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ABSTRACT

Peer to Peer (P2P) models are based on user altruism, wiaeosier shares its content with
other users in the pool and it also has an interest in the nbotéhe other nodes. Most P2P systems
in their current form are not fair in terms of the content seirby a peer and the service obtained
from swarm. Most systems suffer from free rider’s problemevehmany high uplink capacity
peers contribute much more than they should while many stietra free ride for downloading the
content. This leaves high capacity nodes with very littla@motivation to contribute. Many times
such resourceful nodes exit the swarm or don’t even paateipl he whole scenario is unfavorable
and disappointing for P2P networks in general, where ppdion is a must and a very important
feature. As the number of users increases in the swarm, thersiyvecomes robust and scalable.
Other important issues in the present day P2P system are& bpkimal Quality of Service (QoS)
in terms of download time, end-to-end latency and jittee rafplink utilization, excessive cross
ISP traffic, security and cheating threats etc. These cudanproblems in P2P networks serve as
a motivation for present work. To this end, we present aniefftadata distribution framework in

Peer-to-Peer (P2P) networks for media streaming and filenghdomain.

The experiments with our model, an alliance based peerimgrse for media streaming, show
that such a scheme distributes data to the swarm membersaaraoptimal way. Alliances are

small groups of nodes that share data and other vital infoom&or symbiotic association. We



show that alliance formation is a loosely coupled and arceffe way to organize the peers and our
model maps to a small world network, which form efficient dagstructures and are robust to net-
work perturbations such as churn. We present a comparatieagion based study of our model
with CoolStreaming/DONet (a popular model) and presentamtitative performance evaluation.
Simulation results show that our model scales well undeyingmworkloads and conditions, deliv-
ers near optimal levels of QoS, reduces cross ISP traffiaderably and for most cases, performs

at par or even better than Cool-Streaming/DONet.

In the next phase of our work, we focussed on BitTorrent P2Bathas it the most widely used
file sharing protocol. Many studies in academia and indusérye shown that though BitTorrent
scales very well but is far from optimal in terms of fairnessend users, download time and
uplink utilization. Furthermore, random peering and dasdridbution in such model lead to sub-
optimal performance. Lately, new breed of BitTorrent dggike BitTyrant have shown successful
strategic attacks against BitTorrent. Strategic peerfigare the BitTorrent client software such
that for very less or no contribution, they can obtain goodmload speeds. Such strategic nodes
exploit the altruism in the swarm and consume resourceseaéxpense of other honest nodes
and create an unfair swarm. More unfairness is generatedeirswarm with the presence of
heterogeneous bandwidth nodes. We investigate and pr@os& token-based anti-strategic
policy that could be used in BitTorrent to minimize the fréding by strategic clients. We also
proposed other policies against strategic attacks thatdeausing a smart tracker that denies the
request of strategic clients for peer list multiple timeg] &lack listing the non-behaving nodes that

do not follow the protocol policies. These policies helptigpsthe strategic behavior of peers to a



large extent and improve overall system performance. WWedalantify and validate the benefits of
using bandwidth peer matching policy. Our simulations itsshow that with the above proposed
changes, uplink utilization and mean download time in Bit&at network improves considerably.
It leaves strategic clients with little or no incentive tohlage greedily. This reduces free riding
and creates fairer swarm with very little computationalrbead. Finally, we show that our model
is self healing model where user behavior changes from sedialtruistic in the presence of the

aforementioned policies.
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CHAPTER 1

INTRODUCTION

In last decade, Peer-to-Peer (P2P) networks have evoleed dround up. They have been ex-
tensively used for music sharing and now for sharing videas the internet. The increasing
deployment of broadband further revolutionized P2P meiigaming applications which includes
Video-on-Demand (VoD) and live media streaming. Live ed@obadcast [CRS02] using P2P tech-

nology such as Sports and TV streaming [Ppl05, Fei05] areerm@mmon now. Recent measure-

ment studies [HLLO6, AMZ06] have shown that users in excéssrs of thousands are turning to

live streaming of popular Asian channels as of 2006.

P2P file sharing has been immensely popular because it dbescessitate a real time media
playback and hence Quality of Service (QoS) and reliabsigyes are not a major concern. On the
contrary, synchronous applications like live media striegnand VoD are characterized by strict
time and bandwidth requirements, and have been partly ssitde Moreover, the heterogeneity
of peer bandwidths, peer location and topology, congestidime interior of the network and lack
of dedicated service has led to low reliability of P2P streemResearchers have applied various

different paradigms to solve this problems but certainassiike QoS and reliability of service



have never been near optimal. Recent measurement studie®¢HAMZ06] have presented new

findings and problems about present day P2P media streagsteyss.

1.1 P2P Media Streaming

Previous works in P2P media streaming focussed on impraergin aspects of media streaming
metrics like QoS, bandwidth throughput, robustness andsitidy using various paradigms of P2P

streaming. However, these works lacked a collective etialn@and comparison of these metrics
and their interdependence, which forms the underpinnifgs efficient media streaming system.
Design flaws and inefficient peering strategy in the earlierks has led to the development of
newer P2P streaming models, most of which are built on cldriven andoosely couplegheering

philosophy.

1.1.1 Issuesin Present day P2P Streaming

Users in excess of tens of thousands are turning to liveratrepof popular Asian channels as of
2006 [HLLO6]. Though it has been shown that P2P has emergadsascessful medium for live
streaming, the quality of service (QoS) and reliability teaming service still needs additional
improvement. Recent measurement studies have revealddllitheing shortcomings of current

day P2P streaming systems:



1. Recent study [HLLO6] on PPLive showed that startup timgidéo before playback is in
order of tens of seconds and sometimes even minutes, ansl togeelminimized for a better
viewing experience. The study further states that some staigin their playback time
by minutes as compared to their peers. We believe that thilsl die alleviated by a better

peering strategy.

2. Another measurement study [AMZ06] on PPLive [Ppl05] a@PEast [sop04] has shown
that these streaming services lditkfor-tat fairness that leads to uneven distribution of up-
link bandwidth among users. The study found that these agpes use greedy algorithms
for peering without the consideration of peer locality tle@tds to huge cross ISP traffic. An
important finding of this work is that due to random data dsttion structures, the uplink

bandwidth utilization is sub optimal.

1.1.2 Motivation

The above limitations serve as a motivation for our curreatkw We propose a novel swarm
based P2P model for live media streaming based on chun&rd2P philosophy. Our work
mainly focuses on leveraging the randomness of swarm like@mments and imposing a few
management policies at the node level to reduce the realpaolket contention among the nodes.

The peering strategy and internal policies in our model aique as compared to earlier works.



We propose a novel concept of alliance formation, where siotiester in groups, callealliances

for mutual node benefit while sharing the media content.

1.1.3 Our Proposed M ethodology

We quantify QoS (in terms of jitterless transmission anéray), uplink bandwidth utilization,
fairness (in terms of content served), robustness, rétyabind scalability of the system, and de-
sign a suitable model to improve these metrics. We thus geoaicomprehensive framework for
collective evaluation of these media streaming metricseVWduate the effectiveness of our model
and provide a comparative performance evaluation with D@®IStreaming [ZLLO5] system.
We chose to compare our model with CoolStreaming for th@fohg reasons: 1) It is based on
swarming technology and uses chunk-driven P2P streamiit@spphy. 2) It is the most important
published work in recent times and can serve as a benchmarky derivatives have evolved out

of it that are extremely popular among audiences.

Further, we show that the node topology in our model forms allsworld network [WS98].
We present an empirical analysis of our model under varyiotkiwsads and conditions. Results
show thatalliance formationis an effective way of organizing peers and distributingteahin
the P2P overlay networks. We show that our model has scalddwviée achieving near optimal

levels of QoS. We call our model as BEAM (Bit strEAMIng).



Our proposed work focuses on architectural and organizaltespects of P2P media streaming.
We do not deal with the media content and its various ateblike compression, audio/video
guality and media format types. Different media formatsyvartheir space requirements. There
is an on going research in making storage efficient and patsnformats for streaming by an end

user. It is beyond the scope of our current work.

1.2 P2P File Sharing Domain: BitTorrent

The second part of the dissertation focuses on the currgnttlenges in P2P file sharing do-
main. We chose BitTorrent for our studies because it is thetmalely used file sharing protocol

as of today and largely accounts for P2P traffic over curragtidternet.

1.2.1 Current Issuesin BitTorrent

Many studies in academia and industry have shown that thBitdghrrent scales very well but is
not near optimal in terms of fairness to end users, downlmaé &nd uplink utilization. Further-
more, random peering and data distribution in such modditeaub-optimal performance. Lately,
new breed of BitTorrent clients like BitTyrant have showisessful strategic attacks against Bit-
Torrent. Strategic peers configure the BitTorrent clierftvgare such that for very less or no

contribution, they can obtain good download speeds. Suategic nodes exploit the altruism in



the swarm and consume resources at the expense of othet hodes and create an unfair swarm.

More unfairness is generated in the swarm with the preseioeterogeneous bandwidth nodes.

1.2.2 Our Proposed M ethodology

We investigate and propose a new token-based anti-sttggelity that could be used in BitTorrent
to minimize the free-riding by strategic clients. We alsogmsed other policies against strategic
attacks that include using a smart tracker that denies tingese of strategic clients for peer list
multiple times, and black listing the non-behaving nodes tho not follow the protocol policies.
These policies help to stop the strategic behavior of peeeslarge extent and improve overall
system performance. We also quantify and validate the lsrmdfusing bandwidth peer matching
policy. Our simulations results show that with the abovepps®d changes, uplink utilization and
mean download time in BitTorrent network improves consathdy. It leaves strategic clients with
little or no incentive to behave greedily. This reduces fiideng and creates fairer swarm with
very little computational overhead. Finally, we show that model is self healing model where

user behavior changes from selfish to altruistic in the presef the aforementioned policies.



1.2.3 Outline of the Dissertation

Related work is presented in chapter 2. In chapter 6, we prése preferential peering technique
using strata based classification. We describe the defails ®2P streaming protocol in chapter 3.
In chapter 5, we present details of how current day strean8Rgtraffic can be brought down
by using alliance based preferential peering. Chapter Zepteour phase Il work for securing
BitTorrent network from strategic threats. Finally, we gt our conclusions and future work in
chapter 8. We conclude the paper with the discussion of adgerof our work and future research

directions.



CHAPTER 2

RELATED WORK

In this chapter, a taxonomy of P2P streaming methodologigsasented and some popular sys-
tem in academia and industry are discussed briefly. Maihbret have been two kinds of major

approaches to solve the problems: Application layer magtiand P2P based models.

2.1 Taxonomy of P2P Media Streaming

2.1.1 Application Layer Multicast

After the success of P2P file sharing systems, many studies$ed on using the P2P technology
on overlay networks for distributing the media content f@wing in realtime. Unlike Content
Distribution Networks (CDN) like Akamai, P2P models wereséd on the principle of no infras-
tructure cost. The only resource an end user should coteribits uplink bandwidth for itself and
other members of the pool. The concept of IP multicast cdustdicceed for various technical, ad-

ministrative and economic reasons. Application layer roadt (ALM) came up as an alternative



| Media Streaming |

Application Layer Peer-to-Peer
Multicast
[CoolStreaming, PPLive,
Mesh Based

SOPCast,TV Ants, Feidian]
[NICE, ZigZag, SpreadIT] [ESM, Narada]

Figure 2.1:Classification of P2P streaming Models

to IP multicast, wherein multicasting functionality is itemented at end hosts instead of network
routers. Application layer multicast builds an overlaywertk of participating users through uni-
cast channels among the nodes. In ALM, most overlay networistcuction algorithms form a

tree like node topology.

2111 TreeBased

In tree based models, participating peers are organizedaisingle tree-structured overlay over
which the media content is pushed from source towards alpdegs. Some noted approaches
in tree like structures are NICE [BBK02], ZIGZAG [THDO03], drSpreadIT [DBG]. These ap-
proaches distributively construct an overlay network ofie®and routing functionality to mini-
mize the number of hops for content distribution. The indénodes in the tree are responsible for
forwarding the content and any failure in these nodes castsad term failures including jitters
in that particular sub tree before any repair algorithm carused for recovery. An extension to

this approach uses Multiple description coding (MDC) in e¥hparticipating peers are organized



into multiple diverse trees. Each description of the codezhsn is sent through different subtrees.
CoopNet [PS02] and SplitStream [CDKO03] use MDC in their @yagh. CoopNet uses a central-
ized algorithm to obtain node information for tree condliut, maintenance and data routing.
SplitStream is a scalable tree based system built uponkdistd hash table (DHT) based overlay
network called Pastry. It strips the media content acrossest of interior-node-disjoint multicast
trees that distribute the forwarding load among the paditthg nodes.

AdvantagesTree based model were comparatively easy to model. In dysttate, the data could
be passed to child nodes in a regular pattern that brings tlesviatency [BBK02].
DisadvantagesSuch models are susceptible to churn (frequent arrivaldemarture of nodes).
Available bandwidth to each node in a tree structure is édhitHeterogeneous and asymmetric
access link among peer nodes generates bottleneck, asddesuboptimal uplink throughput and

QoS is affected at user end [THDO3].

2.1.1.2 Mesh Based

In mesh based models, participating peers are connecteary other neighbors in the pool like a
mesh, in additions to the tree like topology. Narada and Brste®h Multicast (ESM) [CRS02] are

mesh based tree approaches to counter the problems inkeestrlictures. It has the capability to
send multiple video streams at different qualities to ceunbde failures and degrading network

links. It was also the first deployed system for broadcastidgo streaming using ALM technol-

0gy.
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AdvantagesThey are less vulnerable as compared to tree based modielg tmlinks to another
nodes in the multicast trees [CRS02].

DisadvantagesThe core topology of the network is tree like and suscegtiblhigh churn. A
node in a mesh based model keeps connections with many aibes mnd it has comparatively

high control overhead [CRS02].

2.1.2 P2P Based Models

Design glitches in P2P application layer multicast saw nemegation of P2P models using chunk-
driven P2P technology. In chunk-driven P2P approach, asfitggically broken into several small
sized chunks of equal size and disseminated in the swarnseThedels were heavily inspired by
BitTorrent (BT) [Coh03] technology but their internal paés are very different from BT. Media
content is broken down into small pieces and disseminatéteiswarm. Participating peers form
no strict topology like ALM but rather are randomly orgardzand connected to each other in
mesh like models. The nodes periodically exchange the bunffermation with their neighbors
and trade unavailable pieces of content. It overcame thagmts in tree based models and proved
to be more robust in nature. Currently, these models aremely popular and have a large viewer
based. These P2P based models were applied to VoD as welllagfevent streaming including

TV broadcast.

11



2.1.2.1 Video-on-Demand M odels

In VoD, media content is streamed to an end system after anedas a request for it. Participating
peer in the swarm help each other with their uplink bandwiBiifferent viewers in the swarm may
view different part of the video since they requested theienatldifferent times. BASS [CCO05] is
a recent P2P streaming technique for VoD thats uses a hypypicbach of BT and a client-server
model providing the swarm with an external media server. él@s, load on such server increases
linearly with the number of users due to its server centrigigleand hence does not scale well.
BiToS [VIF06] is a BT modified approach to VoD using the P2Rvuerk. Redcarpet [SMO05] is yet
another work that concentrates on providing near VoD usiffgrdnt piece selection algorithms
in BT. Since BT has been proven to be near optimal in achieuplgnk utilization and mean

download time, many models have modified BT to suit the VoDdsee

21.2.2 LiveMedia Streaming Models

Live media streaming is event based and streaming is bretattan real time, with all the viewer
viewing the same content with very little differences inittdelays. PRIME [MSRO05] is a mesh
based P2P streaming approach to live media streaming tbasde on finding the global con-
tent delivery pattern to maximize the uplink utilization #ghmaintaining the delivered quality.
PROMISE [HHBO3] is a system that uses an application leveé? B&@rvice called Collectcast

for peer selection and dynamic reconfiguration in case oflendetwork failures and topology

12



changes. CoolStreaming [ZLLO5] is one of the most succeé$2® approaches to live media
streaming. It is based on a data driven overlay network waerede periodically exchanges data
availability information with a set of partner and retristbe unavailable data and helps peers with
deficient content. A new breed of piece based P2P system tialed since CoolStreaming’s im-
mediate success. Proprietary models like PPLive, SOPQ@asT9Ants are derivatives of it but
their exact working philosophy is unpublished. Piece bd2d model exploits the randomness
of the swarming technology (very similar to BitTorrent (B.Tand doesn’'t depend on tree based
structures. Server relays the content in small pieces asgutinates in the swarm. Every node
typically has 6-8 neighbors and they exchange informatlmouaitheir buffer and then trade the
unavailable pieces.

