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ABSTRACT 

Nanocrystalline hydroxyapatite (HAp) powder of size 10-20 nm was synthesized 

applying microwave radiation using calcium nitrate tetrahydrate and sodium phosphate dibasic 

anhydrous as the starting materials. Microwave power of 600 W and Ca/P ratio of 1.66 in the 

starting chemicals served as the major factors in the synthesis of nanocrystalline HAp powder. 

Phase composition and evolution were studied using X-ray diffraction (XRD) technique. 

Morphology, agglomeration and particle-size of the synthesized powder were studied using 

Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) 

techniques. Energy Dispersive Spectrum (EDS) was used to determine the elemental 

composition of the powder.  Thermal properties were investigated using Thermogravimetric 

(TG) and Differential Thermal Analysis (DTA) and, Fourier Transform Infrared Spectroscopy 

(FTIR).  

As-synthesized HAP and TiO2 powder was uniaxially compacted into cylindrical pellets 

at a pressure of 78.69 MPa and sintered at high temperature to examine the effects of sintering on 

nano powder particles, densification behavior, phase evolution and mechanical properties. Phase 

evolution was studied using XRD whereas microstructure evolution was studied by SEM. To 

determine the mechanical properties Vickers hardness and biaxial flexural strength tests were 

performed. 

 

Biodegradability and biomechanical strength of nano-HAp and TiO2 samples sintered at 

high temperature was assessed in Simulated Body Fluid (SBF) having ionic concentration as that 
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of human plasma. Biodegradation and change in mechanical properties of the sintered samples 

when kept in SBF and maintained in a dynamic condition were studied in terms of weight loss, 

change in Vickers hardness and biaxial flexural strength as a function of time.  

Highly crystalline HAp powder was achieved after microwave synthesis with average 

particle size in the range of 10-20 nm which was further confirmed by HR-TEM and SEM. 

Calcination of the synthesized powder at 500oC for 2 h increased the average particle size to 21 

nm. EDS confirmed the elemental composition of the powder. FTIR analysis showed the 

presence of phosphate band which confirmed the presence of HAp at high temperature. TG 

analysis showed 23% weight-loss upon heating up to 1200oC, contributed by the removal of 

adsorbed & possible lattice water, decarboxylation of HAp or condensation of HPO4
2- releasing 

water.  

HAp along with β ΝaCaPO4 and Na3Ca6(PO4)5 was observed at 950oC, 1100oC and 

1200oC. Density of HAp samples continued increasing with the increase in temperature from 

1100oC to 1250oC and sintered density of 2.88 g/cc was obtained at 1250oC.  

Hardness and Biaxial strength of the HAp samples increased with temperature and 

maximum hardness value of 249.53 ± 3.98 HV and biaxial flexural strength of 52.07 ± 4.96 MPa 

were observed for samples sintered at 1250oC. 

Biaxial strength and hardness of TiO2 samples increased with temperature. Maximum 

biaxial flexural strength of 125.5 ± 11.07 MPa and maximum hardness of 643.27 ± 7.96 HV 

were observed for the TiO2 sample sintered at 1500oC which was much more than that of 

sintered HAp samples. 
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Decrease in mass, hardness and biaxial strength of HAp samples sintered at 1250oC and 

TiO2 samples sintered at 1400oC showed biodegradation in SBF, maintained in a dynamic state, 

as a function of time. Increase in mass was observed for the HAp samples in SBF during the 

fourth week. 
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1. INTRODUCTION 

1.1 Motivation 

 “The World Health Authority has decreed that 2000–2010 will be the Bone and Joint 

Decade, and this is now being supported by the United Nations [1]. The rationale for this is that 

joint diseases account for half of all chronic conditions for people over 65; back pain is the 

second leading cause of sick leave; and osteoporotic fractures have doubled in the last decade, so 

that 40% of all women over 50 will eventually suffer from one such fracture [1]. It is estimated 

that 25% of health expenditure in developing countries will be spent on trauma-related 

diagnostics by the end of the decade, and towards many children who are deprived of normal 

development due to crippling diseases and deformities”[1] 

By 2020, half of the US population older than 50 will either have or will be in progress of 

developing osteoporosis or low bone mass. Every year about 1.5 million people suffer a bone 

fracture related to osteoporosis. Direct care cost for osteoporotic fractures is around $18 billion 

each year [2]. Osteoporosis and other bone diseases like osteosarcoma, osteogenesis imperfecta 

etc can lead to regress in physical health which may cause premature death too. Increasing aging 

population is the major factor which is running the orthopedic biomaterials market. 

In 2002, the dental implants and dental bone substitutes market accounted for $296.5 

million. Due to aging population, advances in technology, this market is supposed to touch $1 

billion by 2011 [3]. The worldwide market for implant based dental reconstruction is believed to 

touch $ 3.5 billions by 2010 according to the study done by Kalorama Information. 
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Encompassing a vast gamut of technologies from simple wound dressing to sophisticated 

diagnostic equipment, the medical device market is having a rapid growth, the device ideas being 

mainly of academicians or clinicians.  Then the devices are typically licensed on and sold by 

small companies. With the US market growing at an annual compound rate of 9%, some major 

characteristics like rapid innovation, more number of competitors with user friendly technologies 

etc. are helping the medical device industry grow fast. For a better understanding, the following 

comparisons can be looked at. [4] 

Table 1: Geographical split of Worldwide Medical Devices Market [4] 

Country Market Size 
(2000) Billion 

(€) 

% of 
World 
Market 

Health 
Expenditure

% GDP 

Per capita Spend on 
Medical Devices (€) 

Growth 
Rate 

(2000) 

USA 60 37.5 13.9 125 7% 
EU 41 25.6 5.7 66 5.5% 

Japan 24.5 15.3 7.1 116 4% 
Rest of the  

World 
34.5 21.6 - - 15% 

Total 160 100 - - 6% 

Table 2: Key device market segments ranked by 2001 sales revenues [4] 

Rank Category 2001Sales 
(€ billion) 

1 In vitro diagnostic devices 23.77 

2 Minimally invasive surgery devices 19.02 

3 Orthopedic devices 17.05 

4 Wound care products 15.08 

5 Cardiovascular devices 14.50 

6 Ophthalmic devices 14.04 



 

Figure 1: Graph showing the major segments in medical device market (2001-2002) [4] 
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My M.S. thesis research presents a single approach of synthesizing nanocrystalline HAp 

bioceramic powder using microwave radiation and comparison of the properties of sintered HAp 

structures with that of sintered TiO2 structures prepared from nano-powder. 

To treat, replace or repair amputated bone or tissue, various techniques like autografting 

(tissue graft within the same individual), allografting (tissue graft between two individuals of 

same species) and implantation of synthetic biomaterials which can be metallic, ceramic, 

polymer or composite have been developed. Limited number of donor sites and chronic donor 

sites pain limits the use of autografting technique. Success rate of autografting in old patients is 

much lower than the synthetic bone graft. In case of allograft, there is possibility of disease 

transmission and immunological response. Metallic biomaterials used in orthopedic have 

problem of stress shielding and subsequent weakening of host bone tissue which tend to implant 

failure. Bioceramics have compositional similarity with the bone mineral, so they can be 

preferable material for bone tissue engineering. Looking at the problems associated with 

autografting, allografting and metallic implant, there is great need to develop a novel ceramic 

which can be bonded with bone tissue and can help in cellular function and expression without 

any toxic response to the human body.  

HAp is a material of choice for various biomedical applications like orthopedic, dentistry, 

drug delivery because of its similarity in composition to mineral phase of the bone, its excellent 

biocompatibility, its ability to promote cellular functions and expression and osteoconductivity. 

They elicit specific biological responses at the interface of the materials which result in the 

formation of strong bond between bone tissue and material. 
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On the other hand, titanium dioxide (TiO2) ceramic has widely been used in the field of 

medical science because of its excellent biocompatibility as TiO2 allows osseointegration 

between an artificial implant and bone. Properties and performance of TiO2 depend strongly on 

particle size. Gleiter has shown that nanocrystalline ceramics offers improved mechanical, 

optical and electrical properties due to their high surface area to volume ratio [5]. Nano- TiO2 can 

be synthesized using different techniques like Chemical Vapor Deposition (CVD), oxidation of 

Titanium Tetrachloride, thermal decomposition and Sol Gel technique. Poor mechanical strength 

of TiO2 limits its use in structural applications like bone graft in bone tissue engineering. To 

improve its mechanical properties various investigation have been conducted. It has been proven 

that reduction in particle size is very effective in improving its mechanical strength [5] 

1.2 Research objective 

The primary objective of my MS research was to develop a simple and relatively high-

speed process to synthesize nanocrystalline HAp bioceramic powder using microwave radiation 

which could easily be repeated. In addition, this research work investigated the densification 

behavior, sintering kinetics of the synthesized nanocrystalline HAp powder and evaluated 

mechanical performance and biodegradability of the sintered structures. Phases evolved at higher 

temperature were also analyzed for their bioactivity and resorbability in comparison to 

hydroxyapatite.  

Another objective of this research was to compare the achieved mechanical properties of 

nano-structured HAp with structures made up of nanocrystalline TiO2 powder. Synthesis of 

nano-TiO2 powder was accomplished previously using a simple sol-gel process established by 



 

 

6

Mr. Qiu Shipeng in our laboratory. Sintered TiO2 samples were studied for their densification 

behavior and biaxial strength along with their biodegradability in Simulated Body Fluid with 

time. 

The specific objectives of this research were as follows: 

Objective 1: Synthesis of nano-HAp powder. 

Objective 2: Characterization of the synthesized powder. 

Objective 3: Sintering and densification study of nanocrystalline hydroxyapatite. 

Objective 4: Assessment of Mechanical Properties of Sintered samples. 

Objective 5: Assessment of Biomechanical Properties and Biodegradation in SBF. 

1.3 Research Plan 

In order to achieve our research objective for synthesis of nano-Hap, following studies 

were done:  

• The thermal properties of the as-synthesized HAp powder were studied using 

Thermogravimetric (TG/DTA) 

• Phase characterization of HAp powder using Fourier Transform Infrared Spectroscopy 

(FTIR) 

• Phase characterization and calculation of average grain size of the as-synthesized and 

calcined powder by X-ray diffraction (XRD) 

• Morphology and particle-size study of the as-synthesized HAp powder by High-resolution 

Transmission Electron Microscopy (HR-TEM) 
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• Densification study of  the sintered specimens 

• Study of phase evolution as a function of sintering temperature by XRD 

• Microstructure evolution as a function of sintering temperature by Scanning Electron 

Microscopy (SEM) 

• Characterization of mechanical properties of the sintered specimens though biaxial flexural 

strength and Vickers hardness tests 

• Study of biodegradation and biomechanical properties of sintered HAp samples was done in 

Simulated Body Fluid, maintained in a dynamic state, as a function of time. 

