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ABSTRACT 

Partial reconfiguration is a unique capability provided by several Field Programmable 

Gate Array (FPGA) vendors recently, which involves altering part of the programmed design 

within an SRAM-based FPGA at run-time.  In this dissertation, a Multilayer Runtime 

Reconfiguration Architecture (MRRA) is developed, evaluated, and refined for Autonomous 

Runtime Partial Reconfiguration of FPGA devices. Under the proposed MRRA paradigm, FPGA 

configurations can be manipulated at runtime using on-chip resources. Operations are partitioned 

into Logic, Translation, and Reconfiguration layers along with a standardized set of Application 

Programming Interfaces (APIs).  At each level, resource details are encapsulated and managed 

for efficiency and portability during operation.  An MRRA mapping theory is developed to link 

the general logic function and area allocation information to the device related physical 

configuration level data by using mathematical data structure and physical constraints. In certain 

scenarios, configuration bit stream data can be read and modified directly for fast operations, 

relying on the use of similar logic functions and common interconnection resources for 

communication. A corresponding logic control flow is also developed to make the entire process 

autonomous. 

Several prototype MRRA systems are developed on a Xilinx Virtex II Pro platform.  The 

Virtex II Pro on-chip PowerPC core and block RAM are employed to manage control operations 

while multiple physical interfaces establish and supplement autonomous reconfiguration 

capabilities.  Area, speed and power optimization techniques are developed based on the 

developed Xilinx prototype. Evaluations and analysis of these prototype and techniques are 

performed on a number of benchmark and hashing algorithm case studies.  The results indicate 
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that based on a variety of test benches, up to 70% reduction in the resource utilization, up to 50% 

improvement in power consumption, and up to 10 times increase in run-time performance are 

achieved using the developed architecture and approaches compared with Xilinx baseline 

reconfiguration flow.   

Finally, a Genetic Algorithm (GA) for a FPGA fault tolerance case study is evaluated as a 

ultimate high-level application running on this architecture. It demonstrated that this is a 

hardware and software infrastructure that enables an FPGA to dynamically reconfigure itself 

efficiently under the control of a soft microprocessor core that is instantiated within the FPGA 

fabric. Such a system contributes to the observed benefits of intelligent control, fast 

reconfiguration, and low overhead. 
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CHAPTER 1: INTRODUCTION 

1.1 Overview 

Field reconfigurable devices have been available for almost two decades [50]. The 

evolution of these systems has been considerably impacted by the development of Field-

Programmable Gate Array (FPGA) technology. The basic architecture of a modern FPGA, as 

shown in Figure 1, consists of an array of Configurable Logic Block (CLB) that can be 

programmed to implement different design logics and a routing architecture that interconnects 

the CLB logic. Current commercial FPGA’s CLBs can be based on one or more following 

technologies [32]: Transistor pairs, Basic simple gates such as two-inputs NANDs, Multiplexers, 

SRAM based Look-up tables, and Wide fan-in AND-OR structures. These CLBs can be 

implemented into both combinational and sequential logic functions. 

The routing architecture of an FPGA is the physical network that makes connections 

between each individual CLB so that the basic logic functions can be formed into larger 

algorithms and applications. The routing architecture could be as simple as a nearest neighbor 

mesh or as complex as the perfect shuffle used in multiprocessor [32]. Most of the time, the 

FPGA incorporates various lengths of segments that can be interconnected for different needs, 

such short line, long line and global clock line. The number and the length of the wire segments 

directly affect the density and performance achieved by a FPGA. Along the path of the routing 

lines, there are programmable switches that can change the interconnections between different 

lines. There are three major types of technologies currently in use for the programmable switch 

implementation: SRAM, Antifuse, and EEPROM. Each has its own advantages and 

1 



 

disadvantages in the term of area and reprogramming ability issues. SRAM-based switches, 

working just as normal memory elements, can be readily reprogrammed and refreshed. However, 

they require more transistors to be implemented thus more area is occupied. On the other hand, 

the Antifuse based switches use the minimum area among the three. Yet they only allow to the 

device to be programmed once, and after that the interconnections are fixed.  EEPROM-based 

switches stand in the middle among these three in both the area and reprogramming ability 

issues. Their required implementation area is larger than Antifuse based, but smaller than the 

SRAM based. They can be reprogrammed multiple times but may require higher voltage and the 

speed and flexibility is not as good as SRAM.   
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Figure 1: FPGA architecture 

Modem FPGAs have evolved from simple Programmable Logic Devices (PLDs) to fully 

integrated System on Chip (SOC) architectures containing microprocessors, embedded memory, 

and optimized datapaths connected to a high capacity, dynamically reconfigurable fabric. As a 
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case in point, the high-end Virtex FPGAs family offered by Xilinx contains a multi-million gate-

equivalent reconfigurable fabric in which several PowerPC processors, a number of RAM 

blocks, and multipliers are provided.  Hence there is considerable interest in using these powerful 

customizable platforms for a wide range of high-performance scientific computation and 

embedded applications. 

In particular, a unique aspect of flexibility provided by FPGAs is the capability for 

dynamic reconfiguration, which involves altering the programmed design within an SRAM-

based FPGA at run-time [42]. With the capability of partial reconfiguration from device 

manufacturers [72] and availability of powerful on-chip CPU cores and block RAM, more and 

more research interests have been focused on this area and demonstrate applications benefiting 

from use of this reconfiguration paradigm, such as mobile systems [14], [15] operating system 

frameworks [22], [23] and artificial intelligence applications [4]. On the other hand, although 

FPGA architectures have advanced considerably, dynamic reconfiguration capabilities are only 

introduced in quite recent year and have not kept pace with architectural improvements. 

Currently, only limited FPGA hardware, provide and support partial and dynamic reconfigurable 

ability to some extent. As more and more applications involve runtime reconfiguration, 

autonomous dynamic reconfiguration, which automates the partial reconfiguration and/or 

testing/verification process by combining the capability of partial reconfiguration from the 

device manufacturers and the availability of powerful on-chip CPU cores, has become an 

important research topic. 
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1.2 Partial Reconfiguration Technology 

Currently multiple vendors offer devices with various partial reconfiguration abilities 

including Altera, Atmel, Lattice, and Xilinx.  The partial reconfiguration capability from Altera 

only includes certain components such as the divider of the Phase Locked Loop [65], instead of 

the general reconfigurable resources.  The AT40K family from Atmel demonstrates some 

promising general partial reconfiguration performance with literature describing a 50K 

maximum gate-equivalent capacity [66], which comparatively restricts the framework and 

possible applications.  On the other hand, Xilinx FPGAs, which provide multi-million gate-

equivalent capacities, are the most widely used chips with partial reconfiguration capability.  

Therefore, most of the current research work focused on these hardware platforms. Work here 

has also chosen Xilinx as the major research platform.  To support their FPGA architectures, 

Xilinx has proposed two standard reference flows for partial reconfiguration process: Difference-

based flow and Module-based flow [72].   

With a Difference-based flow, the designer must manually edit a design with only small 

changes.  After the changes are completed, the partial bitstream, which contains information only 

regarding the differences between the two designs, is generated and stored in a file. Switching 

the configuration of a module from one implementation to another is very quick, as the bitstream 

differences can be significantly smaller than the entire device bitstream [72].  

There are two main ways a design can be altered to be utilized with Difference-Based 

Partial Reconfiguration. The design can be changed either at the front-end in HDL or Schematic 

format or at the back-end in Native Circuit Description (NCD) file format. For front-end 

changes, the design must be re-synthesized and re-implemented to create a newly placed and 
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routed NCD file. For back-end changes to the NCD files, sections of a design can be modified 

using the FPGA Editor tool directly. Bit stream generation tool then can produce custom partial 

bitstreams that only modify small sections of the device. 

Xilinx Modular Design methodology is another flow proposed by Xilinx, which allows a 

team of engineers to independently work on different pieces, or “modules,” of a design and later 

merge these modules into one FPGA design [72]. For this flow, the full design is partitioned into 

modules, some of which can be fixed while others can be reconfigurable.  The reconfigurable 

fabric of the FPGA is partitioned into column-based rectangular regions with the width ranging 

from a minimum of four slices to a maximum of the full-device width in four-slice increments, in 

which the fixed and reconfigurable modules will be arranged based on specified area constrains 

of the design. 
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Figure 2: Design Layout with Two Reconfigurable Modules 

There should be no common I/O between fixed and reconfigurable modules except the 

clock. If signals are needed to cross over a partial reconfiguration area boundary, a bus macro, a 

fixed "bus" of inter-design communication, should be used to maintain correct connections 
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between the modules by spanning the boundaries of these rectangular regions. Each time when 

partial reconfiguration is performed, the bus macro is used to establish unchanging routing 

channels between modules, guaranteeing correct connections. Figure 2 shows the basic concept 

of this reconfiguration flow methodology.  Such arrangement makes the Module-based flow 

much more flexible than the Difference-based flow and suitable for possible full automation, 

particularly when it is considered for integration with high-level user applications.  Therefore, 

the Module-based flow has been chosen as the primary basic partial reconfiguration technique 

for the research. 

1.3 Need for Autonomous Partial Reconfiguration 

As mentioned earlier, since the introduction of the partial reconfiguration technique, 

more and more high-level applications and algorithms in different areas have been attempting to 

incorporate this concept into their design to boost their performance and decrease the human-

related control requirements. NASA deep space mission is one of the typical examples of such 

scenarios, which requires high reliability involving mission safety or other critical tasks. Such 

applications rely increasingly on FPGAs to support their computing requirements. For example, 

NASA’s Stardust probe carries on board over 100 FPGA devices [27]. As the number of FPGAs 

increases in the computing systems supporting these missions, fault detection and repair becomes 

critical to these missions. While a probe is traveling in deep space, permanent failures can 

degrade the functionality of Configurable Logic Blocks (CLBs) or programmable interconnects 

of the FPGAs. To quickly reconfigure many alternatives in an attempt to recover from these 

failures is necessary to keep the on-board computing system of the probe in normal operation. 
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However, under such circumstances, human intervention is very difficult or even impossible to 

carry out and will definitely slow down the performance of the original task significantly.  

Hence, an automatic mechanism is crucial to carry out such process. At the same time, such high 

throughput applications also require the reconfiguration operations to be processed as fast as 

possible to avoid long time system waiting and severe performance degeneration. 

To meet such requirements, the partial reconfiguration management should be automatic, 

seamless, and completely transparent to the application. The management architecture needs to 

determine: 

(i) Partitioning: Which computational resources to initialize as component,  

(ii) Placement: How to determine the target location of the component on the 

reconfigurable fabric of the device,  

(iii) Routing: How to properly interface the component to its surrounding resources, 

(iv) Generation: How to generate the new bitstream of the component at the target 

location, 

(v) Configuration: When and how to write the generated bitstream to the appropriate 

portions of the underlying reconfigurable infrastructure of the reconfigurable fabric, 

and  

(vi) Verification: How to communicate with the hardware platform to test and validate the 

new downloaded bitstream. 

However, current partial reconfiguration flow suggested by Xilinx mainly focused on the 

4th step and thus only provides an incomplete solution to it. To use this basic flow, design tools 

with GUI are involved. Manual adjustments of design are unavoidable. Full automation control 
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process, as required by most of the current partial reconfiguration applications, is almost 

impractical.  

Furthermore, using this basic solution, the reconfiguration generation delay alone is 

already on the order of tens to hundreds of milliseconds [54]. In some situations, configuration 

overhead can comprise over 98.5% of execution time [36]. Clearly, this extremely slow process 

already becomes one of the major barriers, especially for applications based on redundancy and 

spare availability when using partial reconfigurations such as [39], [57]. Some research work has 

been carried out at various levels to suggest solutions for separate steps. But so far there is no 

framework that has been proposed to accomplish all of the above steps and provides a general-

purpose solution. 

A more sophisticated partial reconfiguration framework would be useful to integrate and 

optimize existing reprogrammable technologies, as well as refine theories of operation in light of 

the feasibility of current and near-term hardware implementations.  Ideally, this approach would 

provide a standardized set of APIs and abstracted data structures for a variety of high-level 

applications.  It would facilitate algorithm mapping via uniform access to heterogeneous logic 

and communication resources.  Such an approach would also improve flexibility and enhance 

portability across hardware reconfiguration interfaces requirements, and enable more 

sophisticated applications based on autonomous reconfiguration. 
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1.4 Dissertation Outline 

The remainder of the document is divided into the following Chapters. In Chapter 2, 

PREVIOUS WORK, a review of the State of the Art in partial reconfiguration tools, architectures 

and high-level control algorithms is given. The section Partial Reconfiguration Tools and 

Framework introduces the current toolsets for partial reconfiguration published by industry 

companies and some of most recent framework and toolsets for partial reconfiguration developed 

at academic area. The section Hardware Optimization Technique refers to the proposed 

optimization techniques that addressed the basic partial reconfiguration hardware components or 

the bitstream generation process. The chapter ends with the section Software Control 

Optimization that contrasts the investigated techniques at the software algorithm level for partial 

reconfiguration research. 

In Chapter 3, MULTILAYER RUNTIME RECONFIGURATION ARCHITECTURE, the 

design considerations for the autonomous reconfiguration architecture are first analyzed. The 

detailed architecture design is then discussed, including the 3 layers of the Hierarchical 

Architecture and the Dynamic Control Flow, which provide the Adopted Module Based Flow at 

design phase, the Frame Based Flow at runtime phase and the Physical Area Management 

control. Finally the basic Genetic Algorithm Operators for FPGA high-level fault tolerance 

application based on the MRRA structure and control flow are illustrated.  

In Chapter 4, RECONFIGURATION AND VERIFICATION METHODOLOGY, the 

system design considerations for the reconfiguration and verification methodology are discussed. 

Three different types of reconfiguration interface, including SelectMAP, Joint Test Action Group 

(JTAG) and Internal Configuration Access Port (ICAP) are introduced. Difference 
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reconfiguration and verification methodologies and system design based on the characteristics of 

these three interfaces are explored. Details of bit manipulation and function mapping equations 

are also studied and discussed in details.   

In Chapter 5, RESOURCE UTILIZATION AND TIMING ANALYSIS, three groups of 

experiments are described. First group of tests analyzed the resource utilization and power 

consumption by using two Hashing algorithms as top-level application case study.  The data are 

compared and contrast through the criteria of slice occupancy, dynamic power consumption, and 

core power consumption.  The utilization data are analyzed in three groupings of the design, 

including the traditional baseline design, module-based design, and frame-based design. The 

second group of experiments demonstrates the detailed FPGA resource utilization for each 

MRRA platform with a different reconfiguration interface and testing methodology. Six different 

MRRA prototype platforms are tested. In addition to the slice utilizations, the routing flexibility, 

I/O arrangement, resource placement and communication overhead are also used as metrics to 

quantify these platforms’ performance. The last group of experiments evaluates the timing 

performance of the MRRA system, including the basic reconfiguration and testing time and the 

Translation Engine overhead. A brief timing analysis is also presented based on the collected 

data to determine the bottleneck of the system speed and possible optimization methodology 

through pipelining. 

In Chapter 6, HIGH-LEVEL RECONFIGURATION OPTIMIZATION TECHNIQUES, the 

proposed bitstream optimization strategy is tested and its behavior is analyzed by applying it to 

five different types of experimental circuits. Comparisons against the tool automation approach 

are given. The design technique of linking the high-level data structure with the physical circuit 

design is then demonstrated. The flexible routing strategy by using LUT-based switch box is also 
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presented. The resource expense of this strategy is analyzed as well. The final part of this chapter 

shows the experimental details of GA applications running on MRRA using these advanced 

techniques.  

In Chapter 7, CONCLUSION, the results of the experiments are summarized and general 

conclusions about MRRA architecture design, the reconfiguration and verification methodology 

employed, and high-level application design using the MRRA platform are drawn. Future work 

is identified for the continuation of the project. Several areas are proposed for further research, 

related to new hardware architecture, better area management algorithms, and the application of 

these techniques at general data structure level, especially for GAs. 

1.5 Contribution of Dissertation 

A summary of the major contributions made by this dissertation includes: 

1) An original thorough solution providing a clear framework with standard 

interfaces between partial reconfiguration physical implementations and logic 

designs, which allows the general high-level algorithms to execute at an abstract 

level without the knowledge of the low-level hardware details.  Other COTS tools 

may be easily integrated into this framework and customized for their own 

applications. This enables a real hardware-related Genetic Algorithm to execute 

directly on a FPGA in real-time. 

2) Layering model that shields the reconfiguration logic and higher-level application 

logic from the hardware details. So when later a different FPGA is selected for 

use, the bottom reconfiguration layer can change accordingly. The algorithm layer 
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can remain untouched.  The only modification needed is carried out on the 

hardware-dependent part of the APIs at the translation layer.  

3) This is the first system design that explores multiple mainstream reconfiguration 

interfaces and provides correspondent reconfiguration and verification 

methodologies. Their performance is also contrasted and compared between each 

other. Advantages and disadvantages are analyzed in details under a variety of 

scenarios. 

4) The traditional spatial and temporal algorithms for fast configuration are also 

advanced. A practical strategy is formed based on current hardware technology. 

The strategy now is implemented distributively in multiple layers as independent 

hardware or software modules.  Therefore these algorithms can be used 

respectively or combined depending on user’s high-level application. Special 

modifications can also be easily carried out on these traditional algorithms for 

specific user requirements without affecting the normal major working flow.  

The benefits of this MRRA approach include increased design productivity, portability 

and resources utilization. On the other hand, these advantages require new tradeoffs for extra 

hardware complexity, software capability, and resource overhead, as quantified in the analysis 

herein. 
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CHAPTER 2: PREVIOUS WORK 

Many different industry efforts and research works aimed at different aspects of partial 

reconfiguration have been studied in the literature, including partial reconfiguration generation 

tools, layered partial reconfiguration frameworks, hardware size and performance optimizations 

and software control optimizations, etc. Some of the most recent and relevant works from each 

category are reviewed in this Chapter. 

2.1 Commercial Partial Reconfiguration Tools 

Currently, the most widely used FPGA chips with partial reconfiguration capability are 

from Xilinx in the Virtex, Virtex II, and Virtex Pro families [69]. Yet only very few preliminary 

toolsets commercially have been reported supporting the partial reconfiguration paradigm.  JBits 

[53], an earlier research toolset presented by Xilinx, provides dynamic reconfiguration 

capabilities, allowing an application to instantiate a component, generate its corresponding 

bitstream, and download it to a reconfigurable device. The JBits Application Programming 

Interface (API) is implemented in the Java programming language and permits programmatic 

access to all of the configurable elements in Xilinx Virtex-II FPGAs. It supports partial 

configuration and modification of the bitstream. It is a low level tool that not only changes the 

logic content of LUTs, but also dynamically modifies specific logic interconnections. JBits 

communicates with the hardware through a generic hardware interface called Xilinx Hardware 

Interface or XHWIF. It can be very useful for designers who want to design run-time 

reconfigurable logic on FPGAs, which will help in the future revolution of online upgradeable 

hardware. Since the tool is Java based, the execution speed can be comparatively slow. This 
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toolset has been made only available for the Virtex family primarily as a research tool for Virtex 

II series, instead of the bigger Virtex family such as Virtex II Pro and Virtex 4. Xilinx had 

dropped all the technical support and further development several years ago, even though the 

toolsets still have significant academic interest.    

The Xilinx Partial Reconfiguration Toolkit (XPART) [5] is another tool that has been 

proposed by Xilinx engineers in 2003. XPART is derived from the JBits API efforts. It provides 

a lightweight, minimal set of JBits API features implemented in the C language instead of Java. 

