






(a) (b) (c)

Figure 5.7:Three typical frames of the reprojection results. Blue dots in the images are our results,
and the red dots are results by PM method.
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CHAPTER 6

LUMINANCE RANGE ENHANCEMENT IN MIXED REALITY

6.1 Introduction

Current computer graphics rendering techniques are able to produce images that are close to photo-

realistic. When these approaches are applied in an MR environment, it should be possible to make

the virtual indistinguishable from the real. However, limited by the contrast ratio (around two or-

ders of magnitude) of conventional output devices, the actual images displayed cannot match the

range that occurs in many natural settings. For instance, an indoor scene that includes visibility to

outdoor sunlight provides a contrast ratio of five orders of magnitude, a range that is within the ca-

pabilities of the human eye [RWP05] but beyond those of most conventional displays. To validate

our luminance enhancement approach, one assumption must be made. When set at the same expo-

sure level, the two cameras in the stereo rig present the same color for most scene objects. When

the two sets of hardware for displaying the views of the left and right cameras are identical, the

actual colors displayed on a camera are decided by illumination geometry and viewing geometry.

Since the stereo rig takes images at the same moment, the illumination geometry for the scene is

constant at that time. The distance between the two camera centers in our stereo rig is less than

70mm. For any scene position more than 1.5m from the stereo rig, the view angle differenceα

is less than 3 degree. In the well-known Phong lighting model, the specular refection intensity

81



Real Scene
User wearing HMD

with tracker

real camera 

Laser

Scanner

3
D

 b
a

ck
g

ro
u

n
d

p
o

in
t 

cl
o

u
d

 

a
cq

u
is

it
io

n

virt
ual

ca
m

era

tra
ck

er

lo
ca

tio
n

virtual camera 

disparity map

generation

PC for camera

registration

Figure 6.1: Layout of our Mixed Reality System – User acquires real scene from a video
see-through HMD. Scene is processed using pre-scanned virtual geometry that, while not dis-
played, assists in the registration of the binocular images.

is proportional to thens power of a cosine function ofα, which results in around 10 percent of

intensity differences for 3 degrees even ifns is as high as 100. These facts render our assumption

reasonable for a practical range of MR environments.

This chapter is organized as follows: Section6.2 presents an overview of our framework,

including the notations and the components of the system. Section6.3 explains the construction

and operations based on the concept of a Video-Driven Time-Stamped Ball Cloud (VDTSBC)

model for registering stereo images. Section6.4 shows how to generate an Enhanced Dynamic

Range Video. Section6.5demonstrates and evaluates a few experimental video results. The final

section of the chapter,6.6, presents conclusions and future work.
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Figure 6.2: Flowchart of our luminance enhancement system.

6.2 Framework Overview

Instead of excluding all environmental elements as is done in virtual reality, MR treats the virtual

and real environments as a cooperative pair. Although not exclusively a visual experience, vision,

as a dominant sensory perception of human beings, plays a major role in MR.

For a MR experience to be delivered successfully, there are two types of camera models that

need to be registered precisely.Figure 6.1demonstrates the hardware setup for our system. We de-

fine R cameras as the two real cameras mounted on the HMD, and Vcameras as the corresponding

virtual cameras located in the virtual scene and superimposed on the Rcameras. The Rcameras

are pre-calibrated in our system and the internal parameters are transferred to the Vcameras. The
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external parameters, which define the camera orientation and position in the world coordinate

frame, are acquired from a hybrid acoustical/inertial positional/pose tracker.

Figure 6.2summarizes the pipeline of our video enhancement approach. The stereo camera rig

calibration and the background point cloud scanning are applied offline. The outdoor region in the

cloud is labeled based on the window areas. During an interactive experiment, the relative poses of

the cameras to the background are updated by a permanently attached tracker. Upon registration,

the VDSTBC provides geometrical information to generate a virtual disparity map. Differing from

a real disparity map, the virtual one records not only the disparity values, but the corresponding

ball labels (see Section6.3, by which a depth ordering is established to segment the occlusion

region). Finally all the regions are submitted to the luminance enhancement/adjustment module to

deliver an improved scene rendering.

