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ABSTRACT

This dissertation deals with the evolutionary optimization of ART neural network ar-
chitectures. ART (adaptive resonance theory) was introduced by a Grossberg in 1976. In
the last 20 years (1987-2007) a number of ART neural network architectures were intro-
duced into the literature (Fuzzy ARTMAP (1992), Gaussian ARTMAP (1996 and 1997)
and Ellipsoidal ARTMAP (2001)). In this dissertation, we focus on the evolutionary
optimization of ART neural network architectures with the intent of optimizing the size
and the generalization performance of the ART neural network. A number of researchers
have focused on the evolutionary optimization of neural networks, but no research has
been performed on the evolutionary optimization of ART neural networks, prior to 2006,
when Daraiseh has used evolutionary techniques for the optimization of ART structures.
This dissertation extends in many ways and expands in different directions the evolution
of ART architectures, such as: (a) uses a multi-objective optimization of ART struc-
tures, thus providing to the user multiple solutions (ART networks) with varying degrees
of merit, instead of a single solution (b) uses GA parameters that are adaptively deter-
mined throughout the ART evolution, (c) identifies a proper size of the validation set
used to calculate the fitness function needed for ART’s evolution, thus speeding up the
evolutionary process, (d) produces experimental results that demonstrate the evolved

ART's effectiveness (good accuracy and small size) and efficiency (speed) compared with
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other competitive ART structures, as well as other classifiers (CART (Classification and
Regression Trees) and SVM (Support Vector Machines)). The overall methodology to
evolve ART using a multi-objective approach, the chromosome representation of an ART
neural network, the genetic operators used in ART’s evolution, and the automatic adap-
tation of some of the GA parameters in ART’s evolution could also be applied in the
evolution of other exemplar based neural network classifiers such as the probabilistic

neural network and the radial basis function neural network.
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CHAPTER 1
INTRODUCTION

The Adaptive Resonance Theory (ART) was developed by Grossberg [Gro76]. Some
of the ART architectures that have appeared in the literature include Fuzzy ARTMAP
(FAM) [CGM92], Ellipsoidal ARTMAP (EAM) [Ana01], and Gaussian ARTMAP (GAM)
[Wil96]. All of these ART architectures possess a number of desirable properties, such
as they can solve arbitrarily complex classification problems, they converge quickly to a
solution (within a few presentations of the list of input/output patterns belonging to the
training set), they have the ability to recognize novelty in the input patterns presented to
them, they can operate in an on-line fashion (new input patterns can be learned by the
ART system without retraining with the old input/output patterns), and they produce

answers that can be explained with relative ease.

One of the limitations of these ART architectures that has been repeatedly reported
in the literature is the category proliferation problem. This refers to the problem where
ART, in the process of solving a classification problem, creates unnecessarily large archi-
tectures. This problem is more amplified when the data in the classification problem are
noisy, and/or significantly overlapping. Another limitation of these ART architectures
is the dependence of their performance on the parameters chosen in the training phase
(e.g., vigilance parameter, choice parameter, order of training pattern presentation).

Good choices for these parameters are problem dependent, thus requiring experimenta-



tion with various parameter choices (an expensive proposition) in order to obtain the

best possibly performing ART networks.

To alleviate these problems, genetic Fuzzy ARTMAP architectures were introduced in
[Al 06]. These architectures use a genetic algorithm (GA) (see [Gol89]) to evolve simul-
taneously the weights, as well as the topology of FAM, EAM or GAM neural networks. It
starts with a population of trained ART networks, whose number of nodes in the hidden
layer and the values of the interconnection weights converging to these nodes are fully
determined (at the beginning of the evolution) by ART’s training rules. To this initial
population of ART networks, GA operators are applied to modify these trained ART
architectures (i.e., number of nodes in the hidden layer, and values of the interconnection

weights) in a way that encourages better generalization and smaller size architectures.

The following points summarize the main contributions of this dissertation (also il-

lustrated in Figure 1.1):

1. Identify the redundant GA operators used in the algorithm proposed in [Al 06] and
propose well-justified GA operators and fitness function for the evolution of ART

networks.

2. Develop a scheme for self-adaptation in the genetic algorithm to avoid a grid GA
parameter search (a costly proposition), while at the same time improving the GA’s

convergence speed.

3. Incorporate a theoretically justified evaluation relaxation scheme to improve the

GA’s convergence speed.
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Figure 1.1: Research overview
The areas of research that are addressed in the dissertation to develop the Genetic Al-
gorithm used to optimize ART neural networks. The objectives are: (a) achieve better
generalization, (b) smaller size network, (c) reduce overall training time, and (d) elimi-
nate the need to set algorithm parameters that are problem-dependent.

4. Propose a multiobjective evolutionary algorithm to evolve ART architectures, thus

providing multiple good ART solutions at the end of the evolutionary process.

The contributions listed above were performed incrementally, and as it will be shown,
each was verified and justified properly. The first contribution, which is described in
Chapter 3 of the dissertation, resulted in a more careful choosing and justification of the
specific genetic operators used in the evolution of the ART architectures introduced in
[Al 06]. Although the evolved ART architectures presented in this chapter contributes
only a slight improvement in quality of the networks produced when compared to the ones
contained in [Al 06], it significantly simplifies it and provides a more justifiable design.
In addition, the proposed improvement resulted in significant reduction in training time.

For example, on a sample dataset (g4c-25), the training time was on average reduced



from 77 seconds to 12 seconds (or 84% reduction) without any loss in the solution’s
quality. The fitness function proposed in this chapter allows the user to easily control
the importance of accuracy and complexity in the network produced; a capability not
available in the architecture introduced in [Al 06]. The aforementioned improvements
resulted in allowing us to apply these evolved ART architectures to a wider (and more
complicated) range of problems. The evolved ART architecture of Chapter 3 serves
as the baseline evolved ART architecture against which additional contributions in this

dissertation, outlined in Chapters 4 through 6, are judged against.

The second contribution in this dissertation is described in detail in Chapter 4. This
chapter proposes an adaptive genetic algorithm to evolve the ART architectures, by
using a metric referred to as the confidence factor. This metric is used to adaptively
and efficiently drive the progress ART’s evolution. The results presented at the end of
this chapter show the benefits of the suggested approach compared to the approach of
Chapter 3. For example, for a sample dataset (gdc-25) the total run time for evolving
ART was reduced from 12 seconds to 5 seconds (or 58%). Another major advantage of the
proposed architecture is the elimination for the need of pre-specifying the GA parameters
used in the evolution of ART. The proposed adaptive mechanism allows these parameters

to be chosen properly for every dataset over the process of evolution.

The third contribution described in detail in Chapter 5 of the dissertation introduces
another refinement, with focus on improving the convergence speed. This refinement
is focused on reducing the size of the validation set needed to calculate the fitness of

every GA solution. The refinement is applied to the adaptive approach of Chapter 4 of



the dissertation. It is shown experimentally that the proposed refinement has an added
value in terms of significantly improving the GA convergence speed without degrading the
quality of the solutions attained by the GA. For example for a sample dataset (g4c-25) the
training time was reduced from 5 seconds to 2.3 seconds (or 55%). It is worth mentioning
that the total improvements, presented in Chapters 3 to 5, resulted in reduction of
training time from 77 to 2.3 seconds (or 97%) for the g4c-25 dataset (similar improvements
have been observed for other datasets, as well). Furthermore, it is worth emphasizing
that this refinement can be applied to the neural evolution of other NN architectures,

other than the ART architectures, which is the focus of this dissertation.

The final contribution of this dissertation, described in Chapter 6, proposes a multiob-
jective approach to evolve ART architectures (the two objectives of interest are network
generalization performance and network size). As shown in the chapter, this approach al-
lows the GA to return multiple solutions (ART networks), each one of which has varying
degrees of merit (i.e., generalization performance or network size). This is advantageous
in practical applications because it provides the users with the flexibility to choose the
ART network that best solves their application problem. Furthermore, it is shown in
this chapter, that the multiobjective evolutionary approach is necessary to find networks
(solutions) that cannot be found using the single objective approach of the previous chap-
ters and the one introduced in [Al 06]. For example, on a sample dataset (Pendigits),
the best accuracy achieved by the architecture introduced in [Al 06] was 91%, where as
shown it will be shown, the proposed architecture is able to achieve over 98% accuracy,

while reducing the training time from 1140 seconds to 72 seconds.



The final product of this dissertation is compared to other state-of-the ART classi-
fiers; CART (Classification and Regression Trees) and SVM (Support Vector Machines).
It is shown that the proposed approach compares very favorably in terms of generaliza-
tion performance, classifier complexity and training time. Furthermore, the proposed
approach produces several alternative networks of varying accuracy and size at no addi-

tional cost.

The next chapter (Chapter 2) provides a comprehensive literature review of genetic
algorithms. It also provides an overview of their applications to evolve neural networks.
As mentioned earlier, Chapters 3 through 6 describe the different contributions proposed
in this dissertation. Finally, Chapter 7 provides a detailed description of the final product
of this dissertation and compares it with two other classifiers: CART and SVM. It also

provides direction for future research.



CHAPTER 2

GENETIC ALGORITHMS AND GENETIC NEURAL
NETWORKS

Evolutionary algorithms (EAs) are population-based search algorithms that use mecha-
nisms inspired by natural evolution. EAs evaluate candidate solutions to a given problem
in an iterative fashion. In each iteration a population of these solutions is evaluated and
then evolutionary operators are repeatedly applied to the population with the objective of
evolving this population to some desired optima. "Survival of the fittest’ concept ensures
that the overall search direction will eventually lead to a good solution. Individuals in
the population exchange features using biologically-inspired operators such as selection,

mutation and cross-breeding.

Compared to many other optimization algorithms, EA’s are known for their resistance
to getting trapped in local optima. They do not depend on gradient information and
thus are quite suitable for problems where such information is unavailable or very costly
to obtain or estimate. More importantly, genetic algorithms can handle problems with
complicated and noisy solution surfaces and problems where the solution space is large

and not well understood.

Evolutionary algorithms include Genetic Algorithms (GAs), Evolutionary Program-
ming (EP) and Evolutionary Strategies (ES). GAs evolve a population of individuals

each representing a possible solution to a given problem. Each individual solution is



evaluated using a fitness function. The highly fit individuals are given more opportunity
to survive and breed. Less fit individuals slowly die out and are replaced by individuals
that result from cross-breeding, mainly, highly fit individuals. The offspring individuals
share features taken from each parent. The offspring individuals have higher portion of
the characteristics possessed by the good parents in the previous generation. This way,
over many generations the good characteristics are mixed and exchanged and the most
promising areas of the solution space are explored. Evolutionary strategies on the other
hand use real-vectors as coding representation, and primarily mutation and selection as
search operators. Mutation typically relies on Gaussian perturbation where the step size
or mutation strength, represented by the standard deviation of the Gaussian distribution,

is often governed by self-adaptation.

Genetic algorithm are known to be robust search and optimization techniques because
of their ability to locate the global optimum in a multimodal landscape. A number of
such multimodal problems exist and the focus in this work is on optimization of neural
network structure and weights. Compared to gradient decent-based methods, GAs are

capable of finding the global optima.

In this effort the focus is on the use of a GA to evolve ARTMAP architectures. Also
an ES-inspired mutation operator is used to bring about random change in the weights.
This chapter introduces Genetic Algorithms, highlighting the basic genetic operators
and concepts to be used later in the development of Genetic ARTMAP Architectures.

Comprehensive description of genetic algorithms can be found in [Gol89] and [Mit96].



Also, this chapter presents a brief review of the literature concerning the application of

GAs to various types of neural network architectures.

2.1 Introduction

John Holland [Hol75] is known to have developed genetic algorithms (GA) during the
1960s and 1970s. Genetic algorithms uses an analogy inspired from biological evolution.
A solution is represented as an individual. A set of candidate solutions are represented

by a population of individuals.

2.2 The Basic Genetic Algorithm

Genetic algorithm are a class of population-based Evolutionary search algorithms. GA’s
are typically used to solve optimization problems. Genetic algorithms start with a pop-
ulation of candidate solutions, or individuals, and evolve this population by repeatedly
applying genetic operators to this population. After each evolutionary step a new gen-
eration of individuals is produced. The genetic operators are designed in such a way
to lead the search to the desired optimal solution. The search does not typically rely
on local criteria (as opposed to other optimization algorithms, such as gradient-based
algorithms). Therefore, the GA is allowed to visit any solution in the solution space,
making GA a global optimization algorithm. A pseudo-code for the basic GA is shown

below.



Generate-Initial-Population();
repeat
Selection();

Reproduction();
until max number of generations reached

return Best Solution;

Figure 2.1: Pseudo-code of a basic Genetic Algorithm

2.3 Initialization

The genetic evolution process starts by creating an initial population of solutions. The
solutions are often initialized randomly, however, it is known that starting with good
initial solutions is beneficial for the performance of the GA. Once solutions are created,

they are converted to chromosomes using some encoding scheme.

2.3.1 Encoding Schemes

There are several different types of encoding of a chromosome, where the choice of encod-
ing often depends on the structure and the precision requirements of the optimization
problem. The most commonly used chromosome encoding is binary and real number

encoding.

2.3.2 Population Size

The population size is one of the most important issues to consider when creating the

initial population. Its importance is due to the tradeoff between the time to find the

10



solution and accuracy of the solution. A small population runs the risk of seriously
under-covering the solution space and increases the chance of premature convergence
to a local optimum, whereas a larger population has a better population diversity and
is therefore less prone to premature convergence [Mit96]. However, a large population
allows the exploration of fewer generations per unit of computational effort and, if the

available computational effort is limited, it may preclude convergence at all.

2.4 Selection

This operator selects individuals in the current generation to be used for constructing the
next generation. This operator in GAs is analogous to the process of natural selection in
biology. Fitter individuals are more capable of survival and breeding. In GAs, selection
allows the search to move towards better solutions as long as the fitness is measured
in terms of the objective function of the problem at hand. Therefore, the first step in

selection is evaluation of fitness.

After evaluating all the chromosomes, the selection operation determines the ones
that will be selected for the reproduction of the next generation of chromosomes. The
set of selected individuals is usually referred to as the mating pool. In general, the
purpose of the selection operation is to emphasize fit individuals in the population by
giving them more chance to breed than less fit individuals. Therefore, selection preserves
characteristics of fit individuals to be used to construct new offspring, and also removes

bad individuals so that the overall population fitness improves over successive generations.

11



Selection should be appropriately balanced in favoring more fit individuals over less
fit individuals. This balance is referred to as the selection pressure. The convergence
rate of a GA is highly dependent on the selection pressure; a strong selection pressure
highly favors fit individuals and results in faster convergence. However, if the selection
pressure is too strong, few highly fit individuals will take over the population, reducing the
diversity needed for exploring different regions of the solution space and therefore might
be resulting in premature convergence of the GA. On the other hand, if the selection
pressure is too weak, the GA will require more iterations before finding the optimal
solution. A balance of the two is required in order to preserve population diversity and
help avoid premature convergence. The following subsections describe the most common
selection schemes used in GAs, with a brief analysis of the selection pressure imposed by

the selection scheme.

2.4.1 Fitness proportionate selection

This scheme assigns probability of selection for every individual that is proportional to
its fitness, as shown in Equation (2.1). Therefore, more fit individuals are more likely
to be selected for reproduction (see Figure 2.2). With fitness proportionate selection
there is a chance that some higher fitness solutions will be eliminated and some weaker
solutions may survive the selection process. This is an advantage, as it helps preserve
the diversity of the population and avoid the GA from performing hill-climbing search

that is likely to end up at a local optimum.
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Figure 2.2: Selective probability distribution of fitness proportionate selection
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The most common implementation of the fitness proportionate selection scheme,
known as roulette-wheel selection, uses the analogy to a roulette wheel in which each
candidate solution represents a slice on the wheel. The size of the slices are proportional
to the individual’s fitness. For each individual in the mating pool, the wheel is spun and
individual under the wheel marker is selected. This method has the disadvantage of, for
small population size, the actual number of times an individual is selected is far from
the expected value (which is proportional to its fitness). To help avoid this problem, a
modified scheme referred to as Stochastic Universal Sampling is used where, the wheel is
spun once and an individual is selected if it is under one of the equally spaced markers.

The number of markers is set as the the number of parents.
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Figure 2.3: Selective probability distribution of fitness proportionate selection
for high-variance fitness values

One problem that is often associated the proportionate selection scheme is that, when
the variance of the population fitness values is large, as it is usually the case at the
beginning of the search, the highly fit individuals tend to dominate the population (see
Figure 2.3). This quickly reduces diversity and may hinder exploring new regions in the
solution space, therefore leading to premature convergence. Another problem with this
selection scheme is the stagnation of the fitness values. This could happen towards the
end of the run when all chromosomes tend to have relatively high but similar fitness

values, so there is a relatively small difference between the selection probabilities.

Other variation of fitness proportionate selection include sigma scaling in which the
selection pressure is proportional to the scaled fitness values. The scaling aims at keep-
ing the selection pressure relatively constant to avoid the problems mentioned above.

Another variation is the Boltzmann selection where a simulated annealing-inspired tem-
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perature schedule is used to apply weak selection pressure at the beginning of the search

and stronger selection pressure as evolution progresses.

2.4.2 Rank Selection

The rank selection scheme is an ordinal-based selection scheme in which the selection is
based on the relative rank of the fitness of the individual rather than its actual fitness
value. Ordinal schemes alleviate the problems mentioned above with fitness proportionate
selection where the highly fit individuals and their successor may take over the population
when the fitness variance is high. Also, this scheme maintains the selection pressure when

the fitness variance is low.

One way to implement rank selection is using a linear ranking function. Linear ranking
selects each individual in the population with a probability linearly proportional to the

rank of the individual.

maz — (maz — min) (=)
A

[y

Dsel (Z) = (22)

where A is the population size, max is the number of desired copies for the best chro-
mosome and min is the number of desired copies of the worst chromosome, respectively
[Bak85]. Figure 2.4 illustrate the relative probability of selection of individuals in the

population.
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Rank Selection with Linear Ranking
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Figure 2.4: Rank selection by means of a linear ranking function

2.4.3 Tournament Selection

Tournament selection runs a ”"tournament” among a few randomly chosen individuals in
the population. The individuals are then ranked and one individual is selected based on
a given probability distribution. That is, with probability p; choose the best individual
in the tournament, with probability ps choose the second best, and so on. A variation
to this method, referred to as deterministic tournament selection, always selects the best
individual in any tournament. The number of individuals in the tournament, referred
to as the tournament size, can be used to control the selection pressure. A tournament
size of 1 is equivalent to random selection where no selection pressure is applied and all
individual have equal chance to breed. Tournament selection is ordinal-based selection
scheme and has several benefits such as that it is efficient to code and allows the selection
pressure to be easily adjusted. However, the selection pressure become very strong quickly

as the tournament size increases. This is illustrated in figures 2.5 and 2.6.

16



Tournament Selection

0.12

0.1
0.08

of Selection

0.06
0.04
0.02

Probability

0

S T S S S

Individual (Ranked Based on Fitness)

Figure 2.5: Tournament selection using tournament size = 2

The selection probability of i-th individual, ranked in ascending order of fitness, can

be calculated as follows:

i — (i — 1)

v (2.3)

DPsel (Z) =

where A is the population size and ¢ is the tournament size.

2.4.4 Elitism

Elitism is a mechanism that can be used in conjunction with any of the previously men-
tioned selection methods. Elitism refers to carrying over good performing chromosomes
from the old generation to new generation without change. This prevents the possibility of
losing good chromosomes from one generation to the next. Elitism guarantees monotonic

improvement of the search and that the search will eventually return the best solution
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Figure 2.6: Tournament selection using tournament size = 4

found. Research has shown that elitism significantly improves the performance of the
GA (see [Mit96]). Using elitism has also been shown to guarantee a global convergence
under some assumptions since the best chromosome in the population is monotonically
improved. The assumption is that any chromosome must be reachable from any other

chromosome by means of mutation and recombination.

2.4.5 Selection Intensity Analysis

A number of authors tried to analyze the convergence properties in terms of selection
scheme used (see [GD91]). In [MS93] the authors define the selection intensity as a
quantitative measure to the selection pressure. Selection intensity is then used to account
for the convergence properties of genetic algorithms. In [TG94] convergence models were
developed for proportionate selection, binary tournament selection, truncation selection

and elitist recombination. In [MG95] the author extend the results to tournament sizes
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larger than two. Selection intensity and the convergence models proposed are summarized

in the following paragraphs.

The selection schemes discussed previously, result in a probability of selection for each
chromosome. The probability of selection determines the expected number of copies a
given chromosome will have in the mating pool. For example if the algorithm is selecting
N chromosomes to be used as parents for the next generation of chromosomes, then
the expected number of of copies for chromosome ¢ is given by Np,. For example, for
proportionate selection, the expected number of copies is given by equation (2.4):

Bla,t+1) = 1L (2.4)

p(P,t)

where p(P,t) is the average fitness of solutions in the population P(t) at generation
t. The selection operator in genetic algorithms is the mechanism that mimics natural
selection in biology as it favors better solutions by giving them more chance to breed.
Therefore, better solutions should have larger expected value of the number of copies
to be used to produce the next generation. The selection pressure refers to the degree
to which better solutions are favored. Selection pressure is a significant factor that
determines the convergence rate of the genetic algorithm. If the selection pressure is too
low the convergence rate will be slow and the GA will unnecessarily take longer to find
the optimal solutions. If the selection pressure is too high there is an increased chance

that the GA prematurely converging to a suboptimal solution.

To quantify selection pressure, in [MS93] the authors define the selection intensity, I,

of a genetic algorithm as the expected value of the average fitness of a population after
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selection is performed on a population whose fitness is distributed according to the unit
normal distribution N (0, 1). Therefore, if the population at generation ¢ is distributed
according to the normal distribution N (u, o), then after selection, the expected mean

fitness can be determined by equation (2.5):

par1 = pe + Loy (2.5)

This model assumes that the fitness is normally distributed. According to [MG96],
the normality assumption is reasonable as recombination and mutation operators have a
normalizing effect on the population. In [MS93] the author derive the selection intensity
for proportionate selection as o/, where fi, is the mean and oy is the standard deviation
of the population at generation ¢t. The selection intensity of linear ranking is given by

1

[BT95] as (max — 1)\/—% where max denotes the number of desired copies of the best

individual.

In [MG95] the authors present the results of analysis for estimating the selection
intensity for tournament selection using order statistics. The selection intensity of tour-
nament selection of tournament size ¢ is the expected value of the maximal order statistic
for a sample of size ¢ drawn from the normal distribution, denoted by (4. (The maximal
order statistic, denoted as y;.;, represents the expected value of the i biggest sample
out of a sample of size j drawn from the unit normal distribution). Table 2.1 lists the

selection intensity for tournament sizes 2 to 5, as provided by [MG95].
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Table 2.1: Selection Intensity for tournament selection.

q fq:q value of fig.q
2 - 0.5642
3 zi; 0.8463
4 ~o=tan™'(v2) 1.0294
5 1zt masinT'(3) 1.163

2.5 Reproduction

A new generation is formed in every iteration of the genetic algorithm. The new gener-
ation is formed by applying genetic operators to the selected mating pool of the current
generation. The classical genetic operators used for reproduction are crossover (also

referred to as recombination), and mutation.

2.5.1 Crossover

Crossover is an operation used to explore new regions in the solution space. This is done
by combining chromosomes (parents) from the mating pool to form new chromosomes
(offsprings). Recombination through crossover can be severely disruptive to the candidate
solutions and for that reason many researchers avoid the use of crossover altogether for
some problems. For example [ASP94] suggests an ES inspired algorithm to evolve MLP
NNs. But in other problems, crossover can be a very powerful operator. For example,
in this research we found that crossover allows us to form ARTMAP networks that are
difficult to form otherwise. Therefore crossover allowed us to reach parts of the solution

space that might not be reachable otherwise.
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2.5.2 Mutation

Mutation is a method of creating new offspring by modifying the parent. Binary mutation
is quite simple; it is done by flipping a bit from 0 to 1, or the other way around, according
to a specific probability. Floating point mutation can be accomplished in different ways.
For example, one way is to add a randomly selected number from a Gaussian distribution.
The mutation rate should be appropriately controlled for given problem. It is important
to mention that low mutation rate results in less exploration, while high mutation rate
could be disruptive. In Chapter 4, innovative ways of controlling the mutation rate are

studied in details.

2.6 Termination

The termination criteria determines when to stop the iterative process of a GA and
return the optimal solution. There are many termination criteria that can be used in
combination. The choice depends on the problem at hand. The basic termination cri-
terion is when a user-specified computational budget is consumed. This budget can be
measured in terms of the number of iterations or CPU time. This criterion of termina-
tion does not guarantee that a global optimum is found; it only returns the best solution
found for the given budget. More appropriate criteria might be to stop after convergence
is achieved, where convergence can be defined in different ways. The most frequently

used convergence criterion is when the solution quality has reached a plateau such that
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no improvement by more than a specific amount is observed over a specific number of

iterations.

2.7 Evolving Neural Networks: Literature Review

Genetic algorithms have been extensively used to evolve artificial neural networks. GA’s
are capable of finding the global optima rather than the local optima as is the case
with gradient decent procedures. Also, GA’s are not as sensitive to the initialization of
weights. Moreover the fitness function can include a measure of complexity in addition

to a measure of error.

The literature is rich with articles proposing applying evolutionary optimization algo-
rithms to train neural networks [Fer05, FW02, MW02, PHU05, WC96]. The majority of
the focus, though, was on MLP neural networks [Ya099]. However, a number of authors
proposed using evolutionary optimization algorithms with other neural network models
such as RBF neural networks as in [FW02, WC96|. In [Ya099] a comprehensive literature
review was conducted to summarize the prior efforts that aimed at combining evolution-
ary optimization algorithms with neural networks. The author divides these efforts into

three main classes as follows:

1. Evolution of connection weights.

2. Evolution of architectures.

3. Evolution of learning rules.
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In evolving connection weights, researchers suggest methods that replace the typically-
used gradient decent procedure (see for example [SDJ98]). Some authors such as [MWO02]
have suggested the use of hybrid procedure combining a GA and gradient decent. The
GA is better at finding the global minimum approximate location, while the gradient

decent procedure is more efficient at fine-tuning the search.

Evolving neural network architectures involves the task of determining the number of
hidden nodes and layers, interconnections between nodes, and activation functions (see
for example [MH93]). This task is normally accomplished by relying on expert opinion
or tedious trial-and-error experimentation. Genetic Algorithms can be used to find the
optimal number of hidden layers, nodes in each layer, connections between these nodes

and the activation function to use.

