

EINO can present a step-by-step guide of how to fix certain issues that might cause the lab not to

function, for example, the sound malfunctioning. The webpage with the EINO general help

menu is only activated when the student requests help.

Figure 2: EINO Block Diagram

 The second way the EINO interface can be activated is shown in the second part of the

block diagram, Figure 2. While a lab is open, EINO checks to see if any of the inputs for that

lab have changed roughly every second. Each component in the UCF Infinity Web Applets is

different. A slider can change values very quickly while a microphone button has no numeric

 29

Figure 5: The Lab is Not On

4.3 Goals and Cases

 A common question asked about EINO at this point is if goals and cases are so similar

then why not make all the goals and cases and have just one search instead of the two. This

separation was done for two reasons. First of all, the goal search is harder to process due to the

fact that a goal could be a single move or a group of moves. This indicates a search must give a

 34

higher preference to a group of goals versus the single goal all the while keeping all options open

until the next move is made. In the goal search, a list of possible goals is made and maintained

until the group of goals is finished or the list contains only single item goals. The second reason

the goals and cases are separated is that EINO offers “Just in Time” help. This system’s main

focus is to offer help to the student to complete a group of goals.

Figure 6: Try Adjusting

 35

Imagine a student working their way though a large group of goals. At the last step the student

misreads or mis-clicks on an input. Instead of throwing out all the hard work that the student

performed, EINO forgets the last move made by the student, recommends a course of action, see

Figure 6, and gives the student one chance to fix the mistake. This leads into the third reason

that EINO has both cases and goals. A group of goals must be executed in order or else you did

not perform those steps to the letter. A case can be close enough. Therefore, there is an

exactness issue between cases and goals. If cases were all goals, then the freedom that is found

in a close enough match is lost. If goals were all cases, then the student might not be completing

the entire lab according to the lab manual.

4.4 EINO Initiation

 EINO is initiated at the same time as the UCF Infinity Web Applets. This is the earliest

moment that EINO can be loaded. By having EINO ready at this time, it allows the student to

request help as soon as the lab loads. The first step in the initiation of EINO is to load the goals.

The goal set for each lab is stored within a file. Each goal is read and then stored within an

array. The second step is to load the cases used in the lab. Again, the case set for each lab is

stored within a file and is stored within an array. The final step for the initiation of EINO is to

start the thread. The thread is what allows EINO to check the inputs every second. Without the

thread functioning properly EINO will not be able get inputs and match goals and cases.

 36

Figure 7: UCF Infinity Web Applets Class Diagram

 37

4.5 Class Diagram

 Since EINO was built in Java, an object oriented approach was taken in the design of

EINO. In order to make EINO function better within the UCF Infinity Web Applets, EINO’s

design is similar to the UCF Infinity Web Applets. The UCF Infinity Web Applets class

diagram is in Figure 7. The base object in the UCF Infinity Web Applets is the clsComponent

class. The class contains variables needed in all of the components within the Web Applets.

The input values that EINO checks are not within the base component but within the super class.

EINO contains a modified version of the Web Applets super classes in order to tell if the input

has changed. Figure 8 contains the class diagram for EINO. EINO also contains classes in

order to manage the cases and goals. In the middle of the class diagram (see Figure 8), is the

main class in the EINO system. The top part of the EINO class, lists the variables and variable

types used in the class. The bottom part of the EINO class, lists the functions and the return

type used in the class. In the class diagram, there many other classes that are shown and are

used to store variables and functions that will be reused throughout the system. This

information is required in order to recreate the EINO system. The class diagram will be

discussed in further detail in the next chapter.

 38

Figure 8: EINO Class Diagram

 39

4.6 Summary

 This thesis uses a mixture of case based reasoning (CBR) and a rule-based system (RBS)

in order to produce an intelligent tutoring system in Java. Within this chapter, there is an

explanation of the approach taken in the development of EINO. In this chapter, a step-by-step

explanation of the how EINO tutoring system functions on a higher level. The first step is the

initiation of the tutoring system. This is where the cases and goals are loaded and stored into the

EINO database. The second step is to generate an output from the tutoring system; which can

be completed in four different ways. The first way is the student requesting help. The second

way is by EINO identifying a pattern in the student’s actions and open up an appropriate case.