Figure 2 is a schematic of the research plan adopted and followed in this study. 
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Figure 2: Schematic of Research plan for nano-HAp Synthesis and Characterization 
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Mechanical properties of nanocrystalline TiO2 powder were also studied in this research. 

Synthesis of nano-TiO2 powder was accomplished previously using a simple sol-gel process 

established by Mr. Qiu Shipeng in our laboratory. 

To study the mechanical properties of nanocrystalline TiO2, following studies were done:  

• Densification study of the sintered specimens. 

• Characterization of mechanical properties of the sintered specimens though biaxial flexural 

strength and Vickers hardness tests. 

• Study of biodegradation and biomechanical properties of sintered TiO2 samples was done in 

Simulated Body Fluid, maintained in a dynamic state, as a function of time. 

 

Figure 3 is a schematic of the research plan adopted and followed in this study. 
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Vickers hardness 
test 

Vickers hardness test 

Synthesis of nano-TiO2 using 
Sol Gel Technique 

Characterization of 
Mechanical Properties

Biaxial Flexural 
Strength Test 

Densification and sintering 
studies

Calcination of the nano- TiO2 
powder  

Biaxial Flexural Strength 
Study 

Mechanical Strength  
Degradation study 

Biodegradation  
Study in SBF with time 

Figure 3: Schematic of research plan for nano-TiO2 synthesis and characterization 
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2. LITERATURE REVIEW 

2.1 Nanocrystalline Bioceramics 

Novel ceramics which can be used to replace bone defect without any toxic response 

inside the body are called bioceramics. Nanotechnology has revolutionized the field of material 

science as complex structures for bone tissue engineering can be easily achieved. 

Nanocrystalline bioceramics are preferred in clinical uses because of their advantages such as 

low density compared to metals, high compressive strength and high hardness, good corrosion 

and wear resistance, aesthetically pleasing (for dental applications), and compositional similarity 

with bone resulting in improved biocompatibility. These bioceramics can be classified as 

Bioinert, Bioactive, and Bioresorbable. Bioinert ceramics don’t interact with the surrounding 

tissue unlike bioactive ceramics which interact with the surrounding tissue and bond with them 

whereas bioresorbable ceramics degrade with time and get replaced by surrounding tissue. 

Bioceramic can be used for structural applications like joint or tissue replacement or as a 

coating for metallic implants to improve their biocompatibility. Calcium Phosphate Ceramics 

(HAp, Tricalcium Phosphate and Tetra Calcium Phosphate), Alumina, Zirconia, Bioglass or 

Bioactive glasses and Pyrolytic Carbon have been used for bone repair [6, 7]. These ceramics 

can be inert, bioactive or bioresorbable. These ceramics can also be used for orthopedic, dental 

and maxillofacial, prosthetics, Alveolar ridge augmentation, load bearing applications etc. 

Properties of these ceramics can be greatly modified by reducing the particle size to 

nano- scale as surface to volume ratio increases [5] which provides more substrate surface for 

cell adhesion and proliferation. High volume fraction of grain boundaries in nano-scale ceramic 
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compacts increases ductility and plasticity [8]. In 1987, Karch et al. reported that with nano- 

grain size, brittle ceramics exhibit large amount of plastic strain [9]. Nano-biomaterial promotes 

osteoblast adhesion and proliferation, osteointegration and deposition of calcium containing 

minerals on its surface [10]. So, mechanical and biological properties can be greatly tailored by 

changing powder morphology. Only problem with the bioceramics is its poor mechanical 

strength. Nano-technology can be of great help in improving mechanical properties and 

bioactivity or resorbability. 

Angstrom Medica developed Nanoss bone filler from nano-crystalline Calcium 

Phosphate. Because of its excellent bioconductivity, it can be used to replace human bones. It is 

believed to be the first nano-crystalline material to get clearance from US Food and Drug 

Administration in 2005. Calcium phosphate is precipitated in aqueous medium and then the 

obtained precipitate is compressed and heated to form Nanoss [11]. 

Zinc Phosphate nano-ceramics can be used for oral insulin Delivery with pH sensitive 

coating to prevent insulin particles from Hydrolysis and enzymatic degradation. Dry Zinc 

Phosphate nano-particles were soaked in insulin and then coated with Sodium alginate. Release 

profile of insulin in vitro was promising toward development of non-invasive oral drug delivery 

system for diabetic [12]. 

Among all the available bioceramics, calcium phosphates are materials of choice for bone 

tissue repair because of their similarity of composition with bone mineral; excellent bioactivity; 

ability to promote cellular expressions; and osteoconductivity. Particularly, the bioactive 

hydroxyapatite phase shows excellent biocompatibility and osteoconductivity and elicits specific 
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biological responses at the interface of the material, which results in the formation of a strong 

bond between the bone tissues and the material. 

2.2 Nano-crystalline Hydroxyapatite 

HAp is a material of choice for various biomedical applications like orthopedic, dentistry, 

drug delivery, because of its similarity of composition with mineral phase of the bone, excellent 

biocompatibility, and ability to promote cellular functions and expression and osteoconductivity. 

They elicit specific biological responses at the interface of the materials which results in the 

formation of strong bond between bone tissue and material. Coating of HAp is applied to 

metallic implants to enhance their surface properties. 

Hydroxyapatite, Ca10(PO4)6(OH)2, possesses a hexagonal structure with a P63/m space 

group and cell dimensions a=b=9.42Å, and c=6.88Å, where P63/m refers to a space group with a 

six-fold symmetry axis with a threefold helix and a mirror plane [13, 14]. Crystal structure and 

lattice parameter of HAp are well represented in Figure 4 [15, 16]. 

Non-Stoichiometry of HAp is due to substitution of Ca2+, PO4
3- and/or OH- ions by atoms 

or groups such as halogen atoms or carbonate ions. Though it shows excellent biocompatibility, 

its mechanical strength under complex stress-states is poor. It has been found useful for non-

load-bearing applications such as bone fillers, building material to create porous scaffolds to 

promote bone formation, and as coatings on metal prostheses to improve bioactivity. 

 



 

 

Figure 4:Crystal structure of Hydroxyapatite synthesized in Simulated Body Fluid in SBF at 

37oC [15, 16] 
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However, there is a significant difference of properties between natural apatite crystals 

found in the bone mineral and the conventional synthetic HAp. Bone crystals are formed in a 

biological environment though the process of biomineralization and are nano-sized. The 

resorption of bone mineral by osteoclasts is quite homogeneous.  Synthetic HAp on the contrary, 

presents a low surface area and has strong bonding which result in a two stage resorption 

process: disintegration of particles and dissolution of the crystals [17]. 

HAp powder can be produced by wet methods [18], solid state reaction [19], Sol gel [20], 

electro-crystallization [21], Spray pyrolysis [22], Emulsion processing [23], Mechanical and 

hydrothermal treatments [24],Chemical precipitation and hydrothermal technique are capable of 

producing n-Hap [25, 26]. Precipitation of Calcium phosphate is very much dependent on 

Stoichiometry, pH, rate of addition, ionic strength, temperature etc [27] so these parameters 

should be precisely controlled.  

Novel method to synthesize ceramic on nano-scale is microwave synthesis. Microwave is 

an electromagnetic wave of high frequency which consists of alternate magnetic field and 

electric field. Microwave excitation heats the core and surface of the material homogeneously 

because of microwave energy transfer to thermal energy by collision between rotating molecules. 

Microwave energy is responsible for the intensive movement of the substance molecules in the 

solution. Microwave energy of high frequency gets absorbed by bound water in the sphere of 

hydration of a polyvalent ion. Absorption of microwave energy weakens the bond between 

calcium ions and its sphere of hydration facilitating deaquation which is a must for apatite 

formation in aqueous solution [28]. 
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HAp is the most stable form of Calcium Phosphate at normal temperature and in the pH 

range 4-12 with Ca/P ratio being 1.67 [29]. Nano-Hap powder was prepared using precipitation 

reaction using Calcium hydroxide and Diammonium hydrogen phosphate. Immediately after 

mixing the chemicals they are subjected to microwave radiation and white precipitate is 

obtained. Due to irradiation ammonia was eliminated. Majority of nano-HAp particles prepared 

were 50 nm in diameter and 200 nm in length. As-prepared precipitate was calcium deficient 

HAp with PO4
3-ions substituted by CO3

2- ions. 

Parhi et al [30] prepared HAp though a novel microwave-mediated metathesis reaction. 

Solid Mixture of Calcium Chloride (CaCl2) and Sodium Phosphate (Na3PO4) was irradiated in 

microwave oven. Irradiated powder was washed and dried to obtain n-HAp. Sodium Chloride 

(NaCl) acted as a heat sink in this metathesis reaction of HAp synthesis.  

Han et al. [31] synthesized nano-HAp by microwave-hydrothermal method using 

Phosphoric acid (H3PO4) and Calcium hydroxide (Ca9(OH)2) in a closed vessel microwave 

device. Applied microwave power and Ca/P ratio played an important role in determining the 

purity of HAp. At 550 W power and Ca/P ratio of 1.67, nano phase of HAp was observed with 

two morphologies. Level of the impurity in the synthesized powder was below 50ppm. 

Yang et al. performed some experiments to study the effect of aging time & irradiation 

time and power of microwave on thermal stability of HAp [32]. HAp was prepared using 

Ammonium Hydroxide, glucose and Calcium nitrate tetra hydrate. It was observed that thermal 

stability of HAp is strongly dependent on aging time, microwave irradiation time and power and 

increases as all the above parameters increases. In short irradiation and aging time, calcium 

deficient HAp [Ca10-X (PO4)6-X (OH)2-X] was formed which affects the thermal stability. 
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S.Jalota et al. [33] discussed the synthesis and characterization of a new Rhenanite 

(β ΝaCaPO4) and HAp biphasic biomaterial for skeletal repair. Rhenanite is derived from 

Rhenania Process. This process is used in fertilizer industry to get soluble phosphate material. In 

this process, natural HAp mineral is mixed with Na2CO3 and SiO2 where SiO2 is added to 

prevent the occurrence of free CaO in sintered powder. Powder mixture is grinded and calcined 

in rotary kiln for few hours in the temperature range of 1000-1200oC. Resorbable bone graft 

materials based on NaCaPO4 are already available in the market. In-vivo NaCaPO4 is supposed 

to supply Ca2+ ions as well as hydrogenated phosphate ions to the surrounding tissue on 

implantation. NaCaPO4 is expected to be osteoinductive stimulant in the body. β-NaCaPO4 has 

an orthorhombic (space group Pnam [34]) unit cell with lattice parameter of a=6.797, b=9.165 

and c= 5.406 Å [35]. 