Evolving learning rules include choosing the learning algorithm and its parameters
using GA’s (see for example [Han92]). This is appealing since it is hard to design optimal
learning rules that will work with different types of architectures when there is no prior
information about these architectures. The simpler form of evolving training rules is
evolving algorithmic parameters such as the learning rate, while more complex tasks

would include evolving weight update rules.

Some authors like [Fer05] used a GA to evolve both the architecture and the learning
rules, while using back propagation algorithm (BP) for weight learning. Other authors
like [PHUO5] used a GA for evolving the architecture and the weights. This approach
has the advantage of eliminating the dependence on the weight initialization problem

associated with back propagation.
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Furthermore, GAs may also be used to select the features that are input to the neural
network. Since the pioneering work by Siedlecki and Sklansky [SS89], genetic algorithms
have been used for many selection problems using neural networks [T 95, YH9S8|, and
other classifiers, such as decision trees [BDH96|, k-nearest neighbors [J 91, PGC93], and

Naive Bayes classifiers [ILE99, Can02].

Application of GA’s requires the design of encoding schemes to represent the aspects
being evolved as chromosomes. A great deal of attention has been directed to this issue
because of the many problems that appeared to be related to flaws or deficiencies in the
encoding schemes. One of the problems is referred to as the permutation problem or
many-to-one problem (see [PHUO05]). This refers to the existence of multiple representa-
tions that translate to the same network, which makes evolution process inefficient and

reduces population diversity and may lead to premature convergence.

When evolving connection weights, the encoding schemes can be either binary or real-
valued. In binary representation, the researcher has to decide on the ranges and precision
of the real values being represented. A tradeoff between representation precision and
the length of chromosome often has to be made. For real number representation the
researcher has to decide on how to implement the mutation operator. Most researchers

use Gaussian mutation with real number representation.

For evolving architectures, [Ya099] identifies two encoding schemes: direct encoding
and indirect encoding. The direct encoding specifies the full connectivity of the network
using a binary connectivity matrix. This might result in very long chromosomes. Also

this approach is vulnerable to the permutation problem as the connectivity matrix may
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represent two functionally equivalent networks. The indirect encoding on the other hand
only stores parameters such as the number of hidden layers and the number of nodes in
each hidden layer. This results in much shorter chromosome than the direct encoding
scheme. The problem with such representation, however, is that it is capable of searching
only a subset of the feasible architecture space. As will be shown later, in evolving
ART architectures, a 2-level representation scheme is used. The first level contains the
components (hidden units) of the network and level 2 contains the weights represented

using real-valued encoding.

Evolution of weights often uses Gaussian perturbation in the mutation operator to
bring about changes in the weights [Fog93]. When relying on mutation to bring about
change in the network structure and/or weights, some researchers needed to incorporate
an adaptive mechanism to control the severity of mutations [ASP94, YL98]. This was
done by adopting a Simulated Annealing-based strategy, in which mutations are allowed
to be aggressive at the beginning of the evolutionary process while allowing only milder
mutations as the process progresses towards the optimum. In [ASP94] the author defines
a network temperature that is inversely proportional its fitness. The temperature pa-
rameter is used to control severity of mutation for both weight and structure. This way,
networks with a high temperature are mutated severely, and those with a low tempera-
ture are mutated only slightly allowing a broad search initially, and a narrower search as
a network approaches a solution. For weight mutation, the temperature is used to deter-

mine the standard deviation of the Gaussian distribution used to bring about change in
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the weights. For structural mutation, the temperature is used to scale the range of the

number of modifications to be made to the structure.

Evolution of architecture often uses mutation of the architectural structure that in-
cludes addition and deletion of connections and nodes. In [ASP94], the author recom-
mends minimally changing the behavior of the network when devising structural muta-
tion. For example when adding a new node, its weights are initialized to zero to keep the
network functionally unchanged. In this work, structural additions are avoided as the

probability of adding a viable component is very low.

Many authors [ASP94, PHUO05, Yao99] point out to problems associated with using
crossover when evolving structure. The crossover has a destructive effect as it may
combine parents that result in nonviable offspring solutions. The probability of producing
offspring solutions with worse fitness than the parents is relatively high when crossover
is used. This significantly reduces the effectiveness of the EA. To combat this problem,
some authors [ASP94, PHUO5] eliminate the use of crossover and rely only on mutation.
In [ASP94] the author recommends EA techniques that rely solely on mutation as the
reproductive operator for searching over architecture space when there are no solid rules

to guide recombination by crossover.

The 2-level encoding scheme adopted in this work to evolve ART architecture has the
advantage of being able to apply viable crossover operations at level 1 of the representa-
tion. On the other hand, adaptive mutations are applied at both levels, as will be shown
later. Mutations at level 1 cause structural modifications (referred to as Pruning), while

mutations applied at level 2 cause weight modifications.
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The work that utilizes GAs and ART neural network architectures is rather limited.
In [Al 06] application of a genetic algorithm to ART architectures was introduced for the
first time. In [LLLO3], a GA algorithm was employed to appropriately weigh attributes of
input patterns before they were fed into the input layer of Fuzzy ARTMAP. The results
reported reveal that this attribute weighting was beneficial because it produced a trained
ART architecture of improved generalization. In [BV97], a Fuzzy ART neural network
was employed as a GA fitness function evaluator. This work aims at developing an
evolutionary algorithm to evolve ART architectures, that will overcome the shortcomings
and improve upon the work that was proposed in [Al 06]. In Chapter 3 the genetically
engineered ART architectures proposed in [Al 06] are studied carefully and a number of

improvements are proposed.
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CHAPTER 3
IMPROVING THE GENETIC ARTMAP ARCHITECTURES

As mentioned earlier the focus of this effort is the evolution of ART architectures with
the objective of improving the generalization performance and alleviating the category
proliferation problem in ART. With the same objectives, researchers introduced a number
of ART variations. For example, in [AG02] the authors introduce a new family of ART
networks that rely on the concept of supervision. In [Al 06] the authors use a genetic
algorithm to evolve ART architectures. In this chapter improved, compared to [Al 06],
evolved ART architectures are introduced. Through extensive experimentation it will be
shown that these evolved ARTMAP architectures exhibit good generalization and are of
small size, while consuming reasonable computational effort to produce an optimal or a
sub-optimal network. The product introduced in this chapter will serve as a baseline for
further refinements to the evolutionary ART architectures that will be introduced and

analyzed in future chapters of this dissertation.

In Section 3.1 the ART architectures are reviewed, to a level that is necessary to
understand the evolved ART architectures. Section 3.1 is not intended to be a complete
reference for the ART architecture, but a refresher for readers with prior ART knowledge.
This section also provides a number of references for readers who do not have that prior
knowledge in ART. In Section 3.2 we describe the evolved ART architectures introduced

in [Al 06] and highlight a number of improvements that are proposed. In Section 3.3 a

29



sound technique is introduced and used to find good default parameter values for the
evolved ART algorithms. Section 3.4 compares the resulting architectures to other ART
architectures that were introduced into the literature to address the category proliferation
problem. The comparison is also extended to other non-ART classifiers to show that

architectures introduced in this chapter are competitive beyond the ART family.

3.1 ART Preliminaries

Grossberg [Gro76] introduced the foundation of ART in 1976. Later, based on that
work, ART1 was developed to perform clustering (self-organizing) of binary patterns
[CG87b]. ART1 was then extended to ART2 to handle real-valued patterns [CG87al.
In 1991 Carpenter and Grossberg introduced ARTMAP [CGR91a], which was capable
of performing classification of binary patterns. They then simplified ART2 architecture
and introduced an improved version called Fuzzy ART [CGR91b]. Furthermore, in 1992
Carpenter and Grossberg extended ARTMAP to Fuzzy ARTMAP, which is capable of

classifying real-valued input patterns [CGM92].

Since the introduction of Fuzzy ARTMAP, other ART architectures have been in-
troduced into the literature and the focus of this effort is on Fuzzy ARTMAP and two
other ART architectures: Ellipsoidal ARTMAP (see [Ana0l]) and Gaussian ARTMAP
(see [Wil96]). The objective in this effort is to illustrate how genetically engineered ART
architectures can be designed from a population of Fuzzy ARTMAPs, or Ellipsoidal

ARTMAPs, or Gaussian ARTMAPs. It is assumed that the reader is familiar with all
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Figure 3.1: The block diagram of a FAM Architecture

these ART architectures. This section only describes the specifics of ART architectures
that are needed to understand the genetically engineered ART structures. For simplicity
all these ART architectures are referred to as ART and their specific name is used (FAM,

or EAM or GAM) only when there is a need to discriminate one from the other.

3.1.1 Operation of ART

The block diagram of an ART architecture is shown in Figure 3.1 (for FAM) and Figure
3.2 (for EAM and GAM). Notice that this block diagram is simpler than the block
diagram of FAM, reported in Carpenter and Grossberg in 1992, and it has been adopted
by various researchers in the field (e.g., [Kas93]), because it completely describe the
functionality the ART architecture when dealing with classification problems. The ART
architecture, depicted in Figures 3.1 (FAM) and 3.2 (EAM or GAM), has three major

layers. The input layer F{* where the input patterns (designated by I) are presented,
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Figure 3.2: The block diagram of an EAM or GAM Architecture

the category representation layer Fy', where compressed representations of these input
patterns (designated as W?), are formed, and the output layer F¥ that holds the labels
of the categories formed in the category representation layer. An additional layer, not
shown in Figures 3.1 and 3.2, and designated by Fy , is a pre-processing layer and its
functionality is to pre-process the input patterns, prior to their presentation to ART. The
first level of ART pre-processing takes the input vector and normalizes it so that each
one of its components lies in the interval [0, 1], and that is the only level of pre-processing
needed for EAM and GAM. The second level of pre-processing (needed only for FAM)
takes the normalized input vector, referred to as a and complementary encodes it, by

appending to it another vector, referred to as a®. The complement of vector a is defined

as

a‘=(1-a(l),1—-a(2),..,1—a(M,)) (3.1)
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where

a=(a(1),a(2),....a(M,)) (3.2)

and M,, in the above equations, stands for the dimensionality of the input pattern of
the pattern classification task under consideration. It is worth mentioning that the
complementary encoding of the input patterns is necessary for the successful operation
of Fuzzy ARTMAP (for an explanation see [GHH94]), however it is not needed by either
EAM or GAM. Therefore, it is assumed that the inputs to FAM are normalized and
complementary encoded, while the inputs to EAM and GAM are simply normalized (see
Figure 3.1 for FAM, and Figure 3.2 for EAM and GAM). Note that normalization of
inputs prior to their presentation to a neural network is common practice in the neural

network literature.

ART can operate in two distinct phases: the training phase and the performance
(test) phase. The training phase of ART can be described as follows: Given a set of
inputs and associated label pairs, Iy, label(I), Iy, label(1y), ..., Ipr, label(Ipr) (called the
training set), it is desired to train ART to map every input pattern of the training set to
its corresponding label. To achieve the aforementioned goal the training set is presented
to the ART architecture repeatedly. That is, present Iy to F%, label(I;) to F2, then I, to
F, label(Iy) to F2, and finally, Ipy to F{, label(Ipr)to FL. The training set is presented
to the ART network as many times as it is necessary for ART to correctly classify these

input patterns. The task is considered accomplished (i.e., learning is complete) when
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the weights in ART do not change during a training set presentation, or after a specific

number of list presentations is reached.

repeat
foreach p € Training Set do
Present-Pattern(p);
end
until /number of epochs reached] or [no learning occurred)] ;

Figure 3.3: Pseudo-code of ART Training

The learning process forms category regions whose dimensions and locations are de-
termined by the training patterns presented to the learning algorithm. The effect is that
patterns get encoded by these category regions. The selection of a category by a pattern
is based on the Category Choice Function (CCF). The CCF acts as a measure of similar-
ity of a pattern to a category. Patterns try to encode categories with highest CCF. When
a category encodes a pattern, the category minimally expands to include that pattern in

the input space.

Another mechanism is defined to track novelty in the input patterns. This is imple-
mented by defining a Category Match Function (CMF). The CMF ensures that patterns
are sufficiently close to the categories they are about to encode. If no category was found
to be close enough, a new category is created. The CMF is compared against a user-
defined parameter called vigilance parameter. Small values of the vigilance parameter
lead to a broader generalization and higher pattern compression. Small values allow cat-
egories to encode patterns that are far away from each other, hence creating categories
that are of relatively larger size. Vigilance parameter values close to 0 create categories

that might fill the entire input space. Larger values, on the other hand, tend to make
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it harder for a pattern to be encoded by an existing category, and therefore, categories
tend to be smaller. The vigilance parameter calibrates the minimum confidence used for
deciding if a category should encode a given pattern. When a pattern is about to encode
a category its label is checked. If it does not match that of the category, the confidence
level is raised to trigger a mechanism called match tracking. This ensures that, in the
future, this pattern will be matched with a category with correct label (see Figure 3.3

and Figure 3.4 for the Pseudo Code of the training phase in ART).

Algorithm:Present-Pattern(p)
input: training pattern p

Calculate CMF for each category for pattern p;
Define the set S(p) of categories whose CMF exceeds the vigilance;
start:
if S(p) is empty then
Add new node to encoding p;
else
Calculate CCF for every category in S(p);
Find the category J that has the maximum CCF;

if label of J matches the label of p then
Category J learns pattern p by minimally expanding;

else
Set vigilance = CMF(J) + a small number;
Remove J from S(p);
Go to start;
end
end
Reset Vigilance to baseline value

Figure 3.4: Pseudo-code of Present-Pattern(p)

The performance phase of ART works as follows: Given a set of input patterns
(referred to as the test set), it is desired to find the ART output (label) produced when

each one of the aforementioned test patterns is presented at the ART input layer. In
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This hyperbox has encoded patterns I, I, I3,I4. In the figure, the a portion of these
input patterns is depicted, as well as the lower end-point u; and the upper endpoint v;
of this hyperbox.

Figure 3.5: A hyperbox category representation in FAM.

This ellipsoid has encoded patterns I, I5,I3,14. In the figure, the center point m; and
the direction vector d; are shown, while the radius of the major axis, and the ratio of
lengths of minor to major axis are easily deduced from the figure.

Figure 3.6: An ellipsoidal category representation in EAM

order to achieve this goal, the test set is presented to the trained ART network and the

network’s output is observed.

3.1.2 Geometric Interpretation of ART Categories

The weights (templates) in ART create compressed representations of the input patterns
presented to the ART network during its training phase. These compressed represen-
tations have a geometrical interpretation. In particular, every node (category) in the

category representation layer of Fuzzy ARTMAP (FAM) has template weights that com-
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This Gaussian distribution has encoded patterns I, 15,13, 14. In the figure, the center
point m; and the standard deviation vector o; of the Gaussian curve are shown, while
the number of points n; that this Gaussian curve represents is easily deduced as being
equal to 4.

Figure 3.7: A Gaussian curve category representation in GAM.
pletely define the lower and upper endpoints of a hyperbox. This hyperbox includes
within its boundaries all the input patterns that chose this category as their representa-
tive category in FAM’s training phase and were subsequently encoded by this category.
Figure 3.5 shows the hyperbox of a category in a FAM architecture (2-D example), with
lower endpoint u;, and upper endpoint v;, and the input patterns (the I’s that it has

encoded).

Also, every node (category) in the category representation layer of Ellipsoidal ARTMAP
(EAM) has template weights that completely define an ellipsoid through its center, direc-
tion of major axis, length of the major axis, and ratio of lengths of minor axes to major
axis in the ellipsoid. This ellipsoid includes within its boundaries all the input patterns
that chose this category as their representative category in EAM’s training phase and
were subsequently encoded by this category. Figure 3.6 shows the ellipsoid of a category
in a EAM architecture (2-D example), with center m;, direction of the major axis d;,

length of the major axis, represented by its radius r; (implied from the figure), ratio
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(a) A category with 0 size; (b) Introducing a new pattern I, represented by ag; (¢) The
category expands to include ay; (d) Since new pattern I3, represented by as is inside the
category, it doesn’t change its size; (e) New Pattern 14, represented by ay is presented;
(f) Since a4 is outside the category, the category is expanded to include a4, within its
boundaries

Figure 3.8: FAM learning (2-D Example)
of the lengths of minor axes to major axis p (implied from the figure), and the input

patterns I's that it has encoded.

Finally, every node (category) in the category representation layer of Gaussian ARTMAP
has template weights that define the mean vector, the standard deviation vector of a
multi-dimensional Gaussian distribution, and the number of points that are associated
with this Gaussian distribution. The mean vector of this Gaussian distribution and the
standard deviation vector of this Gaussian distribution are defined in terms of the means
and the standard deviations (across every dimension) of the points that chose this node
(category) as their representative category, while the number of the points associated
with this Gaussian distribution are the number of points that chose this category as
their representative category. Figure 3.7 shows the Gaussian distribution of a category
in a GAM architecture (1-D example), with mean m;, standard deviation o;, number of

points n; (in this example n; = 4), and the input patterns (i.e., I's) that it has encoded.

In essence, at the beginning of training, every category of FAM starts as a triv-

ial hyperbox (equal to a point) and subsequently it expands to incorporate within its
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(a) A category with 0 size; (b) Introducing a new pattern Iy; the category expands to
include Iy; (c¢) Introducing a new pattern Is; since the category includes I3, it does not
change its size; (d) Pattern I is presented; since this pattern is outside the category, the
category is expanded to include I, within its boundaries.

Figure 3.9: EAM learning (2-D Example)
boundaries all the input patterns that in the training phase choose this hyperbox as
their representative hyperbox, and are encoded by it (see Figure 3.8, where the category
expansion of FAM is shown for an example dataset). The size of hyperbox is measured

as the sum of the lengths of its sides.

Similarly, at the beginning of training, every EAM category starts as a trivial ellipsoid
(equal to a point) and subsequently it expands to incorporate within its boundaries all
the input patterns that in the training phase chose this ellipsoid as their representative
ellipsoid, and are encoded by it (see Figure 3.9, where the category expansion of EAM
is shown for an example dataset). The size of the ellipsoid is measured as the length of

the major axis.

Finally, at the beginning of training, every category of GAM starts as a collection of
Gaussian distributions in every dimension, with mean equal to the input pattern that was
first encoded by this category, and a small standard deviation vector (part a of Figure
3.10); as training progresses in GAM this GAM category is modified to incorporate the

information of the additional input patterns that are encoded by it (see part b of Figure
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(a). A category with 0 size ; (b) Introducing a new pattern I, ; the category characteristics
(mean, standard deviation, of the Gaussian curve, as well as number of points encoded
by the Gaussian curve) change to include the new knowledge that the new input pattern
brings.

Figure 3.10: GAM learning
3.10 for an illustration of how the GAM category is modified for an example dataset).
At any point in time the mean vector of this Gaussian distribution, corresponding to a
category, is equal to the mean vector of all the input patterns encoded by the category,
and the variance vector of the Gaussian distribution is equal to the variance vector
corresponding to the input patterns that were encoded by the category. The ability of
the category to encode new input patterns depends on the Mahalanobis distance of an
input pattern from the mean/variance vectors of the Gaussian distribution corresponding

to the category.

The performance of ART networks is measured in terms of the number of categories
created in its training phase (small number of categories is good), and how well it gener-
alizes on unseen data (high generalization accuracy is good). The performance of ART
architecture depends on the choice of the vigilance parameter. It has been a known fact
that performance in ART is also affected by the order according to which training data

are presented to an ART architecture.
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3.1.3 ART Category Proliferation Problem

One of the limitations of these ART architectures that has been repeatedly reported in the
literature is the category proliferation problem. This refers to the creation of a relatively
large number of categories to represent the training data. Categories are the hidden nodes
(or units) in an ART neural network. Categories in ART are formed in order to compress
the input data prior to mapping these compressed data to their respective labels. The
creation of a large number of categories means poor compression of the training data.
Quite often the category proliferation problem, observed in ART, is connected with the
issue of overtraining. Over-training happens when ART is trying to learn the training
data perfectly at the expense of degraded generalization performance (i.e., classification
accuracy on unseen data) and also at the expense of creating many categories to represent
the training data (leading to the category proliferation problem). Also, it has been related
to several limitations of ART, such as the representative inefficiency of the categories or

the excessive triggering of the match tracking mechanism due to existence of noise.

Since the early 1990’s a number of ART modifications and improvements where pub-
lished in the literature. These modifications tried to improve the ART’s learning prop-
erties, improve speed, and address the category proliferation problem. In particular, a
variety of ART innovations were proposed to combat the category proliferation prob-
lem in ART. In [MH95] PROBART was introduced. The authors suggest that the match
tracking mechanism is the major cause of over-learning. PROBART eliminates the match
tracking mechanism and instead stores probability information in the map field. In 1996,

Gaussian ARTMAP (GAM) appeared in the literature [Wil96]. In this paper, the au-
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thors attribute the category proliferation problem to two causes: sensitivity to noise and
inefficiency of FAM categories. GAM operates in a similar fashion as FAM but it relies
on a Gaussian-based measure of similarity in its operation, therefore eliminating the re-
liance on the inefficient category shapes of FAM and at the same time reducing ART’s
sensitivity to noise. Micro-ARTMAP [GDC] suppresses the match tracking mechanism
and uses probabilistic map to encourage creation of large categories, and hence reduce
their number. Safe Micro-ARTMAP [GDCO1], introduced later, adds a mechanism to
limit the growth of a category in response to a single pattern. Semi-supervised learn-
ing of ART was introduced [ABGO03] in 2003, where it allows, with a certain tolerance,
categories to encode patterns that are not mapped to the same label. This reduces the
sensitivity to noise and hence the number of ART categories. Three semi-supervised ar-
chitectures where introduced in [ABGO03]: ssFAM, ssGAM and ssEAM. In [KGAO1] the
authors suggest the use of cross-validation to prevent over-training and therefore avoid
the creation of unnecessary categories. In addition, the work by [CMNO98], [Wil97] and
[PGD] is worth mentioning, where the ART structure is changed from a winner-take-all
to a distributed version and slow learning is employed with the intent of creating fewer
ART categories and reducing the effects of noisy patterns. Finally, in order to address
the inefficiency of FAM categories in representing data, Ellipsoid ARTMAP (EAM) was
introduced in 2001 [Ana0l]. EAM was similar to FAM except that it relied on category

regions defined as hyper-ellipsoids rather than FAM’s original hyper-rectangles.
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3.1.4 GAM and High Dimensionality Problems

The category match function function (CMF) in Gaussian ARTMAP (GAM) can be

expressed as in Equation (3.3):

-1y Ma(Litiip2)

pUMwy) = e 2777 (3-3)

where M, is the dimensionality of the data, j; is the mean vector for node j and o; is

the standard deviation vector for node j.

From Equation (3.3) one can easily notice that when the dimensionality, M,, of the
data is large, the sum in the exponent can become quite large. This will cause p(I"|w;)
to be very small. When comparing p(I"|w;) to the baseline vigilance during training, the
vigilance test will almost always fail for values of the baseline vigilance other than 0. This
will cause the creation of a new category for every pattern in the training data. Therefore,
for datasets of large dimensionality, one should always set the vigilance parameter to 0;
any other value would result in very poor performance. As it will be described in a later
section, evolving GAM architectures relies on varying the vigilance parameter to train
a diverse initial population of GAM networks. To be able to work with any problem
regardless of dimensionality, in this work a slightly modified equation is used for the
category match function (CMF). This modification does not change the basic operation
of the algorithm; it only makes the range of vigilance parameter more equivalent for
problems of low and high dimensionality. The modified CMF is expressed in Equation

(3.3).
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With some manipulations it is easy to show that this is equivalent to choosing a

baseline vigilance that is transformed depending on the dimensionality, as shown in the

following equation,

_ _ g2
7, = 7] (3.5)
It is worth mentioning that the modification above reduces the floating point compu-
tational errors because the exponent in the definition of the CMF can get too small for

high dimensional problems.

3.2 The Improved Genetic ARTMAP Architectures

The genetic ART architectures were first introduced in [Al 06]. Three new architec-
tures were introduced: Genetic Fuzzy ARTMAP (GFAM), Genetic Ellipsoidal ARTMAP
(GEAM) and Genetic Gaussian ARTMAP (GGAM). In this work we will refer to these
architectures collectively as GART. In this work several necessary improvements to these
architectures were introduced. This section describes these architectures, highlighting the
modifications that were made as a part of this effort. In the next section (section 3.3), a
robust technique for finding the optimal algorithm parameters to be used in conjunction

with these algorithms is introduced in order to get the best possible performance. In
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section 3.4 a comparison of these improved architectures and other ART architectures is

presented.

More details about the original implementation of these architectures can be found in
[Al 06]. The pseudo-code for the improved genetic ART (GART) architectures is shown

in Figure 3.11.

P(0) <« Generate-Initial-Population();
for t — 1 to Gen,,q, do
Evaluation();
if stopping criteria met then exit for;
P'(t) « Selection(P(t));
P(t) < Reproduction(P’(t));
end
return Best Network in P(t);

Figure 3.11: Pseudo-code of the GART Algorithm

In this work we introduced the following improvements to the algorithms introduced

in [Al 06].

e In the evaluation step, a fitness function is evaluated for each individual. The

fitness function introduced in [Al 06] is as follows:

(Catmaz — No(p))PCC?(p)

100 _ PCC(p)
Catpmin Na(p) —I—E

Fit(p) =

(3.6)

This fitness function was found to be unnecessarily complex. More importantly,
this fitness function does not allow the user to tradeoff the two objectives optimized
in this genetic algorithm: accuracy (PCC') and complexity (N,). In this work the

following fitness function is adopted instead.
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Fit(p) = PCC(p) — a(Na(p) — Catpin) (3.7)

This fitness function allow the user to specify their preference of accuracy versus
complexity. The parameter o can be controlled by the user. The simplicity of this
function allow the user to predict the outcome of a certain setting of the parameter
a. For example, a value of 0.5 indicates that one percentage of better correct
classification of a network, or two categories less of a network, increase the fitness

function by the same amount (i.e., by an amount of 1).

Eliminate the genetic operator Cat,qq because it was found ineffective. This oper-
ator adds a category to a network randomly. It is obvious that adding a category
with random size, random location and random label has a very slim chance of pro-
ducing a positive outcome. This observation was verified experimentally. This was
done by running experiments on several datasets for several replications, and then
observing statistically significant differences between the old and the new results.
The Cat,qq operator was found ineffective in improving the performance of the al-
gorithm and therefore it was eliminated. This also eliminated one of the algorithm

parameters that the user has to set appropriately.