Similar to the JBits API, it abstracts the bitstream details providing seemingly random access to 

select FPGA resources. The XPART API enables fine grain reconfiguration control over select 

FPGA resources. This allows actions such as tuning off Multi-Gigabit Transceiver (MGT), or 

constant folding achieved by modifying LUTs. XPART also provides some basic functionality 

for supporting relocatable modules. A locatable module is a partial bitstream that can be 

relocated to multiple places on the FPGA. XPART provides two methods for dealing with 

relocatable modules. The two methods are setCLBModule and copyCLBModule. The 

setCLBModule method works on regular partial bitstreams that contains information about all of 

the rows in the included frames. The copyCLBModule function copies any sized rectangular 

region of configuration memory and writes it to another location. The copied region contains just 

a subset of the rows in a frame. This allows the designer to define dynamic regions that have 

static regions above or below it. The copyModule function employees a read/modify/write 

strategy like the re-source modification functions. This technique enables changing select bits in 

a frame and leaving the others bits to their current configured state. This self-reconfiguring 

platform enables embedded applications to take advantage of dynamic partial reconfiguration 

without requiring external circuitry. However this toolset has never been officially released. 
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The most recent released platform for partial reconfiguration paradigm by Xilinx is called 

PlanAhead [68]. This software is based on the Module Based flow paradigm introduced in 

Chapter 1.  PlanAhead streamlines the design step between synthesis and place and route and 

attempts to reduce in both the number and the length of design iterations. This methodology 

allows designers to divide a larger design up into smaller, more manageable blocks and focus 

efforts toward optimization of each module, improving performance and quality of the entire 

design. PlanAhead software is the first graphical environment for partial reconfiguration. Using 

PlanAhead design tools as a platform for partial reconfiguration applications can simplify the 

complexities of the constraints of the dynamic operating environment of applications, allowing a 

single device to operate in applications that previously required multiple FPGAs. It provides a 

single environment to manage the Module Based flow guidelines. Using PlanAhead design tools 

to implement a partial reconfiguration design, users can carry out the netlist import, floor 

planning for partial reconfiguration, design rule checks, netlist export, and implementation flow 

management. The methodology offered by PlanAhead software can potentially increase 

productivity and decrease time-to-solution for designers using partial reconfiguration. However 

this tool is a graphical environment for design time use only instead of runtime control. 

Moreover, it supports the Module Based flow considerations. Currently, the partial 

reconfiguration function part of this tool is also not open for public use yet and requires a special 

request to Xilinx for access.  
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2.2 Partial Reconfiguration Tools and Framework 

Since the commercial works have placed emphasis on components and methods for the 

step of partial reconfiguration file generation, significant challenges have remain with creating 

an autonomous environment for dynamic reconfiguration. Significant recent work in academia 

and industry has been focused on this area. 

Some representative research approaches are listed in Table 1.  Early work by Moraes et 

al had developed a set of tools for remote and partial reconfiguration for Virtex XCV300 [11]. 

With this toolset remote reconfiguration is enabled to update and/or fix hardware cores in the 

field. By using this toolset, parameter reconfiguration can be used to customize a circuit, 

avoiding extra devices as external microcontrollers and ROMs, and saving internal control logic 

in the FPGA. However, some steps of the approach have to be carried out with manual user 

intervention and the described technique does not intrinsically support core relocation. 

Raghavan and Sutton’s tool called JPG was developed for Xilinx Virtex devices [1].  

This JPG tool is based on the Xilinx Java-based JBits API.  Jbits allows an application to 

instantiate a component, generate its corresponding bitstream, and download it to a 

reconfigurable device such as the Virtex FPGA. Therefore JPG is able to generate partial 

bitstreams for Xilinx Virtex devices based on data extracted from the standard Xilinx CAD tool 

flow. Yet due to the use of JBits and its Java interpretation overheads, the tool has some speed 

and scalability limitations.  Since Xilinx had already dropped the support for JBits, further 

upgrading and expansion of this framework may be uncertain. 
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Table 1: Recent Frameworks for Partial Reconfiguration 

APPROACH DEVICE 
SUPPORTED 

ON-CHIP 
SYSTEM 

BITSTREAM 
REUSE 

POTENTIAL 
CHALLENGES 

Mesquita et al. Virtex XCV300 N N Area 
Relocation 

Raghavan, 
Sutton Virtex N N Supporting CAD flow 

Blodget, 
McMillan Virtex II Partial Y Direct bitstream reuse 

Williams et al. Virtex II Y Y Large User application 

Kalte et al. Virtex E N Y Dynamic Routing 

Bobda et al. Virtex N N Communication and 
Control Overhead 

To avoid some of these limitations and more fully encapsulate the higher layers from 

low-level device specifics, a two-layer framework for Virtex II devices had been separately 

suggested by Blodget et al [6] and also Fong et al [51]. These systems enable self-

reconfiguration under software control within a single FPGA. The system enables self-

reconfiguration through the reconfiguration hardware interface Internal Configuration Access 

Port (ICAP) inside the Xilinx FPGA. The reconfiguration subsystem has a two-layer hardware 

and software architecture that permits a variety of different interfaces. The system enables self-

reconfiguration under software control within a single FPGA, minimizes the need for external 

hardware and provides a highly integrated, lightweight approach to dynamic reconfiguration for 

embedded systems. However, because of the operations of ICAP, the bitstream has to be 

processed directly instead of high-level netlists.  

Experimental Generic Reconfigurable Embedded Target (EGRET) [33] [45] is another 

similar framework proposed by Williams et al. This framework is also focusing on full system-

on-chip (SOC) solution by using ICAP and an embedded Linux system on a Xilinx Virtex II 
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chip. More emphasis has been drawn to the software control side using embedded Linux. But on 

the other hand, currently available CPU core speed and RAM size can impact the complexity of 

the high-level applications that can be implemented into such solution.  

Bobda et al also presented a framework named Erlangen Slot Machine (ESM) [9].  In this 

platform, each module can access its periphery independent from its location through a 

programmable crossbar, which gives the potential of unrestricted one-dimensional relocation of 

modules on the device.  Different inter-module communication channels, including a bus macro, 

shared memory, reconfigurable multiple bus and crossbar have also been proposed.  As a variety 

of communication channels are available, multiple external control hardware and boards can be 

involved.  Communication and control overheads using such approaches may vary. 

The most recent framework developed by Kalte et al [16] is called REPLICA (Relocation 

per online Configuration Alteration), which mainly focused on the step of downloading and 

relocating the modules.  The REPLICA parses the bitstream during the normal download process 

and replaces the column addresses within the bitstream according to the desired location of the 

module. Next, it uses the SelectMAP interface to perform bitstream manipulation to carry out the 

relocation process on Xilinx Virtex Series to achieve the maximum possible throughput. Other 

similar proposed frameworks and tools for partial reconfiguration process also include [12], [26], 

[33], [51], and others. 

2.3 Hardware Optimization Technique 

 One of the other common research interest areas is at the downloading step, by using 

different hardware optimization techniques to achieve possible timing and performance 
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improvement. In previous early stages of research, bit file compression [25] [56] is one of the 

direct approaches used to accelerate the reconfiguration process. In such an approach, 

customized decompression hardware is required. Different general-purpose compression 

algorithms for reconfiguration may be carried out.  It had been reported that using this approach 

might bring an overall reduction of up to a factor of four in total bandwidth required for 

reconfiguration under Hank’s approach [56]. 

With the appearance of the partial reconfiguration technology in recent years, it has 

observed that the configuration overhead can be improved by just over a factor of 7 over the 

serially programmed FPGA [36]. This led to an extra series methods addressing from different 

hardware aspects to improve its efficiency and thus increase the reconfiguration speed even 

more.  Compton, Li, Knol and Hauck [36] developed an algorithm for configuration relocation 

and defragmentation. A new custom designed architecture FPGA as well as software algorithms 

for controlling this hardware is presented, which has different features from the normal 

commercial FPGA chips. With an extra hardware area specially designed for controlling the 

relocation and defragmentation, which is comparatively negligible, it is reported that as much as 

35% improvement in reconfiguration times in these devices for realistic run-time algorithms may 

be gained, compared with basic partial reconfiguration architecture and multi-context device 

[36]. However this architecture modification is specifically based on the Xilinx 6200 series, 

which is not available any longer in the market. 

For more recent practical solutions, Raghuraman, Wang, Tragoudas [37] on the other 

hand studied the configuration data size at the logic level.  In this approach, the LUTs’ inputs are 

fixed to appropriate order based on a heuristic algorithm in polynomial time. With such LUT 

input orders, memory locations that need to be changed during partial reconfiguration process are 
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relocated into common frames as many as possible. By relating the number of frames that need 

to be downloaded into FPGAs to the number of minterms of a specially constructed logic 

function, the required number of configuration frames can be reduced. Since the number of the 

configuration frames is directly related to the size of the partial reconfiguration bitstream, the 

final hardware bit file size should be able to be reduced. It is reported that the size of the 

reconfiguration data could be reduced by around 15% by this approach. 

Regarding to other aspects of the partial reconfiguration hardware bitstream generation, 

Upegui and Sanchez [3] recently discussed possible methodologies to generate the partial 

reconfiguration bitstreams. Besides the standard module-based and difference-based approaches 

suggested by Xilinx, the technique for low-level direct bitstream modification is suggested. By 

calculating the physical location of specific LUT, the logic of this LUT can be directly located in 

the bitstream. Thus, the logic content of LUTs can be modified directly inside the old bitstream 

with much faster speed instead of generating a new one based on the cumbersome standard CAD 

flow. However, this paper only discussed the full bitstream format without exploring the partial 

reconfiguration bitstream pattern, which is quite different from the format of a complete device 

file. This limits the usage of such approach. Moreover, this direct bitstream modification can 

only apply to the logic contents, instead of the routing part of the bitstream, which is far too 

complicate to be manipulated at the bitstream level. 

Sedcole et al [48] also presented a new partial reconfiguration flow to generate the 

hardware bitstream, called the merge partial reconfiguration method.  The merge method 

prepares modules to be allocated arbitrary areas in FPGA with a customized tool required to be 

involved in the place and route step of the process. In this method, by using an XOR function to 

combine the new partial bitstream and the current configuration read back from the device, 
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existing configuration information is preserved, and the module can be removed by repeating the 

XOR operation. Only the difference then needs to be downloaded to the device. Modules can be 

allocated in any rectangle region in device and static routes can pass though reconfiguration area. 

To avoid conflicts, some of the routing resources are reserved for the static routes. It is reported 

that speed measurements have revealed an increase in configuration times of between 2.4-fold to 

4.0-fold, with a baseline overhead of at least 1.58-fold. 

Hardware routing-related issues with partial reconfiguration are also addressed. Two 

types of special designed communication bus for partial reconfiguration modules research 

independently by Krasteva et al [62] and group of Bobda et al [8] to take the place the bus macro 

suggested by Xilinx. By using LUT-based or slot-based communication bus macro structure, 

physical partial reconfiguration resource region size may be modified based on the logic modules 

size. Large regions may be spilt. Adjacent small ones may be combined together. Thus, it 

provides possibility of module relocation and area re-partition. This can bring potential for 

optimization of the hardware performance. 

2.4 Software Control Optimization 

Besides the low-level hardware related research, a lot of approaches had also been 

proposed from theoretical control algorithm angles, including both design phase and runtime 

phase of the partial reconfiguration flow. In Shirazi, Luk and Cheung’s approach, two successive 

circuit configurations are matched to locate the components common to them, so that 

reconfiguration time can be minimized [46]. Two stages had to be carried out for this approach. 

In the first stage, possible components for reconfiguration are identified, and a sequence of 
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conditions for activating an appropriate component at a particular time is found. This step has to 

be carried out manually.  In the second stage, successive configurations will be optimized to 

achieve the desired trade-offs in reconfiguration time, operation speed and design size. 

Components and connections common to two or more successive configurations will be 

identified automatically and will not be reconfigured. 

Another approach suggested by Diessel, Middendorf and Schmeck is dynamic scheduling 

when there are multiple independent tasks to be reconfigured [47].  Rearranging a subset of 

executing tasks takes two steps. The first step identifies a rearrangement of the tasks executing 

on the FPGA that frees sufficient space for the waiting task, and the second schedules the 

movements of chosen tasks so as to minimize the delay to their execution. Three methods for 

have been tested, including local repacking (deterministic heuristics), ordered compaction and 

GA. However the result varies depending on the reconfiguration delay T  and the 

processing time of tasks T . The GA is advantageous when T << T . While for 

the large reconfiguration delays T  and smaller task processing times T , faster 

methods carrying out less rearrangement perform better. When T >> T , the simple 

first-fit method without rearrangement tends to perform well. 
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For large reconfiguration tasks, Mak and Young introduced a temporal logic replication 

method named hierarchical bipartitioning [60]. In this method, an application has to be 

partitioned into multiple stages. The configuration will be switched continuously to implement 

each stage one by one in order to perform the function of the original circuit. They applied this to 

effectively exploit the slack capacity of a stage to reduce the communication cost. For the case 

when there is a tight area bound that limits the amount of replication, they also presented a flow-
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based replication heuristic. In addition, they showed a correct network flow model for 

partitioning sequential circuits temporarily and proposed a new hierarchical flow-based 

performance-driven partitioner for computing initial partitions without replication [60]. 

Pipelining is another temporal partitioning approach discussed by Ganesan and Vemuri 

[55]. By using the processors partial reconfiguration capability, overlapping execution of one 

temporal partition with the reconfiguration of another, reconfiguration overhead L  was 

reduced from ∑ o   , where 

 and  are the reconfiguration time and execution time respectively. They also 

incorporated block processing in the partitioning framework for reducing overhead of partitioned 

with the ability to handle loops and conditional constructs in the input specification. 
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Herbert, Christoph and Macro presented placement methods that rely on efficient 

algorithms for the partitioning of the reconfigurable resource in the temporal level and a hash 

matrix data structure to maintain the free space in the spatial level at the same time [22]. Given n 

as currently placed tasks, previously known placers find a feasible location in O(n) time. 

Additionally, simulations show that the methods improve the placement quality by up to 70% 

compared to Bazargan’s Partitioner [35].   

However, these proposed methods are only focused on the logic algorithm level with 

simplified FPGA architecture and partial reconfiguration operation assumptions, which current 

hardware may not be able to provide. Most of them remain untested on real hardware platforms 

or even sophisticated commercial simulation tools. Therefore each may have its own 

implementation limits. Some may appear to be even impractical to implement based on current 

partial reconfiguration technology. The brief comparison of these methods is listed in Table 2. 
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Table 2: High-Level Partial Reconfiguration Optimization 

APPROACH METHOD 
PARTIAL 

RECONFIGU-
-RATION 

SPATIAL 
REALLOCA-

-TION 

TEMPORAL 
PARALLELISM 

AREA 
SHAPE RUN-TIME POTENTIAL 

LIMITATIONS

Hauck, Li, 
Schwabe 

Bit file 
compression  No N/A N/A N/A No 

Full 
reconfiguration 

required 

Shirazi, Luk, 
Cheung 

Identifying 
common 

components 
Yes N/A N/A N/A No Design time 

work required

Compton, Li, 
Knol, Hauck 

Relocation and 
Defragmentation 
with new FPGA 

architecture 

Yes Yes No Row-
based Yes 

Special FPGA 
architecture 

required 

Diessel, 
Middendorf, 

Schmeck, 
Schmidt  

Task Remapped 
and Relocated Yes Yes No Rectangle Yes 

Overhead for 
remapping 

calculations 

Mak, Young Dynamic 
Partitioning Yes No Yes N/A Yes Only desirable 

to large design

Ganesan, 
Vemuri Pipeline Yes No Yes N/A Yes Limited 

pipeline depth

Herbert, 
Christoph, 

Macro 

Partitioning and 
2D Hashing Yes Yes Yes Rectangle Yes 

Rigid task 
modeling 

assumptions 

Now with the appearance of partial reconfiguration technique from Xilinx and more 

powerful FPGA chip equipped with on-chip CPU core, a more sophisticated and thorough 

approach may be applied to the reconfiguration process. In this dissertation, a 3-layer 

architecture, named Multilayer Runtime Reconfiguration Architecture (MRRA) is proposed to 

establish a general-purpose framework for a wide variety of practical applications and algorithms 

that require reconfiguration during operation. This framework seeks to integrate and optimize 

existing technologies and theories as well as fill in all the missing pieces to thoroughly fulfill the 

tasks listed in Section 3 of Chapter 1. All the concepts and architectures proposed in this 

24 



 

dissertation have been validated with on a real hardware platform along with detailed 

performance analysis.  

2.5 Chapter Summary 

This chapter has explored the recent previous works related to partial reconfiguration 

from multiple areas. In Chapter 2.1, the available commercial partial reconfiguration tools are 

introduced. Chapter 2.2 presents and compares the previous work at the partial reconfiguration 

framework area with their advantages and disadvantages. In Chapter 2.3, the past research work 

at hardware optimization field is discussed. Different techniques are explained. Chapter 2.4 

introduced the previous research at the high-level software control area of the partial 

reconfiguration process. A quick summary of different algorithms is also listed in the Table 

provide. 
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CHAPTER 3: 
MULTI-LAYER RUNTIME RECONFIGURATION ARCHITECTURE 

3.1 Architecture Design Definition 

Currently, the most widely used FPGA chips with partial reconfiguration capability are 

from Xilinx in the Virtex, Virtex II, and Virtex Pro families. Yet, there are no sophisticated 

toolsets commercially available supporting many aspects of the partial reconfiguration paradigm. 

In order to accommodate a variety of reconfiguration processes required by different 

applications, a tiered framework, called the Multilayer Runtime Reconfiguration Architecture 

(MRRA) based on the available Xilinx FPGA hardware is designed.  This architecture includes 

two aspects. The first aspect is a Tiered Framework. There are four major design considerations 

that should be able to conceptually address in this framework: 

Autonomous Operation: Provide stand-alone reconfiguration capability on the FPGA 

device as well as a bi-directional communication channel with the embedded host PC to 

carry out the partial reconfiguration process and routing without manual intervention. 

Task-level Modularity: Provide support at levels down to, and including, task-level 

granularity.  A task is defined as an arbitrary function synthesized to a module that can be 

dynamically downloaded into the reconfigurable device. 

Runtime Scenario Support:  Provide the ability to generate and reconfigure task 

bitstreams at runtime as well as design-time.  Runtime scenarios envisioned at design-

time may not necessarily know in advance which tasks will arrive nor when they will 

arrive, and in selected cases, what some of their specific properties will be.  
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In addition to the framework, the second element of the MRRA paradigm is a Logic 

Control Flow aimed at increasing capability towards the following attributes: 

Flow Coverage: Both the design phase and the runtime phase are automated, so that the 

partitioning, placement, routing, bitstream generation, and configuration steps can be 

accommodated. 

Encapsulation: Control logic of each layer is self-contained thus exposing only a fixed 

interface to other layers, so that modification made at one layer has minimal influence on 

other layers.  If new control algorithms are added or the device platform is changed, the 

system can be ported more readily. 

Standardization: A standardized set of APIs is provided for uniform access to 

heterogeneous logic and communication resources. 

Effective provision of these capabilities in MRRA design can accelerate reconfiguration 

speed, reduce resource inefficiencies, and realize sophisticated range of applications. The 

benefits of this MRRA approach include increased design productivity, portability and resources 

utilization. On the other hand, the coming along extra hardware and software resources overhead 

may need to estimate and compensate. 

In this dissertation, some of the existing reprogrammable technologies and theories of 

operation are investigated and enhanced. Missing components of the steps are explored. A full 

general-purpose framework MRRA is proposed. A high-level data structure along with a 

standardized logic control flow is developed in the MRRA framework to enable flexible 

implementation of user applications and maximize the overall performance.  Standardized set of 

Application Programming Interfaces (APIs) and corresponding hardware platform are 

demonstrated for uniform access to heterogeneous logic and communication resources. Speed 
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and area optimization method for reconfiguration is also presented. On the other hand, estimation 

and compensation techniques are also explored to deal with the additional hardware and software 

resource demands required to provide such advantages. 

 

3.2 Hierarchical Architecture Design 
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Figure 3: Multi-layer Runtime Reconfiguration Architecture 

Figure 3 shows the layered architecture used to encapsulate partial reconfiguration 

capabilities. The top tier is called the Logic Layer. This Layer is the upper tier that supports 

general user-level applications, carrying out hardware-independent logic control on the tasks 

running on the FPGA platform.  In this layer, task routines are available for invocation by user 
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applications.  Reconfiguration requests can be initiated from this level, based on the 

requirements of the hardware-independent user logic.  These reconfiguration requests, including 

possible new logic function modification and/or physical resources re-arrangements, are all 

described in a general logic format at this layer.  These are subsequently provided to the 

translation layer to generate the device-dependent reconfiguration data file. 