Kilian et al. [36] showed that sintered HAp implant stay at the site for years after surgery 

where as β ΤCP has significantly higher solubility as compared to HAp and gets resorbed easily 

even before the completion of new bone [37, 38]. Attempts have been made in this direction to 

develop a new composite with high in vivo resorbability and osteoinductive/osteoconductive 

capability. Recently, it has been proved that β Rhenanite (β ΝaCaPO4) is an alkali calcium 

phosphate which supports cellular proliferation together with expression of osteogenic marker 

much higher than β ΤCP [39]. Ramselaar and coworkers studied the biodegradation rate of 

ΝaCaPO4 in comparison to HA and β ΤCP in vivo [40-43]. They demonstrated that rate of bone 

deposition on the surface of β ΝaCaPO4 is much more than HAp and it has strong prospective in 

developing bioresorbable or osteoinductive calcium phosphate bioceramics. Knabe et al. [44] 

noticed high solubility of ΝaCaPO4 samples in vitro rat bone marrow cell test. Kangasniemi et al. 
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[45] proved that the compound containing β ΝaCaPO4 has positive effect on the rate of growth 

of apatite layer on the surface of samples soaked in Simulated Body Fluid (SBF). 

Y.Doi e al [46] developed a new Calcium Phosphate Cement with sodium calcium 

phosphate (Na3Ca6(PO4)5). It was observed that cement powder containing Na3Ca6(PO4)5 in 

addition to tetracalcium phosphate and β TCP and tetracalcium phosphate sets in 3-7 minutes 

when mixed with 30wt % malic acid or citric acid at a powder liquid ratio of 3:1 with 

compressive strength around 52 or 27 MPa. It was also noticed that cement with sodium calcium 

phosphate (Na3Ca6(PO4)5) when mixed with malic acid or citric acid was far less toxic than the 

commercial carboxylate cement used as negative control in He-La cell culture. Culture 

experiments conducted with osteoclast proved that number of osteoclasts was far much greater 

on cement with sodium calcium phosphate mixed with malic or citric acid as compared to 

commercial carboxylate cement. 

Nikahira et al. [47] did SBF study on HAp samples and HAp samples containing 

NaCaPO4 by placing the samples in SBF for 4-7 days. No deposit of bone like CaP was observed 

on the surface on HAp where as HAp samples containing NaCaPO4 were covered with such 

deposit. High dissolution rate of HAp samples containing NaCaPO4 is due to the presence of 

Na+ ions which weakens the bond between Ca2+ and PO4
3- 

According to Gong et al [48] β-NaCaPO4 act as a nucleation precursor for the formation 

of calcium phosphate. 

NaCaPO4 + 2 Ca2+ H2O → Ca5(PO4)3OH +3Na+ + H+  equation(1) 
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Sodium calcium phosphate [Na3Ca6(PO4)5] and amorphous silicon phases were 

developed by sintering HAp and Bioglass ® (BG) at 1200°C [49]. It was observed that thick 

layer of apatite covered the surface of sodium calcium phosphate samples after one week 

immersion in SBF solution maintained at 37oC and ph of 7.4 

Poor mechanical properties limited the use of nano-HAp in the field of biomedical 

applications. Various investigations have proven that the mechanical strength and sintering 

temperature of HAp are strongly dependent and mechanical strength of dense HAp decreases 

sharply with the decomposition of HAp [50, 51]. Mechanical & biological performance of HAp 

can be tailored by changing powder characteristics such as particle size, shape, their distribution, 

and agglomeration [52]. Nano-HAp provides large surface area which makes it very active for 

cell proliferation, synthesis, of alkaline phosphate and deposition of calcium containing minerals 

[53]. Brittle nature and low fracture (<1MPa m1/2) toughness of HAp limited its use in load-

bearing applications [54, 55]. Mechanical strength and fracture toughness of HAp can be 

improved by addition of low melting secondary phase for better densification [56-58], addition 

of sintering additives to increase densification by grain boundary strengthening [59-61] and use 

of nano scale powder to improve densification due to larger surface area to volume ratio. 

Nano-HAp and polyamide composite is almost similar to bone so its bio-performance in 

osseous environment is good [62]. Polyamide is responsible for imparting toughness and 

mechanical strength to this composite whereas nano-HA accounts for excellent bioactivity. This 

composite was prepared using nano-HAp slurry and co-solution method under normal 

atmospheric pressure. Nano-HAp powder maintains its original morphology with crystal size 10-
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30 nm in diameter by 50-90 nm in length. HAp was uniformly distributed in the polyamide 

matrix.  

HAp-reinforced UHMWPE (Ultra High Molecular Weight Polyethylene) was developed 

to from synthetic biocomposite to match with the properties of natural bone [63]. Powder HA 

(Volume fraction=0.5) and UHMWPE were mixed and compounded by twin extrusion using oil 

as swelling agent. Using hot press and extraction, oil was removed. The yield strength of the 

composite was comparable to the cortical bone [64]. 

Liao et al. (2005) [65] developed nano-HA/collagen/PLGA composite for bone tissue 

engineering. It can be used for repairing periodontal defects, membranes for covering bone 

defects, skin wound repair and healing, skin sealing and a carrier for antibiotic, bone growth 

factors because of its flexibility, strong mechanical strength, easy manipulation character, 

excellent biocompatibility and controlled resorption. 

Fu et al. [66] reported that when n-HAp was introduced in GBC, it slows down the 

growth rate of cancer cells U2-OS (Osteosarcoma) and increases the mechanical strength of the 

composite. It is a great material for bone repair after tumorotomy operation. 

HA has been reported to show cell-inducing effect on the formation of cornea tissue [67]. 

PHEMA (Poly2hydroxyethylmethacrylate) has widely been used as cornea material for cornea 

implant. Bio-inert nature of PHEMA creates trouble with the combination between the material 

and peripheral cornea tissue resulting in bad implant. Nano-HA layer was developed on the 

PHEMA by sol dipping method to improve the cyto-affinity of the polymeric material [68]. HAp 

particle coating and aggregation improves the adhesion mechanism of cornea fibroblast to the 

membrane. 
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Bacterial infection has always been serious problem due to various percutaneous devices 

such as blood tubes, catheters etc. HAp is being tested in making percutaneous device to prevent 

infection.  Furuzono et al. (2004) showed fabrication and adhesion properties of a scaffold made 

of nano-scaled HAp/Polymer complex with silk fibron (SF) substrate to develop a percutaneous 

device [69]. HAp proved to be good adhesive surface for cells. This research is relatively new. 

Animal experiments are being conducted with percutaneous implantation to test infection-

protection properties and cell adhesion. 

Suspension of Calcium phosphate and DNA has been used for many decades to carry out 

transfection in cells. Zhu et al. [70] identified that nano-HAp particles can transfect certain 

plasmid DNA into cell of interest. The experiment was performed using gastric cancer SGC-

7901 cells. Nano-HAp particles have no adverse effect in-vivo and compatible with the invitro 

cell culture. Nano-HAp was prepared by mixing Calcium nitrate (Ca(NO3)2) and Ammonium 

Phosphate (NH4)2HPO4) while maintaining Ca/P ratio of 1.67. Ammonia was added to adjust 

pH. 

Nanostructure of HAp helped in improving its sinterability, ductility, superconductivity 

and mechanical strength of the ceramic. With the use of nanotechnology, formulating various 

polymers, ceramics and polymer- ceramic composites to engineer bio compatible, active and 

degradable materials holds lot of promise for fields like tissue engineering. 



2.3 Nano-crystalline Titanium dioxide 

TiO2 exists mainly as anatase, rutile and brookite. Anatase have tetragonal structure with 

space group D h
19
4 -I41/amd space group and lattice constant a=0.3733 nm, c=0.937 nm, c/a=2.51 

where as Rutile have tetragonal structure too, but belongs to space group D h
14
4 -P42/m nm and 

lattice constant a=0.4584 nm, c=0.2953 nm, c/a=0.664 [71]. Rutile and Anatase are widely used 

because of their unique properties. Brookite have rhombohedral structure with lattice constant 

a=0.5436 nm, b=0.9166, c=0.5135,c/a=0.944. They are used in solar cells as photocatalyst, in 

ceramics as optical coating, to provide corrosion resistance to the metallic implants etc. Roy et 

al. studied the effect of TiO2 nano-tube on the blood clotting kinetics [72]. Blood in contact with 

dispersed TiO2 nano-tube and blood in touch with gauze pad surface-decorated with TiO2 nano-

tube improved blood clotting strength and significantly reduced clotting time. In comparison 

TiO2 nano-particles form cots of weak strength and increased clotting time. It was noticed that 

clotting time reduced by 10% when blood was in contact with gauze pad decorated with TiO2 

nano-tube or dispersed TiO2 nano-tube. Strength was found to increase by 75% in the above 

cases whereas Anatase TiO2 nano-particle decreased the clot strength of the original blood by 9% 

and increased clotting time too. 

TiO2 can also be used for disinfecting surfaces by the mechanism of photo catalytic 

oxidation using UVA light [73]. Depth of penetration is not adequate when only hard UVC light 

is used for disinfection. Highly reactive OH- radicals are produced on the surface coated with 

TiO2 in the presence of water and oxygen due to photocatalytic oxidation caused by mild UVA. 

OH- radicals reduce the bacterial contamination by killing bacteria. 
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TiO2 can also be used for photo-assisted degradation of organic molecules. TiO2 being a 

semiconductor produces electron hole pairs when irradiated with sunlight. Charge carriers react 

with adsorbed water and oxygen on the surface to form free radicals. These radicals lead to 

complete decomposition of organic molecule into carbon dioxide and water [74]. 

Martin et al. [75] discussed the use of TiO2 (Semiconducting Metal oxide) in photolytic 

artificial lung. Artificial lungs deliver oxygen to the blood using hollow tubes or fibers. To 

eliminate the use of tubes, pyrolytic energy was used to produce oxygen from the water present 

in blood. Indium oxide, anatase TiO2 and MnO2 were deposited on fused silica by magnetic 

sputtering. TiO2 layer was laser radiated to produce electron-hole pairs to catalyze redox reaction 

with water in the blood. TiO2 should have significant porosity and surface area to allow proper 

reaction between produced holes and water in the blood. Free electrons are conducted away. 

MnO2 was also used as catalyst to dissolve oxygen in the blood. This process increased the blood 

oxygenation as much as 90%. 
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3. METHODOLOGY 

In this chapter, the whole experiment is discussed in details, starting from raw material 

selection, synthesis and characterization of as-synthesized nano-HAp powder.  