6.2.1 Notations

The camera model we selected in our system is a finite projective camera with radial distortion. The

basic definitions are listed inFigure 6.3. A detailed description for the camera model is in6.2.2. In

our framework, a capitalized boldface letterX denotes a non-homogenous 3-vector in Euclidian 3D

space.
−→
X represents the corresponding homogenous coordinates. Similarly, lowercasedx and−→x

denote the same concepts in Euclidian 2D space. A tilde letter pair(x̃, ỹ)> denotes the normalized

coordinates, and a letter with a subscriptd represents the distorted coordinates. The coordinates on

2D camera plane are denoted as(xp, yp)
>, and the final pixel coordinates are denoted as(xi, yi)

>.
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Figure 6.3: An overview of the camera coordinate frame – For a general projective camera model,
the projection center is calledcamera center C. The plane passingC and parallel to theimage
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principal axis. The point where theprincipal axis meets theimage planeis called theprincipal
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For stereo matching and luminance enhancement,I denotes an image andI(x) is the color

value atx. The corresponding position ofx in the second camera is denoted asx̂. The radiance

value ofI(x) is represented bẏI(x).

6.2.2 CAMERA MODEL

The camera model used in this chapter is a finite projective camera with radial and tangential

distortion. Related definition is shown inFigure 6.3. A finite projective camera can be model by a

3× 4 perspective projection matrixP as

P = K[R|t] (6.1)

85



The3 × 3 upper triangular matrixK records the intrinsic parameters of the camera, which has a

form of

K =




fx s ux

0 fy uy

0 0 1




(6.2)

wherefx = fmx andfy = fmy represent the focal lengthf scaled by the number of pixels per

unit distancemx andmy in the horizontal and vertical direction.s is a skew parameter which

normally is 0 as thex axis andy axis for the CCD camera are perpendicular.(ux, uy)
> represents

the coordinates for the principal pointp in Figure 6.3.

The orthogonal rotation matrixR and translation vectort in equation6.1represent the camera

coordinate frame in the world coordinate. Explicitly,R denotes the orientation of the camera

coordinate frame and−R−1t denotes the camera center in the world frame.

Having P , a 3D point
−→
X in world homogenous coordinate maps to the image homogenous

frame at−→x by

−→x = P
−→
X (6.3)

The above linear projective camera model only mimics a pin hole camera model. For real

lenses straight lines in the world are not straight in the image anymore. In order to compensate

this non-linear imaging effect of real lenses, two types of camera distortion models need to be

considered: radial distortion and tangential distortion. for a 3D pointXc = (Xc,Yc,Zc)
> in the
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camera frame, a normalized image projection

xn =




Xc/Zc

Yc/Zc


 = (x,y)> (6.4)

Denotingr2 = x2 + y2, radial distortion can be model by a 6-order polynomial

L(r) = 1 + pr1r
2 + pr2r

4 + pr3r
6 (6.5)

In the case that the camera lenses are not co-centered, a tangential distortion vector also needs to

be calculated as

xt =




2pt1xy + pt2(3x
2 + y2)

pt1(x
2 + 3y2) + 2pt2xy


 (6.6)

The updated normalized coordinate

xn2 = D(x) = L(r)xn + xt (6.7)

The updated normalized coordinate then will be used with intrinsic parameter matrixK to-

gether to get image coordinate. In the case to remove the distortion, ideal image coordinate

with no distortion can be defined asxi
′ = (xi

′,yi
′,1)>, the corresponding real image coordinate

xi = (xi,yi,1)> can be acquired straightforward.
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6.3 Left-Right Input Registration by VDTSBC Model

The main contribution of this work is the introduction of the VDTSBC to assist the construction of

a high quality stereo matching, which is the central issue for video luminance enhancement. We

define a ballB as a 6-tuple:

B =< T,R, Cl, Ch, t, r > (6.8)

whereT denotes the three-dimensional coordinates for the center of the ball.Cl andCh specify

the color information for the ball, back-projected from two differently exposed stereo cameras.t

records the duration from the timeCl andCh are projected to the present.r is the radius ofB,

which is defined by a functionradius(t). R records the camera’s direction at timet. A Video-

Driven Time-Stamped Ball CloudG is defined as a set of balls:

G = {Bi =< Ti, Ri, Cli, Chi, ti, ri > |i = 1..n} (6.9)

For each ballBi, the positional parameterTi is acquired by the offline geometry scan using a

3D laser scanner. Our approach to acquireCli andChi is explained as follows.