Typedef struct tagLUTinfo
{
    /* LUT status information */
    unsigned short   source[3];              /* The 4 input of the LUT */
    unsigned char    iTruthTable[2];     /* Current output truth table */
    unsigned short   cRow;          /* Current row position */
    unsigned short   cColumn;              /* Current column postion */
    unsigned short   destination[255];   /* The output of the LUT */
    char             GorFLUT;                    /* 0=G_LUT; 1=F_LUT */

    /* Modification request */
    unsigned short  cFutureRow;           /* Future Row */
    unsigned short  cFutureColumn;      /* Future Column */
    char            SwitchLUTFlag;     /*0= no change, 1= move position
                                                               between G and F LUT */
    unsigned char   iFutureTable[2];    /* Future Truth Table */
    char            PositionFlag;              /* 0=no change; 1=update */
    char            TableFlag;                  /* 0=no change; 1=update */

} LUTInfo;
 

Figure 4: LUT Representation at Logic Layer 

Figure 4 shows the detailed representation of this logic format. The representation 

describes the hardware circuit at the Look Up Table (LUT) level.  For each LUT, the 

representation has two parts, the LUT Status Information and the Modification Request.  In the 

LUT Status Information, the LUT inputs and output are labeled.  The physical row and column 

position of the LUT in the FPGA and the logic function inside the LUT are also recorded.  The 
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modification request can be a physical relocation request or a logic function adjustment or both.  

Besides the details of request information, two modification request flags are also used in this 

section to advise the translation layer to interpret the request more efficiently.  All of the high 

level applications will only use and modify this device-independent data structure to determine 

their current state and generate new reconfigurations requests.  The reconfiguration requests 

containing all the LUT information generated at the Logic Layer will generate the device-

dependent reconfiguration data file at the Translation Layer.  Depending on the complexity of 

these high-level applications, these can run either in standalone mode on the on-chip CPU core 

inside the FPGA, or on an external host PC with the on-chip CPU core running simultaneously 

using a loosely-coupled structure.   

The middle tier is referred to as the Translation Layer.  In this layer, the general logic 

descriptions for a palette of tasks are translated into specific physical details as a reconfiguration 

data file by a hardware-dependent mapping engine.  After the partial reconfiguration tasks 

generation request is made by the user logic from the Logic Layer at runtime, the general 

information contained in these requests must be translated into a hardware-dependent 

configuration data file.  The original list of partial reconfiguration tasks may include the origin 

design netlist, physical area allocation, re-allocation and/or direct logic modification.  This 

translation enables the Reconfiguration Layer to execute the reconfiguration requests on the 

FPGA device.  The Translation Layer contains a mapping engine to interpret all of the general 

representations passed from the upper layer into an actual reconfiguration data file. 

Figure 5 shows the details of the translation process.  The Translation Layer always stays 

in the idle state until a new request is sent from the Logic Layer.  A new request is always 

accompanied by an LUT list.  Based on the modification request specified in the contents of each 
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element of the LUT data structure, the status of each LUT is updated.  The modification request 

is then cleared and the corresponding translation engine indicator will be set if necessary.  Based 

on the two translation engine indicators, the corresponding area and logic translation engine will 

be called to map the general information into device related data.  The actions in the dashed 

boxes in Figure 5 will be processed only when the corresponding flags or indicators are set.   
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Figure 5: Translation Process Flow Diagram 

Currently, in the prototype Translation Layer, both the one-dimensional (1D) and two-

dimensional (2D) area management mapping processes still rely on the Xilinx toolset.  The 
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physical resource area management constraints are generated and modified directly by the upper 

layer logic, and then translated into standard text based constraint inputs by the translation 

engine in this layer.  After the new constraint file is generated, the Xilinx tools are invoked by 

the translation engine via a shell script.  This will automatically run the task in the background to 

perform the placement and routing for the module without manual input. The Figure 5 shows the 

details of the translation process. Currently, in the Translation Layer, both the 1D and 2D area 

management mapping process still rely on the Xilinx toolsets. These physical resource area 

management constraints are created and modified directly by upper layer logic then translated 

into standard text based constraint input by the translation engine in this layer. After the new 

constraint file is generated, the Xilinx toolsets will be called as the other part of translation 

engine by a shell script. This will run the task at background automatically to perform the 

placement and routing for the module without manual input. 

On the other hand, logic modifications can be translated on either an available partial 

reconfiguration file or on the currently active configuration data in the device directly without 

involvement of the Xilinx tools.  When the partial reconfiguration file is processed, the 

Translation Layer will map the top-level logic request directly into the file and then send it to the 

Reconfiguration Layer interface to be downloaded to the device.  

This decouples the bottom layer’s hardware-specific considerations from the 

application’s user logic.  It also incorporates the online run-time spatial management information 

into the corresponding partial reconfiguration data file so that when multiple modules need to be 

reconfigured, the physical area can be reorganized and optimized.  With the existence of such a 

layer, adjustments for changes to the hardware devices or components can be accomplished by 
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modifications of the mapping engine in the Translation Layer without influencing the top-level 

Logic Layer. 

The bottom tier comprises the Reconfiguration Layer. This layer of an autonomous 

architecture includes the hardware platform and the low-level communication APIs. The 

hardware platform includes system resources and operational resources. The system resources 

include all the external peripherals such as the SRAM, which is a shared memory and can be 

accessed by both Host PC and FPGA, and the communication interface, such as RS232. The 

system resources can also contain an on-chip CPU core as the embedded control element and the 

on-chip Block RAMs, based on design specifications. The operational resources are the actual 

reconfigurable LUTs inside the FPGA. It can be further conceptually partitioned into two subset 

region, a fixed resource subset that held constant during the entire process and are used to control 

the on-chip data communications and on-board peripherals, and a reconfigurable resource subset 

that is used for the user-defined partial reconfiguration applications.  

The configuration bitstream is downloaded to the targeted FPGA reconfigurable units 

from the hardware interfaces at this layer when either the initial configuration or the run-time 

partial reconfigurations are carried out. Input and output data of the FPGA is also passed 

between the logic control and the bottom FPGA reconfigurable units areas through this path for 

the functional throughput of the task routines during operation.  Block or External RAMs may be 

used to buffer configuration data in this layer to accelerate the transfer process through 

pipelining and buffering. The details of the system design and verifications will be discussed in 

Chapter 4. 
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3.3 Dynamic Control Flow 
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Figure 6: Logic Control Flow 

A logic control flow has also been designed for the MRRA as shown in Figure 6. This 

control flow has integrated a Module-based Flow adopted from the standard Xilinx [72] flow 

with area management ability and the direct bit management process, which we named as a 

Frame-based Flow. This flow allows different pieces, or “modules,” of a design to be 

independently developed and later merge these modules into one FPGA design and reconfigure 

and modify them individually later at run-time and it provides the potential full autonomous 

flexibility by using the translation engine from the lower layer without necessary manual input 

through GUI interface.  

As shown in the Figure 6, a full design needs to carry out first at design time. The full 

hardware system is partitioned into modules and designed from the top view to the bottom. 
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Meanwhile, One-Dimensional Area Management is performed on the full physical FPGA device 

by partitioning it into multiple 1D column-based rectangles, in which the fixed and 

reconfigurable modules will be arranged based on the size of each module and the specified area 

constraints.  Then all these top views and modules are implemented and verified individually. 

The size of each module will be optimized by additional Two-Dimensional Area Allocation 

placements inside each module. The Optimized partial reconfiguration bitstream for the specific 

modules are also generated.  Finally, all the individual modules are created by Final Assembly 

based on the top-level view and are ready to be downloaded to the FPGA device as 

Configuration Data bitstreams. 

After the initial bitstream is downloaded, based on the user logic control, the precompiled 

partial bitstream can be monitored by the algorithms in the Logic Layer and updated directly to 

the device for dynamic reconfiguration when necessary. On the other hand, new modification 

requests can be generated by the user logic in the form of hardware independent general 

representation at run-time. Although the boundary of each module is fixed, the physical logic 

resources inside each module can be re-allocated at runtime. Logic function modification request 

for each Look UP Table (LUT) inside modules can be generated based on the user requirement 

as well. Both requests from the Logic Layer will eventually wait for the translation engine from 

lower layer to interpret to the corresponding configuration date file and reconfigured by the 

Reconfiguration Layer. 
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3.3.1 Adopted Module Based Partial Reconfiguration Flow 

As delineated by the dashed area in Figure 6, Module-based Partial Reconfiguration Flow 

is a basic flow primarily used at design time.  This flow is adapted from the flow proposed by 

Xilinx. This flow allows different elements referred to as modules of a design to be 

independently developed and later merged into one FPGA design.  This allows the individual 

reconfiguration and modification of the modules at run-time.  Additionally, it provides the 

potential for full autonomy and flexibility using the translation engine from the lower layer 

without the need for GUI-based manual input. For this flow, the reconfigurable fabric of the 

FPGA is partitioned into column-based rectangular regions in which the fixed and reconfigurable 

modules will be arranged based on specified area constrains. The reconfigurable modules have 

the following properties: 

1) The reconfigurable module height is always the full height of the device. The width 

ranges from a minimum of four slices to a maximum of the full-device width, in four-

slice increments. 

2) To help minimize problems related to design complexity, the number of reconfigurable 

modules should be minimized, which means the number of slice columns divided by four 

is the only real limit to the number of defined reconfigurable module regions. 

3) A reconfigurable module's boundary cannot be changed. The position and region 

occupied by any single reconfigurable module is always fixed. 

4) Reconfigurable modules communicate with other modules, both fixed and 

reconfigurable, by using a special bus macro.  
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5) The implementation must be designed so that the static portions of the design do not rely 

on the state of the module under reconfiguration while reconfiguration is taking place. 

The implementation should ensure proper operation of the design during the 

reconfiguration process. Explicit handshaking logic may be required. 

6) The states of the storage elements inside the reconfigurable module are preserved during 

and after the reconfiguration process. On the other hand. If set/reset initialization is 

required for the reconfigurable module, user-defined set/reset signals should be defined in 

the source HDL. 
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Figure 7: Module-Based Flow 
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A detailed description of this design flow is shown in Figure 7.  A full design is first carried 

out, implemented and verified from top level to bottom modules, some of which are fixed while 

others are designated as reconfigurable.  This generates the Top-level Design and Module-level 

Design.  After the device is downloaded with initial power-up configuration, reprogram 

reconfigurable modules as needed with individual (or partial) bitstreams then can be updated to 

the device. 

The communication between a reconfigurable module and a fixed module, or between the 

reconfigurable ones must go through dedicated wires, i.e. in order to maintain correct 

connections between the modules, must use the same physical wires. This is why the bus macro 

is used. By positioning the bus macro exactly straddling the dividing line between two adjacent 

modules, the inter-module connection is established. However, the standard bus macro provided 

by Xilinx can only establish communication between two modules next to each other. When a 

communication channel is required for two separate modules, i.e. one or more modules 

physically placed between them, a signal needs to pass through the reconfigurable modules 

connecting the two modules with standard bus macros used on both sides to make that 

connection. This effectively requires creation of an intermediate signal that is defined in the 

reconfigurable module. This signal cannot be actively used during the time the intermediate 

reconfigurable module is being configured. 

To avoid this dilemma, a custom-made bus macro is designed. By extending the 

dedicated wires, the new bus macro provides communication between modules across multiple 

module boundaries. The dedicated routing that used by the bus macro going through the modules 

will be also reconfigured with the intermediate reconfigured module. But since it will be placed 
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in exactly the same way before, during, and after the reconfiguration, and since this is done 

glitch free, the bus will stay intact. Therefore, the communication will not broken during 

reconfiguration process since the wires going through the modules being reconfigured never 

change.  

3.3.2 Frame Based Partial Reconfiguration Flow 
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Figure 8: A Simple Logic Modification Example 

In the basic Module-based flow, all the tasks that need to be reconfigured at runtime are 

required to be precompiled at design time and reside originally in non-volatile storage.  

However, in some instances, hardware tasks may have very similar or even identical logic 

function structures as well as input and output signals.  Such scenarios typically can occur in 

hash, encryption, and encoding/decoding applications, such as [44], [58], [59], [63], etc. Figure 8 

illustrates this concept with a straightforward example. Both a one-bit full adder and a one-bit 
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full subtracter have three one-bit inputs and two one-bit outputs.  When viewing these two 

modules as a black box externally, they are reconfiguration-compatible.  Specifically, when 

analyzing the logic structure instantiated inside the black box, these two modules both use 2 

LUTs with identical logic interconnections between LUTs and I/O signals.  The only difference 

between them is only one truth table stored inside one LUT, which changes from 0xE8 to 0x8E.  

There exists a clear overlap between the configuration information for these two modules.  When 

these two similar tasks need to be interchanged, the use of two separate precompiled 

configuration data files will occupy twice the storage space and twice the reconfiguration time.  

A more advantageous strategy would be to modify the corresponding logic content directly at 

runtime when switching between two tasks with similar or even identical logic structures, 

especially when the logic interconnections are identical.  This can also potentially be extended to 

tasks even at a fine-grained level [61].   

In Xilinx Virtex II/-Pro FPGAs, configuration memory is arranged in column-based 

vertical frames, i.e., one-bit wide extending from the top edge of the device to the bottom.  These 

frames are the smallest addressable segments of the FPGA configuration memory space.  Hence, 

all operations must act on whole configuration frames.  Even if only one byte inside a frame is 

changed, such as the truth table of one LUT, the full frame needs to be rewritten.  Configuration 

memory frames do not directly map to any single piece of hardware; rather, they configure a 

narrow vertical slice consisting of many physical resources.  Therefore, we refer to the direct bit 

management process as a Frame-based Partial Reconfiguration Flow. 

To utilize this flow at runtime, modules have to be implemented at the LUT level at 

design time when following Module-based Flow procedures.  Besides the required 1-dimensional 

area constraints for the module, all of the logic elements that may require partial reconfiguration 
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at run-time have to be placed at specific physical locations using 2D area constraints.  Thus, the 

representation scheme shown in Figure 4 is used to describe the module circuit.  Since the 

primary Frame-based Partial Reconfiguration Flow only focuses on the logic modification of the 

modules without considering the changes of input/output signals or the logic interconnections, 

there are only two aspects that need to be focused on with the module circuit.  The first is the 

LUT-level functionality and the second is the physical location of the LUTs. 

Since there are no logic interconnection changes at runtime, the logic elements, i.e. the 

LUTs, are labeled with a fixed integer from 1 to N at design time, where N denotes the total 

number of LUTs used.  After receiving the representation scheme from the top tier, the frame 

address is determined by the translation engine.  Based on the calculated address, the 

corresponding logic function data of the frame can be read back.  The mapping engine then 

continues interpreting the new logic information and loading into the frame.  Details of the 

location calculation process will be discussed in Chapter 4.3. After this process, new frame data 

will be merged back into the running bitstream. Only the positions of the bitstream containing 

the user logic request have been substituted. Therefore, configuration outside of the dedicated 

area is not affected. With frame-based flow alone, bus macro may be eliminated from the design, 

which can potentially simplify the design from the module-based flow significantly.  
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3.3.3 Physical Area Management 
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Figure 9: Physical Area Management 

Establishing adequate reconfigurable regions and sufficient connectivity at design time is 

crucial for dynamic partial reconfiguration support.  Furthermore, it is necessary to track the 

occupancy of these regions at run-time to maintain correct module re-allocation operations.  

MRRA area management strategies address both of these requirements. 

As shown in Figure 9, the area management at module level is carried out at a 1-

dimensional level.  The size of any single occupied reconfigurable module is fixed after design 

time.  Hence these modules can only be re-allocated to other same column-sized reconfigurable 

regions, given these regions provide identical inter-module interconnections for the external 

ports of the module.  This is a limitation imposed by the module-based flow provided by Xilinx, 

where the reconfigurable module height is always the full height of the device.  The width ranges 

from a minimum of four slices to a maximum of the full-device width, in four-slice increments.  

Manipulating the column addresses of a module’s bitstream enables a module to be relocated.  
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When the module spreads across multiple CLB columns the first and leftmost column must be 

presented at the beginning, then the new CLB column value is automatically incremented 

internally.  During the relocation process, the old column addresses of a module are established.  

Several FPGA hardware specific parameters are then used to generate the new major column 

addresses.  Hence, the old values of the input bitstream are simply replaced by the newly 

calculated values.  Since checksum data may be generated in the original reconfiguration data, 

several extra data words may have to be recalculated and updated during the process in order to 

relocate a module to another CLB column. Detailed calculation process will be discussed in 

Chapter 4.5. 

Since only the column address of the module is changed, the relative position of all the 

logic resources and routing resources are kept intact and can be quickly shifted to other column 

positions.  Hence, this process also requires that the relative position of inter-module 

interconnections for the external ports of the module be the same.  A related approach for Virtex 

FPGAs has also been discussed in [16].  

On the other hand, inside each module, slices can be placed and adjusted anywhere inside 

each module’s reconfigurable region as shown in Figure 7.  These arrangements can be carried 

out at a two-dimensional level, only limited to the height and the width of the region.  These area 

modifications are translated at the slice level by the mapping engine.  Therefore, this requires 

that the corresponding reconfigurable modules are implemented at least at the RTL-level or the 

more detailed LUT-level.  The 2-dimensional adjustments can be potentially very useful to 

applications such as fault tolerance or Genetic Algorithms (GAs) [13], [30], [38] that are 

executed at the top level.  Additionally, such adjustments also beneficially influence the size of 

configuration bitstream. 
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Based on the current control flow, 1D area management model at module level is a 

realistic choice, in which tasks can be allocated anywhere along the horizontal device dimension. 

The width ranges from a minimum of four slices to a maximum of the full-device width, in four-

slice increments. The vertical dimension is fixed and spans the total height of the hardware task 

area.  The 1D model leads to a placement problem of reduced complexity. 

In this 1D model, an area manager is used. The area manager controls the free space on 

the device and tries to locate feasible placements for the tasks, i.e., tracing the unused area of the 

reconfigurable device with identical area. When tasks start or terminate execution, the placer 

updates this data structure to reflect the new allocation. When a task arrives, the placer has to 

search for matching free areas on the device. A 1D hash table is used to record the free area list. 

Hashing is a process during which data items are stored in a data structure called hash 

table. A hash function maps a key to the entry in the hash table that holds the data item 

referenced to by the key.  Given a device with W column RCUs, the direct-address hash table H 

is defined as an array of W elements. Free areas with size of w columns are stored in the element 

H[w]. Every element contains a pointer to a list of free column areas of the correspondent size. 

Based on the pre-defined inter-module connection, the elements in the same list are also labeled 

into different group. Clearly, the finding list operation normally only takes one step: 

Return H[size]. Free_entry 

Extra step may need to locate the area with identical inter-module connection. This searching 

step can cost up to O(k), where k is the total number of pre-defined inter-module connection 

group. Therefore, the time complexity of area finding process is only O(k), which is critical to 

the online performance. Whenever a new task is inserted or deleted, only the corresponding 
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element in the list may need to be scheduled to update.  The time complexity of these updating 

operations is only O(1). 

3.4 Logic Layer Application 

As mentioned in Chapter 1, FPGA fault tolerance is one of the typical areas that require 

the partial reconfiguration ability. Among all the algorithms that have been proposed in this area, 

Genetic Algorithms (GAs) are one of the most widely discussed and most sophisticated 

applications, which was selected to drive the development of this solution and used at algorithm 

layer. The goals of the selected GA algorithm are to analytically model the large-scale 

reconfigurability of on-chip resources and to iteratively develop adaptive reconfiguration 

techniques to occlude failures [49].   

