
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations

2008

Alayzing The Effects Of Modularity On Search Spaces Alayzing The Effects Of Modularity On Search Spaces

Ozlem Garibay
University of Central Florida

 Part of the Computer Sciences Commons, and the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations by an authorized administrator of STARS. For more information,

please contact STARS@ucf.edu.

STARS Citation STARS Citation
Garibay, Ozlem, "Alayzing The Effects Of Modularity On Search Spaces" (2008). Electronic Theses and
Dissertations. 3513.
https://stars.library.ucf.edu/etd/3513

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
https://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Fetd%2F3513&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Fetd%2F3513&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/3513?utm_source=stars.library.ucf.edu%2Fetd%2F3513&utm_medium=PDF&utm_campaign=PDFCoverPages

Analyzing the Effects of Modularity on Search Spaces.

by

Özlem Özmen Garibay
B.S. Middle East Technical University, 1998

M.S. University of Central Florida, 2001

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in the School of Electrical Engineering and Computer Science
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Fall Term
2008

Major Professor:
Annie S. Wu

c© 2008 by Özlem Özmen Garibay

Abstract

We are continuously challenged by ever increasing problem complexity and the need to

develop algorithms that can solve complex problems and solve them within a reasonable

amount of time. Modularity is thought to reduce problem complexity by decomposing large

problems into smaller and less complex subproblems. In practice, introducing modularity

into evolutionary algorithm representations appears to improve search performance; however,

how and why modularity improves performance is not well understood. In this thesis, we

seek to better understand the effects of modularity on search. In particular, what are the

effects of module creation on the search space structure and how do these structural changes

affect performance? We define a theoretical and empirical framework to study modularity in

evolutionary algorithms. Using this framework, we provide evidence of the following. First,

not all types of modularity have an effect on search. We can have highly modular spaces

that in essence are equivalent to simpler non-modular spaces. This is the case, because these

spaces achieve higher degree of modularity without changing the fundamental structure of

the search space. Second, for the cases when modularity actually has an effect on the

fundamental structure of the search space, if left without guidance, it would only crowd

and complicate the space structure resulting in a harder space for most search algorithms.

Finally, we have the case when modularity not only has an effect in the search space structure,

iii

but most importantly, module creation can be guided by problem domain knowledge. When

this knowledge can be used to estimate the value of a module in terms of its contribution

toward building the solution, then modularity is extremely effective. It is in this last case

that creating high value modules or low value modules has a direct and decisive impact on

performance. The results presented in this thesis help to better understand, in a principled

way, the effects of modularity on search. Better understanding the effects of modularity on

search is a step forward in the larger issue of evolutionary search applied to increasingly

complex problems.

iv

To my parents, Öznur and Yusuf Özmen

v

Acknowledgments

I would like to thank my committee members: Dr. Guha, Dr. Lang, Dr. Georgiopoulos,

and Dr. Wu. In particular, I would like to thanks my advisor, Annie S. Wu for all her

support on these years. This work would have not been possible without the support of Tom

O’Neal at the UCF Office or Research and Commercialization who allowed me to continue

my educational goals. A big thanks for my husband, Ivan, his constant encouragement and

support make it all possible, and my daughter Lia Idil that contributed by allowing Mommy

to work while she play. Finally, I am forever grateful to my mom and dad who thought me

my first science classes and more importantly encouraged me to pursue my dreams.

vi

TABLE OF CONTENTS

LIST OF FIGURES . xii

LIST OF TABLES . xviii

I PRELIMINARIES 1

CHAPTER 1 INTRODUCTION . 2

1.1 Complex Systems, Evolution and Modularity 3

1.2 Framework to Study Modularity . 5

1.3 Strategy and Methodology . 6

1.4 Contributions . 9

1.5 Overview . 11

CHAPTER 2 BACKGROUND . 14

2.1 Evolutionary Computation Overview . 14

2.2 Related Work . 15

vii

2.2.1 Modularity Overview . 15

2.2.2 Modularity in Evolutionary Computation 16

2.3 Modularity in Biology . 20

CHAPTER 3 FRAMEWORK . 30

3.1 Search Spaces . 30

3.2 Search Space Size, Reachability and Redundancy 33

3.3 Module Encapsulation . 35

II GENERAL EFFECTS OF MODULARITY IN THE SEARCH

SPACE STRUCTURE 40

CHAPTER 4 INVARIANCE OF SEARCH SPACE UNDER A CLASS OF

MODULE CREATION TRANSFORMATIONS 41

4.1 Search Space Reachability . 42

4.2 Search Space Redundancy . 46

4.3 Search Space Invariance Under the Strict-Encapsulation Transformation . . . 49

4.4 Summary . 51

viii

CHAPTER 5 EXPERIMENTAL ANALYSIS: MODULE ENCAPSULATION

EFFECTS ON SEARCH SPACE REACHABILITY, REDUNDANCY AND

PERFORMANCE . 53

5.1 Experimental Settings . 54

5.2 Part 1: Qualitative Validation of Search Space Invariance 56

5.3 Part 2: Relevance of Reachability and Redundancy 60

5.4 Part 3: Biasing Search Space by Changing Reachability and Redundancy . . 70

5.5 Summary . 76

III PARTICULAR EFFECTS OF MODULARITY IN MUTA-

TION BASED SEARCH 79

CHAPTER 6 FRAMEWORK REVISITED 80

6.1 Assumptions . 80

6.2 Definitions . 81

6.3 Module Encapsulation Instances . 82

CHAPTER 7 ANALYSIS OF SEARCH SPACE SIZE 84

CHAPTER 8 EFFECTS OF MODULE ENCAPSULATION ON SEARCH

SPACE COMPOSITON . 88

ix

8.1 Complete Module Set Encapsulation . 89

8.2 Encapsulation of a Module Fully Included in the Solution 92

8.3 Encapsulation of a Module Fully Excluded From the Solution 95

8.4 Summary . 97

CHAPTER 9 EFFECTS OF MODULE ENCAPSULATION ON SEARCH

SPACE CONNECTIVITY . 98

9.1 Analyzing Average Hamming Distance After Module Encapsulation 100

9.1.1 Complete Module Set Encapsulation 101

9.1.2 Encapsulation of a Module Fully Included in the Solution 103

9.1.3 Encapsulation of a Module Fully Excluded From the Solution 106

9.1.4 Comparison of Average Hamming Distances 109

9.2 Experimental Analysis . 115

9.2.1 Methodology . 115

9.2.2 Initialization Issues . 117

9.2.3 Experimental Setting . 118

9.2.4 Results . 119

9.3 Summary . 123

CHAPTER 10 DISCUSSION . 126

x

IV CONCLUSIONS 129

CHAPTER 11 FUTURE WORK . 130

CHAPTER 12 CONCLUSIONS . 132

12.1 Limitations . 136

12.2 Contributions . 136

LIST OF REFERENCES . 139

xi

LIST OF FIGURES

2.1 Parcellation and integration, two methods of achieving modularity are illus-

trated. To obtain modularity, pleiotropic effects between the character groups

are suppressed in parcellation and promoted in integration [Adapted from

Wagner, 1995]. 23

2.2 The timeline for developmental and evolutionary processes. 24

2.3 This figure represents the genotype-phenotype mapping. The gene group con-

sisting of G1, G2 and G3 primarily determines the character set A, B, C and

D. Characters A, B, C and D constitutes the function F1. Genes G1, G2 and

G3 have only a pleiotropic effect on function F2. Genes G4, G5 and G6 form

another gene group which determines characters E, F and G that are com-

bined into function F2. Gene G4, G5 and G6 have only a pleiotropic effect

on function F1. 28

3.1 Genotype space Sg = 〈P ,M, Σg, l,R〉, phenotype space and their mapping. . 31

3.2 This figure shows an example of module encapsulation for Sg2 = E(Sg1,M →

11). 36

xii

3.3 This figure shows an example of strict-encapsulation, Sg2 = Es(Sg1, lm = 2). . 38

4.1 Relations between genotype and phenotype spaces before and after strict-

encapsulation as established by Lemmas 1 and 2, Sg2 = Es(Sg1, lm). 42

5.1 Results for Experiment 1: GA performance for the five levels of the modularity

representation pyramid described in Table 5.1. X-axis shows (A) Absolute

best fitness, and (B) Generations to absolute best fitness and y-axis shows

the five levels of the pyramid. The first four levels perform similarly but the

last level performs slightly worse than the first four levels. 58

5.2 Experiment 2, x-axis in (A) shows the absolute best fitness and x-axis in

(B) shows the generations needed to obtain this absolute best fitness, when

increasing the search space size while reachability and redundancy are kept un-

changed. Y-axis shows the search space size corresponding to 1CMS, 2CMS,

4CMS and 8CMS. Changes in the search space size without any structural

or redundancy bias does not affect the performance. 63

5.3 Experiments 3, x-axis in (A) shows the absolute best fitness and x-axis in

(B) shows the generations needed to obtain this absolute best fitness, when

removing a random set of modules. Y-axis shows the fraction of the complete

module set names included in the alphabet, 1CMS, 0.75CMS, 0.5CMS and

0.25CMS. The performance decreases as we remove larger random sets of

module names from the alphabet. 65

xiii

5.4 Experiment 4, x-axis in (A) shows the absolute best fitness and x-axis in

(B) shows the generations needed to obtain this absolute best fitness, when

increasing the number of copies of a random subset of the alphabet. Y-axis

shows the number of copies, R, of the random subset with R = {0, 1, 2, 4, 8, 16}.

The performance decreases with the increase in redundancy. 69

5.5 Results for Experiment 5: Reachability in targeted parts of a search space. X-

axis in (A) and (C) shows the absolute best fitness and in (B) and (D) shows

the generations needed to obtain this absolute best fitness. Y-axis shows the

fraction of the complete module set names included in the alphabet, 1CMS,

0.75CMS, 0.5CMS and 0.25CMS. Experiment 5(i), (A) fitness and (B)

generations when removing non-promising modules (not similar to solution).

The performance increases as we remove larger non-promising sets of module

names from the alphabet. Experiment 5(ii), (C) fitness and (D) generations

when removing promising modules (similar to solution). The performance

decreases as we remove larger promising sets of module names from the alphabet. 72

xiv

5.6 Results for Experiment 6: Redundancy in targeted parts of a search space.

X-axis in (A) and (C) shows the absolute best fitness and in (B) and (D)

shows the generations needed to obtain this absolute best fitness. Experiment

6(i), (A) fitness and (B) generations when increasing the number of copies of

a promising module (similar to solution). Y-axis shows the number of copies,

R, of a promising module name with R = {0, 1, 2, 4, 8, 16}. The performance

increases as we increase the redundancy of a promising module name in the

alphabet. Experiment 6(ii), (C) fitness and (D) generations when increasing

the number of copies of a non-promising module (not similar to solution). Y-

axis shows the number of copies, R, of a non-promising module name with R =

{0, 1, 2, 4, 8, 16}. The performance decreases as we increase the redundancy of

a non-promising module name in the alphabet. 75

8.1 Elements of the genotype space before (L(SgO)), and after (L(SgCM), L(SgGM),

L(SgBM)) the encapsulation of a (A) complete module set, (B) good module,

and (C) bad module. For all cases, l = 3, lm = 2 and the solution string is

111. The genotype elements mapping to the solution string are circled. . . . 91

xv

9.1 Comparison of theoretical results of average Hamming distance to solution in

three structurally different search spaces: a search space with a good module

of size two, with no modules and with a bad module of size two. The plot

shows Equations 9.2, 9.4 and 9.7 with fixed lm = 2 and various values of l,

l-bits OneMax. The x-axis shows the phenotype length, l, and the y-axis

shows the average Hamming distance to the solution for the three cases. The

Hamming distance is smaller when a good module is encapsulated and larger

when a bad module is encapsulated. The larger the phenotype length, the

more prominent the effect of module encapsulation is on the average Hamming

distance to solution. 111

9.2 Comparison of theoretical results of average Hamming distance to solution in

three structurally different search spaces: a search space with a good module

of various sizes, with no modules, and with a bad module of various sizes.

The plot shows Equations 9.2, 9.4 and 9.7 with various values of lm and fixed

l = 256, 256-bit OneMax. The x-axis shows the encapsulated module length

lm = {2, 4, 8, 16, 32, 64} and the y-axis shows the average Hamming distance

to solution for the three cases. The Hamming distance is smaller when a good

module is encapsulated and larger when a bad module is encapsulated. The

larger the module length, the less prominent the effect of module encapsulation

is on the average Hamming distance to solution. 112

xvi

9.3 Comparison of the normalized average Hamming distance to solution in four

structurally different search spaces: a search space with a good module, a

search space with no modules, a search space with a bad module, and a search

space with random modules. The modules are of various lengths. The target

problem is 20-bit OneMax. The x-axis shows the encapsulated module length

lm = {2, 4, 8, 16, 20} and the y-axis shows the average Hamming distance. (A)

Theoretical results from Equations 9.2, 9.4 and 9.7. (B) Experimental results

for a GA initial generation. The average Hamming distance is calculated as

(1 − average best fitness) and reported with 95% confidence intervals. (C)

Experimental results for a GA final generation. 120

xvii

LIST OF TABLES

5.1 Details for the modularity representation pyramid A1 used in experiment 1. . 56

5.2 Elements of the complete module set of module size 4, CMSk({0, 1}, 4). . . . 61

5.3 Elements of the alphabets in Experiment 3 and the first part of Experiment 5. 66

5.4 Elements of the alphabet for Experiment 4. 67

5.5 Elements of the alphabet for Experiment 6. x = 15 for first part and x = 0

for the second part of Experiment 6. 68

5.6 Elements of the alphabet for the second part of Experiment 5. 71

5.7 Elements of the alphabet for Experiment 6. x = 15 for first part and x = 0

for the second part of Experiment 6. 74

9.1 Probability density of each distance value d in search spaces SO, SGM and

SGM which are search spaces before module encapsulation, after good module

encapsulation and after bad module encapsulation respectively. 104

xviii

Part I

PRELIMINARIES

1

CHAPTER 1
INTRODUCTION

In the systems that occur in nature, or are designed by man, not all components interact strongly

with other components. Most such systems are, in fact, nearly completely decomposable. That is

to say, they can be subdivided into blocks in such a way that all strong interactions occur among

elements in individual blocks, and only weak interactions between the blocks.

–Herbert A. Simon, 1997.

We are continuously challenged by ever increasing problem complexity and the need

to develop algorithms that can solve complex problems and solve them within a reason-

able amount of time. Modularity is thought to reduce problem complexity by decompos-

ing large problems into smaller and less complex subproblems. In practice, introducing

modularity into evolutionary algorithm representations appears to improve search perfor-

mance [GGW03, HP03, Koz94, HLP01, HP02]; however, how and why modularity improves

performance is not well understood. In this thesis, we seek to better understand the effects

of modularity on search. The goal of this dissertation is to study the following question. How

and why is that modularity in representations help improve evolutionary search performance?

More concretely, what are the effects of module creation on the search space structure and

how these structural changes affect performance. We hypothesize that modularity has a

2

significant effect on the search space structure and that this effect can be tailored toward a

performance gain, but only when there is a priori information regarding the problem class

subject to the search.

1.1 Complex Systems, Evolution and Modularity

As our society evolves and grows, the phenomena that we try to understand in the sciences

and the problems that we face in engineering are increasingly complex. Complex systems

are usually thought of as systems with a massive number of components, but quantity

alone does not amount to complexity in behavior. The complex behavior that characterize

complex systems is due not only to the large amount of components but also to the nonlinear

interactions among them. It is this nonlinearity that makes complex systems difficult to

understand and to predict. In fact, these systems challenge ordinary mathematical methods,

our computational systems required to simulate them, and more often than not our intuition.

One encouraging thought on the path towards better understanding complex systems is

that most observed complex systems have a hierarchical modular structure [Wat03, CR05].

In fact, it was Herbert A. Simon that pointed out the fact that most of the world’s complex

systems are made up of complex subsystems which can also contain complex subsystems, and

so forth [SA61, Sim69, Sim05]. Of course, these subsystems interact with each other to form

the entire system, but the most interesting part of Simon’s perspective, is the way in which

these subsystems are known to interact. The frequencies of interactions among elements

3

inside a particular subsystem of a system are typically one or two orders of magnitude

higher than the frequencies of interaction between the subsystems. Simon called systems

with this property nearly decomposable systems [CR05, SA61]; we simply call them modular

systems. With this perspective, it is, perhaps, easier to observe how ubiquitous modularity

is in natural and engineered systems. In nature, for example, organisms contain organs,

organs consist of tissues, tissues contain cells, cells are made of molecules, and so on. A

similar hierarchically modular organization can be observed in engineered systems. For

instance, computer systems have modules such as memory, processing unit, and storage.

