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ABSTRACT 

Devices with ZnCdS/ZnS heterojunction partner layer have shown better blue photon 

response due to higher band gap of these compounds as compared to devices with CdS 

heterojunction partner layer. CdS heterojunction partner layer has shown high photovoltaic 

conversion efficiencies with CIGS absorber layer while efficiencies are lower with CuIn1-xGaxS2 

(CIGS2). A negative conduction band offset has been observed for CdS/CIGS2 as compared to 

near flat conduction band alignment in case of CdS/CIGS devices, which results in higher 

interface dominated recombination. Moreover, it has been predicted that optimum band offsets 

for higher efficiency solar cells may be achieved for cells with alternative heterojunction partner 

such as ZnS. With varying ratio of Zn/ (Zn+Cd) in ZnxCd1-xS a range of bandgap energies can be 

obtained and thus an optimum band offset can be engineered.  For reducing interface dominated 

recombination better lattice match between absorber and heterojunction partners is desirable. 

Although CdS has better lattice match with CuIn1-xGaxS2  absorber layer, same is not true for 

CuIn1-xGaxS2 absorber layers. Utilizing ZnxCd1-xS as heterojunction partner provides a range of 

lattice constant (between aZnS= ~5.4 Ǻ and aCdS= ~5.7 Ǻ) depending on Zn/(Zn+Cd). Therefore 

better lattice match can be obtained between heterojunction partner and absorber layer. Better 

lattice match will lead to lower interface dominated recombination, hence higher open circuit 

voltages.  

In the present study chemical bath deposition parameters are near optimized for high 

efficiency CIGS2 Solar cells. Effect of various chemical bath deposition parameters on device 

performance was studied and attempts were made to optimize the deposition parameters in order 

to improve the device performance.In/(In+Ga) ratio in absorber layer is varied to obtain good 
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lattice match and optimum band alignment. Solar cells with conversion efficiencies comparable 

to conventional CdS/CIGS2 has been obtained with ZnxCd1-xS /CIGS2. High short current as 

well as higher open circuit voltages were obtained with ZnxCd1-xS as alternative heterojunction 

partner for CIGS2 solar cells as compared to SLG/Mo/CIGS2/ CdS / i-ZnO/ZnO:Al.  
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1 INTRODUCTION 

World annual energy consumption is predicted to reach 30 terawatt-years (TWyr) by 

2050 as compared to current 13 TWyr. On the other hand, the world is heading towards global 

energy crisis due to a decline in the availability of oil, and increasing carbon dioxide emissions 

that are causing global warming. This has enhanced interest in the development of clean 

renewable resources of energy production. Some of the major contenders for alternative energy 

resources are hydroelectric, tidal, nuclear and solar energy. 14 TWyr solar energy is incident on 

the globe just in one hour. Thus solar has great potential to meet a large fraction of future needs. 

Photovoltaic (PV) cell is a semiconductor device that generates electricity when it is 

illuminated. Although the French scientist Edmund Becquerel observed photovoltaic effect in 

1839, it was not fully comprehended until the development of quantum theory and solid state 

physics in early to middle 1900s. Since its first viable use in powering orbital satellites of the US 

space programs in the 1950s, photovoltaics have made significant progress with total U.S. 

photovoltaic module and cell shipments reaching $131 million dollars in 1996. During the last 

decade, world production of PV cells/modules has been increasing at >35% yr–1, exceeding >2 

GW in 2006  

The main barrier impeding the expansion of the terrestrial application of photovoltaics is 

the high cost of the solar systems. Historically, crystalline silicon (c-Si) has been the light-

absorbing semiconductor in most solar cells, even though it is a relatively poor absorber of light 

and requires considerable thickness (several hundred microns) of material. The high cost of 

crystalline silicon wafers (which makes up 40-50% of the cost of a finished module) has led the 

industry to look for cheaper materials to make solar cells. thin film solar cells have the potential 
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to become an economically competitive energy source because they can be produced by low cost 

deposition techniques on inexpensive substrates with lower material usage. The most common 

materials are amorphous hydrogenated silicon (a-Si:H), and the polycrystalline materials: 

cadmium telluride (CdTe) and copper indium-gallium diselenide (CIGS). 

Polycrystalline thin films can also be more forgiving of minute amounts of impurities in 

the material due to feedstock or relaxed manufacturing standards compared to single-crystal 

devices. Thin films are also tolerant to, “imperfect” boundaries between the crystallites, whereas 

single-crystal devices typically demand significant consistency from one unit cell to the next. 

Such tolerances result in thin-films being more amenable to large-scale production. While all 

thin-films share these benefits, polycrystalline thin-film cells currently have the benefit of greater 

stability than the amorphous-silicon thin-film cells. 

At present, research is concentrated on a-Si:H, CdTe, and CIGS thin film solar cells and 

modules as major contenders for large-scale production. 
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2 PHYSICS OF SOLAR CELLS 

In an isolated atom, the electrons can have only discrete energy levels as described by the 

Bohr atom model. When N atoms are brought together to form a crystal, the N-fold degenerate 

energy level splits in N separate and closely spaced energy levels consistent with Pauli exclusion 

principle. A further reduction in lattice spacing causes energy bands to merge and split again into 

two bands containing 4N bands each. These bands may overlap or may be separated by a region, 

which designates energies that an electron in solid cannot possess. At absolute zero, the lower 

band is completely filled and known as the valence band. The upper band is totally empty and 

labeled as the conduction band. 

In conductors, the conduction band overlaps with the valence band so that the electrons 

can accelerate in the material leading to high electric conductivities. In the insulators, the 

bandgap is very large and hence electrons cannot be easily excited from the valence band to 

conduction band, making the material highly insulating. In semiconductors, the bandgap is not as 

large as in the insulators usually it is less than 3 eV, allowing the electrons to be excited from 

valence band to conduction band by thermal vibrations or by energetic photons. 

The probability that an energy state with energy E being occupied with an electron is 

given by the Fermi distribution function 

F(E) = 1/(1+e(E-E
F

)/kT)………………2.1  

 

where k is the Boltzmann constant, T is the absolute temperature, EF is the Fermi energy. 



4 

 

The Fermi level is defined as the energy level where the probability of finding an electron 

is half. It can also be defined as the energy level below which all states will have at most two 

electrons of opposite spin according to Pauli exclusion principle. 

 

EF = (EC + EV)/2 + kTln(NC/NV)/2………2.2 

 

where EC is the lowest energy level in the conduction band, EV is the highest energy level 

of the valence band, NC and NV are the effective density of state in the conduction band and 

valence band respectively. 

Besides the temperature, the conductivity of a semiconductor is generally sensitive to, 

magnetic field, illumination and minute amount of impurity atoms. Semiconductors are classified 

in two categories: intrinsic and extrinsic. At finite temperatures, thermal vibrations can excite 

electrons from the valence band to the conduction band and leave a hole in valence band. 

Intrinsic semiconductor has low concentration of active impurities as compared to thermally 

excited electrons. An extrinsic semiconductor is doped with donor or acceptor impurities. When 

a semiconductor is doped with a donor impurity, it has an extra electron, which makes it a 

negative carrier type i.e. an n-type semiconductor. Similarly, when an acceptor impurity is added 

it gives rise to extra holes resulting in a positive carrier type i.e. p-type semiconductor. This 

facility of semiconductors assuming a negative or positive charge carrier type makes it one of the 

most important materials for development of electronic devices. 

 

 



2.1 p-n Junctions 

When p-type and n-type material are kept in close contact a p-n junction is formed. Since 

several types of solar cells are p-n junctions, a precise understanding of p-n junction is crucial for 

good understanding of a solar cell. The p-n junctions can be classified as homojunctions and 

heterojunctions. 