Introduced a performance dependent stopping criteria. In the original implemen-
tation [Al 06], the algorithm was run for 500 generations for every problem. In this
work a stopping criteria was introduced in which the genetic process is stopped if

no significant improvement is observed for a number of successive generations. This
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resulted in significantly faster algorithms, especially for problems that are easier to

solve and thus require a small fraction of the originally proposed 500 generations.

In the remainder of this section, the operation of the improved algorithms, GFAM,
GEAM and GGAM and collectively referred to as GART is described. It is assumed that
for every classification problem there is a training set, a validation test, and a test set.
The training set is used for the training of GFAM, GEAM, and GGAM architectures
under consideration. The validation set is used to optimize the produced GFAM, GEAM
or GGAM network in ways that will become apparent in the following text. Finally, the
test set is used to assess the performance of the optimized GFAM, GEAM, or GGAM

network created.

GFAM, GEAM, and GGAM are evolved FAM, EAM, GAM networks, respectively,
that are produced by applying, repeatedly, genetic operators on an initial population
of trained FAM, EAM, or GAM networks. GFAM, GEAM, GGAM use deterministic
tournament selection, as well as genetic operators, including crossover and mutation. In
addition, GFAM, GEAM and GGAM use a special operator, C'aty,; this special operator
is needed so that categories could be destroyed in the ART architectures, thus leading

us, through evolution, to smaller ART structures.

3.2.1 Initialization

The algorithm starts by training Popg.. ARTMAP networks (FAM, EAM or GAM),

each one of them trained with a different value of the baseline vigilance parameter, and
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order of training pattern presentation (it has been a known fact that performance in ART
is affected by the specific value of its baseline vigilance parameter, as well as the order of
the training pattern presentation to the ART architecture). In this work the population
size is fixed at Popg.. = 20. The choice parameter in a FAM network was chosen to be
equal to 0.1. The choice parameter in an EAM network was chosen to be equal to 0.01.
The ratio of the length of the minor axes to major axes in EAM was chosen equal to 1.
The initial value of the standard deviation v in a GAM network is chosen to be equal
to 0.6. Also, the values of the base vigilance parameter for the networks in the initial

population were equally distributed between a lower bound of p™" = 0.1 and upper

bound of p* = (0.95 for GFAM and GEAM, p™" = (.1 and p** = 0.45 for GGAM.

Once the Popg;.. networks are trained, they need to be converted to chromosomes
so that they can be manipulated by the genetic operators. GFAM, GEAM and GGAM
use a real number representation to encode the networks. Each chromosome consists of
two levels, level 1 containing all the categories of the network, and level 2 containing the
template parameters needed to represent every category in level 1, as well as the label

of every category in level 1. The chromosome encoding is explained in more detail in

Figure 3.12 for GFAM, in Figure 3.13 for GEAM and in Figure 3.14 for GGAM.

3.2.2 Evaluation

A weighed sum approach is used to define a fitness function that combines the two ob-

jectives of the optimization problem; PCC(p) which designates the percentage of correct
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At level 2, the category’s weight w§ contains the information about the lower end-point,
uj, and the upper end-point, v, of the hyperbox corresponding to the category, as well
as the label [; of the category.

Figure 3.12: GFAM chromosome structure
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At level 2, the category’s weight w§ contains the information of the center, mj, the
direction vector of the major axis, df, the radius (half length) of the major axis, r;, and
the ratio of the lengths of the minor axes over the length of the major axis, p;, of the
ellipsoid corresponding to this category, as well as the label [; of the category.

Figure 3.13: GEAM chromosome structure
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At level 2, the category’s weight wf contains the information of the center of the Gaussian
curve, mj, the standard deviation vector of the Gaussian curve, o7, and the number of
points represented by the Gaussian curve, n;, as well as the label [; of the category.

Figure 3.14: GGAM chromosome structure
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classification, exhibited by the p-th network, on the validation set, and N, (p) which des-
ignates the number of categories of the p-th network. The fitness function F'it(p) of the

p-th network is defined as follows:

Fit(p) = PCC(p) — a(N.(p) — Catymn) (3.8)

Obviously, this fitness function increases as PCC(p) increases or as N,(p) decreases.
The value of Cat,,;, is chosen to be equal to the number of classes of the classification
problem at hand. It is evident from the fitness equation that, for & = 0.5, one percentage
of better correct classification of a network, or two categories less of a network, increase
the fitness function by the same amount (i.e., by an amount of 1). This is one of the
simplest ways of defining a fitness function that depends on two measures (generaliza-
tion of the network and size of the network) and has been extensively adopted in the

classification literature (e.g., see [BFO84]).

3.2.3 Selection

Initialize a temporary population P’, where the parent chromosomes used to create the
next generation are selected. The parents are chosen using deterministic tournament
selection, as follows: Randomly select two groups of two chromosomes each from the
current generation, and use as a parent, from each group, the chromosome with the best

fitness value in the group. If it happens that from both groups the same chromosome
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is chosen then we choose from one of the groups the chromosome with the second best

fitness value.

The algorithm implements elitism as follows: it finds the best NCj.y; chromosomes
(i.e., the chromosomes having the NCj.s highest fitness values) from the current gener-
ation and copies them to the next generation without change. The value of NCj.s was

chosen to be 3 in this work.

3.2.4 Reproduction

Once the selection step determines the parents, reproduction operators are used to create
individuals for the next generation. As expected, the reproduction operators are problem
specific. In this section the reproduction operators used in evolving ARTMAP networks

are described.

The two well-known operators for reproduction in GAs are crossover and mutation.
In addition to crossover, two mutation-based operators are used. The first is referred to
as the Mutation operator, and it performs Gaussian mutations on chromosomes based
on a user-specified probability Pr(Mut). The second operator, referred to as the Catge,
deletes a category from a network based on a user-specified probability Pr(Catge). The
mutation operator applies Gaussian perturbations of the weights at level 2 of the chro-
mosome string (see Figures 3.12, 3.13, and 3.14). On the other hand, the C'at 4 operator

applies structural mutation at level 1 of the chromosome string.
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3.2.4.1 C(Itdel

The operator Catg. deletes one of the categories of every chromosome in P’ with prob-
ability Pr(Catge). If a chromosome is chosen to have one of its categories deleted then

this category is picked randomly from the collection of the chromosome’s categories.

3.2.4.2 Mutation

Every chromosome in P’ gets mutated using Gaussian random number of mean of 0 and

standard deviation of 0.01. The mutation is applied as described below:

e In GFAM, for each category, either its u or v endpoint is selected randomly (with
50% probability) and then every component of this selected vector gets mutated by
adding to it a small number. This number is drawn from a Gaussian distribution.
If the component of the chosen vector becomes smaller than 0 or greater than 1

(after mutation), it is set back to 0 or 1, respectively.

o In GEAM, for each category, every component of the ellipsoidal center m gets
mutated by adding to it a small number. This number is drawn from a Gaussian
distribution. If the component of the chosen vector becomes smaller than 0 or
greater than 1 (after mutation), it is set back to 0 or 1, respectively. Furthermore,
the mutated category’s axis ratio u or radius r is selected with 50% probability.
We add a small number, to the axis ratio or the radius. The small number is drawn

from a Gaussian distribution. However if u, or r, due to mutation, become larger
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than 1, they are set back to the value of 1, while if they become smaller than zero

we set their value to 0.0001.

e In GGAM, for each category, either its mean vector m, or standard deviation vector
o is selected randomly (50% probability). Then every component of this selected
vector is mutated by adding to it a small number. This number is drawn from a
Gaussian distribution. If the component of the chosen vector becomes smaller than

0 or greater than 1 (after mutation), it is set back to 0 or 1, respectively.

Notice that mutation is applied at level 2 of the chromosome structure. The label
of the chromosome is not mutated because our initial GA population consists of trained
networks, and consequently there is a lot of confidence in the labels of the categories that

these trained networks have discovered through the ART training process.

3.2.4.3 Cross-Over Operation

The remaining Pop;.. — N Ches; chromosomes are created by crossing over pairs of par-
ents. For each parent, p,p’, a random cross-over point is chosen, designated as n,n/,
respectively. Then, all the categories with index greater than n’ in the chromosome p’
and all the categories with index less than or equal to index n in the chromosome with
index p are moved into an empty chromosome within the new generation. Notice that
crossover is done at level 1 of the chromosome. This operation is pictorially illustrated

in Figure 3.15.
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In crossover the weight vectors of chromosome p, with index smaller than or equal to
index n, and the weight vectors of chromosome p’ with index larger than n’/, are combined
(concatenated) to produce a new chromosome.

Figure 3.15: GFAM, GEAM, GGAM Crossover implementation

3.2.5 Stopping Criteria

If a stopping criterion is not met, go to the next iteration of the genetic evolution. Other-
wise, terminate and return the best network. There is a need for an automated stopping
criterion so that the evolution does not proceed for unnecessarily many generations. Ide-
ally, the evolution should be allowed to proceed for as long as it is necessary, and it
should terminate when network performance improvements are not attainable any more.
In practice though, there is a tradeoff between network performance improvements and
computational effort expended to achieve these improvements. It might be beneficial to
use multiple stopping criteria to terminate the evolution of ART networks. One obvious
stopping criterion is to set a threshold for the maximum number of generations, Gen,,qz,
that the evolution is allowed to continue. The advantage of having this stopping criterion
is that it ensures that the algorithms will always terminate and would not get trapped
in an infinite loop if the other stopping criteria are never triggered. The user can always

set the maximum number of generations to a large number to allow the algorithm to
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terminate using other, more appropriate, stopping criteria. Another popular stopping
criterion is to stop when no more improvement in fitness is observed. To ensure the lack
of improvement is not due to the stochasticity of the search, the evolution is terminated
only when no significant network performance improvements are observed for a number
of consecutive evolutions. This number of consecutive evolutions can be chosen to be a
percentage of the maximum number of generations Gen,,q,. In this work, Gen,,,, was
chosen to be 500, and furthermore the evolution was stopped if 50 generations (10%
of Genyq,) elapsed without an appreciable network fitness improvement. Appreciable

network fitness improvement is an improvement larger than 0.01.

3.3 Selection of the GA Parameters

In this section we describe a method for selection of the algorithm parameters for GFAM,
GEAM and GGAM. The performance of these algorithms rely on good choice of these
parameters. The objective in this section is to provide good default values for these
parameters based on a sound experimental exercise. This section is therefore devoted to
the selection of good values for two parameters: probability of deleting an ART category,
Pr(Catge), and probability of mutating an ART category, Pr(Mut). As it is evident from
our prior discussion there are a few other GA parameters that one has to carefully choose,
such as Popgize, GeNpmaz, and NCipes; we did not perform exhaustive experimentation
to decide on the values of these parameters, but limited experimentation with these

parameters showed that reasonable choices for these parameters were: Popg.. = 20,
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Genpe: = 500, and NChess = 3. The experiments in this section were conducted on 19

datasets. Detailed information about these datasets can be found in Appendix B.

The proposed approach to select good values for the GA parameters Pr(Catg), and

Pr(Mut) consisted of a number of steps delineated below:

e Select GA Step 1: Four different values for the Pr(Caty,) were selected to
experiment with. These were: 0.05, 0.1, 0.2, and 0.4. Also, four different values for
the Pr(Mut) parameter were selected to experiment with. These were: 0.0, 0.1,

0.2, and 0.4. This resulted in 16 combinations of parameter settings for Pr(Catg),

and Pr(Mut).

e Select GA Step 2: For each one of the 16 settings of the Pr(Catg.), and Pr(Mut)
parameters, and for each of the 19 datasets, the GA optimization of FAMs, EAMs,
and GAMs was applied 10 different times (using a different initial seed for the GA
optimization). Consequently, for each database, and each parameter setting, and
each of the genetically engineered ART algorithms 10 PCC and 10 N, numbers

were obtained.

e Select GA Step 3: For each genetically engineered ART algorithm (i.e., GFAM,
GEAM, or GGAM), and each dataset, the best-performing (with respect to vali-
dation PCC of the 10 experiments) parameter setting was chosen. Then, ANOVA
statistical tests were applied to choose other parameter settings that did not sig-
nificantly differ (statistically) from the best performing parameter setting. These

parameter settings were marked as good settings for this database and the associ-

ated GART (GFAM or GEAM or GGAM) algorithm.
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e Select GA Step 4: After Step 3 was performed, for all databases and all ge-
netically engineered ART algorithms we counted the number of databases for each
GART algorithm for which a particular parameter setting was deemed as “good”
from the Select GA Step 3. Based on these counts we recommended the best pa-
rameter setting for each GART algorithm, and a range of acceptable parameter

settings.

Table 3.1 summarizes the results for GFAM. Similar tables have been produced for
GEAM and GGAM but are omitted because they present similar information. In Table
3.1 an entry of “1” for a database indicates that the corresponding parameter setting
performed well (with respect to the average PCC on the validation set). An underscored
“1” entry indicates that the corresponding parameter setting performed the best for this
database (with respect to the PCC on the validation set). In Table 3.1 the “1” entries
corresponding to the Number of Categories criterion (actually average number of cat-
egories criterion) are omitted to preserve the table’s clarity. However an entry of “1”
for the PCC resulted also in an entry of “1” for the Number of Categories (not shown
in Table 3.1). In Table 3.1, designated with an asterisk are the parameter setting, that
performed best for this database (with respect to the average Number of Categories cri-
terion). A careful observation of the results shown in Table 3.1 indicate that any value
of Pr(Catge) in the interval [0.2,0.4], and any value of the Pr(Mut) in the interval
[0.05,0.4] gives good results. Also, the results from Table 3.1 indicate that the best per-
forming parameter setting for GFAM is Pr(Cats) = 0.1, and Pr(Mut) = 0.4, since for

this parameter setting we observe the highest number of good performances (19), and
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best performances (7) of the associated GFAM (the count of the best performances con-
sider the best observed performances with respect to the average PCC on the validation
set or the average number of categories) . Finally, we can also deduce from the results of
Table 3.1 that a probability of mutation equal to 0 is not recommended, since it always

(for all databases) results in a GFAM network that is not performing well.

From similar tables produced for GEAM and GGAM (omitted) one can draw similar
conclusions. In particular, a careful observation of the GEAM results indicate that any
value of Pr(Catge) in the interval [0.2,0.4], and any value of the Pr(Mut) in the interval
[0.05,0.4] gives good results for GEAM. Also, the best performing parameter setting for
GEAM is Pr(Catgy) = 0.2, and Pr(Mut) = 0.4, since for this parameter setting we
observe the highest number of good performances (19), and best performances (6) of the
associated GEAM. Finally, a probability of mutation equal to 0 is not recommended for
GEAM, since it always (for all databases) results in a GEAM that is not performing
well. Additionally, a careful observation of the GGAM results indicate that any value
of Pr(Catgey) in the interval [0.2,0.4], and any value of the Pr(Mut) in the interval
[0.05,0.4] gives good results for GGAM. Also, the best performing parameter setting for
GGAM is Pr(Catgy) = 0.4, and Pr(Mut) = 0.1, since for this parameter setting we
observe the highest number of good performances (19), and best performances (4) of the
associated GGAM. Finally, a probability of mutation equal to 0 is not recommended for
GGAM, since it always (for all databases) results in a GGAM that is not performing

well.
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3.4 Comparison with other ART architectures

The main purpose of the proposed algorithms, GFAM, GEAM, GGAM (collectively
GART) is to solve the category proliferation problem while preserving the good perfor-
mance that can be obtained by ART architectures. Therefore, to measure the merit
of these architectures, in this section they are compared to other ART architectures
that have previously appeared in the literature and addressed the category proliferation

problem.

The ART architectures that were chosen to compare GFAM, GEAM, GGAM with
are: ssFAM, ssEAM, ssGAM, and safe micro-ARTMAP. The first three are based on
the principle of semi-supervision, introduced [AGV02], and [VHGO1]. Semi-supervision
is a term attributed to learning in an ART architecture (FAM, EAM or GAM), where
categories in ART are allowed to encode patterns of different labels provided that the
percentage of patterns that belong to the plurality label exceed a certain threshold.
Safe micro-ARTMAP is a Fuzzy ARTMAP that allows categories in Fuzzy ARTMAP
to encode patterns that are mapped to different labels. In safe micro-ARTMAP (see
[GDCO01]) though the mixture of labels allowed in a category, or in all of the categories

is controlled by the entropy of the category or categories.

As mentioned in an earlier section, in every classification problem there is a training
set, a validation test, and a test set. The training set is used for the training of GART
(ART) architectures under consideration. The validation set in the GART case is used
to guide the evolution of the trained ART networks from generation 1 to generation

Genpqez. The validation set in the other ART networks’ case is used to choose optimal
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values for the ART network parameters (e.g., vigilance, choice parameter, order of pattern
presentation, etc); optimal values of ART network parameters are the ones that give the
highest value of the already defined fitness function. The test set is used to assess the
performance of the optimized GART (ART) network. The percentages of different class
data-points in the training, validation and test set are the same as the ones found in the

original dataset.

For each of the ssFAM, ssEAM, ssGAM, and safe micro-ARTMAP networks, a num-
ber of experiments were performed with different settings of their network parameter
values on 19 datasets (for more details about the datasets, please see Appendix B). For
each one of these network parameter settings the resulting network’s fitness function
was calculated (the same fitness function was used as the one utilized for the GART
networks (see equation (3.8))). For the training of ssFAM, ssEAM, ssGAM, and safe
micro-ARTMAP the same training set was used as the one used for the GART networks,
and for the validation of the performance of each of the ssFAM, ssEAM, ssGAM, and
Safe micro-ARTMAP networks the same validation set was used as the one used for
the GART networks. The parameter setting of the ssFAM, ssEAM, ssGAM, and safe
micro-ARTMAP network that maximized the fitness function was chosen as the best pa-
rameter setting for the specific database; the number of categories created by the “best”
parameter setting network, and its corresponding percentage of correct classification on

the test set are reported in Table 3.2.

In particular, the parameter settings that we experimented with ssFAM were: baseline

vigilance values ranging from 0 to 0.9 with step size of 0.1, choice parameter values of
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0.001 and 0.01, maximum allowable mixture threshold values ranging from 0 to 1 with
step size of 0.1, and 100 different orders of pattern presentations of the training data
(resulting in 22,000 different parameter settings). Furthermore, the settings for ssEAM
were: baseline vigilance values ranging from 0 to 0.9 with step size of 0.1, choice parameter
values of 0.001 and 0.01, maximum allowable mixture threshold values ranging from 0 to
1 with step size of 0.1, minimum axes to maximum axis ratio values ranging from 0.1 to 1
with step size of 0.1, and 100 different orders of pattern presentations of the training data
(resulting in 220,000 different parameter settings). Also, the settings for ssGAM were:
baseline vigilance values ranging from 0 to 0.9 with step size of 0.1, initial standard
deviation parameter ranging from 0.1 to 1 with step size of 0.1, maximum allowable
mixture threshold values ranging from 0 to 1 with step size of 0.1, and 100 different orders
of pattern presentations of the training data (resulting in 110,000 different parameter
settings). Finally, the settings for safe micro-ARTMAP were: baseline vigilance values
ranging from 0 to 0.4 with step size of 0.2, baseline vigilance parameter values of 0.001 and
0.01, 5 values for the maximum “all-categories” entropy threshold, 6 different ratios of
the values of the “categories” entropy threshold to the “all-categories” entropy threshold,
three values of the maximum allowable expansion of a category, and 100 different orders
of pattern presentations of the training data (resulting in 90,000 different parameter
settings).

The best parameter setting, identified in the previous sub-section, for GFAM, GEAM,
and GGAM was used for each of the 19 databases. Ten (10) experiments per database

were conducted for 10 different initial seeds of the GA optimization process. The network
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that produced the maximum value of the fitness function, was deemed as “best” The
number of categories of the “best” GFAM, GEAM and GGAM for each database and its

corresponding performance (PCC) on the test set are reported in Table 3.2.

Some of the conclusions that can be deduced from the comparative results, depicted

in Table 3.2, are emphasized below:

e Observation 1 (Overall Performance of GART networks): GFAM, GEAM
and GGAM attain good performance on all the datasets, and quite often, optimal
performance (e.g., see performance of all the networks in the Gaussian databases,
and performance of GGAM on the structures-within-structure problems, and on the

real databases). The best performing network from the class of GART networks

(GFAM, GEAM, and GGAM) is GGAM.

e Observation 2 (Comparative Performance of GART networks, with re-
spect to each other). GGAM and GEAM outperform the performance of GFAM
on all the structures, within structure problems. For all the other problems the dif-

ferences between GEAM, and GGAM versus GFAM are not statistically significant.

e Observation 3 (Comparative Performance of GART networks compared
with ssFAM): ssFAM performs as well as the GART networks for the 2-class
Gaussian datasets. For all the other datasets at least one (if not all) the GART
networks perform better (achieving higher PCC with fewer ART categories). The
largest difference in PCC observed is almost 12% (for the 4 Circle in the Square
problem), while the largest ratio of number of ssFAM versus GART categories is

for the modified IRIS problem (ratio of 4).
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e Observation 4 (Comparative Performance of GART networks compared
with ssEAM): ssEAM performs as well as the GART networks for the 2-class
Gaussian datasets. For all the other datasets at least one (if not all) the GART
networks perform better (achieving higher PCC with fewer ART categories). The
largest difference in PCC observed is more than 10% (for the 6 class Gaussian
problem with 40% overlap), while the largest ratio of number of ssEAM versus

GART categories is for Circle in the Square problem (ratio of 4).

e Observation 5 (Comparative Performance of GART networks compared
with ssGAM): ssGAM performs as well as the GART networks for the 2-class
Gaussian datasets. For all the other datasets at least one (if not all) the GART
networks perform better (achieving higher PCC with fewer ART categories). The
largest difference in PCC observed is more than 8% (for the 1 Circle in the Square
problem), while the largest ratio of number of ssGAM versus GART categories is

for the four Gaussian dataset with 25% overlap problem (ratio larger than 5).

e Observation 6 (Comparative Performance of GART networks compared
with safe micro-ARTMAP): Safe micro-ARTMAP performs as well as the
GART networks for the 2-class, and 4-class Gaussian datasets. For all the other
datasets at least one (if not all) the GART networks perform better (achieving
higher PCC with fewer ART categories). The largest difference in PCC observed
is more than 6% (for the 6 class Gaussian dataset with 25% overlap), while the
largest ratio of number of safe micro-ARTMAP versus GART categories is for the

Circle in the Square problem (ratio of 4).
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What is also worth pointing out is that the better performance of the GART network
is attained with reduced computations as compared with the computations needed by
the alternate methods (ssFAM, ssEAM, ssGAM, safe micro-ARTMAP). Specifically, the
performance attained by ssFAM, ssEAM, ssGAM and the safe micro-ARTMAP required
training these networks for a large number of network parameter settings (at least 22,000
experiments) and then choosing the network that achieved the highest value for the
fitness function that we introduced earlier (through cross-validation). In GFAM, GEAM
and GGAM cases we trained only a small number of these networks (Pops;,. = 20 of
them), compared to the large number of networks trained in the ssFAM, ssEAM, ssGAM
or micro-ARTMAP cases (at least 22,000). Furthermore, in GFAM, GEAM and GGAM
cases we evolved the trained networks Gen,,,, = 500 times, each evolution requiring
cross-validating Popg;.. = 20 networks. Hence, the total number of networks cross-
validated in the ssFAM, ssEAM, ssGAM and micro-ARTMAP cases were at least 22,000,
while in the GFAM, GEAM and GGAM networks were 10,000; furthermore the networks
cross-validated in the ssFAM, ssEAM, ssGAM, and micro-ARTMAP cases have higher
number of category nodes than the ones cross-validated in the GFAM, GEAM and GGAM
cases. As a result, we can argue that the improved performance (smaller number of
nodes and better generalization) of GFAM, GEAM, and GGAM, compared with ssFAM,
ssEAM, ssGAM, and micro-ARTMAP, is achieved with reduced computational effort. Of
course, one can claim that such an extensive experimentation with these networks might
not be needed, especially if one is familiar with the functionality of these networks and
chooses to experiment only with a limited set of network parameter values. However,

the practitioner in the field might lack the expertise to carefully choose the network
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parameters to experiment with, and consequently might need to experiment extensively
to come up with a good network. In this case, GART has an advantage over the other
ART network approaches because it has already provided a list of default parameter
settings for the evolution of trained ART classifiers, and as a result the experimentation

with a separate validation set is not needed.

The comparison of GART, and ssFAM, ssEAM, ssGAM, and safe micro-ARTMAP
provided above, is fair because it used the same databases and datasets per database for
training, validation and testing of these architectures, as well as the same criterion for
finding the best of these ART architectures (the criterion was to maximize the fitness

function, defined in Equation (3.8)).

In all the experiments above, simulated or real datasets were used that predominantly
had input patterns of dimensionality 2. Furthermore, for the GART results reported in
Table 3.2, these datasets were used to identify good (default) GA parameter values. It is
therefore worth reporting GART’s performance on datasets that have input patterns of
higher than 2 dimensionality, and for which the good GA parameter used are the values
identified in the previous section using the original 19 datasets. The results for GFAM
(PCC on the test sets, and number of categories created) are depicted in Table 3.3 (in
particular, Table 3.3 shows the GFAM results for two « parameter values of Equation
(3.8); a value of 0.5 (this is the value used for the Table 3.2 results) and a value of 0.1.
Note that a smaller parameter value allows for higher size GART networks that end up

exhibiting higher accuracy (PCC) on unseen data.

