 

refractive index of 1.38 in bulk form.  Sol-gel solutions and coatings of magnesium fluoride have 

been created, but the advent of another preparation of sol-gel silica, the basic form, made 

Magnesium Fluoride less useful for anti-reflective coatings.  It should be noted that acid 

catalyzed sol-gel silica was still used in the formation of anti-reflective coatings on chalcogenide 

glass in this research while the basic was used on fused silica.  The alternative preparation of sol-

gel silica, using basic rather than acidic catalysis allowed for the formation of a sol-gel coating 

with some of the lowest refractive index values ever seen at 1.20-1.22.  Further discussion of sol-

gel silica is presented in the subsequent sections. 

 

As mentioned above the refractive index of fused silica of 1.52 and a transmission of 90% on a 

1.2mm sample without an applied coating in the visible spectrum (300-900nm).  The 

chalcogenide substrate, with a refractive index of 2.7-2.5 @ 1000-5000nm, respectively and a 

base transmission of 62% requires the use of different materials for coating with higher refractive 

indices.  In fact, according to the square root of refractive index theory stated above, a refractive 

index of 1.6-1.65 is needed for the coating material.  There are some materials that can satisfy 

this directly such as other chalcogenide materials; however they cannot be applied using the 

 7 



simple sol-gel method.  To combat this and retain the cost effective and ease of coating premise 

of this research, a hybrid combination of two well known sol-gel materials was developed.  

Using the high refractive index of sol-gel derived TiO2 (titania) in its amorphous form, with a 

refractive index of 1.91-2.2 depending on preparation and the acid catalyzed sol-gel derived 

silica, with a refractive index of 1.41, the appropriate combination of the two can create any 

refractive index between the two.  Based on the discussion above, the appropriate constituent 

amounts and preparation methods required to create the desired refractive index for the anti-

reflective coating on chalcogenide glass.  Presented in following sections is the characterization 

proof, and procedural steps required to make this hybrid sol-gel solution and coating. 

 

After the preparation of the sol-gel solutions it was necessary to coat the substrates.  The two 

techniques that are commonly used for anti-reflective sol-gel coatings are spin coating and dip 

coating.  Both methods were tried, but dip coating was chosen and spin coating was not applied 

to this research, but would be sufficient for the homogeneous, defect free, controlled thickness 

coatings important to this research.  The latter, dip coating, uses a controlled dipping mechanism, 

which lowers and raises the substrate material to be dipped into the sol-gel solution. 

 

As a final introduction to our research goals, we seek to achieve our goals of anti-reflective 

coatings on both fused silica and chalcogenide substrates without the application of heat or its 

equivalent energy in any other form beyond the chemistry of the sol-gel solution preparations.  

Sol-gel coating are typically coated then subjected to heat in a furnace to densify the coatings 

and remove unwanted organic and water species, and create stronger linkage between layers12.  

Due to the thermal instability of the amorphous chalcogenide substrate material the research was 
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conducted on the premise that no introduction of heat energy was to be applied to either the 

coating or the substrate.  Since the research was already focused on overcoming the issues 

associated with the no heat procedure, I decided to pursue the same no heat solution to the anti-

reflective coating on the fused silica substrate. 
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SOL-GEL AND ITS CHEMISTRY 
 

A sol-gel coating is a porous version of the bulk solid typically used.  It can be created using 

room temperature synthesis through chemical means.  The basic procedure includes hydrolysis, 

condensation of a precursor, and the final formation of the porous network consisting of either 

nano-porous coatings formed from spaces within the network or the spaces between nano-

particles that are linked together13.  Typically this procedure is followed by a heat treatment 

called ‘calcining’ to densify the coating, remove organic material and water, and further 

strengthen the network, however this is not done in the present research.  An example 

formulation showing the reaction steps and the chemical bonding is referenced from literature as 

this process is very well known.  Shown is the formulation of silica sol-gel, but similar 

procedures are used for the titania with an alternative precursor and a slight reduction in acid as 

the titania acts as its own catalyst.   

 

Beginning with tetraethoxysilane (TEOS) for the precursor13: 

(i) Hydrolysis 

≡Si-OR + H-OH ↔ ≡Si-OH + ROH 

(ii) Alcohol condensation 

Si-OR + Si-OH ↔ ≡Si-O-Si≡ + ROH 

(iii) Water condensation 

Si-OH + HO-Si≡ ↔ ≡Si-O-Si≡ + H2O 
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From this procedure different end products can result that have drastically different applications.  

Possibilities include xerogel coatings, wet gel coatings, uniform particle coatings, or ceramic 

fibers.  Figure 3 shows a diagram of two different possible coating end products by two different 

processing methods14.  The first creates a dense film by the entanglement of linear polymer 

chains of the particles which form into a nano-porous network.  The second, network of uniform 

particles, creating a porous film is created by the basic preparation of the silica sol-gel where 

individual particles are allowed to grow in sufficient size that they remain individual particles 

after coating and drying.  In this case, there is increased porosity in the coating, lowering the 

refractive index. 