2.1.1 Homojunctions   

Homojunctions are junctions between two portions of same material one doped n-type 

and other doped p-type. A band diagram of a typical homojunction is shown in Figure 2.1, where 

Evac is the vacuum level, EC is conduction band bottom edge, EV is valence band top edge, EF is 

the Fermi level, Eg is the energy band gap, χs is the electron affinity of the semiconductor (Please 

correct elsewhere), Vd is the diffusion potential and Φ1 and Φ2 are the work functions for p and n 

side respectively.  
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Figure 2.1: Energy band diagram of a p-n homojunctions. 
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Since the work functions are different on p and n sides, there exists an internal electric 

field leading to band bending. Diffusion potential Vd (Vd= Φ1- Φ2) results in electron flow from 

n-type to p-type in order to equalize Fermi level on both sides when junction is formed leading to 

positively charged ionized donors near the interface on n-type side and negatively charged 

ionized acceptors near the interface on p-type side.  

Vd = (kT/q) ln(NAND /ni
2) .......................2.3 

Where NA and ND are acceptor and donor concentration respectively and ni is the intrinsic 

concentration. To a good approximation depletion edges at xn and xp can be considered to be 

abrupt. Overall charge neutrality must still hold.  

ND xn = NA xp…………………………… 2.4 

The total space charge region width is given by 

Wd = [2εs Vd[NAND/( NA+ND)]/q]1/2………………2.5 

 

The resulting space charge region distribution at thermal equilibrium, electric field 

distribution and potential distribution is shown in Figure 2.2. 
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Figure 2.2: (a) Metallurgical junction between p and n -type semiconductors (b) Space charge 

region distribution at thermal equilibrium (c) Electric field distribution (d) Potential 

distribution 

2.1.2 Heterojunctions 

A heterojunction is formed when two semiconductors of p and n-type are placed in 

intimate contact on atomic level. Typically, the two semiconductors would have different band 

gaps and electron affinities. The heterojunctions may have a discontinuity between valence and 
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conduction bands, which forms due to electron affinity mismatch between the two 

semiconductors. Anderson model incorporates discontinuities in material properties as εs, χ, and 

Eg across an abrupt metallurgical junction interface. Anderson’s model disregards the presence of 

recombination-generation in depletion region, interface states and dipoles.  
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Figure 2.3: Schematic Anderson heterojunction with positive ∆EC and ∆EV 

 

∆EC = ( χ2- χ1),………………………………..2.6 

∆EV  = ( χ2- χ1) + Eg2- Eg1…………………….2.7 

The total built in potential, Vd, is equal to the sum of partial built in voltages Vd1 and Vd2, 

where Vd1 and Vd2 are the electrostatic potentials of the two semiconductors. Most of the thin 

film solar cells are based on heterojunctions. Carrier transport properties of heterojunctions are 

generally dominated by phenomena in the interface region. The current transport in the depletion 
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region is variously attributed to recombination, to tunneling or to combinations of tunneling and 

recombination involving energy levels at the surface. If ∆EC >0 then a spike is formed in 

conduction band at the junction and for ∆EC < 0 a cliff in conduction band is formed. Usually the 

offset in conduction band is studied extensively in photovoltaic community as can it affect the 

flow of electron significantly. 

 

2.2 Solar Cells 

The solar cell can convert sunlight directly to electricity with good conversion efficiency. 

Therefore, it is already the leading source of energy in the space and also is an important 

candidate for alternative terrestrial energy. The solar cell efficiency depends on the spectral 

distribution of the radiation incident on the solar cell from the sun. 

2.2.1 Solar Spectrum 

The intensity of solar radiation in the free space at the average distance of earth from sun 

is defined as solar constant and has a value of 1353 W/m2. The degree to which atmosphere 

affects the solar spectrum received at earth is defined as air mass. Geometrical effects, varying 

path length through atmosphere described by air-mass AMmr. 

mr = sec z, 

where z is the angle of deviation from the normal incidence.  Terrestrial sunlight varies 

greatly both in intensity and spectral composition. To allow meaningful comparison between the 

performance of different solar cells tested at different locations AM1.5 is used standard spectra 

(Figure 2.5). 
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Figure 2.4: illustration of solar radiation spectrum AMmr. Where mr stands for sec(z). 
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Figure 2.5: Standard AM1.5 solar spectrum. 

2.2.2 p-n Junction Solar Cells 

A typical solar cell is a diode that can be illuminated. When the solar cell is illuminated, 

photons with energies greater than the bandgap (Eg) can be absorbed. Photons with energy below 
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Eg are not absorbed and hence make no contribution to the cell output. Energy higher than Eg is 

usually converted to thermal energy. When the device is illuminated with photon having energies 

greater than the bandgap of absorber layer an electron-hole pair is created by excitation of 

electrons in the conduction band (process 1), leaving behind holes in valence band. The 

generated electrons can reach space-charge region (SCR) boundary, provided they do not 

recombine during diffusion process (process 2). The electrons which reach SCR boundary are 

swept across the space charge region assisted by the electric field (electric potential gradient) 

drift (process 3). Once electrons reach n-type layer they become majority carrier hence 

contributes to the external electric current. The generated electrons can recombine with holes. 

This can occur in the bulk (process 4) of film or at the interface of the p-n heterojunction 

(process 5). 
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Figure 2.6: A typical band diagram of CIGS/CdS Solar cell 
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Ideal current-voltage (I-V) characteristic is shown in Figure 2.7 
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Figure 2.7: Ideal current-Voltage characteristics of a solar cell in the dark and under illumination. 

 

The relationship between the current density, J(V) with the applied bias voltage, V of a 

solar cell in the dark is given by the typical p-n junction diode equation given by 

J(V) = J0(eqV/AkT-1) ……………………2.8  

where J0 is the reverse saturation current density, q is the electron charge, A is the diode 

ideality factor, k is the Boltzmann constant, and T is the absolute temperature. 

Under illumination a current JL is generated, therefore overall current density equation 

becomes 

J(V) = J0(eqV/AkT-1) - JL .............................2.9 
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Equivalent circuit of a solar cell is shown in Figure 2.8 where IL is light generated 

current, ID is diode current, IP is current through parallel resistance and I= IL-ID -IP.. Excitation of 

excess carriers due to illumination results in flow of photogenerated current. The photogenerated 

current is represented by a constant current source JL is in parallel with the junction.  
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Figure 2.8: Equivalent circuit diagram for a solar cell (a) ideal solar cell in the dark and under 

illuminated condition (b) non-ideal solar cell with series and shunt resistance in the dark and 

under illuminated condition. 

 

In non-ideal cells, series resistance, RS > 0 and parallel resistance or shunt RP < ∞ results 

in power losses. An equivalent circuit for such a cell is shown in Figure 2.8 (b) and a Current-
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Voltage characteristic is shown in Figure 2.9, Figure 2.10. An increase in the series resistance 

does not affect the open circuit voltage, Voc while the short circuit current, Jsc can be reduced 

with significant increase in the series resistance. Similarly, a reduction of shunt resistance does 

not affect Jsc, while significant reduction in the Rp affects Voc considerably. Introduction of 

series and shunt resistance in the current equation of the ideal solar cell affects the fill factor as it 

changes the maximum power point. 

The current density for non-ideal solar cells under illuminated condition is given by 

[ ]LPS
AKTJRVq JRJRVeJVJ S −−+−= − /)()1()( /)(

0   ………….2.10 

 

Figure 2.9: Effect of series resistance on short circuit current. 
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Figure 2.10: Effect of shunt resistance on open circuit voltage 

Short circuit current (JSC) is current is defined as current at zero bias, 

JSC = -JL………………..2.11 

This relation holds only for ideal case. Open circuit voltage is obtained when current 

becomes zero. 

VOC = (AkT/q) ln((JL/J0)+1) ≈ (AkT/q) ln (JL/J0)…………… 2.12 

Fill factor is the measure of squareness of the J-V curve. 

FF = VmpJmp/VOCJSC……………… 2.13 

Where Vmp and Jmp are the voltage and current density corresponding to maximum power 

point on I-V curve. 