To simplify the notation, we ignore the indexi. For a ballB, the homogenous coordinates
−→
X

in the world frame are given by(T, 1)>. The homogenous coordinates
−→
Xc for B in the camera
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frame are presented by

−→
Xc =




R −RC̃

0 1



−→
X (6.10)

whereC̃ represents the coordinates of the camera center in the world coordinate frame. The ideal

point corresponding toB in one camera view is presented by

(x̃, ỹ)> = (
−−−→
Xc(1)/

−−−→
Xc(3),

−−−→
Xc(2)/

−−−→
Xc(3))> (6.11)

In order to register the virtual scene correctly onto the camera view, a camera distortion model

needs to be taken into consideration. For our non-wide angle stereo camera, it is not necessary

to push the radial component of the distortion model beyond the 4th order. [Zha00] also suggests

that the tangential distortion is negligible compared with the radial distortion; therefore the actual

projected point of BallB on the camera frame is calculated by(xd, yd)
> = L(r) · (x̃, ỹ)>. Detailed

explanation forL(r) can be found in6.2.2. The coefficientsa1 and a2 are the camera radial

distortion parameters. The actual pixel coordinates of the BallB are

(xp, yp, 1)> = K(xd, yd, 1)> (6.12)

where K is an upper triangular3 × 3 camera calibration matrix with the skew parameter preset to

zero. The color informationC is then acquired by a convolution aroundxi = (xpi
,ypi

)>

Ck = G(ξ)I(xi + ξ) k = l, h (6.13)
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whereG(ξ) is a spatial smoother, in our case a Gaussian convolution kernel with a small displace-

ment vector.ξ, andI(xi + ξ) denote the image color information atxi + ξ. Under occlusion, a ball

can be visible in one view but not in the other view. TheCl andCh calculated in this case are not

consistent using this approach. The reason is that, under occlusion, the projected color information

to the ballB belongs to some other balls that overlapB from the camera view direction.

In order to handle occlusion, we extend the disparity map concept in the virtual scene to include

one more parameter, the ball labelp, which indexes the corresponding ballB to generate the

disparity. This extension builds a direct connection between a geometrical position and its image

projections. On the other hand, the real disparity map preserves depth cues related to the cameras.

Keeping these ideas in mind for one camera, we project all balls in VDTSBC onto two cameras

to generate disparity values. Without loss of generality, we only describe the virtual disparity map

construction in the right Vcamera. Assume ballB has a projectionx in the right V camera and a

projectionx̂ in the left V camera. The disparity is calculated by

∂x = x− x̂ (6.14)

If several balls have the same image projectionx, the ball that has the smallest depth
−−−→
Xc(3)

has its index attached withx, and its disparity value∂x is updated in the final virtual disparity map

for the right V camera. If the index for the corresponding positionx̂ in the right V camera is not

the same as forx, the indexp for x is modified to a unique value that identifies the occlusion.
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6.4 Enhanced Dynamic Range Video Generation

Theoretically, after registering most of the regions in the stereo images, a full radiance map that

covers the whole image region is needed in order to enhance the image dynamic range. However,

the possibility of missing registration cannot be ignored [KUW03]. In their case, Kang et al.

relax the registration requirement by excluding over-saturated or under-illuminated pixels from the

weighted radiance map generation function.

Our system distinguishes the indoor and outdoor environments by labeling the VDTSBC.

Based on the labeling, we either enhance or adjust the luminance dynamic range to achieve the

desired perceptual improvement.

For generating a correct tone map, existing standard methods like [RSS02] can be applied,

given camera color calibration in advance. For the purpose of enhancing luminance range, our

simple linear method works reasonably well and can be easily implemented in our online frame-

work.