3.1 Materials  

Table 3: Chemicals used for nano-Hydroxyapatite synthesis 

Chemical Name Molecular Formula Purity Company 
Sodium phosphate dibasic 

anhydrous 
HNa2O4P ≥99.5% Fluka 

Biochemika 
Calcium nitrate tetrahydrate Ca(NO3)2.4H2O 99% Alfa Aesar 

Ethylenediaminetetraacetic acid C10H14O8N2Na2.2H2O 0.1M Fluka 

Ammonium hydroxide NH4OH 5N Ricca Chemical 

Table 4: Chemicals used for nano-Titanium dioxide synthesis 

Chemical Name Molecular 
Formula 

Purity Company 

Titanium (IV) 
tetraisopropoxide 

Ti[OCH(CH3)2]4 98+% Fisher Scientific, 
USA 

 
Isopropanol CH3CH(OH)CH3 70% Fisher Scientific, 

USA 
 

Nitric acid HNO3 6M Fisher Scientific, 
USA 

 
Titanium dioxide (0.43µm) TiO2 99.9% Alfa Aesar, USA 
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3.2 Microwave Synthesis of Nanocrystalline Hydroxyapatite Powder 

All reagents used in this study were analytical grade and used without further 

purification. In a typical procedure, 5 ml of a mixed solution of calcium nitrate tetrahydrate 

[Ca(NO3)2•4H2O (0.1M, Alfa Aesar Ward Hill, MA )] and EDTA (0.1 M, Fluka  Biochemica, 

Germany) was added to 25 ml solution of sodium phosphate dibasic anhydrous (Na2HPO4, Fluka  

Biochemica, Germany). While mixing Ca/P ratio was maintained at 1.67. The pH of the final 

solution was adjusted to 9 by adding ammonium hydroxide (NH4OH with pH10, ACROS 

organics Fairlawn, NJ) solution. After stirring for several hours, the aqueous solution with a pH 9 

was microwaved in domestic microwave of 600 W power (Sunbeam, 5 Power level) as shown n 

Figure 5 locally customized with a refluxing system. The working cycle of microwave was 3 min 

in ON position followed by a 5 min OFF position for a period of 20 min. 

The final solution was allowed to cool to room temperature inside the microwave and 

then the precipitates were filtered using filer paper. The obtained precipitates were dried in a 

manual muffle furnace in air at 200oC for 4 h. The product was ground into fine powder using a 

mortar and pestle. The resultant powder was then characterized using various techniques for 

properties. Additionally, some powder was calcined at 500oC for 2 h in a muffle furnace to study 

the effects of calcination on phase evolution and crystallite size. Ammonia by-product was 

eliminated from the mixture due to irradiating heat. 

 



Figure 5: Set up showing microwave sythesis of HAp nanopowder 

The synthesis parameters were optimized by modifying mixing time (t1) for calcium 

nitrate tetrahydrate and EDTA with sodium phosphate dibasic anhydrous solution, stirring time 

(t2) after adding NH4OH, pH of final solution and microwaving time (t2). Table5 shows the 

parameters varied during the entire experiment for the synthesis of nano-HAp power. 
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Table 5: Synthesis parameters for HAp powder synthesis 

Experiment 

No. 

Mixing 

time 

(t1,min) 

Stirring time 

(t2, min) 

pH of 

final 

solution  

Microwaving 

time (t2, min) 
Output 

1 60 5 9 20 Small amount of 
powder 

2 240 5 9 20 Enough amount of 
powder 

3 1440 5 9 20 Same amount as in 
Exp-2 

4 240 30 9 20 No powder 

5 240 10 9 20 No powder 

6 240 15 9 20 No powder 

7 240 5 < 9 20 No powder 

8 240 5 9 5 Amorphous powder 

9 240 5 9 10 Small amount of 
powder 

10 240 5 9 20 Enough amount of 
powder 

 

3.3 Sol-Gel Synthesis of TiO2 Nano-powder 

Synthesis of nano-TiO2 powder was accomplished previously using a simple sol-gel 

process established by Mr. Qiu Shipeng in our laboratory. Titanium tetraisopropoxide (TTIP), 

isopropanol and deionized water were used as precursor material for the synthesis of TiO2 nano-

powder. TTIP solution was titrated with homogeneous solution of water and isopropanol while 
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stirring. After titration Nitric acid was added to the final solution and pH of the solution was 

maintained at 2. The solution was stirred for 1h and then peptized for 24 h. After peptization two 

layers of solution were formed. Upper layer consisting of organic byproduct of hydrolysis was 

removed from the bottom layer consisting of Titania acid gel. This gel was dried at 110oC in a 

muffle furnace until yellow color crystals appeared. These crystals were crushed into fine 

powder using mortar and pestle and calcined at 400oC for 3 h. 

3.4 Characterization of the synthesized HAp nano-powder 

3.4.1 Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetric 

(DSC) 

Thermal analysis of the synthesized nanocrystalline HAp powder was performed in a 

PYRIS Diamond Differential Thermal Analyzer (DTA) by Perkin-Elmer Instruments, Waltham, 

MA. The Diamond DTA is unique in offering higher sensitivity and provides insights 

information on materials.  The design allows sophisticated analysis when performing the direct 

measurement of heat flow into or out of a sample as the sample and reference pans are heated by 

two independent furnaces embedded in a temperature-controlled heat sink. TGA determines a 

material’s thermal stability and measures the weight loss or gain of a material as a function of 

temperature. Mostly, TGA analysis is performed in an atmosphere i.e. air or oxygen with a linear 

ramp of temperature. The maximum temperature should be so selected that the weight of the 

specimen is stable at the end of the experiment. This basically indicates that all chemical reaction 

are complete i.e. the whole of carbon is burnt and only metal oxides are left over. DSC 
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measurements indicate endo or exothermic reaction or possible phase transition. The experiment 

was performed in helium gas inert atmosphere.  Sample weight was 0.65 mg. Helium gas flow 

speed of 160cm3/min was employed. Thermogravimetric (TG) analyzer was used to find the 

weight loss during heating between 45oC and 1200oC at the rate of 20oC/min in helium 

atmosphere. Sample was initially heated to 130oC for conditioning and to remove some 

physically absorbed moisture and organic impurities. After conditioning, the specimen was 

cooled to 45oC and heated again to 1200oC at a heating rate of 20oC/min.  

3.4.2 Fourier Transform Infrared Spectroscopy (FTIR) 

FTIR is a powerful tool for identifying types of chemical bonds in a molecule by 

producing an infrared absorption spectrum. Fourier transform spectrograph is much more 

sensitive and has a shorter sampling time than other conventional spectroscopic techniques. Data 

is collected and converted from an interference pattern to a spectrum. The wavelength of light 

absorbed is characteristic of the chemical bond and thus by interpretation of the infrared 

absorption spectrum the chemical bond in a molecule can be determined. Depending on the 

element and the type of bonds, molecular bonds vibrate at various frequencies. Fourier transform 

infrared (FT-IR) spectroscopy was performed on finely ground HAp nano-powder calcined at 

different temperature using a Perkin Elmer spectrum 100 spectrometer to distinguish the types of 

calcium phosphate formed.  The spectral range used was from 650 cm-1 to 4000 cm-1.  Heat 

treated specimens were finely powdered using a mortar and pestle prior to obtaining the 

measurement.  The baseline of the entire spectrum was corrected for the accuracy of results. 
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3.4.3 X-ray Diffraction (XRD) 

XRD analysis was performed on an as-synthesized and calcined powder and on 

compacted sintered structure to study the phase evolution, crystallite size and crystal structure. 

XRD patterns were recorded in the 2 θ range of 20-45° with the help of automated X-ray 

diffractometer (Model D/MAX-B, Rigaku Co., Tokyo, Japan) using Cu Kα radiation (λ=1.5418 

Å) at 40 KV and 30 mA setting. Scanning rate of 1°/minute and 2 θ step size of 0.05° were used. 

Observed XRD pattern was compared with the standard pattern available from PDF card for 

phase characterization. 

The crystallite size of the synthesized powder was determined from the XRD patterns 

using the Scherrer’s equation (1): 

β =  [0.9 λ / (〈d〉cosθ)]      equation (2) 

Where λ is the wavelength of X-ray, θ is the Bragg angle, 〈d〉 is the average crystallite size, and 

β is the full width at half maximum.  

Peak broadening is observed in the X-ray diffraction pattern which may be due to the 

Instrumental effect, Crystallite size and lattice strain [76]. Instrumental effect may include peak 

broadening due to imperfect focusing or unresolved α1 and α2 peaks. Peak broadening also 

occurs with the decrease in particle size. Broadening caused by strain in the material can be 

represented by:  

Bstrain = η tanθ        equation(3) 

Where η represents strain in material 
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To calculate the accurate grain size, peak broadening due to lattice strain, strain due to 

crystallite size and instrumental effect should be subtracted from B (Peak width at half maximum 

intensity). After deducting peak broadening due to instrument remaining peak broadening can be 

represented by: 

Br = kλ / Lcosθ+ηtanθ      equation (4) 

Where K is a constant generally taken as 0.9, λ corresponds to wavelength, L is average particle 

size and θ is the Bragg’s angle. 

By plotting Brcosθ against sinθ, straight line with slope η is obtained which intersect Y 

axis making intercept of kλ/L from which L can be calculated. 

3.4.4 Scanning Electron Microscopy (SEM) 

Scanning and transmission electron microscopy techniques were used to study and 

analyze morphology, agglomeration and size of hydroxyapatite particles in the synthesized 

powder.  SEM technique was employed to observe the particle-size and agglomeration of the as-

synthesized nano-HAp powder. For this, a very small amount of powder was placed on an 

adhesive carbon tape, coated with gold/palladium in Magnetron Sputter Coater from Emitech 

Inc. for 1minute and then observed in a JOEL SEM (Model 6400F, JEOL, Tokyo, Japan). 

Particle size of the synthesized powder was further investigated using IQ Materials Image 

Analysis software from SEM micrographs. The particle size module of IQ materials Image 

Analysis software automatically detects and measures particles pictured in captured images.  

This software makes its initial measurements in terms of pixels. The calibration was done to 
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convert these to more meaningful units, such as millimeters, micrometers etc for the image under 

analysis. Specific area of interest in the image can be analyzed using this software. The more 

image data you analyze, the more accurate your results will be. This module provides valuable 

information regarding measurable characteristics of particles, including size measurements, 

location information and easy thresholding tools for identifying particles of interest in images, 

shape and orientation measurements (for example, degree of circularity and angle of rotation) 

and ability to control particle recognition by setting a minimum size requirement. 

3.4.5 Transmission Electron Microscopy (TEM) 

The morphology, grain size and the lattice fringes of the as-synthesized HAp nano-

powder were characterized using H-TEM, Model Tecnai - Philips F30, FEI Co., Hillsboro, OR). 