Cell efficiency is given by 

η = Pm / PS =VOC|JSC|FF/PS…………………..2.14 

Where Pm is the maximum power and PS is total solar input power. 
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2.2.3 Quantum efficiency 

The quantum efficiency is defined as the number of electron-hole pair collected for each 

incident photon. 

QE(λ) = Collection carriers / N incident photon (λ) …………………………………...2.15  

One of the key factors that determine the quantum efficiency is absorption coefficient α. 

Since α is a function of wavelength, the wavelength range in which appreciable photocurrent can 

be generated is limited. The long wavelength cutoff (λc) is determined by the bandgap of 

absorber layer. For wavelength higher than λc the value of α is too low to allow band-to-band 

absorption. The short wavelength cutoff is determined by the least bandgap energy of among all 

window layers. Figure 2.11 shows various losses in a typical chalcopyrite solar cell. 

 

 

 

Figure 2.11: Quantum efficiency plot showing various losses in solar cell 
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3 CHALCOPYRITE SOLAR CELLS 

Highly efficient I-III-VI2 solar cells are fabricated with a multilayer structure as shown in 

Figure 3.1. The structure of the CIGS2 solar cells used for this work has a structure sodalime 

glass/Mo back contact layer/CIGS2/heterojunction partner/i-ZnO/ZnO:Al window bilayer/Ni/Al 

front contact grid. The inexpensive substrate and the fabrication techniques make the solar cells 

cost effective. The general process temperatures are approximately 500-550 °C. 

Glass
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Heterojunction Partner 
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ZnO:Al

Front contact Cr/Ag
External Load

Anti Reflection Coating

Light hν

Glass

Mo Absorber Layer
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External Load

Anti Reflection Coating

Light hν

 

Figure 3.1: Schematic representation of the standard structure of the chalcopyrite solar cell 

 

Soda lime glass is used as the substrate, as it is inexpensive and readily available. It has a 

softening temperature higher than the processing temperature for device formation. At higher 

processing temperatures, sodium diffuses through glass to the growing absorber layers, which 

can improve the film morphology and increase the conductivity of the film [3]. A thick (300-700 

17 

 



18 

 

nm) Mo layer deposited by sputtering serves as back contact. Molybdenum forms a good ohmic 

contact and also can form MoS2 which can improve adhesion.. A p-type absorber layer of copper 

indium gallium sulfide (CIGS2) of thickness ~2 µm is deposited on the Mo-back contact. 

Absorber layer can be prepared by co-evaporation process[4]-[6], spray pyrolysis [7] 

electrodeposition [8] [9] sulfurization [10]-[15] of metallic precursors (Cu, Ga, In) deposited by 

DC magnetron sputtering. CIGS2 thin film absorber layer are usually grown in both Cu rich. All 

absorber layers used in this study are grown by sulfurization of metallic precursors Cu+Ga and 

In, in copper rich regime. CIGS2
 
grown in copper excess composition forms Cu2-xS quasi-liquid 

phase at the grain boundaries and on the surface of CIGS2 thin film. Cu2-xS is a quasi-liquid 

phase and acts as a flux during the growth of CIS2 thin films [16]-[18]. Film grown in copper 

rich regime requires the removal of unavoidable secondary phase Cu2-xS segregating at the 

surface by etching in a dilute KCN solution [15]. Etching leaves number of dangling bonds on 

the surface of absorber layer, which can act as recombination center for charge carriers. For 

passivating these dangling bonds, absorber layer is treated with a dilute solution of hydrogen 

peroxide and sulphuric acid. An n-type heterojunction partner is deposited by chemical bath 

deposition method. The window bilayer consists of 50 nm undoped i-ZnO and 500 nm of Al 

doped ZnO:Al transparent and conductive oxide, deposited by RF magnetron sputtering. ZnO is 

a wide bandgap material therefore; it allows most of the light spectra to be transmitted and has 

high conductivity. Ni/Al or Cr/Ag Front contact grid deposition by e-beam or thermal 

evaporation through a metal mask completes the cell.  



3.1 Chalcopyrite absorber layer 

One of the most important properties of I-III-VI2 semiconductor family is that these are 

direct bandgap materials thus have high absorption coefficient. Therefore, these materials 

absorbs light more efficiently (equation 3.1), so that a small thickness of few µm is adequate for 

absorption of most of the incident sunlight. The optical absorption coefficient is a function of 

energy of incident photon (Figure 3.2). 

 

I(hν,x) = I(hν,0)e-α(hν)x............................31 

 

c-Sic-Si

 

Figure 3.2 Dependence of the absorption coefficient on photon energy [19]. 

 

The typical absorption coefficient for CIS2 is in the range of 105/cm for a photon energy 

of hν = Eg+ 0.2 eV, where Eg is bandgap energy of respective material [20]. 
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Copper indium sulfide, CIS2 and Copper Gallium Sulfide, CGS2 belong to I-III-VI2 

material family which crystallizes in tetragonal chalcopyrite structure. The chalcopyrite structure 

of CIS2 is similar to ZnS structure in which Zn atoms are replaced alternatively by Cu(I) and 

In(III) atoms. Each Cu and In atom has four bonds with S (VI) atom. In turn, each S atom has 

two bonds to Cu and two to In (Figure 3.3). Since the strength of the I-VI and III-VI bonds are in 

general different, the ratio of lattice constants c/a is not exactly 2. The quantity 2-c/a is a measure 

of the tetragonal distortion in chalcopyrites.  

 

 

Figure 3.3: chalcopyrite structure [21] 

 

For CIS2 the lattice parameters are a=5.523 Ǻ and c=11.141 Ǻ while for CuInS2 the 

lattice a=5.78 Ǻ and c= 11.62 Ǻ. Due to multitude of elements and compounds involved in 
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formation of I-III-VI2 compounds the growth of films is extremely complex. The existence range 

of α phase CIS2 in Cu2S-In2S3 phase diagram at room temperature does not even include 25% 

stoichiometric content of copper. Therefore, there is a tendency of phase separation at room 

temperature. When CuInS2 grown in copper rich regime, the excess Cu2-xS quasi-liquid phase 

will segregate at the surface and grain boundaries.  

3.2 Need and selection of heterojunction partners 

In early stages of development of chalcopyrite solar cells, CdS layer deposited by 

evaporation was used as n-type heterojunction partner [22]. Owing to high resistivity and 

relatively lower bandgap (2.4 eV) of CdS layer, the solar cells had low values of fill factor and 

poor blue photon response. To circumvent these shortcomings CdS layer was partially replaced 

by ZnO layer which has higher band gap (~3.2 eV) [23]. Further improvements led to replace 

evaporated CdS with chemical bath deposited CdS layer [24[25]. Attempts to completely replace 

CdS and directly sputter deposit ZnO layer on absorber layer has not yet been successful. 

The chemical bath deposited heterojunction partners can easily achieve surface 

passivation and junction formation. Even though p-n junction will form between n+ TCO’s 

(transparent conducting oxides) and p-type absorbers, the quality of the junction is improved 

considerably with the introduction of an intermediate n-type layer(s). The advantages of using 

intermediate layers deposited by CBD are as follows: 

As heterojunction partners used generally are highly resistive, they serve as intermediate 

layers that can prevent shunting between the TCO and the absorber.  

These layers can protect the absorber surface from damage by high-energy ions during 

the n+ ZnO deposition by RF-sputtering  
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The chemical constituents of buffer material passivate surface defects and/or dope the 

near-surface layer of the absorber layer. 

The selection criteria for heterojunction partner is listed below: 

To form a good junction partner with a p-type CIGS absorber, a buffer material should be 

n-type. 

Heterojunction partner layers with optimum resistivity are required to reduce the 

possibility of shunting of a junction without excessively increasing the series resistance. 

Lattice parameters for heterojunction partner layer must be as close as possible with those 

of the absorber layer to reduce lattice mismatch hence also the interfacial recombination velocity. 

Band gap of heterojunction partners need to be sufficiently wide (>3.2 ev), to avoid blue 

photon absorption in this layer. 