67



Table 3.3: Accuracy and size results achieved by GFAM on 8 UCI databases.
The results are recorded for 2 settings of the fitness function parameter: 0.5 and 0.1.
Database = GFAM (0.5) GFAM (0.1)

Name PCC Size PCC Size
OPTDIGITS 88.09 13 91.21 22
PENDIGITS  90.25 15 94.35 28

SAT 83.35 7 84.6 8
SEG 94.13 12 95.14 15
WAV 81.55 3 83 4
SHUTTLE 99.55 ) 99.55 5
PIMA 77.59 2 76.72 3

In order for the reader to be able to evaluate how good the GFAM results are the
reader is refers to the work by Lim, Loh and Shih, [LLS00], where they compared the
accuracy and size of a 33 classifiers belonging to the tree, statistical and neural types
classifiers. Three of the datasets that Lim, Loh and Shih have experimented with are
the Satellite, the Segmentation and the Waveform datasets that GFAM has been tested
on (see Table 3.3). The GFAM results on the Satellite dataset are: 83.35% (84.6%)
classification accuracy, needing 7 (8) categories (see Table 3.3). The accuracy results
reported on the Satellite dataset by Lim, Loh, and Shih are: Minimum classification
accuracy of 60% and maximum classification accuracy of 90%. Furthermore the tree
type classifiers (22 of them) created a minimum tree size of 8, while the median tree size
was 63. Finally, two of the most celebrated decision tree algorithms, such as CART and
C4.5 created tree sizes of 63 and 216. The GFAM results on the Segmentation dataset
are: 94.13% (95.14%) classification accuracy, needing 12 (15) categories. The accuracy
results reported on the Segmentation dataset by Lim, Loh, and Shih are: Minimum
classification accuracy of 48% and maximum classification accuracy of 98% (achieved by

the nearest neighbor classifier, which performs no data compression). Furthermore the
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tree type classifiers (22 of them) created a minimum tree size of 6, while the median tree
size was 39. Finally, two of the most celebrated decision tree algorithms, such as CART
and C4.5 created tree sizes of 69 and 42. The GFAM results on the Waveform dataset
are: 81.55% (83%) classification accuracy, needing 3 (4) categories. The accuracy results
reported on the Waveform dataset by Lim, Loh, and Shih are: Minimum classification
accuracy of 52% and maximum classification accuracy of 85%. Furthermore the tree type
classifiers (22 of them) created a minimum tree size of 3, while the median tree size was
16. Finally, two of the most celebrated decision tree algorithms, such as CART and C4.5

created tree sizes of 14 and 54.

3.5 Summary

In this work a number of improvements are proposed to the genetic ART architectures
introduced in [Al 06]. These improvements resulted in a more efficient, effective and more
elegant approach. Furthermore, in this chapter a sound technique for finding the default
algorithm parameters was employed to provide the users of GART with default values
that are guaranteed to work well with most datasets. Finally, a comparison was carried
to prove the merit of the GART architectures compared to other ART architectures that

appeared in the literature and tried to solve the category proliferation problem.

GART networks were found to be superior to a number of other ART networks (ss-
FAM, ssEAM, ssGAM, safe micro-ARTMAP) that have been introduced into the liter-

ature to address the category proliferation problem in ART. More specifically, GFAM,
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GEAM, and GGAM gave a better generalization performance (in almost all prob-
lems tested) and a smaller than, or equal, size network (in all problems tested),
compared to these other ART networks, requiring reduced computational effort
to achieve these advantages. More specifically, in some instances the difference in clas-
sification performance of GFAM, GEAM, and GGAM with these other ART networks
quite significant (as high as 12%). Also, in some instances the ratio of the number of

categories created by these other ART networks, compared to the categories created by

GFAM, GEAM or GGAM was large (as high as 5).

In this chapter the effect of the improvements introduced over the GA implementation
provided in [Al 06] were not fully quantified since the the two approaches are similar in
many ways. However, limited experimentation show that similar network quality was
achieved for some datasets. However the proposed approach reduces the overall training
time significantly. For example for the G4C-25 dataset, the training time was reduced
from 77 seconds to 12 seconds (or 84% reduction). For harder datasets, due to the
fitness function defined in [Al 06], it is not possible to achieve competitive generalization.
For example on the Pendigits dataset, the best accuracy achieved by the architecture
introduced in [Al 06] was 91%, where as shown in the results in Table 3.3, by properly
controlling the parameter in the fitness function, the proposed approach was able to
achieve 94% accuracy. In future chapters the product of the improved genetic ART
architectures will be used as a baseline for quantifying further refinements of the genetic

evolution of ART architectures.
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CHAPTER 4
SELF ADAPTATION IN GENETIC ALGORITHMS

In the previous chapter, genetic ARTMAP (GART) was described. In this chapter an
adaptive genetic algorithm is applied to Fuzzy ARTMAP (FAM), ellipsoidal ARTMAP
(EAM), and Gaussian ARTMAP (GAM). One of the major advantages of the proposed
genetic algorithm is that it adapts the GA parameters automatically, and in a way that
takes into consideration the intricacies of the classification problem under consideration.
The resulting genetically engineered ART architectures are referred to as AG-FAM, AG-
EAM and AG-GAM or collectively as AG-ART (adaptive genetically engineered ART).
The performance (in terms of accuracy, size, and computational cost) of the AG-ART ar-
chitectures is compared with GART, and other ART architectures that have appeared in
the literature and attempted to solve the category proliferation problem (ssFAM, ssEAM,
ssGAM). The results demonstrate that AG-ART architectures exhibit better performance
than their other ART counterparts (ssFAM ssEAM and ssGAM) and better performance
than GART. Also AG-ART’s performance is compared to other related results published
in the classification literature to demonstrate that AG-ART architectures exhibit com-
petitive generalization performance and, quite often, produce smaller size classifiers in
solving the same classification problems. AG-ART’s performance gains is shown to be

achieved within a reasonable computational budget.

71



4.1 Introduction

In this chapter an improved GA for the evolution of ART architectures is proposed. The
proposed GA relies on adaptive GA parameter control mechanisms. While GART re-
quired the user to choose values for the probability of an ART category deletion, and
for the probability of a category mutation, AG-ART finds good values for these param-
eters through an adaptation mechanism that takes into consideration the specificities of
the problem under consideration. Hence, not only AG-ART is more elegant (requires
minimal user intervention) than GART, but as experiments illustrate it is faster than
GART, because the GA parameters are more wisely chosen through appropriate adap-

tation mechanisms.

4.2 Adaptation in Genetic Algorithms: Literature Review

When applying a GA to solve an optimization problem, it is not only needed to choose the
algorithm, representation, and operators for the problem, but what is also needed is to
choose parameter values and operator probabilities for the GA so that it will not only find
the solution, but also find the solution efficiently. In many cases, researchers choose these
parameter values and operator probabilities based on experience or experimentation on a
specific problem. The problem of finding good GA parameter values and good operator
probability values has been addressed before in the literature. A number of researchers
suggested good parameter values as a result of extensive experimentation on a range of

optimization problems. For examples, [Jon75] proposed to set p,, = 0.001 and p. = 0.6,
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where p,, and p. stand for the probability of mutation and crossover, respectively. In

[MS93] the authors propose p,, = % and in [Bac92] p,, = +75-, where n represents the

nx(32

population size and [ represents the bit-length of a chromosome.

Finding good GA parameter values for a certain optimization problem is a time
consuming process. It is prone to human error which may lead to suboptimal results.
Moreover, what might be initially considered as a good parameter setting could, in the
progress of evolution, prove not to be as good, since the search may move to different
regions of the solution space. As a result, an emphasis was placed on designing GAs

where the parameters automatically adapt to the problem at hand.

The GA parameters that affect its performance include environmental parameters
such as population size and the objective (fitness) function. The adaptation can be
applied to global parameters such as mutation rate, mutation strength or crossover rate
that are affecting all individuals in the population, or applied to local parameters where
the parameter value is customized for each individual. Also, some existing research
(for example, see [FAF95]) proposes the customization of the parameter setting at the

component level (part of the individual).

Adaption provides the opportunity to customize the evolutionary algorithm to the
problem and to modify the configuration and the strategy parameters used while the
algorithm is running. This enables the GA to not only incorporate domain information
and multiple reproduction operators more easily, but can allow the algorithm itself to
select those values and operators which might give better results. Also these values can

be modified during the run of the GA to suit the specific situation during that part of the
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run. When the information about which of the operators available are most suitable to a
particular problem is not easily determined, adaptation can be used to provide feedback

or to determine when they should be used.

The majority of the research though focuses on adapting the mutation rate or mu-
tation strength. For real-valued representations, the term mutation strength, sometimes
called mutation step size, refers to the magnitude of change in each mutated variable.
This is different in binary representation schemes, where the term mutation rate is used

to express how probable it is for a certain binary variable to be changed (inverted).

The GA adaptation approaches can be distinguished in three groups, in order of
increasing complexity: Deterministic, Adaptive, and Self-Adaptive (see [HME9T7]). Each

of these approaches is described below.

e Deterministic: Deterministic adaptation refers to the dynamic adjustment of a GA
parameter using a deterministic rule, and without feedback from the quality of the
solution achieved by the evolutionary process. This rule can be based on a schedule
(similar to simulated annealing) or number of generations (see [Fog89]). The objec-
tive in this approach is to alter the GA parameters in such a way that results in a
wide-spread search at the beginning of the optimization, and increasingly localized
search at later stages. An example of this approach can be found in [LTD02], where
the mutation step sizes are discounted by a constant factor each time an offspring

is produced.

e Adaptive: This approach uses some form of feedback from the GA that is used

to determine the direction and/or magnitude of the change to the GA parameter.
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In [ASP94], the standard deviation of the Gaussian mutation was varied based

on a temperature parameter. The temperature parameter was defined as T'(n) =

1 S

Foo, were fmae 18 the maximum fitness for a given task. Thus, the temperature

of a solution is determined by how close the solution is to being an optimal solution
for the task under consideration. Solutions with a high temperature are mutated
severely, and those with a low temperature are mutated only slightly. This allows
a coarse-grained search initially, and a progressively finer-grained search as the GA

approaches a solution for the assigned task.

In [SP94] the authors suggest the use of a feedback signal that is defined by the
difference fit e, (P, t) — p(P,t), where fit,q,(P,t) is the maximum fitness and
(P, t) is the average fitness of solutions in population P(t) at generation ¢. This
difference is used as an indication of closeness to convergence. This difference
is likely to be less for a population that has converged to an optimal solution
than that for a random population, scattered in the solution space. The authors
define the adaptive rates of crossover and mutation for all chromosomes to be
inversely proportional to this difference. To make this mechanism less disruptive
for good solutions, the mechanism is adjusted to have low values of parameters for

high fitness values and high values of parameters for low fitness values, as follows:

fit"uzw (P7t)_fit(x7t)

_ fitmaz‘(P,t)—fit(J?,t)
pm(z) =k Fitmaz (Pt —p(Ph)

L fitmaz (Pit)—pu(Pit)

,and p. = ko Therefore, in this case,

the parameters are controlled at the individual level.

Self-Adaptive: In this approach, the GA parameters undergo evolution. The GA

parameters are encoded in the chromosomes and evolved as part of the solution.
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The encoded parameters will lead to better fitness for individuals with better pa-
rameters values, and since these individuals are more likely to survive and repro-

duce, this mechanism will propagate these better parameter values.

Self adaptation differs from the adaptive approach in that in the adaptive approach,
the feedback from the GA is used deterministically to change the GA parameters.
Instead, self-adaptation allows the GA to determine the best GA parameters at
any time in the evolutionary process. In other words, in the adaptive approach,
it is usually assumed that the GA should reduce the scope of the search as it
approaches the optimum solution. In the self-adaption, this assumption is not
made, and therefore the parameters are allowed to be changed in the best way that

will lead to better solutions.

4.3 Adaptive Approach to Evolving ART Architectures

Adaptation was applied to the genetic ART architectures introduced in Chapter 3. In
the implementation of genetic optimization of ARTMAPs, referred to as AG-ART, an
adaptive approach was chosen, where a feedback signal is used to determine the operator

probability at the component level.

The pseudo-code for the genetic ART architectures is listed in Figure 3.11 and re-
peated below in Figure 4.1. The proposed adaptation is applied to the Reproduction

step. Therefore, in this section, the Reproduction step is described in details.
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P(0) « Generate-Initial-Population();
for ¢t — 1 to Gen,,,, do
Evaluation();
if stopping criteria met then exit for;
P'(t) « Selection(P(t));
P(t) < Reproduction(P’(t));
end
return Best Network in P(t);

Figure 4.1: Pseudo-code of the AG-ART Algorithm

To avoid the need for finding proper values for the mutation and pruning probabili-
ties, or setting default values that might result in suboptimal operation, an adaptation
mechanism was employed to automatically adjust, based on performance, the invocation
of reproduction operators. This performance based adaptation is implemented at the
gene (category) level. More specifically, adaptive, performance based, parameters are
computed for each component in the individual. The performance feedback relies on a

metric defined for each category, referred to as the confidence factor, C'F.

The confidence factor is a metric that measures the performance at the category
level. Since our objective is to find a network with good generalization and small size,
the performance of a category is defined in terms of accuracy and frequency of selection
of the category. We favor accurate and frequently selected (therefore larger) categories.
The assumption here is that if categories are frequently selected, the network size would
likely to be smaller. The confidence criteria used, were based on similar confidence criteria
designed by other researchers in the field (see, [CT95], [TRL06]), whose objective was
to prune under-performing ART categories. The confidence factor is defined, for every

category j of the p — th ART network, that is mapped to label k, as follows:
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C’Ff(p) = 0.5A§(p) + 0.55]’-“(19) (4.1)

where Af (p) is a measure of accuracy of classification achieved by category j, in the p—th
network, that is mapped to label k. Furthermore, S;f’ (p) is a measure of probability of

selection of category j in the p — th network, that is mapped to label k.

The accuracy measure, A;‘? (p), is defined as follows: the probability of correct classi-
fication for category j divided by the maximum probability of correct classification for
any category in the same network (p — th network) that predicts the same class label,
k. This measure assumes higher values for categories that are performing relatively well.
In particular, if the number of validation samples that selected this category, and were
correctly classified by it, is denoted by Pf (p), and the number of validation samples that

selected this category is denoted by C']’? (p), then,

PF(p)/Cj(p)

A0 = s P )/ ))

(4.2)

We also define Sf(p) as the probability of selection by the validation patterns of a
category, j, of the p — th network, that is mapped to label k. The probability of selection
of category 7, of the p—th network, that is mapped to label k, is the number of validation
patterns that selected this category, C]’-C (p), divided by the maximum number of patterns
C’j’?mam (p) that selected any category j that predicts the same classification label, k, for

the p — th network:
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Si(p) = Ci(n)/C;,,..(p) (4.3)

This measure achieves higher values for categories that were selected more often
using the validation patterns. The scaling ensures that A;?(p) € [0,1], S]’-"(p) € [0,1]
and therefore C'Fj(p) € [0,1]. In addition, in every network, at least one category
has A;(p) = 1, and at least one category (but not necessarily the same) has S;(p) = 1.
Therefore, in every generation the confidence factor is calculated for every category based

on the performance on the validation set.

4.3.1 Prune

To be able to create smaller networks using the evolutionary search, a genetic operator,
Prune, is introduced, that deletes categories from a network using some appropriate
selection criteria. Pruning is prohibited if it violates the class inclusion criterion. The
class inclusion criterion dictates that in every network there is at least one category for
each class label present in the data. It is obvious that the criterion used for selection
of categories to be pruned affects the efficiency of the genetic search. One selection
criterion is to randomly prune a category using a user-specified probability. However,
this criterion does not exploit the knowledge we have about the performance of a category
on the validation set after every generation. It might be beneficial to take this information
into consideration when deciding on which categories to be deleted. However, complete

reliance on this knowledge would result in a hill-climbing search that would probably end
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up at local optima. To avoid this situation a probabilistic approach is used that increases
the chance of deletion of under-performing categories. This way, the search is directed
towards better solutions, but not limited from exploring other regions of the solution
space. Consequently, in AG-ART, with probability of 1 — C’Ff (p), categories are delete

from every chromosome in the temporary population, P’(t).

This operator replaces the Caty, operator described in Chapter 3. While Catgyy
deletes one category from a network based on probability Pr(Catg), the Prune operator
probabilistically deletes multiple categories from a network, giving more likelihood to
deletion of categories with low C'F value. It can be noticed that the Prune operator
reduces the size of networks quickly by eliminating under-performing categories. Also,
the Prune operator does not rely on a user-specified probability that is set constant
through out the search; but rather, the C'F’ values are updated in every generation and

used to dynamically guide the pruning operator.

4.3.2 Mutation

Every chromosome gets mutated as described in Chapter 3, Section 3.2. As described
earlier, mutation is implemented by using a small Gaussianly-distributed random quan-
tity to bring about change in the individuals. However, instead of applying the Mutation
with fixed standard deviation for the Gaussian distribution, here the standard deviation
is controlled for each category based on its performance. In other words, the Gaussian

distribution has a mean of 0 and a standard deviation that is equal to a severity factor,
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(SF), that is calculated for each category based on its performance. A performance
based severity of mutation should be used to impose higher probability of mutation to
those categories that do not perform well. The following expression is used to control

the severity of mutation:

SF(p) = 0.05(1 — CF(p)) (4.4)

The ART category values are then mutated by random numbers, chosen from the

following distribution:

Normal(0, SFf(p)) (4.5)

Therefore, again the Mutation is adapted at the component (category) level. The

user-specified parameter, Pr(Mut), is eliminated.

4.4 Evaluation of The Approach

In this section several experiments are performed to assess the performance of the AG-
ART architectures and to compare their performance with other ART and non-ART
based classifiers. The AG-FAM architectures are compared with the GFAM architecture
described in Chapter 3. Furthermore, the AG-ART collection are compared to other
ART-based classifiers that have addressed the ART category proliferation problem; this

comparison is thorough because we have coded and experimented with these other ART-
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based classifiers on the same datasets used to assess AG-ART’s performance. Finally,
the AG-ART performance is compared to the performance attained by other non-ART
based classifiers. In this section, 11 datasets are used in the comparison. These datasets

are described in detail in Appendix B.

4.4.1 Comparing AG-FAM with GFAM

This section compares the AG-ART to GART, described in Chapter 3. The purpose
of this comparison is to assess the value of the adaptive approach to choose the GA

parameters, proposed in this chapter, to the static approach to choose these parameters,

utilized in GART.

AG-ART introduced an adaptively defined, confidence factor, according to which ART
categories are pruned, and an adaptively defined severity factor, according to which
ART categories are mutated. In GFAM the probability of deleting an ART category
was chosen after expensive experimentation and evaluation of the appropriateness of
candidate probability values on a limited collection of classification problems; then these
probability values were used for all other classification problems. Hence, the GART
approach was not only computationally costly, but it was also not dataset-dependent,
and it did not change throughout the evolutionary process. All these issues have now
been addressed by the AG-ART approach, using the adaptively defined confidence factor,
that is dataset-dependent and performance-based varying (relying on the performance of

a category at each generation). Furthermore, in GFAM the severity of mutation was fixed,
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and the only user defined parameter was the probability of mutation. This parameter was
chosen in GFAM after expensive experimentation and evaluation of candidate probability
values on a limited collection of classification problems; then these probabilities were
used for all other classification problems. Hence, the GART approach for choosing the
mutation probability was also computationally costly, and not dataset-dependent, and did
not change throughout the evolutionary process. All these issues have now been addressed
by the AG-ART approach, by using the adaptively defined severity of mutation factor,
that is dataset-dependent and performance-based varying (relying on the performance of

a category at each generation).

In summary, AG-ART’s approach of choosing the category prune probabilities and
the severity of mutation is much more elegant, sensible and cost-effective, compared
to the approach used in GART. The important difference is that AG-ART, due to the
adaptively chosen GA parameters, converges to this solution faster. Hence, the AG-ART
approach is not only more elegant and more cost-effective in defining good values for
the GA parameters, but even after the evolution starts AG-ART is more efficient than

GART (converges to the final solution faster).

In the following the performance of the AG-FAM is experimentally compared to that

of GFAM.

To demonstrate the point about the efficiency of the AG-FAM approach compared to
the GFAM approach, Table 4.1 compares the average run times of GFAM, and AG-FAM
discussed in this chapter. The total run time of AG-FAM and GFAM are defined as the

total times, needed over a number of runs (different initial seeds), by the evolutionary
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Table 4.1: Total run time for AG-FAM vs. GFAM, in seconds
Dataset 10 runs GFAM 10 runs AG-FAM Gain

1Ci/Sq 387.578 150.78 61.10%
g4dc-25 131.077 100.69 23.18%
gbe-15 231.64 171.14 26.12%
glass 4.439 2.81 36.63%
MOD-IRIS 32.157 26.61 17.25%
page  134.172 92.23 31.26%
pendigits 2684.204 2039.75 24.01%
pima 3.813 1.58 58.59%

sat 1033.171 679.17 34.26%

seg 151.234 79.86 47.19%

wav 288.516 238.77 17.24%

process in AG-FAM and GFAM to converge to a solution, respectively; in this case (see
Table 4.1) AG-FAM and GFAM were run for 10 different initial seeds. Both approaches
were able to find solutions of similar quality. However, the AG-FAM approach was
able to reduce the evolutionary computation time up to 60% in some cases. Figure 4.2
illustrates how parameter adaptation allows the genetic algorithm to find better solutions
more quickly. In review, with adaptation, the genetic algorithm is able to find same
quality solutions using a smaller number of generations. The reduction in run time in
AG-FAM is attributed to the use of the Prune operator, introduced in this chapter. The
Prune operator is more efficient than the fixed probability of pruning used in GFAM.
The Prune operator in AG-FAM contributes in finding smaller FAM networks faster in
its evolutionary process than the corresponding operator in GFAM; since these smaller
FAM networks are validated faster we end up with a reduced run time with AG-FAM,

compared to GFAM.
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Figure 4.2: Fitness as a function of generation (Satellite dataset).
The upper curve was produced using a non-adaptive approach. The lower curve was
produced using adaptation. It is clear that adaptation allows faster progress of fitness
towards optimum.

4.4.2 Comparison with Other ART Architectures

This section compares AG-ART’s performance to that of other popular ART architec-
tures, which have been proposed in the literature with the intent of addressing the cat-
egory proliferation problem, such as ssFAM, ssEAM, and ssGAM. These approaches are

based on the principle of semi-supervision, introduced by in [ABGO03], and [VHGO1].

The comparison is based on three measures of performance: generalization, size and
computational cost. The results obtained from ssFAM, ssEAM, and ssGAM depend
on the setting of the parameters of these networks. The choice of good settings for
these parameters depends on the dataset at hand. Therefore to obtain good results
from these networks one should experiment with a range of settings for the network
parameters. Since the results obtained from AG-FAM, AG-EAM, and AG-GAM is a
result of evolving (optimizing) a population of ART networks, it is appropriate to compare
their performance to that obtained from the ssFAM, ssEAM and ssGAM experimentation

performed to find their best parameter setting for any given database.
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Since in this work we are not only focusing on generalization performance, but also on
the size of the network produced, it becomes more complicated to compare and rank net-
works. To provide a fair comparison, we resort to a comparison approach that considers
the two objectives simultaneously. Since the existence of the two, sometimes compet-
ing, objectives result in multiple good solutions rather than one "best” solution, in our
comparison, we assess multiple solutions (sets of solutions) produced by the different clas-
sifiers, under consideration. In other words, for each classification algorithm, we produce
a number of solutions that have attained the two objectives (good generalization and
small size) at different levels of success. Then we choose the non-dominated solutions.
A non-dominated solution is defined to be a network, where no other network from the
list of found solutions dominates its performance, that is, achieves better generalization

utilizing equal or smaller number of categories.

For each of the ssFAM, ssEAM, and ssGAM, and for each of the 11 databases, we
performed a number of experiments with different settings of their network parameter
values. In particular, the parameter settings that we experimented with ssFAM were:
baseline vigilance values ranging from 0.1 to 0.9 with step size of 0.1, choice parameter
values of 0.01 and 0.1, maximum allowable mixture threshold values ranging from 0 to 0.9
with step size of 0.1, and 10 different orders of pattern presentations of the training data
(resulting in 1,800 different parameter settings). Furthermore, the settings for ssEAM
were: baseline vigilance values ranging from 0.1 to 0.9 with step size of 0.1, choice pa-
rameter values of 0.001 and 0.01, maximum allowable mixture threshold values ranging

from 0 to 0.5 with step size of 0.1, minimum axes to maximum axis ratio values ranging
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from 0.5 to 1 with step size of 0.1, and 10 different orders of pattern presentations of
the training data (resulting in 6,480 different parameter settings). Also, the settings for
ssGAM were: baseline vigilance values ranging from 0 to 0.9 with step size of 0.1, ini-
tial standard deviation parameter ranging from 0.5 to 1 with step size of 0.1, maximum
allowable mixture threshold values ranging from 0 to 0.9 with step size of 0.1, and 10
different orders of pattern presentations of the training data (resulting in 6,000 differ-
ent parameter settings). It should be emphasized that these parameter ranges reflect

extensive experience of what are good parameter settings for these ART networks.

For the training of ssFAM, ssEAM, and ssGAM we used the same training set, and
validation set as the one used for the AG-FAM, AG-EAM, and AG-GAM networks. We
choose the solution networks proposed by each method based on the network size and
performance of the network on the validation set. Different network solutions for the
ssFAM, ssEAM and ssGAM network were produced by changing the parameter settings
for these networks, as delineated in the previous paragraph. The total computation time
required to obtain these network solutions for each database and each method, which is
the sum of training and validation CPU times (in seconds) for all the tried settings, is

reported in Table 4.3, and referred to as the Total Run Time.

Experiments were also conducted for AG-FAM, AG-EAM, and AG-GAM for each of
the 11 databases. To obtain different solution networks, we varied the fitness parameter,
a (see equation (3.8)). In particular, the different solutions for AG-FAM, AG-EAM and
AG-GAM were obtained by considering the following « values: 0.01, 0.05, 0.1, 0.2 and

0.5. The total computation time needed to produce these solutions for AG-FAM, AG-
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EAM, and AG-GA, is also referred to as the Total Run Time, and reported in 4.3, as

well.

A one-to-one comparison of the results reported in Table 4.3 reveals that the Total
Run Time of the AG-FAM, AG-EAM and AG-GAM networks is smaller, sometimes an
order of magnitude smaller than the Total Run Time of their corresponding counterparts,
ssFAM, ssEAM, and ssGAM, respectively. The Total Run Time results are also shown

in a condensed, pictorial, fashion in Figures 4.3, 4.4 and 4.5.