It can capture images with a maximum magnification of 10,000,000X and resolution of 0.02 nm 

point to point. This machine operates with a field emission gun and can operate at a maximum 

voltage of 300 KV. Presence of well defined dots and ring patterns conform the presence of 

crystalline phase in Selective Area Diffraction Pattern (SAED). To perform TEM analysis, 

formvar-carbon coated grid was dipped into the synthesized powder. The grid was observed 

under a Tecnai H-TEM for analysis. Energy dispersive X-ray spectroscopy (EDS) was 

performed for chemical microanalysis using an EDAX system attached to H-TEM. Selective 

area diffraction pattern (SAED) was also obtained to confirm crystallinity of the synthesized 

powder. 
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3.5 Powder Compaction 

As-synthesized powder was calcined at 200°C for 4 h to remove the carbonaceous 

impurities. This calcined powder was used as a starting material for compaction and sintering 

studies. Using Cold Compaction, powder was pressed into pellets and sintered for further 

research. 

3.5.1 Cold Uniaxial Compaction 

Nano-powder used for compaction was grinded after calcination to break any possible 

agglomeration. Traditionally Cold die compaction method was used to achieve dense structures 

by powder rearrangement including sliding and rolling. For compaction of nano-HAp and nano-

TiO2 into dense cylindrical specimen or green samples cylindrical mould was used at a pressure 

of 78.69 MPa in a uniaxial single action manual hydraulic press (Model 3851-0, CARVER INC., 

Wabash, IN). To reduce the friction between powder and the mould, a dry film of PTFE (Dupont 

Krytox) was sprayed on the inside surface of mould and punch. Nano-HAp and nano-TiO2 

samples prepared for studying densification, hardness and biaxial strength were having an 

average diameter of 9.5 mm and 1.8 mm in thickness. 

3.5.2 Sintering and Densification 

All the compacted samples or green samples were sintered in a programmable high 

temperature muffle furnace (Model 46100, Barnstead International Co., Dubuque, IA) in open 

air. Nano-HAp samples were sintered in the temperature range of 1100-1250oC for 4.5 h whereas 



 

 

34

nano-TiO2 samples were sintered at 1400oC and 1500oC. Six samples were sintered at every 

temperature to study the sintering and densification behavior. To improve densification and 

avoid cracks due to stresses in the sintered samples, suitable sintering cycle with several soaking 

temperatures was adopted. 

3.6 Characterization of Sintered HAp structures 

3.6.1 Fourier Transform Infrared Spectroscopy 

FTIR is a powerful tool for identifying types of chemical bonds in a molecule by 

producing an infrared absorption spectrum. Fourier transform spectrograph is much more 

sensitive and has a shorter sampling time than other conventional spectroscopic techniques. Data 

is collected and converted from an interference pattern to a spectrum. The wavelength of light 

absorbed is characteristic of the chemical bond and thus by interpretation of the infrared 

absorption spectrum the chemical bond in a molecule can be determined. Depending on the 

element and the type of bonds, molecular bonds vibrate at various frequencies. 

3.6.2 Phase Analysis using X-ray Diffraction Technique 

To study the phase change with the increase in sintering temperature of nano-HAp, X-

Ray Diffraction pattern were recorded at different temperatures using (Model D/MAX-B, Rigaku 

Co., Tokyo, Japan) and compared with the standard ones. 
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3.6.3 Densification Study 

All of the six pressed samples were sintered at different temperature in a programmable 

high temperature muffle furnace (Model 46100, Barnstead International Co., Dubuque, IA) in 

open air and observed sintered density was compared Nano-HAp samples were sintered in the 

temperature range of 1100-1250oC for 4.5 h whereas nano-TiO2 samples were sintered at 1400oC 

and 1500oC. 

3.6.4 Microstructural Analysis 

To study the grain growth or grain coarsening of sintered nano-HAp samples with the 

increase in temperature Scanning Electron Microscopy was used. Samples for SEM study were 

gold coated in Magnetron Sputter Coater from Emitech Inc. for 1minute. After coating, samples 

were analysed in JOEL SEM (Model 6400F, JEOL, Tokyo, Japan). 

3.6.5 Mechanical Characterization 

Vickers Hardness Test and Biaxial Flexural Strength test were conducted to evaluate the 

mechanical properties of sintered nano-HAp and nano-TiO2 specimens 

3.6.5.1 Vickers Hardness Testing 

To calculate the hardness of the nano-HAp samples Vickers Hardness Tester (Model LV-

7000, LECO Co., St. Joseph, MI) was used. Load of 9.8 N was applied for 5 Sec. during the 

hardness test. By measuring the diagonals of the indent produced on the surface of the samples 
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hardness was calculated. There should be no crack propagation in the sample during the 

indentation. This is done to avoid any kind of error in the hardness measurement. 

3.6.5.2 Biaxial Flexural Strength Measurement 

Samples were tested in Ultimate Tensile Testing machine under compressive load (Model 

3369, Instron Co, USA) with a constant crosshead speed of 0.02 mm/minute. For flexural test, 

ball piston (0.75 mm in diameter) was pressed against three hardened balls (1.98 mm in 

diameter) positioned 120o apart in a circle of diameter 7.5 mm. Samples were centered on these 

three hardened balls Plastic sheet was placed between circular sample and ball piston to 

distribute the load evenly. Load at fracture was used to calculate biaxial strength using following 

equation. 

S = -0.2387 P (X-Y)/d2      equation(5) 

Where  

S - Maximum center tensile stress in MPa. 

P - Load at failure in N. 

X = (1+ν) ln (B/C)2 + [(1- ν)/2](B/C)2    equation(6) 

Y = (1+ ν) [1+ ln (A/C)2 ]+ [(1- ν)](A/C)2    equation(7) 

µ - poisons ratio  

A - Radius of support circle in mm. 

B - Radius of loaded area or ram tip in mm. 

C - Radius of specimen in mm. 

d - Thickness of the specimen at fracture origin in mm. 
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3.6.6 Assessment of Biomechanical Properties and Biodegradation 

Simulated Body Fluid (SBF) was prepared on the basis of the recipe reported by 

T.Kokubo et al. [77] with an ion concentration nearly equal to that of human blood plasma. SBF 

was prepared in a plastic container without precipitation. pH of the SBF was maintained at 7.4. 

Biodegradation of the nano-HAp sintered samples was calculated by noticing their weight loss 

and decrease in strength in SBF as a function of time. Flow pattern was developed in SBF using 

magnetic stirrer.  

Chemicals used in the preparation of SBF are: 

1. Sodium chloride (NaCl) 

2. Sodium hydrogen carbonate (NaHCO3) 

3. Potassium chloride (KCl) 

4. Di-potassium hydrogen phosphate trihydrate (K2HPO4.3H2O) 

5. Magnesium chloride hexahydrate (MgCl2.6H2O) 

6. Calcium chloride (CaCl2) 

7. Sodium sulphate (Na2SO4) 

8. Tris-hydroxymethyl aminomethane 

9. 1 N hydrochloric acid 

 

1000 ml of SBF was prepared in a clean, scratch free plastic contained. Chemicals were 

dissolved in the sequence as shown above. Care was taken to add chemicals when the previous 

chemical was dissolved completely. Entire experiment was carried out in the temperature range 

of 34-38oC with constant stirring. 
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3.7 Characterization of Sintered TiO2 Structures 

3.7.1 Biaxial Flexural Strength Measurement 

Specimens were tested in Ultimate Tensile Testing machine under compressive load 

(Model 3369, Instron Co, USA) with a constant crosshead speed of 0.05 mm/minute and Biaxial 

flexural strength was calculated (as discussed in the above Section-3.6.5.2) 

3.7.2 Assessment of Biomechanical Properties and Biodegradation 

Simulated Body Fluid (SBF) was prepared on the basis of the recipe reported by 

T.Kokubo et al. [77] with an ion concentration nearly equal to that of human blood plasma (as 

discussed in above Section-3.6.6). Samples of HAp samples sintered at 1250oC and TiO2 

samples sintered at 1400oC and 1500oC were placed in SBF for 28 days. SBF was maintained at 

pH of 7.4 throughout the experiment. At the end of every week samples were tested for their 

hardness, biaxial strength and mass loss. 
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4. RESULTS AND DISCUSSION 

4.1 Nano-HAp Powder Characterization 

4.1.1 Thermo-Gravimetric/Differential Thermal Analysis 

Thermal stability of as synthesized nano-HAp was analyzed using Perkin Elmer TG-DTA 

(Pyris Diamond TG/DTA). TG-DTA was done to reveal the endo or exothermic reaction of the 

HAp sample which in turn was associated with the weight loss. 

Nano-HAp powder was conditioned at 135oC to remove moisture and organic impurities. 

After conditioning, sample was cooled to 45oC and then heated to 1200oC, in air, at a heating rate 

of 20oC/min. During the experiment Helium gas flow rate was maintained at 160 cm3/min.  

As seen in the TG-DTA results presented in figure 6, with the increase in temperature 

weight-loss in the sample was observed. Total weight loss of 23% was calculated by the end of 

experiment at 1200oC. This weight-loss can be contributed to the removal of adsorbed & 

possible lattice water, decarboxylation of HAp or condensation of HPO4
2- releasing water [29]. 

Exothermic peak around 210oC can be due to burning of some carbonaceous matter present in 

the HAp powder. Upon heating from 220-500oC a mass loss of 9.6% is observed. This change of 

mass could be attributed to the partial removal of physically and chemically adsorbed water and 

possibly lattice water. All the endothermic peaks associated with mass loss below 600oC can be 

contributed to desorption of adsorbed water and possible elimination of crystal lattice water. 

Endothermic peak around 600oC and the corresponding significant weight-loss could possibly 



because of decarboxylation and dehydroxylation of HAp releasing CO2 and the condensation of 

HPO4
2- releasing water [29]. 
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Figure 6: TG and DTA plot of as-synthesized nano-HAp 

 

Wang et al. [78] discussed the dehydroxylation kinetics of HAp. Initially, 

dehydroxylation of HAp occurs due to OH- anion diffusion through HAp and OH- anion 

debonding from HAp lattice. HAp core size decreases with preceding dehydroxylation due to 
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which diffusion distance for OH- anions through HAp becomes smaller. Oxyapatite 

[(Ca10(PO4)6O] becomes stable as compared to HAp with increase in temperature. At this stage 

mass loss occurs due to oxyapatite lattice constitution. With further increase in temperature, 

dehydroxylation is controlled only by lattice constitution of oxyapatite by migration of O2- anion 

in the OH- depleted region. OH- debonding and diffusion are too fast at high temperature to effect 

dehydroxylation rate. So in the final stage of dehydroxylation, oxyapatite lattice constitution and 

2 OH-→ H2O↑ + O2- might be the rate controlling step. 

Other researchers had reported much higher initial dehydroxylation temperature values 

(800oC or higher) [79, 81].  A comparison of our results with TG-DTG curves reported by Wang 

et al. [78] shows that the onset of dehydroxylation of HAp is lower (570oC) for our synthesized 

nanocrystalline powder compared to commercial HAp (Fluka brand, Signma-Aldrich Chemie 

GmbH, Germany).  Such temperature discrepancy can also result from difference in powder 

synthesis methods and post-heat-treatments. 
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4.1.2 Phase Analysis and Crystallite Size Determination 

X-ray diffraction patterns of the as-synthesized nanocrystalline hydroxyapatite powder 

are shown in figure 7. Plot (a) shows the pattern for dried powder after microwave synthesis, and 

plot (b) shows the pattern for calcined powder heat-treated at 500oC after microwave synthesis.  