Another important heterojunction-material selection criterion is its electron affinity, 

which will determine discontinuities in the energy bands at the buffer/absorber interfaces. 

Solar spectrum above energy 3.2 eV is absorbed in window layer (ZnO, Eg=3.2 eV) 

however it results in a photocurrent loss of less than 1 mA/cm2. CdS (Eg = 2.4 eV), however, can 

lower the photocurrent through absorption by up to six mA/cm2 by absorbing available solar 

spectrum above 2.4 eV. By making the CdS buffer layer thinner, the absorption losses are 

reduced. Thus, part of the short-wavelength current loss is recovered. However, heterojunction 

partners with bandgap above 3.2 eV will nearly eliminate these absorption losses. 

3.3 Heterojunction materials used in I-III-VI2 Solar cells 

II-VI compounds such as CdS, ZnS, CdSe, ZnSe and ternary ZnxCd1-xS etc are widely 

used as heterojunction partners for chalcopyrite solar cells,  II-VI semiconductor materials can 



crystallize in either the cubic zinc-blende (sphalerite) (Figure 3.4) (beta) phase or the hexagonal 

wurzite (alpha) phase (Figure 3.5). 

Zinc-blende structure: Interpenetrating face-centered cubic sublattices of Zn and S are 

separated by a vector a/4 [111]. Each cation (anion) atom is tetrahedrally coordinated with four 

anions (cations). Alternatively, the structure can be described as an f.c.c. anion sublattice with 

alternate tetrahedral sites occupied by cations (Figure 3.4). The distance between nearest 

neighbor is √3a/4. The stacking of the ZnS/CdS dimers along the <111> direction is ABCABC. 

Bonding in Zinc blende structure is a mix of covalent (sp3 hybrids) and ionic bonding, the degree 

of which depends on the difference in electronegativity between the anion and the cation. 

Number of broken bonds per unit area is lowest on (111) surface, and higher on (001) and (110). 

On the other hand, the electrostatic energy is the lowest on (110) surface. Therefore, (110) 

Surface is the most stable lowest energy, surface for the zincblende structure.  

 

Cation AnionCation AnionCation Anion  

Figure 3.4: Zinc blende structure 
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Wurtzite structure:  In the wurtzite structure, the S or the Zn atoms form a hcp array, 

with half of the tetrahedral sites occupied by another kind of atoms. Bonding is a mix of sp3 

covalent bonds and ionic bonds due to the large electronegativity difference. Thin films of 

wurtzite compounds tend to grow with strong [0001] texture. The tetrahedrons in wurtzite all are 

oriented in one direction and produce the hexagonal (six fold rotational) symmetry. The structure 

of wurtzite phase can be represented by stacking layers of tetrahedrons using a sequence of 

ABAB. 

 

Cation AnionCation AnionCation Anion  

Figure 3.5: Wurtzite structure 

 

24 

 



Table I: Various properties of ZnS and CdS at 300K [26] 

Property / Material ZnS CdS 

Zinc Blende Lattice Parameter a0 at 300 oK 0.541 nm 0.582 nm 

Zinc Blende Nearest-Neighbor Dist. at 300 oK 0.234 nm 0.252 nm 

Zinc Blende Density at 300 oK 4.11 g.cm-3 4.87 g.cm-3 

Wurtzite Lattice Parameters at 300 oK     

a0 0.3811 nm 0.4135 nm 

c0 0.6234 nm 0.6749 nm 

c0/a0 1.636 1.632 

Wurtzite Density at 300 oK 3.98 g.cm-3 4.82 g.cm-3 

Phase Stable at 300 oK  
Zinc blende & wurtzite 

(both occur in nature) 
Wurtzite  

Melting Point  
1850 oC 

wurtzite, 150 atm 

1750 oC 

wurtzite, 100 atm 

Refractive Index zinc-blende structure 2.368   

Refractive Index wurtzite structure 2.356, 2.378 2.506, 2.529 

Energy Gap Eg zinc blende structure 3.68 eV, Direct 2.50 eV, Direct 

Energy Gap Eg wurtzite structure 3.911 eV, Direct 2.50 eV, Direct 

3.4 Cadmium sulfide 

CdS is the most widely used heterojunction partner for I-III-VI2 solar cells. A record 

efficiency of 19.5% has been obtained on CIGS solar cells with CdS heterojunction layer 

deposited by chemical bath [26] http://www.semiconductors.co.uk/propiivi5410.htm  
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 [27]. Though high efficiencies have been achieved with CIGS absorber layer using CdS 

as heterojunction partner same has not been achieved for CIGS2/CIGSeS solar cells. 

A fundamental limit on the efficiency of the CdS/ I-III-VI2, cell is the low value of the 

bandgap of the CdS window layer. A current loss of 6 mA/cm2 for AM1.5 global spectrum at 

100 mW/cm2 equivalent intensity results as a consequence of high absorption in CdS 

heterojunction layer owing to its lower band gap (~2.4 eV) (Figure 3.6). This loss can be 

overcome by using higher bandgap energy materials as heterojunction partners for CIGS2 solar 

cells. 
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Figure 3.6: AM1.5 Solar Spectrum and maximum attainable short circuit current density with 

various band gap energies. 
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Another consideration for heterojunction formation is band offset. A condition near of 

perfect match without the formation of either a spike or a cliff is achieved in high efficiency 

CIGS solar cells with CdS a heterojunction partner because the difference in the bandgap values 

is compensated by the difference between the electron affinities [28]. While a cliff in conduction 

band is postulated when the conduction band minimum  for CIGS2 lies above the conduction 

band minimum  of CdS [28][29]. This leads to reduced open circuit voltage and higher interface 

dominant recombination [30] [31]. A conduction band offset of -0.45 (±0.15) eV and a valence 

band offset) of -1.06 (±0.15) eV was obtained for CIGS2/CdS junction in earlier studies at the 

Florida Solar Energy Center as shown in Figure 3.7. Optimum conduction band matching can be 

achieved if heterojunction partners with higher electron affinities i.e. higher conduction band 

position are utilized with absorbers having optimized In/(In+Ga) ratio. As the conduction band 

energy position of CIGS2 is a function of In/ (In+Ga) ratio. 

 

Figure 3.7 Schematic band diagram for CIGS2/CdS interface [29]  
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Another consideration is lattice mismatch in CIGS2/CdS solar cells. In case of         

CuIn1-xGaxSe2 (lattice parameter ~5.8 Ǻ, when x =0) CdS (lattice parameter ~5.8 Ǻ) has a better 

lattice match. However same is not true for CuIn1-xGaxS2 (lattice parameter ~5.5 Ǻ, when x = 

0)/CIGSeS as absorber layers. The difference in lattice constant between the heterojunction 

components results in a periodic array of dangling bonds. The edge dislocations ideally form a 

regular net at the interface leading to current paths that decrease VOC and fill factor. 
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Edge dislocation 

Figure 3.8 Schematic diagram of the interface of two single crystal with different lattice 

parameters, resulting in formation of edge dislocation. 

3.5 Zinc sulfide  

ZnS with wide band gap energy (3.8eV) is an attractive heterojunction partner because it 

is transparent to almost the complete solar spectrum (Figure 3.6). ZnS as heterojunction partner 

has shown better blue photon response resulting in higher short circuit current ZnS as 

heterojunction partner has also shown a high conduction band offset (spike) with CIGS  absorber 
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layer [32]. CIGS thin film solar cells with ZnS as the heterojunction partner have achieved 

efficiencies comparable to those achieved by CIGS thin film solar cells with CdS as the 

heterojunction partner [32]-[34]. 

3.6 Zinc cadmium sulfide 

Utilization of ZnxCd1-xS as heterojunction partner can improve the performance of 

chalcopyrite solar cells due to an increase in the photo-generated current. The optical bandgap of 

Zn1-xCdxS varies between bandgap values of ZnS and CdS [35]. Increased blue photon 

transparency results in higher current. 