To compare the generalization performance of AG-FAM and ssFAM, AG-EAM and
ssEAM, and finally AG-GAM and ssGAM we use a metric that compares the network
solutions obtained by the ss-network (for all different parameter settings) and the network
solutions obtained by the AG-network (for the five different v values. This metric has
been used before in similar situations (see [ZT99], [FES03], [FS05]). This metric is defined

as follows:

lbe B:3ae€ Ab<al
| B

C(A,B) = (4.6)

This metric measures the fraction of members in set B that are dominated by at least
one member in set A. Therefore, C(A, B) = 1 means all members in B are dominated by
members in A. In this case the approach that produced set A is a clear winner. It is obvi-
ous that we need to consider also C'(B, A) in order to properly compare the two sets. Since
the calculated values of C(A, B) and C(B, A) are dependent on the seed used to evolve the
population of FAMs, EAMs and GAMs in the AG-ART approach, we produced network

solutions for the five different o parameter values, by changing the seed 10 times. Con-
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sequently, 10 different values of C(AG — FAM, ssFAM), and C(ssFAM,AG — FAM),
were produced. Similarly, 10 different of C(AG — EAM, ssEAM), and C(ssEAM, AG —
EAM), as well as of C(AG — GAM,ssGAM ), and C(ssGAM,AG — GAM) were pro-
duced. In Table 4.2 we compare the average values (over the 10 replications) of C(AG —
FAM, ssFAM) versus C(ssFAM,AG — FAM), and C(AG — EAM, ssEAM), versus
C(ssEAM, AG — EAM), and C(AG — GAM, ssGAM) versus C(ssGAM, AG — GAM).
It is obvious from the table that the average values of C(AG — FAM,ssFAM) are
larger than C'(ssF'AM, AG — F AM) values, which indicates that networks produced by
AG-FAM are more likely to dominate networks produced by ssFAM, and therefore, the
networks produced by AG-FAM are expected to be of higher quality. The p-value column
reported in the table corresponds to the t-test for the 2 sample means. The p-values in
the table indicate that the difference in the means between C'(AG — FAM, ssF'AM) and
C(ssFAM,AG — FAM) is statistically significant. Similar conclusions can be made by
comparing the means of C(AG — EAM, ssEAM) and C(ssEAM, AG — EAM), as well
as the means of and C(AG —GAM, ssGAM) and C(ssGAM, AG—GAM). The box plot
shown below the C(AG — FAM, ssFAM) and C(ssF'AM, AG — FAM) values of Table
4.2 compares visually the values of C(AG—FAM, ssF AM) against the C(ssFAM, AG —
FAM) values for the segmentation dataset (one of the tested datasets). Furthermore,
the box plot shown below the C(AG — EAM,ssEAM) and C(ssEAM,AG — EAM)
values of Table 4.2 compares visually the values of C(AG — EAM, ssEAM) against the
C(ssEAM, AG — EAM) values for the pendigits dataset (one of the tested datasets). Fi-
nally, the box plot shown below the C(AG—GAM, ssGAM) and C(ssGAM, AG—GAM)

values of Table 4.2 compares visually the values of C'(AG — GAM, ssGAM) against the
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Figure 4.4: Total Run Time of AG-EAM vs. ssEAM

values of C(ssGAM, AG — GAM) for the satellite dataset (one of the tested datasets).

The box plots convey the same conclusions that the tabular entries in Table 4.2 convey.

Table 4.3 shows that the better performance of the AG-FAM, AG-EAM, and AG-
GAM networks, is attained with reduced computations as compared with the computa-
tions needed by the alternate architectures (ssFAM, ssEAM, ssGAM). The computational
advantage of genetically engineered ART networks compared to the semi-supervised ART
architectures can be explained by the fact that the performance attained by ssFAM,
ssEAM, and ssGAM required training these networks for a large number of network pa-

rameter settings (at least 1800 experiments) and then choosing the best networks through

90



Wyoo

wyass

Wyao

Wydss

(25

]

195€10Q TS

WVOSS 'SA NVOD

1esereq sbipuad

WV3SS 'SA NV3O

1858100 Bos

V4SS "SA WVH4D

CI-APIE’ 0000 L86°0 VN 0000 000°T VN 0000 000 Aem
ET-HTI16'€ G200 628°0 VO-HIETY €780 L0 GO-HEST'L  GLTO 6S°0 gos
60-HG89°L 8500 909°0 60-H97€'C 0000 ¢eL0 60-HETT'E 0000 L¥8°0 yes
60-H96TF 0010 €86°0 LO-HL8T'T 0010 098°0 VN 000°0 000'T eurd
90-Hd79%°C 0800 897°0 VO-H9TE T GLT'O &4l 60-HSST'T 0000 8S¥°0 sy8rpuad
VN 000°0 000'T L0-HL08°C 0000 006°0 VN 000°0 000 oged
VN 000°0 L88°0 CO-HTPLT  00€0 008°0 T0-ELVO T 00€°0 €670 SLI|
60-H0€0°9 0000 71670 60-H9LET  GLOO 8L8°0 10-HgE6'S  09€°0 €70 sse[3
€1-HSTH' T 0000 €98°0 VN 000°0 000'T VN 000°0 000'T S1-D9D
VN 000°0 000'T VN 000°0 000'T 90-H888'¢ 0500 006°0 GC-OVD
VO-HEYY'E 0080 12970 LO-HF00'T 0000 680 90-HSOV' Y 8L0°0 6170 bs-1D1
onrea-d afRIoAYy ogeIoAy onrea-d o8rIoAY odeIoAy onrea-d o8rIoAY 98rIoAY

(NvH-HV  (INVDss (Nva-Dv - (Nvass (NVA-DV (Vs

INVDSS)D  ‘INVDH-DV)D INVESS)D  INVA-DV)D INVASS)D  TNVA-DV)D

JLIjoW 91} JO sonjea (T oY} J0J )S93-} U0 paseq sI anfea-d oY ], ‘son[ea dLIOW-) :Z'§ 9[qe],

91



%00°€6 8S661IT  ¥6'€8 %IL'G6  G9°CI98  B8E69¢ %€L08  66°€9L €CLYVT ARM
%EV'L8 667609 €179 %9¢°€6  LV'IEET  9¥'S8 %66°09 69768 €6°1¥ Jos
%G€T6  91°c0er  L0°6CE %I8°C6  GV'CITLT  TITECT %T0°GL  6CVEOT  TT'80% yes
%STV6  GLCE 16°T %C896  88°GL 17'c %ITVvL 89°€ G6°0 eund
%eEL6  6€0900C T9LES %6926  G0'G988G¢  FRTOEY %LV'G8  LTVI8L  EVTVII sysrpuod
%0€°0F  89°G¢CT €0 %ev'L8  GTV8Y 16709 %08°€c 2969 L6°¢CS oged
%V8'6L GT'60T ¢0°¢e %94°C8  99°€CT 9¢°'1¢ %eL9E  08°TC 8T°€T SH
%667¢c  TS'¢ ¥9°¢ %S7'09 TLG 9¢°¢ %LE6E  TY'C LT sse[d
%Ve8Y  LL 99T GR'LET %86'VL  ¢g'809 grLel %19°9¢  9T°G¥1 10°¢6 G1-D9O
%09 1L 6VVIE GE68 %9606 8L9T6 66°C8 %€8°69  C6°0€T 69°¢S GC-D¥O
%9006  GETEVI 6T ChI %2698 L9°L9TT  €T°eSI %VE8I GV IIC 1989 bs/101
aure N
urey) INVDSS INVDO-DV urenH INVHSS INVH-DV ured INVASS VA-DV 9seqele(q

INVOSS ‘INVHSS ‘INVASS 10§
owir} una [ejo3 0} peredwod (suorpedi[dal OT) INVO-OV PUR WVH-OV ‘INVA-DV I10j dwI} Uni [ejo], :¢¥ 9[qe],

92



100000.00 HOAG-GAM  EssGAM

‘M.

Log Training Time

1Ci/Sq

G4C-25
G6C-15
glass
page

pendigits

Figure 4.5: Total Run Time of AG-GAM vs. ssGAM

cross-validation. In the AG-FAM, AG-EAM and AG-GAM cases we trained only a small
number of these networks (Pops;.. = 20 of them). Furthermore, in AG-FAM, AG-EAM
and AG-GAM cases we evolved the trained networks for at most Gen,,., = 500 gener-
ations, each evolution requiring cross-validating only the Popg;.. = 20 networks. Quite
often, the evolutionary process converged after only a few (50) generations, because a

satisfactory solution was found.

The accuracy and size advantage of AG-FAM, AG-EAM, AG-GAM compared to ss-
FAM, ssEAM and ssGAM can be attributed to the genetic optimization that it employs.
This optimization, involving the Prune and Crossover operators, allow one to construct
networks that are not attainable using the original ART training rules. Also, the op-
eration of Prune and Mutation operators were designed to guide the genetic search to
optimal solution faster, resulting in the significant computational advantages of AG-FAM,

AG-EAM, and AG-GAM compared to the semi-supervised ART architectures.
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Table 4.4: Performance of AG-FAM, AG-EAM and AG-GAM for 11 datasets

Dataset AG-FAM AG-EAM AG-GAM
Name PCC size PCC size PCC  size

1Ci/Sq 98.07 31 99.70 2 99.83 2
G4C-25 74.94 4 75.14 4 7524 4
G6C-15  84.75 6 85.01 6 84.97 6

glass 76.56 6 75.00 6 73.44 9

Iris  94.96 2 95.04 2 94.75 2

page 96.59 5 95.09 5 96.34 6
pendigits 98.20 282 98.31 331 97.83 108
pima 79.31 2 78.88 3 77.16 2

sat 88.90 310 &87.85 203 88.35 118

seg 95.86 15 93.71 128 92.71 17
wav  85.90 4 87.15 87.50 3

W

4.4.3 Comparison with Other Published Results

This section compares results obtained using the proposed AG-ART architectures to
literature results published by other authors using various classification algorithms. The
comparison was based on well known datasets that many researchers chose to test their
algorithm against. The focus is mainly on the classification accuracy as it is the case
with most published work. The proposed approach is tested with a fitness function set

to maintain high level of accuracy in the classifier. Table 4.4 lists the results obtained.

In [KBS97] the authors use the simple Bayes classifier to produce classification ac-
curacy of 85.20% on satellite, 93.12% on segmentation, 78.57% on waveform, 70.11% on
glass and 75.9% on pima. In [YAO1], the authors use a decision tree variant to produce
classification accuracy of 92% (size: 37) on segmentation, 83% (size: 65) on waveform,
60% (size 14) on glass, 75.2% (size: 3.4) on pima and 95% (size: 37) on pendigits. As it

is evident from Table 4.4 our AG-ART results consistently outperform these results.
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In [LLS00], the authors compared the accuracy and size of a 33 classifiers belonging
to the tree, statistical and neural types classifiers. Three of the datasets that Lim, Loh
and Shih have experimented with are the Satellite, the Segmentation and the Waveform
datasets that has been tested in Table 4.4. The AG-FAM results on the Satellite dataset
are: 88.9 classification accuracy, needing 310 categories (other AG-FAM solutions in-
clude: 83.6% with 6 categories, 84.5% with 14 categories). The AG-GAM results on the
Satellite dataset are 88.35 with 118 categories. The accuracy results reported on the
Satellite dataset by [LLS00] are: Minimum classification accuracy of 60% and maximum
classification accuracy of 90%. Furthermore the tree type classifiers (22 of them) created
a minimum tree size of 8, while the median tree size was 63. Finally, two of the most
celebrated decision tree algorithms, such as CART and C4.5 created tree sizes of 63 and
216. The AG-FAM results on the Segmentation dataset are: 95.86% classification accu-
racy, needing 15 categories. The accuracy results reported on the Segmentation dataset
by [LLS00] are: Minimum classification accuracy of 48% and maximum classification
accuracy of 98% (achieved by the nearest neighbor classifier, which performs no data
compression). Furthermore the tree type classifiers (22 of them) created a minimum tree
size of 6, while the median tree size was 39. Finally, two of the most celebrated decision
tree algorithms, such as CART and C4.5 created tree sizes of 69 and 42. The AG-FAM
results on the Waveform dataset are: 85.9% classification accuracy, needing 4 categories
for AG-FAM and 87.5% and 3 categories for AG-GAM. The accuracy results reported
on the Waveform dataset by [LLS00] are: Minimum classification accuracy of 52% and
maximum classification accuracy of 85%. Furthermore the tree type classifiers (22 of

them) created a minimum tree size of 3, while the median tree size was 16. Finally, two
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of the most celebrated decision tree algorithms, such as CART and C4.5 created tree

sizes of 14 and 54.

4.5 Discussion

In the previous section it was shown that the use of adaptation results in a the genetic
algorithm that is more efficient in finding optimal solutions. The claim here is that the

genetic operators used are more capable of finding solutions more quickly.

This section looks more carefully at the genetic operators and tries to quantify the
effect of adaptation on the performance of these operators. For this purpose, metrics
are defined to quantify the performance of these operators. The following metrics are

defined:

1. Operator Success Ratio: This is defined as the ratio of successful applications
of the operator to each individual over successive generations in isolation of other

operations.

2. Operator No-Fail Ratio: This is defined as the ratio of applications of the genetic

operator that did not cause deterioration in the fitness of the individual.

It is obvious that the higher the Operator success ratio the more efficient is the GA.
However, if the value is too high, the search is equivalent to a hill-climbing search that is

likely to end up at a local optima. On the other hand, a low value indicates that the GA
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is not utilizing the information gained from testing solutions in every generation, and it

becomes similar to a random search.

Table 4.5 shows the results of testing the two genetic operators: Mutate and Prune.
The results were obtained by measuring the fitness of the solution (network) before
and after each operator is applied. The success rate accounts for the percentage of
instances where the application of the operator caused an improvement in fitness. The
no-fail rate accounts for the percentage of instances where the application of the operator
did not cause a decrease in the fitness of the individual. Therefore, higher values of
the two metrics are desirable. Table 4.5 compares the performance of three different
implementations of the genetic operators. The first is the adaptive mechansim proposed
in this chapter. The second is the use of static probabilities as described in Chapter 3.
In that chapter it was found that the optimal values for the probability of deleting a
category, Pr(Catg), and the probability of mutating a category, Pr(Mut), were 0.1 and
0.4 respectively. The third case uses the settings proposed in [Al 06] where Pr(Catge) =

0.1 and Pr(Mut) = where numCats is the number of categories present in

numCats’
the network. It should be noted that the third cases does not use the implementation
proposed in [Al 06]; it uses the implementation in Chapter 3 with only the mutation
operator implemented as in [Al 06]. Also it should be noted that the experimental setup
is different than that used in the previous section. For example, the algorithms are set to
collect a number of metrics which adds a significant overhead to the run time. Table 4.5

also records the average size, which is the average size of the network in the population in

each generation. The numbers reported in Table 4.5 are a result of running 5 replications
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Table 4.5: Observed metric values for genetic operators. The reported values
are averages over five replications.
Prune Mutate No Fail No Fail Avg. Run Num.
Success Success Prune Mutate Size Time  Gens
(Mut as in [A1 06])  5.91%  2.39% 98.18% 86.25% 9.96 51.07 187.60
Puuw =04, Py =0.1  538% 16.79% 97.98% 33.34% 9.42 47.77 182.00
Adaptive 31.02% 12.84% 86.06% 54.45% 6.75 31.16 162.60

using the Gaussian dataset, G4C-25 (see Appendix B for more details). From Table 4.5,

one can make the following observations:

Going from the implementation proposed in [Al 06] to the one proposed in Chapter
3, it can be seen that the Prune (delete) operator performance was not significantly
affected. This is expected since this operator was not changed. On the other hand, the
mutation operator success ratio has significantly improved. However, the no-fail ratio

has significantly decreased. The overall training time has improved slightly.

For the adaptive implementation, it is easy to observe that there is a significant
improvement in the performance of the Prune operator. This has been achieved with
only a small sacrifice in the no-fail ratio. The mutation operator success rate is improved
over the first case, but worse than the second case. However, this improvement did
not require as a large sacrifice in the no-fail ratio. The adaptive mechanism was able
to significantly reduce the overall run time. The overall run time of the evolved ART

architectures can be expressed as follows,

7‘;‘,otal - ,-Tt’/‘aining + Tvalidation + Talg (47)
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The training time, T}, qining, 1S time required to train the initial population (using ART
training rules). The component designated as T, refers to the overall housekeeping
time for the algorithm. The validation time, T,uiidation, 1S the total time required to
estimate the classification error (on a validation set) of ART networks in the population,
in successive generations, until convergence. The validation time, T, qidation 1S dependent
on the number of generations until convergence, G.,.,, population size, A\, number of
validation examples, n,, average number of categories in each ART network, M
(taken over all generations and all networks in the population), and the time it takes to
calculate the output signal (category match function and category choice function) for a

given category and a given validation pattern , topr;

Tvalidation = Gconv * A\ x Ny * sz’ze(m) * tCMF (48)

Table 4.5 shows that the adaptive mechanism was able to significantly reduce the
average size, size(x). Also, the adaptation was also able to reduce the number of genera-
tion needed to reach convergence, G..,, by more efficiently guiding the search. Reducing

size(x) and G eonp reduces Tygridation and therefore reduces Tyopq-

Figure 4.6 shows the progress of the fitness of the best performing network as a
function of generation number. It can be easily seen that the adaptation causes faster

progress towards the optimum solution.
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Figure 4.6: Fitness as a function of generation (Gaussian dataset (G4C-25)).

4.6 Summary

This chapter introduced an improved, compared to its predecessor GART, genetically
engineered ARTMAP neural network referred to as AG-ART. Experimental results have
shown that AG-ART is at least as accurate and creates as small of an architecture as
GART, and it does so at reduced computational cost. While in GART the probability
of deleting an ART category and the probability of mutating a category were chosen
after experimentation on a limited collection of classification problems, in AG-ART an
adaptive mechanism was implemented to choose these parameters based on the database
at hand and the quality of the solution found. The AG-ART approach is not only more
elegant and more cost-effective in defining good values for the GA parameters, but after

the evolution starts AG-ART was found to be more efficient than GART.
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This chapter have also presented an extensive comparison between the AG-ART ar-
chitectures and semi-supervised ART architecture (ssFAM, ssEAM, ssGAM); these semi-
supervised ART architectures are architectures that perform very favorably compared to
other ART architectures, and quite often compared to other classification approaches.
This comparison took into consideration the classification accuracy and size of the clas-
sifier at the same time, and it was fair because these semi-supervised ART architectures
were coded and tested on the same datasets as the AG-ART architectures were tested.
The experiments reveal clearly that the AG-ART architectures are able to produce ”bet-
ter quality” classifiers than the ssART architectures, at a reduced computational cost.
The computational cost reduction was found, in a number of instances, to be significant
(more than an order of magnitude). Furthermore, the performance of AG-ART classifiers
was compared with the performance of other classifiers (non-ART based classifiers) that
have appeared in the literature; this comparison showed that AG-ART classifiers are very

competitive in terms of accuracy and size of a classifier that they produce.

In summary, this chapter introduced a new family of ART-based architectures, called
AG-ART, using an elegant evolutionary approach. The introduced architectures are able
to produce classifiers of good accuracy and small size, using a reasonable computational
budget. They also have the advantage of requiring little user intervention because the

algorithm parameters are automatically adapted.
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CHAPTER 5
EVALUATION RELAXATION

The architectures introduced in Chapter 4 were shown to achieve competitive generaliza-
tion and exceptionally small size. In addition, the genetic ART architectures described
in that chapter have the advantage of alleviating the need for tweaking algorithm pa-
rameters; a well known issue with many other ART and non-ART classifiers. A major
concern regarding these architectures, and any evolved neural network architecture in
general, is the added overhead in terms of computational time needed to produce the
finally evolved network. This chapter investigates ways of reducing this computational
overhead by reducing the computations needed for the calculation of the fitness value
of the evolved ART architectures. The results obtained in this chapter can be directly
extended to many other evolutionary neural network architectures, beyond the genetic

ART neural network architectures.

5.1 Introduction

Genetic ART starts with a population of trained ART networks, whose number of nodes
in the hidden layer and the values of the interconnection weights converging to these
nodes are fully determined (at the beginning of the evolution) by ART’s training rules.

To this initial population of networks, GA operators are applied to modify these trained
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networks (i.e., number of nodes in the hidden layer, and values of the interconnection
weights) in a way that encourages better generalization and smaller size architectures.

The pseudo-code is listed in Figure 4.1 and as a reminder in Figure 5.1 below.

P(0) « Generate-Initial-Population();
for t < 1 to Gen,,q, do
Evaluation();
if stopping criteria met then exit for;
P'(t) « Selection(P(t));
P(t) < Reproduction(P’(t));
end
return Best Network in P(t);

Figure 5.1: Pseudo-code of the AG-ART algorithm

During the Evaluation step, the genetic algorithm estimates the performance (pre-
diction error) of a solution (ART network) by measuring the classification error rate on
a validation set. It was found that the majority of the CPU time spent by the genetic
algorithm, is used for measuring the classification error (more than 80%) as shown in
Table 5.1. Therefore, techniques that can reduce this time component have the potential
of reducing the overall convergence time of the GA, when used to evolve ARTMAP NNs.

Such improvement can be effective to the viability of many evolved NN architectures.

Table 5.1 shows the allocation of CPU time for 10 replications (each row is an identical
replication using a different random number seed of the evolutionary process) for running
the Genetic ARTMAP algorithm using a sample database. It can be observed that the
majority of the time is spent during the validation of the solutions (members of the GA

population).

The overall run time of the evolved ART architectures can be expressed as follows,
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Table 5.1: Allocation of CPU time.

Total | Training Time  Validation Time Algorithm Time
Time | Seconds %  Seconds %  Seconds %
19.22 2.63 13.66 16.53  86.02 0.06 0.32
25.61 2.55 9.95 23.05 89.99 0.02 0.06
119.36 2.55 2.13 116.52  97.62 0.30 0.25
30.08 2.59 8.62 27.34  90.91 0.14 0.47
27.88 2.64 9.47 25.08 89.97 0.16 0.56
21.44 2.50 11.66 18.78  87.62 0.16 0.72
20.50 2.56 12.50 17.86  87.12 0.08 0.38
58.69 2.56 4.37 55.90 95.25 0.22 0.38
111.08 2.52 2.27 108.26  97.47 0.30 0.27
22.88 2.55 11.13 20.28  88.67 0.05 0.20
26.14 2.42 9.27 23.67  90.56 0.05 0.18
T;fotal - T;fraining + Tvalidation + Talg (5]-)

The training time, T}, qining, i time required to train the initial population (using ART
training rules). The component designated as Ty, refers to the overall housekeeping
time for the algorithm. The validation time, T,uidation, is the total time required to
estimate the classification error (on a validation set) of ART networks in the population,
in successive generations, until convergence. The validation time, T qidation 1S dependent
on the number of generations until convergence, G.,.,, population size, A\, number of
validation examples, n,, average number of categories in each ART network, M
(taken over all generations and all networks in the population), and the time it takes to
calculate the output signal (category match function and category choice function) for a

given category and a given validation pattern , topp;

Tvalidatian = Gconv * N\ % Ty * SiZ@(ZL’) *tomr (52)
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This chapter investigates reducing the validation time by reducing the number of
validation points, n,. Genetic algorithms are known for their suitability in problems
where the fitness evaluation is not reliable or noisy. The noise in estimating objectives
(such as classification error) has the effect of causing noisy selection. This in turn might
slow down the convergence or convergence to a sub-optimal solution. The noise in the
estimation of classification error might be hard to reduce, since we are limited by the data
availability. However, when a large amount of data is available for cross-validation, it
becomes time consuming to obtain an estimate for classification error using all the data.
Therefore, evaluating the classification error for a given network in a given generation
using a randomly sampled subset of the validation data might be beneficial in reducing

the convergence time.

Reducing the number of validation points used in estimating the classification error
of the produced ARTMAP solutions leads to more noisy evaluations of the GA fitness
function. However, as suggested by [FG88|, in some cases, the use of fitness estimates
with higher variance could actually increase the quality of solution obtained from the
GA for a fixed computational budget. If time is saved by making faster, but noisier,
estimates of the fitness function, then this time can be effectively used to converge to a
better solution. To make a good judgement about this approach, one must understand
the operation of GA, and how the variance of the estimate of the fitness function affects
the progress rate of finding optimal solutions. The effect of noise in GAs has been studied

by a number of researchers ([Mil97], [GDC92], [FG88], etc). Their results provide insight
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to convergence properties under noisy estimation of the fitness function. In [GDC92] the

authors present guidelines for choosing the population size.

In [Jin05] the author presents a comprehensive survey of fitness function approxima-
tion in evolutionary algorithms. Fitness approximation, also refereed to as evaluation
relaxation, is applied when the fitness function is computationally expensive, noisy, or
difficult to define and evaluate. The author identifies three levels of approximation and
refers to them as problem approximation, functional approximation and evolutionary ap-
proximation. In problem approximation, which is the approach adopted in this chapter,
the original fitness function is replaced by a less expensive but less accurate one such
as in [FG88]. In function approximation, an expression is constructed to approximate
the evaluation of the original fitness function. Evolutionary approximation are methods
that are specific to evolutionary algorithms such as fitness inheritance [SDS95|, where
the fitness value of the offspring is estimated from that of their parents. This approach
relies on surrogate functions, which are used to construct a relationship between offspring
and parent fitness values. In [SLGO6] the authors propose surrogate functions that au-
tomatically adapt to the problem structure where the structural form of the surrogate is
inferred using a probabilistic model and the coefficients of the surrogate are estimated

using a least squares method.

This chapter investigates the use of a less expensive fitness function by means of
sampling. The sample size is controlled throughout the evolution in such a way to keep
a certain level of confidence in the fitness value. This method significantly reduces the

convergence time without sacrificing performance as will be shown in the experimental
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results. The organization of the chapter is as follows: In Section 5.2 we investigate the
effect of sampling the validation set and provide an estimate for the number of validation
points that could be used in the evolution of ART neural networks. In section 5.3
we justify, experimentally, that this estimate leads us to computational savings for the
evolutionary process needed to produce AG-FAM, AG-EAM and AG-GAM. Finally, in

Section 5.4 we summarize our findings.

5.2 Sampling the Validation Set

This section investigates the possibility of using a less expensive fitness function by
means of sampling the validation data. This results in a fitness function that is faster to
evaluate, but is less accurate. When the evaluation of solutions is not reliable, the genetic
algorithm may suffer from selection error. The result of selection error is reduction in
the efficiency of the genetic algorithm and the possibility of reduction in the quality
of solutions returned. Selection error happens because the estimation of the objective
function is not accurate. The inaccuracy in the objective function estimation results in
incorrect assignment of fitness for solutions. Therefore, the selection operator proceeds in
a manner that is different than the way it would have if the objective function evaluations

were accurate.