The third way to generate an output from EINO, is to, in the middle of completing a group of

goals and make a mistake before finishing. The fourth way to generate an output from EINO is

to adjust an input while the lab is in the off state. The next chapter will cover the

implementation of the EINO tutoring system in greater detail.

 40

CHAPTER 5: IMPLEMENTATION

 Within this chapter there is a discussion of the implementation of the EINO tutoring

system within the University of Central Florida Infinity Web Applets (UCF Infinity Web

Applets). An overview of the UCF Infinity Web Applets is given including some details of the

source code. EINO has already been discussed at an upper level thus far and will be discussed

in further in terms of programming.

5.1 UCF Infinity Web Applets Source Code

 The UCF Infinity Web Applets were designed to emulate a hardware device using an

object orientated approach in java. For the class diagram, see Figure 7. The most basic class

that is used often is the clsComponent. The clsComponent class is the base class that is used as

the starting point for all the components that are created in the UCF Infinity Web Applets.

Almost all the other classes inherit attributes from the clsComponent class. In the UCF Infinity

Web Applets, there are four different types of classes. The first type of class is the output

components. These components produce an output for the student. This output could be visual,

like an image or audio, like a sound wave produced by the speakers. The output component

sometimes has a rudimentary interactivity, if they have anything at all. If the student clicks on a

data point on a wave output, then the value at that data point are displayed. The image outputs

have no need for any interactivity because what is important for this output is the image itself.

The second type of classes in the UCF Infinity Web Applets is the input components.

These components allow the student to enter data into the system whether the data is in the form

of an audio signal, or an image or an adjustment of a value. The audio signal is entered through

 41

use of a microphone. The image is entered through the use of a file reader built into one of the

classes and the adjustment of values is done by use of a slider or the pixel mapper. The slider is

a simple bar that moves left or right. If moved to the left, the value is decreased and likewise if

a bar is moved to the right, the value is increased. All of the data needed for the slider is store in

its own class called clsSlider. The most obvious value stored in the class is the current value of

the slider. The clsSlider class contains the maximal value that the slider could have along with

minimum value for the slider. A slider also has a step value, which tells the system at what

intervals to move the current value up or down. A string value is used to display what value the

slider is controlling because there can be several sliders in each lab. The other type of

component used for the adjustment of values is the pixel mapper. The pixel mapper is a

completely different type of input when compared to the slider. The pixel mapper looks like

graph or chart with a single line running through the graph.

Figure 9: Pixel Mapper

 42

The bottom part of the graph, the X axis, represents the pixel values from zero to two hundred

fifty five. The left side of the graph, Y, axis, is also numbered from zero to two hundred fifty

five and represents the new remapped values. See Figure 9 for picture of the pixel mapper. In

the picture, zero has been remapped to two hundred fifty five. This means any place in the

original picture that had a value of zero is now given a value of two hundred fifty five. The new

values are stored within the clsPixelMapper class to allow several pixel mappers to be used in a

lab.

The third type of class in the UCF Infinity Web Applets is the calculation classes. These

classes are used to perform some type of calculation on the data in the lab. A good example of a

type of calculation done often in the UCF Infinity Web Applets is a Fast Fourier Transform or

FFT. The FFT algorithm produces the frequency of a signal. This calculation is performed in

real time throughout several labs.

The fourth type of class in the UCF Infinity Web Applets is the lab class. These classes

must be called in order for the lab to run. All of the components needed for the lab are created

and connected to each other in this class. This signifies there is no input data stored in the lab

class; just a set of connections.

5.2 Step One of Implementation EINO Tutoring System

The implementation of the EINO tutoring system was broken down into a four step

process. The first step was to find a way to access the data from the inputs. This step was

harder then it gives the impression due to the architecture of the UCF Infinity Web Applets.