AdvantagesPure P2P models are more robust, scalable as compared tormadé¢ls. Random
swarm provides multiple channels to provide data in shbfessible time. CoolStreaming like
deployed systems have shown the feasibility of such apprEd_05].

DisadvantagesControl overhead is relatively more than ALM models. Ramdmature of swarm
brings in more startup time before media playback begintastis no fixed pattern of content

delivery. Other issues like fairness and excessive crosiaffit have surfaced recently [ZLLO5].
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CHAPTER 3

BEAM: OUR PROPOSED METHODOLOGY

BEAM [PGO07a, PGO7b] consists of three main entities: nodesjedia relaying server and a
tracker. Media relaying server is the origin of the streamtenot in the swarm. The tracker is a
server that assists nodes in the swarm to communicate witr QEerL: It also communicates

with the media relaying server to exchange important infdrom about the current state of the
system. As a new user arrives, it contacts the tracker anuissilis IP address together with its
bandwidth range. The tracker issues it a peer list, typicilinodes, from the set of nodes that are
in similar bandwidth range. Alternatively, if it is not alable, tracker provides the list of nodes in
the closest bandwidth range. Small et al. [SLLO6] and Bhaeast al. [BHP06] have shown that
interaction of nodes in similar bandwidth range leads tanogttresources utilization in the swarm.

The new node requests stream content from the nodes in itdigte@nd then starts creating and

joining alliances. Alliance formation is explained in déta Section 3.1.

Since the media relaying server cannot stream the contemtltgple users simultaneously due
to the bottleneck in its uplink speed, it streams the cortteatselected number of peers, termed

aspower nodeswhich have higher contribution to the swarm in terms of eabserved. Initially,

'Nodes and peers have been used interchangeably.
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when the streaming starts, power nodes are chosen from tles math higher uplink bandwidth,
since the contribution of nodes is yet undetermined. Thegoawdes in turn forward the content

to the other peers in the swarm.

The tracker periodically (e.g. evety) minutes) computes the rank of the nodes in terms of
the content served to the swarm. If the media server can Einedusly stream the content to, say
P nodes, then thé top ranked nodes become the power nodes. The tracker upgbatesedia
server about the new power nodes, which are then streamededtie content directly from the
server. The rank is calculated on the basis aftéity Factor (U F'), which is a measure of the
node utility or contribution to the swarmlJ F' is computed using two parameter@umulative
Share Ratio(C'SR) and Temporal Share Rati¢l'SR). Share ratio is the ratio of the uploaded
volume content to the downloaded volume content by an end G$g€R is the share ratio of a
node since its arrival in the swarm, wherdaSR is the share ratio over a recent period of time.

Thus,UF = f(T'SR,CSR). We formulatel I’ as follows:

UF =aCSR+(1—a)TSR

wherea is the weight ofC'SR and(1 — «) is the weight of 'S R. For example, if a node has a
CSR =2.0,TSR = 4.0 anda = 0.75, thenUF = 2.5. Only the nodes that hav€'6 R, T'SR)

values> 2.0 (empirically obtained from Figure 4.3(a) and explaineéfaperiodically update the
tracker with their C'SR,C'SR). These account for less thah% of the total nodes in the swarm

(see Figure 4.3(a)). The26% nodes are enough to generate the required number of powes nod
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in a streaming session and do not incur significant overhemg she remaining0% nodes do

not report to the tracker. This alleviates the tracker freweiving an overwhelming number of
messages from the nodes in the system. We assume that nedemast and do not tamper with
the data, protocol and the software at the client end. Sirodacept of the gauging share ratio of

registered users is used in popular BitTorrent clientsAikareus [Azu].

Since the power nodes are periodically computed based anilfé they need to perform
consistently well in terms of distributing the content tongn as power nodes, else they could
be replaced by other well performing nodes. The purpose asfohd: 1) It serves as a natural
incentive for the power nodes as well as the non power nodestivibute to the swarm since this
reward helps them to get the content early and directly froenserver; the most reliable source

in the swarm. Such altruism has been shown to be very eféettiimproving the overall swarm

performance [PIAO7, BHPO6]. 2) Nodes with higher uploadiagacity are closer to the server.
Small et al. [SLLO6] has proven that placing peers with higin@oading capacity closer to the
source achieves optimal performance in terms of maximimipignk utilization and minimizing

average delay for all the peers in the swarm.

Live media streaming is time and resource constrained. slodetend within themselves for
the same media content within a short period of time. The tepthyback the media and procure
the future content necessitates an effective manageméay.p@/e introduce the concept @fl-
liance formationto counter these problems. Nodes cluster into small graypgally between 4
to 8, calledalliances to form a symbiotic association with other peers. Membéehalliance are

assumed to be mutually trusted and help each other withrgharédia content. Our model places
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an upper bound on two very important parameters: Maximumbauirmof nodes in an alliance,
h, and maximum number of alliances a node can jéinA node can be a member of at mdst
alliances and this helps the node to form a stronger comviigati the pool and gives an option to

receive the stream content from different alliances (paths

As a power node receives the media content from the seryagtagates the content within
its alliances. While serving the content to its alliance rbers, a node serves different pieces of a
packet to its peers. A packet contaifs— 1) pieces, which the power node distributes to the other
(h — 1) members of the alliance, i.e. each node gets one piece, \itfsbhres with other alliance
members and subsequently obtains other missing piecesdtioan members. In this process, a
node download$h — 1) pieces and upload$: — 2) pieces. This is done to leverage the uplink
bandwidth of all the peers and make participation necessatpat no node gets a free ride. In
case a hode cannot get a particular piece because it coulétalotfrom peer in its alliance, it can
request the power node for it. Nodes that only procure théecrirom alliance members and do
not share are ignored by other alliance members in futurealliachce member find another node
to replace such non contributing node to be in the alliance aAode gathers all the pieces of a
packet, it starts the media playback, forwards the contaoig its other alliances like power node
and procures the future stream content. A node as@®unce mechanisto notify its alliance
members the receipt of a new packet. This process of annugiacid exchanging unavailable
content can also be efficiently improved using Network Cgd®R05]. Periodically, nodes in an

alliance serve a request that is out of the alliance to baqutst new node.

2A packet refers to a collection of pieces and does not refemtéP packet. A piece is the smallest data unit
exchanged.
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Figure 3.1:Alliance Formation in BEAM

3.1 Alliance Formation

A node creates an alliance by sending an alliance join requaeket to the nodes in its peer list.
The receiving node can accept the alliance join requestjectré (depending on how many al-
liances it is currently a member of i.&). In case of rejection or no reply, node times out after a
short time interval (e.g2 round trip times (RTT) ) and continues to search for peersitotheir
alliances. If a node accepts the alliance request, it issisegEcess packet back to the requesting
node. These two members of the alliance can expand and geoallilince further. The format of

a request packet for an alliance is shown pyip, Num, Ny, N, ..], whereA,p, is the ID of the
alliance,Num denotes number of current members in the alliance /gpds the ID of the present
member(s) in the alliance; is the sender of the alliance join request. The format of aesg
packet is as follows{A;p, Selfip], whereSelf;p is the ID of the node that sends the success
message to all the alliance membersdin,. Figure 3.1 depicts the process of alliance formation.

In Figure 3.1(8), following events occur:

1) Node 1 sends an alliance request to node 6.
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2) Node 6 accepts alliance invitation and returns successepo node 1.
3) Node 6 issues a request packet to node 12, that includiesical ID and IDs of nodes 1 and 6.
4) If 12 joins the alliance, 12 will send success packets th,dband 6. Now all three nodes 1, 6

and 12 are members of the same alliance. Nodes expand tecalliill k is reached.

Similarly, in figure 3.1(b) following events occur:

1) Node 1 issues an alliance request to node 7.

2) Node 7 does not reply or rejects the request. This couldelsause node 7 has reached the
maximum limit of k.. Node 1 times out after a small time interval.

3) Node 1 issues request to some other node, say 11.

4) If 11 agrees to be part of the alliance, it sends succedeptmnode 1. Nodes 1 and 11 are

members of the same alliance.

Nodes expand the alliance titlis reached. Oncg is reached and if a new node requests to
be a member of the alliance, it cannot be included. The otbde in such a case can initiate the
formation of a new alliance. One important point to note &t teven if a node is not a member
of any alliance it request nodes in its peer list to join itgaakes. It depends on the other node

whether to join the alliance or not.
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Figure 3.2:Alliance Functionality

3.2 Alliance Functionality

A node can be member of multiple alliances (at migst This is important to facilitate multiple
paths for a node to obtain the stream content in case of nddesfa As a member of an alliance
procures a packet, it spreads it among its respective aimrConsider the scenario in Figure 3.2,
Alliancel consists of nodes with IDs (1, 4, 8, 9, 22) and Altia2 has nodes with IDs: (3, 4, 11,
25, 26) with nodel being a member of both the alliances. Suppose, node 22 slataiaw packet
from one of its other alliances or from media server, it themvards it in Alliancel. It sends an
announce packet to its members g&;p, P Num, N Pieces|, whereP Num is the packet number
in the streaming and/ Pieces is the number of pieces in the packet. Nodes (1, 4, 8, 9) rédores
unavailable pieces that they need to procure to completédivaload by sending a request in the

form: [A;p, PNum, Py, P, ...|, whereP, and P, are piece number 1 and 2 respectively.

A packet comprises ofi(— 1) pieces. If all the members of a particular alliance simmétausly

request all the pieces, the forwarding node randomly isteis the pieces of the requested packet
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among them. It is left to the peers to exchange the piecesnnitiemselves. In case, a node
requests specific unavailable pieces in a packet since #tesdy obtained some pieces from other
alliances, the forwarding node sends only those specifitest@d pieces to avoid any redundancy
at the requesting node. In the above example, if membersl@n&kel have procured distinct
pieces, they exchange among themselves to complete tliidoal downloads. As nodes of
Alliancel procure the complete packet, they forward it ieitlother alliances. In the above case,
node 4 (common node in both the alliances) forwards the comeAlliance2 by announcing the
arrival of the packet and the subsequent process of fomguttlie content is similar as explained

above.

While leaving the network, a node sends a departure packstalliance members as follows:
[Arp, Selfrp, Flagpl, whereFlagp is the departure flag. In case a node exits without sending a
departure packet, the nodes within the alliance becomeeawiats inactivity and infer its depar-
ture. Other nodes in the alliance continue sharing thersireacontent within themselves and/or
can find another member for the alliance. In our model, we @gsepgo use TCP connection in
BEAM as the network links between peers. TCP detects théspaeparture from the pool and
gracefully handles shutdown of the connection link. Li [jhas explained the benefits of using
TCP over UDP/RTP, provided the initial buffer time is sigoaintly larger than the Round Trip

Time (RTT) between the peers. We elaborate the details isithelation section.
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3.3 Small World Network

In this section, we present an analogy between BEAM and Sivadld Network (SWN) [WS98]

to show the effectiveness of BEAM'’s important propertiestsas near-optimal overlay distance
and network robustness in the events of churn and nodedail@WN is a class of random graphs
where: 1) Every node has dense local clustering, i.e a higificent of clustering /., defined
below) and some edges with far located nodes. 2) Every naudeaeached from every other
node by a small number of hops or steps. We present a graptetivesnalysis of our model and
show that it generates a swarm of nodes, which when convertadyraph, end users as vertices
and connection between them as edges, exhibits small wettebnk characteristics. We compare
our results with CS [ZLL05] which uses a random network toggl Random graphs [Bol01] are

known to generate near-shortest mean distance betweeairaligh nodes in a graph.

We chose to show an analogy with small world network for tHe¥ang reasons: 1) Over-

lay hops (path length) between any two nodes is short in SWNpantially reflects end to end

latency [BBK02, THDO03, ZLLO05]. 2) High local clustering mesa close knit group ; in a media
streaming scenario it ensures that once a packet is in tla@@dl, it can be readily obtained from
the alliance members. The important group policies requinean alliance can also be readily
applied. 3) SWN are robust to network perturbations likernhand hence provide an efficient

overlay structure in events of nodes failures.

22



3.3.1 Alliancesand Small World Network

e 1S a local property of a vertexin a graph and is defined as follows. Consider the vertard
a set of neighboring verticés = (vy, vs, . .. ,v,) and a set of edges, wheree,; denotes an edge
between the vertekand vertex;j. The clustering coefficient() of a vertex is the ratio of actual

number of edges present to the total possible edges amosg) ¥bdices:

eyl 2ley]

He = (g) n(n —1)

In other wordsy... is density of edges in the node’s vicinity. Average of clusig coefficients of all
the nodes is the clustering coefficient of the graph. Meah |eaigth is the mean of path lengths
between all pairs of vertices in the graph. The concept of S¢/bbunter intuitive as graphs
with higher clustering coefficients would be dense localtgd aequire more hops to traverse the
other parts of the graph as compared to a random graph. Waits)'&/S98] showed that routing
distance in a graph is small if each node has edges with ighhers (i.e. has high.) as well
as some randomly chosen nodes in the swarm. Similarly, Kée@[KIe00] proved that if every
node in the swarm shares an edge with a far located node, thieerof expected hops for routing

between any pair of vertices becom@8§og*N ), whereN is the number of nodes.

Suppose a node is a memberkadlliances §1,a,....a;) and each alliance has neighbons, (

M9y eene. my), where|m;| < h, and1 < ¢ < k. Therefore, coefficient of clustering for such node
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would be:

(%) + (%) + -+ (%)
/’LCZ : (m1+7727,2+m3....+mk) : :
2

Figure 3.2 depicts the neighborhood of node 4. It is a membawvm alliances and in each
alliance, it is connected to four other members. Nodes inliianee forms a clique (complete
subgraph). Node 4 is completely connected to members ddél and Alliance2, though, mem-
bers of Alliancel and Alliance2 may or may not be connecteitht wach other. With respect to
Alliancel, node 4 forms four long distance links elsewharthe network. Similarly, with respect
to Alliance2, node 4 forms four long distance links elsewehier the network. This property is
analogous to small-world network, where nodes are well eoted locally and also have some
long distance links elsewhere in the network that helps heze a small path length between all

pairs of nodes. Coefficient of clustering for notlan this case would be:

We also consider the case that other alliance members caneages between them. Similarly,
other nodes in the graph would hayg of at least0.428 since they have similar constitution of
alliance and neighborhood. Clustering coefficiend.d®8 is relatively much higher than a random
graph (. for random graph of the same size was found t® 0619 ), and therefore it lies in the

region of small world graphs as mentioned in [WS98].
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3.3.2 Graph Theoretic Properties of Alliance

Graph density (ratio of number of edges to the total numbgoskible edges in the graph) is an
important factor for the connectedness of a graph. We eteatbha graph density of a BEAM graph
by abstracting the alliances as nodes. As a member of am@ligeceives a packet, it forwards
within its alliance members and hence we focus on alliangs Inather than individual node hops
in this scenario and compute the same. To simplify, we censid alliance as a single node which
we call super node. Suppose there are N nodes in the swarnvyixy,. ....Vy) and they are
spread in}M/ alliances. LetD,,,,, be the density of the grapf,;;.... be the density of the graph
when alliances are abstracted as vertices i.e. super nedestaces,M be the number of super
nodes in the swarnt) be the outdegree of a super node. Every node in the swarmmectad to

(h — 1) other nodes in every alliance and there fagich alliances. Therefore, we have

N k N k
ZZ(hij—l) ZZ(hij_l)
Dgrapn = =22 M Nx(N-1)

whereh;; is the number of members jii" alliance of node, and1 <i < N,1 < j <k. Ina
steady state, when all the nodes have formatliances, and each alliance has exagtimembers,

we have
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Since super nodes are formed by contracting the alliancebawe

Every super node is connected to other super nodes thrasighniembers and their respective

(k — 1) alliances since every node is a membek @fliances each. Therefore, we have
O=hx(k-1)

. M *x O
Since there ard/ super nodes and each has a outdegree, dhere are% edges. Therefore,

we have,

w0 - 1)

Dalliance - (]\2/[) (N]{j — h) .