6.4.1 Luminance Enhancement

The techniques to enhance luminance dynamic range in the left and right cameras are symmetric.

Without loss of generality, we explain only the right image luminance enhancement in this subsec-

tion. With the assistance of the VDTSBC, most of the modeled regions inIR have three available

colors from which to choose. For a positionx in such region inIR, ˙IR(x) is from the right image;
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İL(x̂) is from the corresponding location in the left image; andChi is from Bi in the VDTSBC .

These three have weights ofwR, wL, andwB, respectively. If the corresponding positionx̂ of x is

occluded in the left camera,̇IL(x̂) is meaningless. The radiance map can be calculated as:

R =
∑n

k=1 w̄kİk
(6.15)

wherew̄k is the normalized weight and we abuse the notation a little bit to denoteİk as one of the

available radiance values.n is 3 when three colors are available; otherwisen = 2.

6.4.2 Luminance Adjustment

Under high brightness settings in our system, the outdoor environments are too bright to be reg-

istered based on our stereo method. At the same time, the VDTSBC gives no geometrical infor-

mation for outdoor environments. These facts limit us to a practical solution. For the left image

IL, which has a lower brightness setting, the color fromİL in the outdoor region is used to fill the

radiance map. For the right image, things are more complicated since it is necessary to get detailed

information from the right image for an outdoor region.

Though it is hard to achieve a precise registration in an outdoor region, an approximation is

acceptable for most situations. This is supported by the fact that a large portion of the outdoor scene

is far enough away to be “indistinguishable” through HMD video cameras In fact, with a image

resolution of320×240, any geometrical locations 15 meters or more away from the stereo camera
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Figure 6.4: The sparse 3D point cloud is projected onto the left and right images. Each point in
the cloud represents a cross on the checkerboard. A radial distortion model is applied to achieve
accurate registration

rig can result in merely sub-pixel displacement. In our current implementation, a direct copy from

the right image to the left image in the outdoor region is applied, though a small displacement

along the Epipolar Line for each pixel may be more precise. The actual tradeoff for the warping

function compared with direct copying needs further evaluation.
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6.5 Implementation and Results

We built our framework from the Mixed Reality System developed at the UCF Media Convergence

Laboratory (Hughes et al., [HSH05]). The positional information for the VDTSBC that we apply

in our MR system is either synthesized or acquired by a Riegl LMSF-Z420i 3D terrestrial laser

scanner. The head mounted display we select is the Canon VH-2002 see-through model, on which

an Intersense IS-900 ultra-sonic tracking sensor is permanently attached. The system runs on two

Pentium 4 3GHz machines, one for capturing and tracking, the other for rendering. The video card

we use is an nVidia 6800 with 256MB memory. For a VDTSBC model with 20,000 points, the

system runs at 2 frames per second.

For all of the experimental sequences, the stereo rig was calibrated offline by a stereo calibra-

tion tool box available athttp://www.vision.caltech.edu/bouguetj/calibdoc/. Only the 2nd and 4th

order radial distortion parameters are considered, and the camera skew is set to zero. The dis-

placement between the tracker center and the stereo rig is also compensated before registering the

virtual and real cameras.

Since our method does not rely on high accuracy of image feature correspondence, the differ-

ence between the two brightness levels within the stereo cameras can be adjusted freely depending

on the radiance range the user wants to cover.Figure 6.5shows a typical brightness setting for our

framework.
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Figure 6.5: Left image is actual input from the left camera with a low brightness setting. Right
image is the input from the right camera with a high brightness setting.

Calibration board test. In this sequence, a flat shaped ball cloud is applied.Figure 6.4shows

a sparse cloud model to demonstrate the accuracy of the cloud-image, image-image registration.

Figure 6.8is a representative frame from the test. Since our method takes radial distortion into

consideration, the slightly distorted image pair is correctly registered and the enhanced left view

(f) has a much better brightness level than the left input does. The resolution of the input in this

test is 512x480.