 

 

Figure 3: Dense and porous coatings by sol-gel method14 
 

Another parameter of great importance is the time of each reaction stage and the 

amount of time needed for proper sol-gel aging.  Aging is a term that means the time it 

takes the solution to reach the meta-stable gel state that is best for coating and also 

infers the completion of the chemical reaction, if the appropriate stoichiometry is 

followed.  This proper aging can be as fast as 12 hours as in the case of Titania 
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prepared by water limited preparation and 5 hours in the case where heat is added as 

additional energy to the reaction stages or as long as 10 days in the case of the acid-

base two step process14.  After proper aging, if the sol is kept in an enclosed 

environment free from additional heat and excess humidity, the titania sol can remain 

indefinitely in this meta-stable state. 
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SOL-GEL COATING TECHNIQUES 
 

There are many variations of the main coating techniques that are used to obtain better coatings 

either in thickness homogeneity or to reduce defects, but all spawn from three main techniques.  

They consist of dip coating, spin coating, and the spraying of xerogels.  Each has advantages and 

disadvantages as all are widely used.  I will discuss two of the three showing the general 

principles, advantages/disadvantages, and application in anti-reflective coatings. 

 

Dip coating consists of preparing sol-gel solutions, referred to as a ‘sol’, and dipping the 

substrate into a bath of the sol.  Dip coating machines have the capability to change speeds, 

control sol solution temperature, reduce vibrations both internal and external, and some can even 

apply a heat treatment or drying procedure upon completion of the dip.  These features have 

grown from the years of experimental research that has shown the factors which play a key role 

in the successful coating of sol-gel solutions by dip coating. 

 

For dip coating, the equation of coating thickness, h, as a function of substrate speed, U, is 

shown as  

  2/16/1 )/()(944.0 gUNh ca ρη=

“Where η is the viscosity, ρ is the density, g is the acceleration due to gravity and Nca is the 

capillary number, defined as Nca = ηU/σ (σ is surface tension).”13  This equation displays the 

important parameters that can be changed during creation of the sol-gel and the amount of aging 

allowed.  The substrate speed was kept constant in our experimentation at 8.5 cm/min and the 

solution was preparation was kept the same.  The exact aging time of 24 hours was found to be 
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the best by visual inspection of the coating showing no major visual defects, optical microscope 

inspections to verify cracks were not forming upon drying, and UV-Vis spectroscopy 

transmission spectra to show smooth interference patterns typical of good coatings. 

 

Spin coating consists of placing a substrate material on a chuck attached to a rotating disc.  This 

underside of the chuck is connected to vacuum to hold the sample so that the sample can be spun 

from 500-10,000 RPM for effective coatings.  Today’s spin coating machines feature isolated 

chambers backfilled with dry air or nitrogen, vibration dampening mechanisms, and automated 

dispensing of solutions from one or more syringe applicators.  This whole system is designed in 

such a way to control the amount of solution that is applied to a substrate, precisely control spin 

speed, to create homogeneous coatings.  A unique advantage of spin coating is its homogenous 

coating thickness due to the dynamics of the solution as it is applied to a spinning substrate.  The 

sol-gel is added drop-wise onto the center of the spinning substrate and the sol-gel solution is 

pulled towards the outside.  Excess is thrown off the edges and for a given speed and viscosity a 

maximum layer thickness is achieved. 
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The model of the spin coating process is below: 

 

Figure 4: Spin coating diagrams (a) the outward flow of liquid (b) the evaporation due to spinning velocity 
 

The detailed equations that govern spin coating are not shown because spin coating is not used in 

this research.  However, the use of spin coating would be an adequate approach for applying 

homogeneous layers of multi-layer coatings and would be a further venture of this research if 

continued. 
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ANTI-REFLECTIVE THEORY 

Single Wavelength 
 

There are certain guiding principles for single wavelength anti-reflective coatings that can be 

used to ascertain the appropriate coating materials and thicknesses necessary the best possible 

transmission.  Single wavelength coatings are called this because their best anti-reflection is a 

narrow peak at a certain wavelength.  Although this single layer coating can create an 

interference pattern in its transmission spectra with multiple minima and maxima, it is still ideal 

for only one wavelength.  Other wavelengths that have maxima in the interference spectra will 

most likely have more reflection, if only slightly, than the wavelength for which the coating is 

tuned.  This is particularly important for coatings systems where transmission values of 99% or 

better are the requirements. 

 

The first principle of single wavelength coatings is the quarter wavelength theory.  The single 

layer coating must be a quarter the thickness of the incident wavelength of light which anti-

reflection is wanted10.  This is due to the reflection of the waves of a certain wavelength.  If the 

reflected wave can be destructively cancelled by the incoming wavelength then the total 

transmission would be 100%.  This is of course not possible due to absorption in even the best 

materials. 

 

The second principle of single wavelength coatings is the square root of refractive index.  The 

refractive index, being the speed of light through a medium as compared to the speed of light in a 

vacuum, is the second important part of the two principles.  Each property, refractive index and 
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thickness, must be controlled in order to attain a high transmission optical quality coating.  This 

principle simply states that the refractive index of the coating material, matched with the quarter 

wavelength thickness would be the square root of the refractive index of the substrate which it is 

applied.   

 

A final note before broadband theory is the justification of the second principle.  As mentioned 

previously, the refractive index is an important part of an anti-reflective coating.  In specific, it is 

one of the major difficulties in creating anti-reflective coatings for chalcogenides.  