Forh =5, k = 2, i.e. node degree &h — 1) « k =8 andN = 512, the D,,,,, is approximately
0.004, while D j.inc. iS approximately.025. We see that the density of the graph at alliance level
is relatively much higher than at the node level i&,;4nce >> Dgrapn. The alliance formation
and subsequently the topology of the network producesglyaonnected graph and reduces the
hop count during the communication. Similar abstractionas possible for complete random

graphs.

26



We are more interested in the mean path lengths from servesdes rather than mean path
lengths between all pairs of nodes. Therefore, we limit @arch to length of all the paths from

server to all other nodes in the swarm.

Consider, a tree like view of BEAM graph. Note that a tree Mew is a simplification of
BEAM network since in BEAM, many nodes and hence allianceganed with each other and it
is a mesh of nodes rather than a tree like topology. We ddpasta tree like structure to quantify
its path length from the source server. Consifleas path length in a conventional tree andas

path length in BEAM like graph.

Ll S 1OgNocleDegree N

Ly < logg -1y N

It is trivial to see that in conventional tree like topolagli¢he path length from source to any node
is bounded byL; . The hop count in a BEAM network is bounded lhy, since a node after
procuring the content forwards it in its othkralliances i.e. td:(h — 1) nodes. Since, BEAM
graph has lot of interconnections between them, the abavatieqs only depict the upper bound.
It is more difficult to infer the same on random graphs. To gatlg actual path length in a large
swarm, we conducted experiments for finding average patjtidretween all nodes, average path

length from server, radius, and diameter of a graph.

Table 1 illustrates results from a simulation in which we pame synthetically generated ran-

dom graphs with BEAM graph having the same node degree amrdlbgiensity in the graph. We
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Table 3.1:A comparison of BEAM, Random and a network generated grapd eXperiment was
conducted for 512 nodes, node degree 8.

Graph Type| Diameter| Radius| Mean Distance Server Distance Clustering Coefficient
BEAM 6 5 3.37 3.19 0.42
Hybrid 5 4 3.33 2.87 0.014
Random 5 4 3.26 3.16 0.013

use networkx python library [net] for complex networks tdah our simulation results. In these
experiments, we have tested 3 kinds of graphs: completajora graph, BEAM network graph
and hybrid BEAM graph where alliances acts as nodes. Thehgtapsity, node degree = 6 and
node count = 512 were same in all the three graphs. Hybridnggapde count is reduced to
Nk = 256 sinceh = 4, k = 2, and degree of such hybrid nodes is equal tdServer distance
is calculated by picking a random node amongilh2 nodes and then calculating distance from
it. From the results in table 1, it is seen that random gragm®mm well as expected in all the
metrics. BEAM graphs have performed at par with random gr&ginver distance in hybrid graphs
is even shorter than random graphs. Random graphs havieebldower mean path length but

hybrid have lowest mean server distance. This abstracfi@EAM graphs helps to analyze the

topography and various other graph theoretic properties.

Figure| 3.3 depicts performance of random and BEAM graphshifgher number of nodes.
These values were found by averaging 10 different runs ugsiaghetworkx python library for
complex graphs. Random graphs are known to perform bettée whversing the graph. It is
evident from the figure that it has relatively shorter racansl diameter as compared to BEAM
graph. BEAM has nearly matched random graphs in mean diestaom server, which is the

most important criteria in our environment. Thus, BEAM drdprms a small world network with
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Figure 3.3:Comparison of Random and BEAM graph
relatively much higher clustering coefficient and very camgble mean path length to the random

graphs.

3.4 Summary

In this chapter we introduced our P2P streaming framewd84AM, that is based on alliance based
peering scheme and forms a small world network. Alliancenftion is an effective organization

of peers into small groups where a node contributes efiegtiand also gets served by alliance
members effectively. Small world network typically haveoghpath lengths and are robust to
network perturbations such as churn. As we have shown thahet based network topology

forms a small world network and displays short path lengthe Tesults in subsequent chapter
demonstrate that it indeed forms a very robust overlay nétand is very stable during churn and

during other network anomalies.
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CHAPTER 4

SIMULATION

In this chapter, we describe our simulation setup and dssthesresults. Initially, we discuss the

metrics which we have used in our simulation to compare ouwtehwith CoolStreaming.

41 Metrics

In this section, we define the metrics that are most importeatP2P streaming environment. We
guantify these metrics and provide mathematical exprasdmr the same. In our simulation, we

use the following expressions to evaluate our results.

N
Metric 1. Average Jitter Factor {Z Ji> /N where,

1=0

J; = iF) /T

2
(

0 if packet arrived before media playback

1 if packet not arrived before media playback
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Here, T and N denote the total packets in the streaming session and @dentohber of nodes in

the swarm respectively.

If a packet is not received at its playback time, it is consdeto be a jitter. Average jitter
factor is critical to maintain high quality of streaming aem end; lower the jitter rate, better
is the Qo0S. Since, it is averaged out among the total numbendfusers, it depicts a system
wide measure of QoS. We compute the jitter factor for eaclvitdal node and then average it
to compute the system wide jitter factor. Jitter factor msoatalled as continuity index in some

previous works [ZLLO5].

N
Metric 2. Average Latency 5 ) LZ) /N where,
=0
Li = TNodei - TServer
Tserver= Media playback time at Server

Thode = Media playback time at Noge

The difference in media playback time at user end and senckisethe latency. Most live events
and their streaming rely on minimizing the latency from to&ual playback at server end to keep
end users interested. We compute the latency of individo@és and then average it to derive the

system wide measure of average latency.

Total Uplink Used
Total Uplink Available

Metric 3. Uplink Utilization =

The better the uplink utilization, better is the scalabibf the system. Uplink bandwidth is the
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most sparse resource in the swarm and its maximization teagimal performance in the swarm

in terms of minimizing delay and maximizing number of endra§8LL06].

Metric 4. Fairness Factor = Varian€&R,, SR, . .., SRy ) where,S R; denotes the share ratio of

nodes and is defined as,

SR - Uploads(Node)
' Downloads(Nodg)

Fairness can be defined in several different ways, for e.terims of uplink bandwidth contribu-
tion, pricing etc. We believe that in such random swarm emrirents, it is extremely difficult to
deliver services in proportion to their contribution. Weide fairness in terms of share ratio of
content served by nodes. Share ratio of end users over thedpErsimulation run depicts the
contribution of the nodes quite fairly. Since, it is difficth provide services in proportion to the
contribution, the best we can do is to minimize the variancshare ratios of the nodes in the
swarm by enforcing strict policies. An ideal system wouldéaodes with share ratios of 1.0,
where an end user gets streaming content and it passes dly@guaher end user. But given the
dynamics of the internet, it is very difficult to achieve tlare. More the number of nodes close

to share ratio of 1.0, the fairer is the system.
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Metric 5. Robustness Factor = Maximu#i) where,

F = Percent failure of nodes
R; = Average Jitter Factor
Ry = Average Latency

AR; = Threshold Jitter Factor

AR, = Threshold Average Latency

and such that,

Ry < AR;

R, < AR,

To evaluate the robustness of BEAM with respect to achieacceptable levels of QoS, while
maximizing the node failure rate in the swarm, we assign esthwld of Ag; and Ag; to jitter
factor and average latency respectively. We test the robastand reliability of the underlying
network architecture under increasing node count, subpgethe system to varying percentages
of node failures or departures. We determine the maximune rfaitLires which the system can

withstand, without degrading the QoS.
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Metric 6. Scalability Number = MaximurfiV) where,

N = Number of Nodes
S; = Average Jitter Factor
St = Average Latency

AS; = Threshold Jitter Factor

AS; = Threshold Average Latency

and such that,

S; < AS;

Sp < AS

To evaluate the scalability of BEAM with respect to achigyviacceptable levels of QoS while
maximizing the number of nodes, we assign a thresholdgfandAg; to jitter factor and average
latency respectively. The scalability number indicatesdptimal number of users in the swarm,

where the threshold is not exceeded and number of users aiminad.
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Table 4.1: This table explains all the Metrics related terms. All thésems are part of some

expression in the Metrics in Table 4.2.

Term Expression Description
Total Number of Nodes N Number of Nodes in swarm
Total Number of Packets T Total Packet in a Streaming Session
Number of Server Upstream Connectiopn P Server can simultaneously uploadPmodes
Total Uploads by node i UP; Volume of Uploads by node i
Total Downloads by node i DOW N; Volume of Downloads by node i
Share Ratio of node i SR; UP;/DOW N;
Media Playback Time at Server Tserver Start Time of Media Playback at Server
Media Playback at Node i T; Start Time of Media Playback at Node i
Piece Availability F; 0 if packet available before media playback els
T
Jitter Factor of Node i J; (Z E) /T
i=0
Latency of node i L; L; = Tserver— TNode

Table 4.2:This Table lists all the Media Streaming Metrics we have usexuir simulations. For

explanation on the terms refer to Table 4.1

Term Expression Description
Average Jitter Factor Aj (i Ji> /N
=0
Average Latency A (Z LZ) /N
Total Uplink Utilization U [ plink Used JUplink Available
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4.2 SIMULATION SETUP AND EXPERIMENTS

To evaluate various aspects of BEAM which are normally diffito study using logs of real world
torrents or trace, we use a simulation based approach tp ftadame. A simulator gives the abil-
ity to experiment with different parameters involved in Hystem and study its performance under
varying workloads and conditions. Experiments for larg@lessimulation in excess of thousands
of nodes are difficult to perform using real world implemeiata for lack of nodes participat-
ing in it. Similarly, such experiments have limited domairtéstbed overlay networks like Planet
Lab[Pla] due to the limited number of nogegmrticipating in it, while it can be suitably modeled in
a simulator. It also helps to check the feasibility of suclsteam and to verify if simulation results
corroborate with the analytical results. Though, it is difft to capture all the internet dynamics
correctly in a time event simulator, we mention the assuomgtand simplifications we make, and
how it will impact results in real world scenario. With them&sumptions and simplifications, we
are able to model and simulate the behavior of BEAM and C&ftaly and the results show the

definitive trends and directions.

42.1 Smulator Details

We simulate both the models i.e. BEAM as well as CS [ZLLO05] anthpare their results based

on the metrics defined in Table 4.2. We simulate all the coraptmof CS i.e. 1) Node join and

!As of October 2006, PlanetLab currently consists of 704 rimesh hosted by 339 sites, spanning over 25 coun-
tries.
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membership management algorithm. 2) Buffer map repreientand exchange. 3) Intelligent
scheduling algorithm. 4) Failure recovery and partnersbipmement method. In BEAM, we
model the server, tracker functionality, and the nodes énstivarm. Server is the only source of
streaming packets in the system. For comparing the twomsgstere quantify QoS (in terms of
jitter factor and latency), uplink utilization, fairness terms of content served by an end user).
We also analyze robustness, reliability and scalabilitthefsystem by evaluating the QoS of the

system under varying workloads and conditions like noderaj churn, larger swarms etc.

We used the BRITE universal topology generator [MLMO1] i flop-Down Hierarchical
mode to model the physical network topology of Autonomoust&ys (AS) and the routers. All

AS are assumed to be in the Transit-Stub manner. Overlaysisreed to be undirected. Unlike

other simulators [BHP06, BCC06, MSRO05], we assume that titdelmeck in the network can
appear in the access links of source and destination (i.st-nfile and last-mile hops) as well
as the non access links that are in the interior of the netwiarlparticular within or between
carrier ISP networks. The nodes in the swarm are assumed ¢ theterogeneous bandwidth
classes namely:(512Kb, 128Kb), (768Kb, 256Kb), (1024KI2Kh), (1536Kb, 768Kb), (2048Kb,
1024Kb) where first and second member of the tuple are theemamidownlink and uplink speed
of a node respectively. The distribution of these bandwaliisses is uniform in the swarm. To
simulate the congestion in the Internet, we ind&ge congestion in the non access links within
the interior of the network. In such congestion scenarios available bandwidth to nodes is the
minimum of the bottleneck at source or destination and thédreck in the non access links.

The delay on inter-transit domains and intra-transit domare assumed to be 100 ms and 50
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ms respectively, while delay on stub-transit is assumeat8dbms and intra-stub transit links are
randomly chosen between 5ms and 25ms. We simulate the TERIigvamics like timeouts, slow
start, fast recovery and fast retransmission by introduaidelay of 10 RTTs [CK01]. We model
a flash crowd scenario for the arrival of users in the swamrn all users are present in the swarm
when the live media streaming starts, as this is the mostaeteand challenging scenario for the

P2P streaming system.

In our experiment, the number of nodes typically vary fron8 1@ 4096 for most cases. For
some large sets of experiments we have also considered imoeesess of 16000. We consider a
media file of duration 120 minutes, originating from a soursecoded with streaming rate of 512
Kbps and a file size of approximately 440 MB. In BEAM, we usevhgies of(h, k) = (4,2) to
make the neighbor coust 6, similar to CS, for a fair comparison. Table 4.3 providesotialues
of (h, k) that can be considered for streaming. The valuesisf0.75 from Table 4.4. Each piece
size is 64 Kb and hence packet sizé/is— 1) x« 64 Kb = 192 Kb in our case. We maintain similar
settings for the remainder of the paper. Any changes in théguration settings are mentioned in

the respective sections.
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Figure 4.1:Comparison of QoS parameters in BEAM and CoolStreaming

4.2.2 Resultsand Discussion

4.2.2.1 QoSand Uplink Utilization

In the first set of experiments, we compare the effectivenéafliance theory of BEAM on QoS
and uplink utilization as against CS’s random peer selactagure 4.1 depict these comparisons.
In accordance with the conventional notion of scalability’2P systems, it can be seen from fig-
ure/4.1(a) that BEAM and CS both perform better with the iasheg swarm size, though jitter
rate slightly increases after 1500 node mark but stabibzeand 2000 nodes. BEAM has a com-
paratively lower (approximatelf.01%) jitter rate than CS. The plausible reason is that in CS, the
content delivery is random in nature rather than an orgdnilbev. Sometimes an intermediate
piece which could not be fetched, may increase the jitter iatie to alliance formation in BEAM,
the stream content propagates in an organized fashion frmalliance to other; so chances of
an intermediate piece missing are comparatively low. In BER&very node receives the content

through the best possible channel among its various a#@nwhile the same cannot be com-
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mented for CS. An optimal jitter rate of 0 is difficult to attan such random swarm environments
because the content distribution is dynamic and, lastsfexéended time; network anomalies and

congestions can cause unavailability of a packet at ittiphay

Figure 4.1(b) depicts the average latency in both systerostheé same settings, average la-
tency for BEAM varies from less thar) seconds for 428 node swarm to less tha® seconds
for 24096 node swarm, while CS has considerably higher laten®39afeconds for a swarm of

4096 nodes. An explanation for this could be that higher the nurabkops in the overlay, greater

are the chances of increased end to end latency [BBK02, THBDS has comparatively higher
bootstrapping time before playing media and it could bekatted to the following facts: 1) It
buffers more pieces in advance before playback. 2) Due tdoramature of data exchange, a
missing intermediate piece further increases jitter anttédatency. 3) Execution of intelligent
scheduling algorithm causes both computation overheadelag. On the contrary, in BEAM, the
systematic flow of content from one alliance to another aradt nptimal overlay hops account for
its lower latency. Moreover, if a packet has been procuredrbglliance member, it implies that
there are at least one or more sources for the content. Tinsofipackets indeed saves time as
compared to CS. Playback starts 10 seconds after recelvinfirst segment in [ZLLO5]. In our
implementation of both BEAM and CS, the playback startsr&teeconds, as 6 seconds of buffer
time is long enough and is many times larger than the RTT betvpeers to counter the network

anomalies like jitter and congestion within the networkOd].