Office Room MR environment sequence.The office room has an unobstructed window facing

the sun during the day time. A single brightness setting is clearly not enough to cover most of

the details inside and outside the room, asFigure 6.6(h) and (i) demonstrate. The VDTSBC

here serves as the intermediate 3D marker for stereo image registration, and provides proper color

for the occlusion region. Since we assume that the lighting condition cannot change suddenly,

the output enhanced image results are perceptually acceptable, including those in the occluding

region. Figure 6.6shows a few key frames of two office sequences taken at two different times
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of day. In this set of sequences, a non-flat model is used for the VDTSBC. The direct merged

result inFigure 6.6(f) clearly shows that the disparity on the front side of the box is noticeably

larger than the disparity on the wall. For an unconstrained camera with a moving camera center,

it is impossible to compensate for the disparity with a single global motion. Here the VDTSBC

serves as an effective guide to generate a correct disparity map. For an indoor-outdoor mixed area

in Figure 6.6(h)(i), our result preserves the dark indoor details like the Chinese characters on the

wall with the visible outdoor scene (a portion of a tree) in the same frameFigure 6.6(g).

Pinball game machine sequence.In this sequence, instead of defining a global coordinate frame

for the scene, we define the top left corner of the game machine as the local origin; the right-hand

coordinate frame has x- and y- directions parallel to the sides of the machine. The transformation

between the machine coordinates and the tracking system coordinates is adjusted interactively. The

machine has a very complicated shaped surface. We scan the 3D shape of the pinball machine with

the Riegl scanner; a view of the point cloud is shown inFigure 6.7. To demonstrate the efficacy

of our method, we apply a relatively sparse model of the machine. The small black holes shown

in the results are the consequence of low point density. Other than this, the enhanced frames show

very good registration results (Figure 6.9).

6.6 Conclusions and Future Work

In this chapter, we present a framework to enhance the visible luminance range in a mixed real-

ity environment. We introduce the Video-Driven Time-Stamped Ball Cloud (VDTSBC) into the
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camera registration pipeline to assist the matching between stereo images and to provide a ratio-

nal luminance enhancement in occlusion areas, which is hard to recover using a pure stereo-based

algorithm.

In the future, we will combine the accuracy of the VDTSBC disparity and the flexibility of

image-based disparity to eliminate the simplifying requirement of a stationary MR environment.

In a realistic MR setting, multiple participants may share the MR system and portals in the back-

ground (windows and doors) may be opened unintentionally. Accordingly, the related image in-

formation cannot be directly mapped to VDTSBC since they are not coming from the same object

any more. Therefore it is important to distinguish the modeled region (stationary region) and non-

modeled region (moving or changed region).
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(a) (b)

(c) (d)

(e) (f)

(g) (h) (i)

Figure 6.6:In this sequence, a paper box is attached on the wall to demonstrate the advantage of
our method. (a) Left input with the projected point cloud on it. (b) One frame of the enhanced
result of our method. (c)-(f) Left: two frames of the our enhanced results. Right: the corresponding
direct merged results. (g) A frame of the enhanced result with indoor and outdoor mixed view. (h)
Left input. (i) Right input.
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Figure 6.7: One view of the point cloud model for our pinball game machine. The three bright
boards around machine are markers used for model registration.
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(a) (b) (c)

(d) (e) (f)

Figure 6.8:(a) Left input. (b) Right input. (c) Disparity map generated by VDTSBC. Note that only
the checker board area is modeled. (d) Directly merged result for the left display. The displacement
is large due to the close camera position. (e) Merged left result of our method. The brighter
checkerboard is achieved by combining the checkerboard from right image to the entire left image.
(f) Result of the checker board only.
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Figure 6.9: From left to right: three typical enhanced frames for the modeled game table on the
top and the corresponding direct merged results in the bottom.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

In the previous chapters, we presented components of a framework that supports augmentation in

visual reality, both in online and offline contexts. The first topic addressed is offline video com-

pletion or more specifically object removal and repair of frames in a video. Our novel contribution

starts with incorporating motion layer analysis that isolates each segment and retrieves the overlap-

ping order among the layers. This ordering is crucial to correctly rendering the synthesized layers

in the missing regions. We then apply a graph cut algorithm to provide high-quality completion

results for each frame. Finally, we apply motion compensation to achieve completion consistency

in the video sequences. The consequence is an altered video sequence that exhibits a consistent,

visually convincing result. The presented approach is limited by the assumption that the video in-

put can be segmented by simple motion layers. This constraint can be relaxed if a rough geometry

can be constructed in the un-completed region. However, that extension is not explicitly addressed

in this thesis; it remains a topic for future consideration.