These modules contain lower level modules such as integrated circuits, which in turn are

made of modules such as transistors and so forth.

In Evolutionary Computation we seek to evolve solutions to complex problems. If we cast

these solutions themselves to be complex systems, then we are performing evolutionary search

in the realm of hierarchical modular solutions, in a sense, the very same space explored by

natural biological evolution. Now, the obvious question arises. Can evolutionary algorithms

be refined to better target hierarchically modular search spaces? Empirically, the answer

seems to be yes, since, there are many examples in which modularity inducing mechanisms

improve evolutionary search [GGW03, HP03, Koz94]; however, there is little theoretical

understanding of this phenomena. In this thesis, we provide a simple theoretical framework

to study modularity in search.

4

1.2 Framework to Study Modularity

This study focuses on linear problem representations consisting of an alphabet of symbols.

A module is simply defined as a sequence of symbols of interest. Module encapsulation is the

process of module creation by which a module is assigned to be represented by a new alphabet

symbol. This new symbol is then incorporated into the alphabet of the representation and

can appear in the encoded solutions. As a result, modules can protect and promote the

reuse of their subsequences in the represented solutions. The actual working solutions are

obtained by recursively processing the encoded solutions to “undo” modules and replace

them by their corresponding sequences until all symbols are non-module symbols.

More formally, we model nearly decomposable subsystems as modules at the genotypic

level that produce a phenotype after a process of development. Genotypes are strings in a

formal language. Module definitions are rewriting rules, and the derivation of a genotype

under a set of rewriting rules produces a phenotype. In addition, we adopt the view that

module encapsulation or module creation is a search space transformation that is equivalent

to creating a nearly decomposable subsystem. When a module is encapsulated, the net effect

in the search space is to isolate the elements in that module from interactions outside the

module. This isolation is evident at the genetic search level, where a module may be included

or not, but it can not be altered by the genetic operators. This isolation is more subtle but

present at the representation level. After a search space undergoes several module creation

transformations, the resulting space is inherently hierarchical and modular. Therefore, a

5

representation design for a given problem has to give meaning to hierarchically modular

structures. Of course, the representation designer may choose to ignore these features. We

work under the assumption that these underlying features are welcomed and exploited by

the representation designer.

1.3 Strategy and Methodology

In order to better understand the effects of modularity on search, we study the effects

of module creation on the search space structure and how those structural changes af-

fect performance. We choose to focus on modularity in representations because most of

the successful applications of modularity in evolutionary search use modular representa-

tions [HP01a, LPS01, JJ06]. In addition, modularity in representations naturally injects

into the search space properties such as repetition, isolation of subcomponents and reuse.

Alternative approaches such as cooperative coevolving modules [PD94, PD00, WP06, PD05]

where modularity is introduced in sub-population level are beyond the scope of this work.

Our strategy is two fold. First, we analyze whether or not all module creation transforma-

tions produce an impact on the search space structure, or if there are some transformations

under which the search space is invariant. This is the invariance analysis. Second, when

the search space is not invariant, we study the changes in the search space structure and

their impact on the search performance. We focus on how these changes can be designed to

obtain a performance increase. This is the change and impact analysis. We conduct these

6

two analyses at two different levels: general search space structure and particular to a prob-

lem search space structure. In order to conduct the invariance analysis and the change and

impact analysis, it is crucial to define adequate metrics at these two levels. These metrics

need to be not only descriptive of the search space state but also need to be relevant from a

search performance perspective. In the first level, we analyze the properties of search space

structure independent of a particular problem domain and only associated with a particular

representation class. The properties of a search space structure that we study in this level

are reachability and redundancy. Reachability simply determines the elements that can be

accessed in a given search space. After a transformation, some elements may become un-

reachable or new elements may become reachable. It is simply a metric of what elements

are included in a search space. Redundancy quantify how many times elements are present

in a search space. After a transformation, changes in redundancy of some elements but not

others can significantly bias the search towards the overrepresented sections of the space.

In the second level, we analyze the properties of search space structure associated with a

particular problem domain. We use a traditional domain for theoretical studies: OneMax

problem. The properties of a search space structure that we study in this level are compo-

sition and connectivity. Composition measures the density of solution elements in a given

search space and connectivity measures the average number of mutation steps between each

elements of the search space and the solution. We can think of these metrics as measuring

similar properties at two levels: general and particular to a problem class. Composition can

be seen as a problem particular version of redundancy. This is the case because, once we

7

have information of the problem class, we can refine “redundancy” to focus on the solution

redundancy or solution density. In a similar way, connectivity can be seen as a problem

particular version of “reachability”. This is the case because, once information about the

problem class is available, and if the solution is reachable, we can calculate the average

distance to “reach” the solution from any other point in the search space.

Using our framework and the metrics, we can now post the specific questions we answer

in this thesis. At the level of general search space structure:

• Does module creation, by itself, always results in a change in reachability and redun-

dancy of elements in the search space? Or do reachability and redundancy of the search

space remain invariant after the creation of some types of module sets?

• Are reachability and redundancy relevant structural aspects of search spaces in terms

of search performance? If so, can changes in search space structure be targeted in order

to improve performance?

At the level of search space structure as associated with OneMax problem:

• Does module creation, by itself, always results in a change in composition and connec-

tivity of elements in the search space, or do the composition and the connectivity of

the search space remain invariant?

• Can module creation be targeted using problem domain knowledge in order to achieve

predictable increase or decrease in search performance due to changes in composition

and/or connectivity of the search space?

8

We use mathematical and empirical methods in our analysis. In our mathematical anal-

ysis, we use standard set theory and formal language notation to define our theoretical

framework. We also use basic combinatorics and probability theory to derive formulas for

composition and connectivity metrics. Using these theoretical tools, we prove invariance and

give equations to calculate the changes. We empirically validate these results and provide

empirical performance analysis.

1.4 Contributions

This thesis contributes to the field of machine learning and evolutionary computation in the

following ways:

• It provides a theoretical framework to study modularity in search. This framework

defines the representation space (genotype space), the search space (phenotype space),

module defining production rules, and module creation transformations. This frame-

work allow an explicit analysis of the effects of module encapsulation in evolutionary

computation. It is based on the search space structure and is independent of the

search algorithm used. Module creations and deletions are viewed as a search space

transformations that in effect create nearly decomposable subsystems.

• Using this framework, it provides the following metrics to analyze changes in search

space structure: reachability, redundancy, composition and connectivity. It provides a

theoretical analysis that shows how these metrics change with module encapsulation

9

transformations and provides experimental analysis to show that these metrics are

strongly correlated with the search performance in genetic algorithms.

• It provides a No Free Lunch theorem for module creation at the representation level.

This theorem states that systematically encapsulating lower level modules into higher

level counterparts, by itself, does not benefit any search strategy, and provides proof

of search space structure invariance under a particular class of module creation trans-

formations. In other words, there are some module sets, the creation of which, do not

change reachability, redundancy, composition or connectivity of the resulting search

space. It provides an experimental analysis that validates this theoretical result.

• It provides experimental evidence of the existence of module creation transformations

that do change search space reachability and redundancy, which result in a predictable

increase or decrease in search performance. In addition, it provides experimental evi-

dence that, at the general level, reachability and redundancy changes in random areas

of the search space produce a detrimental effect in performance. At the particular prob-

lem level, reachability decrease of unfavorable areas of a search space or redundancy

increase of favorable areas results in an improvement in performance.

• It provides a theoretical and experimental study describing the effects of the module

creation transformation for three types of modules: good quality modules, bad quality

modules and complete module sets. The quality of a module depends on its contri-

bution towards building the solution. Under a set of assumptions, the following is

10

established. Encapsulating a complete module set has a neutral effect on our metrics

and on search performance. Encapsulating a good module is always advantageous and

encapsulating a bad module is always detrimental in terms of our metrics and search

performance.

1.5 Overview

The remainder of this thesis proceeds as follows. The first three chapters introduce evolu-

tionary computation and modularity providing a review of the existing literature. Chapter 2

gives an introduction to field of evolutionary computation, and provides a literature search

on modularity in evolutionary computation and modularity in biology. Chapter 3 describes

a theoretical framework which defines the representation space, the search space, module

defining production rules, and module creation transformations.

The next two chapters provide an analysis of the effects of module creation transfor-

mations on the general search space structure. Chapter 4 gives a theoretical analysis of

invariance of search space under a class of module creation transformations. We prove that

under a class of module creation transformations, the search space structure does not change

in terms of reachability and redundancy metrics. Chapter 5 provides an experimental anal-

ysis on the effects of module encapsulation on search space reachability, redundancy and

performance. We provide an empirical validation of invariance of search space structure

under a class of module creation transformations. We also provide an experimental analysis

11

on the effects of arbitrary module encapsulation and encapsulation of a “good” and “bad”

modules on search space reachability, redundancy and performance. We show that arbitrary

module encapsulation is detrimental in terms of reachability, redundancy and performance.

We also show that encapsulating a “good” module improves the reachability, redundancy

and performance of the search space while encapsulating a “bad” module is detrimental

on all these three metrics. This chapter also shows that reachability and redundancy are

relevant metrics to performance in search.

The next five chapters provide an analysis of the effects of module creation transforma-

tions on search space structures where we focus on a particular problem class. Chapter 6

describes the non-standard framework which is slightly different that the standard frame-

work given in Chapter 3. Chapter 7 gives an analysis on the search space size after module

creation transformation. We show that the search space size always increases after module

creation transformations when the new module names are added to the alphabet without

replacing the existing elements of the alphabet. Chapter 8 provides a theoretical analysis

of module creation transformations on search space composition. We show that the search

space remains invariant in terms of search space composition under a class of module creation

transformations. We also show that encapsulating a “good” module improves search space

composition while encapsulating a “bad” module is detrimental in terms of search space

composition. Chapter 9 provides a theoretical and experimental analysis of module creation

transformations on search space connectivity. We show that the search space remains invari-

ant in terms of search space connectivity under a class of module creation transformations.

12

We also show that encapsulating a “good” module improves search space composition while

encapsulating a “bad” module is detrimental in terms of search space composition. Chapter

10 discusses the theoretical and experimental results we obtain in Chapter 8 and Chapter

9 Finally, Chapter 11 discusses possible future directions of research and Chapter 12 gives

concluding remarks.

13

CHAPTER 2
BACKGROUND

2.1 Evolutionary Computation Overview

Evolutionary computation (EC) is a field in computer science inspired by the Darwinian

concept of evolution by natural selection [Dar59]. EC algorithms or Evolutionary Algorithms

(EA) are iterative stochastic parallel search methods. The idea of using genetic evolution for

computation was first suggested by Turing more than half century ago [Tur48]. The schemata

theorem, the foundation of evolutionary algorithms, was outlined by Holland [Hol62, Hol75]

a few decades later. The schemata theorem states that the lower level short highly fit strings

(in other words, partial solutions) are combined into high level strings that are also likely to

have higher fitness.

Evolutionary algorithms sample the search space with a population. The use of a popu-

lation of individuals allows EAs to perform a parallel search. The evolutionary cycle consists

of evaluation, selection and breeding of the next generation through evolutionary operators.

The initial population is randomly generated. Individuals are evaluated and undergo a fitness

based selection process. The selected individuals create the next generation via evolutionary

operators such as mutation and crossover. This evolutionary cycle iterates until a solution

is found or a termination criterion is met.

14

Evolutionary Algorithms have been successfully applied to many computationally diffi-

cult problems such as job scheduling, parameter optimization and electronic circuits design.

Although, the field is tending to unification, there are four main historical subfields: genetic

algorithms (GAs) (see for example, Holland [Hol75], De Jong [De 75] and Goldberg [Gol89]),

evolutionary strategies (ES) (see for example, Schwefel [Sch02, Rec65]), evolutionary pro-

gramming (EP) [Fog62, Fog64, LW66] and genetic programming (GP) [Koz92, Koz99, Koz99,

Koz03].

2.2 Related Work

2.2.1 Modularity Overview

Modularity is a common characteristic of many artificial and natural systems. Systems with

separable or nearly separable units are called modular. Modules are repetitively used design

units [Mei04] that are easy to dissociate, recombine, and reuse in different systems [NM04].

Alternatively, a module is a part of a system that has an independent function, but, at the

same time, it is weakly related to the other parts of the system. The degree of modularity

[SW04] depends on the interdependency between the modules and decreases with the increase

of interdependency [Lip04, LPS01, DTW04, WP05]. In this thesis, a module is simply a

sequence of genomic primitives. Genomic primitives include actual system primitives as well

as other lower level modules. This way of defining modules relates to Holland’s building

blocks hypothesis [Hol75]. Modules, however, differ from building blocks in their robustness

15

against genetic operators. For example, an encapsulated module can not be disrupted by

recombination operators while building blocks can.

Modular systems are advantageous in their easy assembly, focused repair, and flexible

arrangement of components. Natural and artificial systems with complex design often have

modular structure [Sim05]. Having such structure can be beneficial in terms of increasing

evolvability and adaptation [Wag95, WA96]. Evolvability and adaptability are improved by

reducing the pleiotropic effect of mutation between the modules [Alt05] and decreasing the

complexity of the complex adaptive systems via decomposability [GNC01, FMV99]. In ad-

dition, modularity can also be beneficial in terms of increasing robustness. In fact, although

the origin of modularity in biology is unknown, one hypothesis states that modularity is

product of natural selection for robustness [CR05]. Because these advantageous and others,

modularity has been studied in many fields such as complex systems, engineering design,

evolutionary biology and developmental biology. In this thesis, we focus on modularity from

the evolutionary computation perspective.

2.2.2 Modularity in Evolutionary Computation

The concept of modularity can be intuitively thought as forming and reusing high level

building blocks from lower level building blocks. The modularity of a problem is usually

assumed to be preserved in its problem representation [GGW04a]. Studies on modularity

in evolutionary computation (EC) have used different types of representations including

16

linear and tree structures (cf. [AP94, AP92, GGW04b, Koz94]). What is common for all

representation types is that a module is a subcomponent of the representation. This module

has meaning independent of the rest of the representation and is created by encapsulating

the subcomponent into an atomic unit that cannot be disrupted by genetic operators.

Previous studies have shown that modularity can improve the performance of the EC

search process [DO02, GGW03, OR96, PG01, SFH03]. This improvement is attributed

to several features that emerge in modular representations: scalability, reuse, and robust-

ness [GB02, HP01b, HP02, Hor05, LPS01]. Scalability is the ability of a search algo-

rithm to find solutions that can solve a problem when the size of the problem changes.

Modular problems can be divided into smaller and less complex problems which are com-

putationally less expensive to solve than the problem as a whole. Modularity improves

scalability by reducing the complexity of a problem by dividing it into smaller and less

complex problems [Hor05, HP03, JJ06, PD00]. Once formed, modules are reusable. If a

module appears multiple times in a solution string, module encapsulation eliminates the

need for evolving again a segment of the solution that has already been evolved. Reuse

of a module indirectly reduces the size of a problem and therefore can improve scalabil-

ity (cf. [AP93, Hor05, Koz94, KSK03, DTW04]). Robustness refers to the fact that the

partial solutions that have been evolved are less likely to be disrupted by the genetic oper-

ators [OYR04, VML04]. Forming a module and encapsulating it into an atomic unit makes

the subsequence represented by the module difficult to disrupt. Solutions containing mod-

ules are robust against search operators because the content of a module can not be changed

17

by the operators unless a module is expanded. Modules can, however, be replaced by other

modules or by non-module symbols.

Creating a module usually introduces new elements into a search space, therefore, in-

creases redundancy of some of the search space elements. Redundancy generally increases the

evolvability by increasing accessibility and added connectivity between the phenotypes [ESS01].

Elements with higher redundancy spread more rapidly in a population [Tob05], but it can

improve performance only if a-priori information of the optimal solution is available [RG03,

Rot02].