Uplink bandwidth is the most important resource of a P2PesystEnd users that are charged

for bandwidth used per time unit want to maximize their métion. Moreover, maximization of
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Figure 4.2:Effect of bitrate on the QoS parameters for BEAM and Cooitiag

uplink bandwidth is a must for a scalable system [SLLO6]. nriéigure 4.1(c) it is clear that

uplink utilization increases with the swarm size in bothled systems. BEAM has approximately

7% higher utilization and this could be due to the fact that modéh higher uploading capacity

can effectively use their outgoing bandwidth in their oth#iances, while the same may not be

true for CS where a node with high uplink capacity may remaideur utilized due to insufficient

requests from its neighbors. In random peering (CS), neighg peers may or may not request for

pieces in the packer, while in an alliance (BEAM), membei@sipieces in every packet among

themselves, ensuring that there are request for uploadsalmtidhe time, this increases BEAM'’s

uplink utilization. An optimal utilization ofl.0 is near impossible because of node heterogeneity

and lack of download requests from the low capacity peers.
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4.2.2.2 Streaming Rate

We vary the streaming rate from 64 Kbps to 512 Kbps in a 204& rswehrm and expect a com-
parative deterioration in QoS with increasing streamirtg ess the nodes need to procure more
content for the same playback time. For lower streamingr&esS is expected to be near optimal
as additional packets are fetched much before their playind chances of jitter and hence la-
tency become negligible. From Figure 4.2(a), the diffeesimcaverage jitter rate between BEAM
and CS is marginal for lower streaming rates but more prontifee higher streaming rates when
the systems are subjected to stress test. In Figure 4.2tidastrends can be observed for aver-
age latency while analyzing the effect of varying streamaitig¢ on BEAM and CS. For the same
playback time, a node needs to obtain higher number of psithat incurs additional time over-
head. Figure 4.2(c) shows the variation in uplink utilizatof both the systems. They both peak
around encoding rate of 256 Kbps. A plausible reason coulthékat this encoding rate, the
nodes are able to cater all the requests at optimum rate @htturn increases the throughput.
Node topology and peering partners are important in anadyttie utilization of bandwidth. Most
commercial websites stream at rates between 225 Kbps andbfsOas of 2007. Receiver should
havedownlink > streaming rate and sender should have enough uplink to contribute. In our
simulation, the bandwidth classes of lowest strata is 512sKbo we have limited our discussion
to streaming rate of 512 Kbps. 512 Kbps can be considered esemtrate, though in near future

streaming of DVD quality media will require additional bawidth.
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4223 Fairness

To the best of our knowledge fairness has been undermine@msiteaming models. [AHOO,
BHPO06] have addressed fairness issues in Gnutella and rBitTolike P2P systems. Chu et
al. [CCZ04] have proposed a tax based model for fairness i f2aming. Uplink bandwidth
is a sparse and most important resource in P2P streamingnsavat end users resort to methods
like freeriding [AHO0O], whitewashing [LFS03] etc. in ord&r save their uplink bandwidth. As a

result, many nodes upload much more than what they shoulié wtiiers get a free ride. Recent

measurement studies [HLLO6, AMZ06] confirm the same. In gaiper, we quantify fairness in
terms of content served by each node (uplink bandwidth) oivatently by their share ratios. We
compute the share ratio of all the individual nodes and amedllye correlation, if any, in the QoS
perceived by the nodes. Also, we study the fairness of BEAM@S towards distributing the load

evenly among users.
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In Figure 4.3(a), we depict the share ratios of nodes and dhsribution in BEAM and CS.

An ideal share ratio of.0 is not possible in such P2P systems due to the node bandwetith h

erogeneity [HLLO6, AMZ06]. In such cases, the range of shaties from0.75 to 1.25 becomes

more significant since it is closest td). Larger the number of nodes having share ratio close to
1.0, fairer is the system. In BEAM, around 80 nodes out 02048 have their share ratios in the
range0.75 to 1.25, which forms57.61% of the total nodes, while the distribution is more spread

out in CS with41.21% nodes lying in the region of share ratios betw6gefd to 1.25.

BEAM encourages user participation, wherein nodes in asaraé exchange pieces, i.e. nodes
upload the content to their alliance members while compdetheir individual downloads. For
example, in an alliance of 5 nodes, if one of the nodes precaifgacket (either from the server or
through some of its other alliances), it forwards the conénong its other four members of the
alliance. These four members must exchange their piecesgsnhthemselves. Therefore, a node
downloads 4 pieces and at least uploads 3 pieces in its ¢@aliemce which makes its share ratio
= 3/4 = 0.75. Further, after downloading the complete paakéirwards (4 or fewer pieces) the
content to its other alliances depending upon the numbegqfests it has and depending upon if
those members have procured some pieces from their otienaas. This explains why BEAM
has better uplink utilization and more nodes have share aatiund 1.0. However, some disparity
can be seen in Figure 4.3(a) where some nodes upload mor8 tagies while others share less
than one fourth of the entire content. This is because thergay few requests made to the low
capacity peers , and power nodes distribute multiple cagfiise content in the swarm. In case of

CS, there are more nodes with higher share ratios and cotivedydesser nodes with share ratio
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closer to 1. This could be attributed to the fact that somees@dth high bandwidth always remain
forwarding nodes, i.e. they upload much more than the loweadividth nodes either because of

excess bandwidth or the topology of the node in which flow ddnd top-down.

As shown in the Figure 4.3(b), the average jitter factadr.(d 58% and average latency 1$.12
seconds in BEAM, whereas they @6€221% and22.11 seconds respectively for CS. It can be seen

that most nodes in the swarm receive average values of Qa&pgers for both the systems, i.e.

the nature of graphs in Figures 4.3(b) and 4.3(c) are simildrshow that nodes contributing fairly

to the swarm receive the streaming content with an averége fiactor and latency. This can be
seen in Figure 4.3(b) and Figure 4.3(c) where certain nodeslarger latencies and comparatively
higher jitter rates. These nodes have lower contributiadhénswarm. In BEAM, more tha®0%
nodes have jitter factor in the range @fH01 to 0.003 and similarly more tham0% nodes have
latencies in the range df0 to 20 seconds. In case of CS, jitter factors are more spread out as
compared to BEAM and there are many nodes with a high jitteiofaof 0.040 and above. The

initial bootstrapping time in CS is also higher as shown iguFé 4.3(c).

4.2.2.4 Robustnessand Reliability

We conducted two types of experiment to evaluate the robastand reliability of both systems:
1) We injected various percent of node failures atér; of the simulation run time. 2) We injected
one third of node failures at three different interva?§%, 50% and75% of the simulation run.

After the complete simulation run, we recorded the QoS factdz percentage jitter rate and
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average latency. We study the impact of node failures orethastrics and the overall system
performance. This simulation run comprises of 2048 nodésnaaintains a 512 Kbps streaming

rate.

Figure| 4.4(a) shows the results for our first set of experimérere we inject node failures
after50% simulation run. It can be seen that ff; node failure, the jitter rate is almost negligible
for both the schemes. The jitter rate steadily increasé$itéor around20% node failures. After
injecting 50% node failures, we observe that the rise in jitter rate ispst@ed reaches8% for
BEAM and 10% for CS. This effect can be understood considering the impaobde failures
on the alliances. As the number of nodes gradually declireage of node failure or departure,
number of alliance members)(decrease, thereby weakening the overall graph connigctivs
nodes continue to falter, the alliance becomes sparse anetisoes is broken completely . The
increase in time and consequently jitter rate is due to the tiequired to find alternate paths and
receive the content. CS has displayed similar trends exhapit has comparatively more jitters
with failure. This can be similarly understood that a nodgurees more time to find new peer with

the available pieces.

Figure 4.4(b) shows the impact of node failures on averagadg. In BEAM, for25% node
failures, the average latency incurred is around 30 secatdss failure, the latency is well within
20 seconds and steadily increases with the node failure Tdte steep curve is prominent after
20% failures. Similar is true for CS except that it takes moreetim start the media playback. The
same average latency is maintained for the rest of the ses&iplausible reason for the behavior

of BEAM is that since a node cannot procure packet, it issugdipie requests to the node having
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desired content in the alliance. In case of a complete adidailure, the nodes need to re-form an
alliance, thereby increasing the average latency. In G25f@d node failures the latency increases
to 56 seconds and rises steadily after that to almost 17Gdsdor75% node failure. Finding new

peers after a node failure incurs an additional time in CSthigddelay becomes the end to end

latency. The difference in results of BEAM and CS in Figure¥d) and 4.4(b) can be understood

in the light of SWN, which show robust behavior during churn.

In the second set of experiments we study the effect when fadldee is gradual and occurs
over three distinct time interval5%, 50% and75% of the simulation run. This setup depicts
more realistic scenario and facilitates easy recoveryekample, to depic30% node failures, we
inject one third i.e.10% node failures a25%, 50% and75% of the simulation times respectively.
Figures 4.4(c), 4.4(d) depict the jitter rate and averatgntzy for the above mentioned node failure
rates. We observe that fG6% node failures the jitter rate is still undéys for BEAM, though it
has gone considerably high up2$% for CS. The average latency f65% node failure is around
60 seconds in BEAM and 70 seconds for CS. For lesser percentef fiadures, the jitter rate and
average latency are found to be under acceptable range oM@@8bserve that in the case where
the node departure is gradual (at specific time intervdig)nbde recovery is comparatively easy
and makes system inherently more stable since more timaikable for recovery. For example,
when the node failure occurs say within the fi2§t% of the simulation run time, the system is
recovered much before another failure occurgét simulation run time. Similarly, when another

failure occurs at5% simulation time the system is already stable.
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4.2.2.5 Scalability

In this section, we extend the results obtained for QoS afidlugtilization to larger swarms. We
evaluate scalability in terms of maximum number of nodeseasting system can support without
degrading the QoS. In this experiment, we vary the numbeiodea from 128 to 16384. From
Figure  4.4(e), we observe that for a swarm size of 16384 ndHesaverage jitter rate is around
0.0278% in BEAM and almost aroun@.04% for CS. With increasing nodes , jitter factor decreases
and becomes steady after 1500 node count and marginalBeises for very large swarms. How-
ever, even with a steep rise in the number of nodes in the swWaeraverage jitter factor is found
to be under acceptable levels. The difference between C8BAd/ is more evident for larger

swarms.

From Figure 4.4(f), in BEAM, the average latency is under&tbsds for a 16384 node swarm.
The peer lag is approximately than 20 seconds. As the nunfilbsecs in the swarm increase, there
are more alliances and as the content is forwarded from dia@@é to other, the number of total
hops increase resulting in a higher latency. As mentionediusly, a high average latency is not
acceptable in live media streaming as live media conteirnis $ensitive and loses its importance
if the delay is greater. CS and BEAM have a comparable pedoo®a except that CS takes a little
more time to bootstrap. One of the important problems in €Snnodels is the high peer lag for
media playback and high buffering time. BEAM has displayedsiderable improvement in both

aspects, i.e. reduced peer lag and reduced initial buffeénme from more than half a minute to
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Table 4.3:A comparison of QoS for various k& values for a 1024 node swarm, media encoded
with 512 Kbps. Peering denotes peering scheme in BEAM irstefmand ., N denotes number
of neighbors,BEAM; and C'S; denote Average Jitter Rate for BEAM and Q&AM and
C'St, denote Average Latency for BEAM and @3y AM;; andC'Sy; denote Uplink Utilization for
BEAM and CS.

Peering | N | BEAM, | CS; | BEAM, | CS, | BEAM; | CSy
h.k=4,2| 6 | 0.0158 | 0.0221| 15.12 | 22.11| 90.13 | 80.64
h.k=52| 8 | 00156 | 0.0213| 15.89 | 21.89| 91.26 | 82.76
hk=4,3| 9 | 00162 | 0.0202] 16.23 | 20.27| 92.42 | 84.34
h.k=6,2 | 10| 0.0164 | 0.0206| 17.63 | 22.18| 90.57 | 85.10
h.k=4,4 | 12| 0.0164 | 0.0210| 16.11 | 23.34| 88.26 | 84.14

h,k=5,3112| 0.0159 | 0.0210| 15.04 | 23.34| 9253 | 84.14
h,k=4,5115| 0.0176 | 0.0231| 17.72 | 23.42| 86.47 | 83.59
h,k=6,3 15| 0.0177 | 0.0231| 17.14 | 23.42| 89.41 | 83.59
h,k=5,4116| 0.0186 | 0.0245| 17.98 | 24.03| 8553 | 80.68
h,k=4,6 18| 0.0181 | 0.0244| 18.31 | 24.16| 86.77 | 82.71
h,k=5,5]20| 0.0190 | 0.0249| 18.68 | 26.98| 87.63 | 84.93

approximately 20 seconds. It is very difficult to achieve TRélswitching because of the lack of a

dedicated proxy during initial buffering time.
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4226 Control Overhead

Control overhead is the ratio of the total number of byteseexed in communication and control
to the total bytes used for streaming data payload. An effiggstem aims to minimize the control
overhead (CPU time and bandwidth) and maximize resourdeatibn towards the streaming
content. Figure 4.5 shows the communication overhead fiedun varying swarm sizes ranging
from 128 to 1024 nodes. We vary the valuesiandk. Recall, that values df andk denote the
node degree. With higher node degree, additional resoareeseeded resulting in an increased
communication and control overhead. For 1024 node swarnf/arid = (5, 4) (hode degree=16),
the control overhead is slightly ov&¥:. For most other permutations bfandk values, the control
overhead is aroun2l%. Table 4.3 shows affect of various valuesiddndk on the QoS parameters.
We found(h, k) = (5, 2),(h, k) = (4, 3) and(h, k) = (5, 3) as well performing schemes. In
our experiments in the paper, we use- 4 andk = 2, to show a comparison with CS which has a
neighbor count of 6. As mentioned in [ZLLO5], for a 200 nodeasw in CS, the control overhead
is around2% for node degree of 6, which is quite comparable to BEAM. BEAMI&£S almost
incur similar overhead. In BEAM, a node sends announce st@seit receives a packet, while in

CS nodes send information packets to all their neighbotisgierlly about their buffer state.
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Table 4.4:Evaluation of power nodes and their effect on the QoS facidie swarm is composed
of 2048 nodes and media encoded with 512 Kbps.the weight of”'S R for calculating thel F'.
pNode denotes number of distinct power nodes during tharstrey session. For various values
of a we evaluate number of distinct power nodes active and tlfigicteon overall QoS.

« | pNodes | Average Jitter | Average Latency | Uplink Utilization
0.00 76 0.0175 17.12 90.18
0.20 73 0.0185 17.31 89.46
0.25 67 0.0186 18.23 91.42
0.33 63 0.0175 17.66 89.45
0.50 54 0.0174 17.11 88.29
0.67 48 0.0160 16.54 91.37
0.75 45 0.0158 15.12 90.13
0.80 36 0.0162 15.78 89.27
1.00 29 0.0182 17.95 86.22

4.2.2.7 Effect of Power Nodes

Table 4.4 shows the effect of power nodes on the whole systemvarious values aof (the weight
factor forC'SR andT'SR), the jitter factor, average latency and uplink utilizati@are compared.
pNodes is the number of distinct nodes that were chosen as powersnaidieast once during
the streaming session. The optimal choices were found t@ be (.67 anda = 0.75, though
other choices were also good with marginal overhead irr jitite, latency or uplink utilization.
This may lead to a very important question: Is it necessarghtange the power nodes at all
during the streaming session? The answer could depend onfactors. What incentive do the
high capacity nodes have in contributing the content atically? What if the already chosen
power nodes decrease their uploading rate (in the abserstebfa policy where best performers
in terms of uploading are chosen as power nodes)? We behatechanging the power nodes

brings altruism from the high capacity peers who have anestef being served from the server.
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Altruism has a very important effect on the overall efficigrod the swarm and sometimes even

more thartit-for-tat and any kind of forced fairness policies [PIAQ7].