Phase analysis was done using PDF card no. 00-009-0432 for Hydroxylapatite and PDF 

card no. 00-009-0169 for β-TCP, which provide information in the 2θ range of 10.820-78.229 

degree. Phase analysis revealed that all major peaks of hydroxyapatite were present in both the 

powders. Energy given by the microwave radiation was sufficient to evolve major high intensity 

peaks of hydroxyapatite corresponding to various planes viz., (111), (002), (211), (112), (300), 

(202), (301) and (310), as revealed by our analysis. As seen in plot (a), the peaks were broad for 

the dried powder obtained after microwave processing, which bring to light the smaller size of 

the crystallite/ particle in the powder.  

To observe the effect of calcination, the powder was heat-treated at 500oC and analyzed 

for phases. As seen in plot (b), calcination resulted in evolvement of new peaks and increase in 

peak intensity. This also led to some phase change marked by the unknown peaks as shown in 

the plot (b). Calcination increased crystallinity of the powder which is learnt from the increase in 

peak intensity corresponding to planes (200) and (210).  Peak corresponding to plane (102) was 

also prominent in the calcined powder. However, calcination at 500oC also coarsened the 

crystallite size in the powder as revealed by the narrower and sharper peaks compared to as-

synthesized powder. Secondary phase of beta-tricalcium phosphate (β-TCP) was also observed 

in the nano-HAp powder calcined at 500oC.  
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Figure 7: X-ray diffraction patterns of the as-synthesized nanocrystalline hydroxyapatite powder 

(a) Dried powder after microwave synthesis, and (b) Heat-treated powder at 500oC after 

microwave synthesis. Unknown peaks are marked as ●. Peak analysis was done using PDF card 

# 00-009-0432 and PDF card # 00-009-0169. 

Crystallite size was calculated for two different value of θ for as-synthesized and calcined 

HAp powder by using Scherrer’s formula as shown in Table 6:  
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Bcrystallite = kλ/Lcosθ       equation(8) 

where k is a constant (usually 0.9), λ is the wavelength of X-ray radiation, L is the 

average particle size, and θ is the Bragg angle, crystallite size was calculated for as-synthesized 

and calcined HAp powder. 

Table 6: Comparison of the crystallite size calculated using Scherrer’s formula for As-

synthesized and Calcined nano-HAp for different 2 θ values. 

Crystallite Size (nm) 2 θ 

As-synthesized Powder Calcined Powder at 500oC 
25.9 14.13 21.46 

31.8 11.29 16.58 

 

Where λ=1.5418 Å, k=0.9 

The crystallite size of the as-synthesized HAp crystals was in the range of 11-15 nm. 

 

Manjubala et al. [82] discussed the synthesis of biphasic calcium phosphate ceramics 

using microwave radiation. It was observed that biphasic calcium phosphate powders prepared 

with the different Ca/P ratio was accountable for different volume fraction of β-TCP formed. 

When molar concentration of calcium to phosphorus solution used was less than 1.67, peaks of 

β-TCP were observed in the as-synthesized and calcined powder. 

Yang et al. [32] discussed the thermal stability of HAp derived from the microwave 

irradiation method. It was observed that sample irradiated for 5 min at 700 W had Ca/P molar 
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ratio of 1.54 and sample irradiated for 30 min at 700 W have Ca/P molar ratio of 1.63. Well 

crystallized HAp and β-TCP peaks were observed in the samples irradiated for 30 min at 1000oC 

whereas samples irradiated for 1h showed well crystallized peaks of HAp only.  

 

HAp is decomposed at higher temperature as follows: 

Ca10(PO4)6(OH)2 → 3Ca3(PO4)2 + CaO + H2O 

But with the increase in irradiation time, thermal stability of HAp increases [32]. 

Generally, in short irradiation time calcium deficient HAp was formed which is responsible for 

different thermal stability. HAp prepared in a short irradiation time is thermodynamically 

metastable phase which transform to relatively stable phase at elevated temperature. 
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4.1.3 Powder Morphology, Agglomeration and Particle Size Determination 

4.1.3.1 Transmission Electron Microscopy 

Figure 8 shows the high-resolution TEM micrograph of the as-synthesized nano- HAp 

crystallites via microwave processing without calcination. From these TEM micrographs, it can 

be seen that the powder was needle shaped with diameter of ~ 5-10 nm and length of 15-30 nm.  

High resolution TEM micrograph of the as-synthesized hydroxyapatite nano-powder is 

shown in figure 9. It shows clear lattice fringes, indicating the established crystallinity of HAp 

powder.  Since a crystallite can be defined by studying the orientation of the lattice fringes, one 

can see the average grain size in the synthesized HAp powder is about ~10-20 nm, which is in 

good agreement with the calculated value calculated using Scherrer’s formula from XRD phase 

analysis. Also, we know that the lattice images are interference patterns between the direct beam 

and diffracted beams in HR-TEM and the spacing of a set of fringes is proportional to the lattice 

spacing, when the corresponding lattice planes meet the Bragg condition. 

Figure 10 shows the EDS spectrum and powder diffraction pattern of the as-synthesized 

powder soon after microwave synthesis.  The EDS spectrum confirms its chemical composition 

and powder diffraction pattern further validate the crystallinity of the powder. Clear peaks 

corresponding to Ca, P and O can be seen in the EDS spectrum.  
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(a) (b) 

Figure 8: TEM micrograph of the as-synthesized nano-HAp powder. (a) Micrograph showing 

extremely fine individual nano-HAp powder (10-50 nm) with loose agglomeration, and (b) 

micrograph exhibiting large agglomerates of HAp nanopowder. 

 

Figure 9: High resolution TEM micrograph of HAp nano powder showing crystallographic 

planes. Grain size can be approximated to be 10-20 nm. 



 

 

Energy (keV) 

Figure 10: (a) EDS spectrum, and (b) powder diffraction pattern of the as-synthesized (as-

synthesized) nano-phase powder confirming its chemical composition and crystallinity, 

respectively. 

Siddharthan et al. [28] studied the influence of microwave power on nano-HAp particles. 

It was observed that lower power of 175 W resulted in crystals with needle-like shape because 

microwaves absorption by free and bound water is less resulting in few HAp nuclei and growth 

taking place at slow rate at low temperature. HAp morphology also change to acicular shape for 

525 W and platelet shape for 660 W. Due to limitation of crystal growth in c-direction 

morphology of the crystal changes occurs. 
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4.1.3.2 IQ Materials Image Analysis: Particle size measurement  

Particle size was measured on SEM image shown in Figure 11 using IQ Materials Image 

Analysis software. The Particle Size module of IQ materials Image Analysis software 

automatically detects and measures particles pictured in captured images. This software makes 

its initial measurements in terms of pixels. The calibration was done to converts these to more 

meaningful units, such as millimeters, micrometers etc for the image under analysis. Specific 

area of interest in image can be analyzed using this software. The more image data that you 

analyze, the more accurate your results will be.  

This module provides valuable information regarding measurable characteristics of 

particles, including:  

•  Size measurements (for example, perimeter, length, width, and area)  

•  Location information (X-Y coordinates)  

•  Easy thresholding tools for identifying particles of interest in images.  

•  Shape and orientation measurements (for eg, degree of circularity and angle of rotation).  

• Ability to control particle recognition by setting a minimum size requirement.  

• Summary statistics on all measurements. 

Figure 11 presents the scanning electron micrographs of simply dried HAp nano powder 

after microwave synthesis which was captured at 12000 X with an acceleration voltage of 5 kV. 

SEM observation of the powder reveals that the powder was a loose agglomerate of very fine 

particles and these particles are in the nano regime (10-25 nm as can be clearly seen in the figure 

11a). The size of agglomerates varied between 50 nm to 4 µm. Figure 11(b) shows the analyzed 

particles of HAp in blue color with green periphery around it. Results of particle size (surface 



area) analysis of synthesized HAp powder from SEM micrograph (figure 11(b)) using IQ 

Materials Image Analysis software are shown in figure 11(a).  In this colored particle surface 

area analysis, the blue color area surrounded by green represents particle and agglomerate 

observed in SEM image. The plot of number of particles as a function of particle surface area 

clearly shows that the majority of the particles is very fine and is in the range of 10-50 nm. 

Histogram was plotted on the basis of the analyzed particles as shown in Figure 12. 

Number of particle in the nano-range can be easily calculated from the histogram. It was 

observed that majority of the particles were in the range of 10-50 nm which has already been 

confirmed by XRD plot and TEM micrograph of the as-synthesized HAp. Loose agglomerates of 

HAp nano-particles in the range of 0.5-1.0 µm were observed in the SEM image analyzed by IQ 

materials image analysis software. 

(a) (b) 

 

Figure 11: SEM micrographs of the as-synthesized hydroxyapatite nano-powder (a) high 

magnification micrograph showing individual HAp particles in the nano-range (10 – 50 nm), and 

1(b) Analyzed SEM image for particle size measurement using IQ materials image analysis 

software.  
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Figure 12: Histogram of particle size measurement on the SEM micrograph of HAp using IQ 

Materials Image Analysis software. Majority of the particles were in the range of 10-50 nm. 

 

Meejoo et al. [29] performed Dynamic Light Scattering (DLS) on the as-synthesized 

nano-HAp precipitate to calculate the particle size distribution. DLS analysis gave an insight that 

particle size distribution of the precipitate was in the range of 28-153 nm. 
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Table 7: Summary of the recent research work in synthesis of nano HAp powder using 

microwave radiation 

Researchers Powder 

Morphology  

Phase 

composition  

Power used  Crystallite Size 

Siddharthan et al. (2006) 

[28] 

Platelet HAp 660W 32-42 nm 

Parhi et al. (2004) [30]  Spherical HAp  ~100 nm 

Rameshbabu et al. 