The formation of modules in EC systems can be classified as implicit or explicit depending

on whether modules emerge as a result of indirect forces or are explicitly created. Implicit

mechanisms form modules by rearranging the encoded information [GK01, GNC01, HG96,

KP03, Bon02]. Over time, the search process evolves individuals in which related informa-

tion is arranged in closer proximity [GKD89, HG96, Har97]. Because regions that are in

close proximity are less likely to be disrupted by genetic operators, we say that they im-

plicitly form a module [WL95]. Implicit modularity also plays a role in self-similar genomes

and self-organizing modularization. In the former case, genomic information self-organize

into segments or modules that are self-similar with respect to fitness [GWG06, WG02]. In

the latter case, the authors include selection pressure to favor individuals that meet their

particular definition of modularity [DU05].

Explicit mechanisms form modules by explicitly encapsulating modular sequences into

atomic units. Module encapsulation is the process of selecting a substring of interest, renam-

18

ing it with a new symbol, and adding the new symbol to the alphabet. Once encapsulated,

modules may be kept throughout the evolutionary search process or may be revisited pe-

riodically to determine whether they should be retained or released. A simple mechanism

for revisiting modules is to select a module randomly and evaluate it based on some perfor-

mance metric such as fitness or usage. For example, Angeline and Pollack select segments of

an individual randomly for encapsulation and evaluate them on the reproductive advantage

they provide to individuals [AP92, AP93]; Rosca and Ballard select modules by looking for

commonalities in the better fit individuals in a population [RB94]; and De Jong and Oates

select the most frequent building block and make an encapsulation decision based on its

performance contribution [DO02].

In explicit modularity, the quantity and the content of modules can be defined statically

or dynamically. The quantity of modules refers to the number of modules in the alphabet and

the content of a module is the substring represented by that module. In static modularity,

both the quantity and the content of modules are pre-defined before the EC search begins

and remain unchanged throughout a run [Hor05]. In dynamic modularity, the quantity and

the content of the modules are determined during the search [AP92, AP93, AP94, RB94]

For example, Koza’s Automatically Defined Functions (ADFs) are modules whose content

and quantity evolve dynamically along with the content of the main function [Koz94]; Potter

and De Jong’s cooperative coevolution decomposes problems into separate components that

are similar to modules. Early studies allowed only the content of these components to

19

emerge [PD94], but more recent work allowed both the content and the quantity of these

components to evolve dynamically [PD00].

Despite many examples of modularity improving search performance and many successful

approaches to incorporating modularity in EC problem representations, there is not theoret-

ical explanation that we are aware of on how modularity affects the structure of the search

space and the search process [GW08]. We attempt to start filling this gap with this study.

We focus on explicit modularity in general and we expect our results to be applicable to

both dynamic and static modularity.

2.3 Modularity in Biology

The concept of modularity is one of the most important concepts in biology [Gil06]. Modu-

larity has been studied across different fields. Most relevant to this thesis, it has been studied

in developmental and evolutionary biology.

Each field defines modularity and modules in a different way based on their scope. Al-

though the concept of modularity is simple, finding a unified definition is difficult. Bolker [Bol00]

defines modularity as a biological entity which has internal integration and external connec-

tivity. Schlosser & Wagner [SW04] define modules in a similar way: modules are integrated

autonomous units. Raff [Raf96] describes modules as dynamic units of a system rather than

only a part of it. Wagner [Wag96] defines a module as a part of phenotype that is relatively

independent from the rest but remains incorporated via pleiotropy. In a similar way, Calle-

20

baut et al. [CR05] defines modules as semi-independent parts of an organism such as arms,

kidneys, heart and so on. These parts are tightly integrated within a module, but loosely

integrated with other parts of the organism. For instance, a hand together with its fingers

compose a module. While the hand is connected to other organs, it is more tightly con-

nected to its fingers in terms of location and purposeful function. On the contrary, the ties

between kidney and fingers are not as strong as the ties between hand and fingers, although

they are connected through veins, etc. Due to the various definitions and multiple levels of

modularity, it is not always easy to distinguish between what is a module and what is not a

module in biology [SW04]. Determining whether a part of a system is a module or not often

depends on the context in which we analyze the system.

It has been argued that modules are necessary for adaptive evolution. Lewontin and

Bonner [Lew78, Bon88] suggest that modules exist because they are helpful and probably

necessary for evolution. Similarly, Brandon [Bra05] argues the existence of modules, and

bases his argument on fossil data. For example, the earliest mammalian tetrapod has fore-

limbs and hind limbs which were not developmentally and functionally different. As a result

of evolution; however, the forelimbs changed and became flippers on a whale, wings on a

bat and hand of a human. Although forelimbs change into very different forms in different

species, some other characteristics remain relatively similar. For instance, the circulatory

systems of whales and bats are very similar, while their forelimbs, flippers and wings, are

different. The evolution of forelimbs occur independently from the rest of the organism in-

21

cluding the hind limbs. This example suggest that the forelimbs and hind limbs are separate

evolutionary modules.

Altenberg [WA96, Wag95] investigates module formation and propose two possible meth-

ods to achieve modularity. Altenberg defines the partitioning of a high level organism as

parcellation, and the combination of low level building blocks as integration. Parcellation

achieves modularity by restraining pleitropy among gene groups, and integration builds

modules by establishing pleitropy between the gene groups. Parcellation and integration are

illustrated in Figure 2.1. To obtain modularity, the pleiotropic effects between the character

groups are suppressed in parcellation, and are promoted in integration. Because, it is more

likely that modularity emerges due to evolutionary modification rather than being a basic

feauture of all living beings, Wagner and Altenberg [WA96, Wag95] suggest that parcellation

is the most likely candidate to explain module formation in nature.

2.3.0.1 Developmental Modularity

Developmental modules are autonomous parts of an embryo that can individually develop to

become complete or almost complete structures. An example of a developmental mod-

ule is a limb bud, because it develops independently once its developmental process is

started [Wag04]. Developmental modules may also be considered as phenotypic expressions

of genes in an environment [Spe02].

22

Figure 2.1: Parcellation and integration, two methods of achieving modularity are illustrated.
To obtain modularity, pleiotropic effects between the character groups are suppressed in
parcellation and promoted in integration [Adapted from Wagner, 1995].

23

Figure 2.2: The timeline for developmental and evolutionary processes.

Developmental biology studies the development of an organism from an embryo. The

stages of organ development from a single cell and cell groups are the main focus of this

field. Modularity is considered to be a key component of development, because organisms

are highly modular [SW04]. Organisms consist of units that are functionally nearly inde-

pendent: organs. Organs can be divided into smaller subcomponents such as tissue and so

on. Developmental biology studies how lower level organizational and functional units are

combined into higher level units or organisms. In other words, it takes a bottom-up approach

and characterizes modules as lower level parts that contributes to a whole or a higher level

function [Bol00].

The time scale for developmental and evolutionary processes are demonstrated in Fig-

ure 2.2. A developmental process may last up to a lifetime of an organism. An evolutionary

24

process, on the other hand, takes millions of years. In order to explain the developmental

and the evolutionary points of view of modularity, we will take limb buds as an example for

both evolutionary and developmental modularity [Wag04]. The timeline for the developmen-

tal process is shown in the horizontal line while the timeline for the evolutionary process is

shown in the vertical line. The developmental process of a limb bud starts with an embryo

and continues until the limb buds are fully developed. Considering that the limb bud has

changed throughout the evolution, the developmental process at different evolutionary stages

of a limb bud would be slightly different. For instance, development of a limb bud in the

evolutionary stage shown with the horizontal line (1) may be different than the developmen-

tal process in the evolutionary stage shown with line (2). Each horizontal line represents the

developmental process of a limb bud at a particular evolutionary stage. The vertical line

shows the evolution of a module: how it has changed throughout the evolutionary process

to become the one currently at work.

Developmental modularity is considered to be advantageous for development and evolu-

tion of organisms. In fact, Gilbert [Gil06] states that “development depends on modularity”.

Developmental modularity increases the capacity of development by increasing robustness,

flexibility, and complexity of the organism under development [SW04, Gil06]. Modular sys-

tems can usually remain functional in case of one or more of their subsystems becomes

defective [Gil06]. In non-modular systems, on the other hand, a defective unit may cause

whole system to fail. Thus, modularity increases robustness and flexibility. Gilbert [Gil06],

also states that systems are made from preassembled subsystems. Without these interme-

25

diate subsystems, it would not be possible to construct complex systems. The subsystems

can be used in different context which allows generation of more complex systems. In other

words, recombination of developmental modules increases complexity [SW04]. For exam-

ple, left and right arms are two distinct developmental modules, but they are from same

evolutionary module. Thus, the arm is evolved once and reused. Finally, developmental

modules may contribute to increase evolvability [Sch04]. The reusability of developmental

modules is a key property that facilitates evolvability [Ste95]. Also, developmental modular-

ity may facilitate evolvability by increasing the interdependency between the module fitness

contribution [Sch04].

2.3.0.2 Evolutionary Modularity

Evolutionary modules are subcomponents of an organism that have undergone evolutionary

change relatively independently from the rest of the organism [Bra99]. More precisely, “ ...

an evolutionary module is some feature of an organism that has a unitary ecological function

and genetic/developmental architecture that allows it to evolve in a “quasi-independent”

way from other features” [Bra05]. In order for a part of an organism to be an evolutionary

module, it must have a function to contribute to the organism’s fitness, and it needs to

be quasi-independent from other traits so that it can evolve independently. For example,

forelimb is an evolutionary module [Bra05], because it contributes to the organism fitness

and, as explained earlier, it has evolved almost independently.

26

In contrast with developmental biologists, evolutionary biologists take a top-bottom ap-

proach at modularity and characterize modules as subcomponents of a whole, or of a higher

level function [Bol00]

Evolutionary modules are tightly related to their underlying genes [WA96]. In fact, the

genetic representations of modular structures or functional units are also modular at the

genomic level [Bra99]. These representations are not completely independent because of

the inter-modular connectivity due to pleiotropy. Figure 2.3 shows a genotype to phenotype

map. Wagner & Altenberg [WA96] use this figure to explain how evolutionary modularity is

tightly related to the underlying genes. In Figure 2.3, a particular group of genes determines

a particular character. This genotype to phenotype mapping is shown in Figure 2.3. The

gene group consisting of G1, G2 and G3 primarily determines the character set A, B, C

and D. Characters A, B, C and D form the function F1. Gene G3 also affects character

E which is a component of function F2. Genes G4, G5 and G6 form another gene group

which determines characters E, F and G that combine to form function F2. Genes G4

and G5 also affect function F1 to a lesser degree via relations to characters B and C. As

a result, we can say that genes G1, G2, and G3 have a direct effect on function F1 and

a pleiotropic effect on function F2. The solid lines show the strong relation between the

characters and the functions. The dotted lines show the weak relations. Similarly, genes

G4, G5, and G6 have a direct effect on function F2 and a pleiotropic effect on function F1.

In general, genomes have group of genes that work together and each group maps onto a

certain function. As a result, modularity in the genotype is preserved in the phenotype.

27

Figure 2.3: This figure represents the genotype-phenotype mapping. The gene group con-
sisting of G1, G2 and G3 primarily determines the character set A, B, C and D. Characters
A, B, C and D constitutes the function F1. Genes G1, G2 and G3 have only a pleiotropic
effect on function F2. Genes G4, G5 and G6 form another gene group which determines
characters E, F and G that are combined into function F2. Gene G4, G5 and G6 have only
a pleiotropic effect on function F1.

28

Furthermore, the mapping between genotype and phenotype is also modular [Wag95, Alt05]

and Altenberg [Alt05] goes as far as to state that the modularity is the most important

property of the genotype-phenotype mapping.

29

CHAPTER 3
FRAMEWORK

We begin by defining a framework for modular search spaces upon which we can build our

mathematical model. Using this framework, we can analyze search space differences between

traditional search spaces and search spaces augmented with modules.

3.1 Search Spaces

The basic components of our framework are the genotype space, the phenotype space,

and the rules that map from the genotype to the phenotype space. Primitives are the

atomic components of problem representation that are used to encode solutions. Modules

are substrings of interest and may contain two kinds of symbols: primitives and previ-

ously defined module names. Our module definition is similar to definitions in previous

work [GW07, DTW04, Hor05].

The genotype space or representation space is the space of all the strings that encode

candidate solutions. The elements of the genotype space are strings over the alphabet of

primitives and module names. A genotype space, Sg, is a 5-tuple:

Sg = 〈P ,M, Σg, l,R〉

30

L(Sg)
=

{e | e ∈ Σg

∗ ∧ |e| = l}

L(S)
=

{|Expand
R

(e) |
e ∈ L(Sg)|}

representation space
(genotype space)

search space
(phenotype space)

ExpandR

develop
function

Figure 3.1: Genotype space Sg = 〈P ,M, Σg, l,R〉, phenotype space and their mapping.

where, P is a set of primitive symbols; M is a set of module symbols; Σg ⊆ P ∪M is the

genotype space alphabet; l is the length of all genotype strings; and R is the set of module

defining rules. Figure 3.1 shows a graphical depiction of a genotype space, phenotype space

and their mapping.

The phenotype space or search space, S, is the space of all possible candidate solutions.

The elements of the phenotype space are strings over the alphabet of primitives only.

For a given genotype space, Sg = 〈P ,M, Σg, l,R〉, the set of module defining rules, R,

is a set of rewriting rules:

R = {M1 → w1, ...,Mi → wi, ...}

where Mi → wi is a rewriting rule defining module Mi; Mi ∈ M is a symbol naming the

module; wi ∈ {P ∪ {M1,M2, ..., Mi−1}}∗ is the module defining string; and |wi| ≤ l, since

we consider modules to be substrings of candidate solutions. There is one defining rule in R

31

for each module symbol in M, hence |R| = |M|. We define the size of a module to be the

length of its defining string |wi|. A module is of order zero if its defining substring consist

solely of primitives, and it is of order n if its defining substring consist of primitives and

symbols naming modules of at most order n− 1.

Module defining rules are used to expand a genotype into a phenotype through an iterative

process of replacing module names with their corresponding definitions until a candidate

solution consisting of only primitives is obtained. Let us assume e is a string over {P ∪M}

for some genotype space Sg = 〈P ,M, Σg, l,R〉. We define the expanded form of string e

as ExpandR(e), where ExpandR : {P ∪M}∗ 7→ P∗ is the expanding function for module

defining rules R. The expanding function applies the rewriting rules in R to its input e until

a string solely over P is obtained. That string is the output of ExpandR. In this case, we

say that ExpandR(e) has been generated from e using the rewriting rules R. Notice that,

our definition of R guarantees that for any string e ∈ {P ∪M}∗, ExpandR(e) ∈ P∗ can be

computed in a finite amount of rewriting rule applications.

The set of elements of the genotype space Sg, denoted by L(Sg), are all strings over the

genotype space alphabet Σg of length l:

L(Sg) = {e | e ∈ Σg
∗ ∧ |e| = l}

Expanding all of the elements in the genotype space into their phenotype form gives us the

phenotype space S. For the remainder of this thesis, references to search space refers to the

phenotype space We define the elements of the phenotype space or search space, S, denoted

32

by L(S) as the following multiset1

L(S) = {| ExpandR(e) | e ∈ L(Sg) |}

where, L(Sg) denotes the elements of genotype space Sg. L(S) is the multiset of all strings in

the genotype space Sg in their expanded form. We denote the size of genotype and phenotype

space to be |L(Sg)| and |L(S)|, respectively.

3.2 Search Space Size, Reachability and Redundancy

Multiple elements in L(Sg) may expand to the same element in L(S). The multiplicity of

each element in the phenotype space is determined by the number of genotypes that expand

to the same phenotype. Hence, by definition, the size of the genotype space is equal to the

size of the phenotype space:

|L(Sg)| = |L(S)|

Notice that, also by definition, the elements of L(Sg) are fixed length strings of length l

over Σg and the elements of L(S) are potentially variable length strings over P . Clearly,

ExpandR is the function used to map the genotype to the phenotype on our modular search

spaces. Therefore, for this thesis, the genotype to phenotype mapping is a generative process

1 Multisets are sets that allow repeated elements, denoted by {| |}. The number of times an element
is repeated in a given multiset is called the multiplicity of that element and the size of a multiset is the
summation of the multiplicities of all its elements. For instance, in {|A,A,B|}, element A multiplicity is
two, element B multiplicity is one, and the size of the multiset is three. Two multisets are said to be equal
if they have the same elements and their elements have the same multiplicities. If they only have the same
elements, we call them set-equal, set=. For example, {|A,A,B|} and {|A,B|} are set-equal but not multiset
equal.