4.3 Summary

Simulation results have shown that BEAM performs at par WitlolStreaming and in most cases
outperforms it. As discussed in the previous chapter, BEsAMErformance improvements mainly
stem from its alliance based network topology which is mdfieient than a random based net-
work topology. The main improvements are in reducing theaye latency, improving effective
uplink bandwidth usage and delivering near optimal QoSstt Aas shown scalable behavior and
is very robust during node failures. In very sparse netwdrkas shown behavior like any other
random network, and the main reason is that because durgfgtsues it cannot form any al-
liances. Formation of small world network gives networkodtty during node failures and also
delivers streaming bytes in near optimal paths. Simulatsalts in this chapter have corroborated

with our hypothesis.
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CHAPTERS

REDUCING CROSSISP TRAFFIC

We saw in the previous chapter that our proposed model feasting has shown improvement
over the CS model in terms of QoS, uplink utilization, rolmests and scalability. In this section,
we are going to emphasis on the cross ISP traffic that floodsutrent day Internet. According

to some studies, P2P forms approximai@ of the Internet traffic as of 2007. Many ISPs bare
the brunt of home users that use excessive P2P applicatygresyiing extran revenue. As a result,
many ISPs have started traffic shaping. They do deep padqétion of packets and if there are
P2P headers found, the packet is dropped or sometimesatstypis lowered. In USA Comcast

ISP does traffic shaping. Rogers is an ISP in Canada, thattdeesame. As a result, the QoS
further degrades at the user end, because in its currentRP2&sstreaming models have random
peering mechanism generates excessive cross ISP trafficislohapter, we show that using our

alliance based peering scheme, we can indeed reduce cRS=affi.
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5.1 Current Issues

Most P2P streaming algorithms display a greedy behavidi@osing peers and generate excessive
amount of cross ISP traffic [AMZ06], thereby increasing tpemting cost of an ISP significantly.
To overcome such losses, some ISPs impose traffic thrattihgre they limit the bandwidths of
such P2P traffic. QoS perceived at user end is affected in stemarios. Cross ISP traffic can
be significantly reduced by using a biased neighbor selegtaicy [BCCO06] in BitTorrent like
P2P file sharing system and still achieve near optimal perdoice like BT. In such a systems,
a node chooses more peers based on locality of the peerswitiein the same ISP) and also
chooses some far located peers for content diversity. BusBiTfile sharing system, has different
internal policies and mainly works aiit-for-tat mechanism. We focus on the problem of P2P
media streaming cross traffic and propose a preferentiaingeichnique using alliance theory to
counter the same and study if reducing cross traffic affecS.@Vhat are the optimal conditions

to achieve both the goals, or it is not possible at all?

5.2 Alliance Based Preferential Peering

As a node joins a swarm, the tracker intelligently assigres fieerlist using two main criteria:
1) Peers in the similar bandwidth range, if available. 2)rBéethe same ISP, if available and
possible. A node while creating and joining alliances cdaatizely choose its peers or alliance

members based on locality and peer bandwidth range. Thieséwnvo important purposes: 1)
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Cross ISP traffic is reduced. 2) Improving traffic localitysares less probability of congestion
within the interior of the network as compared to bandwidihgestion in the cross ISP links. A
good mix of peers from the same ISP and peers in comparabtiwldth range can yield good

performance in terms of reducing the cross ISP traffic buty imurt QoS and other parameters.

5.3 Simulation Results

In this section, we present a set of simulation experimehteyaithere are 20 ISPs and nodes in the
swarm belong to these ISPs. We attempt to find and comparermiesttraffic between different
ISPs and what is internal traffic within the ISPs. We constder cases: 1) Using BEAM with
regular alliance theory.2) Using preferential peering altidnce theory as explained above. The
number of nodes vary from 500 to 4000 (i.e. in each ISP, thebmurof nodes vary from 25 to
200), the streaming rate is 512 Kbps, (h,k)=(4,2). We asdhatethere is a link between all ISPs

and communication can be carried out between all the links.

Fig!5.1 depicts the cross ISP traffic in both the scenariosfeRential peering using alliance
theory reduces the cross ISP traffic significantly. With éasing node count, the percent cross
traffic has reduced in both the schemes. While using no peéirn just using regular alliance
theory), cross ISP traffic has decreased with increase ia codnt because the nodes increasingly
have better connections within the same ISP, though thesesctions are not intentionally created

in the same ISP. While using preferential, the cross tratig feduced considerably. For a 4000
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nodes swarm, there is a reduction of arodfts in cross ISP traffic, which is approximately 230

GB (a significant volume considering 4000 nodes and a strgamte of 512 Kbps).

Figure 5.2 depicts the QoS parameters between the two sgeniais evident that preferential
peering hurts the QoS factors, though, it reduces cross##ie significantly. For smaller swarms
the difference is negligible but for larger swarm, which fsimterest to us, their difference is
conspicuous. For a 4000 node swarm, there is an increasederpgitters by around.2%, and
latency has gone up by approximatélgeconds. Such behavior is understood in terms of nodes
not getting the best connection. Since more peers are phdsie similar ISPs, nodes miss out
on useful connection which can fetch newer pieces, regpuitirextra jitters and latency. Contrary
to the intuition that uplink utilization in preferential eng should be better than normal alliance
based peering, uplink utilization has indeed gone down énpifeferential peering scheme. This
is because nodes in the same alliance are not able to get remmstontent through the best
possible connection. As a result the nodes are idle at vatiomes and the uplink bandwidth is
not as effectively used as it is used in normal alliance bassiling where a node receives best
connection, though at the expense of high cross ISP traffits évident from the figures that
achieving good QoS and reducing cross ISP traffic are indbp#moals and pursuit of one affects

other.
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54 Summary

In this chapter, we enumerated the problem of excessive t&bstraffic in current day internet due
to P2P traffic. Current models based on random network tgyalon’t make peering connections
in a topology aware fashion and it causes a huge cross 1Sie pedblem. ISPs in turn throttle the
P2P traffic that further deteriorates the QoS of P2P enviesrima Using BEAM and preferential
peering scheme, we saw that we can considerable reducel8@gsgaffic. It is not possible to
reduce much more than that because in that case peers walldweoany interesting data to share
within their alliance members. Cross ISP traffic brings iterasting data to peers which they can
propagate within their alliance. This is an active field afaarch among ISP to alter their revenue
model such that they need not throttle the P2P traffic as geésldor legitimate applications these

days like sharing source code of major Linux distributions.
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CHAPTERG

PREFERENTIAL PEERING METHODOLOGY

In this chapter, we analyze the current day challenges ifoBint (BT) like P2P systems and

propose an alternative model to BT to overcome the probl&itSorrent (BT) [BHP06, Coh03]

is one of the very popular P2P systems used for bulk file doachl®esults [BHP06] showed that
BT scales very well to large number of users and achievesoanal performance in terms of
uplink utilization, mean download time and fairness. TheliR& P2P model is based on tit-for-tat
policy, however, it lacks in terms of fairness. Some nodes muploading more than 6 copies

while others almost get a free ride [AH00]. Our model aimsdbieve the following.

1. Survivability: At all times, every block of the file exisits the swarm ensuring system sur-

vivability.

2. Minimum Mean Download Time: The model aims to minimize éverage of the download

times of all the nodes in the system.

3. Link utilization: The model aims to maximize total uplinklization of nodes in the swarm.

4. Fairness: No node is forced to upload more than it has duaadeld.
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However, there is always a trade off involved when we try twoaaplish these goals. We define
stricter bounds to achieve good uplink utilization and mmizie the mean download time, which in
turn ensures fairness. We propose a preferential and baia&al pairing scheme among the nodes.
The idea is to group nodes with similar bandwidths togethersingle stratum. The tracker issues
every node a list of its preferred peers based on their régpestratum. Later on we show that this
scheme of assigning the peers indeed is better than randentige of peers as in conventional
BT model. We aim to achieve optimal system performance mseof fairness, uplink utilization
and mean download time. The emphasis is overall system bamefinot individual node gain.
However, if free riders [AHOO] exist in the system, it in tuaffects overall system performance.
As a result the contributing nodes suffer in terms of faisnéd/e propose the use of public key

cryptography to alleviate this issue and prevent nodes trioaating.

Our main contributions are a preferential and strata bakeslering scheme to group nodes
and use of public key cryptography to prevent the nodes froeating. We introduce the notion
of TokenFromTracker and Published Upload Speed for the s#adave proposed a self healing

and a self punishing model to dissuade selfishness and @tgpaliruism.

6.1 BitTorrent like P2P Models

BitTorrent (BT) [BHP06, Coh03] is a P2P application usedbalk file download. Conventional

P2P systems were used for small sized data files with one tec@meections possible between
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them. Large multimedia files and software distributions deda fast and efficient mode of trans-
fer. It exploits the uplink speed of end users while they an@rdoading parts of the file. With BT,
files are broken into small chunks typically 256 Kb. As thegfreents are distributed to the peers
in a random order, they can be reassembled on a requestirtgnaa&ach peer takes advantage
of the best connections to the missing pieces while progidimupload connection to the pieces it
has already downloaded. This scheme has proven partigulseful in trading large files such as
video, games and software source code. In conventional ldadimg, high demand leads to bot-
tlenecks as demand surges for bandwidth from the host s&kr BT, high demand can actually
increase throughput as more bandwidth and additional s&eitie completed file become avail-
able to the group. Cohen [Coh03] claims that for very popfilles, BT supports about a thousand

times as many downloads as HTTP and prevents server crasbesten the HTTP downloads.

There are two types of nodes in the system. The nodes thafinesleed downloading the file
and willingly offer uploads to other users are called as seéthe nodes still in the process of

downloading file are called as leeches. Leeches also offeadg to other users as they download.

To share a file using BT, a user creates a .torrent file, a snethfite that contains the in-
formation like filename, size, hash of each block in the fites &ddress of a tracker server and
miscellaneous data like client instructions. The .torffdatis distributed to the users via some
medium like email or website. The original user who is wijito offer the upload starts as a seed
while other users start as leeches. Once a new user joinggtershe contacts the tracker to obtain
a list of 40 peers including seeders and leeches who are swten. A new node upon receipt of

peer list contacts these nodes to obtain the file blocks. ©desin the peerlist which are already
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in the system send their buffermaps to this new node. Bufigria a list which contains the list

of pieces they currently have. New node then requests tlvepieom these nodes. If the peer list
goes below 20 due to departure of some nodes the new node Braddber request to tracker to
give him the addresses of some more peers. It then sehdgeamessage to its neighbors about

this new piece, so that other nodes can now request for thily rdtained piece.

Every node downloads as many blocks and as fast as they caea€lo available source, the
node considers the blocks of file available and then reqtiestarest block among the peers. This
is called as Local Rarest First(LRF) policy. The least ieikd block is chosen and downloaded to
maximize the content diversity in the system. This makeoiutentikely that peers will have blocks
to exchange. As soon as the client finishes importing a bibblashes the block to ensure that the

hash matches with the hash value in the torrent file. It thekddor someone to upload the block.

A tit-for-tat policy is enforced to make sure that leechesdbget a free ride and also give back
to the system by performing uploads. BT gives the best daaehferformance to the nodes with
maximum upload, a property known as “leech resistance’isttalirages leeches from download-
ing the file without uploading it to anyone. This policy fosoeverybody to contribute to the system

to get maximum system benefit. Every node tries to limit thenber of uploads at one instant to

some small number say 5 to avoid having lots of competing T&@mections [BHP06, Mor97].

A technique called choking is used to limit the number of adl® A node uses choking to
block the upload connections to maintain its own perforneania general, the set of neighbors
that a node is uploading to may differ from the set of nodes dawnloading from. Time to time

every node performs optimistic unchoking which helps neer tis get started. When a new user
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joins the system there is no way he can start downloading lthek$® unless there is optimistic
unchoking. The scheme helps the node realize if there is ey node giving better upload speed
to him so that it can choke some other connection and unchaokelthough BT is a good protocol
for a broadband user, it is less effective for dial up conoest where disconnections are common.
On the other hand, many HTTP servers drop connections overadours, while many torrents

exist long enough to complete a multi-day download.

This process of uploading and downloading continues titlesprocure a complete copy of
the file. Once a node finished it can either stay in the swarno#fedits uplink to helps others or
it can leave the swarm. The average download time of the us#re swarm is proportional to the

number of seeds present and also on the contribution of ntuas.

6.2 Reated Work

There has been considerable work done ever since Cohen 3Cits came with the idea of BT.
Many simulation and analytical based studies have beentegptll date. Most simulation based
studies focused on BT performance at various setups. |12al[#t/B04] focused on the tracker log
obtained from the Redhat 9 Linux Distribution. Their workuemerated the basic properties of the
torrent i.e. most clients after finishing the download temdtay in the pool for another 6.5 hours
because they need manual intervention to close the BT dieahistop uploading. They also re-

ported average upload speed achieved during the run of ttemtoThey have seconded the claim
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by Cohen [Coh03] that tit-for-tat policy is effective in BTha gives good results. Pouwelse et
al. [PGEO05] also performed a study on a 8 month log obtainad f real life tracker of more than
two thousand global components. Their main finding is thahiwiP2P systems a tension exists
between availability which is improved when there are ndgl@omponents, and data integrity,
which benefits from centralization. Sherwood et al. [SBBfe explained the "Slurpie” system
which is very similar to BT. It uses an available bandwidttireation technique. All nodes down-
loading the same file contact the topology server. Usingrif@mation returned by the topology
server the nodes form a mesh and propagates progress upmateser nodes. Slurpie protocol
has been implemented and is available for download. Shava®t al. [SB05] have presented an
incentive based streaming in P2P environment. Qiu et al0D®odelled BT using fluid flow and
conducted an analytical performance study. They have elBxpressions for average number of
seeds, leeches and download time using the node arrivalegpadtdre rate. They have shown that

BT is scalable and performance improves as there are morg indbe system.

Our work mainly focuses on classifying nodes in varioustatsa that peers mostly exchange
packets with peers in the same bandwidth stratum. This jsarercial for good uplink utilization.
On the fairness front, we employ a published based modelevagrode publishes his standard
upload speed. To stop cheating, tracker creates a tokesdcdlbkenFromTracker” which uses

public key cryptography to encrypt the token.
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Figure 6.1:A Strata based mechanism

6.3 Preferential and Strata Based M odel

We propose a novel scheme to classify and group nodes inkasbandwidth range into respective
stratum. Nodes within different strata have the flexibibfycommunicating with each aother for
the requested file block. However, the nodes that lie within $ame stratum are the primary
preferred peers for file exchange followed by the nodes imdeaby stratum in terms of their

bandwidth difference.

In real life scenario we have nodes with heterogeneous bdtitsssuch as T3, T1, Cable, High

DSL and Low DSL. We assume five bandwidth classes related as:

A1>A2>A3>A4>A5

Let,

A(ivj) = |Al - Aj|

66



whereA; andA; are the bandwidths of strata i and j. Therefore,

Apjy < Aury for |i—j| <fi— k|

where

i<j<kori>j>k

In our model, a node with bandwidth, is most likely to interact with nodes from, as|i — j|
is 0. A second preference is givenAg andA; bandwidth nodes, which are the strata with the

second minimum bandwidth difference.

Apg) < Apg

Apg) <Ap

Some fraction of the peer list will include nodes from remsteata. For example, in our case
a node withA; speed would also havA;, A, and As bandwidth nodes as its peers. In our
simulation we conside$0% peers from the same stratuis,% each from the neighboring strata
and 10% from remote strata. It can be denoted6as15,10). We also consider other possible
distributions like(70, 10, 10) and (50, 20, 10). Later we show that this scheme of assigning peers
is better than random selection of peers (used in conveadt®h model). It ensures near optimal

uplink utilization as maximum interaction is found to be amganodes within the same strata.
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Moreover, this scheme tends to be fair as the nodes form aisjimassociation and are equally
benefited in terms of the volume of content served. This famatural incentive for the nodes to

be in the best possible strata.

Generally such P2P systems comprise of large number of ndétees can enter and depart
at any point of time. Moreover, the node behavior cannot bgtéd. There is always a possibil-
ity of free riders in the swarm who selfishly download the emitwithout contributing fairly to
the swarm. We emphasize on the overall system performartte@ron individual gains. Con-
sequently the contributing nodes suffer on account of tifreseriders. This also has significant
impact on the uplink utilization and fairness ensured bypteferential and strata based scheme.

We propose a self healing and self punishing model to codhigrssue.

We introduce the notion of Published Upload Speed (PUS) foode. This is to dissuade
the node from cheating and to ensure that the node offersatine sipload speed as published
throughout the time it is in the swarm. Every node upon afremtacts the tracker. It sends
PUS it is going to offer to the peers. An end user (node) cafigume the BT client based on his
preferences. Even if a node has good uplink speed he wouldanatto dedicate all his uplink
speed. However, if the node publishes a lower uplink speexlhbe placed in the lower stratum.
So the node resorts to cheating by initially offering highS&hd later configuring his BT client to
downgrade the uplink speed. Open source programs for Babgives an end user a chance to
modify the protocol in the code. New programs like AzureusyPcan be customized as per user
needs and allow user to choose upload speed, number of ¢mmseetc. This facilitates cheating

by an end user. If a node wants to downgrade his PUS for sorsensgat is expected that the
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tracker is informed and the node obtains a new TokenFrork&raeith the new downgraded PUS.