To investigate the use of this approach to the evolution of ART architectures, a
simple experiment was conducted. We used a simulated dataset (Circle in Square with

probability of points in the circle is 30%). Since we know the optimal classifier, we set
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Table 5.2: Comparing the number of generation and CPU time for different
sizes of the validation set sample. Average taken over 10 replications.
Avg #Gens Avg Training Time

All 974 42,0174
All/2 166.2 26.4689
All/4 296.4 23.4765

All/16 326.7 7.1521

the stopping criteria of the genetic algorithm to be when the optimal solution is found.
We ran 10 replications of each experiment. Each cross-validation is performed by taking
a sample from the original validation set. In each experiment we varied the number of
points used in the cross-validation set. Table 5.2 shows the results. It can be seen that
reducing the number of validation points increases the number of generations the GA has
to run in order to find the optimal solution. When all the validation points were used,
the algorithm took about 42 seconds to find the optimal network. However, when the
validation samples were reduced to 1/16 of the original validation set, the training time
is expected to drop to about to 42/16 = 2.6 seconds. However, the GA requires about 3
times more generations to find the optimal solution when a small validation set is used.
The number of generation tripled. Therefore we adjust our estimate to 2.6 * 3 = 7.9
seconds. The results obtained shows that the actual training time is 7.2 seconds which

is approximately consistent with our prediction.

These results allow us to conclude that time can be saved by using a smaller number
of validation samples and allow the GA to run for more generations. However, sampling
reduces the accuracy of the estimate of the objective function. Therefore, using a very
small sample size might reduce the ability of the genetic algorithm to find the optimal

solution quickly due to excessive selection error. To investigate this effect, we conduct
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Figure 5.2: Training time vs. validation sample size for the Satellite dataset

experiments on two real datasets: Pendigits and Satellite (More details about these
datasets can be found in Appendix B). We experimented with different sizes of the

validation sample. We ran 10 replication of each experiment.

Figures 5.2 and 5.3 shows the results of these experiments. It should be noted that
all experiments converged to similar solution quality. It can be observed that reducing
the validation sample size produced overall savings in the training time up to a certain
limit, after which, the training time starts to increase again. This can be explained by
the fact that very small sample sizes result in estimates of the objective function that are
not reliable. Although genetic algorithm can operate effectively in noisy environments,
the existence of a large variance in the estimate of the objective function (the error rate
of an ART network) results in reducing the efficiency of the genetic algorithm in finding
optimal solutions. The variance of the estimate of the error rate on a validation set can

be given by the following equation (see [MS95], page 388):
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Figure 5.3: Training time vs. validation sample size for the Pendigits dataset

err 1 - VMerr
Var(po) = PerrlL = Perr) (5.3)

Ty

To avoid making unreliable estimates of the error rate, we propose to dynamically
vary the validation sample based on the error rate achieved by the genetic algorithm.
Our approach to determine an appropriate value for n, is to set a desired accuracy in
estimating the classification error as measured by the half-width (for example £1%) of
the confidence interval at a desired confidence level (for example 99%). This can be

estimated using equation (5.4):

Za)2

2 A o
Hal fwidth) Perr(1 = Perr) (5-4)

ny, = (
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5.3 Evaluation of The Approach

In this section we present an experimental demonstration of the ideas outlined in this
paper. In evolving neural networks, the error rate is the only (or the main) objective to
be optimized. Without loss of generality, evolution of ART networks is taken as example.
ART networks are evolved by repeatedly applying genetic operators to a population of
ART networks. In every generation the selection process determines the probability of
survival and breeding of an individual (network) based on its performance. Similar to
a number of evolved neural network architectures, the performance is measured using a
fitness function that is a linear combination of the error rate measured on the valida-
tion set and the network complexity measured in terms of the number of hidden nodes
present in that network. The claim presented in this chapter is that making a faster
but noisier estimation of the validation error might eventually achieve similar solution
quality at reduced computational cost. The fast estimation of classification error is made
by randomly sampling a subset of the available validation samples each time we need to

estimate the classification error for a given network.

The experiments presented in this section compare the genetically engineered ART
architectures introduced in the previous chapter, which use all the validation patterns
in every evaluation, and the same genetically engineered ART architectures that sample
the validation set in every evaluation, as designated by equation (5.4). The genetically
engineered ART architectures introduced in the previous chapter include three archi-
tectures: Adaptive Genetic Fuzzy ARTMAP (AG-FAM), Adaptive Genetic Ellipsoidal

ARTMAP (AG-EAM) and Adaptive Genetic Gaussian ARTMAP (AG-GAM). The re-
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sults pertaining to AG-ART without sampling the validation patterns are referred as
“AG-FAM Old”, “AG-EAM OIld”, and “AG-GAM Old”, while the results using the sam-
pling according to equation (5.4) are referred to as “AG-FAM New”, “AG-EAM New”,
and “AG-GAM New”. We have experimented with 9 databases, and more information
about these datasets can be found in Appendix B.

" architectures 10 times

For each of the 9 databases, we ran the “old” and “new’
for 10 different initial seeds of the GA optimization process. In Table 5.3 we compare
the average time (over the 10 replications) required for convergence for the “old” and
“new” architectures. It can be observed from Table 5.3 that the time saved in the “new”
implementation can reach up to 80% of time that the “old” took to converge, justifying
the merit of the proposed technique. We also record the best performance achieved
by both these implementations in Table 5.4. In this table it can be seen that both

implementations were able to converge to similar quality of solutions. Therefore, the

savings in time did not require a sacrifice in the quality of the solutions achieved.

5.4 Summary

This chapter introduces a technique that can be used to significantly improve the effi-
ciency of many evolved neural network architectures. The technique proposed capitalizes
on the ability of genetic algorithm to operate effectively in noisy environments. It was
shown experimentally that relying on faster, but noisier, estimation of classification error

during the evolution of neural networks might be beneficial to the overall computational
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Table 5.4: Comparing the performance of genetic ART with and without
sampling of the cross-validation set
Old New
AG-FAM AG-EAM AG-GAM AG-FAM AG-EAM AG-GAM
PCC size PCC size PCC size | PCC size PCC  size PCC  size

1Ci/Sq 98.07 31 99.70 2 99.83 2| 97.67 31 99.27 2 98.93 2
G4C-25  74.94 4 75.14 4 75.24 4 1 74.98 4 74.96 4 75.22 4
G6C-15  84.75 6 85.01 6 84.97 6 | 84.85 6 85.09 6 85.11 6
Iris  94.96 2 95.04 2 94.75 2 | 95.08 2 95.04 2 9494 2
page 96.59 5 95.09 5 96.34 6 | 96.56 5 95.30 5 95.56 5

pendigits 98.20 282 9831 331 97.83 108 | 97.86 276 96.97 175 97.86 129
sat  88.90 310 87.85 203 88.35 118 | 88.40 184 87.30 173 88.15 127

seg 94.86 22 93.71 128 92.71 171958 35 9443 129 91.57 13

wav  85.90 4 87.15 4 87.50 3| 84.05 4 86.60 8 87.65 4

cost of evolving neural network architectures. Some of the time saved by making fast
evaluations of the classification error of the evolved neural networks is used to allow the
evolutionary process to reach the desired level of solution quality faster, despite the fact

that more generations might be needed to achieve this goal.

The merit of the proposed technique was illustrated using genetic ART neural network
architectures. It was shown, using the technique proposed in this chapter, that significant
amount of computational time (as much as 80% in some cases) can be saved if the
GA relies on noisy calculations of the classification error but allow the GA process to
evolve over a higher number of generations. Also, the results demonstrated that this
improvement in efficiency did not affect the quality (accuracy and size) of the classifier
network produced. The claim in this chapter though is that these beneficial results would
extend to other classification problems (beyond the ones we experimented with in this
chapter) and to other neural network architectures (beyond the ART neural networks

considered in this chapter).
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CHAPTER 6

MULTIOBJECTIVE OPTIMIZATION OF ARTMAP
ARCHITECTURE

This chapter presents, the evolution of ART Neural Network architectures (classifiers)
using a multiobjective optimization approach. In particular, the use of a multiobjec-
tive evolutionary approach is proposed to evolve simultaneously the weights, as well as
the topology of three ART architectures; Fuzzy ARTMAP (FAM), Ellipsoidal ARTMAP
(EAM) and Gaussian ARTMAP (GAM). The resulting architectures are referred to as
MO-GFAM, MO-GEAM, or MO-GGAM, and collectively as MO-GART. The major ad-
vantage of MO-GART is that it produces a number of solutions for the classification
problem at hand that have different levels of merit (accuracy on unseen data (gener-
alization) and size (number of categories created)). MO-GART is shown to be more
elegant (does not require user intervention to define the network parameters), more ef-
fective (of better accuracy and smaller size), and more efficient (faster to produce the
solution networks) than other ART neural network architectures that have appeared in

the literature.
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6.1 Introduction

AG-ART, described in Chapter 4, starts with a population of trained ART networks,
whose number of nodes in the hidden layer and the values of the interconnection weights
converging to these nodes are fully determined (at the beginning of the evolution) by
ART’s training rules. To this initial population of ART networks, GA operators are
applied to modify these trained ART architectures (i.e., number of nodes in the hidden
layer, and values of the interconnection weights) in a way that encourages better general-
ization and smaller size architectures. The optimization problem set up in AG-ART has
two objectives: maximize classification accuracy on a validation set, and minimize net-
work complexity (size of the network), measured in terms of the number of hidden nodes
(categories). In AG-ART, these two objectives were combined using a weighted sum fit-
ness function. A problem with this approach is that the user has to a-priori specify their
preference of accuracy and complexity, by choosing the weights in this fitness function.
However, choosing good weights for the fitness function is a data dependent problem. To
overcome this, the user should run the algorithm for different settings of the weights in
the fitness function; an expensive proposition. Furthermore, the weighted sum approach
might not be able to reproduce all possible solutions that might be of interest to the user
(more details later in the chapter). Since genetic algorithms are population-based ap-
proaches, they are suitable in finding multiple solutions if an appropriate multiobjective

evolutionary algorithm (MOEA) is used.

The organization of the chapter is as follows: In the next section a review of the

different MOEA’s introduced in the literature is presented. In Section 6.4 the proposed
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MO-GART algorithm is discussed. In Section 6.5 the performance of MO-GART is eval-
uated and compared with AG-ART and three other ART architectures: ssFAM, ssEAM

and ssGAM (see [ABGO03]). Finally, Section 6.6, summarizes this chapter’s findings.

6.2 Multiobjective Evolutionary Algorithms

Many real world problems involve simultaneous optimization of conflicting objectives.
This is the basic challenge of multiobjective optimization research. Evolutionary algo-
rithms have been used extensively to solve multiobjective optimization problems, result-
ing in a body of knowledge known as multiobjective evolutionary algorithms (MOEA).
This discipline resulted from the marriage of two disciplines: evolutionary computa-
tion and multi-criteria decision making. A number of authors have published surveys of
MOEA, such as [Coe00], [Coe06], and the reader can find more details about MOEA’s

there.

With conflicting multiple objectives, there is no single optimal solution, but rather,
there are a set of good solutions with varying degrees of merit. It is often desirable to find
these good solutions as they provide alternative solutions to the problem at hand. As
the desired solution may not be clear before hand, the availability of what is achievable
allows the decision maker to choose appropriate solution to the problem after he/she gets
a chance to review the list of available solutions and their respective merits. Also, when
design constraints are changed and one solution becomes infeasible these other optimal

solutions provide handy alternatives. For example, when one design may be too expensive
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to implement, other lower cost designs become attractive alternatives. Evolutionary
algorithms (EAs) are suitable for solving multiobjective optimization problems because
EAs are population based search algorithm, and as such they can find, in a single run,
multiple good solutions on the surface defined by the multiple objectives that are to be

optimized.
Formally, the the multiobjective optimization problem can be stated as follows:

Optimize the vector function f(x) of L objectives, by finding solution x*, where:

fla®) = [fu(z"), fo(@®), . fula®)]" (6.1)

and x* is a vector representing the input decision variables for the problem, and:

zt e F (6.2)

where F' is the feasible region in the solution space. Therefore, we want to find a solution
in the feasible space that results in values of the vector function f that are acceptable to
the user. The set of functions f;(z), fo(z), ... are usually of conflicting nature. In other
words, it is very rare to find a single solution that optimizes all the functions simulta-
neously. Therefore, several solutions may exit that optimize one or more objectives, or
provide a unique tradeoff between the objectives. The minimum set of such optimal solu-
tions is called the set of nondominated solutions, or the Pareto-optimal set. A solution is

considered Pareto-optimal if there exists no other feasible solution which would decrease
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some objective without causing a simultaneous increase in at least one other objective

(assuming that we are trying to minimize the objectives).

Formally, a solution z* € F'is said to be nondominated if there exist no other solution

x € F such that,

Vi: fi(x) < fi(z*),i=1,2,..Land,Ji : fi(z) < fi(z") (6.3)

A Pareto-optimal solution is the solution that is not dominated by any other solution
in the search space. The entire set of such optimal tradeoff solutions is often referred to

as the Pareto front.

The main focus in MOEA research is to minimize the distance of the generated
solutions to the true Pareto set and to maximize the diversity of the discovered Pareto set.
A good Pareto set may be obtained by appropriate guiding of the search process through
careful design of selection operator and fitness assignment strategies. Special care is
also taken to prevent non-dominated solutions from being eliminated in the evolutionary

process.

Multiobjective optimization using Genetic Algorithms follows the same general pro-

cedure (as single objective optimization), that is listed below:

Generate-Initial-Population();
repeat
Selection();

Reproduction();
until maz number of generations reached ;

return Pareto-Optimal Solutions;

Figure 6.1: Pseudo-code of a basic multiobjective Genetic Algorithm
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The main challenge concerning multiobjective optimization using GA’s is the imple-
mentation of the selection operator; that is, how to evaluate and compare solutions in

the presence of multiple objectives.

6.3 Selection in the Presence of Multiple Objectives

The selection operator (in single and multiobjective optimization problems) determines
the solutions that will be selected for the reproduction of the next generation. The selec-
tion operation emphasizes fit individuals in the population by giving them a higher chance
to breed. The selection scheme should emphasize the characteristics of good solutions in
order for the evolutionary process to produce better solutions in successive generations.
In the presence of multiple objectives, the determination of “better solutions” is not as
straight forward as it is in the single objective case. In review, the objective of the se-
lection operation in a multi-objective problem is to lead the evolutionary process to a
set of optimal solutions, rather than one optimal solution as in the case of single objec-
tive problems. This section outlines some of the selection schemes devised by different

researchers in the field.

6.3.1 Objective Aggregation

One of the simplest approaches for dealing with a multiobjective problem is to convert

the problem into a single objective problem. This is done by implementing a mechanism
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that combines the multiple objectives into a single objective. These approaches try to
converge to a specific point on the Pareto front. Therefore the combining mechanism
determines the relative importance of the objectives. In these methods, to generate the
entire Pareto front, the user must perform multiple runs and vary the conditions of the
combining mechanism. The simplest method for combining the objectives is the weighted

sum approach. This can be expressed as follows:

fit(z) = Z w; fi(x) (6.4)

having,

iwi =1 (6.5)

where L denotes the number of objectives and f;(z) denotes the i-th objective function.
This is the approach that was adopted in AG-ART. It follows immediately that the
solution that optimizes fit(x) is a Pareto optimal point, since if not, then there must
exist a feasible x which improves on at least one of the objectives without compromising
the others and hence produces a smaller value of the weighted sum. It is necessary to
scale or normalize the objectives before using equation (6.4) to avoid having one objective
dominate the others. This requires knowledge of the range of each objective, which is

knowledge that might not be available for many real world applications.

The difficulty with this approach is determining the appropriate weights. In this

case, any optimal point obtained will be a function of the coefficients used to combine
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the objectives. Most researchers generate the Pareto front by varying the weights. This
approach is very simple and easy to implement. However, in addition to being compu-
tationally costly, it has two serious drawbacks. The first drawback is that this scheme
is not able to generate the non-convex regions of the Pareto front for any combination
of the weights. This has been pointed out by a number of researchers, such as [Coe00]
and [DD97]. The second drawback is that the solutions, selected by evenly varying the
weights, are not guaranteed to be evenly distributed on the Pareto front. This becomes
more important when the fitness function is used to determine the selection probability,
in which case the probability of selection will vary across the Pareto front solutions based
on the shape of the Pareto front. This drawback results in a poor coverage of the Pareto

solutions found.

To show why this happens, a graphical illustration is used for a two-objective problem.

This problem can be stated as follows:

minfit(e) = afi(z) + (1 - a) fo(a) (6.6)

where, o € [0,1.0] , fi(z) € [0,1.0] and fo(z) € [0,1.0]. Figure 6.2 illustrate a convex

Pareto front for this problem.

Equation (6.6) can be reorganized as follows to describe an equation for a line that
defines a set of solutions for a given value of a. The line has a slope that depends on
the value of a. To choose a solution, this line shifts parallel to itself until it touches the

Pareto front, while minimizing the value of fit(z). As can be seen in Figure 6.3, varying
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Figure 6.2: Convex Pareto front for a two-objective problem

the value of « causes the fitness function to choose different Pareto solutions. By varying

a we are able to produce all solutions of this convex Pareto front.

fo(x) = fitle) _a fi(x) (6.7)

Cl-a 11—«

In other words, the solution chosen is where the line is tangent to the Pareto front.
The slope of the line is dependent of ««. The slope of the point chosen at the Pareto front
is therefore dependent on the value of «.

dfa(x) a

@) 1-a (68)

Figure 6.4 shows the Pareto front with three points on it A, B and C. A solution is
chosen by shifting a line, whose slope depends on the value of «, parallel to it itself until
it touches the Pareto front, while minimizing the value of fit(x). Figure 6.4 shows 3 lines
for 3 different values of the weight o. However, as shown in Figure 6.4, it is not possible

for this fitness function to choose point B as the line tangent to the Pareto front at point
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Figure 6.3: Solutions selected on the convex Pareto front
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Figure 6.4: Solution selected on a Pareto front with concavity
Pareto front and lines corresponding to different values of the weight, o. The fitness
function cannot select points in the concave region for any value of the .

B does not minimize fit(x). Therefore, for any weight combination, this fitness function

will not be able to choose point B.

The second problem is illustrated in Figure 6.5, where it can be easily seen that

uniformly varying the slope of the line will cause the selection of points to be concentrated

in region where the second derivative of the Pareto front Z;ffgg is largest.

There are other methods that aggregate the objectives into a scalar fitness function.

We list here briefly some of these methods:
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Figure 6.5: The distribution of solutions on the Pareto front
The Distribution will be dependent on the weight, a. Running the GA for uniformly
separated values of o does not necessarily find uniformly distributed solutions ont the
Pareto front. Solutions will be concentrated around parts where the slope is changing
the fastest.

e Weighted goal programming. This method defines the fitness function as the sum

of the deviations of the objective functions from target values as follows:

fit(x) = Zwi|fi<x> — T (6.9)

Where T; is the target value for objective ¢ and n is usually set at 1.

e Lexicographic Ordering. In this method, the designer ranks the objectives in order
of importance. The optimum solution is then obtained by minimizing the objec-
tive functions, starting with the most important and proceeding according to the

assigned order of importance.

e Weighted Min-Max Approach. This method compares relative deviations from
separately attainable optima. It tries to find a solution that gives the smallest

values of the relative deviations from optima of all the objective functions. In other
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words, it tries to minimize the maximum deviation from the optimum of any of the

objectives. The weighting allows incorporating preference in the selection process.

6.3.2 Early Multiobjective Approaches

The aggregation of objective causes the evolutionary process to move the population to-
wards a single point on the Pareto front. The more recent research in multiple-objective
optimization avoids combining the objectives into a single objective. Rather, they treat
the objectives separately, and solutions are evaluated with respect to each one of the
objectives at every generation. Therefore, these approaches are more suited for finding
multiple Pareto solutions. These approaches do not normally require a mechanism that
determines the relative importance of objectives. The aggregation methods of selection,
mentioned above, are often referred to as a-priori methods because they normally in-
corporate preference before hand. Alternatively, the methods that attempt to produce
the whole Pareto front and give the option to the user to decide from a set of optimal

solutions are referred to as a-posteriori methods.

One early example of the a-posteriori method is the pioneering work of Schaffer [Sch85]
where Vector Evaluated Genetic Algorithm (VEGA) was introduced. In VEGA, the
selection step generates a number of sub-populations by performing proportional selection
according to each objective in turn. Then these sub-populations are combined to obtain

a new population, on which the genetic operators, crossover and mutation, are applied.
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Figure 6.6: Speciation in a two objectives optimization problem

VEGA has a major drawback which is that its selection scheme is biased towards
some Pareto optimal solutions. If, for example, there is an individual that encodes a
good compromise solution for all the objectives, but it is not the best in any of them, it
will be discarded. However, that individual should really be preserved because it encodes
a Pareto-optimal solution. Due to its selection mechanism, the population in VEGA
tends to split into different groups of individuals, referred to as species, each of them
particularly strong in one of the objectives. Schaffer called this effect speciation. The

effect of speciation is undesirable because it results in poor coverage of the Pareto front.

Another approach was devised by Hajela and Lin [HL92] that used the weighted-sum
method for fitness assignment. Each objective is assigned a weight, where the weights are
not fixed but rather encoded in the genotype. The diversity of the weight combinations
is promoted by phenotypic fitness sharing. As a consequence, the EA evolves solutions

and weight combinations simultaneously.
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6.3.3 Pareto-based Ranking

Some authors suggested ranking of solutions based on their Pareto optimality as a method
to minimize the problems observed in VEGA, in which the GA converges to a subset of
the Pareto front. In this scheme, Pareto optimal solutions are equally assigned the high-
est fitness, and therefore, they have increased chance of survival and breeding. The rest
of the population is assigned fitness values that depend on their closeness to the Pareto
front. This idea was initially suggest by [Gol89] and later implemented (sometimes with
modifications) by several authors. In [Gol89], the author suggests finding the set of
solutions in the population that are Pareto nondominated by the rest of the popula-
tion. These individuals are then assigned the highest rank and eliminated from further
contention. Another set of Pareto nondominated individuals are determined from the
remaining population and are assigned the next highest rank. This process continues

until the population is suitably ranked (see Figure 6.7).

This ranking scheme was found to be O(\*) where A denotes the population size.
In addition this ranking scheme requires another mechanism to differentiate between
solutions in the same rank based on crowdedness of the region they are located at. This
is important to ensure diversity. Some of these mechanisms are discussed later.

In [FF93] the authors suggest a modified scheme than the one suggested by [Gol89]
for implementing the Multiobjective Genetic Algorithm (MOGA). In MOGA, the rank of
a certain individual corresponds to the number of chromosomes in the current population
by which it is dominated. For an individual x at generation ¢t which is dominated by

p(t) individuals in the current population, the individual’s rank is given by rank(x,t) =
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Figure 6.7: Pareto Ranking

1 4+ p(t). The authors combine this ranking technique with fitness sharing (discussed

later) to improve diversity of solutions.

In [HNG] the authors use a tournament selection scheme based on Pareto dominance
in their implementation of Niched-Pareto Genetic Algorithm (NPGA). Two random in-
dividuals are picked from the population for selecting a winner in a tournament selec-
tion. The two individuals are compared to a randomly selected comparison set. If one
solution is nondominated by the comparison set while the other is dominated, the non-
dominated solution wins the tournament. If both competitors are either dominated or
non-dominated, a niche count is found for each individual in the entire population. The
niche count is calculated by simply counting the number of solutions in the population
within a certain distance from an individual. The individual with least niche count is

selected.

Also, based on Goldgerg’s suggestion [Gol89], Srinivas introduced a genetic algorithm
referred to as Non-dominated Sorting Genetic Algorithm (NSGA) [SD94]. The selection
in NSGA is based on a ranking procedure where all nondominated individuals are clas-

sified into one category and given a large dummy fitness value. The fitness value is then
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shared between individuals in this category. Sharing is achieved by degrading fitness
values by dividing the original fitness value of an individual by a quantity proportional
to the number of individuals around it. Then this group of classified individuals is ig-
nored and another layer of nondominated individuals is considered. These individuals
are given equal fitness value that is kept smaller than the minimum given, after sharing,
for the previous group. This process continues until the whole population is classified.

This ranking procedure is referred to as nondominated ranking.

In a similar fashion, as a successor to NPGA [HNG], Erickson introduced a revised
version referred to as Niched Pareto Genetic Algorithm 2 (NPGA 2) [EMHO1]. This al-
gorithm uses Pareto ranking but keeps tournament selection (solving ties through fitness
sharing as in the original NPGA). Niche counts in the NPGA 2 are calculated using indi-

viduals in the partially filled next generation, rather than using the current generation.

6.3.4 Diversity Preserving Mechanisms in Multimodal Optimization

The success of a genetic algorithm in finding good optimal solutions depends on the
ability to preserve diversity of the population. Maintaining a high level of diversity
means that the GA is better covering the solution space, and therefore, is more likely to
find global optima. Diversity is an important issue for single-objective problems, but is
especially important for the multiobjective case, because in the later we are looking for,

not one, but a set of optimum solutions.
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Figure 6.8: Genetic drift problem
It has been pointed out in the literature that GAs tend to converge to single solution
[DG89] due to the accumulation of stochastic errors associated with its genetic operators

when using a finite population. This phenomenon is sometimes referred to as genetic

drift.