There is no data in the lab class, where EINO is created, just a set of connections. A thread was

found to be the most dependable way to create a loop inside the lab; the thread also allows a

 43

delay to be added into the checking of input data. A student can only change data at a certain

rate and it serves no purpose to look for a changed input data ten times faster then the student can

change it. EINO’s delay is roughly one second. Inside the thread are certain EINO functions

that are used to check the values in the input components. In essence, there are two types of

input components: there are buttons and non buttons. The button input components are the

microphone button and the file reader button. EINO only requires of these inputs to be notified

when the button is pressed. The functions that check to see if a button is clicked, take in a copy

of either the microphone class or the file reader class. In both classes, there is a Boolean

variable that is set to true if the button has been clicked. After checking if the button has been

pressed, the Boolean variable is reset to false. The non button input components include the

sliders and the pixel mapper. With these components, the value of the component matters. The

functions that check the values of these components takes in a copy of the component and stores

it in a simplified version of the slider class or pixel mapper class that mostly contains the values.

The next time the values are checked, the new values are compared to the old values. If they

have changed, the new values are stored. Otherwise, a count is augmented until a preset number

on times before relaying the information of the component being modified. This count makes

sure that the change detected is not some middle value as the student makes changes to

component. The count currently being used in EINO is equal to a two second delay. Once an

input component change is detected, the name of the component and the value is stored within a

list of the last ten input component changes made by the student. It is this list that the goals and

cases use as a search space.

 44

After the test subjects finished each lab a brief survey about the helpfulness of EINO was

administered. The survey is seen below, Figure 13, consisted of eight (8) questions. From

these completed EINO surveys, it was discovered that the most common help message presented

to the student is “the lab is Not On” message, Figure 5. There were two significant questions on

the survey that dealt with the helpfulness of EINO. The first question dealt with the

understandable of EINO. Was EINO easy to understand? Ninety three percent of the surveys

responded that EINO was easy to understand. The other seven percent did not fill out the rest of

the survey due to the fact that the test subject did not trigger any response from EINO on the one

lab. The second question dealt strictly with the helpfulness of EINO. The question asked the

test subject to rank the helpfulness of EINO on a scale of one to ten with ten as the best. The

overall results of this question can be seen in Table 7.

Table 7: Overall Results of Helpfulness of EINO

EINO Helpfulness Score Percent
10 53%
9 13.3%
8 13.3%
7 7%
0 13.3%

This signifies that almost eighty percent of the test subjects gave the helpfulness of EINO an

eight or higher. There were two zeros that were given by the respondents. The first zero was

given because the test subject never triggered a response from EINO on one of the labs. The

other zero was given because one student thought that EINO kept offering help a little too often

and found it annoying rather than helpful. The EINO helpfulness score can be broken down by

 61

each lab. Table 8 shows the helpfulness score for lab 2-1. Table 9 shows the helpfulness score

for lab 4-2-4-1 and Table 10 shows the helpfulness score for lab 6-2-1.

Table 8: Helpfulness Score for Lab 2-1

EINO Helpfulness Score Percent
10 40%
9 20%
8 20%
7 20%

Table 9: Helpfulness Score for Lab 4-2-4-1

EINO Helpfulness Score Percent
10 80%
8 20%

Table 10: Helpfulness Score for Lab 6-2-1

EINO Helpfulness Score Percent
10 40%
9 20%
0 40%

6.8 Summary

 The EINO intelligent tutoring system had two chief factors to prove. The first factor is

the functionality of the system. Does the EINO system perform as expected? This factor is

proven in the Not On Test, Single Goal Test, Group Goal Test, Just in Time Hint Test, Case

Test, and the Questions Test. Each of these tests were designed to test part of the functionality

of the EINO system. When the results of the tests are combined, a fully functioning EINO

 62

intelligent tutoring system is proved. The second factor to prove is the helpfulness of the EINO

system. The premise resides in the necessity of a fully function tutoring system. However,

there is no single way to prove a system is helpful as the term helpful has different meaning to

every individual. The way that was used to prove the helpfulness of the EINO system is by

having multiple test subjects fill out a survey. Almost eighty percent of the test subjects gave

the helpfulness of EINO an eight or higher on a ten (10) point scale. Another part of the

helpfulness of the EINO system is the comprehension level of the system. There could be a

chance that the EINO system is helpful yet difficult to understand. This survey also attempted

to ascertain how easy EINO is to understand to students involved in the use of the program.