Another important consideration is decrease in electron affinity with increasing Zn 

content in the film which can shift the position of conduction band higher. Thus, the conduction 

band alignment can be engineered by varying composition of Zn1-xCdxS films. 

The lattice constant of Zn1-xCdxS unit cell is dependant on the composition of the Zn1-

xCdxS films. There is considerable disagreement in the literature over the variation of lattice 

constants with respect to composition for Zn1-xCdxS [35]-[40], most of the publications reporting 

a negative variation from the linearity. However, the varying composition of film can minimize 

the lattice mismatch between absorber layer and heterojunction partner. Therefore, the density of 

dangling bonds (dislocations) can be reduced leading to better VOC and fill factors. 

 

3.7 Chemical bath deposition technique 

In the present work, heterojunction layer deposition has been carried out using chemical 

bath deposition (CBD). Several techniques such as thermal evaporation, spray pyrolysis, 

molecular beam epitaxy, sputtering, chemical bath deposition, close space sublimation, and laser 
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ablation have been used to produce II-VI thin films. Among these, CBD method (Figure 4.1) is 

most commonly used because it is simple, and economically reproducible technique. It can be 

applied in large area deposition at low temperatures. CBD technique is based on the controlled 

release of metal ion (M2+) and sulphide (S2−) ions in an aqueous bath in which the substrates 

are immersed. In this process, release of metal ion (M2+) is controlled by using a suitable 

complexing agent. The deposition begins with nucleation followed by growth in which the 

thickness of film increases with duration up to the terminal phase. 



4 EXPERIMENTAL TECHNIQUE 

4.1 Chemical Bath Deposition Technique:  

Aqueous solution of NH4OH, CdSO4, ZnSO4 and  NH2(CS)NH2 were added to an organic 

solvent in suitable concentration. Initially aqueous  solution of  ZnSO4 , CdSO4, and NH4OH 

were mixed in a organic solvent. The temperature of solution increased to  approximately 80°C 

and aqueous solution of SC(NH)2 is added. At this stage the samples were introduced in the 

solution. The bath was maintained at 80oC with constant stirring. The deposition was carried out 

until inception of homogenous reaction indicated by increasing turbidity of the solution.  All 

glass samples were ultrasonically cleaned with deionized water prior to deposition and also the 

samples were washed in ultrasonic bath after each deposition. The Figure 4.1 shows an 

experimental setup for chemical bath deposition. 

Substrate

Reaction bath

Thermometer

Hot plate

Stirrer
Water bath

Substrate

Reaction bath

Thermometer

Hot plate

Stirrer
Water bath

 

Figure 4.1: Experimental setup for chemical bath deposition 
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4.2 Chemistry of Bath 

Chemistry of Zinc and cadmium are same in many aspects so it might be expected that 

deposition of their chalcogenides is also similar. However, there is a significant difference in 

their chalcogenide formation tendency. This difference is caused by the large solubility product 

difference for various compound formations.  

CdS ↔ Cd2+ + S2- ................................................KSp1= 1.0 X 10-28………………..4.1 

Cd(OH)2 ↔ Cd2+ + 2OH- ....................................Ksp2= 2.0 X 10-14............................4.2 

ZnS ↔ Zn2+ + S2- ..................................................Ksp3= 3.0 X 10-25……………….4.3 

Zn(OH)2 ↔ Zn2+ + 2OH- ..........................................Ksp4= 8.0 X 10-17………...……4.4 

 

The tendency of zinc ions to form hydroxides is almost two orders of magnitude higher 

as compared to that of cadmium ions as can be calculated by solubility products of Zn(OH)2 and 

Cd(OH)2. Whereas sulfide formation tendency is lower for zinc ion. Therefore, for ZnS 

deposition it is important to have lower pH values as compared to CdS deposition. However, if 

too low pH value is maintained, the very slow rates for hydrolysis of thiourea limit the reaction 

rates. 
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Figure 4.2: Schematic diagram showing various stages in cluster mechanism for Zinc sulfide 

growth 

 

As discussed in last paragraph, in an alkaline solution CdS deposition is preferred over 

ZnS. For ZnxCd1-xS deposition free Cd2+ concentration must be much lower than free Zn2+ 

concentration in the solution in order to deposit ZnS according to simple solubility product 

considerations. The strength of complexation (with NH4OH) is almost comparable, therefore it is 

possible to adjust the complexant concentration such that there is no Cd(OH)2 present in the 

solution. In that case, CdS deposition occurs by ion-to-ion mechanism, while ZnS deposition 

occurs by cluster mechanism. 
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5 RESULTS AND DISCUSSIONS 

The aim of this research work was to develop an alternative heterojunction partner layer, 

and study the effects of deposition parameters on the device performance. In the first phase the 

depositions were carried out on commercial chemical vapor phase deposited SnO2:F coated 

glass. As the surface of SnO2:F is not very smooth, it provided nucleation sites for deposition 

(similar to actual deposition condition). ZnxCd1-xS depositions were carried out in a mixture of 

organic solvent and aqueous solution of ZnSO4 (0.02 M), CdSO4 (0.0002 M), SC(NH)2 (0.25M) 

and NH4OH (0.58 M) in a chemical bath [41]. The solution temperature was maintained at 

approximately 80°C. Homogenous nucleation was observed to occur after 15 minutes of 

deposition under these conditions, hence multiple depositions each lasting 15-minutes were 

carried out so as to achieve build higher thicknesses. 

Auger Electron Spectroscopy (AES) was carried out for ZnxCd1-xS film deposited in three 

depositions (Figure 5.1). Surface analysis showed the presence of Zn, Cd, S on the surface. 

Carbon was observed in all the films and it is speculated that the organic solvent might be the 

source of this carbon. Moreover, carbon was observed in the depth of the film in lower 

concentrations. This indicates that carbon was also derived from the atmosphere at the surface. 
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Figure 5.1: Differential Auger spectra of ZnxCd1-xS thin film deposited on SnO2:F glass 

5.1 Effects of variation of deposition parameters on device performance 

CIGS2 absorber layer was prepared by sulfurization of CuGa-In metallic precursors 

deposited by DC magnetron sputtering. Mo-coated sodalime glass was used as the substrate. An 

approximately 2-µm thick absorber layer was grown in the copper-rich regime. The substrate 

was then subjected to etching using dilute KCN solution. The heterojunction partner was then 

deposited on the CIGS2 absorber using chemical bath deposition. The CIGS2 absorber used for 

various set of experiments was not the same.  However, for any one set of experiment absorbers 

from same batch, i.e. fixed Cu/(In+Ga) ratios were used. Moreover, for studying effect of various 

deposition parameters, a standard composition [41] of reagents was used as reference to study 

the effect of variation of deposition parameters. 
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Table II: Standard concentrations used for studying effects of various compounds used in CBD 

parameters 

Compound Concentration 

ZnSO4 0.02 M 

CdSO4 0.0002 M 

(NH2)2CS 0.25 M 

NH4OH 0.58 M 

 

5.1.1 Influence of deposition time  

Multiple depositions each of 15 minutes duration were carried out to procure thicker 

films. The deposited films were ultrasonically cleaned after each deposition. The optical 

transmission spectra in wavelength range of 300 to 1100 nm were measured using a ultra-violet 

to visible UV-VIS Recording Spectrophotometer. Figure 5.2 shows optical transmittance spectra 

with varying deposition time. Thinner ZnxCd1-xS films (i.e. with lower deposition time) show 

more than 90% transmittance for long and short wavelengths, while films with higher deposition 

time shows more than 80% transmittance for longer wavelengths (above 600nm). The film with 

lower deposition time has a higher transmittance, which can result in higher short circuit 

currents. On the other hand, thicker films will provide better coverage of the absorber layer in the 

solar device and also minimize the damages caused during subsequent deposition of window 

layer by sputtering. 