In MOEA this can be explained as follows: when the number of individuals at a certain
region in the objective space (referred to as niche) increases, they tend to produce more
copies during the next selection and reproduction cycle. This would in turn lead to an
even further increase of the individuals in that niche. Therefore, a self-perpetuating effect
keeps accumulating individuals of a particular niche one generation after another leading
to convergence at one point on the Pareto front. To counter this issue, researchers devised
a number of techniques such as fitness sharing, crowding and other mating restriction
techniques. Most MOEAs discussed so far implement a form of the mechanisms described

below to preserve diversity:

e Fitness sharing: To help maintain the diversity in the population and avoid the
effect of genetic drift, fitness sharing was introduced by Goldgerg [GR87]. The

sharing mechanism penalize the individuals based on the number of individuals
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that are in close proximity. It was based on the theory that organisms in a common
niche will compete for the same amount of resource, and as a result the amount
of resource which each organism can get will be reduced by the existence of other
organisms in the same niche. In [GR87], the author suggests implementing sharing

defined by the following sharing function:

Bldig) = 1 — —29 (6.10)

O share

if d;j < Oshare, Otherwise ¢(d;;) = 0. And the fitness of each individual is updated

as follows:

Fit(i)

fit (i) = S o(dyy)

(6.11)

where o4qre 1S the niche radius and M is the number of solutions within same niche
as solution 7. Implementing such a mechanism requires the calculation of distance,

d;j, between individuals. This has been done in the input variable domain (see

i
[SD94]) and the objective functions domain (see [FF93]). The individuals are said
to be in the same niche if they are located within a certain distance referred to
as the niche radius o4,4... A number of authors proposed theoretical methods for
estimating the niche radius (see [FF93|). The main problem with sharing is that it

requires the specification of a sharing radius, osqere, Wwhich is a problem dependent

parameter.
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e Crowding: Crowding is a mechanism in which after a new chromosome is created,
one old chromosome in the population, which is most similar to the new chromosome
is chosen to be replaced, where similarity is based on the genotypical distance (see

[Coe00]).

e Mating restriction: To avoid excessive competition between distant individuals as
the population distributes itself around multiple regions of optimality Goldberg
[Gol89] suggested the use of mating restrictions, where mating is allowed only lo-
cally. Since different regions of optimality on the tradeoff surface may be very
different genotypically [FF95], mating of individuals that are different in the ob-
jective space may be less likely to produce good offsprings. Therefore, enforcing
local mating can be argued to allow creation of more stable niches, and eventually
more efficient search. This technique is said to preserve diversity by encouraging
the formation of stable sub-populations, referred to as niches. Each sub-population

is superior in a certain tradeoff aspect of the problem.

More recent MOEAs avoid the implementation of a separate diversity preserving
mechanism. Instead, the fitness assignment strategy is adjusted to penalize crowded
regions. The more recent MOEAs have also been characterized by the use of Pareto

elitism. These MOEAs are discussed below.
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6.3.5 Pareto Elitism

Elitism is a selection mechanism that aims at preserving good performance over successive
generations. In multiobjective optimization, elitism refers to preserving nondominated
solutions found along the evolutionary process. Elitism has been adopted in the more
recent MOEA research. According to [ZT99], elitism can speed up the performance of
the GA significantly, and also can help preventing the loss of good solutions once they

are found.

In [IM96], the authors use a random weighted sum approach (with elitism) to produce
the Pareto front. The weights are generated randomly each time an individual is selected.
Therefore, in every generation, selection pressure is applied in multiple directions towards
the Pareto front. The nondominated set of solutions is stored externally and updated

every generation.

SPEA (Strength Pareto Evolutionary Algorithm) introduced by Zitzler and Thiele in
[ZT99], implements Pareto-elitism by storing nondominated solutions in an externally
maintained archive. As in MOGA the fitness of an individual depends on the number of
solutions that dominates it. However, in SPEA, for each individual in the external set,
a strength value is computed. This strength is proportional to the number of solutions
a certain individual dominates. The fitness of each member of the current population
is then computed as the sum of the strengths of all external non-dominated solutions
that dominate it. Specifically, the chromosomes in the archive A and population P are
assigned fitness values based on dominance relationship. In archive A, the fitness is

assigned as follows:
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P
Fita(z) = W, reA (6.12)

That is, the fitness of a solution = in A is the number of solutions in P that x
dominates, divided by the number of solutions in P. The fitness of solutions in P is

assigned as follows:

Fitp(y) =1+ > Fits(z),y € P (6.13)

That is, the fitness of solution y in P is 1 plus the sum of the fitness of all solutions

in A that dominate solution .

The mechanism of such a fitness assignment mechanism automatically penalizes crowded
solution regions and serves as a mechanism of encouraging diversity in the Pareto set with-
out the need to specifying other parameters (such as those related to the fitness sharing
mechanism). A clustering technique is implemented to keep the size of the external

archive small.

In [ZLTO01] a revised version of SPEA is introduced, referred to as SPEA2. The
revised version incorporates a fine-grained fitness assignment strategy which takes into
account for each individual the number of individuals that dominate it and the number
of individuals by which it is dominated. It uses a nearest neighbor density estimation
technique which guides the search more efficiently, and it has an enhanced archive trun-
cation method that guarantees the preservation of boundary solutions. In particular,

each individual is assigned a strength value that is equal to the number of solutions it
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dominates. After that, a raw fitness, R(z), is assigned for each individual to be the sum
of the strengths of all its dominators in both A and P. The raw fitness is then adjusted
as follows. For each individual, x, the distance, in objective space, to the k-th nearest
neighbor is found and denoted as o (x). The value of k is chosen to be the square root of
the sum of the size of the archive and population. The fitness of each individual is then

calculated using the following equation:

1

Fit(x) = R(z) + P

(6.14)

The Non-dominated Sorting Genetic Algorithm IT (NSGA-II) [DAP], [DPA02] was
introduced as a revised successor to the original NSGA [SD94]. The authors present a
more efficient algorithm that uses elitism and a crowded comparison operator that keeps
diversity without the need to specify a sharing parameter. Its elitist mechanism consists

of combining the best parents with the best offspring obtained.

In [FESO03] the authors points out to the problem of using an elite archive of fixed
size. It is shown that limiting the size of the elite archive can produce "retreating”
or "oscillating” estimates of the Pareto front. This happens as the archive is truncated
when its size exceeds the limit and then new solutions are added that might be dominated
by solutions that were eliminated during the truncation process. Therefore, the authors
recommend keeping all nondominated solutions found during the evolutionary search. To
speedup processing of large number of nondominated individuals, a tree data structure

is introduced and used for fast searches, additions and deletion to the archive.
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MO-GART adopts a fitness assignment that is similar to the one introduced in SPEA2
[ZLTO01]. Also, as is the case for a number of previously proposed multiobjective evolu-
tionary approaches, an external elitist archive of continuously updated Pareto solutions
is maintained. The size of the external archive is not fixed and the truncation procedure
suggested in SPEA2 is not used. In our implementation, we use a mechanism that en-
sures that boundary solutions (best solutions in each objective) are always selected as
parents for the next generation. This technique was suggested in [FES03] and was found

to be effective in improving the efficiency of MO-GART.

6.4 Multiobjective Evolutionary ART Architectures

This section proposes a multiobjective approach for evolving ART architectures. The re-
sulting architectures are collectively referred to as MO-GART. MO-GART uses a multiob-
jective evolutionary approach to find networks that achieve Pareto-optimal performance
in terms of two objectives: minimizing classification error and minimizing complexity
(size) of the ARTMAP classifier. MO-GART operates by applying, repeatedly, genetic
operators on an initial population of trained ART networks. The pseudo-code of the

basic steps of MO-GART is shown in Figure 6.9.

The main difference between AG-ART introduced in Chapter 4 and MO-GART is the
selection operator. In AG-ART the selection operator bases the selection of parents using
a fitness function that combines the two objectives using a weighted sum. In MO-GART

selection is based on Pareto optimality and therefore MO-GART is capable of finding
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P(0) « Generate-Initial-Population();
A(0) « Initialize-Empty-Archive();
for t — 1 to Gen,,q, do
Evaluation();
Update-Archive(P(t), A(t));
if stopping criteria met then exit for;
P'(t) « Selection(P(t), A(t));
P(t) < Reproduction(P’(t));
end
return A(¢);

Figure 6.9: Pseudo-code of MO-GART Algorithm

multiple solutions on the Pareto front, in one run. Also, MO-GART uses a continuously

updated Pareto archive where the Pareto solutions found so far are stored.

The algorithm starts by generating an initial population, P(0), of ARTMAP networks
(FAM, EAM or GAM), each one of them trained with a different value of the baseline
vigilance parameter p,, and order of training pattern presentation. The networks are
encoded into chromosomes in similar fashion as AG-ART, where each component (gene)
represents a category (hidden node) of an ART network. Each component contains the
weight information for the category. The chromosomes in MO-GART are variable length,
where the length is equal to the number of categories in the network represented by the

chromosome (see Figures 3.12, 3.13, 3.14).

Also, MO-GART initializes an empty secondary population, A(0), that will be used
to store nondominated solutions found during the evolution. In each generation, each
solution in the population is evaluated according to each objective function. That is, the
error rate of each ARTMAP network is evaluated by running it against a validation set.

The second objective, complexity, is represented by the number of categories present in
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each network. Once networks in population P are evaluated, the archive A is updated by
adding to it the solutions in P that are nondominated by solutions in A. Also, solutions
in A that are now dominated by solutions just added from P, are removed from the

archive A. This mechanism ensures elitism.

The algorithm runs for a maximum number of generations defined by Gen,,q,. How-
ever, to avoid running MO-GART for an unnecessarily large number of generations, the
evolution is also stopped when the archive A is not updated for 10 consecutive genera-

tions.

The selection process creates a temporary population P’ where the parent chromo-
somes used to create the next generation are selected. The chromosomes in the archive
A and population P are assigned fitness values based on a dominance relationship. In
this scheme each individual is assigned a strength value that is equal to the number of
solutions it dominates. After that, a raw fitness, R(x), is assigned for each individual
to be the sum of the strengths of all its dominators in both A and P. The raw fitness
is then adjusted as follows. For each individual, z, the distance, in objective space, to
the k-th nearest neighbor is found and denoted as o (z). The value of k is chosen to be
the square root of the sum of the size of the archive and population. The fitness of each

individual is then calculated using the following equation:

1
ak—|—2

Fit(z) = R(z) + (6.15)

The parents are then chosen using a deterministic binary tournament selection with

replacement, as follows: For each parent, randomly select two chromosomes from the

139



combined set of A and P, and choose, the chromosome with the smallest fitness value.
Boundary solutions, which are networks with smallest error rate and smallest size, are

ensured to be copied in the set of parents.

Once the selection step determines the parents, reproduction operators are used to
create individuals for the next generation, as described in Section 4.3. The chromosomes
in P(t) are then replaced by chromosomes created by performing crossing over pairs of

parents in P'(t).

As mentioned above, the evolutionary process continues until one (of the two) stop-
ping criterion is triggered. MO-GART does not return a single trained ART classifier,
but rather, a number of ART classifiers that were present in the archive A at the last
generation of the evolutionary process. These classifiers have achieved varying levels of
accuracy and complexity. These alternatives are then presented to the user to make
the final decision of choosing one (or more) of these classifiers. For example, if the user
is mostly interested in accuracy, then the network that produced the best accuracy is

chosen.

6.5 Evaluation of The Approach

In this section MO-GART’s performance is compared to that of other popular ART ar-
chitectures. The objective of this comparison is not to compare different multiobjective
evolutionary approaches; rather, the objective here is to compare the accuracy and size

of several neural network architectures against the one proposed. In particular, MO-
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GART’s performance is compared to that of other popular ART architectures, which
have been proposed in the literature with the intent of addressing the category prolif-
eration problem, such as ssFAM, ssEAM, and ssGAM. This section also compares the
performance of MO-GART to the previously introduced genetic ART architectures (AG-
ART) that did not use a multiobjective evolutionary approach. In the AG-ART case, the
Pareto front is produced by varying the weight in the fitness function. The experiments
were conducted on 11 datasets. More information about these datasets can be found in

Appendix B.

Since in this work we are not only focusing on generalization performance, but also on
the size (complexity) of the network produced, it becomes more complicated to compare
and rank networks. To provide a fair comparison, a comparison approach that considers
the two objectives simultaneously is used. Since the existence of the two, sometimes
competing, objectives result in multiple good solutions rather than one “best” solution,
in this comparison, multiple solutions are assessed (sets of solutions) produced by the dif-
ferent algorithms, under consideration. In other words, for each classification algorithm,
a number of classifiers are produced that have attained the two objectives (good gener-
alization and small size) at different levels of success. Then the non-dominated solutions
are chosen. As discussed earlier, a non-dominated solution is defined to be a network,
where no other network achieves better generalization utilizing equal or smaller number
of categories. The comparison between algorithms is then based on the quality of the
non-dominated set that was produced by each algorithm. The comparison also includes

the time it takes each algorithm to produce the non-dominated set of solution networks.

141



Experiments were conducted for the three MO-GART architectures: MO-GFAM,
MO-GEAM, and MO-GGAM for each of the 11 databases. The average computation
time in seconds (over 10 replications) needed to produce the solutions, is referred to as

the Total Run Time, and reported in Tables 6.2 and 6.4.

6.5.1 Comparison with ssART

For each of the ssFAM, ssEAM, and ssGAM, and for each of the 11 databases, a number of
experiments were performed with different settings of their network parameter values. In
particular, 1,800 different parameter settings were considered for ssFAM, 6,480 different
parameter settings for ssEAM and 6,000 different parameter settings for ssGAM. It should
be emphasized that the parameter ranges used were determined based on experience of
what are good parameter settings for these ART networks. The parameter settings were
chosen to provide varying levels of accuracy and complexity in these networks. Solutions
that are Pareto-optimal with respect to those two objective were finally chosen. The
total computation time required to obtain these network solutions for each database and
each method, which is the sum of training and validation CPU times in seconds for all

the tried settings, is reported in Table 6.2, and referred to as the Total Run Time.

A one-to-one comparison of the results reported in Table 6.2 reveals that the Total
Run Time of the MO-GART networks is smaller, in most instances an order of magnitude
smaller than the Total Run Time of their corresponding counterparts, ssART networks.

To compare the generalization performance of MO-GFAM and ssFAM, MO-GEAM and
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ssEAM, and finally MO-GGAM and ssGAM a metric that compares the network solutions
obtained by the ss-network (for all different parameter settings) and the network solutions
obtained by the MO-GART is used. This metric has been used before in similar situations

(see [Z2T99]). This metric is defined as follows:

be B:Ja€ A b= d
| B

C(A,B) = (6.16)

This metric measures the fraction of members in set B that are dominated by at least
one member in set A. Therefore, C'(A, B) = 1 means all members in B are dominated
by members in A. In this case the approach that produced set A is a clear winner. It is

obvious that C'(B, A) must also be considered in order to properly compare the two sets.

Since the calculated values of C(A, B) and C(B, A) are dependent on the seed used
to evolve the population of FAMs, EAMs and GAMs in the MO-GART approach, net-
work solutions were produced by changing the seed 10 times. Consequently, 10 different
values of the C metric were produced for each comparison pair. Table 6.1 compares
the average values (over the 10 replications) of C(MO-GFAM, ssFAM) versus C(ssFAM,
MO-GFAM), and C(MO-GEAM, ssEAM), versus C(ssEAM, MO-GEAM), and C(MO-
GGAM, ssGAM) versus C(ssGAM, MO-GGAM). 1t is obvious from the table that the
average values of C(MO-GFAM, ssFAM) are larger than C(ssFAM, MO-GFAM) val-
ues, which indicates that networks produced by MO-GFAM are more likely to dominate
networks produced by ssFAM, and therefore, the networks produced by MO-GFAM are
expected to be of higher quality. Similar conclusions can be drawn for MO-GEAM versus

ssEAM and MO-GGAM versus ssGAM. This result is expected since MO-GART uses
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a multiobjective approach that is designed to produce a high quality Pareto front. To
provide a fair comparison, the performance of the most accurate networks is shown in
Tables 6.5, 6.6 and 6.7. As it can be easily seen, the MO-GART networks were able to
consistently find more accurate networks using, in most instances, much smaller network

sizes.

6.5.2 Comparison with AG-ART

For AG-ART it is not possible to produce the nondominated solutions in one run. Rather,
it is necessary to run the algorithm multiple times to produce the different nondominated
solutions. This was done by running AG-ART using five different settings for the fitness
weight. This process is repeated 10 times to account for the stochasticity of the genetic
algorithm. The average time it took to produce 1 set of nondominated solutions is
reported in Table 6.4, and referred to as the Total Run Time. The result in Table 6.3
shows an advantage of MO-GART over AG-ART in terms of solution quality. Also, a one-
to-one comparison of the results reported in Table 6.4 reveals that the Total Run Time
of the MO-GART networks is smaller than the Total Run Time of their corresponding
counterparts, AG-ART networks. Tables 6.5, 6.6 and 6.7 compares the most accurate
network obtained from MO-GART and AG-ART. As it can be seen, MO-GART in most
cases was able to find a better solutions than AG-ART. Therefore, achieving better

solution quality at a lower computational cost, in addition to producing multiple optimal
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solutions at once; justifying the proposed approach of using a multiobjective approach

to evolve ART architectures.

6.6 Summary

This chapter introduced a multiobjective evolutionary approach to optimize ARTMAP
neural networks in terms of two objectives: classification accuracy (higher is better) and
classifier complexity (smaller is better). In particular, a MOEA is applied to optimize
the performance of three well known ART architectures: Fuzzy ARTMAP, Ellipsoidal
ARTMAP, and Gaussian ARTMAP. The resulting architectures are referred to as MO-

GFAM, MO-GEAM and MO-GGAM, and collectively as MO-GART.

The MO-GART approach presents a solution to the category proliferation problem
in ART. Other approaches to solve the category proliferation problem in ART have been
proposed before, such as the semi-supervised ART (ssART) approach (ssFAM, ssEAM,
and ssGAM). An extensive comparison of MO-GART and the ssART approach concluded
that the MO-GART approach is more elegant (does not require tweaking of the ART
network parameters), more effective (produces higher accuracy and smaller size network
solutions), and more efficient (faster) than the ssART approach. The results, presented
in Tables 6.1 and 6.2, indicate that MO-GART offers clear advantages compared to
ssART; it is worth noting that ssART is a class of well performing ART classifiers that
compares very favorably with other ART and non-ART classifiers. The advantage of

MO-GART compared to AG-ART is that MO-GART focuses on two objectives at once.
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Table 6.5: Most accurate networks and their sizes: FAM
MO-GFAM AG-FAM ssFAM
PCC Size PCC Size PCC Size
1Ci/Sq  97.97 31  98.07 31  98.10 78
G4C-25 76.00 4  74.94 4 74.22 4

G6C-15  84.59 6 84.75 6 82.49 9
glass  76.56 6 76.56 6 73.44 7

Iris  95.19 2 94.96 2 94.56 2

page 96.45 5 95.59 6 94.77 6
pendigits 98.27 271 98.20 282 97.14 66
pima 82.67 2 79.31 4 T73.28 4

sat  89.12 175 88.90 310 84.20 51
seg  95.43 25 94.86 22 94.14 32
wav  86.30 3 85.90 4 75.65 16

Table 6.6: Most accurate networks and their sizes: EAM

MO-GEAM  AG-EAM ssEAM
PCC Size PCC Size PCC Size
1Ci/Sq 99.76 2 99.70 2 9740 99
G4C-25  75.54 4 75.14 4 73.90 4
G6C-15  84.69 6 85.01 6 83.23 24
glass 75.31 6 75.00 6 73.44 17
Iris  95.24 2 95.04 2  94.65 2
page 96.40 5 95.09 5 94.44 24
pendigits 98.90 331 98.31 331 96.60 179
pima 83.33 4 78.88 3  75.00 6
sat 88.34 198 87.85 203 85.50 141

seg  93.86 52 93.71 128 91.57 83
wav  86.35 5 87.15 79.80 12

=

Table 6.7: Most accurate networks and their sizes: GAM
MO-GGAM AG-GAM ssGAM
PCC Size PCC Size PCC Size

1Ci/Sq  99.80 2 99.83 2 94.63 26
G4C-25  75.92 4 75.24 4 T74.84 23
G6C-15  85.17 6 84.97 6 85.07 20

glass  76.00 8 73.44 9 68.75 14

Iris  94.90 2 94.75 2 95.21 7

page 96.38 5 96.34 6 94.52 7
pendigits  98.10 88 97.83 108 97.43 87
pima 82.67 2 76.72 2 7241 3

sat  88.75 106 88.35 118 87.00 81

seg  92.59 13 92.71 17 91.29 31

wav  87.15 4 87.50 3 85.35 11
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Consequently, MO-GART does not require multiple GA runs to produce multiple good
solutions to the classification problem, under consideration, and hence it is more efficient
than the AG-ART approach (as Table 6.4 reveals). Finally, MO-GART is more elegant
than AG-ART because it does not require a user intervention to specify a-priori the

preference towards one objective (accuracy) versus the other (size).
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CHAPTER 7
CONCLUSION

In this dissertation a family of new evolved ART neural networks was introduced, dis-
cussed, analyzed, and evaluated for a variety of classification problems. This family
of new evolved ART networks originated from Daraiseh’s work [Al 06] and has been
consistently improved to its most prominent representative, MO-GART. MO-GART is
multi-objective evolved ART, employing automatic adaptation of the GA parameters,

and appropriate data-sampling for the evaluation of the fitness function.

In the following we present the MO-GART approach in detail, compare it with other
competitive classifiers, such as SVM and CART, and offer some directions for further

research.

7.1 Putting It All Together: MO-GART

In this section the final product of this dissertation is described. The following lists the
proposed algorithm completely. The algorithm starts by generating an initial population,
P(0), of ARTMAP networks (FAM, EAM or GAM), each one of them trained with
a different value of the baseline vigilance parameter p,, and order of training pattern

presentation. The networks are encoded into chromosomes where each component (gene)
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represents a category (hidden node) of an ART network. Each component contains the
weight information for the category. The chromosomes are variable length, where the
length is equal to the number of categories in the network represented by the chromosome

(see Figures 3.12, 3.13, 3.14).

P(0) <« Generate-Initial-Population();
A(0) « Initialize-Empty-Archive();
for t — 1 to Gen,,q, do
Evaluation();
Update-Archive(P(t), A(t));
if stopping criteria met then exit for;
P'(t) « Selection(P(t), A(t));
P(t) < Reproduction(P’(t));
end
return A(¢);

Figure 7.1: Pseudo-code of MO-GART Algorithm

Also, MO-GART initializes an empty secondary population, A(0), that will be used

to store nondominated solutions found during the evolution.

In each generation, each solution in the population is evaluated according to each
objective function. That is, the error rate of each ARTMAP network is evaluated by
running it against a validation set. The error rate is the misclassification rate of the
classifier (individual). In the first generation, all available validation patterns are used.
In all other iterations, the number of validation patterns to be used, denoted as n,, is

calculated using the following formula:

Za/2

—_— 2 ~ — ~
Hal fwidth) Perr(1 = Perr) (7.1)

n, = (
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In this work, « is set at 95% and the Halfwidth is chosen to be £1% of error rate.
Furthermore, p.,., is set as the best error rate observed in the previous generation. Then,
n, patterns are sampled randomly from the validation set. The misclassification rate is

used as an estimate for the error rate of the classifier.

The second objective, complexity, is represented by the number of categories present
in each network. Once networks in population P are evaluated, the archive A is updated
by adding to it the solutions in P that are nondominated by solutions in A. Also,
solutions in A that are now dominated by solutions just added from P, are removed from

the archive A.

The algorithm runs for a maximum number of generations defined by Gen,,.,.. How-
ever, to avoid running MO-GART for unnecessarily large number of generations, the
evolution is also stopped when the archive A is not updated for 10 consecutive genera-

tions.

The selection process creates a temporary population P’ where the parent chromo-
somes used to create the next generation are selected. The chromosomes in the archive
A and population P are assigned fitness values based on dominance relationship. In
this scheme each individual is assigned a strength value that is equal to the number of
solutions it dominates. After that, a raw fitness, R(x), is assigned for each individual
to be the sum of the strengths of all its dominators in both A and P. The raw fitness
is then adjusted as follows. For each individual, x, the distance, in objective space, to

the k-th nearest neighbor is found and denoted as o (z). The value of k is chosen to be
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the square root of the sum of the size of the archive and population. The fitness of each

individual is then calculated using the following equation:

1

Fit(x) = R(z) + P

(7.2)

The parents are then chosen using a deterministic binary tournament selection with
replacement, as follows: For each parent, randomly select two chromosomes from the
combined set of A and P, and choose, the chromosome with the smallest fitness value.
Boundary solutions, which are networks with smallest error rate and smallest size, are

ensured to be copied in the set of parents.

The confidence factor is calculated for every individual in the population, for every

category j of the p — th ART network, that is mapped to label k, as follows:

CFf(p) = 0.54%(p) + 0.55F (p) (7.3)

where Aé? (p) is a measure of accuracy of classification achieved by category j, in the p—th
network, that is mapped to label k. Furthermore, Sj’-C (p) is a measure of probability of

selection of category j in the p — th network, that is mapped to label k.

The accuracy measure, Aé‘? (p), is defined as follows: the probability of correct classi-
fication for category j divided by the maximum probability of correct classification for
any category in the same network (p — th network) that predicts the same class label,
k. This measure assumes higher values for categories that are performing relatively well.

In particular, if the number of validation samples that selected this category, and were
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correctly classified by it, is denoted by Pf (p), and the number of validation samples that

selected this category is denoted by C']’? (p), then,

PF(p)/Cj(p)
max; (PF(p)/CF(p))

Aj(p) = (7.4)

Also Sf(p) is defined as the probability of selection by the validation patterns of a
category, j, of the p — th network, that is mapped to label k. The probability of selection
of category 7, of the p—th network, that is mapped to label k, is the number of validation
patterns that selected this category, C]’-C (p), divided by the maximum number of patterns
C’j’?mam (p) that selected any category j that predicts the same classification label, k, for

the p — th network:

Si(p) = Ci(p)/Cj,..(0) (7.5)

This measure achieves higher values for categories that were selected more often
using the validation patterns. The scaling ensures that A¥(p) € [0,1], Sf(p) € [0,1]
and therefore CF;(p) € [0,1]. In addition, in every network, at least one category has

A;(p) =1, and at least one category (but not necessarily the same) has S;(p) = 1.

Afterwards, with probability of 1 — C’Ff (p), categories are delete from every chro-
mosome in the temporary population, P’(t). Also, every chromosome in P’ gets mu-
tated using Gaussian random number of mean of 0 and standard deviation of SFF(p) =

0.05(1 — CF}(p)). The mutation is applied as described below:
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e In MO-GFAM, for each category, either its u or v endpoint is selected randomly
(with 50% probability) and then every component of this selected vector gets mu-
tated by adding to it a small number. This number is drawn from a Gaussian
distribution. If the component of the chosen vector becomes smaller than 0 or

greater than 1 (after mutation), it is set back to 0 or 1, respectively.

e In MO-GEAM, for each category, every component of the ellipsoidal center m gets
mutated by adding to it a small number. This number is drawn from a Gaussian
distribution. If the component of the chosen vector becomes smaller than 0 or
greater than 1 (after mutation), it is set back to 0 or 1, respectively. Furthermore,
the mutated category’s axis ratio u or radius r is selected with 50% probability.
We add a small number, to the axis ratio or the radius. The small number is drawn
from a Gaussian distribution. However if y, or r, due to mutation, become larger
than 1, they are set back to the value of 1, while if they become smaller than zero

we set their value to 0.0001.

e In MO-GAM, for each category, either its mean vector m, or standard deviation
vector o is selected randomly (50% probability). Then every component of this
selected vector is mutated by adding to it a small number. This number is drawn
from a Gaussian distribution. If the component of the chosen vector becomes

smaller than 0 or greater than 1 (after mutation), it is set back to 0 or 1, respectively.