Chalcogenides are known for their high refractive indices15.  In this case, the chalcogenide used 

had a refractive index close to 2.7 at 1000nm.  Focusing on a refractive index of 2.7, the closest 

approximation of the glasses index of refraction averaging out dispersion effects, an attempt was 

made to fine tune a sol-gel blend to the aforementioned square root refractive index value, of 

~1.64.  This will be discussed further in the section entitled “Chalcogenide Glass.”  To further 

express the concept we take a coating with a refractive index of 1.50 and create the Fresnel 

amplitude reflection coefficient (r).  The equation and coefficient would be,
21

21

nn
nnr

+
−

= , for each 

interface, where n1 and n2 are the refractive index values of each of the two medium in the 

system.  We use n1=1.0 for air and n2=1.50 for the coating in the first instance of the equation, 

and in a separate instance of the Fresnel equation using n1=1.50 for the coating and n2=2.7 for 

the substrate.  Doing the calculations, it can be theorized that the optimal coating obtainable for 

this refractive index is 0.7% reflectance for the exact coating thickness needed for destructive 

interference of the reflected light waves.  This number does not take into account surface 

roughness, coating inconsistencies, or thickness variations. 
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Broadband Theory of Sol-gels 
 

The particular application for this research for anti-reflective coatings requires that the coating be 

capable of broad-band anti-reflective use.  In a narrow-band anti-reflective coating, a single 

wavelength is used as a target goal for maximum transmission.  The rules for creation of an anti-

reflective coating are applied and other wavelengths of incident light, other than the target, are 

neglected.  In broad-band anti-reflective coatings, a range of wavelengths of incident light will 

be the target of the coating.  Prior to sol-gel technology, to be considered a broad-band anti-

reflective coating, the coating had to make use of multiple coatings of different refractive index.  

This process is both complicated and less mechanically stable than its single coating counterpart.  

As a solution to this difficulty we use the unique properties of sol-gel coatings and their broad-

band anti-reflective nature to our advantage in order to use a single coating (this term includes 2 

or 3 layers of the same coating material to obtain the appropriate thickness) to create the broad-

band nature.  Sol-gel coatings derive their refractive index from a combination of nano-scale 

particles and the voids (air) between them creating a scaffolding or skeleton which coatings both 

solid and empty spaces.  The refractive index is then the average of the refractive index of the 

two different mediums, the sol-gel material, and air, making the combined refractive index lower 

than the sol-gel material.  This alone can allow control over the refractive index of the final 

coating.  The second characteristic that leads to the broad-band nature is the size of the nano-

scale particles.  There is research into an anti-reflective technique using structures designed at a 

sub-wavelength, of incident light, scale that the scattering properties promote the transmission of 

the incident light discussed above.  The sol-gel coatings take advantage of this because the nano-

particles can act as these sub-wavelength structures at the surface of the coating depending on 

size and porosity.  Finally, the third characteristic that leads to the broad-band nature is the 
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porosity at the bottom or middle of the coating as it is compared to the top of the coating.  Inside 

the coating the refractive index is an average of the RIs as described above, but at the top of the 

coating the porosity is increased due to the manner in which sol-gel coatings dry.  Because the 

sol-gel coatings are created at room temperature and then dried by evaporation, the surface 

evaporation causes the removal of more of the organic material.  Although the coating is fully 

devoid of the solvent after drying, some residual material remains inside the coating, making the 

refractive index higher on the bottom and inside, if only slightly, than the top.  Again, this 

broadband characteristic is dependent on the properties of individual preparation of sol-gels.  

Graded index coatings and their feasibility when created appropriately and purposefully with sol-

gel methods will be discussed in the final section of the thesis, but it has been documented in 

literature that graded index coatings are not critically dependent on precise phase relations of 

typical interference coatings. 
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Single Layer Experimental Requirements 
 

The first substrate, fused silica, has a refractive index of 1.52 @ 550nm and 1.46 @ 1000nm.  

Both are relevant because the dispersion of a material, or the change of its refractive index with 

increasing or decreasing wavelengths of incident light, becomes a factor in determining the 

appropriate material for the chosen range of anti-reflection.  Since this is a single layer solution, 

even with the use of sol-gels and their previously discussed broadband nature, a specific 

wavelength of greatest transmission must be chosen.  For reasons described later we choose 

550nm as a starting point at the beginning of the research and 1000nm as the final goal of the 

anti-reflective coating.  The use of 550nm as a starting point allows for minimal alteration of the 

sol-gel solution while allowing us to confirm the experimental results of the theoretical 

understanding.  The range for each will be approximately 1-2% loss due to reflection over a 

100nm, or greater, in each direction from the chosen value. 

 

The quarter wavelength thickness at 550nm is 137.5nm and for 1000nm is 250nm thickness.  

These values, along with the correct refractive indices, will combine to achieve transmissions of 

99% or greater on fused silica substrates.  The coatings are applied by dip coating and will 

therefore be applied to both sides of the substrate.  Since they are applied to both sides, values of 

99% are possible.  If one side were coated and the other not with a fused silica substrate, the 

reflection from the uncoated side would be ~4%, making the total possible transmission no more 

that 96%.  This is the justification for the use of dip coating as a one step process for creating 

two sided coatings of exactly the same material and thickness. 