In the GA application, all phases of the fault handling process including Isolation, 

Diagnosis, and Recovery were integrated into a single cohesive approach [49].  An initial 

population of functionally identical (same input-output behavior), yet physically distinct 

(alternative design or place-and-route realization) FPGA configurations is produced at design 

time.  At run-time, these individuals compete for selection based on fitness assessment favoring 

fault-free behavior.  Hence, any physical resource exhibiting an operationally significant fault 

decreases the fitness of those configurations, which use it.  Through runtime competition, the 

presence of the fault becomes occluded from the visibility of subsequent FPGA operations.  

Meanwhile, new device configurations are created as variations of faulty and viable 

configurations.  This enables regeneration of lost functionality, realized directly as new 

configurations via the FPGA’s normal throughput processing.    
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Definition 1: For the GA, each generation contains a number of P chromosomes. Each 

chromosome consists of a set of cells , where l is the number of cells in each chromosome.   lC

Definition 2: For each cell,  

nm
i ILC ∪=  

where,  is the set of function units within the cell C  and  is the set of internal 

connectivity and the inputs/outputs of the function units within the cell . 

mL i
nI

iC

Definition 3: For each function unit sets , mL

},...,2,1,|{ miLLL ii
m =Ω∈=  

where Ω is the logic function space. Currently, Ω contains five dyadic functions OR, 

AND, XOR, NOR, NAND and one unary-function NOT. The index m is the number of function 

units in the set. 

Definition 4: For each interconnection set , nI

},,...,2,1,,|{ niLLIII kjii
n =>=<=  ( ,1,...,2,1,0, += mkj  and ) kj <

where <  stands for the interconnection from function unit L  to ,  when j=0, 

it means the input from outside of the unit, when k=m+1 it means the output of the unit. The 

outputs of each cell are only allowed being inputs of the array with higher row numbers.  Again, 

the index m denotes the number of function unit in the set and n is the number of connections in 

the set. 

>kj LL , j kL

The major GA operations that will directly affect the task result for lower layer 

translations include crossover and mutation.   
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3.4.1 Low-Level Crossover Operator 

In GA, Crossover is a genetic operator that combines (mates) two chromosomes (parents) 

to produce a new chromosome (offspring). In our GA, this operation performs a probability-

driven single point genetic crossover on the two parent chromosomes. Whenever a faulty 

configuration has been detected and ready to be repaired, a correct configuration P is also 

chosen from the pristine pool as another parent.  

1P 2

A Random Select Operator, 

RSO: C  i
l C→

is used to randomly select one cell from the chromosome to carry out the modified single point 

crossover operation. Then, a crossover point inside of the cell is also need to be selected and only 

the part of configurations after the select point is replaced. 

>>→<< 12 ,,,, PCLPCL ijij  

3.4.2 Low-Level Mutation Operator 

In genetic algorithms, mutation is a genetic operator used to increase genetic diversity 

from one generation of a population to the next generation. In the high-level algorithm used here, 

the operation performs a probability-driven single-bit genetic mutation. One randomly selected 

bit of the binary chromosome content is inverted.  

Here, the Random Select Operator first selects the target cell: 

RSO: C  i
l C→
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Then the function unit is chosen and the function is also randomly pick up from the 

function space Ω: 

RSO:  j
m LL →Ω),(

Part of the interconnections inside the cell may be able to be randomly modified as well: 

RSO:  lk
n III ,...,→

With all these modifications 

KPCLII ijlk >→< 1,,,,...,  

the new individual chromosome K is generated. 

The details of how to map these operations into real FPGA hardware data structures will 

be discussed in Chapter 6. The performance and limitation of these operations based on the 

available hardware structure will also be evaluated and analyzed in Chapter 6. 

3.5 Chapter Summary 

This chapter introduced the MRRA concept in detail. In Chapter 3.1, design 

considerations for the autonomous reconfiguration architecture were discussed, including both 

the hardware design requirement and the logic control flow requirement.  Chapter 3.2 presents 

the details of the three-layer paradigm, including the Logic Layer, the Translation Layer and the 

Reconfiguration Layer. The Reconfiguration Layer is mostly a hardware layer, which provides 

the basic reconfiguration interface and multiple testing and communication hardware control 

modules. The Translation Layer shields the details of the hardware from the general control logic 

by presenting a translation engine with a set of standard APIs.  This translation engine can 

interpret the hardware independent logic, including both the logic functions and the physical 
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routings, into corresponding hardware dependent digital circuit implementations. A general data 

structure containing the hardware logic function information as well as physical allocation 

information has been defined in Logic Layer. High-level algorithms only need to be concerned 

with these general data structures and performs their normal routines without worrying about the 

hardware compatibility. The final modification result will be stored in the defined general data 

structure and pass to the Translation Layer for further interpretation.  

Chapter 3.3 discusses the Dynamic Control Flow, which provide the Adopted Module 

Based Flow at design phase, the Frame Based Flow at runtime phase and the Physical Area 

Management control. At design time, the adopted Module Based Flow is used to generate the full 

design. The full hardware system is first partitioned into modules and designed from the top view 

to the bottom. Meanwhile, One-Dimensional Area Management is required to perform on the full 

physical FPGA device by partitioning it into 1D column-based rectangles, in which all the fixed 

and reconfigurable modules will be arranged based on the size of each module and extra 

specified area constraints from design specifications.  Then, all the individual modules are 

created by Final Assembly based on the top-level view and are ready to be downloaded to the 

FPGA device as Configuration Data bitstreams. 

After the initial bitstream is downloaded, new modification requests can be generated by 

using the Frame Based Flow at run-time instead of using predefined and precompiled modules. 

Logic function modification request for each Look UP Table (LUT) inside modules can also be 

generated based on the user requirement. Requests from the Logic Layer will eventually wait for 

the translation engine from lower layer to interpret to the corresponding configuration date file 

and reconfigured by the Reconfiguration Layer.   
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Finally, Chapter 3.4 illustrated the basic Genetic Algorithm conceptions for FPGA high-

level fault tolerance application based on the MRRA structure and control flow. The crossover 

and mutation operators of GA were also defined at conceptual level. 
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CHAPTER 4: 
RECONFIGURATION AND VERIFICATION METHODOLOGY 

FPGA devices are configured by loading application-specific configuration data into their 

internal SRAM [5]. Configuration is carried out using a subset of the device pins, some of which 

are dedicated, while others can be reused as general-purpose inputs and outputs after 

configuration is complete. When integrating the basic partial reconfiguration flow with high-

level algorithms, several basic questions need to be addressed: 

• Which hardware interface should be used for the reconfiguration process? 

• What fixed hardware modules are required to support control logic? 

• How can a communication mechanism be established between the low-level 

hardware components and the high-level applications through the chosen 

interface? 

• How can the partial reconfiguration modules be verified after being reconfigured?  

What strategies and tools can be used in this verification process?  

In order to provide a solution to these considerations, three different mainstream 

reconfiguration interfaces are explored and analyzed in the remainder of the Chapter. 

Customized system and methodologies are also designed and developed based on the 

characteristics of each interface. 
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4.1 SelectMAP Based Methodology 

4.1.1 SelectMAP Interface 

SelectMAP interface is a parallel reconfiguration interface that provides an eight-bit 

bidirectional data bus interface to the FPGA configuration logic [73]. It can be used either in 

Master Mode with the CCLK signal considered as an output from the FPGA, or in Slave mode 

with the CCLK signal considered as an input. In slave mode, SelectMAP allows for both 

configuration and readback, while in master mode only configuration is possible. 

In SelectMAP slave mode, 14 pins, including DATA pins D[0:7], CCLK, RDWR_B, 

BUSY, CS_B, PROG_B, DONE, and INIT_B, are required to carry out the reconfiguration 

process. These pins will need to be placed at specific positions of the general-purpose I/O blocks 

within the FPGA by specifying user constrains. 

SelectMAP configuration data is loaded one byte at a time presented on the D[0:7] bus 

on each rising CCLK edge with the Most Significant Bit (MSB) of each configuration byte on 

the D0 pin. Two extra control signals are present for SelectMAP, CS_B and RDWR_B. These 

signals must both be asserted Low for a configuration byte to be transferred to the FPGA. A third 

signal, BUSY, is an output from the FPGA. When SelectMAP configuration is running at high 

frequency, such as greater than 50 MHz for Virtex,Virtex-E, and Spartan-II and greater than for 

Virtex-II [73], the BUSY line must be monitored to ensure that data was transferred. If BUSY is 

High, this indicates that the last data byte was not transferred and must remain on the data bus. 

Multiple devices can be connected on the same SelectMAP bus. To do so, the DATA 

pins D[0:7], CCLK, RDWR_B, BUSY, PROG_B, DONE, and INIT_B are connected in common 
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between all devices. The CS_B Chip Select inputs are kept separate, so that each device can be 

accessed individually. External control logic is required to arbitrate between devices by asserting 

and de-asserting the CS_B signals as necessary. 

4.1.2 System Design 

In this dissertation, all the designs are built to support an Avenet Virtex II Pro 

Development board. In our development board, only one FPGA device is connected to the 

reconfiguration interface. The clock is setup to be generated from outside the FPGA itself while 

readback may be required for user verification purposes. Based on these factors, a slave mode 

SelectMAP interface is chosen within a Loosely Coupled system, in which all the high-level 

control logic originates from an external PC host.  

In order to communicate with the host PC through the SelectMAP interface in slave 

mode, a PCI bus interface is normally used to establish the connection. This requires the 

instantiation of a PCI core either inside the target FPGA chip or inside a dedicated bridge chip on 

the FPGA board. To complete this setup, SRAM modules may be needed as buffers for the 

purpose of receiving data from the host PC and reconfiguring the target FPGA. 

Figure 10 shows the detailed schematic view for the modular hardware platform of the 

SelectMAP-based MRRA architecture designed for Xilinx Virtex II/-Pro architecture.  This 

platform has been designed as a full on-chip hardware subsystem.  The hardware subsystem 

includes two subsets comprised of system resources and operational resources [18].  The system 

resources include an on-chip PowerPC core as the control element, the on-chip Block RAMs and 

all the external peripherals such as the SRAM, which acts as shared memory and can be accessed 
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by both the external Host PC and the on-chip PowerPC, and the RS232 interface.  The 

operational resources are the actual FPGA modules instantiated inside the FPGA.  It consists of a 

fixed resource subset that is held constant during the entire process and is used to control the on-

chip data communications and on-board peripherals, as well as a reconfigurable resource subset 

that is used for the user-defined partial reconfiguration applications.  
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Figure 10: SelectMAP based System 

The fixed operational resources include multiple control interfaces for the external on-

board SRAM, RS232 resources to communicate with the host PC, and Block RAM controllers 

serving the PowerPC core and Block RAMs. A three-segment path is also established in the 

fixed operational resource region to connect all the modules, which includes an On-chip 

Peripheral Bus (OPB), a Processor Local Bus (PLB) and a bridge core (PLB2OPB) providing 

access to the OPB from the PLB.  
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Figure 11: IPIF Template 

The remaining modules comprise the reconfigurable subset.  In order to maintain 

uniformed communication with the PowerPC core through the OPB bus with those 

reconfigurable and relocated modules, a simplified Intellectual Property Interface and Bus 

Macro structures have been adopted. Figure 11 shows the basic template. Each module is 

attached to the OPB bus in slave mode and each contains 2 components: a component for the 

user logic and a component for an IPIF.  The user logic component carries out the original 

designed functions. The IPIF provides a simple standard OPB slave interface uses only the slave 

signal set and bus attachment logic required for a slave interface.  Using these structures, all the 

modules can communicate and be controlled seamlessly.  

In addition to the reconfiguration interfaces, the reconfiguration layer also provides two 

bidirectional communication channels connecting it with the host microprocessor.  The first is 

the standard RS232 serial channel.  It is primarily used for debugging and monitoring purposes 

which normally only require small amounts of data exchanges. 
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The other communication channel is realized as a custom parallel protocol through the 

external SRAM and PCI bus.  As shown in Figure 10, the input path begins at the PC, which 

transmits reconfiguration data over the PCI bus to the specific address of an on-board SRAM 

module, and then sets the data availability flag.  Concurrently, the PowerPC polls the flag status, 

reads data from the addressed SRAM module, and copies data to the hardware component for 

processing when the data flag is set.  On the other hand, the output path data starts from 

PowerPC reading the data from other hardware modules through the 3-segment bus path.  The 

data width can be varied as 8 bits, 16 bits or 32 bits. This bidirectional channel can be used when 

a large validation process is required. 

4.1.3 Testing Strategy and Communication Channel 

Because there are few sophisticated testing tools available for testing the SelectMAP 

interface at the present time, the communication protocol and testing APIs for this prototype 

configuration are designed and built from the ground up.  

For testing purposes, the communication channel needs to be bi-directional. The on-chip 

PowerPC is used to control the handshaking between the board and the host PC. To monitor the 

data exchange and reconfiguration process, the on-board RS232 is subsequently used to connect 

to the serial port of the host PC. After the board is installed in a PCI slot of the host PC, it is then 

controlled by the debugging program running on the host PC [21]. 

As shown in Figure 10, the input path begins at the PC. The PC sends the data over the 

PCI bus to the specific address of an on-board SRAM module, and then sets the data availability 

flag. At the same time, the PowerPC core keeps checking the flag, reads data from the addressed 
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SRAM module, and sends data to the hardware component for processing when the data flag is 

set. On the other hand, the output path data starts from the PowerPC when the latter reads the 

data from other hardware modules through the 3-segment bus path, and then writes it to the on-

board SRAM by setting the data availability flag. In the meantime, the PC host keeps polling 

SRAM location for the data availability flag.  When the flag is set, the PC host receives the data 

over the PCI bus, and saves it in its memory for further processing when ready.   

Table 3: Communication APIs on PowerPC 

API  name Input Parameter Operation Data Width 

Intc_setup N/A Initializes the interrupt 
controller N/A 

DeviceDriver 
Handler *CallbackRef The corresponding interruption 

routine N/A 

mem_dump unsigned start_addr, 
unsigned end_addr 

Reads the on board and on-chip 
memory&register 32 bits 

mem_write unsigned wr_addr, 
unsigned wr_value 

Writes the on board and on-
chip memory&register 32 bits 

flash_test unsigned start_addr, 
unsigned end_addr 

Thorough validation test on the 
flash 32 bits 

mem_test unsigned start_addr, 
unsigned end_addr 

Thorough validation test on the 
SRAM 32 bits 

This bi-directional path is supported by the on-board status register, which maintains the 

PCI ownership control bit. The combination of the drivers running on the PC and the control 

program running on the PowerPC in the Virtex-II Pro fabric achieve PCI ownership of the 

SRAM bus to retrieve the data. After the initial boot up, the PCI ownership is controlled by the 

host PC until it clears the PCI ownership control bit of the status register. Thus, the PowerPC and 

the host PC are able to synchronize the exchange of data between each other by polling the data 

status flag inside the SRAM. 
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Table 4: Communication APIs on Host PC 

API NAME INPUT PARAMETER OPERATION DATA WIDTH 

Initial N/A 
Recognizes and 

Initializes the FPGA 
board  

N/A 

WriteBitFile char Filename[] 
Reads configuration file 
from the board to Host 

PC 
File length 

ReadBitFile char Filename[] 
Reads the configuration 
file from the Host to the 

FPGA  
File length 

ByteRead 
unsigned long StartAddr, 
 unsigned long EndAddr, 

 int AccessBar 

Reads the on board 
memory  8 bits 

WordRead 
unsigned long StartAddr,  
unsigned long EndAddr,  

int AccessBar 

Reads the on board 
memory 16 bits 

DWordRead 

unsigned long StartAddr, 
 unsigned long EndAddr, 

 int AccessBar,  
unsigned long AccessData 

Reads the on board 
memory 32 bits 

ByteWrite 

unsigned long StartAddr,  
unsigned long EndAddr, 

 int AccessBar, unsigned long 
AccessData 

Writes to the on board 
memory 8 bits 

WordWrite 

unsigned long StartAddr,  
unsigned long EndAddr, 

 int AccessBar,  
unsigned long AccessData 

Writes to the on board 
memory 16 bits 

DWordWrite 

unsigned long StartAddr,  
unsigned long EndAddr, 

 int AccessBar,  
unsigned long AccessData 

Writes to the on board 
memory 32 bits 

The PowerPC embedded in the FPGA fabric is running in standalone mode by 

automatically generating the software structure.  On top of this basic operating system, the 

standard communication API interface is then developed.  The communication APIs on the 
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PowerPC side are shown in Table 3.  For the on-board memory operations, a 32-bit data width is 

provided as determined by the on-chip bus width.   

The standard communication API interfaces for PC have been developed as listed in Table 

4. These API interfaces are categorized into 3 parts: Initialization Operations, Configuration File 

Operations and On-board memory Operations. For the on-board memory operations, 3 different 

data width, 8 bits, 16 bits and 32 bits, are provided. The WinDriver routines [67] from Jungo 

Software for the PCI interface are also used to realize part of this API functionality..  

4.2 JTAG Based Methodology 

4.2.1 JTAG Interface 

The IEEE 1149.1 Test Access Port and Boundary-Scan Architecture is commonly 

referred to as the Joint Test Action Group (JTAG) interface, which is the technical subcommittee 

initially responsible for developing the standard. This standard provides a means to assure the 

integrity of individual components and the interconnections between them at the board level. 

Devices containing JTAG boundary-scan logic can send data out on I/O pins in order to 

test connections between devices at the board level [74]. The circuitry can also be used to send 

signals internally to test the device-specific behavior. These tests are commonly used to detect 

opens and shorts at both the board and device level. In addition to testing, boundary-scan offers 

the flexibility for a device to have its own set of user-defined instructions. The added common 

vendor specific instructions, such as configure and verify, have increased the popularity of 

boundary-scan testing and functionality.  
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JTAG is also well suited for downloading configuration bitstreams to FPGAs.  The IEEE 

1149.1 standard defines a four-wire serial interface (a fifth wire is optional) as designated in the 

Test Access Port (TAP) to access complex Integrated Circuits (ICs) such as microprocessors, 

DSPs, ASICs, and CPLDs. In addition to the TAP, a compliant IC also contains shift registers 

and a state machine to execute the boundary-scan functions. Figure 12 shows the details of this 

control state machine. Data entering the chip on the Test Data In (TDI) pin is stored in the 

instruction register or in one of the data registers. Serial data leaves the chip on the Test Data Out 

(TDO) pin. The boundary-scan logic is clocked by the signal on Test Clock (TCK) while the Test 

Mode Select (TMS) signal drives the state of the TAP controller. Although it is optional, Test 

Reset (TRST) can serve as a hardware-reset signal. Multiple scan-compatible ICs may be serially 

interconnected on the printed circuit board, forming one or more boundary-scan chains, each 

chain having its own TAP. Each scan chain provides electrical access from the serial TAP 

interface to every pin on every IC that is part of the chain.  

Communication with the JTAG controller is a two-step process. First, an instruction is 

shifted into the instruction register (IR). This instruction is decoded and selects one of the data 

registers (DR) for shifting data into (on TDI) and at the same time selecting the same DR as the 

source of data for TDO. The selected DR is then accessed. Accessing the DR always requires 

shifting N bits of data into the register on TDI and receiving N bits of data from the register on 

TDO (where N is the size of the register). Each DR can be read only, write only, or read/write. If 

a DR is read only, the N bits that are shifted in during an access are discarded and the N bits 

shifted out are returned on the TDO line. In the case of a write-only data register, the N bits 

shifted in are captured in the register and the N bits shifted out are meaningless. 
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Figure 12: JTAG Control State Machine [80] 

While the SelectMAP interface requires occupying the general purpose I/O pins in the 

FPGA chip, the JTAG pins are the pre-assigned dedicate ones instead.  Moreover, SRAM 

modules can be spared since the JTAG interface does not need them for reconfiguration.   
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4.2.2 Reconfiguration Control 
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Figure 13: Programming Flow under JTAG Control 

As shown in Figure 13, the FPGA programming flow that was used for JTAG-controlled 

partial reconfiguration begins with design entry in VHDL/Verilog [20].  The design is first 

simulated using Modelsim for functional verification. Simulation is followed by synthesis, 

placement, and routing with generation of the .bit file using Xilinx Navigator. The JTAG 

operations are recorded in the Serial Vector Format (.svf) file with the iMPACT or JTAG 

Programmer.   