(2005) [86]  

Plate like HAp 800W W=15-20 nm 

L=60-80 nm 

Meejoo et al. (2006) 

[29]  

Needle shape HAp 850W D=50 nm 

L=100 nm 

 

Manjubala et al. (2001) 

[82]  

 HAp+β-TCP 800W  

Han et al. (2006) [31]  Needle and 

Spherical 

HAp 550W W=4-15 nm 

L=20-50 nm and 

D=10-30 nm 

Siddharthan et al.(2005) 

[87] 

Needle like Calcium 

deficient HAp 

800W L=16-39 nm 

W+7-16 nm 

Our work Rod like HAp+ β-TCP 600W 10-15 nm 
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4.2 Sintering and Densification Study 

4.2.1 Density Measurement of HAp structures 

Uniaxially compacted HAp pellets at a pressure of 78.69 MPa were sintered at 1100oC, 

1150oC, 1200oC, 1250oC with holding time of 4.5 h in programmable high temperature muffle 

furnace. Geometric bulk density (ρg) of the sintered specimens was evaluated from the 

measurements of the mass of specimen and its volume (determined by dimensional 

measurements) using equation (9). 

Geometric bulk density (ρg) = Mass (m) / Volume (V)  equation (9) 

Effect of sintering temperature on the bulk density of nano-HAp is shown in Figure 13. 

Average sintered density computed for the same set of specimens increased from 2.50 g/cc 

(±0.06) at 1100oC to 2.88 g/cc (±0.03) at 1250oC which is 93.5% of the theoretical weight of 

HAp. It can be noticed from the plot that the densification process continued with the elevation 

in temperature which is in agreement with what is reported in the literature [83, 85] 

Pattanayak et al. [83] studied the effect of sintering temperature on HAp samples 

compacted at 700MPa. Sintered density of 2.7 g/cc was obtained at 1200oC whereas in our 

research, density of 2.8 g/cc was achieved at 1200oC for the samples compacted at a pressure 9 

times less than the compaction pressure used above. 
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Figure 13: Sintered density of HAp structure as a funtion of sintering temperature. 

4.2.2 Density Measurement of TiO2 structures 

Uniaxially compacted TiO2 samples were sintered at 1400oC and 1500oC. Not much 

change in the density was observed with increase in temperature from 1400oC to 1500oC. 

Average sintered density computed for the same set of specimens increased from 3.77 g/cc 

(±0.11) at 1400oC to 3.84 g/cc (±0.04) at 1500oC. At 1500oC, 98% of the theoretical density of 

TiO2 was achieved. With the increase in temperature, porosity decreases resulting in better 

densification at the expense of grain growth. 
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4.2.3 Phase Analysis of Sintered Structures 

4.2.3.1 Phase Transformation in HAp 

X-ray powder diffraction analysis was conducted to analyze phase transformation in HAp 

structures sintered at different temperatures that is, 950oC, 1100oC, and 1200oC, separately. 

Results of phase analysis are presented in figure 14. Peaks in each X-ray diffraction pattern were 

recorded and verified using PDF card # 00-029-1193 for  ΝaCaPO4 and PDF card # 00-011-0236 

for Na3Ca6(PO4)5. Intensity and sharpness of the peaks grew with the increase in sintering 

temperature, indicating an increase in the crystallite size in the sintered structures as the sintering 

temperature was raised from 950-1200oC. In addition to HAp, ΝaCaPO4 and Na3Ca6(PO4)5 were 

also observed at 950oC, 1100oC and 1200oC. New phases of sodium calcium phosphate appeared 

due to the presence of sodium in the system which was confirmed from EDS spectrum. 

Jalota et al. [33] synthesized biphasic material of β-NaCaPO4 and HAp for skeletal 

repair. β-NaCaPO4 and HAp peaks were observed in CaP gel precursor calcined at 600oC. β-

NaCaPO4 phase transforms to α-ΝaCaPO4 at 650oC which is isostructural with β-Κ2SO4

HAp posses high biocompatibility and new bone grows directly on the implant without 

fibrous encapsulation. ΝaCaPO4 can be used to develop osteoinductive or bioresorbable calcium 

phosphate bioceramics because rate of bone growth on  ΝaCaPO4 sample surface is much more 

than that of HAp [42]. Nikahira et al. [47] did SBF study on HAp samples containing NaCaPO4 

sintered at 1000oC by placing the samples in SBF for 4-7 days. HAp samples containing 

NaCaPO4 showed higher bioactivity than pure HAp. Na3Ca6(PO4)5 is a new bioceramic on which 

research is still going on. Bioactivity of Na3Ca6(PO4)5 is much more than HAp [49] and it was 



also noticed that cement with sodium calcium phosphate (Na3Ca6(PO4)5) when mixed with malic 

acid or citric acid was far less toxic than the commercial carboxylate cement used as negative 

control in He-La cell culture [46]. 
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Figure 14: Phase analysis of nanostructured HAp ceramics as a function of sintering temperature. 

Specimens were sintered in air at 950oC, 1100oC, 1200oC for 4.5 h separately, in a muffle 

furnace.  

4.2.3.2Phase Transformation in TiO2  

The XRD patterns for nano-TiO2 powders calcined at 400oC, sintered at 1400oC and 

1500oC for 3 h, are shown in Figure15. Presence of rutile phases of TiO2 was confirmed by 
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comparing with JCPDS standard files #21-1276, respectively. No phase change was observed 

between 1400oC and 1500oC but increase in intensity and the sharpness of the rutile peaks was 

observed with increase in sintering temperature, demonstrating increase in crystallite size. 
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Figure 15: X-Ray diffraction pattern of TiO2 powder heat-treated at 1400oC and 1500oC. Peaks 

were analysed using JCPDS standard files # 21-1276. 
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4.2.4 Microstructure Analysis  

4.2.4.1 IQ Materials Image Analysis-Grain size measurement  

HAp grain size measurement 

The Grain Size module of IQ materials software was used to obtain ASTM E 112 grain 

size value for grains depicted in captured Image. Grain Size module automates the grain 

boundary intercept method of grain size determination by auto-detecting grain boundaries 

intercepted by virtual lines drawn across the image. Then, it calculates the ASTM E 112 grain 

size value based on the grain boundaries intercepted. 

Some features of grain size module of IQ materials software: 

• Simple and effective grain boundary definition process  

• Ability to choose the best intercept method for your purposes, including circle, horizontal, 

vertical, and diagonal methods  

• Ability to control grain boundary recognition through thresholding and pattern matching 

options  

• Ability to manually add and remove boundary intercepts that are missed by the auto-

detection function  

• Grain boundary reconstruction and special handling of twin grain boundaries  
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(a) (b) 

Figure 16: SEM micrographs of the sintered hydroxyapatite structure for grain size measurement 

(a) high magnification micrograph showing grain size of HAp sample sintered at 1150oC for 

4.5hr, and 1(b) Analyzed SEM image for grain size measurement using IQ materials image 

analysis software.  

Grain size was measured using Grain size module of IQ material software on the SEM 

image of HAp as shown in Figure 16(b). Grain Size module automates the grain boundary 

intercept method of grain size determination by auto-detecting grain boundaries intercepted by 

virtual lines drawn across the image. It was observed that ASTM grain size (Number of grains 

per square inch at a magnification of 100 X) was 14 for sintered HAp at 1150oC. 

Meejoo et al. [29] observed that at a sintering temperature of 900oC grain size of nano-

HAp tripled and particles started joining their neighbor for the incremental growth process. At 

1200oC, noticeable grain growth was observed and nano-HAp samples with grain size of 1µm in 

diameter were obtained. 
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4.2.4.2 IQ Materials Image Analysis - Porosity measurement  

Percent Area module of IQ materials software determine the percentage of area covered 

by particular phases pictured in captured images. It automatically detects and measures the area 

of particles pictured in captured images. Following the ASTM E1245 Standard, this module 

determines the percentage of area in an image that is covered by different particular phases of 

material. 

 

Figure 17: SEM micrographs of the hydroxyapatite structure sintered at 1150oC for 4.5h for 

porosity measurement. 

Porosity was measured on the SEM micrograph shown in Figure 17 using Percent area 

module of IQ materials software. The measured percentage porosity value of HAp samples 

pressed at 78.69 MPa and sintered at 1250oC for 4.5 h was 4.04 ± 0.49%. 
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4.2.5 Fourier Transform Infrared Spectroscopy 
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Figure 18: FTIR spectrum of HAp at 400oC, 1000oC, 1100oC, 1150oC, 1200oC, and 1250oC.  

Nano-HAp powders were analyzed using Perkin Elmer 100 spectrum FT-IR 

Spectrometer in the wave number region 650-4000 cm-1 to distinguish the type of calcium 

phosphate. The samples were finely powdered prior to the measurement. The baseline of the 

whole spectrum was corrected prior to the spectra of the powder samples. Fig18 show the IR 

spectra of nano-HAP precipitate sintered at different temperature varying from 400-1250oC. All 

IR spectra in this study were compared with the earlier experiments performed in this direction 

[29, 82]. IR spectra conformed that the nano-HAp is of typical apatite structure. Hydroxyl and 

Phosphate group in the apatite structure can be substituted by carbonate, fluoride or chloride. 
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From literature, [82-84] characteristic IR peak around 873 cm-1 can be due to the 

substitution of phosphate site by carbonate ions in apatite. It was found that with the increase in 

temperature carbonate ions are removed from the apatite structure and OH- peak around 3570 

cm-1 becomes narrower and then disappears [82]. Intensity of peaks corresponding to Carbonate 

and Hydroxyl groups changes significantly with the increase in temperature. Because of 

condensation of 2HPO4
2- to P2O7

4-
 intensity of HPO4- band decreases over the range of 870-840 

cm-1 [84]. The band around 1000 cm-1 appears as triplet in pure HAp with peaks well resolved at 

1096, 1085 and 1056 cm-1, but in Biphasic Calcium Phosphate (BCP) samples the triplet 

resolution decreases and broadening takes place [82]. The carbonate vibrational bands in the 

region 1650-1300 cm-1 are assigned to the surface carbonate ions due to the air atmosphere 

present during the processing and characterization. 

Pattanayak et al. [83] (2005) synthesized and evaluated the HAp ceramics. In the FTIR 

analysis conducted phosphate was characterized by a strong, complex band in the 1000-1150  

cm-1 range, and, a medium intensity band at about 960 cm-1. In the FTIR spectrum obtained in 

this study a peak can be observed at 1086.35 cm-1 at 1200oC. Also the peak observed at 3571.2 

cm-1 corresponds to characteristic OH- band. The OH peaks become narrower as temperature is 

increased from 400oC to 1000oC, indicating the removal of some amount of hydroxyl component 

such as water from crystalline structure. After heat treatment at 1000 degrees, the OH absorption 

band disappeared. The peak at 1738.79 cm-1 confirmed the existence of a Ca-O phase in the 

structure. Also it can be observed that there are significant changes in intensity and appearance 

of peaks corresponding to carbonate and hydroxyl groups. 
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4.3 Mechanical Characterization 

4.3.1 Vickers Hardness Measurement 

4.3.1.1 Nanostructured HAp 

HAp powder calcined at 400oC was pressed into pellets at a pressure of 78.69 MPa and 

sintered at high temperature to study the effect of sintering temperature on hardness. Figure 19 

gives the Vickers hardness number observed for nano-HAp samples sintered in the range of 

1100-1250oC.  