Our second area of concern is the problem of blue screen keying in online applications. Blue

screen keying explicitly removes selected regions from video streams, replacing these with syn-

thetic content. When the video stream comes from a head-mounted display, as part of a mixed

reality setup, our goal is to combine virtual and real content, with the virtual content generally re-
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placing a blue screen background or being inserted for blue screen masks in portals such as doors

and windows or at specific places like on tabletops that are to display synthetic content. The prob-

lem we address is that keying in mixed reality occurs in the presence of noise, e.g., due to low-end

cameras or poorly controlled lighting. This is very different from the situation commonly found in

professional studios where lighting is controlled and video capture is done with high-end cameras.

To attack blue screen keying in mixed reality applications, we present a three stage keying

algorithm that is based on gradient edge information. This method effectively removes most of the

color noise when the initial keying output matches the edge information. However, a completed

region boundary may be broken up when the match is not close enough. In order to overcome

this deficiency, we apply a seeded region growing algorithm that obeys constraints imposed by

background region color consistency and acquired edge information. The consequence is that the

quality of the initial keying result can be relaxed as long as the selected regions are guaranteed to

be in the background. The new algorithm performs well even when the edge map has significant

discontinuities. The one downside with the growth algorithm is its dependence on many iterations

before convergence. This can be offset by using fixed iterations to generate the eventual solution

for online processing with the help of the rapid increase in computational power and the ease with

which the algorithm can be implemented in the shaders of graphics processing units.

A third topic on which we focused is the task of accurately deriving the transformation between

a head-mounted display and an affixed 6-DOF tracker. This transformation is critical for mixed

reality applications, in which the HMD cameras must be brought into the tracking coordinate frame
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that, in turn, overlaps with a virtual coordinate frame to create a plausible mixed visual experience.

Our contributions include an extension of the single point calibration method, and the use of 3D-2D

correspondence mapping to evaluate the minimization error. This approach addresses the primary

requirements of MR applications, in which the quality of the merging of the virtual and real scene is

the goal, even if the chosen technique results in a less accurate estimated 3D pose. Our method uses

Direct Linear Transformation for an initial estimate and then applies a non-linear robust estimation

in order to lessen the influence of potential measurement errors.

Though a simple process, measuring one point in a tracking frame may still introduce unneces-

sary errors. As part of our follow-on research agenda, we plan to extend the existing algorithm by

considering the case where we do not know the single point’s position. For this case, the number of

unknowns which need to be discovered are nine (three additional for the unknown marker location)

rather than the six required in this thesis.

The last topic addressed in this dissertation is to enhance the luminance range limitations of

typical MR HMD cameras to more closely match the range that occurs in natural settings. We apply

stereo camera rig calibration and offline background point cloud scanning to ensure a high quality

real-virtual registration. During an interactive experiment, the relative poses of the cameras to the

background are updated by a permanently attached tracker. Upon registration, the Video-Driven

Time-Stamped Ball Cloud model provides geometrical information to generate a virtual disparity

map. Differing from a real disparity map, the virtual one records not only the disparity values,

but the corresponding labels of ”balls” within the cloud. Finally all the regions are submitted to
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the luminance enhancement/adjustment module to deliver an improved scene rendering. A vision-

based stereo algorithm can be used to extend the current algorithm to cover the areas that the point

cloud cannot address.