To carry out the autonomous reconfiguration operation, an API from Xilinx application 

note Xapp058 is adopted [80].  This API, developed in the C programming language, can be 

ported to any microcontroller including a host PC.  Instead of using a .bit file directly, this API 

is adopted into JTAG prototype using the .xsvf format, which needs to be converted by the 

Xilinx tools ahead of time. An .xsvf file is a compact binary file based on the .svf file.  This 

format consists of scan operations and movements between different stable states on the IEEE 

1149.1 state diagram.  The .svf files were developed by Texas Instruments and have been 

adopted as a standard for data interchange by JTAG test equipment and software manufacturers. 
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An example is shown in Figure 14. The API reads and interprets the XSVF contents, generates 

the programming instructions, data, and control signals for the Xilinx devices, and sends them 

through the JTAG interface. With this API, reconfiguration process can be easily integrated into 

high-level control logics running on the Host PC. 

  

Figure 14: An .SVF Example [20] 
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 4.2.3 Testing Strategy and System Design 

Because JTAG is a very popular interface, numerous commercial tools are available for 

testing and debugging purposes. Therefore for JTAG interface based system, testing can be 

carried out either using commercial COTS software directly or user customized structure and 

applications.  

 

Figure 15: ChipScope Logic Analyzer [20] 
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ChipScope based testing 

ChipScope Pro is such a JTAG based real-time verification tools that provide on-chip 

debug at or near operating system speed. It inserts logic analyzer, bus analyzer, and Virtual I/O 

low-profile software cores directly into the design, allowing user to view any internal signal or 

node, including embedded hard or soft processors. Signals are captured at or near operating 

system speed and brought out through the programming interface, freeing up pins for the design 

[75]. Captured signals can then be analyzed through the ChipScope Pro Logic Analyzer as 

shown in Figure 15. 

Choosing such a tool as ChipScope Pro for verification eliminates the requirements for 

complicated bi-directional communication channels as required with the SelectMAP interface. 

Therefore, the hardware platform has been greatly simplified. A number of IP cores, such as the 

PowerPC, the Block RAM controller, the three-segment bus, and the SRAM controller can be 

removed from the fixed region of the FPGA chip leaving only the basic control logic.  The IPIF 

overhead for each reconfigurable module also becomes unnecessary in the JTAG-controlled 

design.  Only the basic functional modules and bus macros are required in the FPGA device. 

Figure 16 shows the verification architecture of the JTAG prototype. All of the 

ChipScope Pro cores use the JTAG Boundary Scan port to communicate to the host PC via a 

JTAG downloading cable.  The Virtual Input/Output (VIO) core is a customizable core that can 

both monitor and drive internal FPGA signals in real-time [75].  There are four kinds of signals 

available in a VIO core: (i) asynchronous inputs, (ii) synchronous inputs, (iii) asynchronous 

outputs, and (iv) synchronous outputs.  In our system, synchronous outputs are used from the 

VIO cores as the testing pattern generator.  Every VIO synchronous output has the ability to 
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output a static 1, a static 0, or a pulse train of successive values.  A pulse train is a 16-clockcycle 

sequence of 1's and 0's that is driven out of the core on successive clock cycles.  Synchronous 

inputs are also used to read back the corresponding result from the output signals and displayed 

in the ChipScope Pro Analyzer as virtual LED indicators. 
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Figure 16: Loosely Coupled System for JTAG [20] 

The Integrated Controller (ICON) core is used as a testing control logic core and provides 

a communications path between the JTAG Boundary Scan port of the target FPGA and the 

VIO/ILA cores. When necessary, the Integrated Logic Analyzer (ILA) core is another optional 

module that can be adapted to the testing system, working as customizable logic analyzer to 

monitor any internal signal of the design.  Since the ILA core is synchronous to the monitored 

design, all design clock constraints that are applied to the design are also applied to the 

components inside the ILA core.  Detailed information about applying these cores can be found 

in [75]. 

66 



 

There are two ways to insert the debugging cores into the user design. First is the 

Automatic Insertion of Cores, which use ChipScope Core Inserter to incorporate the probe into 

the user design. This requires less work at the user part. But not every type of cores is supported 

by the Inserter. Manual Insertion of Cores is the second way. After the ChipScope cores are 

generated using the Core Generator, users instantiate the core modules, wired and implemented 

into the design by their code directly. This requires more work. But on the other hand it brings 

the flexibility and eliminates the limitation of the Inserter tools. Figure 17 demonstrates the 

details of this process.  

 

Figure 17: ChipScope Core Insertion Procedure 
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GNAT based testing 

Using JTAG based commercial testing tools can significantly reduce development time. 

However, these tools were designed to satisfy a variety of testing environments and 

requirements. Hence they normally have a very sophisticated and complicated structure, which 

can consume a lot of routing resources. On the other hand, partial reconfiguration design 

requiring module level design has very strict routing boundary constraints. With an increase in 

the number of modules, less and less routing flexibility is available for these commercial tools 

such as ChipScope. Moreover, to debug the signals, commercial tools normally requires using a 

Graphical User Interface (GUI), which conflicts with the autonomous operation requirement.  

Alternatively, custom scripts may be created, but can slow down the speed while requiring extra 

programming interfaces with the other part of the algorithms.  Therefore a second user 

customized verification system, General-purpose Native JTAG Tester (GNAT), is also designed 

to satisfy the routing flexibility as well as the autonomous operations with simple API interface. 

The JTAG controller not only provides reconfiguration ability, but also supports a 

number of custom JTAG instructions and corresponding data registers. One such example is the 

USER custom instructions. These instructions allow the JTAG controller to communicate with 

user logic with FPGA.  Figure 18 is a block diagram illustrating how the JTAG controller 

connects to the FPGA fabric. A dedicated hardware component inside the Xilinx FPGA, named 

BSCAN is used from the Xilinx UniSim libraries. This hardware component enables the FPGA 

general logic to communicate with the host PC through JTAG controller. The GNAT module is 

developed as part of the bitstream on the reconfigurable area of the chip. It connects to the 

BSCAN block via the TDI, TDO, and Control. Inside the GNAT module, The BSCAN 
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component provides all of the control signals. There is also a USER Data Register (DR) inside 

the module. A USER DR is just a shift register with expandable width.  

In Figure 18 example, it shows a 10-bit USER DR. The upper 2 bits of the register are 

used to control access to the GNAT peripherals. Since only 2 peripherals are connected to the 

GNAT, only 1 bit is needed to identify the peripheral [52]. The other bit is allocated as an 

opcode (read/write). The lower 8 bits are for data communication. The GNAT component 

provides a unique Chip Select signal for each peripheral as well as read/write control signals and 

writedata. A readable GNAT peripheral is responsible for providing read data. GNAT provides 

the multiplex function with the coming data. For the peripherals that connect to the GNAT, a 

decoder and register wrapper is required to map the various input and output signals to a 

uniformed interface signals that connects to the GNAT. 
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Figure 18: GNAT Based System 

The combination of the BSCAN and the GNAT blocks provide a very simple but 

powerful communication mechanism to the system testing and debugging. The overhead is low 

69 



 

and because it is all module-based configurable, the size of the USER DR and the definition of 

all bits can be easily expanded and re-defined to meet a different verification requirement.  

A set of corresponding control and testing APIs are developed on the Host PC to carry 

out the debugging procedure. Table 5 shows the details of these functions. Similar to the 

SelectMAP interface, these functions can be categorized into Initialization Operations, 

Configuration File Operations, and Testing Operations 

Table 5: Testing APIs for JTAG 

API  name Input Parameter Operation Data Width 

xInitialize N/A Initialize the JTAG chain N/A 

DownloadDesign *filename Download the new 
configuration date to the board N/A 

xWrite unsigned long data Send testing data to the FPGA  

xRead 
unsigned int id, 
unsigned long* 

result   

Get testing result from the 
FPGA 32 bits 

xCleanup N/A Close the configuration chain N/A 

4.3 ICAP Based Methodology 

4.3.1 ICAP Interface 

Modem FPGAs contain ample computational resources consisting of microprocessors 

and memory, which brings the possibility to establish a complete framework to move 

reconfiguration management from the outside environment into the SOC. 
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Figure 19 shows the components of such system. The partial reconfiguration logic resides 

in the FPGA blockRAM directly. The on-chip CPU core will solely responsible for the runtime 

algorithm running. The reconfiguration process will be carried out through the ICAP. Such an 

approach will provide the application with a high degree of self-containment and autonomy. In 

addition, it will decrease substantially the overhead associated with communication between the 

reconfigurable device and its environment.  
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Figure 19: System On Chip Example 

The ICAP block is located in the lower right hand corner of the FPGA [70]. It is used to 

access the device configuration registers as well as to transfer configuration data. The ICAP 

primitive provides access to device configuration data when connected to user logic in the FPGA 

fabric. Currently it is only available in the Virtex family of devices, including Virtex II, Virtex II 

Pro, as well as Virtex IV and V.  

The protocol used to communicate with ICAP is a subset of the SelectMAP protocol. It 

includes pins of Di[0:7], CCLK, RDWR_B, Enable, BUSY, and Do[0:7]. ICAP, as 
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indicated by its name, is an internally accessed resource and not intended for full device 

configuration. The ICAP module supports readback and partial reconfiguration of its own FPGA. 

This self-reconfiguration capability enables adaptive systems based on the PPC405 and the ICAP 

module. Consistent with the SelectMAP interface, the ICAP module provides read and write 

access to all configuration data. In the design, the ICAP module is also a slave IPIF interfaced 

module on the PLB bus controlled by the PPC405 processor. It has been reported that at optimal 

speed, the ICAP interface has a throughput of 5 MB/s running at 50 MHz [70]. 

4.3.2 System Design 

Figure 20: shows the Runtime Reconfiguration and Testing System with ICAP. This 

system is very similar to the SelectMAP systems. However, since there is a PowerPC core in the 

Virtex-II Pro, most of the control logic can be implemented directly inside the chip to form a 

tightly coupled on-chip system based on the PPC405, block RAM or external RAM.  The 

SelectMAP or the JTAG interface is mainly for the board initialization only. The host PC is 

connected to the board with RS232 interface and monitor the test outputs only.  

The basic partial reconfiguration process through ICAP proceeds as follows: 

After power-up and initial configuration with a base FPGA design through JTAG or 

SelectMAP interface, the top algorithm then commands the PPC405 processor to modify the 

reconfigurable module attributes. The PPC405 modifies the module attributes by first reading the 

contents of the specified module configuration frame through ICAP. The read-in bit stream will 

be transformed into a shorter bit stream representation or stay unchanged and passed up to the 

top algorithm layer more further modifications. Then the change is performed on the recently 

72 



 

read and stored frame based on the algorithm such as GA. Lastly, the modified frame, which is 

held in block RAM or external RAM, is written out to the FPGA reconfigurable area through the 

ICAP. This flow is described as the Read-Modify-Write of a configuration frame process. No 

external devices are required to implement this solution. 
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Figure 20: ICAP Based Testing System 

The biggest change for this SOC solution from the previous prototype version is that the 

partial reconfiguration now is carried out by a FPGA module, named ICAP, inside the FPGA 

instead of the operations through PCI and SRAM. This change means the reconfiguration layer 

will now only rely on the on-chip hardware instead of any extra software communication APIs. 

This communication improvement may be critical for large throughput applications as GA. 

Another change for the SOC solution is that since there is no host PC gets involved 

during partial reconfiguration process, no standard Xilinx tool will be available to use either.  Bit 
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stream or pseudo bit stream will have to be used directly for upper layer logic algorithms. Thus, 

Frame-based workflow has to be used in this situation. Without the bulky CAD tools involved, 

the workload of the translation layer is greatly reduced. On the other hand, in order to use bit 

stream or simplified pseudo bit stream directly at algorithm level, many reverse engineering 

activities need to be carried out in order to obtain an inside understanding of direct the bit stream 

operations before any sophisticated upper layer algorithms can be developed.  This tedious task 

was completed for Virtex II Pro as described in the subsequent section.  

4.3.3 Bit Manipulation and Reconfiguration Control 

Based on the data available in [69], [71] and a series of reverse engineering studies 

performed [17], a set of equations has been deduced to locate the corresponding logic content 

inside the bitstream file.  In the Virtex II/-Pro architecture, each CLB has 4 slices placed in 2 

rows and 2 columns. These slices are numerated in the format XiYj, where X is the slice column 

number. i range from 0 to 2N-1, beginning from the left to the right where N is the number of 

CLB columns. Y is the row number.  The variable j ranges from 0 to 2K-1, beginning from the 

bottom to the top where K denotes the number of CLB rows, e.g. for an XC2VP7, there are 40 x 

34 CLBs so N=40 and K=34. Therefore, 80 rows numbered 0 through 79 inclusive, and 68 

columns numbered 0 through 67 inclusive of slices are available.  Each one of these slices has 2 

LUTs called G-LUT and F-LUT, which are normally occuppied by the tools in that order. 

Xilinx FPGA configuration data are described at frame level. Each configuration frame 

has a unique 32-bit address that is composed of a Block Address (BA), a Major Address (MJA), 
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a Minor Address (MNA), and a byte number.  The major address identifies a specific column 

within a block, and the minor address identifies a specific frame within a column. 

To locate a specific slice or LUT, the correct frame address has to be located first. As 

described above, the 32-bit frame address starts with a BA, which is always seven ‘0’s for the 

CLB column. Next, the following 8 bits are MJA, which can be calculated by: 

                                       overheadXMJA +÷= 2                       

where X is the slice column number and overhead includes the total number of the GCLK 

columns and the leftmost IOB and IOI columns, which is normally a static number equal to 3 and 

can be confirmed using the device data sheet if there is any variation.  

MNA is represented by the next 8 bits following the MJA inside the frame address. As 

mentioned earlier, all the logic for each slice column resides only in the second and the third 

frame. Therefore, 

                                          12mod += XMNA                            

where X is the same as in Equation (2).  Since the frame number starts from ‘0 instead of 

‘1’, only a value of 1 needs to be added in Equation (3).  With extra 9 bits of ‘0’ after the MNA, 

the frame address is formed. 

Inside the logic frame, for each slice, the LUTs logic occupies 5 bytes and there are 

always 12 bytes at the beginning of the frame as overhead. So the offset in a specific logic frame 

is calculated as 

                       [ 125)1( ]+×−−= YKOffset  (bytes)                     

where K is the total slice row number and Y is the slice row number. Since the slice row 

number starts from ‘0’ instead ‘1’, a value of ‘1’ is subtracted. 
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 Inside the 5 bytes of each slice, the first 16 bits are for the G-LUT truth table and the last 

16 bits are for the F-LUT truth table. The LUT contents are stored in 1’s compliment format, i.e. 

bitstream values are the complement of the truth table entries. The G-LUT truth table contents 

are stored in sequence from left to right, as MSB to LSB, while the F-LUT contents are stored in 

reverse order from LSB to MSB. For each LUT, there are maximum 4 inputs with up to 16 truth 

table elements. When less than 4 inputs are utilized, which means that only 2, 4, or 8 entries in 

the truth table are used, the remaining unused entries are filled with the duplicated effective 

values of the used entries instead of arbitrary 0s or 1s. Figure 21 shows an example of the full 

bitstream mapping process. 
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Figure 21: Bitstream Mapping Process 

The configuration bitstream data in the full configuration file is organized consecutively 

frame by frame without labeling each frame address explicitly as partial reconfiguration file. 

Thus, if the logic in the full bistream file needs to be modified, the location of each logic slice 

can also be deduced from: 

 
 [ ]

overheadFFF
YXXOffset

LIOILIOBGCLK +×++++
+×−+×+××÷=

424)1(
125)79()2mod(424424222

  

where X is the slice column number; Y is the slice row number; 22 is the total number of 

frames for each CLB column; 424 is the total number of bytes per frame; FGCLK, FLIOB and 
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FLIOI are the total frame number of the GCLK, left IOB and IOI column respectively, which can 

be easily get from the data sheet, e.g. for Virtex II Pro, it is always 30 frames in total. The 

additional value of ‘1’ added in equation (9) reflects the fact that at the beginning of the 

configuration bitstream data, there is always an extra frame of ‘0’ used to flush the 

reconfiguration register. Finally, the overhead of the bitstream file needs to be added on to it in 

order to obtain the final correct offset.  These overheads may vary in length and can be counted 

manually or through a small API autonomously. 

4.4 Chapter Summary 

In order to achieve the maximum performance and system design flexibility for MRRA, 

three different mainstream reconfiguration interfaces have been investigated, including the 

SelectMAP, JTAG and ICAP in Chapter 4.1, 4.2, and 4.3.   SelectMAP is an 8 bits width parallel 

configuration interface. The reconfiguration pins requires using the general I/O pin from the 

FPGA device. The interface is connected to the host PC through PCI interface. Since there are 

few commercial tools available for this interface, the reconfiguration and verification APIs were 

all built from the ground up. A bidirectional handshaking protocol was designed for this 

interface. 

Chapter 4.2 presents the JTAG interface based system design. JTAG is a 4-pin serial 

interface. Instead of occupying the general IO pins as SelectMAP, JTAG using dedicated 

configuration pins only. Two verification strategies for JTAG based system are presented in this 

section. First is by using the commercial tool ChipScope, which provides a general GUI based 

solution for the system. The other one is a customized GNAT system dedicated to different user 
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logics. Compared to SelectMAP system, JTAG based system provides much more flexibility for 

partial reconfiguration module arrangement due to the pin occupation and the fixed module 

complexity.  

Chapter 4.3 explains the ICAP interface, which is an internal reconfiguration interface for 

Xilinx Virtex FPGA family.  The demands for runtime partial reconfiguration capability in 

embedded SOC applications are achieved by using this interface due to pin constraints, while 

combining the on-chip CPU core and Block memory.  In order to fully utilize the internal Read-

then-Write reconfiguration flow, a bit manipulation methodology was established. Detailed 

locating and logic transformation equations were demonstrated as well for the most popular 

partial reconfiguration capable FPGA. 
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CHAPTER 5: 
RESOURCE UTILIZATION AND TIMING ANALYSIS 

Multiple system prototypes and verification strategies have been designed and developed 

based on different reconfiguration interfaces in Chapter 4. In this Chapter, in order to evaluate 

the performance of these systems, a group of test benches are applied to the prototypes. Results 

are quantitatively analyzed in details using metrics of hardware resource utilizations, power 

consumptions, translation, reconfiguration, and verification timing.  Hashing algorithms are also 

used as basic application case study to test the ability of running general applications at Logic 

Layer on MRRA. 

5.1 Basic Application Case Study 

Hash algorithms [64], also known as message digest algorithms, are frequently used to 

generate a unique fixed-length bit vector H for an arbitrary-length message M.  The vector H is 

called the hash or the message digest of M. These algorithms are used for encryption in a wide 

variety of security applications.  Two types of the most commonly used hash algorithms, i.e., 

MD5 [64] and SHA-1 [64], are selected for the preliminary MRRA top-level application case 

study.  Both algorithms are frequently employed in real-time embedded data stream processing 

applications. 

The two algorithms have a very similar general structure. In both algorithms, 32-bit 

temporary registers are used to derive H. MD5 uses four registers: A, B, C and D. SHA-1 uses an 

additional fifth register E. These registers are initialized with certain fixed constants.  The 

message M first is padded with ‘0’ to a length of multiple 512 bits and then it is divided into 
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blocks of 512 bits. After that, each block is processed with several steps. Let i denote the step 

index. MD5 consists of 64 steps and SHA-1 includes 80 steps, i.e. 0 ≤ i ≤ 63 for MD5 and 0 ≤ 

i·≤ 79 for SHA-1. Each step includes a step function and the re-organization of the temporary 

registers. For each step there are two 32-bit words W and K. The word W is derived from current 

processing block based on a message schedule. The word K is a constant defined by i. There are 

four possible functions F. each is used in different round. The MD5 step function is defined as 

follows: 

            ) K[i]) W[g]D)C,(B,F((AB 55 tS mdmd <<<++++=         

where “<<<” means rotate left, g is decided by step index i and Fmd5 is: 
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After each step, the values of the registers are re-organized as A←D, B←Smd5, C←B 

and D←C.  