The refractive index values, due to dispersion, change between the two wavelengths.  At 550nm 

the refractive index is 1.52, making the ideal square root refractive index 1.233.  This is far 
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below the stated values of the acid catalyzed silica sol-gel and the magnesium fluoride sol-gel 

materials.  For values this low we must look toward base catalyzed silica.  At 1000nm the 

refractive index is 1.46, making the ideal refractive index 1.21.  Again, it is to our advantage to 

use basic catalyzed silica. 

 

For the chalcogenide substrate has a refractive index of 2.7 @1333nm and 2.5 @4000 nm.  

Typical dispersion in the infrared region of light is negligible, but in the case of the chalcogenide 

the dispersion was considerable.  In response to this we chose a value between the two ends of 

the curve as a value for the refractive index in order to minimize the negative effects of the large 

slope of the dispersion curve.  For reasons described later the ranges of interest for the anti-

reflective coating on the chalcogenide substrate are 1000-1600nm and 3500-5000nm.  The goal 

was to increase the transmission in each of these regions simultaneously with a single anti-

reflective coating.  Since the use of only single layer coatings are possible, it is necessary to use 

two different maximums centered over each of the regions.  The two wavelengths shown above 

were chosen for that reason and it is that reason that the refractive indices are shown.  By 

choosing the maxima to be at these locations it is possible to create one coating with the 

appropriate thickness and nearly the optimal refractive index for both ranges. 

The quarter wavelength formulation for the chalcogenide substrate is more complicated to 

account for the two different maxima goal.  Using a quarter and three-quarter wavelength of the 

incident light, according the quarter wavelength theory, the two maxima of the transmission 

spectra will lie at 1333nm (3/4 wavelength of 1000nm) and 4000nm (1/4 wavelength of 

1000nm).  This was not by chance and, due to the tendency of the maximum peaks in sol-gel 

coatings to broaden at higher wavelengths, the range of the first peak will be smaller than that of 
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the second.  If tuned with the appropriate process parameters, the smaller first range of 1000-

1600 being only 400nm and the larger second range of 3500-5000 being 1500nm, it is possible to 

create a single layer broadband coating to increase the transmission over the entirety of each 

range. 

 

The refractive index, as with the ¼ wavelength, is a concern with the chalcogenide and becomes 

complicated.  The material for the anti-reflective coating of the fused silica was straight forward 

as there was a sol-gel material and preparation to create the desired refractive index.  As it is, 

there are materials that will satisfy the square root of refractive index for the chalcogenide 

coating.  The difficulty lies in their cost and possible preparation by sol-gel method.  Other 

chalcogenide glasses can be laid down in a coating by other processing methods such as 

Chemical Vapor Deposition (CVD), but this goes against the goal of this research.  First, CVD is 

more expensive than dip coating requiring vacuum chambers, stages, and power supplies.  

Second, CVD and other process that lay down layers by deposition usually deposit on a flat 

surface and falter with curved or oddly shaped substrates.  Dip coating can alleviate this by 

coating equally well on curved or flat surfaces as long as they all exit normal to the surface of the 

sol.  Finally, materials such as chalcogenides are expensive to create and more rare than the sol-

gel materials chosen for this research.  This discussion validates the choice of dip coating over 

other application techniques. 

The refractive index of the chalcogenide substrate is a range from 2.5-2.7 over the wavelengths 

of interest, of which I chose 2.6 as a midpoint for the basis of choosing the appropriate coating 

material.  The square root of this index is 1.612 and, aside from the expensive aforementioned 

materials, is not a value that is easily obtained with one sol-gel material or process.  To combat 

 22 



this, a hybrid sol-gel solution was created using two well known sol-gel materials.  The first, acid 

catalyzed silica discussed above and the other is acid catalyzed titania.  The refractive index of 

acid silica sol-gel is 1.41 and the refractive index of titania is 1.91-2.2 based on 

preparation16,17,18.  The values quoted in literature at 2.0 and above are at wavelengths far lower 

than are subjected to the substrates with these coatings.  As such, even the value of 1.91 is 

unattainable using the current procedures because in preparation of sol-gel solutions at this 

refractive index, densification and removal of organic material plays a key role in raising the 

value.  At the wavelengths we need, up to 5000nm, the refractive index of titania that is possible 

using a no heat procedure is 1.75.  Both of these refractive indices are static over the near- and 

mid-infrared region.  To obtain the 1.612 index that the theory predicts a 1:1 mixture of the two 

sol-gel materials should provide a refractive index that is the average of the two at 1.58.  This is 

not exactly the refractive index, but is close enough that the deviance from the ideal predicted is 

negligible.   
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The Multi-Layer, Same Material Solution 
 

The dip coating process is dependent upon factors such as viscosity, dip speed, and surface 

tension.  Each of these can be altered to create different coating thicknesses, but each has a limit 

to the extent it can be modified.  For our applications, single layer coatings cannot provide 

adequate thickness for the infrared regions.  Because of this it is necessary to apply multiple dip 

coatings of the same sol-gel onto the same substrate to, in essence, build up the layer thickness.  