33

determined solely by the module creating rules in R. The size of the search space is |L(S)| =

|Σg|l. This is a direct consequence of our definition of L(Sg).

We are interested in the bias produced by module definitions. The reachability of elements

of a search space can be biased after module creation by changing the availablity of some

elements in a search space. If L(S) contains all possible strings of primitives of a given

length t, then we say that the search space has no bias in the reachability of elements for

length t because there are no unreachable strings of primitives of that length. The search

space has a bias in reachability otherwise. The redundancy of elements of a search space

can be biased after module creation because module creation results in multiple elements

of the genotype space mapping to identical strings in the phenotype space. As a result,

some strings of primitives appear multiple times in the search space. For instance, the

genotype space Sg = 〈P = {0, 1},M = {A}, Σg = {1, 0, A}, l = 8,R = {A → 11}〉 has no

bias in reachability of elements of search space S for t = l since all strings of primitives of

length 8 can be reached; however it has a bias in redundancy since, for instance, the string

“00000000” can only be derived from “00000000” and the string “111111111” can be derived

from “A1111111”, “1A111111”, “11A11111”, etc.

Formally, for a given search space S:

• if

L(S) + {e | e ∈ P∗ ∧ |e| = t}

34

is true, we say that there is a bias in the reachability of the elements of S for length t.

There is no bias in reachability otherwise.

• if

∃e1,e2∈L(Sg)[(ExpandR(e1) = ExpandR(e2)) ∧ (e1 6= e2)]

is true, we say that there is a bias in the redundancy of the elements of S. There is no

bias otherwise.

3.3 Module Encapsulation

Module encapsulation or module creation is the process of selecting and naming a substring of

interest with a new alphabet symbol. This process changes the structure of the search space

by adding a new element to the genotypic alphabet and, more fundamentally, by adding a

new rule to R. The encapsulation of a module, E : Sg ×Rk 7→ Sg is defined as follows:

E(Sg,Mk → wk) =

〈P ,M∪ {Mk}, Σg ∪ {Mk}, l,R∪ {Mk → wk}〉

where, Sg = 〈P ,M, Σg, l,R〉 is a genotype space, Mk → wk is the rewriting rule defining the

new module to be encapsulated, Mk is a new module symbol, wk is a string over {P∪M}, and

|wk| ≤ l. We view the process of module creation as a search space transformation. Figure 3.2

shows an encapsulation example. Given a module of length lm, we define Complete Module

35

L(Sg1
) L(S1)

ExpandR1

L(Sg2
) L(S2)

ExpandR2

E(Sg1
, M → 11)

00
01
10
11

00
01
10
11

00
01
0M
...
MM

00
01
011
...
1111

Sg1
=< P1 = {0, 1}, M1 = {}, Σg1

= {0, 1}, l1 = 2,

R1 = {} >

Sg2
=< P2 = {0, 1}, M2 = {M}, Σg2

= {0, 1, M}, l2 = 2,

R2 = {M → 11} >

Figure 3.2: This figure shows an example of module encapsulation for Sg2 = E(Sg1,M → 11).

36

Set, CMS, as:

CMS(Σg, lm) = {(Mi → w)|w ∈ Σg
∗ ∧ |w| = lm ∧ i is a unique index for w}

In other words, a complete module set is the set of modules defined by all strings of length

lm over P . In effect, there will be |P|lm modules in this set, one for every permutation of

length lm of the primitive symbols.

Strict-encapsulation is the process of creating a complete module set of size lm over the

current genomic alphabet Σg and then replacing the current alphabet with the newly created

module names. This process changes the genotype space by adding a set of modules and

by completely replacing the genomic alphabet with module symbols associated with the

newly added modules. Notice that there are |Σg|lm modules of size lm that can be created

over Σg. The new individual length is l/lm, since individuals consist only of new modules

encapsulating sub-strings of size lm. Formally, strict-encapsulation, Es : Sg × lm 7→ Sg is

defined as follows:

Es(Sg, lm) = 〈P , η(CMS(Σg, lm)) ∪M, η(CMS(Σg, lm)), l/lm, CMS(Σg, lm) ∪R〉

where Sg = 〈P ,M, Σg, l,R〉 is a genotype space, lm is an arbitrary module size, l/lm is an

integer, and the function η : R 7→ M, is defined as η(R′) = {Mx | (Mx → wx) ∈ R′}.

The function η takes a module rule or a module rule set as parameter and returns the

module module name or the set of the module names respectively. Figure 3.3 shows a strict-

encapsulation example. Strict-encapsulation without replacement of a genotype space Sg

is the process of creating all possible modules of a given size lm over the current genomic

37

L(Sg1
) L(S1)

Expand
R1

L(Sg2
) L(S2)

Expand
R2

Es(Sg1
, lm = 2)

0000
0001
...
1111

0000
0001
...
1111

M1M1

M1M2

...
M4M4

0000
0001
...
1111

Sg1
=< P1 = {0, 1}, M1 = {}, Σg1

= {0, 1}, l1 = 4,

R1 = {} >

Sg2
=< P2 = {0, 1}, M2 = Σg2

= {M1, M2, M3, M4}, l2 = 2,

R2 = {M1 → 00, M2 → 01, M3 → 10, M4 → 11} >

Figure 3.3: This figure shows an example of strict-encapsulation, Sg2 = Es(Sg1, lm = 2).

38

alphabet Σg and then adding to the current alphabet the newly created module names.

The difference with the previous definition is that in strict-encapsulation the newly created

module names replace the alphabet, and in this definition they are just added to the alphabet.

Also in this case the genome length is not affected.

Formally, Strict-encapsulation without replacement, Es : Sg×lm 7→ Sg is defined as follows:

Es(Sg, lm) = 〈P , η(CMS(Σg, lm)) ∪M, η(CMS(Σg, lm)) ∪ Σg, l, CMS(Σg, lm) ∪R〉

where Sg = 〈P ,M, Σg, l,R〉 is a genotype space, and lm is an arbitrary module size.

39

Part II

GENERAL EFFECTS OF MODULARITY IN THE SEARCH
SPACE STRUCTURE

40

CHAPTER 4
INVARIANCE OF SEARCH SPACE UNDER A CLASS OF

MODULE CREATION TRANSFORMATIONS

Module encapsulation changes the genotype space, Sg = 〈P ,M, Σg, l,R〉, by changing the

genomic alphabet, Σg, and by changing the rewriting rules set R. These changes in the

genotype space may or may not result in changes on the associated search space structure.

We are interested in investigating whether or not there is a class of module encapsulation

transformations under which the search space structure is invariant in terms of reachability,

redundancy and search space size. In order to establish the search space invariance under a

class of transformations, we need to prove that reachability, redundancy and the search space

size are invariant under that class of transformations. We establish search space invariance

under a particular class of module creation transformations: strict-encapsulation. We use

the definitions introduced in the previous section to prove two lemmas. In the first one,

we prove that the search spaces before and after strict-encapsulation are set-equal 1 —they

have the exact same elements present, but with potentially different multiplicities. We use

this lemma to establish invariance of search space reachability under strict-encapsulation.

Having established reachability, we proceed to work on redundancy and introduce a second

lemma. In this lemma, we prove that the representation spaces before and after strict-

encapsulation are one-to-one and onto. We use this second lemma to establish invariance

41

L(Sg1) L(S1)

ExpandR1

L(Sg2) L(S2)

ExpandR2

Es(Sg1, lm)

Bijection
Expand{CMS(Σg1

,lm)}(x)

(Lemma 2)

L(S1)
set
= L(S2)

(Lemma 1)

Figure 4.1: Relations between genotype and phenotype spaces before and after strict-encap-
sulation as established by Lemmas 1 and 2, Sg2 = Es(Sg1, lm).

of search space size and redundancy under the strict-encapsulation transformation. Finally,

we use both lemmas to prove search space invariance under strict-encapsulation. Figure 4.1

offers a graphical depiction of the implications of strict-encapsulation.

4.1 Search Space Reachability

In order to establish invariance of search space reachability under the strict-encapsulation

transformation, we prove in the folowing lemma that the search spaces before and after strict-

encapsulation are set-equal. In essense, if the search spaces are set-equal, they contain the

same elements. Therefore, if the search space before strict-encapsulation contains all possible

42

elements of a given length, so does the search space after strict-encapsulation. Similarly, if

the search space before strict-encapsulation does not contain all possible elements of a given

length, so does not the search space after strict-encapsulation.

Lemma 1 Let S1 and S2 be search spaces such that Sg2 = Es(Sg1, lm), then

L(S1)
set
= L(S2)

Proof: To prove the set equality, we will consider both multisets to be just sets and pro-

ceed to construct L(S1) from L(S2). Let Sg1 = 〈P1,M1, Σg1, l1,R1〉. Using our strict-

encapsulation definition, we can state the following:

Sg2 = Es(〈P1,M1, Σg1, l1,R1〉, lm) = 〈 P2 = P1,

M2 = η(CMS(Σg1, lm)) ∪M1,

Σg2 = η(CMS(Σg1, lm)),

l2 = l1/lm,

R2 = CMS(Σg1, lm) ∪R1

〉 (4.1)

Using our search and representation space definitions, L(S2) can be written as:

L(S2) = {ExpandR2
(e) | e ∈ Σg2

∗ ∧ |e| = l2}

using Σg2 and l2 from (4.1), we obtain:

L(S2) = {ExpandR2
(e) | e ∈ {η(CMS(Σg1, lm))}∗ ∧ |e| = l1/lm} (4.2)

43

Note that, by definition, CMS(Σ1, lm) is the set of rules defining all possible strings over

Σg1
∗ of size lm. In fact, it is trivial to show that the following is true

ExpandCMS(Σg1,lm)[η(CMS(Σg1, lm))] = {w | w ∈ Σg1
∗ ∧ |w| = lm} (4.3)

Consider the following set

{e | e ∈ {η(CMS(Σg1, lm))}∗ ∧ |e| = l1/lm} (4.4)

This is the set of all possible strings over alphabet {η(CMS(Σg1, lm))} of length l1/lm.

Combining (4.3) and (4.4), it is easy to see that

{ExpandCMS(Σg1,lm)(e) | e ∈ {η(CMS(Σg1, lm))}∗ ∧ |e| = l1/lm}

= {w | w ∈ Σg1
∗ ∧ |w| = l1}

Applying ExpandR1
() to both sets, we obtain:

{ExpandR1
(ExpandCMS(Σg1,lm)(e)) |

e ∈ {η(CMS(Σg1, lm))}∗ ∧ |e| = l1/lm}

= {ExpandR1
(w) | w ∈ Σg1

∗ ∧ |w| = l1} (4.5)

From (4.1),R2 = CMS(Σg1, lm) ∪R1. Given that, by definition, all rules in CMS(Σg1, lm)

are of higher order than rules in R1, the two rule sets can be applied consecutively without

altering the result. More precisely:

ExpandR2
(x) = ExpandR1

(ExpandCMS(Σg1,lm)(x))

44

Using the above expression, we can rewrite (4.2) as follows

L(S2) = {ExpandR1
(ExpandCMS(Σg1,lm)(e)) |

| e ∈ {η(CMS(Σg1, lm))}∗ ∧ |e| = l1/lm}

Finally, using (4.5) in the above expression, we obtain:

L(S2) = {ExpandR1
(e′) | e′ ∈ Σg1

∗ ∧ |e′| = l1} = L(S1)

a

Corollary 1 The strict-encapsulation transformation of a search space preserves search
space set-reachability.

Proof: Let A be an arbitrary set, and S1, S2 be search spaces such that Sg2 = Es(Sg1, lm),

we need to prove that

L(S1) ⊇ A → L(S2) ⊇ A

L(S1) + A → L(S2) + A

For the first implication, we have L(S1) ⊇ A. It suffices to observe that using Lemma 1

(above), L(S1) = L(S2) ⊇ A. The same observation is true for the second implication. a

Corollary 2 The strict-encapsulation transformation of a search space preserves any bias
in the reachability of the search space.

45

Proof: For S1, S2 search spaces such that Sg2 = Es(Sg1, lm), we need to prove that

reachability biased L(S1) → reachability biased L(S2)

not reachability biased L(S1) → not reachability biased L(S2)

By definition, reachability biased L(S1) iff L(S1) + {e | e ∈ P∗ ∧ |e| = t}. It suffices to

observe that this is a special case of the corollary above, where A = {e | e ∈ P∗ ∧ |e| = t}.a

4.2 Search Space Redundancy

In order to establish invariance of search space size and redundancy under strict-encapsulation,

we prove that the representation spaces before and after strict-encapsulation are one-to-one

and onto. First, we establish invariance of search space size. We know that, by definition,

the representation space and its associated search space are always of the same size. We also

know that if two sets are one-to-one and onto, then they are of the same size. Therefore, if the

representation spaces before and after strict encapsulation are one-to-one and onto, then their

associated search spaces are also equal in size. Second, we establish invariance of search space

redundancy. Remember that: ExpandR2
(x) = ExpandR1

(ExpandCMS(Σg1,lm)(x)). Thus, af-

ter strict-encapsulation, the function mapping elements of the representation space to the

search space can be seen as first mapping the encapsulated elements of the resulting represen-

tation space to the original elements in the original representation space and then mapping

these elements to the search space using the original mapping function. Therefore, if the

46

representation spaces are one-to-one and onto, two elements mapping to equal phenotype

strings in the original search space will also map to equal phenotype strings in the resulting

search space. Similarly, two elements mapping to different phenotype strings in the original

search space will also map to different phenotype strings in the resulting search space after

strict-encapsulation. For example, assume A,B ∈ L(Sg1) and C,D ∈ L(Sg2) where geno-

type A maps to phenotype a (a = ExpandR1
(A)), genotype B maps to phenotype b (b =

ExpandR1
(B)), genotype C maps to phenotype c (c = ExpandR2

(C)) and genotype D maps

to phenotype d (d = ExpandR2
(D)). Assume also that A and C are the corresponding geno-

types before and after strict-encapsulation (A = ExpandCMS(Σg1,lm)(C)) and B and D are the

corresponding genotypes before and after strict encapsulation (B = ExpandCMS(Σg1,lm)(D)).

If L(Sg1) and L(Sg2) are one-to-one and onto, then the following is true: if a = b then c = d

and if a 6= b then c 6= d. Thus, in order to prove the invaraince of redundancy, it is sufficient

to prove that the representation spaces before and after strict-encapsulation are one-to-one

and onto.

Lemma 2 Let S1 and S2 be search spaces such that Sg2 = Es(Sg1, lm), then there is a
one-to-one correspondence (bijection) between L(Sg1) and L(Sg2) defined by the function
f : L(Sg2) 7→ L(Sg1),

f(x) = Expand{CMS(Σg1,lm)}(x)

Proof: We will prove that f is one-to-one (injective) and onto (surjective).

One-to-one:

Suppose by the way of contradiction that x1, x2 ∈ L(Sg2) such that x1 6= x2 but f(x1) =

f(x2). Let x1 = x11 · x12 · x13 . . . x1(l1/lm) and x2 = x21 · x22 · x23 . . . x2(l1/lm), where xij ∈

47

η(CMS(Σg1, lm)). By our definition of CMS, there is a unique module symbol in η(CMS(Σg1, lm))

for each string of length lm over Σg1
∗. Since x1 6= x2 the two strings must differ in at least

one symbol: ∃j(x1j 6= x2j). Since all symbols in η(CMS(Σg1, lm)) map to unique strings

when expanded, we reach a contradiction: f(x1) 6= f(x2).

Onto:

Suppose by the way of contradiction that x ∈ L(Sg2) and y ∈ L(Sg1) such that f(x) = y

does not exists. Let x = x1 · x2 · x3 . . . x(l1/lm) and y = y1 · y2 · y3 . . . y(l1/lm), where xi ∈

η(CMS(Σg1, lm)) and each yi is a string of length lm over Σg1. By definition, CMS(Σg1, lm)

contains one module defining rule for each string of length lm over Σg1. Therefore, for every

y = y1 · y2 · y3 . . . y(l1/lm), there is a string of module symbols x = x1 · x2 · x3 . . . x(l1/lm) such

that f(x1 · x2 · x3 . . . x(l1/lm)) = y1 · y2 · y3 . . . y(l1/lm) a

Corollary 3 The strict-encapsulation transformation of a search space preserves the search
space size.