This helps the tracker differentiate the cheating nodas fitte non cheating ones.

We propose to create atoken called “TokenFromTracker”s idken is encrypted with tracker’s

private key. The payload contains Node ID, PUS and Arrivad&i

{[Node D, Published Upload Speed, Time|Kgr } Ky

For example, node A and B agree to communicate. They excltaegdgokens and get the infor-
mation of peer's PUS and other details by decrypting thertoki¢h tracker’s public key. While the
session is on, the peer can gauge the node’s offered uplead sp node is immediately caught
if it keeps upload bandwidth low for a certain period of timéerval. The model associates some
tolerance T with the upload speed i.e. if a node publishespéwad speed of U, then its uplink
speed in the range U-T to U are all acceptable. If it falls el T the other node would wait for
a small time interval t and eventually disconnect. Peeffiestthe tracker about the cheating node.
Tracker issues a warning to the cheating node. If numberroptaints exceed the threshold K, the
tracker brands him as a bad node and throws him out of the swhlnia is a consequence of our
self punishing policy. Nevertheless, the warned users woperate with the protocol are allowed
to stay in the swarm. This is in accordance with our self imggtiolicy. Thus, our model is a self
healing and self punishing one and turns the node behawior $elfish to altruistic enhancing the

overall system performance.
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After acquiring the peer list the node contacts the peershifirst file block. Once it procures
the first file block it starts uploading as well downloadingetfile blocks. For the subsequent
blocks Local rarest first (LRF) policy is enforced as in thexantional BT protocol [Coh03]. The
nodes continue to exchange the file blocks until they finigir liespective downloads. Nodes may

volunteer to stay in the swarm or leave. Nodes intimate #ekar while leaving the swarm.

6.4 Simulation Setup

We present the details of the simulation setup for our preg@seferential and strata based model.
We present an evaluative comparison against the BT protéé®have mainly focused on average
time to finish the download, fairness in terms of the volumeaftent served and uplink bandwidth
utilization. Under the assumption th@lownlinkspeed > uplinkspeed), the bottleneck in most
cases is the uplink speed. In such cases downlink speed tceapture the correct notion of
bandwidth utilization. To justify our fairness claims wevkdaken into account share ratio of the
nodes in the system. We compute the variance of share rattbsampare with BT to identify
how our model works in case of free riders. Can we lower thpatity of share ratios of the nodes
so that free riders have no incentive in their behavior? We Ipgrformed experiments to evaluate

our self healing and self punishing model.

We implemented a discrete event custom simulator in Javanéxgioned in [BHP06] network

propagation delay is relevant only in the case of small spaazkets such as request packets. Most

70



P2P traffic is the data payload and ignoring propagationydddees not have a significant impact
on the simulation results. For experimental purposes weenaakimplicit assumption about the
network propagation delay and do not model it in our simatati We do not model the TCP
congestion and delays within the network. The bottlenecksaasumed to be either the uplink or
downlink bandwidth and not any other point in the network. Neédieve that bulk file transfers
lasts over an extended period of time and ignoring TCP dyosifor small intervals do not affect
the simulation results. Pouwelse [PGEO5] findings are tmatréal world torrent downloads do
not necessarily follow any particular arrival pattern. Treval pattern of nodes in the swarm is
assumed to be under Poisson distribution which is closdbetoeal world compared to any other

distribution.

In our simulation setup we have varied the following pararset Number of users (N) from
128 to 8192, File size (S) from 256 MB to 2048 MB. Each file blixkonsidered to be 256 KB.
Initial seed is considered to be a powerful node capable f geod upload speed say 6 Mbps.
The various bandwidth strata we have considered are (10@QK000Kbps), (8000 Kbps, 4000
Kbps), (3000 Kbps,1000Kbps), (1500 Kbps, 384 Kbps) and (18ds, 128 Kbps), where the first
member of the tuple is the max download speed and the secdhd imax upload speed. The
distribution of nodes among various bandwidth strata ifosmm. On an average, every stratum has
around20% of the total nodes in the swarm. An implicit assumption ig ti®nodes finish their
downloads they leave the swarm. We have injected ar@ifidof users who stay in the swarm
to help others finish their download. The above mentionedbmismhave been obtained from real

life torrent examples [IUB04].
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We evaluated our model for the three main metrics viz. (i)rAge download time (ii) Uplink
utilization (iii) Fairness in terms of share ratio of eacldaon the swarm. Mathematically these

are denoted as follows.

Zﬁio D;

1. Average download time =N

whereD; is the download time of nodeand NV is the total number of nodes in the swarm.
> o UT;

N )
whereUT; is the ratio of the uplink bandwith used to the uplink bantiveivaliable for node

2. Uplink utilization=

U
3. Sh tie= —,
are ratio= D.

2

whereU; and D; denote the uploaded and downloaded contents for hode

Further, to evaluate our self healing and punishing modelnjexted around 0% cheating
nodes. These nodes mimic real world cheating nodes that dadhere to the protocol. Imple-
mentation program detects such cheating nodes for thdistsélehavior. We analyze the node
behavior during the course of the simulation and quantigy tiamber of nodes that turn from

selfish to altruistic.
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6.5 Resultsand Discussion

Our main objectives were to evaluate and compare the meanldagitime, fairness and percent-
age uplink utilization. Figures 6.2 and 6.3 show the congmariof Mean Download time and
Uplink utilization in our model versus the conventional Bigure 6.2 is plotted for file size 256
MB and for 1024 MB. The simulations were run for users randnogn 128 to 8192 and time
is calculated in second. It is evident from both the figured the mean download time in our
model has been considerably minimized. Furthermore, witheiasing number of nodes, the mean

download time decreases in our model. Thus, our model igisieal

Figure 6.3 represents the percentage utilization of ugenkdwidth for file sizes 256 MB and
1024 MB. For both the cases our model has better uplink atibm compared to the conventional
BT. For file size of 256 MB the utilization factors for BT andranodel are86% and91% respec-
tively while for 1024 MB the utilization factors arg3% and88% respectively. Our model has

consistently scored over BT for all number of users for thi bloe cases.

We have quantified fairness in terms of Share Ratio. Shaie Ralhe ratio of uploaded volume
content to the downloaded volume content. Share ratio ofcbimsidered healthy and optimal
where a node downloads a copy of the file and also gives badkets\ytstem the downloaded
copy. Typically, original seed ends up uploading numberagies and there are always some
very reliable seeds (not original) which stay in the swarmefavhile to help others complete their
downloads. Such seeds have a very high share ratio typicalie than 5. We believe that a node

should not be forced to stay in the swarm to finish the downltfatbdes stay in the swarm, their
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altruism is welcome but we believe that user altruism showldbe forced. In the figure 6.4 we
have depicted the fairness in terms of share ratio. Thislaiion run was done for 512 nodes in
the system. It is evident from figure 6.4 that the variancehairs ratio in our model is less as
compared to BT. The variance of our model is 0.115725 whilehB3 0.156253 which proves that
our model is more consistent than BT in terms of fairness. fbethat our model kicks out free
riders helps improve fairness among user nodes. The resatifest that our model has achieved

the above mentioned goals.

6.6 Analysis

In previous sections we compare our model to conventionabBd conduct an analysis of the
same. We begin with quantifying the differences in the tesakverhead in our model and con-
ventional BT. While in the conventional BT the peer list isigeed randomly, in our model the
tracker finds best peers for every node. This task is computdly inexpensive as it has to search
for peers in the stratum corresponding to the node’s puidisipload speed. The search space is
considerably reduced. Tracker monitors the nodes in varsttata and uses it to assign the peer
list. Tracker creates a token called “TokenFromTracker ancrypts with its private key. For
instance if the Node Id is 64 bits, the published upload seddascellaneous information occupy
another 64 bits, the tracker encrypts around 16 bytes farglesnode. This encryption and com-
putation can be done in parallel while computing the peér Tikis does not incur any additional

overhead. In addition to this the tracker also Ibgsl node historpf the cheating nodes. Tracker
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warns a node if it gets complaints about him not adhering ¢opttotocol. After monitoring that

particular node, if the node behavior persists, the tragia@y remove him from the swarm. Even-
tually the number of nodes the tracker has to monitor deere&lsove mentioned changes are not
computationally expensive and do not flood tracker with fahessages. They can be performed

very well without any delay and degradation in the trackefgrenance.

We perform an analysis of the node behavior during our sittmula There are three stages in
the run of the protocol shown in Figure 6.5.
Stage 1 There are not enough number of users in the swarm. Due talesder of users in
each stratum, the tracker cannot assign the peer list basedrgrotocol. Essentially, our model
behaves the same as conventional BT in this phase for laclofies. This phase does not demon-
strate any improvement in terms of uplink utilization as warmot achieve preferential pairing of
nodes. Howsoever, this phase does not dominate the totéihmarof the protocol and hence does
not show a significant impact in the overall results. Figutedepicts this stage. It is evident that
in this stage disparity dominates in the share ratio of nodes
Stage 2 There are considerable number of users present in the swWdnimstate is called “Steady
State”. This is the phase where our model is most dominard.tfEttker allocates peer list based
on preferential grouping in accordance with our model. Agsult, good uplink utilization is
achieved. Since nodes with similar bandwidths are involmddock exchange share ratio is close
to 1. This ensures overall fairness in the system. This pisase@rked by maximum transitions
from selfish to altruistic nodes shown in Figure|6.6.

Stage 3 There is dearth of nodes again because the nodes that heslefirthe download leave
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the swarm. The seeds willingly offer uploads to help otharsiginish their downloads. That is
why the share ratio of users involved in this phase is less thand decreasing. It is evident that

the share ratio steadily falls below 1.

Second phase dominateé®’ of the protocol run time. Any improvement in this phase wél b
reflected in the overall results. First phase is similar ®dbnventional BT but its share is very
less compared to the second and third phases that domieatedhrun of the protocol. Results in
the previous sections have demonstrated this fact. Thesgek are reflected in all three measures

namely mean download time, fairness and uplink utilization

In our simulation run, we injected arounn®% cheating nodes. These nodes over a period
of time turn altruistic during the simulation run. The nodkat cheat despite the warning are
taken off the swarm by the tracker. In Figure 6.6, 900 noda at altruistic and 124 as selfish
nodes. Towards the end 31 nodes are blacklisted and throwef the pool and rest 93 turn good.
This shows that our model indeed turns user behavior frofisBeb altruistic. In Figure 6.6 the
number of altruistic nodes increase while cheating nodesedse as they are thrown out of the

swarm. This shows that our self healing and punishing pdlaigs good.

6.7 Summary

BitTorrent is inherently a very efficient protocol for bullefitransfer. But it does not achieve the

best performance in terms of mean download time, fairnedsugfink utilization. We present a
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Figure 6.6:Number of Selfish Users who turned Altruistic.

refined model by adding strata for various bandwidth userétter pairing between the peers.
Results show that this way of assigning peers is better thadam selection of peers. Publish
based model is an efficient way of classifying nodes in stragage of public key cryptography
adds flexibility and is a cost efficient solution to preveneating. Our analysis and simulation
results have confirmed that our model is stable, scalablgparidrms well on all the three impor-
tant metrics. Our self healing and self punishing policypkelurn user behavior from selfish to
altruistic. Our results are promising and inspiring. Fatgoals related to this work are to analyze
the graph theoretic properties such as node degree, maxfitdhepn from node to sink of the BT

like P2P system.
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CHAPTER 7

IMPROVING SECURITY INBITTORRENT

BitTorrent has shown to be efficient for bulk file transfemawer, it is susceptible to free riding by
strategic clients like BitTyrant. Strategic peers confegtlire client software such that for very less
or no contribution, they can obtain good download speedsh Suategic nodes exploit the altruism
in the swarm and consume resources at the expense of othesthwydes and create an unfair
swarm. More unfairness is generated in the swarm with thegpiee of heterogeneous bandwidth
nodes. Many high capacity peers contribute much more thadatewhile low capacity peers
contribute very little or nothing. In this research, we prep and investigate new anti-strategic
policies that could be used in BitTorrent to minimize theefreding by strategic clients. In our
proposed anti-strategic model, nodes obtatokenfrom Tracker upon joining the swarm which
they use while interacting with peers. The token contaif@rmation such apublished upload
speed arrival time and node 1D, and this token is signed by trackerh that other nodes can
verify the information but nobody can forge it. Other arttiagegic policies include, using a smart
tracker that denies the request of strategic clients for pgemultiple times, and black listing
the non-behaving nodes that do not follow the protocol jpedic These policies help to stop the

strategic behavior of peers to a large extent and improvesat\system performance. Moreover,
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in this paper, we also quantify and validate the benefits mfgusandwidth peer matching policy.
Peers are given a peer list based on their bandwidth rangearpgal. This fosters better uplink
utilization, reduces the time for nodes to find the optima&rpdor exchanging data and has positive
effects on many important metrics like download time, fagsindex etc. Our simulations results
show that with the above proposed changes, uplink utibredind mean download time improves
considerably. It leaves strategic clients with little orinoentive to behave greedily. This reduces
free riding and creates fairer swarm with very little congdignal overhead. Finally, we show
that our model is self healing model where user behavior gbsufrom selfish to altruistic in the

presence of the aforementioned policies.

7.1 New Security Issuesin BitTorrent

BitTorrent (BT) [Coh03] has emerged as one of the most pomaar-to-peer (P2P) models in
recent years for bulk file sharing. It shows improved perfamgce in terms of uplink utilization

and mean download time as compared to other P2P systems @HROwever, BT is prone to

strategic attacks as shown by BitTyrant [PIA07] and otheR(5, LNK06, LMSO06]. It also suffers
from free riding problem [AHOO] and creates unfair swarm. nyldigh capacity peetsupload
much more than it is required while many get a free ride. Tlaeeshatio (ratio of uploaded volume

to downloaded volume content) has shown to vary ftbtm almost in many studies [BHPO6].

'We have used the terms nodes and peers interchangeably.
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The strategic clients exploit the excess bandwidth in tharswprovided by some altruistic
peers present in the swarm. They game their BT client in sushyathat with very little or no
contribution, they can obtain a good download speed. Tipfoecomes at the expense of other
non strategic users. They procure a peer list in excess 6820My constantly querying for more
peers from the tracker. Their main strategy is to exploitdpgmistic unchoke by seeds, and if
there are many seeds, they could benefit without contrigutinch. While interacting with other
nodes in the swarm, these clients gradually decrease fhi@ikispeed while they get service from
other peers. If the other peer drops the service becausexfif@ink speed, such strategic clients
increase the uplink speed so as to reach the minimal upliekdspeeded to induce cooperation
from the other peer. Such clients use many more TCP conmadtian mentioned in the reference

BT client implementation to exploit the maximum downloa@eg for a given uplink speed.

In this paper, we propose a set of new features that, whengacated, could make BT resistant
to such strategic attacks. We determine the impact of thel&igs on other important factors in
the system like mean download time, uplink utilization aagirfess towards an end user. There
is a trade off involved in accomplishing these goals siimdtausly, i.e., minimal download time
and fairness do not go hand in hand and pursuit of one affeetsther. The BT protocol can be
customized in many different ways, where achieving optimabn download time is one end of
the spectrum and achieving fairness the other [BL06]. Westigate as to what point in the whole
spectrum of these parameters, could yield a near optimaltsesith no strategic attacks and high
fairness. We also investigate the effect of altruism, self,volunteers who offer their upload speed

in return for nothing, on the swarm performance.
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The main goals of BitTorrent like P2P system are the follgyiBach one of them is very im-
portant independently and not completely mutually exetisiith others. In our present work, we
propose new policies that will make them robust and capatdeercoming the current problems

of strategic attacks.

e Survivability: Every block of the file must exists in the swaat all times so as to ensure
that all nodes can finish the download at some point of the, thatter sooner. BT employs

local-rarest-firstpolicy for replication of pieces and has shown to be very ieffic[LUMO06].

e Download Time: Every node individually attempts to finishdbwnload as soon as possible.
Selfish clients use greedy policies for the same. Our aim keép the mean of download

times of all the nodes to as less as possible.

e Uplink Utilization: High uplink throughput is desirable f@calable system and partially
reflects the mean download time. Peers at every point of titeenat to find a partner which
has high uploading capacity. Seeders upload the contehetpders with high download
speed to effectively improve the uplink throughput, whigtproves download time. In later
and new version of BT, the seeds uniformly distribute theteohto the nodes rather than

few high capacity nodes.

e Fairness: The swarm should be fair i.e., no node should lsedao upload much more than
what it has downloaded. No one should be able to get a free hdintary altruism is

welcome for the swarm.
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e Robust: The swarm should be robust to strategic clients amst mot let these clients to

download selfishly at the expense of other non strategicsiode

In this chapter, we propose new features for BT to overcomagesfic attacks and to improve

the overall system performance. In particular our main ouations and findings are:

1. We use anti-strategic policies to guard BT against setfigmts [PIA07, LMS06]. To this
end, peers exchange tokens given to them by tracker forikgeépb of uplink speed of the
other peer. Intelligent tracker prohibits strategic digefrom procuring peer list multiple
times. Nodes that upload garbage content are quickly ifikethtind blacklisted by neighbor-
ing nodes. These policies are resistant to strategic &tttk does not let the clients degrade

performance of other peers.