In the case of the fused silica, the ideal coating thickness was 137.5 nm which could be created 

with two layers.  In the case of the chalcogenide substrate, the 1000nm was much thicker and in 

the present research was not obtained.  Coatings that approached this value were obtained and 

the results displayed for the fused silica are proof of the concept, while the results obtained for 

the chalcogenide are substantially better than are to be expected for a slightly less than adequate 

coating thickness.  The success of the fused silica coating system and the important 

understanding gained from the chalcogenide coating system are of equal benefit to the present 

research and the scientific community. 
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RESULTS: FUSED SILICA 

Infrared Region 
 
A main focus of this research was to create a coating, sol-gel derived, that would aid in the 

maximum transmission of light at certain wavelengths of interest.  Three such wavelengths, 

1500nm, 3500nm, and 5000nm, were pursued.  These three wavelengths represent well used 

wavelengths of the near infrared region.  With a coherent light source such as lasers it is possible 

to transmit large amounts of data over vast distances at the speed of light.  Further, this 

technology can be used as targeting systems and remote sensing applications.  The current 

limitations of this technology for laser systems are the losses due to reflections.  This can be 

overcome by the application of anti-reflective coatings.  In addition, the robustness of the lens 

can be increased by decreasing reflectance for many common laser wavelengths ranging from 

the near-infrared to the mid-infrared.  The increased absorbance of fused silica at wavelengths 

above 3000nm makes it less useful and therefore anti-reflection in this region is not attempted.  

However, the range of 1000-1500nm is possible and is the focus of the research. 

 

Preparation of Sols 
 

The acidic silica sol-gel is created with equal parts Tetraethoxysilane (TEOS) (+99%) and 

Ethanol (anhydrous, 85%) at 90mL apiece.  The sol reaction utilizes 10mL of nitric acid for 

hydrolysis and 10mL of deionized water, added drop wise, for water condensation.  The sol is 

then covered, to prevent evaporation, and left for aging for 24 hours. 
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Dipping Procedure 
 

A dip coating instrument (KSV Instruments, Ltd. Dip Coater) was used to control vibrational 

effects and to increase the homogeneity of the film thickness.  The rate used for withdrawal was 

85 mm/min.  At this rate, inconsistencies due to surface tension were avoided.  For coating the 

glass slides the instrument was equipped with a standard gripping mechanism.  Held on an angle 

so that the corner of the slides was facing downward, the surface tension that can create waves 

within the coating was avoided.  The slides were cleaned prior to coating with iso-propanol, and 

then dried with compressed air. 

 

Optimal Refractive Index 
 

To meet the requirements of the anti-reflective theory silica sol-gel material was used.  With two 

preparation methods, catalyzed either by acid or base with refractive index of 1.41 and 1.22, 

respectively, silica was the ideal for low refractive index substrates.  The base catalyzed method 

creates highly branched clusters which cause the formation of particles.  The voids between the 

particles reduce the refractive index of the coating.  By creating larger the particle, thus large 

voids between them the refractive index could be lowered.  By creating a homogeneous particle 

size of 80nm, shown in Figure 5, the necessary refractive index of 1.202 is achieved.  This is 

compared to the 5nm particles size of acid catalyzed silica sol-gel coating shown in Figure 6, 

with a refractive index of 1.41. 
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Figure 5: The AFM image shows the homogeneous particle size in the sol-gel coating.  The material is base 
catalyzed silica sol-gel coated by dip coating method.  The size range shown is not indicative of the actual size.  
The particle size has been calculated to be 80nm ±5nm.  The large size allows for more space between 
particles creating a lower Refractive Index of 1.202. 
 
 

 

Figure 6: The AFM image shows the homogeneous particle size in our sol-gel coating.  Material is acid 
catalyzed silica sol-gel coated by dip coating method.  The size range shown is not indicative of the actual size.  
The particle size has been calculated to be 5nm.  The small size decreases porosity which in turn increases 
Refractive Index to 1.41. 
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Transmission 
 

The uncoated transmission spectrum of fused silica, Figure 1, shows 9-10% loss of transmission 

due to reflection, 4-4.5% on each side of the substrate.  The first attempt at a coating was an acid 

silica coating.  Figure 7 shows the interference pattern common to a single layer and indicative 

of a coating that is too thin for a 550nm wavelength. 

 

Figure 7: Acid-catalyzed silica (single layer) compared to uncoated 
 

Figure 8 shows a lesser interference pattern due to a thicker coating of two layers of acid silica 

on fused silica.  These spectra, Figure 7 & 8, were used as tools for understanding how the 

optical properties could be interpreted from the transmission spectra. 
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Figure 8: Acid-catalyzed silica (single layer) compared to uncoated 
 

It was not until after this confirmation that the first basic silica experimentation was conducted.  