Proof: For S1, S2 search spaces such that Sg2 = Es(Sg1, lm), we need to prove that |L(S1)| =

|L(S2)|. Using |L(Sg)| = |L(S)| and Lemma 2: |L(S1)| = |L(Sg1)| = |L(Sg2)| = |L(S2)| a

Corollary 4 The strict-encapsulation transformation of a search space preserves the search
space redundancy bias.

48

Proof: For S1, S2 search spaces such that Sg2 = Es(Sg1, lm), we need to prove that

redundancy biased L(S1) → redundancy biased L(S2)

not redundancy biased L(S1) → not redundancy biased L(S2)

By definition, there is a bias in redundancy of L(S1) iff ∃e1,e2∈L(Sg1)[(ExpandR1
(e1) = ExpandR1

(e2))∧

(e1 6= e2)]. It suffices to observe that according to Lemma 2 there is a one-to-one correspon-

dence between L(Sg1) and L(Sg2), and that ExpandR2
(x) = ExpandR1

(ExpandCMS(Σg1,lm)(x)).

a

4.3 Search Space Invariance Under the Strict-Encapsulation
Transformation

We use Lemma 1 and 2 to prove that the search space is invariant under strict-encapsulation.

In order to prove the search space invariance, we need to prove that the search space size and

any bias in reachability and redundancy are preserved under strict encapsulation. Lemma 1

is used to establish invariance of search space reachability under the strict-encapsulation and

Lemma 2 is used to establish invariance of search space redundancy and search space size.

Theorem 1 Transforming a search space by strictly-encapsulating lower-order modules into
a complete set of higher-order modules does not change the search space size, reachability
bias or redundancy bias.

49

Proof: Let S1 and S2 be two search spaces such that Sg2 = Es(Sg1, lm). We need to prove

that

|L(S1)| = |L(S2)|

reachability biased L(S1) → reachability biased L(S2)

not reachability biased L(S1) → not reachability biased L(S2)

redundancy biased L(S1) → redundancy biased L(S2)

not redundancy biased L(S1) → not redundancy biased L(S2)

All statements above are proved in the corollaries of Lemmas 1 and 2. a

Continuously strictly-encapsulating a genotype space produces a hierarchy of genotype spaces.

At the bottom of this hierarchy, we have a genotype space with individuals of size l and triv-

ial modules of size one. As we move up the hierarchy, we have genotype spaces with more

modules and larger module sizes. At the top of this hierarchy, we have individual’s genomes

of size one consisting of only a single module of size l. We call this type of hierarchy a

modularity representation pyramid for Sg because the representation spaces change but their

search spaces remain invariant. Formally, let Sg be a genotype space with only primitives.

Let us recursively define the modularity representation pyramid, A = {a0, a1, ...}, for Sg as:

a0 = Sg

ai+1 = Es(ai, lm)

50

The recursion terminates when the individual length for a given ai is equal to one (the

individuals can not be further encapsulated into modules), or is not longer divisible by lm

(for which strict-encapsulation is not longer defined).

Corollary 5 Let Sg be a genotype space with only primitives and A be a modularity repre-
sentation pyramid for Sg. Then the following is true for all levels of the pyramid:

1. all search spaces are of equal size: |Σg|l

2. all search spaces have no bias in reachability or redundancy.

Proof: Base case: L(S) has, trivially, no bias in reachability or redundancy, and is of size

|Σg|l. Recursive step: by the previous theorem, ai+1 and ai are of the same size and if ai has

no bias in reachability or redundancy, so does not ai+1. a

4.4 Summary

While arbitrary module creation significantly changes the structure of the search space in

ways that can favor or disfavor a given class of search strategies, we have to be careful

to remember that while these changes are possible, they are not guaranteed. There are

combinations of module creation transformations that can effectively neutralize each other

and produce a search space not changed in any meaningful way, as witnessed by the strict-

encapsulation transformations described in this Section. In this section, we establish that

there is a class of module creating transformations under which search space structure as

51

measured by size, reachability and redundancy is invariant: the strict-encapsulation trans-

formations. Furthermore, we establish that there is a hierarchy of genotype spaces with

invariant search space structure produced by this class. We see this result as a starting point

for future study. It indicates that while arbitrary module creation significantly changes the

structure of the search space in ways that can favor or disfavor a given class of search strate-

gies, we have to be careful to remember that while these changes are possible, they are not

guaranteed. There are combinations of module creation transformations that can effectively

neutralize each other and produce a search space not changed in any meaningful way, as

witnessed by the strict-encapsulation transformations described in this Section.

Simply stated, just introducing modularity at the structural level in a search space, in

and on itself, could help, hinder, or cause no effect, depending of the characteristics of the

modules introduced.

52

CHAPTER 5
EXPERIMENTAL ANALYSIS: MODULE ENCAPSULATION

EFFECTS ON SEARCH SPACE REACHABILITY,
REDUNDANCY AND PERFORMANCE

Our theoretical study presented in Chapter 4, does not claim anything about performance

of a given algorithm in a given search space. In fact, our theorem does not make any

assumptions about search strategies. It only claims that, under certain module creating

transformations, the search space does not change in three structural aspects: size, reacha-

bility and redundancy. Although, we have found some evidence of correlation between search

space structure and algorithmic performance, we certainly do not claim a direct correlation

between search space structure and arbitrary search strategy performance. What we do

claim is that, in general, the search space structure is one of many factors that contribute

to the final algorithm performance and that in some cases is the overriding factor.

With this observation in mind, in our experimental analysis, we investigate the correlation

between our theoretical results and the performance obtained by a genetic algorithm acting

on these seach spaces. First, we empirically show that the performance of a GA acting on

these search spaces remains invariant under strict-encapsulation, which qualitatively verify

Theorem 1. As previously discussed, this theorem states that, under strict-encapsulation,

the search space structure remains invariant. Second, we analyze whether the three search

space structural aspects that we study—size, reachability and redundancy—are relevant in

53

terms of performance. We analyze how each one of them in isolation affects GA search

performance. Finally, we investigate how we can bias the search towards or away from a

solution by biasing the search space structure in terms of reachability and redundancy.

5.1 Experimental Settings

This experimental study has three parts. The first part includes Experiment 1 where we

give an empirical confirmation of Theorem 1. The second part includes Experiments 2, 3

and 4. In this part, our goal is to show that both redundancy and reachability are relevant

in terms of performance by observing performance changes while keeping one constant and

changing the other. In fact, we analyze the effects of changes in each of the three aspects

of the search space structure: search space size, reachability and redundancy. The third

part of this experimental analysis includes Experiment 5 and Experiment 6. In this part, we

analyze how we can bias the search toward or away from a solution by changing the bias in

reachability or redundancy in targeted parts of the search space.

For all experiments, we use a traditional genetic algorithm (GA) with a binary repre-

sentation, but augmented with module symbols when necessary. All module creation trans-

formations use the binary alphabet as the starting point for module creation. We use the

following common parameters: population size and number of generations are 500, crossover

rate, Pc, is 0.9, mutation rate, Pmp , is kept constant at the phenotype level at 0.01. The

54

selection type is tournament with size 4. We use the Generalized OneMax problem1 in Ex-

periments 1, 2, 3 and 4, and we use the standard OneMax in Experiments 5 and 6. In

standard OneMax, the goal is to maximize the number of 1’s in a solution string. The string

with all 1’s has the highest fitness value. In generalized OneMax, the goal is to maximize the

number of matching bits between a candidate solution string and a fixed target string. The

candidate string with a perfect match has the highest fitness value. We use the following

module, genotype and phenotype lengths. For Experiment 1 we use lm = {1, 2, 4, 8, 16},

l = {16, 8, 4, 2, 1} and lp = 16. For Experiments 2, 3, 4, 5, and 6, we use lm=4, l=32, and

lp = 128. We perform 100 trials for all experiments and report average values with their

95% confidence intervals2.

We analyze performance changes in each experiment. The results are presented in terms

of the absolute best fitness and the number of generation to obtain the absolute best fitness.

When the absolute best fitness values are statistically undistinguishable, we rely on the

number of generations to obtain the absolute best fitness in order to determine performance

differences. The less the number of generations to obtain the same absolute best fitness value

the better the performance. When the absolute best fitness values are different, we consider

that the number of generations to obtain them are not comparable.

1maximizing f(x) = n − HammingDistance(x, x∗), where phenotypes x, x∗ ∈ {0, 1}n and x∗ is the fixed
target phenotype. For x∗ = 111...1, the problem reduces to the traditional OneMax

2 We perform additional experiment sets with the following length values. For Experiment 1 we also
use lm = {1, 2, 4, 8}, l = {8, 4, 2, 1} and lp = 8. For Experiments 2, 3, 4, 5, and 6, we also use lm=2,
l = 64, lp = 128; lm=8, l = 16, lp = 128; lm=4, l = 16, lp = 64; and lm=4, l = 64, lp = 256. All additional
experiment sets have identical qualitatively behavior and support the conclusions drawn from the experiment
sets reported.

55

Alphabet size lm in terms of primitives l Pmg

Level 1 (a0) 2 1 16 0.01
Level 2 (a1) 4 2 8 0.02
Level 3 (a2) 16 4 4 0.04
Level 4 (a3) 256 8 2 0.08
Level 5 (a4) 65536 16 1 0.16

Table 5.1: Details for the modularity representation pyramid A1 used in experiment 1.

5.2 Part 1: Qualitative Validation of Search Space Invariance

Experiment 1 is a qualitative empirical validation of Theorem 1. In order to do so, we use

the small modularity representation pyramid, A1, shown in Table 5.1. Because our theorem

does not make any assumptions about search strategies, we expect the GA dynamics to have

an impact on performance. In particular, we expect an impact because genetic operators

act at the changing representation level and not at the resulting invariant search space level.

Most importantly, we also expect the structure of the search space be the overriding factor

on performance. As a result, we expect to see a qualitative validation of Theorem 1 in the

form of roughly comparable performance at all pyramid levels due to the underlying search

space structural invariance.

56

We define the modularity representation pyramid A1 for

Sg1 = 〈P = {0, 1},M = {}, Σg = {0, 1}, l = 16,R = {}〉 as follows:

a0 = Sg1 = 〈P = {0, 1},M = {}, Σg = {0, 1}, l = 16,R = {}〉

a1 = Es(a0, 2) = 〈P = {0, 1},Ma1 , Σga1
, l = 8,Ra1〉

a2 = Es(a1, 2) = 〈P = {0, 1},Ma2 , Σga2
, l = 4,Ra1〉

a3 = Es(a2, 2) = 〈P = {0, 1},Ma3 , Σga3
, l = 2,Ra1〉

a4 = Es(a3, 2) = 〈P = {0, 1},Ma4 , Σga4
, l = 1,Ra1〉

In this pyramid, using our strict-encapsulation definition, we obtain the following for a1:

Ma1 = {M0,M1,M2,M3}

Σga1
= {M0,M1,M2,M3}

Ra1 = {M0 → 00, M1 → 01,M2 → 10,M3 → 11}.

Similarly, we can also obtain the following for a2:

Ma2 = {M0,M1,M2,M3,M0.0,M0.1,M0.2, . . . , M3.3, }

Σga2
= {M0.0,M0.1,M0.2, . . . , M3.3, }

Ra2 = {M0.0 → M0M0,M0.1 → M0M1,M0.2 → M0M2, . . . , M3.3 → M3M3}

We can obtain all the values for the remining levels in a similar way. Each level of the

pyramid is described in Table 5.1. Each level is the strict-encapsulation of the previous level

using new modules consisting of two previous level modules. In Table 5.1, lm is the module

size in terms of number of primitives that a module ultimately produces.

Figure 5.1 summarizes the results for this first part of our experimental analysis. Figure 5.1(A)

plots the absolute best fitness versus all five levels of the modularity representation pyramid

57

(A)
 0

 0.2

 0.4

 0.6

 0.8

 1

level 1 level 2 level 3 level 4 level 5

A
bs

ol
ut

e
B

es
t F

itn
es

s

(B)
 0

 20

 40

 60

 80

 100

 120

 140

 160

level 1 level 2 level 3 level 4 level 5

G
en

er
at

io
ns

 to
 A

bs
ol

ut
e

B
es

t F
itn

es
s

Figure 5.1: Results for Experiment 1: GA performance for the five levels of the modularity
representation pyramid described in Table 5.1. X-axis shows (A) Absolute best fitness, and
(B) Generations to absolute best fitness and y-axis shows the five levels of the pyramid. The
first four levels perform similarly but the last level performs slightly worse than the first four
levels.

58

in Table 5.1. The absolute best fitness value ranges between 0.0 and 1.0, 1.0 being the high-

est fitness. The absolute best fitness value is 1.0 for Levels 1 to 4, and it is slightly lower

at 0.97 for Level 5. As expected, the absolute best fitness is the same in all levels of the

pyramid except for the extreme case in the last level. In Level 5, there are 65,536 strings

of size 1 in the search space. Each string consists of one module of size 16. As a result,

the search in this setting becomes a random search where there is only one solution and the

search operators do not help accumulate information toward the solution. For example, a

string that matches with the solution string in 15 bits but differs in only one bit may become

a string where all 16 bits differ from the solution string after a single mutation step. There-

fore, even though at all levels, the search space has not changed in size, reachability bias or

redundancy bias; the associated representation spaces, where the genetic operators act, have

substantially changed. At the top level of the pyramid, the overriding factor to determine

performance is not the search space, but the representation space structure that is basically

constraining the GA into performing a random search. Thus, we do not expect the last

level of a pyramid to agree with our theorem3. In Figure 5.1(B), we report performance in

terms of generations to obtain the absolute best fitness. In the first four levels, the absolute

best fitness is obtained in the first five generations. The difference between the number of

generation that the absolute best fitness obtained is statistically insignificant between Levels

1 to 4. In Level 5, the absolute best fitness is obtained in generation number 146 which is

significantly higher than the other four levels.

3We also perform this experiment on a four-level pyramid. We observe identical qualitatively results to
the ones reported on this thesis. The first three levels perform similarly and the last level performs slightly
worse than the first three levels.

59

5.3 Part 2: Relevance of Reachability and Redundancy

In this part, we have three experiments: Experiment 2, 3 and 4. In these experiments, we

analyze how changes in search space size, reachability and redundancy, respectively, affect

performance. For all experiments in this part, we define various module sets to include into

or remove from the genomic alphabet in order to change search space size, reachability or

redundancy. We use the generalized OneMax problem and generate a new random solution

string for each run. As a result, the reachability and redundancy changes affect random

regions of the search space with respect to the solution string.

In Experiment 2, we analyze the impact of changes in search space size on performance.

We compare the performance of a GA running on search spaces with different sizes but equal

reachability and redundancy. We change the search space size by changing the elements in

the genomic alphabet. The original genomic alphabet consists of module names of a complete

module set. We increase the search space size by duplicating all the elements of the alphabet.

As defined in Section 3.3, a complete module set is a set containing one module for each

possible genomic string of a given size. For example, for modules of size 2, the complete

module set is CMS({0, 1}, 2) = {M0 → 00,M1 → 01,M2 → 10,M3 → 11}. We duplicate

the elements of the alphabet by adding copies of all the modules in the complete module

set but with different names. For example, {M0 → 00,M1 → 01,M2 → 10, M3 → 11,M4 →

00,M5 → 01,M6 → 10,M7 → 11}. Duplication of all the alphabet elements increases the

search space size without introducing any bias in redundancy because the proportion of the

60

Module Name Corresponding Substring
M0k

0000
M1k

0001
M2k

0010
M3k

0011
M4k

0100
M5k

0101
M6k

0110
M7k

0111
M8k

1000
M9k

1001
M10k

1010
M11k

1011
M12k

1100
M13k

1101
M14k

1110
M15k

1111

Table 5.2: Elements of the complete module set of module size 4, CMSk({0, 1}, 4).

elements in the search space does not change. It certainly does not change reachability

either, because it does not eliminate any existing elements from or add any new elements to

the search space.

We use Table 5.2 to explain the content of the alphabet for Experiments 2, 3 and 4.