The chromosomes in P(t) are then replaced by chromosomes created by performing
crossing over pairs of parents in P’(t) as follows: For each parent, p,p’, a random cross-

over point is chosen, designated as n,n’, respectively. Then, all the categories with index
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Table 7.1: Performance of MO-GART on some data sets. Most accurate
network reported.

MO-GFAM MO-GEAM MO-GGAM
PCC Size Traing Time PCC Size Traing Time PCC Size Traing Time
1Ci/Sq 97.43 30 5.90 99.60 4 16.51  99.60 2 6.75
G4C-25 75.56 4 341 75.40 4 9.12 75.70 4 4.12
G6C-15 84.83 6 2.76  84.17 6 6.57 84.71 6 4.94
glass  76.00 7 0.16 73.33 7 0.23 76.00 12 0.23
Iris  94.67 2 0.74  94.92 2 1.90 94.79 2 1.23
page 96.59 5 1.34 93.94 5 5.34  95.09 6 2.55
pendigits  98.07 220 200.22 98.73 704 825.48 98.97 238 72.99
pima  84.00 6 0.43 82.67 3 0.39 83.33 3 0.20
sat 88.87 202 98.93 87.97 388 251.22 88.99 124 50.23
seg  95.29 27 9.67 95.14 327 31.82  92.00 56 6.56
wav  84.80 3 17.85 86.00 3 64.59 87.10 7 7.67

greater than n’ in the chromosome p’ and all the categories with index less than or equal
to index n in the chromosome with index p are moved into an empty chromosome within
the new generation. Notice that crossover is done at level 1 of the chromosome. This

operation is pictorially illustrated in Figure 3.15.

7.2 Evaluation of The Approach

This section lists the results of running the algorithm listed in the previous section for
a number datasets. The results were obtained using 11 datasets. Details about these
datasets can be found in Appendix B. The results are summarized in Table 7.1 and they
include the three performance measures of interest in this dissertation: accuracy of the

classifier, complexity and training CPU time.
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When the results in Table 7.1 are compared to those in Chapter 6, it is easy to notice
the gain in efficiency achieved through this combined approach. For example, the training

time for the Pendigits dataset was reduced from 462 seconds to 200 seconds.

Table 7.2 shows the results obtained using SVM and CART classifiers. These results
were obtained by other members of the Machine Learning Lab at the University of Cen-
tral Florida. Comparing the results in Tables 7.2 and 7.1 one can make the following

observations:

e The accuracy of the overall MO-GART networks is very competitive with the SVM
and CART. It can be seen that MO-GART and SVM have a significant advantage

in terms of network accuracy when compared to CART.

e The training time of CART is very small compared to MO-GART and SVM. How-

ever, MO-GART has a significant advantage over SVM in terms of training time.

e MO-GART has a significant advantage in terms of network complexity when com-
pared to SVM and CART. The advantage can be better shown by considering other
Pareto networks that MO-GART produced (not shown in Table 7.1). For exam-
ple, for the Pendigits dataset, MO-GGAM can achieve accuracy of 97% using 90
categories, where CART used 109 nodes for a 93% accurate tree. Another example
is the Pima dataset. MO-GFAM was able to achieve 77% accuracy using 2 cate-
gories, where CART achieved 73% for the same number of nodes. The availability
of multiple Pareto networks to choose from (in addition to the most accurate one)

is an additional advantage of the proposed approach over SVM and CART.
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Table 7.2: Performance of SVM and CART on some data sets

SVM CART
PCC  Size Training Time PCC Size Training Time
1Ci/Sq 99.67 88 136.41 97.57 28 0.02
G4C-25 7524 264 42.09 73.50 4 0.00
G6C-15 84.83 450 37.93 80.42 6 0.02
glass  65.63 63 0.39 64.06 4 0.00
Iris  95.06 76 20.04 94.02 4 0.00
page 95.30 150 20.49 93.84 7 0.02
pendigits 99.54 929 616.88 93.37 109 0.28
pima 73.71 64 1.24 73.71 2 0.00
sat  90.25 1081 263.78 84.35 22 0.30
seg 97.29 230 27.28 93.43 17 0.05
wav 87.45 574 74.28 75.20 14 0.09

The comparison of GART, SVM and CART provided above, is fair because it used
the same databases and datasets per database for training, validation and testing of these

architectures.

The accuracy of C4.5, as listed in [DIE00], for the Satellite dataset is 84.9%, for the
Segmentation dataset is 96.8%, and for the Waveform dataset is 76.6%. As it can be
seen from Table 7.1 MO-GART was able to achieve competitive accuracy. In [KBS97]
the authors use the simple Bayes classifier to produce classification accuracy of 85.20%
on satellite, 93.12% on segmentation, 78.57% on waveform, 70.11% on glass and 75.9% on
pima. It can be seen from Table 7.1 that MO-GART was able to achieve better network
accuracy on all these problems. Furthermore, in [YAO1], the authors use a decision tree
variant to produce classification accuracy of 92% (size: 37) on segmentation, 83% (size:
65) on waveform, 60% (size 14) on glass, 75.2% (size: 3.4) on pima and 95% (size: 37)
on pendigits. As it is evident from Table 7.1 MO-GART results consistently outperform

these results.
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In [LLS00], the authors compared the accuracy and size of a 33 classifiers belonging
to the tree, statistical and neural types classifiers. Three of the datasets that Lim, Loh
and Shih have experimented with are the Satellite, the Segmentation and the Waveform
datasets that has been tested in Table 7.1. The MO-GFAM results on the Satellite
dataset are: 88.87 classification accuracy, needing 202 categories (other MO-GFAM so-
lutions include: 84.68% with 7 categories, 86.40% with 21 categories). The MO-GGAM
results on the Satellite dataset are 88.99 with 124 categories. The accuracy results re-
ported on the Satellite dataset by [LLS00] are: Minimum classification accuracy of 60%
and maximum classification accuracy of 90%. Furthermore the tree type classifiers (22 of
them) created a minimum tree size of 8, while the median tree size was 63. Finally, two of
the most celebrated decision tree algorithms, such as CART and C4.5 created tree sizes of
63 and 216. The MO-GFAM results on the Segmentation dataset are: 95.29% classifica-
tion accuracy, needing 27 categories. The accuracy results reported on the Segmentation
dataset by [LLS00] are: Minimum classification accuracy of 48% and maximum classifi-
cation accuracy of 98% (achieved by the nearest neighbor classifier, which performs no
data compression). Furthermore the tree type classifiers (22 of them) created a mini-
mum tree size of 6, while the median tree size was 39. Finally, two of the most celebrated
decision tree algorithms, such as CART and C4.5 created tree sizes of 69 and 42. The
MO-GFAM results on the Waveform dataset are: 84.8% classification accuracy, needing
3 categories for MO-GFAM and 87.1% and 7 categories for MO-GGAM. The accuracy
results reported on the Waveform dataset by [LLS00] are: Minimum classification accu-
racy of 52% and maximum classification accuracy of 85%. Furthermore the tree type

classifiers (22 of them) created a minimum tree size of 3, while the median tree size was
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16. Finally, two of the most celebrated decision tree algorithms, such as CART and C4.5

created tree sizes of 14 and 54.

7.3 Discussion and Future Work

In the conclusion of this work a number of final remarks are made about the work that has
been done. Also a number of areas of improvements are identified that have significant

promise to build on and improve the work achieved in this dissertation.

1. The evolution of ART architectures has significantly improved the network ac-
curacy and size of these networks. On the other hand, the training time of the
evolved ART networks (MO-GFAM, MO-GEAM, or MO-GGAM) is significantly
larger than that of ART (FAM, EAM, or GAM). However, to be able to obtain
good performance from ART, the analyst must experiment with different parameter
settings. It was shown in this dissertation that the GA is more efficient at finding
the optimal network than experimenting with the parameters of ART networks.
In addition, the genetic optimization of ART may achieve performance that might
not be attainable by original ART training rules. Genetic operators allow mix-
ing of networks (Crossover), reducing the size (Pruning), and altering categories

(Mutation).

2. The accuracy of the evolved ART architecture is limited by the maximum possible
accuracy that can be achieved by the ART structure. In other words, if the shape

of the categories puts a limit on the accuracy of ART for a given classification task,
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then the evolution of ART would not be able to exceed that limit, given a certain
network size. For example, for 1Ci/Sq problem, FAM (or evolved FAM) would
not be able to achieve the accuracy of GAM or EAM using the same number of

categories. Also, GAM has a disadvantage with the SEG dataset.

. The genetic search will lead to an optimal solution as long as the genetic operators
(crossover, pruning and mutation) allow the formation of any possible network.
In other words, if every possible network (solution) is reachable, then the genetic
search will eventually find the optimal solution (where optimality is defined as the
maximum accuracy achievable with the ART structure, using a certain number of
categories, for a given classification task). However, this guarantee is only theo-
retical in the sense that the user of the algorithm will have a limited amount of
time (or computational budget) for the GA to converge. Therefore, techniques that

improve the search efficiency of the genetic algorithms are essential for its viability.

. The evaluation relaxation technique proposed in this dissertation might not be
effective when the number of validation points is small to start with, or when the
classification accuracy achieved is poor because the problem is hard. For example,
using Equation (7.1), it can be seen the n, is 1824 when the error rate is 95% and
9604 when the error rate is 50%. This is when a half width of 0.01 and a confidence
level of 95% are considered. Therefore, for harder problems, it might be necessary

to accept a wider half width to be able to converge using a small CPU run time.

. The adaptation technique proposed in this dissertation was shown that it improves

the success ratio of the genetic operators and the overall performance of the genetic

163



algorithm. The proposed approach gives higher probability of invoking an operator
to under-performing categories. The adaptation mechanism is related to the im-
portant issue of the exploration ability of the genetic algorithm. When the genetic
algorithm reaches close to the optimal solution and the confidence factors of the
categories become high, the probabilities of invoking these operators become very
low. This might cause small change from one generation to the next, which will
trigger the stopping criteria. This in turn might cause premature convergence in
some cases. [t might be beneficial to have a mechanism that detects such situations
and temporarily increases the operator probabilities for some individuals to keep

the search process alive.

. A very promising benefit of this research might be achieved by applying the genetic
algorithm techniques developed in this dissertation to other neural network archi-
tectures such PNN, GRNN and others. In particular, the evaluation relaxation
techniques can be readily applied to wide range of evolutionary neural networks.
The adaptation mechanism can be also applied if a suitable confidence factor is
found for other architectures. Also the multiobjective technique that was shown to
work well for evolving ART networks can be used to evolve other neural network
architectures. What is also important, is that the methodologies that were used
to evaluate each of the techniques can be reused to develop similar evolutionary
algorithms that are applied to neural network architectures other than ART. These

methodologies refer to the way default parameters were found in Section 3.3, the
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way genetic operators were evaluated in Section 4.5, and the way sets of Pareto

solutions are compared in Section 6.5.

. In the evaluation relaxation technique proposed in Chapter 5, it was shown that
taking a small subset of the validation set might be beneficial to the performance of
the genetic algorithm. It is worthwhile to refine this research to find a lower limit
of the number of validation points to be used to evaluate individuals in the genetic

algorithm.

. Also the evaluation relaxation technique proposed in Chapter 5 uses a problem
approximation approach. There are other approaches that have been identified in
the literature such as the evolutionary approximation techniques and in particular
the fitness inheritance techniques. Fitness inheritance estimates the fitness of some
individuals using their parents. This technique has the promise of significantly
improving the performance of the Genetic Algorithm. However, the challenge here
is the development of proper surrogate functions that are used to estimate the

fitness of the offspring individuals based on the fitness of their parents.

. In this work, to generate the initial population of ART networks, the vigilance
parameters and the order of pattern presentation were varied. It might be beneficial
to vary the category prediction error tolerance in ssART (see [ABGO03]) and also the
number of epochs used for training the initial population. This allows for greater

diversity in the initial population which might help find better solutions.
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10. There is a need to implement a post-MOEA phase where, from the optimal networks
found, one is chosen as the representative winner network. Different criteria can be
used. It is beneficial to add such capability to the network architectures proposed
in this work as in many situations it might be the case where the end user is looking

for one solution network for the classification problem.

11. The use of hybrid-GAs has been applied successfully for a number of applications.
This can be beneficial in terms of finding the optimal solutions faster and also
finding better solutions. For example in the case of evolving ART networks, it might
be beneficial to allow the ART rules optimize some networks in the population by

performing a local search.

7.4 Summary

The final product of this dissertation is a new family of ART-based architectures, called
MO-GART, that are optimized using an elegant evolutionary approach. The introduced
architectures are able to produce classifiers of good accuracy and small size, using a
reasonable computational budget. They also have the advantage of requiring little user
intervention because the algorithm parameters are automatically adapted. After training,
the proposed algorithm produces a number of optimal classifiers, with varying levels of
tradeoff between accuracy and size, allowing the user to make an informed decision as to

which classifier to deploy for a given classification task.
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A number of improvements were incrementally made to the genetic ART architecture
proposed in [Al 06]. Each of these improvements were carefully justified and thoroughly
evaluated. It was shown that each of these improvements were worthwhile, and are
necessary to make the proposed architectures competitive, not only within the ART

family, but also among other well-known classifiers.

MO-GART was compared to a number of classifiers. It was found that MO-GART
can achieve superior classification accuracy when compared to other ART architectures.
It was also found that MO-GART can achieve competitive classification accuracy when
compared to other classifiers such as SVM, CART and C4.5. Unlike most classification
algorithms, MO-GART focuses on finding the simplest classifier that can achieve a cer-
tain classification accuracy for a given classification task. In fact, to address this issue
properly, the MO-GART algorithm produces a number of networks that achieve varying
levels of accuracy and complexity. Another issue that influenced the design of MO-GART
is the independence of its performance on user-defined parameters. The importance of
this independence is the enhanced ability to use this algorithm for a wide range of classifi-
cation tasks, and without the need to have significant experience with it. However, these
advantages come at a cost in terms of the computational time needed to train MO-GART.
Since other algorithms need the user to experiment with their parameters to find the set
of values that gives the best results, it is fair to compare the training time of MO-GART
to the time needed to run enough experiments using other algorithms. The claim in this
dissertation is that a well-designed genetic search is more efficient at finding the optimal

network compared to experimentation with parameters. Improving the efficiency of the
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genetic search for the optimal ART network has occupied a significant portion of this
dissertation. The MO-GART family of classifiers has competitive classification accuracy,
exceptionally small size, and is able to find multiple optimal networks more efficiently

than some other popular classification algorithms.
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Table A.1: List of Notation

] Symbol \ Definition
A Population size in genetic algorithms.
(Also referred to as Pops;,. in some cases.)
Genmax Maximum number of generations of the genetic algorithm
G conw Number of generations until convergence
NChest The number of solution kept for elitism
Pr(Mut) Probability of mutation
Pr(Catgy) Probability of deletion
Fit(p) Fitness of the p — th solution
Pa Vigilance parameter in ART
N, Number of categories in ART network
pPCC Percent of correct classification
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In this work, experiments were conducted on 33 datasets, of which 20 are simulated
datasets and 13 are real datasets. Each dataset was randomly divided into three subsets:
training, validation and testing. The summarized specifics of each one of the datasets

are depicted in Table B.

e Gaussian Datasets (# 1-12): These are 12 artificially generated, 2-dimensional,
and Gaussianly distributed datasets, belonging to 2-class, 4-class, and 6-class prob-
lems, with 5%, 15%, 25%, and 40% overlap between the classes. Note that 5%
overlap means that the optimal Bayesian Classifier would have 5% misclassification
rate on the Gaussianly distributed data. There are a total of 3x4=12 Gaussian
datasets. These datasets are named as G#c-## where the first number is the
number of classes and the second number is the percentage of class overlap. For
example, G2c¢-05 means that the Gaussian dataset is a 2-class and 5% overlap

dataset.

e Structures within a Structure Datasets (# 13 - 19): These are artificial
datasets that were inspired by the circle - in the - square problem. This problem
has been extensively examined in the neural networks literature. Seven different
datasets were generated by changing the structures (type, number and probability)
that we were dealing with. The data-points within each structure of these artificial
datasets are uniformly distributed within the structure. The number of points
within each structure is chosen in a way that the probability of finding a point

within this structure is equal to a pre-specified number.
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Table B.1: Datasets used for experimentation, and their characteristics

Database # Training # Validation  # Test  # Attri- # % Major
Name Instances Instances Instances butes Classes Class
1 G2c¢-05 500 5000 5000 2 2 50.00%
2 G2¢-15 500 5000 5000 2 2 50.00%
3 G2¢-25 500 5000 5000 2 2 50.00%
4 G2c-40 500 5000 5000 2 2 50.00%
5 G4c-05 500 5000 5000 2 4 25.00%
6 G4c-15 500 5000 5000 2 4 25.00%
7 G4c-25 500 5000 5000 2 4 25.00%
8 G4c-40 500 5000 5000 2 4 25.00%
9 G6c-05 504 5004 5004 2 6 16.67%
10 G6e-15 504 5004 5004 2 6 16.67%
11 G6c-25 504 5004 5004 2 6 16.67%
12 G6c-40 504 5004 5004 2 6 16.67%
13 4Ci/Sq 2000 5000 3000 2 5 20.00%
14 4Sq/Sq 2000 5000 3000 2 5 20.00%
15 1Ci/Sq 2000 5000 3000 2 2 50.00%
16 1Ci/Sq/70:30 2000 5000 3000 2 2 70.00%
17 5Ci/Sq 2000 5000 3000 2 6 16.67%
18  2Ci/Sq/75:20:5 2000 5000 3000 2 3 75.00%
19  2Ci/Sq/50:30:20 2000 5000 3000 2 3 50.00%
20 MOD-IRIS 500 4800 4800 2 2 50.00%
21 ABALONE 501 1838 1838 7 3 33.30%
22 PAGE 500 2486 2487 10 5 89.80%
23 Optdigits 1823 2000 1797 64 10 10.00%
24 Pendigits 4494 3000 3498 16 10 10.00%
25 Sat 2000 2436 2000 36 6 24.19%
26 Seg 800 810 700 19 7 14.29%
27 wav 1000 2000 2000 21 3 33.33%
28 shuttle 3000 1000 54000 9 5 80.00%
29 glass 75 75 64 9 6 35.51%
30 pima 150 150 232 7 2 66.70%
31 Letter 3000 1000 16000 16 26 4.07%
32 Vehicle 250 250 346 18 4 25.70%
33 BUPA 100 100 145 6 2 42.00%
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— 4Ci/Sq (# 13): This is a four circle in a square problem, a five class clas-
sification problem. The probability of finding a data point within a circle or

inside the square and outside the circles is equal to 0.2.

— 4Sq/Sq (# 14): This is a four squares in a square problem, a five class
classification problem. The probability of finding a data point within an inner

square or inside the outer square and outside the inner squares is equal to 0.2.

— 1Ci/Sq (# 15): This is a one circle in a square problem, a two class clas-
sification problem. The probability of finding a data point within a circle or
inside the square and outside the circle is equal to 1/2. The sizes of the areas
in the circle and outside the circle and inside the square are the same. This is

the benchmark circle in the square problem.

— 1Ci/Sq/30:70 (# 16): This is a one circle in a square problem, a two class
classification problem. The probability of finding a data point within a circle
or inside the square and outside the circle is equal to 0.3 and 0.7, respectively.
The sizes of the areas in the circle and outside the circle and inside the square
are 0.3 and 0.7, respectively. This is a modified version of the circle in the

square problem.

— 5Ci/Sq (# 17): This is a five concentric circles in a square problem, a six
class classification problem. The probabilities of finding a data point in the

distinct regions created by these structures are equal.

— 2Ci/Sq/75:20:5 (# 18): This is two circles in a square problem, a three

class classification problem. One of the circles is smaller than the other. The
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probability of finding a data point within the small circle, the large circle, and

outside the circles but inside the square is 0.75, 0.20, and 0.05, respectively.

— 2Ci/Sq/20:30:50 (# 19): This is two circles in a square problem, a three
class classification problem. One of the circles is smaller than the other. The
probability of finding a data point within the small circle, the large circle, and

outside the circles but inside the square is 0.2, 0.3, and 0.5, respectively.

e Modified Iris (MOD-IRIS) Dataset (# 20): This is a modified version of the
IRIS dataset from the UCI repository (see [NHB98]). The original IRIS dataset has
150 data-points and 3 classes. The data corresponding to the class that is linearly
separable was eliminated. This left 100 data-points and 2 classes. From the four
input attributes of the original IRIS dataset only two attributes (attribute 3 and
4) were used because they seem to have enough discriminatory power to separate
the 2-class data. Finally, in order to create a reasonable size dataset from these
100 points, data was generated by adding noise around each one of these 100 data-
points (the noise was Gaussian of zero mean and small variance) to end up with

approximately 10,000 points.

e Modified Abalone (ABALONE) Dataset (# 21): This dataset is originally
used for prediction of the age of an abalone (see [NHBO8]). It contains 4177 in-
stances, each with 7 numerical attributes, 1 categorical attribute, and 1 numerical
target output (age). This dataset was modified by discarding the categorical at-

tribute, and grouping the target output values into 3 classes: 8 and lower (class 1),
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9-10 (class 2), 11 and greater (class 3). This grouping of output values has been

reported in the literature before.

Page Blocks (PAGE) Dataset (# 22): This database represents the problem
of classifying the blocks of the page layout in a document (see [NHB9S8]). It contains
5473 examples coming from 54 distinct documents. Each example has 10 numerical
attributes (e.g., height of the block, length of the block, eccentricity of the block,
etc.,) and one target (output) attribute, representing the type of the block (text,
horizontal line, graphic, vertical line, and picture). One of the noteworthy points
about this database is that its major class (text) has a high probability of occurring
(above 80%). This dataset has five classes, four of them make only 10% of the total

instances.

Optdigits (OPT) Dataset (# 23): This dataset has vectors representing nor-
malized bitmaps of handwritten digits from a preprinted form (see [NHB98]). The
bitmaps were normalized using preprocessing programs. From a total of 43 people,
30 contributed to the training set and the remaining 13 to the test set. 32x32
bitmaps are divided into non-overlapping blocks of 4x4 and the number of pixels is
counted in each block. This generates an input matrix of 8x8 where each element is
an integer in the range 0 to 16. This dataset has 64 attributes and 10 classes. The
training set has 3823 records and the test set has 1797 records. In this work, the
original training set was divided into a training set of 1823 records and a validation

set, of 2000 records.
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e Pendigits (PEN) Dataset (# 24): This dataset has records representing hand-
written digits (see [NHBO8|). The dataset was created by collecting 250 samples
from 44 writers. The samples written by 30 writers are used for training and cross-
validation and writer dependent testing, and the digits written by the remaining 14
writers are used for writer independent testing. This dataset has 16 attributes and
10 classes. The training set has 7494 records and the test set has 3498 records. In
this work, the original training set was divided into a training set of 4494 records

and a validation set of 3000 records.

o Satellite Image (SAT) Dataset (# 25): This dataset gives the multi-spectral
values of pixels within 3x3 neighborhoods in a satellite image, and the classification
associated with the central pixel in each neighborhood (see [NHB9S8]). The aim is
to predict the classification given the multi-spectral values. There are six classes
and thirty-six numerical attributes. The training set consists of 4435 records while
the test set consists of 2000 records. The original training set was divided into a

training set of 2000 records and a validation set of 2435.

e Image Segmentation (SEG) Dataset (# 26): This dataset was used in the
StatLog Project (see [NHB98]). The samples are from a dataset of seven outdoor
images. The images are hand-segmented to create a classification for every pixel
as one of brickface, sky, foliage, cement, window, path, or grass. There are seven

classes, nineteen numerical attributes and 2310 records in the dataset.

e Waveform (WAV) Dataset (# 27): This is an artificial three-class problem

based on three wave-forms (see [NHB98]). Each class consists of a random convex
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combination of two waveforms sampled at the integers with noise added. There are
twenty-one numerical attributes, and 3000 records in the training set. Error rates
are estimated from an independent test set of 2000 records. The original training
set was divided into a training set of 1000 records and a validation set of 2000

records.

Shuttle (SHU) Dataset (# 28): This dataset contains 9 attributes all of which
are numerical and five classes. Approximately 80% of the data belongs to one class
(see [NHB98]). The training set has 43500 records and test set has 14500 records.
The original training set was divided into a training set of 3000 records and a

validation set of 1000 records. The rest were added to the test set.

Glass (GLS) Dataset (# 29): This dataset is used to classify types of glass
(see [NHB98]). It was motivated by criminological investigation. At the scene of
the crime, the glass left can be used as evidence, if it is correctly identified. This

dataset has 214 instances, 10 numerical attributes and 6 classes.

Pima-Indian Diabetes (PIMA) Dataset (# 30): This dataset classifies the
patients that are females, at least twenty-one years old, of Pima Indian heritage
and living near Phoenix, Arizona, USA (see [NHB98]). The problem is to predict
whether a patient would test positive for diabetes given a number of physiological
measurements and medical test results. There are 2 classes, 8 numerical attributes,
and 768 records. However, many of the attributes, such as serum insulin, contain

zero values which are physically impossible. These removed the serum insulin and
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records that have impossible values in other attributes, resulting in 7 attributes

and 532 records (this approach was followed by other researchers).

Letter Image Recognition (Letter) Dataset (# 31): This dataset classifies
the letter categories associated with vectors of 16 integer attributes extracted from

raster scan images of the letters (see [NHB9S8]). There are 26 classes, 16 numerical

attributes, and 20,000 records.

Vehicle Silhouettes (Vehicle) Dataset (# 32): This dataset is used to to
classify a given silhouette as one of four types of vehicle, using a set of features
extracted from the silhouette (see [NHBO8]). There are 4 classes, 18 numerical

attributes, and 846 records.

BUPA Liver Disorders (BUPA) Dataset (# 33): This dataset classifies
male individuals for liver disorders based on a number of blood tests and alcoholic
beverages consumed (see [NHB98]). There are 2 classes, 6 numerical attributes,

and 345 records.
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