 



 

0

20

40

60

80

100

300 500 700 900 1100
Wavelength(nm)

Tr
an

sm
itt

an
ce

(%
)

a

b

c

d

 

Figure 5.2: Optical transmittance spectra for (a) ZnxCd1-xS thin film deposited in a single 15 

minute run (b) ZnxCd1-xS layer prepared in two 15 minute depositions (c) ZnxCd1-xS layer 

deposited in three 15 minute  runs (d) standard CdS layer deposited on SnO2:F glass. 

 

Figure 5.3 shows J-V characteristics of completed cells with CIGS2 absorber layer for 

various deposition times of ZnxCd1-xS and standard CdS heterojunction layer. Cells with ZnxCd1-

xS as heterojunction partner have shown higher short circuit current density as compared to the 

cells with CdS. This can be attributed to better blue photon response due to higher bandgap of 

ZnxCd1-xS as compared to CdS as heterojunction partner. The highest fill factor and best cell 

efficiency of 4.9% was obtained for ZnxCd1-xS thin film deposited in two 15-minute CBD runs. 

Higher shunt resistances were obtained solar cells prepared using ZnCdS layer deposited in three 

15-minute runs. However, the series resistance also increased. Therefore, 30 minutes of 
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deposition time was found to be near optimum deposition time. A linear interpolation of data 

showed that 32 minutes of deposition should provide maximum device efficiency. 
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Figure 5.3 The J-V characteristics for CIGS2/ZnxCd1-xS solar cells using ZnCdS layers having 

total deposition times of 15, 30 and 40 minutes respectively and CIGS2/CdS solar cells under 

AM 1.5 condition measured at FSEC. 

 

X-ray diffraction (XRD) pattern of ZnxCd1-xS deposited for 30 minutes on SnO2:F coated 

glass showed only broad peaks indicating amorphous nature of the deposited film (Figure 5.4). 
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Figure 5.4: X-ray diffraction pattern of ZnxCd1-xS film deposited on tin oxide coated glass 

substrate. 

 

The near surface composition of ZnS and ZnxCd1-xS films deposited for 30 minutes on 

CIGS2 samples was characterized by X-ray photoelectron spectroscopy (XPS) studies carried 

out using Physical Electronics 5400 ESCA equipped with Mg Kα X-ray source. The XPS spectra 

are shown in Figure 5.5 and Figure 5.6. 

The measured XPS spectra were shifted to match carbon peak to the binding energy of 

284.6 eV in order to eliminate the charging effects. Cadmium, zinc, sulfur, oxygen and carbon 

were identified in the deposited film. Carbon was initially present for all films deposited by CBD 

process. XPS spectra of CBD ZnxCd1-xS layers showed peaks of Cd 3d5/2, Zn2P3/2, and S2P3/2 at 

approximately 405.1 eV, 1022.5 eV and 161.4 eV respectively [42]. Peaks of CdS (405.3 eV), 

CdO2 (404 eV) and Cd(OH)2 (405 eV) were indicated by Cd3d5/2 core level spectra while the 

peaks of ZnS, and ZnO eV were indicated by Zn2p3/2 core level spectra.  Zn2P3/2 and S2P3/2 

peaks were observed in the case of ZnS layers. 
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Figure 5.5: XPS spectra for ZnS and ZnxCd1-xS thin films deposited on CIGS2 film. 
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Figure 5.6: Cd 3d5/2 peak in the XPS spectrum of a ZnxCd1-xS layer. Curve fitting to show 

contribution of CdS, Cd(OH)2 and CdO2 peaks to corresponding XPS peak is also plotted. 
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5.1.2 Influence of ammonium hydroxide concentration 

Experiments were carried out to understand the effect of varying NH4OH concentration 

and the corresponding pH variation. Various ZnxCd1-xS films were deposited with 0.09 M, 0.027 

M, 0.58 M and 1.2 M NH4OH. The NH4OH concentrations were selected so as to maintain the 

pH of the bath at 9.5, 10.5, 11, and 11.5 respectively. Concentrations of the other  chemicals 

were kept same as the standard solution. Two depositions were carried out at 80°C for 15 

minutes. Open circuit voltage and short circuit current variation is shown in Figure 5.7. Fill 

factor of 60 and above was obtained at 0.09M NH4OH concentration corresponding the bath pH 

of 9.5 indicating good quality of the film. A high shunt resistance and low series resistance 

which are the desired criteria for good quality solar cells, were obtained for film grown at the 

same NH4OH concentration. SEM micrographs (Figure 5.8, Figure 5.9a) show that crystallinity 

of films grown at pH values corresponding to lower NH4OH concentrations is higher as 

compared to that of film deposited with higher NH4OH concentrations. This explains the higher 

series resistance at higher NH4OH concentrations used in chemical bath depositions due to 

reduction in crystallinity. Therefore, for high quality solar cells, a very low concentration of 

NH4OH and thus corresponding low pH of 9-9.5 is required for chemical bath deposition of 

ZnxCd1-xS. 
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Figure 5.7: Open circuit voltage and short circuit current density values for various pH of bath 

controlled by NH4OH concentrations 

 

 

 

Figure 5.8: SEM micrographs for of the surface of ZnxCd1-xS film deposited on SnO2:F glass, 

with NH4OH concentration of 0.09 M during chemical bath deposition. 
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Figure 5.9: SEM micrographs of the surface of ZnxCd1-xS film deposited on SnO2:F glass, with 

NH4OH concentration of 0.027M during chemical bath deposition. 
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Figure 5.10 The J-V characteristics taken at FSEC for CIGS2/ ZnxCd1-xS prepared at various 

values of pH of bath adjusted  using NH4OH concentration. 
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5.1.3 Effect of cadmium sulfate concentration. 

Concentration of cadmium sulfate, CdSO4 was varied from 0.0001 M to 0.0003 M 

keeping the other deposition parameters same as the standard parameters. Increasing 

concentration of CdSO4 leads to decrease in transmittance of light through the film as shown in 

Figure 5.11. This effect may be attributed to lower bandgap obtained with increasing cadmium 

concentration in the film. SEM Micrographs of films deposited with higher concentrations of 

CdSO4 during the chemical bath depositions are shown in Figure 5.12 and Figure 5.13, they 

seem to reveal better crystallinity and compact grains. Current-Voltage (I-V) characteristics 

(Figure 5.14) indicate that layer deposited with 0.0003 M CdSO4 concentration has higher fill 

factors indicating good junction properties. As the grains are compact for higher CdSO4 

concentration, there are fewer shunt paths leading to improved shunt resistance. Series resistance 

is lower which indicates that near optimum thickness of ZnxCd1-xS layer is obtained for this 

composition. However, the JSC and VOC values obtained for 0.0003M CdSO4 concentration were 

lower as compared to corresponding values obtained for CdSO4 concentration of 0.0002 M and 

0.0004 M. Therefore, fine-tuning of CdSO4 concentration in 0.0003M range might result in 

optimum device properties. I-V curve also indicates that ZnS(O,OH) film grown without CdSO4 

led to inferior quality cells. 
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Figure 5.11: Optical transmittance spectra for ZnxCd1-xS films for varying CdSO4 

concentration, (a) 0.0001M (b) 0.0002M (c) 0.0004M 

 

 

 

Figure 5.12: SEM micrographs for of the surface of ZnxCd1-xS film deposited on SnO2:F glass, 

for CdSO4concentration of 0.0001M during chemical bath deposition. 
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Figure 5.13: SEM micrographs for of the surface of ZnxCd1-xS film deposited on SnO2:F glass, 

for CdSO4 concentration of 0.0003M during chemical bath deposition. 
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Figure 5.14: The J-V characteristics taken at FSEC for CIGS2/ ZnxCd1-xS device deposited with 

various CdSO4 concentrations. 
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5.1.4 Zinc sulfate concentration variation 

The transparency of the heterojunction layer increased with increasing concentration of 

ZnSO4 in solution in chemical deposition bath as shown in Figure 5.15. This effect can be 

attributed to higher zinc sulfide concentration in deposited films at higher concentrations of 