For the SHA-1 algorithm,  

                  EK[i] W[i]D)C,(B,F5)(A ++++<<<= shashaS           

where if i < 16, W[i] is the ith 32-bit word of the message block; if i≥16 W[i] is 

calculated by 

            116])-W[i 14]-W[i 8]-W[i 3]-(W[i = W[i] <<<⊗⊗⊗         

and the Fsha is defined as: 
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After each step, the values of the registers are re-organized as A← Ssha, B←A, 

C←B<<<30 and D←C and E←D. When all the steps have been processed, the current values of 

the temporary registers are added to the values of the registers before the steps. Then, another 

block is selected for processing which continues until all blocks are finished. In the end, the hash 

value H of the message M is in the temporary registers, which is 128 bits of length for MD5 and 

160 bits for SHA-1. For more detailed information about these two algorithms, see [64]. 

After analysis, the four step functions have been chosen to be implemented as 

reconfiguration modules for these two hash algorithms. As mentioned above, there are also many 

similarities between the MD5 and SHA-1 algorithms. Thus, it is possible for both algorithms to 

be implemented in a single top-level design so that the required resources are minimized with 

limited partial reconfiguration. More detailed discussion about combining these two algorithms 

can be found in [59], [63]. Clearly, the eight step functions in these two hash algorithms have the 

same type of inputs and outputs with identical bit widths. Therefore as discussed in Chapter 3, 

besides the Module Based partial reconfiguration flow, the Frame Based reconfiguration flow 

may offer a more efficient option in such cases. 

Table 6 lists the results and compares the resource utilization and power consumption 

when using different implementation strategies.  For each implemented algorithm, the first sub-

column lists the result of the original full step function design as a baseline.  The results from the 

Module-based partial reconfiguration flow implementation are listed in the second sub-column. 

As shown in this sub-column, the resource utilization for each module of the design has been 
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reduced to one third or less of the baseline design.  As far as the power consumption is 

concerned, two groups of data are listed, including Dynamic Power and Total Core Power, where 

the latter is the sum of the Quiescent Power and the Dynamic Power consumption obtained by 

Xilinx XPower average over a test vector of over 211 random inputs.  As shown in row 2 and 

row 3 of Table II, the Dynamic Power consumption has been reduced to just 8.8%, 15.4%, and 

29.2% of baseline using the Module-based approach for SHA-1, MD-5, and combined circuits, 

respectively.  The Total Core Power has been reduced to 57%, 58.3%, and 63.8% of baseline, 

respectively, as well.   

Table 6: Step Function Resource Utilization And Power Evaluation 

SHA-1 MD5 Combined 
 

Baseline Module 
Based 

Frame 
Based Baseline Module 

Based 
Frame 
Based Baseline Module 

Based 
Frame 
Based 

Area 
(slice) 192 65 

(33.9%) 32 881 168 
(19.1%) 32 1068 324 

(30.3%) 32 

Dynamic 
Power 
(mW) 

234.35 20.69 
(8.8%) N/A 255.20 39.32 

(15.4%) N/A 274.12 79.98 
(29.18%) N/A 

Total Core 
Power 
(mW) 

496.85 283.19 
(57.0%) N/A 517.70 301.82 

(58.3%) N/A 536.62 342.28 
(63.8%) N/A 

 

As for the Frame-based design, since all step functions take 3 inputs and generate 1 

output of 32 bits width each, only 32 LUTs are required to be updated during partial 

reconfiguration.  Therefore a minimum of 16 and a maximum of 32 slices are needed based on 

the LUT placement strategy.  The truth table representations are stored in the top-level flow 

control code directly with 2´8=16 bytes storage consumed.  The new bitstream is generated by 

the translation engine on request.  The Xpower tools facilitate estimation of power consumption 

at the design level and the results reported are the average values across all slices in the design. 
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The power consumption of individual slices cannot be accurately estimated. Therefore the power 

data of Frame-Based design is not available. 

5.2 Resource Optimization Analysis 

The hardware prototype of the MRRA has been developed with a 2GHz Pentium 4 

desktop host with 512M bytes of RAM, and on an Avnet Virtex II Pro development board 

equipped with a Xilinx Virtex II Pro VP7 FPGA. The Virtex-II Pro family provides abundant 

reconfigurable recourses with strong functional elements for both combinatorial and synchronous 

logic. It also provides an embedded PPC405 cores inside the FPGA device, operating up to 400+ 

MHz with specially designed interface logic integrates the core with the surrounding CLBs, 

block RAMs, and general routing resources. In addition, the Avnet development also provides a 

PCI interface and large amount of on board memory, including SDRAM SODIMM, Mobile 

SDRAM, Asynchronous SRAM and Flash, which provide huge extension for large calculation 

and reconfigurations. All these features make it possible to build a MRRA system that meets our 

original design specifications.  

The onboard hardware component and software APIs were initially developed using the 

Xilinx ISE 6.3 toolset and EDK 6.3, and later extended to support Xilinx ISE 9.1i.  WinDriver 

from Jungo Software is also used to establish the communication APIs on the host PC side.  The 

physical resource area management constraints are entered directly into User Constraint Files 

(.ucf) as text input.  Mapping and routing are accomplished using the Xilinx toolsets. The 1D 

area management is implemented using the “area group” constraints and the slice-level 2D area 
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management is defined by using the “LOC” constrains.  Details about the syntax of the .ucf file 

can be found in [76].  

Five different partial reconfiguration platforms have been developed based on the 

different reconfiguration interface requirements and strategy, including one with SelectMAP 

interface only, one with JTAG and ChipScope only, One with JTAG and GNAT, one with ICAP 

only and external SRAM controller on chip, and one with all three interfaces.  With these five 

prototypes, complexity and performance tradeoffs for embedded SOC applications can be clearly 

compared and contrasted. 

 

Figure 22: Bus Macro Placement [20] 

 

84 



 

 

Figure 23: Partial Reconfiguration Module Routing 

As mentioned in the previous chapter, to generate an MRRA partial reconfiguration 

system, bus macro has to be specifically placed between modules. Figure 22 shows a simple 

example from the developed system. The full FPGA device has been divided into 3 regions, 

which marked with different colors. Between these regions, bus macros have been placed right 

on the saddle of the boundary to generate correct connections. Figure 23 shows an example of a 

routed partial reconfiguration module after the bus macro placement. The module has been 

placed in the leftmost region. As shown in the figure, the routing of this module has been 
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specifically constrained inside the defined rectangle area. The inter-module signals are connected 

through bus macro, which are in green color in the figure. The only exception signal that can 

cross the boundary is the clock signals, which use the global clock routing net, instead of the 

local routing nets. 

 

Figure 24: MRRA with SelectMAP Interface Placement and Routing 

In order to establish the bi-directional communication channel, external SRAM and on-

chip SRAM controller modules are used as data buffers for reconfiguration purposes, which 

occupy a majority of the 77 external pins and 352 TBUF resources in the fixed region.  As 
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mentioned in the previous chapter, with the PowerPC core involved, 3-segment communication 

bus with 32 to 64 bits width is required. Therefore, as shown in Figure 24, the routing nets have 

covered most of the areas even they are limited to their own designated area.  In fact, because of 

the high pin usage dispersed across the fixed region and the complicated communication 

modules, only 15 out of 68 columns of slices remain available for the reconfigurable modules.  

Therefore the resource utilization of the SelectMAP prototype, the ICAP with external SRAM 

prototype, and the multiple interface prototypes show very little variation. 
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Figure 25: Block Diagram of ChipScope Cores and Associated Interconnection 

 On the other hand, if the ICAP system is built as an SOC prototype, with no required 

external parallel communication channel, or using only the standard RS232 port, most of the pin 
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utilization drops significantly.  Furthermore, if only a JTAG interface is used, commercial tools 

such as ChipScope can be used for validation process, which can eliminate most of the on-chip 

modules in the fixed region, including the PowePC core. Without the OPB bus interconnection, 

the IPIF for each module is also not required.  Hence the reconfigurable module overhead is 

reduced from 7 slices to 0, when compared to other platform versions. Figure 25 demonstrates 

the logic diagram of the instantiate MRRA hardware platform. Figure 26 shows the 

corresponding physical placement and routing. Clearly, compared to the SelectMAP based 

platform, such scheme provides much less area and routing occupancy. Hence it provides bigger 

flexibility for the partial reconfiguration modules. 

 

Figure 26: Placement and Routing of ChipScope Cores and Associated Interconnection [20] 
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Figure 27 shows the implementation of GNAT system. Compared to other platform, this 

design shows significant advantages in the resource utilizations and routing occupancy. 

Expandable bus system gives the flexible control on the bit width of the modules and routing 

arrangement. On the other hand, since the BSCAN module is a dedicate circuit sits at the upper 

right corner of the device, the gnat needs to be placed on the right most partitioned regions. This 

may require customized bus macro involved to make correct communications if multiple partial 

reconfiguration modules need to be connected to the fixed region. 

 

Figure 27: GNAT Placement and Routing [52] 
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Table 7: Resource Utilization 

Interface 
# of 

Fixed 
Modules 

# of  Pin 
of Fixed 
Modules 

Reconfigurable 
module 

overhead  

Slices for 
Fixed 

Modules 

BRAM for 
Fixed 

Modules 

TBUF for 
Fixed 

Modules 
PPC405 

Comprehensive 
interface 9 77 7 slices 1472 9 352 Y 

SelectMAP 8 77 7 slices 1352 8 352 Y 

ICAP with 
SRAM 

controller 
9   77   7 slices 1472   9 352   Y 

ICAP without 
SRAM 

controller 
8 4 7 slices 932 9 42 Y 

JTAG with 
ChipScope 4 25 0 73 0 64 N 

GNAT 1 0 5 36 0 0 N 

Table 7 shows the detailed comparison of all the MRRA prototype system. In summary, 

when the SelectMAP interface with external SRAM is used to establish reconfiguration and 

testing channels, sophisticated hardware logic is involved and excessive pins usage is incurred, 

which consumes a factor of 5 to 18 times more logic resources in the fabric than the JTAG-based 

prototype.  These costs can limit the size and area placement flexibility of the reconfigurable 

modules.  In this case, large capacity FPGAs, such as the Virtex-II Pro X2VP20 or above, are 

highly recommended.  Furthermore, additional effort is also required for pin assignments and 

connections with special bus macros thereby resulting in an increase in design complexity. 
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5.3 Timing Analysis 

5.3.1 Fundamental Timing Parameters 

Tests have been carried out to measure the performance of the fundamental operations of 

the MRRA prototype. Table 8 presents the wall clock time for each of these operations. For the 

JTAG and SelectMAP interfaces, the time taken to download the full bit file, which has a fixed 

size of 548 KB for the Virtex II Pro XC2VP7, is measured. The time taken by the ICAP reading 

and writing operations are measured on a per frame basis, each of which contains 424 bytes of 

data. 

Theoretically, the JTAG interface with a parallel cable III can have a download speed of 

300Kbps [74] and SelectMap with Virtex II/-Pro can work at a maximum 66MHz clock speed 

[73]. In our prototype, the measured data transfer rate using JTAG was 216 Kbps.  Due to the 

data-transferring overhead between the host PC and the board, the SelectMap interface requires 

536 ms, which roughly translates to 1MB/s throughput. Therefore, when downloading from the 

host PC, the observed reconfiguration latency of JTAG is 40 times higher than that of the 

SelectMAP interface, as expected.  This indicates the magnitude of benefit achievable by using 

SelectMAP in terms of low reconfiguration latency.   

For the on-chip reconfiguration operation, the ICAP-based technique took 303,425 clock 

cycles to read a frame and 304,811 cycles to write a frame.  Since the current PowerPC core 

operates at 100MHz, the timing can be easily transformed into milliseconds as listed in Table 8.  

A single data communication processing cycle, starting from host PC sending the data out to the 

PCI to reading the data back from the SRAM requires up to 123 ms. This includes the time take 
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by the hardware and PowerPC to finish processing the data.  The time taken to generate a new 

bitstream file with direct bitstream logic manipulation APIs has an upper-limit of 30 ms for 

modification of the 32 slices of the hash algorithms on the host PC.   

Table 8: Basic Timing Evaluation 

Operation Threotetical Maximum 
Throughput Measured Throughput Measured Transfer 

Time 

SelecMAP Reconfiguration  66 MB/s 1MB/s  536ms (per full file)  

JTAG Reconfiguration 300 Kbps 216 Kbps 20.3s (per full file)  

ICAP Read 50 Mbps 1.12 Mbps 3.03ms (per frame)  

ICAP write 50 Mbps 1.11 Mbps 3.04ms (per frame) 

Data Communication N/A N/A 123 ms 

Direct Bitstream 
Manipulation N/A N/A 30 ms (per 32 slices) 

5.3.2 Translation Engine Evaluation 

In the Translation Layer, both the 1D and 2D area management mapping process still 

relies on the Xilinx toolsets. These physical resource area management constraints are created 

and modified directly by upper layer logic and then translated into standard text-based constraint 

input by the translation engine in this layer.  After the new constraint file is generated, the Xilinx 

toolsets are invoked as the other part of translation engine via shell scripts. This runs the task in 

the background automatically to perform the placement and routing for the module without 

manual input. 

The speed of the translation engine for module implementation is also evaluated with a 

series of circuit with different size. The translation engine is required original partial 

reconfiguration bitstream and to reallocate the physical resources.  In addition to the original 
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MD5 module, two combinational benchmark circuits from the ISCAS’85 benchmark suite - the 

C17 and the C1908, which is the SECDEC circuit mentioned in the previous section have been 

used in this experiment.  Two sequential benchmark circuits B02 and B03 from the ISCAS’99 

benchmark are also used to gauge performance with sequential circuits. 

 

                 

Figure 28: B02 and C17 Mapping and Placement 

Figure 28 and Figure 29 shows the resource placement and mapping of the 4 test bench 

circuits. As shown in the figures, the B02 and C17 have similar small resource utilization and the 
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B02 and C1908 have similar middle resource utilization. This size variations and similarity 

actually also reflect in their translation timing evaluations, which shows that resource utilization 

can be a direct metric for the translation timing estimations. 

 

           

Figure 29: B03 and C1908 Mapping and Placement 

Table 9 lists the detailed timing results.  The first row of the table lists results for the full 

MRRA prototype used as a baseline for comparison.  Among the 5 benchmark circuits, C17 and 

C1908 which are combinational designs were described at the gate level.  B02, B03, and MD5 
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were developed at Register Transfer Level instead.  In Table 9, the Original Equivalent Gate 

column lists the number of gate-equivalents reported when these benchmarks were instantiated 

directly using the Xilinx design tools.  However to incorporate these circuits into the MRRA 

framework, a standard IPIF, has to be added above the standard logic to maintain the correct data 

communication to the OPB bus.  This IPIF logic increases the size of the partial reconfigurable 

modules, which can be observed from the corresponding Occupied Slices column in Table 9. 

The partial bitstream file size adequately shows the result of these slice utilization 

differences, which are demonstrated in the fourth column.  The last column lists the translation 

time for partial reconfiguration module implementations of the benchmarks.  For these module 

implementations, the time is partially dependent on their size, although not linearly related.  

Although a significant improvement in the total time taken by the process has been achieved 

when compared to the full configuration bitstream generation, they still require tens of seconds.  

The partial reconfiguration modules have also been evaluated by integrating both ISE 6.3 and the 

latest version ISE 9.1 within MRRA.  The timing results for these two versions of the ISE are 

shown in the last two columns of Table 9.  These figures were obtained on a Windows XP 

environment with a 2.0 GHZ Pentium CPU and 512 MB RAM.  Clearly, the ISE 9.1 version runs 

much slower than the ISE 6.3.  Upgrading the development hardware will definitely improve the 

performance significantly, however, the translation time will remain greater than ten seconds.  

Therefore, it is not highly recommended to call these scripts at runtime unless it is essential for 

relocating the modules.  Alternatively, the scripts can be pipelined with other running tasks 

efficiently as described below. 
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Table 9: Translation Engine Evaluation 

Test Circuit Oringal Equivalent 
Gate  

Occupied 
Slices 

Bit file Size 
(Byte) 

Genera-tion Time 
(V6.2) 

Generation Time 
(V9.1) 

MRRA  N/A 1472 548 K 4m 31s N/A 

C17 6 8 66 K 67s   101s   

C1908 603 41 89 K 69s 109s 

B02 28 11 66 K 66s 107s 

B03 160 45 75 K 70s 163s 

MD5 2496 168 120K 71s 111s 

5.3.3 Timing Analysis 

For each reconfiguration task with a conventional serial flow, the total latency Li is 

determined as: 

                              )()( iTiTL DRTTATi +=                                

where TTAT  is the Task Arrival Time and TDRT  is the Dynamic Reconfiguration Time. 

Within the MRRA framework, pipelining can be easily adopted to overlap the execution 

time of different layers and components for possible speed-up if multiple tasks are running on 

the platform.  Clearly, since this is a CPU/FPGA hybrid design, at least a two-level pipeline can 

be involved to overlap the Task Arrival Time and the Dynamic Reconfiguration Time.  

Therefore the latency now can be calculated as: 

                                          ))(),(max( iTiTL DRTTATi =

The Task Arrival Time is comprised of two parts: 

                          T )()()1()( iTiTiTi GAETAT ++−=         
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where TE(i-1) is the previous task evaluation or running time for routing data process, 

TA(i) is the time delay for the top layer application to generate the new reconfiguration task 

request, and TG(i) is the new hardware module generation time. 

As listed in Table 8, one cycle of data communication is completed at the sub-second 

level, which means a full task evaluation TE(i-1) may consume a few seconds or more, depending 

on the quantity of the routine data and the complexity of the data processing algorithm running 

on the host PC.  The term TA(i) simply depends on the complexity of the top-level user logic.  

Using a typical example of autonomous reconfiguration such as evolvable hardware, with 

population-based Genetic Algorithm strategy such as [2], [29], the program will produce each 

new generation of circuits leading to a new reconfiguration task request at the sub-second level.  

As for TG(i), based on Table 8 and Table 9, this parameter is determined by which part of 

translation engine is used.  If a precompiled stored module or only bit manipulation is used, the 

time required to generate or load the modules will be in micro to milliseconds level.  However, 

when the Xilinx tool scripts are involved, the time scale will increase to the level of tens of 

seconds.  Therefore, the Task Arrive Time TTAT(i) can vary from the best case scenario of sub-

second level to the level of tens of seconds in the worst case.  

On the other hand, for the Dynamic Reconfiguration Time TDRT(i), using different 

interfaces leads to different delays.  For instance, the SelectMAP interface is fast enough even 

for the full device configuration transfer to remain at a sub-second level.  For the JTAG 

interface, tens of seconds is unavoidable.  As for ICAP, the time is given by:  

                               T FTTi RWDRT ×+= )()(           , (5) 
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where TW and TR are the frame write and read time respectively, and F is the total number 

of frames that need to be modified, which makes TDRT(i) for ICAP vary from milliseconds to 

possibly seconds.  

Based on the above analysis, both TTAT(i) may equal TDRT(i) at the sub-second level or at 

the tens of seconds level. TTAT(i)  is actually dominated by the factor TG(i), which leads to the 

order of sub-seconds or tens of seconds depending on the size of the reconfiguration module and 

the MRRA strategies selected for bitstream generation.  Using the Xilinx scripts shows 

significant improvement compared to generating the full bit file, yet this remains a bottleneck for 

large runtime task reconfiguration. TDRT(i) is simply related to the reconfiguration interface that 

is chosen. Although JTAG shows great resource utilization reduction and design flexibility, the 

timing bottleneck that it creates is also significantly large compared to SelectMAP or ICAP 

interfaces. Thus, design strategies need to be carefully established to deal with these delays to 

obtain the best runtime efficiency and reconfiguration flexibility. 