Table 5.2 shows the module names and their corresponding substrings. The index k in the

module names gives the number of copies of that module. For instance, M01 is the first

copy of the corresponding substring 0000 in an alphabet. The highest number for k gives

the total number of modules that corresponds to the same substring. For example, in an

alphabet where the highest value of k is 5 for M0k
, there are in total five module names that

correspond to substring 0000. We denote the set of module names that correspond to the

61

same substring with SMik
, where i is in [0 : 2lm − 1]. For example, for i = 1 and lm = 4,

SM1k
= {M11 ,M12 ,M13 ,M14 , ..., M1k

}

where, k is the total number of copies of module name M1k
which corresponds to substring

0001. The module names of a complete module set, η(CMSk({0, 1}, lm)), can be written in

terms of SMik
as follows:

η(CMSk({0, 1}, lm)) = SM0k
∪ SM1k

∪ SM2k
∪ .. ∪ SM

2lm−1k

We compare the performance of a GA with four different alphabet sizes. In the first case,

the GA has an alphabet consisting of names of a complete module set of module length 4,

η(CMSk({0, 1}, 4)). From hereafter, we use CMS to refer η(CMSk({0, 1}, 4)) for simplicity.

In the second case, we doubled the elements of the alphabet of the first case. Thus, in the

second case, k = 2 and we refer to this case as 2CMS in our results. For the third and forth

cases, k are 4 and 8, and are referred as 4CMS and 8CMS respectively.

Figure 5.2(A) and (B) summarize the results for Experiment 2. Figure 5.2(A) shows the

changes in the absolute best fitness versus four different search space sizes. The search space

sizes for each case are: (1 ∗ 2lm)lp , (2 ∗ 2lm)lp , (4 ∗ 2lm)lp and (8 ∗ 2lm)lp . The results reported

in this figure are for lm = 4 and lp = 128. The absolute best fitness values obtained in all

four cases are the same and equal to 1.0. Figure 5.2(B) shows the changes in the number

of generations to obtain absolute best fitness versus the search space sizes. The number of

generations to obtain the absolute best fitness is statistically the same for all four search

62

(A)
 0

 0.2

 0.4

 0.6

 0.8

 1

1CMS 2CMS 4CMS 8CMS

A
bs

ol
ut

e
B

es
t f

itn
es

s

(B)
 30

 32

 34

 36

 38

 40

 42

 44

1CMS 2CMS 4CMS 8CMS

G
en

er
at

io
ns

 to
 A

bs
ol

ut
e

B
es

t F
itn

es
s

Figure 5.2: Experiment 2, x-axis in (A) shows the absolute best fitness and x-axis in (B)
shows the generations needed to obtain this absolute best fitness, when increasing the search
space size while reachability and redundancy are kept unchanged. Y-axis shows the search
space size corresponding to 1CMS, 2CMS, 4CMS and 8CMS. Changes in the search space
size without any structural or redundancy bias does not affect the performance.

63

space sizes. Thus, in our experiments, changes in search space size without any change in

reachability or redundancy do not affect the performance of the GA search.

In Experiment 3, we analyze the impact of reachability on performance. Similar to the

previous experiment, the original alphabet consists of module names of a complete module

set. In order to change reachability, we remove a percentage of the elements from the alphabet

which results in a search space where some of the elements from theoriginal search space do

not exist. This change decreases the search space size. It does not, however, introduce any

bias in redundancy because there are only single copies of each search space element before

and after removing the alphabet. In Experiment 2, we show that changes in search space size

without any change in reachability and redundancy do not affect performance. Therefore,

we atribute performance changes in this experiment to changes in reachability.

As previously stated, the initial alphabet contains a CMS. Next, we remove the first 25%,

50% and 75% of CMS. The content of the alphabet for each case is given in Table 5.3. We

refer to the case where alphabet contains 75% of CMS after removing 25% of its elements

as 0.75CMS in our results. Similarly, 0.5CMS and 0.25CMS refers to the cases where

we remove 50% and 75% of the elements of the alphabet respectively. We compare the

performance of a GA before and after a percentage of elements is removed from the alphabet

to determine how reachability affects the search.

The results of Experiment 3 are reported in Figure 5.3(A) and (B). Figure 5.3(A) illus-

trates the changes in the absolute best fitness when we change reachability in the search

space by removing 25%, 50% and 75% of the alphabet elements. When all the alphabet

64

(A)
 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

1CMS 0.75CMS 0.5CMS 0.25CMS

A
bs

ol
ut

e
B

es
t f

itn
es

s

(B)
 15

 20

 25

 30

 35

 40

 45

1CMS 0.75CMS 0.5CMS 0.25CMS

G
en

er
at

io
ns

 to
 A

bs
ol

ut
e

B
es

t f
itn

es
s

Figure 5.3: Experiments 3, x-axis in (A) shows the absolute best fitness and x-axis in (B)
shows the generations needed to obtain this absolute best fitness, when removing a random
set of modules. Y-axis shows the fraction of the complete module set names included in
the alphabet, 1CMS, 0.75CMS, 0.5CMS and 0.25CMS. The performance decreases as we
remove larger random sets of module names from the alphabet.

65

1CMS 0.75CMS 0.5CMS 0.25CMS
M01 M41 M81 M121

M11 M51 M91 M131

M21 M61 M101 M141

M31 M71 M111 M151

M41 M81 M121

M51 M91 M131

M61 M101 M141

M71 M111 M151

M81 M121

M91 M131

M101 M141

M111 M151

M121

M131

M141

M151

Table 5.3: Elements of the alphabets in Experiment 3 and the first part of Experiment 5.

elements are present (1CMS), the absolute best fitness obtained is 1. The absolute best

fitness values after removing 25% (0.75CMS), 50% (0.5CMS) and 75% (0.25CMS) of the

alphabet elements are 0.94, 0.875 and 0.74, respectively. As expected, when the search space

reachability is reduced by removing elements, we observe a decrease in the absolute best

fitness. These results indicate that the performance changes with reachability.

In Experiment 4, we analyze the impact of redundancy on performance. Similar to the

previous experiment, the original alphabet consists of module names of a complete module

set. In order to change redundancy, we add redundant copies of a percentage of elements

of the original alphabet. This change increases the search space size but does not change

the reachability in the seach space. Reachability does not change because adding redundant

copies of elements to the alphabet does not eliminate any existing element from or add any

66

R=0 R=1 R=2 R=4 R=8 R=16
CMS

M02 M02 M02 M02 M06 M02 M06 M010 M014

M12 M13 M12 M12 M16 M12 M16 M110 M114

M22 M22 M22 M22 M26 M22 M26 M210 M214

M32 M32 M32 M32 M36 M32 M36 M310 M314

M03 M03 M03 M07 M03 M07 M011 M015

M13 M13 M13 M17 M13 M17 M111 M115

M23 M23 M23 M27 M23 M27 M211 M215

M33 M33 M33 M37 M33 M37 M311 M315

M04 M04 M08 M04 M08 M012 M016

M14 M14 M18 M14 M18 M112 M116

M24 M24 M28 M24 M28 M212 M216

M34 M34 M38 M34 M38 M312 M316

M05 M05 M09 M05 M09 M013 M017

M15 M15 M19 M15 M19 M113 M117

M25 M25 M29 M25 M29 M213 M217

M35 M35 M39 M35 M39 M313 M317

Table 5.4: Elements of the alphabet for Experiment 4.

new element into the search space. As a result, we attribute performance changes in this

experiment to changes in redundancy. More concretely, we introduce redundancy to the

search space by replicating a subset of the alphabet elements 1, 2, 4, 8 or 16 times. We

call this subset the redundant subset. In our results, R gives the number of copies of the

redundant subset in the alphabet. When R = 0, the alphabet contains only CMS. For

R > 0, The alphabet contains CMS and R copies of the redundant subset. We choose

0.25CMS to be the redundant subset. Table 5.4 shows the content of the alphabets for

R = {0, 1, 2, 4, 8, 16} for Experiment 4. We compare the performance of the GA before

and after adding these redundant subsets of elements to the alphabet to determine how

redundancy affects the performance. Notice that because the solution string is randomly

67

R=0 R=1 R=2 R=4 R=8 R=16
CMS

Mx2 Mx2 Mx2 Mx2 Mx2

Mx3 Mx3 Mx3 Mx3

Mx4 Mx4 Mx4

Mx5 Mx5 Mx5

Mx6 Mx6

Mx7 Mx7

Mx8 Mx8

Mx9 Mx9

Mx10

Mx11

Mx12

Mx13

Mx14

Mx15

Mx16

Mx17

Table 5.5: Elements of the alphabet for Experiment 6. x = 15 for first part and x = 0 for
the second part of Experiment 6.

generated, the redundant copies of elements target the random regions of the search space

with respect to the solution.

Figure 5.4(A) and (B) summarize the results for Experiment 4. Figure 5.4(A) shows

the changes in the absolute best fitness versus the number of copies of 0.25CMS for R =

{0, 1, 2, 4, 8, 16}. The absolute best fitness for all six cases are the same and equal to 1.0.

The results for the number of generations to obtain the absolute best fitness for all six cases

are given in Figure 5.4(B). When we increase the redundancy, the number of generations

to obtain the absolute best fitness increases which indicates a performance decrease. These

results indicate that the performance changes with redundancy.

68

(A)
 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

R=0 R=1 R=2 R=4 R=8 R=16

A
bs

ol
ut

e
B

es
t f

itn
es

s

(B)

 40

 50

 60

 70

 80

 90

 100

R=0 R=1 R=2 R=4 R=8 R=16

G
en

er
at

io
ns

 to
 A

bs
ol

ut
e

B
es

t F
itn

es
s

Figure 5.4: Experiment 4, x-axis in (A) shows the absolute best fitness and x-axis in (B)
shows the generations needed to obtain this absolute best fitness, when increasing the number
of copies of a random subset of the alphabet. Y-axis shows the number of copies, R, of the
random subset with R = {0, 1, 2, 4, 8, 16}. The performance decreases with the increase in
redundancy.

69

In this part, our experiments indicate that reachability and redundancy are relevant

metrics with respect to performance, while the search size is not.

5.4 Part 3: Biasing Search Space by Changing Reachability and
Redundancy

In this part, we have two experiments: Experiment 5 and 6. In these experiments, we

analyze how biasing a search space by changing reachability and redundancy in targeted

regions affects performance. We target reachability and redundancy changes to particular

regions of a search space by identifying promising and non-promising modules and including

them into or removing them from the genomic alphabet. We determine if a module is

promising or not simply by comparing its similarity with the target solution string. For

clarity, let us select a target solution string off all 1s which is the solution string in OneMax.

In this case, a promising module is composed of mostly 1s and a non-promising module is

composed of mostly 0s. For all experiments in this part, we use standard OneMax and these

definitions of promising and non-promising.

In Experiment 5, we bias reachability on targeted regions of the search space with respect

to the solution. Initially, the alphabet consists of a CMS. We analyze two cases: 5(i) and

5(ii). In Experiment 5(i), we remove the first 25%, 50% and 75% of the CMS as ordered

in Table 5.2. In Table 5.2 CMS is in ascending order by interpreting module defining

substrings as binary numbers. Because of this ordering, the module names removed in this

case correspond to the substrings containing less 1s as compared to the rest of the module

70

1CMS 0.75CMS 0.5CMS 0.25CMS
M01 M01 M01 M01

M11 M11 M11 M11

M21 M21 M21 M21

M31 M31 M31 M31

M41 M41 M41

M51 M51 M51

M61 M61 M61

M71 M71 M71

M81 M81

M91 M91

M101 M101

M111 M111

M121

M131

M141

M151

Table 5.6: Elements of the alphabet for the second part of Experiment 5.

names in the alphabet. Alphabet elements are the basic building blocks of the elements

in the search space and they are now biased to include less 1s. Therefore, in Experiment

5(i), we effectively remove elements of the search space that are less similar to the solution

string. The content of the alphabet in this case is the same as in Experiment 3 and is given

in Table 5.3. In Experiment 5(ii), we remove the last 25%, 50% and 75% of the CMS as

ordered in Table 5.2. The module names removed in this case correspond to the substrings

containing more 1s as compared to the rest of the module names in the alphabet. Therefore,

in Experiment 5(ii), we effectively remove elements of the search space that are more similar

to the solution string. The content of the alphabet for this case is given in Table 5.6.

Figures 5.5(A) and (B) summarize the results of Experiment 5(i) and Figures 5.5(C) and

(D) summarize the results of Experiment 5(ii). Figure 5.5(A) shows the absolute best fitness

71

(A)
 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

1CMS 0.75CMS 0.5CMS 0.25CMS

A
bs

ol
ut

e
B

es
t f

itn
es

s

(B)
 15

 20

 25

 30

 35

 40

 45

1CMS 0.75CMS 0.5CMS 0.25CMS
G

en
er

at
io

ns
 to

 A
bs

ol
ut

e
B

es
t F

itn
es

s

(C)
 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

1CMS 0.75CMS 0.5CMS 0.25CMS

A
bs

ol
ut

e
B

es
t f

itn
es

s

(D)
 15

 20

 25

 30

 35

 40

 45

1CMS 0.75CMS 0.5CMS 0.25CMS

G
en

er
at

io
ns

 to
 A

bs
ol

ut
e

B
es

t F
itn

es
s

Figure 5.5: Results for Experiment 5: Reachability in targeted parts of a search space.
X-axis in (A) and (C) shows the absolute best fitness and in (B) and (D) shows the genera-
tions needed to obtain this absolute best fitness. Y-axis shows the fraction of the complete
module set names included in the alphabet, 1CMS, 0.75CMS, 0.5CMS and 0.25CMS. Ex-
periment 5(i), (A) fitness and (B) generations when removing non-promising modules (not
similar to solution). The performance increases as we remove larger non-promising sets of
module names from the alphabet. Experiment 5(ii), (C) fitness and (D) generations when
removing promising modules (similar to solution). The performance decreases as we remove
larger promising sets of module names from the alphabet.

72

versus the four cases of bias in reachability where we remove the first 0% (1CMS), 25%

(0.75CMS), 50% (0.5CMS) and 75% (0.25CMS) of the alphabet elements. The absolute

best fitness value for all four cases is 1.0. The results for the number of generations to obtain

the absolute best fitness versus the same four cases are given in Figure 5.5(B). The number

of generations to obtain the absolute best fitness for cases 1CMS, 0.75CMS, 0.5CMS and

0.25CMS are 43.4, 34.8, 29 and 19, respectively. Therefore, the performance increases as

we increase the bias in reachability by removing increasingly more search space elements

that are less similar to the solution. Figure 5.5(C) shows the absolute best fitness versus

the four cases of bias in reachability where, this time, we remove the last 0% (1CMS), 25%

(0.75CMS), 50% (0.5CMS) and 75% (0.25CMS) of the alphabet elements. The absolute

best fitness values for cases 1CMS, 0.75CMS, 0.5CMS and 0.25CMS are 1, 0.75, 0.75 and

0.5 respectively. Therefore, the performance decreases as we increase the bias in reachability

by removing search space elements that are similar to the solution.

In Experiment 6, we increase the redundancy of elements located on targeted parts of

the search space by adding redundant copies of promising or non-promising elements into

the alphabet. The initial alphabet consists of CMS. We analyze two cases: 6(i) and 6(ii).

In Experiment 6(i), we choose the last element of CMS, M15k
= 1111, to be the redundant

subset. Note that this elements is fully included in the solution string for OneMax. Increasing

the redundancy of alphabet elements that are included in the solution increases the number

of search space elements that are the same as or similar to the solution string. In Experiment

6(ii), we choose the first element of CMS, M0k
= 0000, to be the redundant subset. Note

73

R=0 R=1 R=2 R=4 R=8 R=16
CMS

Mx2 Mx2 Mx2 Mx2 Mx2

Mx3 Mx3 Mx3 Mx3

Mx4 Mx4 Mx4

Mx5 Mx5 Mx5

Mx6 Mx6

Mx7 Mx7

Mx8 Mx8

Mx9 Mx9

Mx10

Mx11

Mx12

Mx13

Mx14

Mx15

Mx16

Mx17

Table 5.7: Elements of the alphabet for Experiment 6. x = 15 for first part and x = 0 for
the second part of Experiment 6.

that this elements is fully excluded from the solution string for OneMax. Increasing the

redundancy of alphabet elements that are fully excluded from the solution string increases

the number of search space elements that are less similar to the solution. In both cases, the

alphabet contains CMS and R copies of the redundant subset. Table 5.7 show the content

of the alphabets for R = {0, 1, 2, 4, 8, 16} for Experiment 6.