ZnSO4 in the chemical bath which leads to bandgap widening thus higher transmittance. SEM 

micrograph in Figure 5.16 indicates better crystallinity at higher ZnSO4 concentration in the 

chemical bath . Higher short circuit current with lower open circuit voltage values were obtained 

for concentrations of 0.01 M ZnSO4. Slightly lower short circuit current and higher open circuit 

voltage  values are obtained with concentrations of 0.004 M ZnSO4 in chemical deposition 

(Figure 5.17). The reasons for lower JSC values with increasing Zn content is probably due to 

unfavorable band alignment between heterojunction partner and absorber layer as the conduction 

band shifts up with increasing Zinc content in the film. Higher efficiency and better Fill factor 

values were obtained for concentrations of 0.001 M ZnSO4 in chemical bath. The shunt 

resistance (~1000 Ω) for all devices with varying ZnSO4 concentration remained almost 

constant, indicating that the deposition rate is either independent or a very weak function of 

ZnSO4 concentration used for the chemical bath deposition. 
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Figure 5.15: Optical transmittance spectra for a single layer deposition of ZnxCd1-xS films with 

varying ZnSO4 concentration, (a) 0.04 M (b) 0.02M (c) 0.01 M  
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Figure 5.16: SEM micrographs for of the surface of ZnxCd1-xS film deposited on SnO2:F glass, 

for ZnSO4 concentration of (a) 0.01M (b) 0.04M during chemical bath deposition. 
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Figure 5.17: The J-V characteristics taken at FSEC for CIGS2/ZnxCd1-xS for various 

concentration of ZnSO4 in chemical bath. 

5.1.5 Thiourea concentration variation 

The optical transmittance of the heterojunction partner layer was found to increase as the 

thiourea concentration was increased (Figure 5.18). This can be explained on the basis of higher 

extent of conversion of hydroxides to sulfides in presence of higher concentrations of thiourea 

that acts as sulfide source. This results in higher bandgap of deposited film and consequently the 

higher transmittance. Higher values of open circuit voltage and short circuit current were 

obtained for lower concentration of thiourea. 
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Figure 5.18: Optical transmittance spectra for a single layer deposition of ZnxCd1-xS films 

with varying thiourea concentration, (a) 0.375 M (b) 0.25 M (c) 0125 M 
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Figure 5.19: The J-V characteristics taken at FSEC for as grown and post annealed CIGS2/ 

ZnxCd1-xS device. 

5.1.6 Effect of annealing of ZnxCd1-xS layer after deposition 

The samples were prepared by standard deposition parameters. Afterwards  one ZnxCd1-

xS thin film sample was annealed at 200°C for 10 miuntes in atmospheric ambient to assist zinc 

diffusion. The device properties degraded after heat treatment as shown in Figure 5.20. This 

trend is opposite to the trends observed in CIGS solar cells where Zn diffusion helps to improve 

the device properties. This difference can be explained based on initial copper-rich CIGS2 

growth and subsequent etching of excess copper which result in very low concentration of 

copper vacancies near surface region. Consequently, the type inversion does not take place. 

Whereas relatively higher copper vacancies are observed in case of CIGS absorber layer. The 

vacancies can assists interdiffusion of zinc ions and thus allow zinc to occupy copper site and 
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creation of  ZnCu. This helps in the formation of buried homojunctions, hence better device 

properties. 
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Figure 5.20: The J-V characteristics taken at FSEC for as grown and post annealed CIGS2/ 

ZnxCd1-xS device. 

5.2 Effect of Indium concentration variation in the absorber layer 

The lattice parameter of CIGS2 varies between lattice parameter of CuGaS2 (5.35A°) to 

CuInS2 (5.523A°) depending on In/(In+Ga) ratio. The In/(In+Ga) ratio needs to be optimized  to 

obtain a better lattice match with the heterojunction partner.  

The bandgap of the CIGS2 absorber can be increased by reducing the of In/(In+Ga) ratio. 

With the incorporation of  Ga at the near surface region the bandgap increases at the junction and 

moreover it leads to an elevation of position of the conduction band minimum energy. Thus, 
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conduction band minimum energy position [43], can be engineered to reach optimum conduction 

band alignment condition between heterojuction partner and absorber layer and thus to the spike. 

The smooth transition from CIGS to CdS due to optimum conduction band alignment allows the 

minority carriers, i.e. electrons to drift from CIGS to CdS regions without hindrance which 

results in better device properties. However, this proposition needs further investigation, as for 

the CIGS2 absorber prepared by sulfurization; the benefit of Ga alloy is limited since most of the 

Ga added to precursors ends up the rear part of the absorber. This provides the benefit of a back-

surface field that repels minority charge carriers electron going to back contact. 

In this series of experiments, In/(In+Ga) ratio was varied during the sputter-deposition of 

metallic precursors. To achieve various indium contents, the thickness of In layer in the metallic 

precursors was controlled by varying the deposition time . The sputtering system used during the 

course of this research has a moving substrate mechanism. The thickness of the deposited film is 

controlled by adjusting the time taken by the substrate to move a unit distance over the sputtering 

target. Longer duration per unit distance results in thicker layers. Substrate movement durations 

per inch of 90, 80, 70 and 60 seconds were used. The thickness of Cu-Ga layer was kept constant 

during this set of experiments. The cell performance for CIGS2/ ZnxCd1-xS devices improved 

with decreasing In deposition time. Highest efficiency of 5.45% was achieved for indium 

deposition duration per inch of 60 seconds. The maximum short circuit current density of 13 

mA/cm2 was obtained for the same device. Current-voltage parameters of various solar cells are 

given in Table III. 
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Figure 5.21 The J-V characteristics taken at FSEC for CIGS2/ ZnxCd1-xS device formed with 

various sputtering time for In metallic precursor deposition for absorber layer formation (a) 

90 seconds /inch (b) 80 seconds /inch (c) 70 seconds /inch (d) 60 seconds/inch 
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Table III: Solar cell parameters of CIGS2/ ZnxCd1-xS thin film solar cell for various In/(In+Ga) 

ratios (where are the ratio values) 

Sample Id 2847_cz 2257_cz 1657_cz _cz 

Substrate movement duration p

unit length (seconds/inch) 

er 
30 45 40 35 

V (V) 0.67 0.68 0.76 0.73 oc 

Jsc (mA/cm2) 10.09 12.62 11.21 13.17 

Vm 0.57 0.53 p (V) 0.49 0.48 

Jmp (mA/cm2) 7.73 10.30 8.80 8.34 

FF(%) 59.34 59.45 51.5 58.5 

Efficiency (%) 5.453.78 4.22 4.767  

Rs (Ω) 26.3 24.8 25.8 25.9 

Rp (Ω) 1500 950 1700 1100 

 

X-ray diffraction patterns were o  for the CIGS2 films de d with v

deposition times. The chemical composition of CuIn0.7Ga0.3S2 was calculated from the X-ray 

diffract

 

lower which indicates good lattice match between absorber layer and heterojunction partner 

btained posite arious In 

ion pattern (Figure 5.22) for CIGS2 with In deposition, duration per unit distance of 80 

seconds. The lattice constant calculated by linear interpolation of lattice parameters of CuGaS2 

and CuInS2 was found to be 5.47 Ǻ. Surface analysis by AES indicates Zn/Cd ratio ~4 in the 

ZnxCd1-xS film, i.e.; Zn0.8Cd0.2S. Lattice parameter of ZnxCd1-xS calculated by linear

interpolation of lattice constants for ZnS and CdS for Zn/Cd ratio of 4 was found to be 5.49 Ǻ. 

The percentage difference between the calculated lattice constants for CIGS2 and ZnxCd1-xS was 



layer. XRD pattern for CIGS2/ ZnxCd1-xS did not show any peaks of ZnxCd1-xS possibly because 

the film was too thin. 
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Figure 5.22: X-ray diffraction pattern (θ-2θ) for CIGS2 absorber layer and 

CIGS2/ZnxCd1-xS layer. 