It can be noticed that Vickers hardness number increased with the increase in sintering 

temperature, and a maximum hardness value of 249.53 ± 3.98 HV (2.44 ± 0.04 GPa) was 

observed for samples sintered at 1250oC. Observed hardness value can be well correlated with 

the sintered density, that is, when sintered density is low, corresponding hardness value is also 

low. For instance, samples sintered at 1100oC had an average bulk density of 2.50 ± 0.06 g/cc 

and their average hardness was only 118.86 ± 7.17 HV. Whereas, a maximum hardness value of 

249.53 ± 3.98 HV was achieved for the samples sintered at 1250oC having highest geometrical 

bulk density of 2.88 g/cc (±0.03). Increase in densification may be attributed to the decrease in 

porosity of samples with the increase in temperature at the expense of grain growth. 

Ramesh et al. [85] achieved Vickers hardness of 6.38 (±0.30) GPa for the HAp samples 

microwave sintered at 1150oC. Microwave sintering helps in suppressing the grain coarsening 

that is normally inevitable in conventional sintering. 
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Figure 19: Variation in Vicker’s Hardness of HAp structures as a function of sintering 

temperature.  

4.3.1.2 Nanostructured TiO2 

Nano-TiO2 powder calcined at 400oC was pressed into pellets at a pressure of 78.69 MPa 

and sintered at high temperature to study the effect of sintering temperature on hardness. It can 

be noticed that Vickers hardness number increased with the increase in sintering temperature. 

Hardness of 637.03 ± 6.90 HV was achieved for the samples sintered at 1400oC whereas samples 

sintered at 1500oC were having little higher hardness of 643.27 ± 7.96 HV. Maximum hardness 

value of 643.27 ± 7.96 HV was achieved for the samples sintered at 1500oC having highest 

geometrical bulk density of 3.84 g/cc (±0.04). 
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4.3.2 Biaxial Flexural Strength Measurement 

4.3.2.1 Nanostructured HAp   

HAp powder calcined at 200oC was pressed into pellets and sintered at high temperature 

to study the effect of temperature on biaxial strength. Biaxial flexural strength was calculated for 

at least six sintered specimens and it was observed that biaxial flexural strength increased with 

the increase in temperature. Maximum biaxial flexural strength of 52.07 ± 4.96 MPa was 

observed for the sample sintered at 1250oC. Percent porosity of the HAp samples sintered at 

1250oC for 4.5 h was measured using Percent area module of IQ materials software as shown in 

Figure 17. Low porosity of 4.04 ± 0.49% was observed which may be responsible for the 

increase in biaxial strength of the HAp sample. 

 

Pattanayak et al. [83] observed that biaxial flexural strength is higher for the samples 

sintered at 1100oC (50MPa) as compared to the samples sintered at 1150oC and 1200oC. This 

happens due to the presence of excess of Tricalcium phosphate/Dicalcium Phosphate strength of 

apatite above 1100oC.  

 

Thangamani et al. [88] synthesized nano-HAp using precipitation reaction. HAp samples 

sintered at 1100oC showed a maximum flexural strength value of 42.6 ± 6 MPa and with the 

increase in sintering temperature, decrease in strength was observed. Decrease in strength can be 

attributed to the abnormal and inhomogeneous growth of grain above 1100oC.  
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Figure 20: Variation in Biaxial Flexural Strength of HAp structures with varying sintering 

temperature. 

4.3.2.2 Nanostructured TiO2  

TiO2 powder calcined at 400oC for 3 h was pressed at a pressure of 78.69 MPa and 

sintered to study the effect of temperature on biaxial strength. It was observed that the calculated 

biaxial strength increased with increase in temperature. Biaxial flexural strength of 118.94 ± 6.17 

MPa at 1400oC and 125.5 ± 5.76 MPa was observed for the samples sintered at 1500oC. 
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4.4 Biomechanical Property and Biodegradation in Simulated Body Fluid 

4.4.1 HAp structures 

Twelve HAp samples sintered at 1250oC were studied for their bioactivity and 

biodegradability by placing the samples in Simulated Body Fluid (SBF) for 21days as shown in 

Figure 21. pH of the SBF was maintained at 7.4 and was stirred throughout the experiment. At 

the end of every week 4 samples were taken out of SBF and observed for their change in 

mechanical properties. It was observed that the hardness of the sintered HAp samples decreased 

with time in SBF. Final hardness of 130.2 ± 2.68 HV on 21st day was achieved as compared to 

the initial hardness of 249.53 ± 3.98 HV on day zero. Maximum biaxial strength of 55.07 ± 

12.41 MPa was achieved on the 21st day. 

 

 

Figure 21: Experimental setup for biodegradability study of HAp sample sintered at 1250oC. 
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Figure 22: Variation in Biaxial flexural strength and Hardness of sintered HAp (1250oC) in SBF. 

4.4.2 TiO2 structures 

Biodegradation study was done on 8 TiO2 samples sintered at 1400oC. Samples were 

placed in a small box having number of holes. This small box was placed in SBF for 28 days as 

shown in Figure 23. To maintain the pH of SBF at 7.4, SBF was replaced biweekly. SBF was 

stirred during the entire experiment. At the end of every week, two TiO2 samples were taken out 

of SBF to study their mechanical properties. It was observed that hardness of TiO2 samples 
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sintered at 1400oC decreases with time in SBF and hardness of 293.20 ± 8.45 HV was obtained 

on 28th day as compared to the initial hardness of 637.03 ± 6.90 HV on day zero. TiO2 samples 

sintered at 1400oC were further tested for their biaxial strength. It was also observed that biaxial 

strength followed the same decreasing trend as followed by hardness. Biaxial strength of 104.29 

± 1.84 MPa was achieved on 28th day as compared to the initial biaxial strength of 118.94 ± 6.17 

MPa on day zero. 

 

 

Figure 23: Experimental setup for biodegradability study of TiO2 sample sintered at 1400oC . 
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Figure 24: Variation of Hardness and Biaxial strength of sintered TiO2 samples (1400oC) in SBF. 

4.4.3 Mass loss in TiO2 and HAp samples 

Loss in mass of sintered TiO2 and HAp samples were observed in SBF with time. In case 

of HAp, increase in mass was observed in the 4th week. This may be due to the formation of 

apatite layer on the surface of HAp samples sintered at 1250oC. At higher temperature, HAp 

decomposed into biphasic compound consisting of NaCaPO4 and Na3Ca6(PO4)5. 

According to Nikahira et al. [47] HAp samples containing NaCaPO4 showed higher 

bioactivity than pure HAp [42]. Na3Ca6(PO4)5 is a new bioceramic whose bioactivity is much 

more than that of HAp [49]. 
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Figure 25: Loss in mass of TiO2 sintered at 1400oC and HAp sintered at 1250oC in 

SBF,maintained in a dynamic state, as a function of time. 
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5. CONCLUSIONS 

Microwave processing is an effective method to synthesize nanocrystalline HAp powder 

within short time.  The technique is simple, economic, easy to repeat and can be optimized for 

mass production.  Highly crystalline HAp powder with average particle size of 12 nm was 

achieved after microwave synthesis.  TEM analysis confirmed the morphology of the powder as 

needle shaped with diameter of 5-10 nm and length of 15-30 nm.  Calcination of the synthesized 

powder at 500oC for 2 h increased average particle size to 21 nm.  EDS confirmed elemental 

composition of the powder.  FTIR analysis showed phase transformation after 1200oC which 

became more prominent at 1250oC. TG analysis showed 23% weight-loss upon heating up to 

1200oC, contributed by the removal of adsorbed & possible lattice water, decarboxylation of 

HAp or condensation of HPO4
2- releasing water.  We observed remarkably lower initial 

dehydroxylation temperature (570oC) compared to reported values in literature for commercial 

hydroxyapatite (680oC or higher). 

In addition to HAp, β-NaCaPO4 and Na3Ca6(PO4)5 were also observed at 950oC, 1100oC 

and 1200oC.  β-NaCaPO4 and Na3Ca6(PO4)5 can be used to develop osteo-inductive or bio-

resorbable calcium phosphate bioceramics because rate of bone growth on β-NaCaPO4 and 

Na3Ca6(PO4)5 samples is much more than that of HAp. Bioactivity of Na3Ca6(PO4)5  new 

bioceramic is much better than that of HAp. 

Density of HAp samples continued increasing with the increase in temperature from 

1100oC to 1250oC and sintered density of 2.88 g/cc was obtained at 1250oC. 
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Hardness and Biaxial strength of the HAp samples increased with temperature and 

maximum hardness value of 249.53 ± 3.98 HV and biaxial flexural strength of 52.07 ± 4.96 MPa 

were observed for samples sintered at 1250oC. 

Biaxial strength and hardness of TiO2 samples increased with temperature. Maximum 

biaxial flexural strength of 125.5 ± 11.07 MPa and maximum hardness of 643.27 ± 7.96 HV 

were observed for the TiO2 sample sintered at 1500oC which was much more than that of 

sintered HAp samples. 

Decrease in mass, hardness and biaxial strength of HAp samples sintered at 1250oC and 

TiO2 samples sintered at 1400oC showed biodegradation in SBF, maintained in a dynamic state, 

as a function of time. 

Increase in mass was observed for the HAp samples in SBF during the fourth week which 

may be due to fact that rate of apatite formation on the surface of HAp samples was more than 

the rate of dissolution of HAp samples. In case of TiO2, no such phenomenon was observed. 
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6. FUTURE DIRECTIONS AND SUGGESIONS 

Investigation is going on to achieve fine microstructure after sintering at high 

temperature. Conventional pressure-less sintering method requires long sintering time and results 

in coarse grain microstructure and low mechanical properties. Here I would like to use 

microwave radiation for sintering. Microwave sintering has been reported to produce fine 

microstructure with dense sintered HAp structure in a very short time [85]. Cracking of the 

samples can be avoided during sintering too. 

Transformation of biphasic mixture of HAp and β -ΤCP at 1100oC-1200oC, into biphasic 

mixture of β-NaCaPO4 and Na3Ca6(PO4)5 might expand the possibility of developing new 

calcium phosphate cement which is much more bioactive than HAp.  
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