2. We quantify and experimentally validate the concept afdvadth peer clustering [PGO06,

BHPO06, LUMOG6] and show that it shows significant improvemientplink utilization and

mean download time.

3. We show that altruism is indeed very important for impngvihe overall system perfor-
mance. Altruistic swarms finish the download much faster asel the resources near-

optimally when compared to swarms without altruism.

Section 6.1 gives an overview of BT like P2P model. We pregleatdetails of our model
in section 7.2. Section 7.3 describes the metrics we useviduating our model and the simu-

lation setup. We briefly describe the metrics which we useuinsimulations and comparisons.
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And finally results are in section 7.4. In section|7.5, we en¢ghe related work done for the

enhancement of the BT protocol.

7.1.1 Strategic Attackson BitTorrent

P2P systems are inherently based on user altruism andipatiim [BHPO6] but this concept is
exploited by free riders who do not want to contribute theiink speed and are only interested in
downloading. Free riders in BT resort to acts like tuningrtbkent for minimum upload or even
strategizing the client for maximal download for minimummadbution. Liogkas et al. [LNK06]
proposed 3 main techniques to exploit BT: 1) Download froedse 2) Download from peers with
high uplink capacity and 3) Advertising false pieces. Laokteal. [LMSO06] proposed to procure
huge peer list so that a client can afford to only interachwhie seeds. BitTyrant [PIA07] is a client
implemented using Azureus [Azu], and has been very suadasséxploiting the vulnerabilities
of BT. BitTyrant exploits the altruism present in the swarypngsocuring a large peers list in the
swarm. It then attempts to establish connections with saedsprocures free content. While
interacting with other nodes, BitTyrant adopts a policy pfaading minimum content to get the
maximum download. One of the very important exploits Bifiiytr used is to avoid equal split
policy while uploading, rather it uploads in different ftems to its peers to get the maximal
download. While interacting with a peer, it gradually dexses its uplink speed as long as it gets
reciprocation. If the other peer chokes BitTyrant then dr@ases the uplink speed and determine

the level of participation (uplink speed) needed to keegtmection alive and get the downloads.
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BitTyrant does this over many connections and attempts timiae the download for a given
uplink speed limit. BitTyrant by virtue of its greedy polidpes bring performance improvement
for a client, but it can hurt the swarm performance if all tieeys use the BitTyrant client [PIA07].
This would mean BitTyrant improves performance for an imdlial user and not for the whole
swarm. In this paper, we investigate if such strategic bienaould be alleviated in the swarm
while achieving near-optimal behavior in the overall swarenformance. To this end we propose

new set of anti-strategic policies mentioned in the nextisec

7.2 Our Proposed Policies

In this section, we propose a set of features for BT that cbald to overcome the strategic attacks

and improve the swarm performance.

7.2.1 Anti-Strategic Behavior

We propose to use anti-strategic behavior in every BT clietihe wake of recent attacks which
leads to poor swarm performance [PIA07]. In particular, weppse to use the following three

strategies to overcome strategic attacks.
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7.2.1.1 Token From Tracker

We introduce the notion d?ublished Upload Sped®US) for a node. This is to dissuade the node
from cheating and to ensure that the node offers almost sptoadispeed as published throughout
the timeitis in the swarm. Every node upon arrival submithotracker the PUS it is going to of-
fer to the peers. The tracker creates a token, calenFromTrackef{ Node ID, PUS, Time]Kg),
which consists the Node ID, PUS, and its arrival time, andygts it with its private key I r).
While interacting with peers in the swarm, nodes exchange fvkenFromTracker. By de-
crypting the other peer’s toke[(NVode ID, PUS, Time|Kg}Ky) using the public key of tracker

(Ky), they get an estimate of the uplink speed the other noddasig.

Assuming a node splits its uplink bandwidth equally amosddtal peers (say 5), a node can
gauge which peers give better uplink speed and it can uncti@keonnections to those peers.
While a session is on, nodes can resort to cheating by iyitdfering uplink speed equal to
PUS and later on gradually decreasing the uplink speed Iéina BitTyrant). A node can be
immediately caught if it keeps upload bandwidth low for ataier period of time interval. The
model associates some toleraricevith the uplink speed i.e. if a node publishes an upload speed
of U, then its uplink speed in the rang& — T') to U is acceptable. If it falls belowlU — T')
the other node would wait for a small time intervadnd eventually disconnect. The tolerarice
andt¢ takes care of the network anomalies that might arise and atnategic user should not be
punished for it. Peer notifies the tracker about the cheatoue. Tracker warns such nodes after

h complaints (say:. = 3) and upon receiving such complaints (salf = 5), tracker bars the node
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from getting any more peer list and blacklists such node,iatichates the nodes in its peer list
about the existence of such cheating node. This is a consegwé the punishing policy of our
model. Nevertheless, the warned users who cooperate vatprtitocol, i.e. after warning stop
the strategic behavior are allowed to stay in the swarm. iEhisaccordance with our self healing
policy.

An end user (node) can configure the BT client based on itemetes. A node can have a
good uplink speed, but it would not want to dedicate all itinkospeed to BT application. The
node can resort to cheating by initially offering high PUSI dater configuring its BT client to
downgrade the uplink speed. Open source programs for BTagivend user a chance to modify
the protocol in the code. New programs like Azureus [Azu] barcustomized as per user needs
and allow user to choose upload speed, number of conne&ionghis facilitates cheating by an
end user. If a node wants to downgrade its PUS for some reasanexpected that the tracker is
informed and the node obtains a néwken F'romTracker with the new downgraded PUS. This
helps the tracker differentiate the cheating nodes frormtirecheating ones. Nodes intimate the

tracker while leaving the swarm.

7.2.1.2 Smart Tracker

Most strategic attacks stem from the fact that such clieegae@st for more peers from the tracker.
After every small time interval, they request for additibpaers till they have peers in excess of

200-300. They then launch strategic attacks by interadtiitig more peers and also hope to get
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optimistic unchoke from high capacity peers. We proposes&asmart tracker wherein for every
request for additional peer list by a client, tracker chatksas 40 live peers in the swarm. If no,
it provides it additional peer list so that the client haseaist 40 peers in the list, else it rejects its
request of additional peer list. This can substantiallydo@own such strategic moves by clients
who are trying to maximize the profit. In the results sectiwa,quantify the effectiveness of smart

tracker in alleviating the behavior of such clients.

7.2.1.3 Blacklisting Nodes

To counter the false publishing attack of nodes wherein lieatcfalsely sends ‘have’ messages
of rare blocks in the swarm and in turn uploads garbage coimerrder to obtain some useful
content, we propose to use a policy wherein a node blacldiste a node upon finding that it
uploaded garbage content. Future interactions with sudesare avoided and tracker is made
aware of such garbage content. Tracker warns such nodeshadtamplaints (say» = 3) and
upon receivingt such complaints (say = 5), bars the node from getting any more peer list and
blacklists such node. The selfish nodes in presence of sy pannot publish false message
for long as they will be blacklisted by most nodes in its néigiihood and it will severely hurt its
chances of obtaining new and useful content. In the reseidtsos, we show that by adopting this
policy, significant swarm bandwidth, that goes in downlogduch garbage content, can be saved.

It also serves as a warning to such nodes that publishesciatéent and upload bad content not to
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resort to such techniques. Results show that user behadeed changes from selfish to normal

upon receiving warning from tracker.

7.3 Evaluation of Our Proposed Model

We present the details of the simulation setup for our pregamnti-strategic and strata based
model. We present an evaluative comparison against the 80gol. The main metrics for com-
parison are average time to finish the download, uplink baditivutilization, and fairness index

in terms of the share ratio. We now detail the metrics useddioicomparison.

1. Average download time: It is the mean of download timesliofh@ nodes in the system.

Mathematically,

N
>n,
i=0

Average Download Time = N

whereD; is the download time of nodeand NV is the total number of nodes in the swarm.
The download time of high capacity nodes has shown to be lesgpared to its weaker
counterparts [BHPO06]. By evaluating the mean download fon¢éhe whole swarm, we can

get a fair bit of idea about the performance of the BT protacdhe swarm.

2. Uplink utilization: Uplink bandwidth is the most sparsesource in the system. In most

realistic scenario§/plink Bandwidth < Downlink Bandwidth holds good, so we limit
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our discussion to only uplink bandwidth. A good uplink thgbyut i.e. (ratio of uplink
used to uplink available) would mean a lot of resource (Wiandwidth) are pooled in the
swarm that can serve peers, which in turn helps to lower thatbad time. Moreover, some
ISPs charge their end users for the bandwidth used per orét t5uch users would want to
maximize the uplink throughput for saving the ISP fee. Sraalhl. [SLLO6] proved that

maximization of uplink speed leads to scalable systemshéfaatically,

S

1=0

N

Uplinl Utilization =

whereUT; is the ratio of the uplink bandwidth used to the uplink barditviavailable for

node .

. Fairness: We define fairness in terms of share ratio oetwserved by nodes. Share ratio of
end users over the period of complete download depicts thiibotion of the nodes quite
fairly. In an ideal system, nodes have share ratios of 1.@revan end user downloads the
content and passes on equally to other end users. But gieetlytitamics of the internet,
churn, and peering schemes, it is very difficult to achievee game in BT. So, more the
number of nodes close to share ratio of 1.0, the fairer isytbiem, i.e., the lesser the variance

of share ratios from the mean, fairer is the system. We usésJairness index [JCH84] to
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evaluate the swarm fairness.

f(xhx%x?n"'?xn) =

wherezx,, z»,..., =, are the share ratios of the nodes. The value of fairness vaieas

from O (worst) to 1 (best).

. Altruism: We define altruism as the excess uplink bandwpibvided to the swarm by a
node, i.e., a node when willingly uploads more content thhatit downloaded is altruism
for the swarm. Most altruistic behavior is displayed by thigioal seed. Altruism can be
either voluntary or sometimes circumstantial/forced. uvitary altruism is welcome as it
helps the system with more resources and the load is divittedbrced altruism, a node
has to upload more content to even download a single copyediléh(torrent data). Forced
altruism is not fair as a node is compelled to upload more Wiaat it had downloaded. We
define Altruism as the excess content uploaded to the swaemrafiching a share ratio of
1.0. For e.g., if a node has uploaded 6 copies and downloadesl Altitiism factor will be

5.0 since it uploaded 5 excess copies of the torrent data in tlaenswA node with share

ratio of 1.0 will have altruism factor a8. Mathematically,
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Uplaods — Downloads

Altruism Factor =
ruism Factor Downloads

= Share Ratio — 1

7.3.1 Simulation Setup

Most real world physical links havilownlinkspeed > uplinkspeed), so the bottleneck in most

cases is the uplink speed. In such cases downlink speed tceapture the correct notion of

bandwidth utilization. To justify our fairness claims, wae taken into account share ratio of
the nodes in the system. We compute the fairness index o shios and compare with BT to

identify as to how our model works in case of free riders. Canlower the disparity of share

ratios of the nodes so that free riders have no incentiveair trehavior? We have performed
experiments to evaluate our self healing and self punishindel. We used a simulation based
approach, primarily because it is extremely difficult to gathe behavior of large swarms without
the participation of thousands of node. Moreover, simdlatettings give flexibility to play with

different parameters without affecting the overall bebavi

We used the BRITE universal topology generator [MLMO1] i flop-Down Hierarchical
mode to model the physical network topology of Autonomoust&wys (AS) and the routers. All

AS are assumed to be in the Transit-Stub manner. Overlaysisreed to be undirected. Unlike

other simulators [BHP06, MSRO05], we assume that the batlkein the network can appear in the
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access links of source and destination (i.e. first-mile asttinile hops) as well as the non access
links that are in the interior of the network, in particulaitiin or between carrier ISP networks.
The nodes in the swarm are assumed to be of heterogeneousidtmdiasses namely:(512Kb,
128Kb), (768Kb, 256Kb), (1024Kb, 512Kb), (1536Kb, 768K({2048Kb, 1024Kb) where first and
second member of the tuple are the maximum downlink and kiglpeed of a node respectively.
The distribution of these bandwidth classes is uniform mgtvarm. To simulate the congestion
in the Internet, we induc&’% congestion in the non access links within the interior ofrievork.

In such congestion scenarios, the available bandwidth desics the minimum of the bottleneck
at source or destination and the bottleneck in the non adodss The delay on inter-transit
domains and intra-transit domains are assumed to be 100 dnS0ams respectively, while delay
on stub-transit is assumed to be 30 ms and intra-stub triamsitare randomly chosen between
5ms and 25ms. We simulate the TCP level dynamics like tinse@ldw start, fast recovery and
fast retransmission by introducing a delay of 10 RTTs [CKOAk model a flash crowd scenario
for the arrival of users in the swarm, i.e. all users are presethe swarm when the file sharing

begins, as this is the most relevant and challenging saenari

In our simulation setup we have varied the following pararset Number of users (N) from
128 to 8192, File size (S) from 256 MB to 8192 MB. Each file bleslconsidered to be 256
KB. Initial seed is considered to be a powerful node capablery good upload speed say (6
Mbps). A default implicit assumption is that as nodes finlgfitdownloads they leave the swarm.
For some other experiments, we assume that nodes stay imw#mmns We mention the settings

at the appropriate places in the text. Further, to evaluateself healing and punishing model,

94



T T T T 0 - T T T 0.97
1500 -+~ BitTorrent -+~ BitTorrent
/ —— Our Model 0.96{ —*— Our Model

v \‘» 1
.
B
l’ P
'l‘ 1 'l
. /
. K B
s I /
; 09111 K
88F ¢ 1 S .
' "oy .
+ 0.9r R
+ ' -
4

% 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0-8% 2000 4000 6000 8000 10000

File Size in MB File Size in MB File Size in MB

(a) Download Time Difference vs Fil@h) Uplink Utilization vs File Size in(c) Fairness Index vs File Size in MB
Size in MB MB

=
1)
S
=]

Fairness Index
o o
©o ©
[ S

Uplink Utilization

4
©
N

o
o
=

Downloading Time Difference (sec)

Figure 7.1:Effect of Anti-Strategic Behavior in Our Model

we injected around0% cheating nodes. These nodes mimic real world cheating nibeesio
not adhere to the protocol. Implementation program detaath cheating nodes for their selfish
behavior. We analyze the node behavior during the coursbeokimulation and quantify the

number of nodes that turn from selfish to altruistic.

7.4 Resultsand Discussion

We use the above simulator to test the efficacy of our proppskces. We compare the behavior
of conventional BT protocol with our proposed changes. Quoppsed changes are to overcome
the current day vulnerability in BT which the strategic oligexploit. We test each of our proposed

techniques one by one, and then later combine all the prdmismnges to see the overall behavior.
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7.4.1 Effect of Anti-Strategic Behavior

Current day exploits by strategic clients are: 1) Requgstieer list from tracker after every few
minutes. 2) While interacting with other nodes, decreagectimtribution gradually to arrive at
an equilibrium that will give client maximum download spefed a given upload contribution.
3) Sending false ‘have’ messages and uploading garbagertonh the first set of experiments,
we use the anti-strategic policy to see how well a swarm cae e with the strategic clients.
The main components of our anti-strategic policy are maising TokenFromTrackethat guards

honest nodes from such selfish clients that degrade thedigleaity, stopping selfish clients from
obtaining peer list every few minutes by using a smart traekel finally blacklisting the nodes

that uploads garbage content.