5.3 Comparison of CIGS2/ ZnxCd1-xS and CdS/CIGS2 solar cell 

Figure 5.23 and Figure 5.24 show current-voltage characteristics highest efficiency cell 

fabricated with ZnxCd1-xS (#1657CZ ) and CdS (#1657C) as heterojunction partners for 2 µm 

xCd1-xS as heterojunction 

partner

CIGS2 absorber as  measured at NREL. The efficiency measured Zn

s at NREL was 7.95%, whereas when at FSEC it showed an efficiency of 4.766%. A 

corresponding increase in efficiencies is expected in all of the results discussed earlier, this is due 

to the large series resistance of the low-cost probes and the light source consisting of an ELH 

lamp used at FSEC. Value of the current measured with the probes is lower.  CIGS2/ZnxCd1-xS 
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has higher open circuit voltage and short circuit current as compared to CIGS2/CdS cell. 

Whereas the fill factor of CIGS2/ ZnxCd1-xS cell was lower than that of CIGS2/CdS cell. This 

can be attributed to the highly resistive ZnS film as compared to CdS. The fill factor can be 

increased by suitably doping the  ZnxCd1-xS layer so as to enhance its conductivity.  Current-

voltage parameters for both devices are listed in Table IV. Cells with ZnxCd1-xS as 

heterojunction partners demonstrated even higher efficiencies of 5.45% measured at FSEC. 

Table IV: Solar cell parameters of CIGS2/CdS (#1657C) and CIGS2/ ZnxCd1-xS (#1657CZ) thin 

film solar cell  

 CIGS2/CdS CIGS2/ ZnxCd1-xS 

Voc(V) 0.7518 0.784 

Jsc(mA/cm2) 17. .072 522 18

Vmp(V) 0.5703 0.5742 

Imp(A) 7.21 6.1725 

FF(%) 66.34 56.08 

Efficiency(%) 8.75 7.95 

 



 

Figure 5.23: The J-V characteristics for SLG/Mo/CIGS2/ ZnxCd1-xS / i-ZnO/ZnO:Al 

device (#1657CZ) measured at NREL After 10 minute soak at Pmax, 5 minute cool. 
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Figure 5.24: The J-V characteristics for SLG/Mo/CIGS2/ CdS / i-ZnO/ZnO:Al device 

((#1657C) measured at NREL After 10 minute soak at Pmax, 5 minute cool. 

 

The quantum efficiency measurement at NREL showed gain in blue photon region for 

SLG/Mo/CIGS2/ ZnxCd1-xS / i-ZnO/ZnO:Al as compared to SLG/Mo/CIGS2/ CdS / i-

ZnO/ZnO:Al, Figure 5.25, which results in higher JSC values. 
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Figure 5.25: Qunatum efficiency plot obtained at NREL for SLG/Mo/CIGS2/ CdS / i-

ZnO/ZnO:Al (#1657C) and SLG/Mo/CIGS2/ ZnxCd1-xS / i-ZnO/ZnO:Al (#1657CZ) cells. 

5.4 Light-Beam-Induced Current (LBIC) Analysis 

Light-beam-induced-current (LBIC) measurements provides a direct link between the 

spatial non-uniformities inherent in thin-film polycrystalline solar cells, and the overall 

performance of these cells. Figure 5.26 shows that CIGS2 solar cell fabricated with ZnxCd1-xS as 

heterojunction partner has uniformity variations of 3%.  Limited uniformity variations indicates 

good quality cell.   
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Figure 5.26: LBIC measurements for for SLG/Mo/CIGS2/ZnxCd1-xS/i-ZnO/ZnO:Al devices 

(#1657CZ ) performed with 638-nm laser measured at Colorado State University.  

5.5 Capacitance-Voltage Measurment  

The capacitance of junction is given by 

C= A2εs/Wd ………………………...5.1 

Where A is the junction width. 

1/C2 = [2/ qA2εsNA] (Vd-V) …………………… 5.2 

Slope of  plot  1/C2
 versus V gives carrier density. The Capacitance-Voltage 

measurement of  cell #1657CZ was carried out at Colorado State University. The slope of the 

linear extrapolation of plot shown in gives an average carrier density of 1.6x1017 cm3 [44]. 
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Figure 5.27: shows C-2 dependence on voltage. This analysis was carried out at Colorado 

State University 
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6 CONCLUSIONS AND RECOMMENDATIONS 

The aim of this research was to recommend and develop an alternative heterojunction 

partner for CIGS2 solar cells. The study has shown that ZnxCd1-xS is a strong contender as an 

alternative heterojunction partner. Effect of various chemical bath deposition parameters on 

device performance was studied and attempts were made to optimize the deposition parameters 

in order to improve the device performance. Initially ZnxCd1-xS layer were deposited on SnO2:F 

coated glass substrates. The morphological, structural, chemical, and optical properties of 

ZnxCd1-xS layer were analyzed using SEM, XRD, XPS, AES, and spectrophotometry techniques. 

Presence of oxygen in Cd3d5/2 and Zn2p3/2 core level spectra in XPS analysis indicated that the 

growth of the film follows cluster mechanism rather than ion-ion mechanism. ZnxCd1-xS films 

were then deposited on CIGS2 absorber layer and the device was completed by deposition of the 

n-type window layer and front contact fingers. Device properties were studied using current–

voltage characteristics. Table IV summarizes effects of various constituents of CBD on film 

growth and device parameter. The device performance of CIGS2/ ZnxCd1-xS solar cells was 

comparable to CIGS2/CdS solar cells. This indicates that with further optimization of the 

deposition parameters of the heterojunction partner and improvement in the absorber layer might 

lead to better device performance of CIGS2/ZnxCd1-xS solar cells as compared to CIGS2/CdS 

solar cells. Moreover, it should be noted here that all the efforts towards optimization of the 

deposition parameters were carried out on ~2µm absorber layer. The crystallinity of the ZnxCd1-

xS layer improved with decreasing pH value of approximately 9.5 of the solution used during the 

chemical bath deposition. Improved crystallinity resulted in reduction of the series resistance of 
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the devices. Reduction in the In/(In+Ga) ratio in absorber layer resulted in better device 

parameters, probably due to better lattice matching and/or due to favorable conduction band 

alignment.  

Table V: Influence of various constituents of CBD on film growth and device parameter  

 Parameters Result summary 

 
NH4OH 

[M] 

CdSO4 

[M] 

ZnSO4 

[M] 

(NH2)2CS 

[M] 
 

A 0.09-1.2 0.0002 0.02 0.25 

Best at 0.09M eff.=5.07, FF >60% 

Increasing concentration  decreasing 

transparency 

B 0.58 
0.0001-

0.0004 
0.02 0.25 

for 0.0003M FF>60% 

Higher Rp, lower Rs 

C 0.58 0.0002 .01-.04 0.25 

Optimized For~ 0.02M 

Increasing concentration  Increasing 

transparency 

D 0.58 0.0002 0.02 
0.125-

0.375 

Decreasing concentration.  higher VOC 

and JSC 

 

Quantum efficiency plot shows that there is a gain in blue photon response.  Higher Jsc 

and Voc with ZnxCd1-xS as heterojunction partner has been obtained as compared to CdS as 

heterojunction partner for CIGS2 solar cells. Limited uniformity variations in LBIC studies 

indicates good quality cell. In this study all the parameters are optimized independently. The near 

optimized parameters need to be clubbed together to optimize the deposition conditions further. 
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Further extensive transmission electron microscopy study to find lattice mismatch, electron and 

X-ray spectroscopy to study band offsets between absorber layer and heterojunction layer with 

varying Zn/Cd in heterojunction partner and varying In/(In+Ga) ratio in absorber layer will be 

required to optimize deposition conditions further. Lastly, the ZnxCd1-xS layer can be doped with 

suitable dopant to increase the conductance of the layer. 
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