The first trials of basic silica provided all the verification of concept that was needed for the 

research that was to follow.  Figure 9 shows a single layer coating of basic silica on fused silica 

substrate.   
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Figure 9: Base-catalyzed silica (single layer) compared to uncoated 
 

The excellent transmission at 550nm indicates that the refractive index was appropriate for that 

wavelength and that the coating thickness was 137.5nm thick.  Further, the broadband nature can 

be realized with the nano-particle effect.  Following this trial and several confirmations of it, a 

two layer coating of the base silica was done in an attempt to increase the wavelength of optimal 

transmission while retaining the excellent anti-reflective qualities.  Figure 10 is a two layer basic 

silica coating on a fused silica substrate. 
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Figure 10: Base-catalyzed silica (double layer) coating compared to uncoated 
 

The two layer basic coating shown in Figure 10 illustrates the broadband nature of sol-gel 

coatings with a maximum transmission of 98% at 1100nm and no less than 97.1%.  This coating 

system is 275nm thick as is indicated by the maximum transmission at 1100nm and the quarter 

wave theory.  The refractive index value has changed slightly with the addition of another layer, 

revealed by the 98% rather than 99% transmission.  The values of 1.20 and 1.21 are difficult to 

achieve even with nano-particle based silica sol-gel coatings, but the accomplishment of 98% is 

considered a success for the research goals. 
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RESULTS: CHALCOGENIDE GLASS 

Infrared Region 
 

A main focus of this research was to create a coating, sol-gel derived, that would aid in the 

maximum transmission of light at certain wavelengths of interest.  Three such wavelengths, 

1500nm, 3500nm, and 5000nm, were pursued.  Some common applications such as low cost 

optics by molding of chalcogenide glass1, photo-darkening19, or the use of chalcogenides for 

microbiological function used in early tumor diagnosis with the aid of specialized sensors 

capable of recording infrared signals of bio-molecules20. 

 

Preparation of Sols 
 

As mentioned above, it was necessary for a hybrid sol-gel to be created to obtain the appropriate 

refractive index.  The hybrid sol-gel is created in a multiple step process combining the two 

different components after aging.  The silica sol-gel is acid catalyzed and described above in the 

“Fused Silica” section.  The second part of the hybrid sol-gel is the titania.  Components of the 

titania sol include 12mL of titanium (IV) isopropoxide (97%), 170mL of 2-Propanol (Grade GC, 

99.7%), and 1mL of DI water.  The Isopropoxide is added to the propanol to avoid premature 

hydrolysis reactions.  After mixing of these two, the water is added.  The two components are 

then combined into one large container after appropriate aging cycles.   

 

This mixture is stirred to ensure proper combination of the two constituents described elsewhere 

(S. Seal, E. Brinley, L. Kramer, E. Braunstein – A composite sol-gel hybrid optical coating for 
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IR applications (Patent Pending, 2005)).  The two individual sols are clear in color and devoid of 

emulsion before combination.  After mixing, the solution becomes a mild yellow color.  This 

yellow color will not affect the final coating due to the extremely thin nature of the coating. 

 

Dipping Procedure 
 

The aged sols, both Silica and Titania, were tested individually on fused silica glass slides.  The 

film consistencies were confirmed through both visual observation and optical microscope.  The 

solutions were viewed for consistency and confirmed to be free of particulates or premature 

gelation.  Further confirmation was achieved by a test coating to observe any visible 

imperfections.  After the verification of acceptable aging times was completed, the two sols were 

mixed and stirred.  The coating was done promptly following mixing to avoid gelation.  The 

coatings done on chalcogenide glass were carried out in room temperature conditions. 

 

The same KSV Instruments dip coating equipment was used for the dipping of chalcogenide 

substrates as was used for Fused Silica.  The speed was still 8.5cm/min to avoid inconsistencies.  

For coating the glass slides the instrument was equipped with a standard gripping mechanism.  

However, for the chalcogenide glass, of circular design, nearly 0.5 cm thick, it was necessary to 

fashion a holding ring of platinum wire.  The glass slides and chalcogenide glass samples were 

cleaned prior to dipping in order to ensure a consistent coating surface.  The cleaning procedure 

consisted of a rinsing in xylene and then application of methanol to remove water, finally 

followed by compressed air for a pristine surface. 
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The surface chemistry of the silica-titania hybrid was studied using the XPS utilizing PHI ESCA 

spectrometer (model 5400, Perkin-Elmer, Minnesota, having energy resolution of ±0.1 eV, at a 

base pressure of 5x10-9 Torr using Mg Kα radiation (1253.6 eV).  The X-ray power during the 

analysis was 300 W.  Both the survey and the high-resolution narrow-scan spectra were recorded 

at the pass energies of 44.75 and 35.75 eV, respectively, to achieve the maximum spectral 

resolution.  The binding energy (B.E.) of the Au 4f7/2 at 84.0±0.1 eV was used to calibrate the 

B.E. scale of the spectrometer. Any charging shifts produced by the samples were carefully 

corrected using the C (1s) B.E. level of 284.6 eV in the adventitious carbon21. 

 

A Fourier Transform Infrared (FTIR - Spectrum One system, having wavelength range 7,800-

350 cm-1 with KBr beamsplitter) was utilized for measurement of the transmission spectra over 

the desired wavelength of 1.5 to 5 micrometer.  The resolution of the system is 0.5 cm-1 with a 

wave number accuracy of 0.1 cm-1 at 1,600 cm-1.  The FTIR was used to measure the 

transmission of the bare and coated chalcogenide glass samples.  The alignment of the sample 

was guaranteed through an alignment board and complimentary screw inserted sample holder.  