Other than the modules that we discussed in this dissertation, one important fact still attracts

our focus. There remains a great need to improve the registration of real-virtual 3D coordinate

frames so they are precise and consistent. The quality of calibrated 3D trackers needs significant

refinement. Vision-based camera pose estimation generally produces precise results, although it

may fail and be hard to restart. A hybrid approach, combining vision-based estimation and the use

of a 3D tracker, is a promising direction. In the future, we will explore the possibility of hybrid

online camera pose recovery in a stereo head mounted display tracking system. The goal is to

improve the pose estimation accuracy by dynamically altering the estimation between different

cameras. The idea is motivated by the fact that MR applications often involve a stereo see-through

HMD as the video capturing and display interface. The geometric relationship of the stereo video

streams provides extra constraints for both natural feature tracking and pose estimation. In order to

reliably restart a vision-based method, a collection of reference images can be taken to cover most

of the viewing area. From these, a set of interesting points are extracted and their corresponding

3D world coordinates can be discovered. These 2D-3D correspondences serve as a guideline to

restart the estimation if it fails and to reduce drifting of the estimation.

The 3D tracker data for every image frame can be recorded as the initial estimation for the

camera pose. Then, interesting feature points can be extracted from both stereo camera frames
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with only the features showing in both frames fulfilling the stereo constraints being recorded.

The reprojection error between observed feature points and projected geometry features can be

minimized in a robust least square fit scheme. In the case where the physical tracker fails or

when the signal quality is low, a wide baseline match is applied to register the tracked features

with the 3D world coordinates. The major difference between this potential direction and state-

of-art approaches in the literature is that the second camera input supplies not only the stereo

constraints for feature tracking, but reduces the pose estimation uncertainty found in the monocular

vision-based methods by dynamically switching the cameras used for updating the pose between

the left and right cameras. One of the most interesting extensions in this future direction is to

keep multiple pose estimations for each incoming frame. This roughly defines the probability

distribution function for the pose presentation, which can be important when the physical tracking

system cannot return a uniform reading along all directions.

In general, while the research reported here has successfully addressed a number of challenging

problems in augmented visual reality, there are still a large number of issues remaining, especially

in the area of online augmentation. Some of these problems will be greatly lessened by advances

in graphics and general purpose processors, but all require strong algorithmic and theoretical de-

velopment.
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APPENDIX

LEVENBERG-MARQUARDT NON-LINEAR OPTIMIZATION
ALGORITHM

107



For a non-linear minimization problem with small or medium sizes of unknown, Leverberg-

Marquardt Optimization algorithm converges faster than gradient descent or conjugate gradient

methods, due to the fact that it is an semi-second order approach which approximates Hessian

matrix by a Jacobian production, and smoothly transforms between gradient decent (first order

approach) to Gauss-Newton approach(semi-second order).

Given a set of parametersp, a set of observationb, and a functionf to mapp to b, optimizep

so that the sum of the square distance

E =
∑

i

||f(p)− b||2 (7.1)

becomes minimal.

As an iterative minimization procedure, Levenberg-Marquardt algorithm requires an initialization

of p, denoted asp0. For every iteration step, the estimation ofp is updated by

pi+1 = pi + ∆i (7.2)

where∆i is calculated heuristically to minimizeE at the iteration stepi + i. For a regular

Gauss-Newton algorithm,

∆i = −(J>J)−1J>(f(pi)− b) (7.3)

whereJ is the Jacobian off atpi. However, this quadratic rule assume linear updating which

only is valid around the minimum. Therefore, Levenberg-Marquardt algorithm introduce a weight

factor to alternatively select the update for∆i between the gradient descent and a Gauss-Newton

method. The new calculation for∆i is
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∆i = −(J>J + λI)−1J>(f(pi)− b) (7.4)

whereλ is a weight factor that when it is small, the algorithm performs like a Gauss-Newton

approach. On the other hand, the algorithm turns acting like a gradient descent algorithm.

The Levenberg-Marquardt algorithm can be summarized as below:

1. Calculate∆i by 7.4.

2. CalculateE based onpi + ∆i.

3. In caseE decreases, the update is good and decreaseλ by a significant factor.

4. In caseE increases, the update causes problem and need to be recalculated. Increaseλ by a

significant factor and go to 1.
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