Figure 5.6(A) and (B) summarize the results for Experiment 6(i) and Figure 5.6(C) and

(D) summarize the results for Experiment 6(ii). Figure 5.6(A) shows the absolute best fitness

versus the six cases of bias in redundancy. The absolute best fitness value for all six cases

is 1.0. The results for the number of generations to obtain the absolute best fitness versus

the six cases of bias in redundancy are given in Figure 5.6(B). The number of generations

74

(A)
 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

R=0 R=1 R=2 R=4 R=8 R=16

A
bs

ol
ut

e
B

es
t f

itn
es

s

(B)
 5

 10

 15

 20

 25

 30

 35

 40

 45

R=0 R=1 R=2 R=4 R=8 R=16
G

en
er

at
io

ns
 to

 A
bs

ol
ut

e
B

es
t F

itn
es

s

(C)
 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

R=0 R=1 R=2 R=4 R=8 R=16

A
bs

ol
ut

e
B

es
t f

itn
es

s

(D)
 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

R=0 R=1 R=2 R=4 R=8 R=16

G
en

er
at

io
ns

 to
 A

bs
ol

ut
e

B
es

t F
itn

es
s

Figure 5.6: Results for Experiment 6: Redundancy in targeted parts of a search space.
X-axis in (A) and (C) shows the absolute best fitness and in (B) and (D) shows the gen-
erations needed to obtain this absolute best fitness. Experiment 6(i), (A) fitness and (B)
generations when increasing the number of copies of a promising module (similar to solution).
Y-axis shows the number of copies, R, of a promising module name with R = {0, 1, 2, 4, 8, 16}.
The performance increases as we increase the redundancy of a promising module name in
the alphabet. Experiment 6(ii), (C) fitness and (D) generations when increasing the number
of copies of a non-promising module (not similar to solution). Y-axis shows the number of
copies, R, of a non-promising module name with R = {0, 1, 2, 4, 8, 16}. The performance
decreases as we increase the redundancy of a non-promising module name in the alphabet.

75

to obtain the absolute best fitness for cases R = 0, R = 1, R = 2, R = 4, R = 8 and

R = 16 are 43, 30, 25, 18, 12 and 8, respectively. Hence, as we increase the redundancy of

elements similar to the solution, the performance increases. In Experiment 6(ii), we increase

the redundancy of the elements that are less similar to the solution. Figure 5.6(C) shows the

absolute best fitness versus the six cases of bias in redundancy. The absolute best fitness is

1.0 for all six cases. The number of generations to obtain the absolute best fitness for cases

R = 0, R = 1, R = 2, R = 4, R = 8 and R = 16 are given in Figure 5.6(D) and are 43, 45.6,

48, 53, 63 and 78, respectively. Therefore, increasing the redundancy of the elements that

are less similar to the solution decreases the performance.

In this part, our experimental results indicate that reducing the reachability in the non-

promising regions of a search space affects the performance in a favorable way while reducing

the reachability of the promising regions affects the performance in a disfavorable. Our

experimental results also indicate that increasing redundancy of promising regions of a search

space affects the performance in a favorable way while increasing the redundancy of non-

promising regions affects the performance in a disfavorable way.

5.5 Summary

In our experimental analysis, we first analyze the effects of the strict-encapsulation trans-

formation on the performance of a GA. Next, we analyze the effects of various module

encapsulation transformations on the three search space features that we consider when

76

analyzing the invariability of search spaces under strict-encapsulation: search space size,

reachability and redundancy. We analyze the effects of the bias in reachability and redun-

dancy on the performance of the search by changing only the reachability or redundancy,

first in random parts and then in targeted regions of the search space. The results we obtain

in our experimental analysis indicate that:

• The strict-encapsulation transformation, where search space size, reachability and re-

dundancy are kept unchanged, does not affect the performance of the search.

• Changing search space size without any reachability or redundancy changes does not

affect the performance of the search.

• Changing the bias in reachability or redundancy affects the performance of the search.

We can affect the performance in a favorable way if we change the reachability or

redundancy in targeted regions of the search space.

• Starting from a fully reachable search space, decreasing reachability of random sec-

tors while keeping redundancy constant, causes a drop in performance. Decreasing

reachability of promising sectors produce a larger drop in performance. Decreasing

reachability of non-promising sectors, produce a performance increase.

• Starting from a non-redundant search space, increasing redundancy randomly while

keeping reachability constant causes a drop in performance. Increasing redundancy

of promising sectors produces an increase in performance. Increasing redundancy of

77

non-promising sectors, produces a decrease in performance, but not as large as the

performance drop due to increase redundancy in random sectors.

78

Part III

PARTICULAR EFFECTS OF MODULARITY IN MUTATION
BASED SEARCH

79

CHAPTER 6
FRAMEWORK REVISITED

In the previous part of this thesis, we have focus search space structure analysis at a general

level, without focusing on a particular algorithm or problem class. In the next chapters, we

focus on a more particular level of analysis for mutation-based algorithms and the OneMax

problem. The required additional assumptions and definitions follow.

6.1 Assumptions

For the reminder of this work, our analysis makes the following assumptions.

1. We focus on linear binary representations but our theoretical results can easily be

extended to any arity.

2. The distance between two solutions is measured as the Hamming distance or the num-

ber of unequal characters between the two solutions. Neighbors are solutions which

are a Hamming distance of one from each other.

3. There is a positive correlation between the form and quality of candidate solutions.

80

4. We use the OneMax problem which maximizes the number of 1’s in a solution string.

We expect, however, this study to apply to problems whose solutions consist of repeated

patterns that are location independent.

Because we calculate distance as the number of differing characters between two solu-

tions, this work applies primarily to mutation based search algorithms which are particularly

sensitive to the single step connectivity of a search space. We use the term solution to refer

to the target solution.

6.2 Definitions

When using a set of rewriting rules to map from an initial genotype string to a resulting

phenotype string, we have to choose among three alternatives with respect to modeling string

lengths. First, both strings could be of variable length. This case will introduce unnecessary

complications to the mathematical analysis. Second, we can keep the length of the genotype

strings constant and let the resulting phenotype strings, after the mapping, be variable.

This is the case we presented in Chapter 3. We call this case the standard model because a

traditional genetic algorithms use fixed length genotypes. Third, we can keep the length of

the resulting phenotype strings constant and let the genotype strings be variable. In contrast

with the previous case, we call this case the non standard model (NSM). Because the standard

and non standard models are, in essence, equivalent and because the non standard model

facilitates the mathematical analysis, for this Part we use the non standard model.

81

Our framework can be easily extended to account for the NSM by introducing two alter-

native definitions.

Formally, a genotype space Sg, in the non standard model version, is a 5-tuple:

Sg = 〈P ,M, Σg, l,R〉

where Σg ⊆ P ∪M is the genotype space alphabet; P is a finite set of primitive symbols,

and M is a finite set of module symbols; l is the length of the phenotypes; and R is the

finite set of module defining rules.

The set of elements of the genotype space Sg, denoted by L(Sg), in the non standard

model version is:

L(Sg) = {e | e ∈ Σg
∗ ∧ |ExpandR(e)| = l}

We keep the phenotype length fixed to limit the size of the search space.

6.3 Module Encapsulation Instances

In the following chapters, we consider three instances of module encapsulation.

• Encapsulation of a module that is fully included into a solution. We call such module

a “good” module, because it is part of the solution.

• Encapsulation of a module that is fully excluded from a solution. We call this type a

“bad” module, because it is not in any part of the solution.

82

• Strict-encapsulation without replacement of a module set. As previously described,

this encapsulation creates all modules of a complete module set of size lm. This set

consists of all possible modules of length lm that can be created using elements of Σ.

In this case, there are no distinctions of good or bad modules, simply all modules of a

given length are created.

In the rest of this work, we denote the search space before module encapsulation with SO

and we denote the search space after any number of arbitrary module encapsulations with SM .

If a good module is encapsulated, we denote the search space after module encapsulation with

SGM . If a bad module is encapsulated, we denote the search space after module encapsulation

with SBM . Finally, if a complete module set is encapsulated, we denote the search space

after module encapsulation with SCM .

83

CHAPTER 7
ANALYSIS OF SEARCH SPACE SIZE

Using the above framework, we can now mathematically express the size of a search space and

how it changes with the encapsulation and addition of one or more module to the alphabet.

First, we derive an equation to calculate the size of a search space with modules. Then, we

show that the search space size increases with module encapsulation by comparing the size

of a search space before module encapsulation with that after module encapsulation.

We denote the size of a search space S by |L(S)|. Let lg be the genotype length, lm be

the module length, and l be the phenotype length. Also, let n be the number of modules in

a string. The number of different ways to place n modules in a string of length lg, Cn, can

be written as:

Cn =

(
lg
n

)

where, lg = l − (lm − 1)n. Thus, we can rewrite Cn as follows:

Cn =

(
l − (lm − 1)n

n

)
(7.1)

Let σm be the number of modules in the alphabet and N be the number of strings that

have n modules. We can write N as:

N = 2lg−nσn
mCn

84

where, σn
m gives the number of different combinations of all σm different modules located in

n places in the string length of l, and 2lg−n gives the number of different combinations of

two primitives located in the rest of the string which is lg − n. Remember that we consider

only the binary primitives. By using Equation 7.1, N can be written as:

N = 2l−lmnσn
m

(
l − (lm − 1)n

n

)
(7.2)

If we sum N for all n, we obtain the search space size.

|L(S)| =
b l

lm
c∑

n=0

N

Using Equation 7.2, we can rewrite the search space size as:

|L(S)| =
b l

lm
c∑

n=0

2l−lmnσn
m

(
l − (lm − 1)n

n

)
(7.3)

where b l
lm
c is the maximum number of modules length of lm that a string of length l can

include. Note that the formula applies only to search spaces where all modules have the

same length of lm.

Next, we investigate the effects of encapsulating σm number of modules of length lm on

the search space size by comparing the search space before and after the encapsulation. As-

sume that the genotype space alphabet before the encapsulation, ΣO, includes solely binary

primitives and the alphabet after the encapsulation, ΣM , includes the binary primitives as

well as σm number of modules of length lm.

Lemma 3 Let SO and SM be the search spaces before and after encapsulation, respectively,
and let SgO and SgM be their corresponding genotype spaces such that SgM = E(SgO,M →
w). For l > lm, the following statement is true:

|L(SM)| > |L(SO)| for l > lm

85

Proof: Let ΣO = {0, 1} be the alphabet of the genotype space SgO and let ΣM = {P ∪M}

be the alphabet of the genotype space SgM . Let Mi ∈M and Mi = P∗ and |Mi| = lm. The

search space size for SO is [Mit98]:

|L(SO)| = 2l

We can define the search space size for SM by using Equation 7.3:

|L(SM)| =
b l

lm
c∑

n=0

2l−lmnσn
m

(
l − (lm − 1)n

n

)

where σm is the number of modules and lm is the module length. We can rewrite |L(SM)|

as follows:

|L(SM)| = 2l

b l
lm
c∑

n=0

(
1

2
)lmnσn

m

(
l − (lm − 1)n

n

)

If we evaluate the summation for n = 0, we obtain the following:

|L(SM)| = 2l + 2l

b l
lm
c∑

n=1

(
1

2
)lmnσn

m

(
l − n

n

)

Since the expression 2l
∑b l

lm
c

n=1 (1
2
)lmn

(
l−(lm−1)n

n

)
is positive, it is obvious that:

|L(SM)| > 2l

Hence, we can conclude that:

|L(SM)| > |L(SO)| for l > lm

QED. a

As expected, module encapsulation increases the search space size. These results hold true

for encapsulating any type and number of modules including good modules, bad modules

86

and a complete module set. Also, because a solution length of l can not include a module

length of lm that is larger than the length of a solution, this result applies when l > lm.

Module encapsulation clearly and obviously increases the size of a search space. What

is less clear is how module encapsulation changes the structure of a search space. We next

examine two aspects of search space structure: composition and connectivity.

87

CHAPTER 8
EFFECTS OF MODULE ENCAPSULATION ON SEARCH

SPACE COMPOSITON

Composition examines the density of solutions in a search space. We examine how module

encapsulation changes the ratio of the number of solutions to the total number of elements

in a search space. This ratio can be said to be one measure of how difficult a problem is.

The higher the ratio, the more likely that a random sampling of the search space includes

a solution. This observation applies particularly to algorithms which initialize or use a

sampling of the search space in any part of the search process. For example, a GA is a

population based algorithm and the sampling of the initial population is important for the

performance of the algorithm.

We define this ratio to be the solution density.

Definition 1 (Solution density) Let S be a search space and ns be the number of solution
strings in the search space S. The solution density in search space S is defined as:

ρs =
ns

|L(S)| (8.1)

where |L(S)| is the size of the search space S.

In order to analyze how encapsulating a module changes the solution density in a search

space, we compare solution density before module encapsulation with solution density after

module encapsulation. Let us first derive the solution density for the search space before

module encapsulation. For our analysis, we assume that the optimal solution is known.

88

Let SgO = 〈PO,MO, ΣO, l,RO〉 be the genotype space before module encapsulation. The

alphabet associated with the original search space, SO, contains only the binary primitives,

ΣO = {0, 1}, therefore, |ΣO| = 2. We define the set of elements of the original search space,

L(SO), to be a set of strings with a single solution. Thus, the number of solutions in the

original search space is one. Hence, the solution density of the original search space, ρsO
,

can be written as:

ρsO
=

1

|L(SO)|

where |L(SO)| = |ΣO|l and |ΣO| = 2. Thus,

ρsO
=

1

2l
(8.2)

We next analyze how module encapsulation affects solution density in a search space by

comparing Equation 8.2 with corresponding measurements of search spaces in which there

is module encapsulation. Specifically, we examine three cases: encapsulating a complete

module set, encapsulating a good module and encapsulating a bad module.

8.1 Complete Module Set Encapsulation

In many cases, one may not know which modules are useful and which ones are not. In such

cases, we might want to allow all modules of a given length and allow the search algorithm

to dynamically decide which ones to use and which ones to ignore. A complete module set

is a set containing one module for each possible genomic string of a given length. In order

to analyze the effects of a complete module set, we first derive a formula to calculate the

89

solution density after encapsulating a complete module set and then, we compare the solution

density before and after a complete module encapsulation. Let SO be the search space before

encapsulation where ΣO = {0, 1} and let SCM be the search space after encapsulation of a

complete module set and ΣCM = {0, 1,M1,M2, ..., Mk} where k = |ΣO|lm and lm = |Mi| for

1 ≤ i ≤ k. Before the analysis, let us illustrate what happens in a search space when we

encapsulate a complete module set in an example. Assume l = 3, lm = 2 and the solution

string is 111. Given lm = 2, the modules in the complete module set are: M1 = 00, M2 = 01,

M3 = 10, M4 = 11. Figure 8.1(A) shows the corresponding sets of elements of the genotype

space before and after complete module set encapsulation, L(SgO) and L(SgCM), respectively.

In L(SgO), the number of solutions is 1 and the search space size is 8; therefore, the solution

density in SO is 1
8
. In L(SgCM), the number of solutions is 3 and the search space size is 24.

Thus, the solution density of SCM is 1
8
. In this example, the solution density of SCM is equal

to the solution density of SO.

Now, let us derive a formula to calculate the solution density after encapsulating a com-

plete module encapsulation. By Equation 8.1, the solution density of SCM is:

ρs =
ns

|L(SCM)|

ns, the number of solution strings in the search space SCM , can be calculated by calculating

the number of ways to place n modules of length lm in a string of length l, where 0 ≤ n ≤ b l
lm
c.

∑b l
lm
c

n=0

(
l−(lm−1)n

n

)
gives the number of ways to place n modules of length lm in a string of

length l. Note that b l
lm
c gives the maximum number of modules that can be in a string to

90

(A)

M1

M1

M1

M1

M2

M2

M2

M2

M3

M3

M3

M3

M4

M4

M4

M4M4

M4

E(SgO
, M1 → 00,

M2 → 01,

M3 → 10,

M4 → 11)

L(SgO
) L(SgCM

)

(B)

M

M

M

MM

M

E(SgO
, M → 11)

L(SgO
) L(SgGM

)

(C)

M

M

M

M

E(SgO
, M → 00)

L(SgO
) L(SgBM

)

Figure 8.1: Elements of the genotype space before (L(SgO)), and after (L(SgCM), L(SgGM),
L(SgBM)) the encapsulation of a (A) complete module set, (B) good module, and (C) bad
module. For all cases, l = 3, lm = 2 and the solution string is 111. The genotype elements
mapping to the solution string are circled.