All measurements were reproduced multiple times to verify results obtained.   

Surface Chemistry of the Hybrid Coating 
 

XPS broad scan spectrum for the hybrid sol-gel showed the presence of O, Si, and Ti as 

expected.  Upon further analysis using narrow high resolution XPS scans obtained for Si (2p) 

and Ti (2p), within the B.E. ranges of 95-115 eV, Figure 11, and 444-474 eV, Figure 12.  After 

analysis of the Si (2p), a peak at 103.2 is identified as the gel form of SiO2.  The presence of 

SiO2 and TiO2 is confirmed with the O (1s) peak, Figure 13.  Heat treatments commonly used 
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increase porosity and lower RI22.  This was not necessary as the coating performed well without 

such treatments.  Similar heat treatments are usually performed on the titania sol-gel coatings, 

mainly used to create a crystalline structure22.  The basic drying procedure involves a heating at 

100°C in order to dry the coatings and then using increased heat, between 400°C and 1000°C, to 

achieve the desired crystallinity1.  However, in our coating system, the use of heat beyond 100°C 

is not possible leaving the TiO2 in the non-crystalline or amorphous phase.  The Ti (2p) peak 

shows the amorphous nature of TiO2 with a peak at 459.2 eV. 

 

 

Figure 11: XPS Si (2p) spectrum showing the SiO2 formation.  The peak is centered at 103.2 eV indicating the 
presence of SiO2. 
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Figure 12: XPS Ti (2p) showing formation of TiO2.  The peak is centered at a binding energy of 459.16 eV 
signifying the presence of TiO2. 
 

 

Figure 13: XPS O (1s) showing formation of SiO2 and TiO2.  The SiO2 peak is centered at a binding energy of 
532.7 eV.  The second peak, TiO2, is located at 530.4 eV. 
 
The increasing porosity with an increase of temperature of thermal treatment of the silica portion 

of the coating would typically be a useful method of lowering the RI and thereby increasing the 
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anti-reflective quality of the silica coating.  The titania in the coating is used solely for its 

refractive index value upon the combination of the two.  The hybrid coating used in the present 

research uses the particular refractive index of silica which is 1.25 and any decrease in refractive 

index due to thermal treatment above 100°C would be to the detriment of the coating, rather than 

advantage.  Also, the titania portion of the coating is more porous in its non-crystalline form than 

after it has been thermally treated shown in literature during heat treatments whereby the titania 

is crystallized1.  This increased porosity lowers the RI to a value of 1.91.  With the combination 

of the two sol-gels, as previously discussed, the RI of the hybrid can be set near 1.64.  The 

analysis of the XPS narrow scan spectra confirmed of the formation of silica and titania chemical 

compounds in the hybrid sol-gel coating. 

 
Transmission 

In the present research, the original transmission in the range of 1000-5000nm wavelengths is 

1.9%, Figure 2.  As shown in Figure 14, the coating enhances the transmission at the first key 6

wavelength of 1500-1600nm to 78%.  The middle area at 3 micrometer there is a dip in 

transmission due to absorption.  The band’s range 3100-3600 cm-1 corresponds to the stretching 

vibration of O-H in hydroxyl groups.  The absorption can be blamed on residual alcohol solvent 

used in sol-gel preparation and H2O which is used in the preparation and adsorbed from 

atmospheric moisture.  The absorption can be decreased through heat treatments, but no heat 

treatments are used in the present research.  The convenient location of the peak, not at a key 

wavelength of interest, allows for the continuation of research without solving this problem.  The 

substrate/film matching is not flawless, but still yields an increase in transmission.  At the next 

wavelength of interest, 3500-5000nm, the increase is very significant.  The matching of the 
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substrate and the film is much better here, increasing transmission 22.6%, yielding 84.5% total 

transmission.  In comparison, a typical fused silica glass system with a base transmission of 

~90% is increased to a coating with a final transmission of 99.5% at one particular wavelength 

and an average that seems closer to 94%16.  The increase in the fused silica glass system even at 

its highest point was only 9%, giving perspective to the incredible 22.6% increase shown in the 

chalcogenide system.  Due to the higher strength requirements of a single coating, prepared 

presently, the transmission will be sacrificed slightly. 

 

 
Figure 14: Anti-reflective coating on chalcogenide glass 
  

The ability of a coating to perform within one week of its original creation is an important 

velopment of a successful coating.  However, it is more relevant to view step in the de
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the functioning of a coating several weeks after its initial application and testing.  It is the 

intrinsic nature of a sol-gel to relax over time, slowly releasing moisture and solidifying 

the network bonding further.  The first step towards aging is denoted as polymerization 

and represented by the condensation reaction ≡Si−OH + HO−Si≡ → ≡Si─O─Si≡ + H2O 

which link up the initial network23.  Following polymerization, hydrolysis occurs which 

further strengthens the network.  Hydrolysis is shown here by the reaction ≡Si─OR + 

H2O → ≡Si─OH + ROH24.  The coating shown in Figure 14 was allowed to age 

unobstructed in ambient storage for two weeks and then tested.  The relaxation of the 

film with aging presumably involves densification and thinning of the film25.  The 

densification process is mediated by bond cleavage due to the movement of electrons 

from the valence band to the conduction23.  The movement leads to the rearrangement 

of the gel network through the condensation reaction which causes densification.  This 

densification changes the phase cancellation properties of the reflected waves affected 

each of the wavelengths differently.   