According to the survey ninety-three percent of the test subjects responded that EINO was easy

to understand. The tests have proved that the EINO intelligent tutoring system functions

properly and that a good percentage of users find EINO “helpful”. These findings, validate the

two factors stated at the beginning of this chapter regarding the functionality and usefulness of

the EINO intelligent Tutoring system for use in the classroom or lab situation.

 63

CHAPTER 7: SUMMARY, CONCLUSION & FUTURE WORK

A summary of the research is conducted in this chapter by readdressing the problem

statements made in chapter three and examining them in detail. The possible solutions to the

problems raised are listed along with their usefulness. Conclusions are then drawn from the

testing completed in Chapter 6. The last section of this chapter proposes future directions and

work that could extend the work described in this thesis.

7.1 Summary

 Overall, the concept of an intelligent tutoring system utilizing a computer is not a new

idea. In fact, the ANDES system has been in continuous development for over ten years and is

still undergoing changes. With each new development and application of an intelligent tutor,

the design and process of these systems must also change.

 Chapter Three stated the problems that this thesis has addressed. This section reviews

these statements and discusses how these problems were resolved. As discussed in chapter

three, there are two key types of help or instruction. The first type of help that is offered is

conceptual assistance. Conceptual help involves helping the student understand the theory

behind what is occurring in the particular experiment. The EINO intelligent tutoring system

solves the problem of providing conceptual help to the student in several of ways. The first way

is the general help button. At a click of a button the student has access to a list of the major

components in the particular lab. Then by clicking on the subject matter the student is having

problems with solving, the student has a resource of conceptual help in any experiment. The first

resource the student has access to is the theory tab, which is displayed by default on start up of

 64

REFERENCES

[1] A. S. Gertner, C. Conati, and K. VanLehn, "Procedural help in Andes: Generating hints
using a Bayesian network student model," presented at Fifteenth National Conference on
Artificial Intelligence, 1998.

[2] Q. Simulations, "Quantum Tutors - Learning Principles of AI Technology," 2002.

[3] G. Orsak, S. Wood, S. Douglas, D. M. Jr., J. Treichler, R. Athale, and M. Yoder, The
Infinity Project Engineering our Digital Future. Upper Saddle River, NJ: Pearson
Prentice Hall, 2004.

[4] K. VanLehn, C. Lynch, K. Schulze, J. A. Shapiro, R. Shelby, L. Taylor, D. Treacy, A.
Weinstein, and M. Wintersgill, "The Andes Physics Tutoring System: Lessons Learned,"
International Journal of Artificial Intelligence in Education, vol. 15, 2005.

[5] A. Aamodt and E. Plaza, "Case-Based Reasoning: Foundational Issues, Methodological
Variations, and System Approaches," AICom - Artificial Intelligence Communications,
vol. 7, pp. 39 - 59, 1994.

[6] M. Gu and A. Aamodt, "Dialog Learning in Conversational CBR," presented at
Nineteenth International Florida Artificial Intelligence Research Society, Melbourne
Beach, Florida, 2006.

[7] P. M. Regan and B. M. Slator, "Case-based Tutoring in Virtual Education
Environments," presented at Collaborative Virtual Environments Proceedings of the 4th
international conference on Collaborative virtual environments, 2002.

[8] K. P. Jantke, G. Degel, G. Grieser, M. Memmel, O. Rostanin, and B. Tschiedel,
"Technology Enhanced Dimensions in e-Learning," presented at International Conference
on Interactive Computer Aided Learning, 2004.

[9] K. P. Jantke and R. Knauf, "Didactic design through storyboarding: standard concepts for
standard tools," presented at ACM International Conference Proceeding Series; Vol. 92
Proceedings of the 4th international symposium on Information and communication
technologies, 2005.

[10] R. Nkambou and F. Kabanza, "Designing Intelligent Tutoring Systems: A multiagent
Planning Approach," ACM SIGCUE OUTLOOK, vol. 27, pp. 46-60, 2001.

 69