5.4 Chapter Summary 

This chapter is organized into four sections. In Chapter 5.1, the resource utilization and 

power consumption were analyzed using two Hashing algorithms as a top-level application case 

study.  The experiments on the MD5/SHA-1 hash algorithms compared the two metrics for the 

different design flow. Results show significant improvement when using the MRRA partial 

reconfiguration control flow, especially the MRRA Frame-based flow.  

Chapter 5.2 demonstrates the detailed FPGA resource utilization for each MRRA 

platform with different reconfiguration interface and testing methodology. Prototypes for the 
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different reconfiguration interfaces based the MRRA concept were developed on two standalone 

COTS hardware platforms: Avnet Virtex II Pro development board and a Pentium PC with 

Xilinx ISE and EDK FPGA CAD software suites. Adoption of several standard industry 

hardware interfaces, IPIF, PCI, etc., along with the design and refinement of appropriate 

communication and synchronization protocols provides a powerful and useful abstraction 

technique. Resource utilization estimations have been carried out on these prototype platforms. 

Overall, when the SelectMAP or ICAP interface with external SRAM is used to establish 

reconfiguration and testing channels, sophisticated hardware logic is involved and excessive pins 

usage is incurred, which consumes a factor of 5 to 18 times more logic resources in the fabric 

than the JTAG-based prototype.  These costs can limit the size and area placement flexibility of 

the reconfigurable modules.  As a result, less physical rectangle areas will be available for the 

partial reconfiguration modules. Hence, this implies reduced flexibility is for the control logics. 

In this case, larger capacity FPGAs with extra external pins, are highly recommended.  

Furthermore, additional effort is also required for pin assignments and connections with special 

bus macros thereby resulting in an increase in design complexity. 

Chapter 5.3 evaluates the timing performance of the MRRA system, including the basic 

reconfiguration and testing time and the Translation Engine overhead. A number of benchmark 

and hashing algorithm case studies demonstrate the range timing variations of autonomous and 

dynamic reconfiguration operations. In contrast of the area arrangement flexibility, the 

SelectMAP and ICAP interface shows much higher speed when transferring the reconfiguration 

and testing data than JTAG. The result also illustrates that when physical re-routing by Xilinx 

tool engine is involved, the speed of this translation process becomes the bottleneck of the 

system performance, even though it has already shown significant improvement comparing to 
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the baseline timing performance. Experiments also prove that the integrated design flow is able 

to retain and demonstrate upward compatibility with vendor toolsets. 
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CHAPTER 6: 
RECONFIGUARTION OPTIMIZATION TECHNIQUES 

The timing analysis in Chapter 5 shows that the reconfiguration time latency can be as 

high as tens of seconds, which is clearly a major bottleneck for a practical autonomous partial 

reconfiguration process.  One of the major reasons of this large delay is due to the Xilinx routing 

translation engine for the physical re-routing request from the higher level.  In order to alleviate 

this bottleneck and provide a faster reconfiguration control paradigm, extra optimization 

techniques and analysis are developed in this Chapter. 

6.1 Area and Bitstream Optimization 

All reconfiguration interfaces have certain speed limit. In previous chapter, JTAG based 

MRRA has shown the biggest flexibility for the partial reconfiguration design. However, on the 

other hand, similar to basic serial port, JTAG interface use only one pin for input and one for 

output, which provides a maximum 400Kb/sec data throughput, not considering other non-trivial 

logic control delay when doing partial reconfiguration. This is a much more limited data 

transferring speed compared to other parallel interfaces, such as ICAP.  On the other hand, ICAP 

interface is normally used in a System-on-Chip architecture, which provides only limited storage 

space for partial reconfiguration files.  Therefore, reducing the reconfiguration overhead, 

including both the reconfiguration time and the reconfiguration data storage space, are important 

concerns in this research area.  Foremost, these two reconfiguration cost are directly related to 
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the size of the reconfiguration bitstream file. Minimize the bitstream file size can potentially 

improve the performance significantly. 

For the Xilinx Virtex II/-Pro family, there are several configuration column types, 

including Global Clock (GCLK), Input Output Block (IOB), Input Output Interconnect (IOI), 

Configuration Logic Block (CLB), Block RAM (BRAM), and BlockRAM Interconnect 

(BMINT).  Each type has a given number of frames, as described in Figure 30, where each 

configuration frame has a unique 32-bit address that is composed of a Block Address (BA), a 

Major Address (MJA), a Minor Address (MNA), and a byte number [70].  The major address 

identifies a specific column within a block, and the minor address identifies a specific frame 

within a column. 
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Figure 30: Column Level Configuration Memory Map 

Among all these types of columns, the CLB columns control the configurable logic 

blocks, routing, and most interconnect resources.  IOBs on the top and bottom edges of the 
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device are also programmed by CLB configuration columns.  The number of CLB configuration 

columns matches the number of physical CLB columns in the device.  

 For each CLB column, there are two columns of slices.  To denote the configuration of 

these slices, 22 frames are utilized within the bitstream for a complete reconfiguration file.  Each 

frame has a fixed size of 424 bytes.  By comparing the bit files for a series of test circuits, it is 

possible to determine that the logic for each CLB column, which is stored in the two LUTs of 

each slice, actually only occupies two of the 22 frames.  In particular, the contents for the first 

slice column LUTs, i.e. with an even slice column number starting from ‘0’, can be found in the 

second frame, while those for the second slice column, i.e. with an odd slice column number 

starting from ‘1’, are in the third frame.  IOB usage at the top and bottom edges of this CLB 

column are located in the first frame.  The remainder of the frames are all used to describe the 

routing resources usage of the CLB column. 

 For unused CLB frames, a compression technique is used in the partial reconfiguration 

bitstream file.  Instead of writing 106 instances of the word value of ‘0’, which is a full frame 

length, the Multiple Frame Write Register (MFWR) is employed.  This involves setting the 

corresponding frame address to the FAR first, and then writing two padding words to the MFWR 

(normally ‘0’).  Using this padding technique, the full-unused frame can be set with a total cost 

of just ten bytes in the bit file.  Therefore, for each unused frame, the number of saved bytes is 

414, yielding 97% area savings per frame.   

 More generally, since configuration frames are arranged vertically, designs that span the 

fewest possible configuration frames achieve greater compression.  To estimate the compression 

achieved, let the number of unused frames be denoted by U on a system that uses B bits per 
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frame.  An estimate of the number of saved configuration bits, S, under a fixed region F per 

frame is given by: 

 S ≈ U × (B - F). 

Here B >> F so S is nearly the product of U and B. Therefore, this 2-dimensional area 

management strategy inside modules can achieve high compression rates to minimize the partial 

reconfiguration data file size, which may be crucial for embedded applications using dynamic 

reconfiguration.  Embedded SOCs often have limited storage capacities and real-time transfer 

timing requirements, and therefore can benefit from this bitstream compression strategy. 

As suggested in the previous Chapter, inside each module, the 2D area management 

strategy can be incorporated into the Design-Time Flow to minimize the partial reconfiguration 

file size.  This additional area management strategy needs to be carried out after the synthesis 

process of the design is complete and before the translation, mapping, placing and routing steps.  

Since this strategy deals with the real physical resource arrangement, the logic elements are 

identified at a very fine granularity, such as Slices, LUTs and D-flip flops, etc., which the 

Translation Layer can then directly translate and map.  The steps involved in this procedure 

include: 

1.  Region Allocation: Assign an area for the partial reconfiguration module, which 

is large enough to accommodate all the external input and output signals at either the top or the 

bottom edge of the designated area.  With an FPGA model such as the Virtex II Pro VP7 or 

higher, an area with 40 pins or higher along the edge can be easily partitioned, which normally 

will be able to satisfy an 8-bit or even 16-bit module design. 

2.  Pin Assignment: Choose either the top or the bottom edge and place all the 

external signals adjacent to each other if possible.  When the assigned area contains the left or 
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the right edge of the device, these edges may be chosen as well.  Place the remainder of the pins 

on the other side of the edge if any unoccupied pins are available.  This step tries to eliminate, or 

at least minimize, any unnecessary signals that will span the full height of the device, which 

clearly will occupy more routing resources in different frames. 

3.  Column Alignment: Attempt to place all the logic elements into a single slice 

column consecutively or with only a short slice row gap, near the edge where the external pins 

were placed.  One and only one frame will be used to describe all the LUT logic contents of a 

full column of slices, regardless of the number of LUTs of the slice column actually used, as 

long as it is not zero.  Thus this step will minimize the number of frames used to describe the 

design logic as well as most of the interconnection resources. 

4.  Choke-Point Elimination: If there are any logic elements with a fan out greater 

than 4, place the destination elements around its side, including top and bottom of the same slice 

column as well as the adjacent slice column side-by-side.  This will typically reduce the routing 

resource usage even more than simply by mandatory placing of all logic elements inside a single 

slice column. 

5.  Repeat: If there are any elements left to be processed after finishing one column, 

repeat steps 3 and 4.  Place the rest of the logic elements into the adjacent slice column with the 

same principles until all or at least elements along major logic paths are completed.  With an 

FPGA model as Virtex II Pro VP7 or higher, each slice column contains 160 or more 16-bit 

LUTs and the same amount of D flip-flops, which normally will be able to contain a small to 

middle size module design in one or two columns. 
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To summarize, the procedure places the logic elements into the least possible number of 

slice columns.  The logic sequence of the elements may also need to be considered when placing 

along the path to achieve the highest possible optimization. 

             

                                  (a)                                                                             (b) 

Figure 31: Optimized Design Layout for Case 1 and 2 

To evaluate the area optimization strategy, several case studies have been carried out.  

Since MD5 and SHA-1 have the same dataflow structure, MD5 results are presented to 

demonstrate a larger design but SHA-1 is similar.  Other case studies include four representative 

small cases, which illustrate all of the steps and scenarios mentioned above, and one middle-

sized case study.   
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Each design was implemented as partial reconfiguration modules as listed in Table 10.  

Each of the four small cases has its own distinct features including parallel and cascaded LUT 

arrangements, dedicated physical resource usage and large fan out elements.  The first design is a 

simple quad 4-input 16-bit LUTs design with a random combinational logic functions specified 

in the truth table.  The second design is a 9-bit shifter with cascaded logic.  The third design is a 

4-bit×4-bit multiplier with a block multiplier used during synthesis.  And the last is again a 4-

bit×4-bit multiplier, but with LUT logic only.  To increase the accuracy of the comparison, all 4 

modules have been defined using the same number of external signals.  All these signals have 

been managed to be placed at the top edge of the partial reconfiguration region. 

Figure 31 shows the optimized logic element arrangement of first 2 small designs using 

MRRA.  For the elementary 4 LUT element design in Case #1, since all LUTs are in the parallel 

logic path with direct input from external signals and connected to the output though flip flops, 

putting them in a single column close to the external pins is a straightforward solution.  The 

resource arrangement is shown in left Figure 31(a).  Case #2 for the shifter is shown in Figure 

31(b), since all logic elements are logically serially cascaded, from input to output, the simple 

single column solution is again the best choice.   

However, for Case #3 the 4-bit×4-bit multiplier uses the dedicated hardware block 

multiplier resource, which is circled in red in Figure 32(b).  The original placement arranged by 

the tool automatically is shown in Figure 32(a) for comparison.  As shown in the figure, the 

position of the slice column in this case needs to be balanced to minimize the routing between 

the path of the block multiplier and the LUTs, and the path of the LUTs and the external pins, 

which leads to an unchanged maximum delay value instead of an improvement after the 
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optimization.  The extra cost of routing also explains the decreased savings in bitstream length 

compared to the shifter or the LUT-based multiplier design, as listed in Table 10. 

        

                                            (a)                                                                        (b) 

Figure 32:  Case 3 Before and After Optimization 

For Case #4, the 4-bit×4-bit LUT-based multiplier, the high fan-out situation mentioned 

above needs to be dealt with.  The carry chains, marked in brown, red, and blue in Figure 33(b), 

have multiple connections to the LUT logic elements in the dark green blocks.  Therefore, these 

carry chains are arranged around the LUT logic blocks instead of in the simple one column style 

to achieve the best resource area optimization. Figure 33(a) show the tool’s original arrangement 

and Figure 33(b) shows the result after the optimization. 
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                                       (a)                                                                              (b) 

Figure 33: Case 4 Before and After Optimization 

The comparative optimization results for these case studies using MRRA are listed in 

Table 10.  The logic resource usage of each of design is also summarized in the table.  Partial 

reconfiguration for designs that comprise as few as four LUTs can achieve 14% area reduction 

saving.  The more complicated case study, involving the 4-bit×4-bit LUT-based multiplier, 

demonstrates almost 30% reduction using the presented strategy.  While the four small case 

studies illustrate the concept, larger and more involved designs using partial reconfiguration 

design can achieve higher degrees of bitstream savings.  Results also show that in most cases, the 

maximum propagation delay has been decreased slightly.  
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In order to verify our area optimization strategy further, one middle-sized module, a 

Single Error Correction Double Error Detection (SECDED) algorithm and a larger-sized module 

of the MD5 algorithm, are also implemented with the same area management strategy as the 

smaller cases using a similar pin arrangement.  A total of 74 and 160 slices were used to 

implement the respective algorithms.  In both cases, the partial reconfiguration module occupies 

2 or more columns of slices.  Due to the large number of resources involved, only slice on the 

critical path are constrained during the optimization process.  The results from the 

implementation of these modules are listed in the last two rows of Table III.  As suggested 

before, increased bitstream savings of 33% and 30% are achieved because these are 

comparatively larger modules.  Overall, with this area management strategy, about a one-fourth 

size reduction or higher can be achieved for partial reconfiguration modules.  On the other hand, 

the larger the module is, the more complicated and time consuming the process of specifying 

resource usage becomes. 

Table 10: Area and Bitstream Optimization 

Module 
name 

# of 
LUT 

# of 
FF 

# of block 
Multiplier 

# of 
Slices 

Original 
File Size 
(Byte) 

Original 
Max. Delay 

(ns) 

Optimized 
File Size 

(byte) 

Optimized 
Max. 

Delay (ns) 

Area 
Saving 

4 LUTs 4 16 0 12 64K 1.371 55K 1.347 14% 

Shifter 1 24 0 13 87K 1.377 63K 1.367 28% 

Block 
Multiplier 8 25 1 17 88K 1.346 66K 1.346 25% 

LUT 
Multiplier 22 22 0 22 96K 1.367 68K 1.346 29% 

SECDED 93 41 0 74 89K 1.355 60K 1.355 33% 

MD5 292 128 0 168 120K 1.380 84K 1.322 30% 
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6.2 Application Analysis 

6.2.1 Data Structure Mapping 

In order to allow the top-level application process the circuit at logic level and use 

mapping engine in the translation layer, a detailed circuit data structure has been defined in 

Chapter 3. It is crucial that the designed partial reconfiguration module can be linked to these 

data structures correctly. To meet this requirement, currently a few restrictions needs to be made 

to the circuit design when using the frame based module flow: 

• In partial reconfiguration module, all the combinational logic elements are located inside 

LUT slices only, with determined logic interconnection at design,  

• All LUTs are instantiated as 4-input/1-output logic elements, regardless the real logic 

input requirements,  

• All the LUTs’ physical locations are determined and recorded at design time, which can 

be modified at run-time,   

• LUT based special elements, such as shifter, RAM or ROM, are not recommended at the 

current version. If Instantiated, they should maintain their mode, with only their contents 

to be modified,  

• Flip flop can be used, but should not be changed at runtime, 

• Circuit with feed back logic is not recommended, and 

• Special on-chip resources, such as block RAM, carry chain, or block multiplier, are not 

recommended.   
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With above restrictions in effect, the testing circuit is designed and coded in RTL form or 

even at the LUT granularity level.  Behavior-level coding is not acceptable because after 

synthesis, behavior-level code will be optimized by the tool into an indeterminate number of 

LUTs with random labels, which cannot be controlled at runtime specifically. With such style of 

design, the structure of the whole module is fixed at design time without letting the synthesis 

tools modify or optimize them without notification. Since the circuit is described at RTL or LUT 

level, after synthesis, all the logic elements are clearly labeled, which will enable the detailed 

area constraints for each logic element inside the module to be defined and placed into .ucf 

file. The area group constraints, which partition the FPGA resources into column-based rectangle 

and attach to each module respectively, should be decided at the design time beforehand. Next, 

each instance of LUT resources inside the partitions needs to be described at specific row and 

column positions through the .ucf file.  Eventually, these modules will merge into the top 

design as components with some communication overhead, such as GNAT or IPIF. After 

merging, if the scripts fail to run the placement and routing with all the area constraints 

successfully, the constraints will need to be adjusted until the bistream skeleton is successfully 

generated. Eventually, the detailed design information can be extract from the .ucf file and the 

bistream file and fill into the data structure designed in Chapter 3. 

Table 11 lists the related APIs developed for the high level applications. In order to get 

the area location functions to work, at the end of each area constraints in .ucf file, no space or 

tab should be put before the semi column, i.e. the semi column directly follows the end of the 

area constraints text. This will make sure the API can parse and process them correctly. The set 

of functions only change the modification area of the data structure. The changes only become 
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effective after the UpdateDesign function is called. In the function of UpdateDesign and 

DownloadDesign, script is called to carry out part of the tasks by Xilinx toolsets at background. 

Table 11: Intermediate Translation APIs  

API  name Input Parameter Operation 

ShowDesign SLUTInfo *pLUTinfo Show the details of specific individual 
circuit 

GetRow SLUTInfo *pLUTinfo Return slice row number of specific 
LUT 

GetColumn SLUTInfo *pLUTinfo Return slice column number of specific 
LUT 

GetLUTPosition SLUTInfo *pLUTinfo Return LUT position inside the slice 

GetTable SLUTInfo *pLUTinfo Return truth table of specific LUT 

SetPosition 
SLUTInfo *pLUTinfo, unsigned 

short row, unsigned short 
column, char GorFLUT 

The modification fields of the structure 
are changed 

SetTable SLUTInfo *pLUTinfo, unsigned 
short NewTable 

Only the modification fields of the 
structure are changed 

UpdateDesign SLUTInfo *pLUTinfo[], char* 
bitstream, char* ucf 

The status fields of the structure are 
updated, flags are cleared and the new 

bitstream is generated 

6.2.2 Flexible Routing 

Recently, a lot of recent of theoretical research work has been carried out on FPGA fault 

tolerance and area management with partial reconfiguration ability. Most of these algorithms 

have assumed that the partial reconfiguration process can be implemented at very fine 

granularity tile level, including routing lines.  However, ever since Xilinx had dropped the 

support on the software of Jbits, this is not the actual case any longer. For current standard partial 
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reconfiguration flow presented by Xilinx, the granularity is actually at module level, which 

requires each module to be arranged at slice column level with a four-slice boundary 

requirement.  Special bus macro is also required to communicate between modules. Besides the 

restricted flexibility due to the coarse granularity, this module based partial reconfiguration flow 

can only be controlled at a very high level at design time, mostly depending on the Xilinx 

toolsets to interpret the placement and routing process, which actually can lead to complications 

when implementing, especially when the partial configuration module size is a little bigger or 

requires extensive routing resources. 

Intuitively, direct manipulation on bitstream should be beneficial, since it can not only 

provide precise control on both logic function and physical placement but also avoid the lengthy 

time delay caused by Xilinx toolsets. The biggest challenge for this idea is the understanding of 

the physical bitstream structure, especially the routing information. Although the logic contents 

of the LUT in FPGA is still possible to be read out by applying the equations introduced in 

Chapter 5 through ICAP APIs, the complexity of the routing information makes it almost 

impossible to be interpreted and manipulated directly in the form of bitstream.  Therefore only if 

a shortcut to deal with routing issue can be found, the direct bitstream manipulation methodology 

can be really implemented at very fine granularity tile level. 