 

Other experimental results yielded excellent transmission in one of the two regions of 

terest, but not both.  These coatings were 2 and 3 layer versions of the same hybrid in

coating on chalcogenide substrate.  The double coating of the hybrid was done using 

three different aging times for the sol-gel solution to produce thin, medium, and thick 

layer thicknesses.  The 3 layer was done at only one thickness as the limit to the defect 

free coating was being tested with this thick of a coating.  Shown in Figure 15, the 

transmission is approaching 95% at the first wavelength of interest for all of the double 

layer coatings.  Each of these was offset slightly from the last due to the increased 
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thickness.  The three layer coating approaches 98% transmission, but is away from a 

wavelength of interest.  Also displayed in Figure 15 is the comparison to the single layer 

coating.  The optimization of the coating thickness would be an important next step to 

the design. 

 

 

Figure 15: One, two, and three layer coatings on chalcogenide 
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MULTI-LAYER AND GRADED INDEX 
 

The concept of square wave transmission spectra through the use of multi-layers of different 

materials is very enticing.  Multi-layer anti-reflective coating consists of an alternating 

combination of materials of low refractive index and high refractive index.  Specifically, the 

layer closest to the substrate would be the expected ¼ wavelength incident light thickness and 

square root of the refractive index of the coating.  The next layer, however, is a very high 

refractive index of ½ wave incident light thickness or more.  In doing this, the layer becomes 

transparent acts as a pseudo substrate.  The next layer would consist of a coating that would 

match the thick layer previous in ¼ wavelength and square root refractive index.  This would 

continue for any number of layers until the range of anti-reflection was expanded sufficiently.  

The final layer of the coating would always be the lowest refractive index possible, completing 

the design.  The theory of multi-layer anti-reflective coatings is well known and explained in 

greater detail elsewhere, but it’s the extension of this theory that is of most application to the 

findings of this research. 

 

A typical multi-layer coating consists of the steps described above, but through the addition of a 

series of coatings that grade, or step, the refractive index upward from the first layer to the layer 

of high refractive index, an extremely broadband coating can be applied.  In addition, this type of 

coating performs well with light at angles of incidence not normal to the surface.  In simulations, 

graded index coatings are created with many layers, sometimes as many as 50.  This is not 

feasible for either cost or time and even a 20 layer coating can be many micrometers thick, far 

beyond the capability of sol-gel.  The concept of graded index does, however, have great 
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possibility using sol-gel methods and during the course of research this was stumbled upon.  In 

Figure 16, a Scanning Electron Micrograph of a cross-section of a 3 layer coating is shown.  

Figure 17 is a further magnified view of this multi-layer coating.  The first noticeable feature is 

the interface between the substrate and the coating.  The next is the lack of interfaces between 

the layers of the coating.  Being 750nm thick, the coating should show 3 separate layers at 

250nm and 500nm positions.  The lack of interfaces allows the assumption that there is an 

intermixing between the layers even if allowed to relax between applications of each.  This 

intermixing is not significant, but the absence of interfaces makes the possibility of a graded 

index a reality.   

 

 

Homogeneous Coating 
Thickness 

Figure 16: Showing a 2300x micrograph of the 3 layer sol-gel coating on fused silica 
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Substrate 

Coating 

Figure 17: Showing a 15000x micrograph of the 3 layer sol-gel coating on fused silica 
 

Due to the limitations of minimum layer thickness that can be applied using sol-gel solutions, 

there is a maximum number of layers that can be applied without defects arising or mechanical 

stability degrading.  This number can be as high as 20 when using heat treatments and their 

densification.  Using a more reasonable number of 10 layers, the graded index coating can be 

theoretically developed.  The application of a starting layer using the square root refractive index 

theory and ¼ wavelength optical thickness theory is followed by 6 layers of graded index from 

the refractive index of the first layer to that of the highest layer will bring the total to 7 layers.  

The layer of high refractive index would make a total of 8 layers.  The final two layers would be 

1.4 and 1.2, respectively for a total of 10 layers.  This discussion was carried out in full illustrate 

that the feasibility of applying a 10 layer coating exists and through its creation the extreme 

broadband nature of graded index can be realized within the sol-gel methods. 
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CONCLUSION 
 

The nano-porous nature is tunable to certain refractive index values by changing the sol-gel 

chemistry and aging times.  The nano-particles can be created in different sizes so that they act 

like sub-wavelength structures making the coatings broadband.  There are even possibilities of 

graded index coatings for better anti-reflection at higher angles of incidence.  Each of these 

reasons supports the need for further study into sol-gel coatings for anti-reflective properties. 

 

The results shown with the fused silica substrate are an excellent example of a very close 

realization of the theory for a particular coating system.  The chalcogenide system showed great 

results with over 20% increase in transmission at some points.  The success of this research has 

helped us understand the feasibility of better anti-reflective coatings in the near infrared region of 

light and the progress we have already made. 
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