In this set of experiments, we investigate the differencavierage downloading time between
the conventional BT with our proposed policies. Figure & Hepicts the results where the torrent
file size varies from 256 MB to 8192 MB for a swarm of 1024 nod&¥’% of the nodes behave
strategically all the time during the simulation in both tdases. For smaller file sizes the difference
is small but with increasing file sizes the difference in da time is very prominent. For 8192
MB file, the difference in average downloading time is as tagli450 seconds (approximately 40
minutes). Since every node keeps a tab on each of its coongeiid as selfish clients degrade
the uplink bandwidth, the other node disconnects leaviegstifish client with no option but to
increase its contribution. We found that by usifmkenFromTrackerthe BitTorrentTit-For-Tat

mechanism is used effectively and the equilibrium of ugifkandwidths between the nodes is
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reached earlier as compared to standard BT implementateguout et al. [LUMO06] and Piatek et
al. [PIAQ07] have showed that BT takes unusually long timestich the steady state or equilibrium,
where peers have found their optimal partners with respetttet uplink bandwidths. This means
that non strategic clients do not suffer on account of gffatelients while usinglfoken From
Trackeras all legit nodes can interact with nodes which are in simindwidth range. In the
download of a large file like 8192 MB with a large swarm, thdatiénce in download time is
evident as the policy of our model are enforced for a longeetiSimilarly, the smart tracker denies
the recurring requests of strategic clients for more peér In this case such strategic client have
to make connections within the given peer list and they caexyoloit the best connections through
seeds and high capacity leeches. Finally, the strategiesticat send false ‘have’ messages for
rare blocks for obtaining some useful content are quickgntdied by fellow peers by checking
the hash of the blocks. Such nodes are warned and denied pnfydre tracker in obtaining new
peer list in future. Over a longer period of time, such nodeda@und to adhere to the protocol. All

the above factors show a considerable performance impreneimthe average download time.

Similarly, the difference in uplink utilization can be umd®od from figure 7.1(b). Average
download time of the swarm is directly proportional to thdinputilization. By strictly imposing
the anti-strategic policy on the strategic clients, we carefage the uplink bandwidth of such
selfish nodes. We see a consistent superior performance afiaiel over BT by using the anti-
strategic policy. Our model on an average Bas4% more utilization than the BT. This difference
amounts to large chunk of bandwidth (approximately 21 MBdés)a 1024 node swarm and an

average uplink bandwidth 6f37.6 KB/s (average of all the uplink bandwidths of all the strata i

97



the swarm). The more the uplink bandwidth is pooled in therswahe better will be the uplink

throughput and hence better will be the average downloagl tim

Figure 7.1(c) shows the fairness index of both the model® Hithas been calculated on the
share ratios of the nodes in the swarm. If all the nodes haaeshtiol .0, then the system would
be ideal and FI would b&.0. But as the share ratio deviates frdm the FI goes down. It gives
a decent measure of the performance of nodes in terms ofilmatmg to the swarm. Strategic
clients consume lot of bandwidth of the swarm with no ordittbntribution, compelling honest
nodes to contribute more. This disparity of share ratio isegevident in the figure 7.1(c). By
using anti-strategic policy, we can eliminate the greedyaver of selfish clients. The share ratios
of the nodes are more even in case of our model. It is extrediffigult to achieve a perfect Fl of
1.0, because of node heterogeneity, network topology, chulraliruism. We discuss the effect of

altruism in section 7.4.4 as it has a major impact on the tesul

7.4.2 Effect of Blacklisting

We quantify the amount of uplink bandwidth that can be sawesifmply using blacklisting policy
as mentioned in section 7.2.1.3. Figure 7.2 depicts an atiof bandwidth that is saved in a
1024 node swarm with0% strategic clients. We assume that such clients on an avezigad
5% garbage data. For large torrent file size, the differenceamdividth is huge, and it adversely

affects uplink utilization and hence mean download timehefswarm. While in the case of anti-
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Figure 7.3: An estimate of nodes that turned from selfishttaiatic upon warned
strategic policy, part of the bandwidth is lost until all thedes that upload garbage are caught and
blacklisted. Tracker informs peers of such cheating nodgmmmteract with them. This indeed

saves a huge chunk of the bandwidth.

In the next set of experiments, we started out an experimegnti®24 nodes out of which 900
are honest and 124 are strategic. During the simulatiortihese nodes behave strategically. Upon

being caught and warned by tracker, such nodes either atthére protocol or continue cheating.
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If they adhere to the basics of the protocol, they are inaduae honest nodes but upon constant
cheating they can be blacklisted and thrown out by the trackeégurel 7.3 depicts the results.
Towards the end of the simulation run, 91 our of 124 stratagubtes turned honest and 31 were
blacklisted. By giving strategic clients a chance to imgrdiveir behavior, we can leverage their
contribution for the rest of the download. Some clients tdmatsistently cheat are thrown because
of their leech behavior, they do not contribute any resaitoethe swarm, which is against the

ethics of the P2P file sharing etiquettes.

7.4.3 Overall Effect of Our Mode

We showed the effect of each of our techniques individuallgéctions 7.4.1 and 7.4.2. Now,
we apply of these strategies together and compare the reisithe reference BT protocol. We
assumel0% strategic nodes in 1024 node swarm for various torrent fdessi We useT7(, 30)

peering policy for sending peer list to the new incoming ndeigure 7.4 depicts the results after

incorporating all our techniques.

The effect of anti-strategic policy and bandwidth clusigradds up to show a considerable
difference in the download time difference between BT andrmaadel. As mentioned earlier,
uplink throughput and download time both improve as a resfubioth anti-strategic behavior and

bandwidth clustering. A consistent difference of arodnd5% in uplink utilization and difference

of around45 minutes in the mean download time is evident from figure 7.4¢el 7.4(b). Both
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the policies, i.e. anti-strategic behavior and bandwidiistering do not interfere with each other
when used together. Bandwidth clustering is only used &uirgy a peer list, while anti-strategic
behavior mainlyTokenFromTrackers built on top of the bandwidth stratum a node belongs to.
Policies like Smart tracker and blacklisting are independé bandwidth clustering and pose no
interference to other policies of our model. Similarly, flas significantly superior in our model
as compared to BT as shown in 7.4(c), signifying that in oudelonore nodes have share ratios
aroundl1.0 and is comparatively fairer. Though, it is very difficult tohaeve a perfect Fl of.0,

we present in section 7.4.4 that in some cases of non altrbisthavior, Fl very close tb.0 can be

obtained but at the expense of mean download time and uirokighput.

7.4.4 Effect of Altruism on the System

As mentioned earlier, one of our main finding is that altruiglalys an important factor in im-

proving the download time. There are many seeds who voliyntfer their upload bandwidth
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Figure 7.5:Altruism effect on BitTorrent

in return for nothing, which in fact reduces many peer’s dmad time. To quantify the effect of
altruism, we use the altruism factor as described in se@iéd. We conducted three experiments:
1) Users are altruistic, i.e. they remain and offer theiinkipbandwidth even after they have fin-
ished downloading. Thdltruism Factor of these nodes is strictly greater th&n2) Users are
not altruistic but they offer uplink till they reach a shaatio of 1.0, i.e. theAltruism Factor of
these nodes i8. 3) Users are greedy and leave the swarm as soon as they firidownloading.
The Altruism factor of such nodes is strictly less th@n We investigate the trends obtained in

the main metrics when we vary our system to these variants.

From figure 7.5(a), we can see the effect of altruism in mining the mean download time.
High capacity peers when engaged in voluntary uploadingtiment enhances the swarm mean
download time. For a large file of 8192 MB, with 1024 nodes ia slwarm, the difference in
mean download time between the two schemes wherein pegrs dtee swarm and where peers
depart immediately after download is close to one hour. fidsslt is quite intuitive as seeds offer

many more copies to the swarm taking the load off the leedas they can utilize their uplink
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in obtaining other useful content from other peers, thembymizing their download time. The
content uploaded by the seed is very important in this can®x the other hand if nodes leave
the swarm as soon as they reach a share ratio0odr immediately after their download, it will
be up to the remaining nodes to pool in the uplink resourcealfdhe nodes, thereby increasing
the download time. These results reaffirm the notion thatiialh is a very important factor in
BitTorrent and one of the most important reasons for its eobd performance. Similar results can
be understood for uplink utilization. When seeds stay lonmgée swarm and offer their uplink to
fully utilize their outgoing bandwidth, the leeches usertiilink bandwidth with other leeches,
thereby optimizing the uplink throughput. Same is not trdeew peers depart after downloading
as the remaining peers have to search more for useful ccameraometimes remain idle for lack

of useful content. This reduces the uplink throughput.

Altruism, although, improves uplink throughput and meawdi@ad time, it is not fair to the
contributing nodes. The Fl is poor in the case when peersistdye swarm after finishing their
own download as the share ratio of seeds exceeds far db@wad many leeches do not even
have to upload a copy back to the swarm, i.e. their share mtouch less than.0, creating
this unfairness. In the case when peer stay till they uploaaps back to the swarm, most nodes
depart the swarm with share ratid), thereby making FI close td.0. In the case when peers
depart the swarm soon after download, the disparity is eigimeh Only the few altruistic seeds
offer uploads to most leeches in the swarm and this incraasedisparity and reduces the Fl. As

nodes leave the swarm, the nodes in the swarm have to searehfondhe useful content and
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sometimes remain idle for the lack of interesting data. Taduces the uplink throughput and

increases mean download time, though has a very high FI.

It is extremely difficult to reach a standard set of argumevtisre the behavior of the system
is optimal in all the main metrics. Therefore, we try to reaclsommon ground where mean
download time and uplink utilization is near optimal and $approximately in the range9-0.95

or better. We show that this indeed can be achieved using tipwped policies in the paper.

7.5 Reated Work

In this section, we enumerate previous work done in liteeatalated to security threats in BitTor-

rent. In section 6.2, a general history of work done in Bit€at is presented.

Bharambe et al. [BHPO0G6] created a discrete event simulatéedt BT on various different
parameters. They showed the presence of significant altramgl unfairness in the swarm. They
proposed to use TFT at the block level rather than rate baB&dd overcome unfairness. Fan et
al. [BLO6] in their analytical study showed that BT could besajned in several different ways,
where achieving fairness among end users could be one ehe spectrum and minimizing the
mean download time the other end. Legout et al. [LUMO06] sttt BT’s piece replication
using rarest first algorithm is efficient and to replace supblacy is not justified in the context of

P2P file replication in the internet. They also showed thatigwly incorporated choke algorithms

104



in BT induces reciprocation and is robust to free riders.ylddso showed that choke algorithms is

fair and better than bit level TFT.

Shneidman et al. [SPM04] showed that BT indeed can be erplaiing Sybil attacks [Dou02]
and by uploading garbage content. Other vulnerabilitieh strategic attacks on BT have been

mentioned in section 7.1.1.

We present the first and foremost work to defend BT againategjic attacks, not previously
demonstrated. We perform the study of BT using the proposéesaategic policies and come
to the conclusion that we can indeed have a fairer and moegffiswarms in terms of optimal
mean download time and uplink utilization. The other parbof work validates the improved
performance of BT while using bandwidth peer matching polWe validated this concept using
different set of experiments under different settings. afjn we second the claim of Piatek et

al. [PIAQ7] that altruism is very important for improving esall swarm performance.

7.6 Summary

We presented some defense mechanisms and policies adardtdtegic BitTorrent clients. In

particular, we showed that by using our proposed antiegraipolicies and bandwidth clustering,
not only can the system be prevented from such cheating eategitc attacks but also overall sys-
tem performance in terms of mean download time, uplinkagtion and fairness can be improved.

Our simulation results corroborate with the proposed thedlustering peers of similar bandwidth
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has shown to be very effective in utilizing the uplink capgcand it reduces the mean download
time. Anti-Strategic policies do not let cheating clierdsstay longer in the swarm. They either
are kicked off the swarm or they turn altruistic (from selfisand the uplink resources of such
nodes is utilized and is extremely important for the swarne. d&lieve our results can provide re-
search insights for the development of new defence meamanipresent day BitTorrent clients to
guard against the strategic attacks. Moreover, bandwldgtaring of similar nodes can be easily

incorporated into the clients straight away as it can be dattevery minor protocol changes.
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CHAPTER 8

CONCLUSION AND FUTURE WORK

We introduced a novel frameworBEAM, that uses alliance theory for peering to solve some of
the existing problems in chunk based P2P media streamingMBE also shown to be robust and
scalable framework for P2P media streaming and it overcdaheesurrent prevalent problems. In

particular, our main contributions and findings are:

1. Peer lag (while media playback) can be significantly redutom the order of minutes to
approximately 10-20 seconds in the swarm. Initial buffgritme has been reduced from
around 30 seconds to 10-12 seconds for smaller swarms anthies 20 seconds for larger
swarms (4096 nodes) in BEAM. Further reduction in such birféetime to a few seconds
is extremely difficult because: a) Buffering time requirks time to find the path, stream
content and possible forwarders of the stream content. ¢¥ &bany dedicated proxy during

the initial (buffering) period. c) Heterogeneity of nodenbavidths in the swarm.

2. BEAM has displayed robust and scalable behavior whileveléhg near optimal levels of
QoS under varying workloads and conditions. Uplink utiiiaa has improved considerably

over CS and throughput is more thew’; for larger swarms. Alliance based peering theory
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encourages every node to contribute in order to to recevedhtent, and indeed generates

a fairer swarm.

3. Our preferential and anti-strategic strategy improwasent day BitTorrent performance.
Not only does it improve dowload time, uplink utilizatiomjifess but also secure network
from strategic clients. We also recommed smart trackers implemented in BitTorrent for

securing BitTorrent swarms.

8.1 FutureWork

Our results are inspiring and provides research insightaris development of newer and efficient
peering strategies in P2P media streaming systems. Imemiiton of our work, we enumerate the

possible future work in the dissertation.

1. Applying current alliance based peering model to sta2ie fle sharing and BitTorrent mod-
els and evaluate its performance. We have been succesail#lyo show our alliance based
scheme in streaming domain. Static file sharing is triviahpared to streaming, but we
foresee that we might need to tweak the alliance based modéltb suit the file sharing

mode.

2. Analysing alliance based peering for security relatedes in P2P media streaming. With
increasing security threats, it is imperative to invegggaore in security domain. Some

common threats are free riding, whitewashing, nodes sgryéirbled and malicious payload,
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and denial and distributed denial of service (DoS) attadkesneed to analyse and investigate

how to port the current alliance based model to counter tbeaimentioned security threats.

. Evaluation of our proposed P2P models with dedicated C&Mess which are P2P friendly.
It has been shown that P2P models always incur an initiah¢égteno matter how well the
network is setup. We have shown that forming alliance doesrian initial overhead. For
data streams to reach all the nodes, find all the paths doessome overhead in terms of
initial latency. If we can have some dedicated proxy like aNCEhe QoS can be much better
during initial time period. Later, P2P networks can supploet user with data streams. It
will be very interesting to see the performance of a P2P nétwmowhich CDNs can support

the newly arrived nodes with service initially on.

. A possible future work would be to study such P2P systeoms frayment based perspective,
wherein an under provisioned user pays certain revenue  GBnake up for weak uplink
bandwidth. Such proposal for revenue models are floatingratoMost current ISP model
work on flat fee for home users in most countries as of 2008s Thnot true for larger
organization, where they pay revenue based on usage ofseBy having a more consistent
model for revenue payment, we can enforce fairness in suemilels. Most current P2P
models try to enforce fairness throughalta cartemodel, where an end user gets service in
proportion to the uplink offered. But most of these modelsnzd capture the true dynamics
because it is very difficult to provide differentiated servin such random swarm based
environments. In such scenarios, revenue based systenelfamtthe deployment of such

P2P services in conjunction with CDNs.

109



5. Using P2P dataset and crawlers to study congestion witkeiinternet. P2P crawlers can
serve as a tool for solving other problems in tcp/ip netwagkiLarge datasets are generated

while crawling for P2P networks. Such logs can be used ta imfany other properties

pertaining to congestion within the internet.
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