Inside the standard FPGA device, different routing lines are connected by dedicated 

switch boxes. The bitstream information of these switch boxes are entangled with other 

complicated routing connection information and can hardly separate out directly. On the other 

hand, each logic unit of the FPGA, i.e. the LUT, is actually a simple 4 input and 1 output SRAM 

unit. By changing the content stored inside the SRAM, the logic equations of each LUTs are 

modified. These LUTs can be actually considered as 4 to 1 multiplexers. The logic content inside 
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the LUT will decide which one of the 4 input signals can pass through. Therefore, by modifying 

the content of the LUT with the equations introduced in Chapter 4.5 at runtime, different signals 

can be dynamically passed to the load signals. In another words, these LUTs become runtime 

dynamic switch boxes. 
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Figure 34: Flexible Routing Example 

Figure 34 shows an example of the Flexible Routing functionality structure. This is a 3 x 

3 array of logic tiles with 2 required inputs and 2 required outputs.  The tiles are labeled from 1 

to 9, which can be used to represent the logic interconnection between the logic elements in 

high-level algorithms. In other words, this numbering system may be used to define a design’s 

netlist. For each tile, it can have 2, 3 or 4 inputs with a corresponding truth table of 4, 8 or 16 

bits.   

To simplify the design inter-connectivity complexity, the scheme can be restricted as all 

individual tile inputs could only be connected to cell outputs, which were of a lower number 

within this scheme. This is sometimes important because it eliminates any possibility of feedback 

connections, which would give raise to non-combinational time dependent behavior. Figure 35 

shows an example of the detailed scheme of the inter-connectivity nets for tile 9. For this tile 
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there are two inputs. Each connects to an identical interconnect block. The details of the 

interconnect block I has also been demonstrated in Figure 35.   
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Figure 35: Inter-connectivity Nets for Flexible Routing 

As shown in the Figure, the interconnect block has actually been fed with all possible 

inputs including the previous 8 logic tiles and the 2 external inputs A and B. Since there are 10 

inputs, 3 extra tiles have been used to receive these inputs. One more tile is also been placed to 

consolidate the 3 interconnect tile outputs to a single input to for tile 9. Clearly, with such an 

interconnect block, the extra tiles are acting as a multiplexer or a switch box. Each time by 

simply changing the logic function of the tiles in the interconnect block, the input of tile 9 can be 

changed arbitrarily. In another words, with such a interconnect block insert between logic tiles, 

the logic interconnects between them can be adjusted by simple true table modification inside the 

interconnect tiles instead of changing real physical routing resources. 
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More generally, for each fan-in point, assume there are M instances of LUT tiles used for 

interconnections with a pyramid structure as shown in Figure 35. Each tile has possible K inputs, 

where K = 2, 3, 4. The maximum allowed flexible routing input using the LUT switch box is 

given by: 

                                               1)1( +−×= KMIi  

Therefore, the number of maximum input Ii  is linearly increased with the tile number M. 

Assume there are N pieces of tiles for functionality. Each tile has possible K inputs, 

where K = 2, 3 or 4.  If the constraints discussed in above example applies, the number of 

possible input Ii of each tile Ti, should be: 

                                                          inputii ITI +−= 1  

where Iinput is the total number of external input signals; Ti = 1 to N-1. 

Therefore the number of stages Si required in the interconnect block will be 

                                                           ii IS 4log=  

since the max input number of each tile should be 4. 

For each stage, the number of tiles used for interconnect Ns is given by: 





= s

i
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I
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4
 

where s = 1 to Si.  Therefore the total number of tiles Ni used in interconnect block for 

tile Ti is: 

∑
=

×=
iS

s
si NKN

1
 

And the total number of tiles Ntotal for interconnect is: 
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Based on the equations, clearly with increase in the number of block of the flexible 

routing scheme, the extra LUT penalty also increases significantly at polynomial rate if a full 

scheme of flexible routing is attempted. Hence, it is not practical nor necessary to connect all the 

LUT block inside the design module. Instead, locating the critical path or fan-in points and 

coupling multiple groups of LUTs units will be a more reasonable strategy and result in much 

more efficient flexible interconnections with a small resource penalty. 

6.3 GA Execution MRRA 

As mention in the previous section, GA changes during evolution must adhere to the 

Xilinx-defined format of the bitstream. Since not all bitstream information is decipherable and 

can be manipulated, adaptations need to be made to the general GA operators.  To Undesirable 

conditions that may damage the FPGA, such as mutation, which might inadvertently tie two 

logic outputs tied together, must also need to be prevented.  After using the design strategy 

described in Chapter 6.2, the data structure, which contains logic and physical ordering 

information plus the configuration I/O information is generated.  

To perform the GA, first a group of circuit individuals are generated. These individuals 

should use the same amount of physical resources. Extra amount of LUT resources may need to 

be added into the design to provide logic and routing margins for evolving flexibility.  The 

individuals are functionally identical from the outside black box view, which means the same 

input will generate same outputs through all individuals. Yet these individuals are also physically 
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different from the inside clear box view, which means each circuit individuals shows its own 

unique physical resource arrangement and the functions instantiate inside each LUT which also 

exhibits variations between individuals. This will provide enough diversity for GA to evolve and 

yet prevent to generate significant deviations through evolving process. 

The mutation operator of the GA is modified in order to fit the FPGA architecture, which 

varied with a traditionally defined mutation operator. In addition to the inverse binary bit 

approach at the LUT function level, certain input interconnections of LUTs may also be mutated 

using the flexible routing design strategy described in Chapter 6.2. The mutation will rearrange 

the input interconnection to each input pin of LUTs in order to search the potential unused 

resources for an occluded fault impacted resource. In this way, the functionalities of LUTs are 

undistorted and explored in the search space. The new interconnection may use some inherent 

redundancy resource existing in the original design. This operator will provide some opportunity 

for fault correction strategy for either input stuck-at fault or LUT content stuck-at fault.  

For the crossover operator of the GA, since the logic orders of each LUT are fixed, the 

possible search space of the initial design is limited. The crossover point cannot be randomly 

picked between the two configurations. Therefore two configurations need to be aligned, and a 

crossover site is picked uniformly at random along the boundary of the LUTs. This crossover 

point defines an exchange section that is used to switch the circuit information between the two 

parents through LUT-by-LUT exchange operations. This results in both configuration having 

duplicate elements and similar replacement mutation reoccurs to avoid such correct functionality 

behavior. 
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6.3.1 Performance Evaluation 

To test the designed GA workflow, a 4-bit x 4-bit adder is incorporated into the MRRA 

platform. This provides a tractable circuit for the GA to evolve that exhibits characteristics for 

large arithmetic circuits including a variable amount of redundancy and combinational logic 

behavior. The GA parameters used throughout the experiments are shown in Table 12. Total of 8 

LUTs were used in the design experiments, this number was increased to 13 LUTs in the repair 

experiment to add some redundancy margin for the GA to evolve within. The second column 

shows the tested parameters by running extrinsic evolution of the GA. The third column 

illustrates the optimal values that are found through the experiment. For example, population 

sizes between 5 and 20 were evaluated and best results were achieved using population size of 

10. 

There are three types of experiments that have been performed: 

Unseeded Design: In this experiment the GA evolved the 4-bit x 4-bit adder with a 

randomly-seeded initial population. The purpose of this experiment is to demonstrate the 

capability to intrinsically evolve 100% functional circuits starting from random functional 

bitstream. 

Seeded Design: In this experiment, the GA evolved the 4-bit x 4-bit adder from an initial 

population of partially functional individuals in addition to completely random ones. The 

partially functional seeds were originally fully functional designs, which were tampered by 

deliberately exposing them to mutation operator. This arrangement emulates a fault-scenario in 

real life avionics or space applications in which the configuration bitstream is partially affected 

by Single Event Upset (SEU) due to cosmic radiation. 
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Table 12: GA Parameters [52] 

Parameter Range Evaluated Value Selected 

Number of LUTs for design 8 8 

Number of LUTs for repair 8-13 13 

Population Size 5-20 10 

Mutation Rate 5%-90% 50% 

Crossover Rate 30%-90% 60% 

Tournament Size 1-8 6 

Elitism Size 1-2 1 

Repair: A single stuck-at one and stuck-at zero were adopted as a case study to show the 

capability of the platform to repair the faulty circuit. Since an actual fault cannot be readily or 

precisely introduced into the device, the circuit is stimulated to behave as if the fault actually 

exists.  
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6.3.2 Results Analysis 
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Figure 36: Unseeded Design GA Runs [52] 

Five intrinsic evolutions were achieved for each of the unseeded, seeded, and repair 

experiments. The GA parameters listed in Table 12 were used. To quantify the capability of the 

platform, maximum fitness, which is the numerical measure of the fitness for the best individual 

of the final generation of the run, is used. 
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 Figure 36 shows five runs that demonstrate the capability of the platform to evolve to 

fully working 4-bit x 4-bit Adder designs starting from scratch. The maximum fitness starts as 

low as 716 out-of-1280, and rapidly increases during the first few generations. Figure 37 shows 

five runs where a fully working 4-Bit x 4-Bit Adder was designed from a partially working seed. 

Five different seeds were used in the five runs. 
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Figure 37: Seeded Design GA Runs [52] 

Figure 38 shows five runs in which the platform was used to repair the broken 4-Bit x 4-

Bit Adder. A stuck-at zero fault was randomly injected in the first input pin of the third LUT of 

the original design. The fault was introduced using the technique mentioned in section 4.1. This 
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fault reduces the circuit’s fitness to 1152 out-of-1280. The fastest converging run was Run 4, 

which reached to full fitness after 94 generations. 
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Figure 38: Repair GA Runs [52] 

6.4 Chapter Summary 

This chapter is organized into four sections. In Chapter 6.1, a bitstream optimization 

technique is introduced. Instead of relying on the design tools’ random placement, most of the 

logic resources are predetermined at specific physical positions based on several principles.   The 

proposed methodology is evaluated on the Virtex II Pro platform.  Six diversified circuits, 

including 4 small case studies, one mid-sized case study and one application-sized evaluation, 
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were studied using the proposed techniques. The optimized bitstream sizes of these circuits are 

compared to the original tool-generated cases.  The result shows file sizes can be reduced up to 

30% on a variety of designs compared to non-area managed configurations.  The experiments 

also imply that even higher rates of reduction can be achieved on larger designs.  This has 

positive implications for both bit stream storage in SOC environment and correspondingly faster 

reconfiguration time due to reduced file transfer time. 

Chapter 6.2 demonstrated the advanced design strategy to link the hardware and the 

software control with routing flexibility. A detailed design strategy based on the current Logic 

Layer data structure were presented. A LUT-based switch box structure was also introduced for 

runtime dynamic routing. The extra resource utilization using this structure was quantitatively 

evaluated. Analysis shows that a full flexible routing structure will result in high resource 

penalty.  Instead, locating the critical path or fan-in points and coupling multiple groups of LUTs 

units will provide a more reasonable strategy. 

 In the Final section of Chapter 6, a fault tolerance GA application is introduced. High-

level GA performance is evaluated by using the above techniques. The fitness evaluations of 3 

different groups of GA experiment are carried out and evaluated to show the MRRA overall 

capability for autonomous operation. Experiments show that MRRA successfully enables the 

general fault repair logic with the real hardware circuit and attains suitable original algorithm 

specifications. 
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CHAPTER 7: CONCLUSION 

The basic idea of this dissertation relies on a technology named partial reconfiguration, 

which has been introduced by several vendors as a hardware capability in very recent years. A 

lot of attention from academic arena has been drawn towards this new technology as workable 

commercial paths remain to be identified. NASA, as an interested user of such technology, has 

attempted to perform autonomous fault repair towards a faulty hardware system in an 

environment where human intervention is impractical, such as in deep space missions. 

Significant research work has been made from different aspects to address such basic capability. 

The aspects include special hardware communication infrastructure, full hardware platform 

development, hardware speed optimization and software control optimization. In this 

dissertation, we proposed, developed, and evaluated a comprehensive architecture covering all 

the current research area aspects, evaluated the available techniques, and created the missing 

pieces to bridge theory and technology gaps to provide a demonstrated hardware and software 

solutions between the detailed hardware system and the abstract high-level application. 

7.1 Summary  

The Multi-Layer Runtime Reconfiguration Architecture utilizes a three-layer paradigm 

including the Reconfiguration Layer, Translation Layer and Logic Layer to support autonomous 

partial reconfiguration. The Reconfiguration Layer is mostly a hardware layer, which provides 

the basic reconfiguration interface and multiple testing and communication hardware control 

modules. A set of low-level communication and testing drivers are also developed and attached 

to these hardware modules. The Translation Layer stands between the bottom Reconfiguration 
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Layer and the top Logic Layer.  It shields the details of the hardware from the general control 

logic by presenting a translation engine with a set of standard APIs.  This translation engine can 

interpret the independent control logic, including both the logic functions and the physical 

routings, into corresponding hardware dependent digital circuit implementations. A general data 

structure containing the hardware logic function information as well as physical allocation 

information has been defined in the Logic Layer. This works well because high-level algorithms 

only need to focus on these general data structure and perform their normal routines without 

concerns for hardware compatibility. The final modification result will be stored in the defined 

general data structure and passed to the Translation Layer for further interpretation. This three-

tier framework enables task-level modularity, framework routine encapsulation, and API 

standardization. This brings the feasibility of hardware control and modifications to the 

autonomous software algorithms.  

A corresponding control flow is also proposed in details for both design time and runtime 

scenario. At design time, the adopted Module Based Flow is used to generate the full design. The 

full hardware system is first partitioned into modules and designed from the top view to the 

bottom. Meanwhile, One-Dimensional Area Management is perform on the full physical FPGA 

device by partitioning it into 1-dimensional column-shaped rectangles, in which all the fixed and 

reconfigurable modules will be arranged based on the size of each module and extra specified 

area constraints from design specifications.  After these arrangements all of these top views and 

modules are implemented and verified individually. The size of each module can be further 

optimized by additional Two-Dimensional Area Allocation placements inside each module. The 

Optimized partial reconfiguration bitstream for the specific modules are also generated at this 
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step.  Finally, all the individual modules are created by Final Assembly based on the top-level 

view and are ready to be downloaded to the FPGA device as Configuration Data bitstreams. 

After the initial bitstream is downloaded, based on the user logic control, the precompiled 

partial bitstream can be stored at non-volatile memory and monitored by the algorithms in the 

Logic Layer and updated directly to the device for dynamic reconfiguration when it is necessary. 

This control flow may require larger amount of storage memory to be carried out. On the other 

hand, new modification requests can be generated by using the Frame Based Flow at run-time 

instead of using predefined and precompiled modules. Although the boundary of each module is 

fixed, the physical logic resources inside each module can be re-allocated at runtime. Logic 

function modification request for each LUT inside of the modules can also be generated based on 

the user requirement as well. Both requests from the Logic Layer will eventually wait for the 

translation engine from lower layer to interpret to the corresponding configuration and 

reconfiguration by the Reconfiguration Layer. Detailed calculation of equations and their 

interpretation have been presented with examples in this dissertation. 

In order to achieve the maximum performance and system design flexibility for MRRA, 

three different mainstream reconfiguration interfaces have been investigated, including the 

SelectMAP, JTAG, and ICAP.  Different reconfiguration and verification methodology are 

formed based on the different characteristics of these interfaces. Several varieties of loosely-

coupled or SOC reconfiguration and testing system have been also developed based on the 

strategy, providing standard APIs for the upper layer to use. These systems illustrate a continuum 

of paradigms for runtime partial reconfiguration interfaces and control. The demands for runtime 

partial reconfiguration capability in embedded SOC applications are achieved by using the on-

chip CPU core and Block memory, providing multiple bitstream generation choices, including 
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direct bitstream manipulation for logic functions and hybrid one-dimensional and two-

dimensional physical area re-allocation control.   

Prototypes for the different reconfiguration interfaces based the MRRA concept were 

developed on two standalone COTS hardware platforms: Avnet Virtex II Pro development board 

and a Pentium PC with Xilinx ISE and EDK FPGA CAD software suites. Adoption of several 

standard industry hardware interfaces, IPIF, PCI, etc., along with the design and refinement of 

appropriate communication and synchronization protocols provides a powerful and useful 

abstraction technique. Resource utilization estimations have been carried out on these prototype 

platforms. Overall, when the SelectMAP or ICAP interface with external SRAM is used to 

establish reconfiguration and testing channels, sophisticated hardware logic is involved and 

excessive pin usage is incurred, which consumes a factor of 5 to 18 times more logic resources in 

the fabric than the JTAG-based prototype.  These costs can limit the size and area placement 

flexibility of the reconfigurable modules.  As a result, less physical rectangle areas will be 

available for the partial reconfiguration modules. Hence, less flexibility is available for the 

control logic. In this case, larger capacity FPGAs with extra external pins, are highly 

recommended.  Furthermore, additional effort is also required for pin assignments and 

connections with special bus macros thereby resulting in a corresponding increase in design 

complexity. 

MD5/SHA-1 hash and other circuits have been implemented as reconfigurable modules 

to evaluate the performance of the hardware and the logic control flow.  The experiments on the 

MD5/SHA-1 hash algorithms compared the resource utilization and power consumption for the 

different design flows. Results show significant improvement when using the proposed partial 

reconfiguration control flow, especially the Frame Based flow. A number of benchmark and 
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hashing algorithm case studies demonstrates the range timing variations of autonomous and 

dynamic reconfiguration operations. In contrast to area arrangement flexibility, the SelectMAP 

and ICAP interface shows much higher speed when transferring the reconfiguration and testing 

data than JTAG.  The result also illustrates that when physical re-routing by Xilinx tool engine is 

involved, the speed of this translation process becomes the bottleneck of autonomous system 

performance, even though it has already shown significant improvement compared to the 

baseline timing performance. Experiments also demonstrate that the integrated design flow is 

able to retain and achieve upward compatibility with vendor toolsets. 

Advanced optimization techniques, including bitstream optimization, high-level module 

design strategy and LUT base switch box strategies are presented. Additional experiments have 

been carried out on a diversified group of circuits using the bitstream optimization. The result 

shows up to 30% of area saving can be achieved after applying such techniques. In the Final 

section of Chapter 6, a fault tolerance GA application is discussed. Experiments show that 

MRRA successfully connects the general fault repair logic with the real hardware circuit and 

reaches the original algorithm specifications. 

7.2 Future Work 

The results in this dissertation can surely be a point of departure for further research. 

Currently, when combining with high-level applications with partial reconfiguration modules, 

only combinational logic has been evaluated. The next step will be attempting adding sequential 

elements with possible feedback paths into the design. Special on-chip resources, such as Block 

RAMs, Multipliers, etc., may also be added in. This will require extra control state machines and 
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storage elements at a fixed region to save the states before modification and make necessary 

restorations after the reconfigurations.  Corresponding control algorithms also need to be 

developed at either Translation Layer or Logic Layer as an independent module. 

 Recently, a new FPGA family, such as Xilinx Virtex 4, has officially been released to 

the public. The new FPGA family provides similar reconfiguration interface yet smaller 

reconfiguration area granularity at certain 2-dimensional rectangle areas. Therefore another 

possible branch for the continuation of this work is to port the MRRA to the new hardware 

platform. The current one runs on Virtex II and Pro family, which limits the module level area 

management to be 1-dimensional. Because of the intrinsic layered characteristic of the design, 

the system should be able to port to the new hardware in a very short period of time. On the new 

Virtex 4 FPGA family, a two-dimensional area management can be truly proposed at the 

hardware level, instead of simple theoretical discussions with hardware ability assumptions. This 

will open an even further area of resource defragmentation and allocation at in a practical form.  

In this dissertation, Genetic Algorithms are the only major top-level application that has 

been explored. It is important to continue the path for further evaluations with the GA behaviors 

on larger and more complicated case studies. As pointed out in Chapter 6, redundancy is a 

requirement for the success of the evolutionary process. This dissertation has explored the 

possibility of using the redundancy as routing switch box to add diversity to the design. How 

much extra flexibility needs to provide, where to insert these redundancies, and how to pinpoint 

the key elements have not been fully analyzed at algorithm level yet. To extend these questions 

into a formal graph-driven study will be a key follow up for the GA part of research. 

As discussed in Chapter 2, a lot of theoretical research has been done at design level to 

reach a faster partial reconfiguration paradigm. Yet previously less had been done at the actual 
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hardware level. With the current MRRA achievement, it becomes possible to evaluate these 

design-time strategies and provide measurable benefit in meeting the challenges in routing and 

area management. 
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