91

keep the phenotype string length l constant. We can write the solution density as follows:

ρsCM
=

∑b l
lm
c

n=0

(
l−(lm−1)n

n

)

|L(SCM)|

where l is the phenotype length. Let us replace |L(SCM)| with its equivalent given in Equa-

tion 7.3:

ρsCM
=

∑b l
lm
c

n=0

(
l−(lm−1)n

n

)
∑b l

lm
c

n=0 2l−lmnσn
m

(
l−(lm−1)n

n

)

where σm is the number of modules in the alphabet and σm = 2lm for encapsulation of a

complete module set case. If we replace σm with 2lm , we obtain the following:

ρsCM
=

∑b l
lm
c

n=0

(
l−(lm−1)n

n

)

2l
∑b l

lm
c

n=0

(
l−(lm−1)n

n

)

This expression reduces to:

ρsCM
=

1

2l

Notice that ρsCM
given above is equal to the solution density of the original search space

given in Equation 8.2. This result shows that the solution density of a search space remains

unchanged after the encapsulation of a complete module set. Thus, our comparison of

solution density before and after encapsulation of a complete module set indicates that

solution density does not change with the encapsulation a complete module set.

8.2 Encapsulation of a Module Fully Included in the Solution

We expect encapsulating a good module to increase the solution density of a search space.

Let SO be the search space before encapsulation where ΣO = {0, 1} and SGM be the search

92

space after the encapsulation of M where ΣGM = {0, 1,M}. Before the analysis, let us

illustrate the changes that occur when encapsulating a good module in an example. Assume

l = 3, lm = 2, the solution string is 111 and the module is M = 11. Figure 8.1(B) shows

the genotype space before and after encapsulation of a good module, L(SgO) and L(SgGM),

respectively. In L(SgO), the number of solutions is 1 and the search space size is 8. Thus,

the solution density in SO is 1
8
. In L(SgGM), the number of solutions is 3 and the search

space size is 12. The solution density in SGM is 3
12

which is larger than the solution density

in SO. In this example, we observe an increase in the solution density due to encapsulation

of module M .

In order to analyze the changes in the solution density after encapsulation of a good

module, M , we derive a formula to calculate solution density of the search space SGM and

compare it with the solution density of search space SO given in Equation 8.2. We use

Equation 8.1:

ρsGM
=

ns

|L(SGM)|

We can calculate ns, the number of solution strings in a search space SGM , by calculating the

number of ways to place n modules of length lm in a string of length l, where 0 ≤ n ≤ b l
lm
c.

∑b l
lm
c

n=0

(
l−(lm−1)n

n

)
gives the number of ways to place n modules of length lm in a string of

length l. The upper boundary b l
lm
c is the maximum number of modules that can be in a

string to keep the phenotype string length l constant. We can write the solution density as:

ρsGM
=

∑b l
lm
c

n=0

(
l−(lm−1)n

n

)

|L(SGM)|

93

If we replace |L(SGM)| with its equivalent given in Equation 7.3:

ρsGM
=

∑b l
lm
c

n=0

(
l−(lm−1)n

n

)
∑b l

lm
c

n=0 2l−lmnσn
m

(
l−(lm−1)n

n

)

where σm = 1 because we encapsulate only one module. Thus:

ρsGM
=

∑b l
lm
c

n=0

(
l−(lm−1)n

n

)

2l
∑b l

lm
c

n=0
1

2lmn

(
l−(lm−1)n

n

) (8.3)

Next, we analyze the effects of encapsulating a good module on the solution density of

the search space. Let f(n) =
(

l−(lm−1)n
n

)
. Clearly, (∀n ∈ N+)[f(n) ≥ 0]. The following is

true:

f(n) >
f(n)

2lmn
∀n > 0 and ∀lm > 0

because (∀n > 0 ∧ ∀lm > 0)[2lmn > 1]. Clearly, lm ∈ N+ and lm > 1 because the content

of a module of size 1 would be identical to one of the elements of the alphabet. Summing

each side of the inequality for all n where 0 < n < b l
lm
c does not change the direction of the

inequality.
b l

lm
c∑

n=1

f(n) >

b l
lm
c∑

n=1

f(n)

2lmn

When we add f(0) to both sides of the inequality, the direction of the inequality remains

the same.

f(0) +

b l
lm
c∑

n=1

f(n) > f(0) +

b l
lm
c∑

n=1

f(n)

2lmn

We can rewrite this expression as follows

b l
lm
c∑

n=0

f(n) >

b l
lm
c∑

n=0

f(n)

2lmn

94

Let us divide both sides by 2l
∑b l

lm
c

n=0
f(n)
2lmn :

∑b l
lm
c

n=0 f(n)

2l
∑b l

lm
c

n=0
f(n)
2lmn

>
1

2l

Because (∀n > 0 ∧ ∀lm > 0)[2l
∑b l

lm
c

n=0
f(n)
2lmn > 0], the direction of the inequality does not

change. Notice that the right hand side of the inequality is equal to the solution density of

the original search space, ρsO
, given in Equation 8.2 and the left hand side of the inequality

is equal to the solution density of the search space after module encapsulation given in

Equation 8.3. Thus,

ρsGM
> ρsO

Therefore, we can conclude that the solution density increases after we encapsulate a good

module.

8.3 Encapsulation of a Module Fully Excluded From the Solution

We analyze the effects of encapsulating a bad module on the solution density of a search

space. We expect the solution density to decrease as a result of an encapsulation of such

a module. As explained in Chapter 7, encapsulating a module increases the search space

size. All of the new elements of the search space include at least one module. Thus if the

new module is not part of the solution, none of the new elements can be a solution. The

number of solutions remains the same while the search space size increases. Let SO be the

95

search space before encapsulation where ΣO = {0, 1} and SBM be the search space after the

encapsulation of M where ΣBM = {0, 1,M}.

Before the analysis, let us illustrate the changes that occur when encapsulating a bad

module in an example. Assume l = 3, lm = 2, the solution string is 111 and the module

is M = 00. Figure 8.1(C) shows the corresponding sets of elements of the genotype space

before and after encapsulation of a bad module, L(SgO) and L(SgBM), respectively. Recall

that we assume the number of solutions in the original search space to be one. The solution

density in SO is 1
8

and the solution density in SBM is 1
12

which is smaller than the solution

density in SO.

Next, we derive a formula to calculate solution density after encapsulating a bad module

and we show that encapsulating such modules reduces the solution density in a search space.

As we stated earlier, all of the new elements in L(SgBM) includes at least one module and,

therefore, cannot be a solution. Thus, the number of solutions remains unchanged at 1 and

ns = 1. Using Equation 8.1, we can write the solution density of the search space after

module encapsulation as:

ρsBM
=

1

|L(SBM)|

If we replace the search space size with its equivalence given in Equation 7.3, we obtain the

following:

ρsBM
=

1
∑b l

lm
c

n=0 2l−lmnσn
m

(
l−(lm−1)n

n

)

96

In Chapter 7, we have shown that the following is true:

b l
lm
c∑

n=0

2l−lmnσn
m

(
l − (lm − 1)n

n

)
> 2l

We can rewrite this inequality as follows:

1
∑b l

lm
c

n=0 2l−lmnσn
m

(
l−(lm−1)n

n

) <
1

2l

The left and right hand side of this inequality give ρsBM
and ρsO

respectively. Hence,

ρsBM
< ρsO

In other words, encapsulating a bad module decreases the solution density in a search space.

8.4 Summary

Solution density gives us a measure of the redundancy of the solutions in the search space.

The assumption is that search spaces with higher solution redundancy are more advantageous

in general for search algorithms [RG03]. We analyze the changes in the solution density in

a search space by comparing solution density before and after module encapsulation. We

analyze three cases: encapsulating a complete module set, encapsulating a good module and

encapsulating a bad module. We show that encapsulating a complete module set does not

change the solution density in the search space. We also show that the solution density

increases after we encapsulate a good module while it decreases when encapsulating a bad

module.

97

CHAPTER 9
EFFECTS OF MODULE ENCAPSULATION ON SEARCH

SPACE CONNECTIVITY

The solution density gives a somewhat narrow view of the search space, because it focuses

only on solutions. To get a better picture of how the search space changes with module

encapsulation, we also analyze the connectivity of the elements in a search space. Connec-

tivity examines the average distances from search space elements to a solution. We define

the distance between two elements in the search space to be the number of characters at

which they differ. Hamming distance is a simple but appropriate metric to use.

Suppose px, py ∈ L(S), then the distance between px and py in the search space is

∆(px, py) = Hamming distance(px, py)

We examine the effects of module encapsulation on the average Hamming distance of a search

space. The average Hamming distance of a search space denoted by ∆avg is the average of

the Hamming distances between a solution string, and every other string in the search space.

In a uniformly distributed binary search space, the expected value of ∆avg will be l/2. If

∆avg decreases after a search space transformation, the elements of the new search space are,

on average, closer to the solution. If ∆avg increases, the elements of the new search space

are, on average, further away from the solution.

98

Let us define the average Hamming distance to a solution more formally. Assume that

p, s ∈ L(S) and that p is an arbitrary string and s is the solution string. The average

Hamming distance to solution is:

∆avg =

∑
{p∈L(S)} ∆(p, s)

|L(S)|

Next, let us assume that SO is a search space with a solution string and the corresponding

genotype space SgO, and SgM = E(SgO,M), with the corresponding search space SM . In

addition, ∆avgO
and ∆avgM

are the average Hamming distances to solution in SO and SM ,

respectively. There can be three outcomes of a module encapsulation in terms of average

Hamming distance in a search space:

1. The average Hamming distance decreases.

∆avgO
> ∆avgM

In other words, the module encapsulation transformation results in a space with ele-

ments that are, on average, closer to the solution.

2. The average Hamming distance increases.

∆avgO
< ∆avgM

The module encapsulation results in a space with elements that are, on average, farther

away from the solution.

3. The average Hamming distance remains the same.

∆avgO
= ∆avgM

99

The module encapsulation results in a space with elements that are, on average, in the

same distance from the solution as before the encapsulation.

∆avg, the average Hamming distance between an arbitrary individual and the solution

string, is calculated using the following equation:

∆avg =
l∑

d=0

did (9.1)

where d is step distance away from the solution and ranges from 0 to l and for a given d, id

is the probability density function which calculates the ratio of the number of strings that

are d distance away from the solution in a search space. We calculate id as follows:

id =
Σp∈L(S)[δd(p, s)]

|L(S)|

where

δd(p, s) =





1 if ∆(p, s) = d

0 otherwise

Notice that id is the only part that can be different in each of the three cases analyzed in

the following section. Therefore, we can derive id for SCM ,SGM and SBM and plug it into

Equation 9.1 to calculate ∆avg for each case.

9.1 Analyzing Average Hamming Distance After Module
Encapsulation

We can now study how connectivity changes by comparing the average Hamming distance

after a module encapsulation. In this section, we first derive id for SO, the search space

100

before encapsulation, and then use id to calculate the average Hamming distance before

encapsulation, ∆avgO
.

(
l
d

)
gives the number of ways to choose d bits that differs from the

solution string in a string of length l. Dividing
(

l
d

)
by the search space size 2l gives the

density of the elements that are d distance away from the solution in the search space. Thus,

id is:

id =

(
l
d

)

2l

Plugging this into Equation 9.1, we obtain ∆avgO
:

∆avgO
=

l∑

d=0

d

(
l
d

)

2l
(9.2)

This can be simplified to:

∆avgO
=

l

2

As we mentioned earlier, this is the expected value of the ∆avgO
.

In the following subsections, we derive id for SCM ,SGM and SBM . In each case, we use

the id that we derive to calculate ∆avgCM
, ∆avgGM

and ∆avgBM
which we then compare with

∆avgO
to analyze how search space connectivity changes with module encapsulation.

9.1.1 Complete Module Set Encapsulation

We expect to observe no change in the average Hamming distance in a search space after

encapsulation of a complete module set. Because we encapsulate one module for each possible

genomic string of a given length, we do not expect the new elements to change the ratio of

101

the existing elements for a given distance. Let ΣO and ΣCM be the alphabets before and

after complete module encapsulation. where ΣO = {0, 1} and ΣCM = {0, 1,M1,M2, ..., Mk}

where k = 2lm and lm = |Mi| for 1 ≤ i ≤ k. Let us derive id for a search space where a

complete module set is encapsulated and included in the alphabet.
(

l
d

)
gives the number

of ways to choose d bits that differs from the solution string in a string of length l and

∑b l
lm
c

n=0

(
l−(lm−1)n

n

)
gives the number of ways to place n modules of length lm in a string of

length lg. Multiplication of these two expressions gives the number of all possible strings

that are d Hamming distance away from the solution and have n modules, for all n where

0 ≤ n ≤ b l
lm
c. Note that b l

lm
c gives the maximum number of modules that can be in a string

to keep the phenotype string length, l, constant. Dividing the number of strings that have a

Hamming distance of d from the solution by the search space size, |L(SCM)|, gives the ratio

of strings that have a Hamming distance of d from the solution in the search space. Thus,

we can write id as:

id =

(
l
d

)

|L(S)|

b l
lm
c∑

n=0

(
l − (lm − 1)n

n

)

If we plug id into Equation 9.1, we obtain:

∆avgCM
=

∑b l
lm
c

n=0

(
l−(lm−1)n

n

)

|L(SCM)|
l∑

d=0

d

(
l

d

)

where l is the phenotype length. This is the formula for calculating the average Hamming

distance in a search space after a complete module set encapsulation.

Next, we compare the average Hamming distance before and after complete module set

encapsulation. The search space size after encapsulating a complete module set can be

102

calculated by using Equation 7.3

|L(SCM)| =
b l

lm
c∑

n=0

2l−lmnσn
m

(
l − (lm − 1)n

n

)

where σm is the number of modules in the alphabet and σm = 2lm . We can rewrite ∆avgCM

by using |L(SCM)|:

∆avgCM
=

∑b l
lm
c

n=0

(
l−(lm−1)n

n

)
∑b l

lm
c

n=0 2l−lmnσn
m

(
l−(lm−1)n

n

)
l∑

d=0

d

(
l

d

)

We can rearrange the expression in the following way:

∆avgCM
=

∑b l
lm
c

n=0

(
l−(lm−1)n

n

)

2l
∑b l

lm
c

n=0

(
l−(lm−1)n

n

)
l∑

d=0

d

(
l

d

)

This expression reduces to:

∆avgCM
=

l∑

d=0

d

(
l
d

)

2l

which is equal to ∆avgO
given in Equation 9.2.

∆avgCM
= ∆avgO

Thus, we can conclude that there is no change in the average Hamming distance when

encapsulating a complete module set and adding them to the original alphabet without

replacing the primitives.

9.1.2 Encapsulation of a Module Fully Included in the Solution

We expect encapsulating a good module to reduce the average distance to the solution

because it adds strings that are closer to the solution in Hamming distance. Such a case is

103

d=0 d=1 d=2 d=3
No module encapsulation idO

.125 .375 .375 .125
Good module encapsulation idGM

.250 .417 .250 .083̄
Bad module encapsulation idBM

.083̄ .250 .417 .250

Table 9.1: Probability density of each distance value d in search spaces SO, SGM and SGM

which are search spaces before module encapsulation, after good module encapsulation and
after bad module encapsulation respectively.

illustrated in the following example. Assume l = 3, lm = 2, the solution string is 111 and

the module is M = 11. The sets of the elements of the genotype space before and after

the encapsulation are shown in Figure 8.1(B). Note that of the four new strings added to

the genotype space, two are solutions. The probability density values for this example are

given in Table 9.1. Recall that id gives the ratio of the elements that are a distance of d

away from the solution. For instance, i2 = 3
8

means that 3
8

of the strings in the search space

are a Hamming distance of two from the solution. In this example, we compare the values

from row 1 (no module encapsulation) and row 2 (good module encapsulation). Notice that

strings which are at a Hamming distance zero, d = 0, are the solution strings. The ratio of

solution strings clearly increases after good module encapsulation: i0GM
= 3

12
= .250 is twice

as much as i0O
= 1

8
= .125 Similarly, if we compare row 1 and row 2 for d = 1, we observe

that probability density after a good module encapsulation, i1GM
= .417, is larger than the

probability density of no module encapsulation, i1O
= .375. In other words, the ratio of the

number of strings that are one step away from a solution in a search space after module

encapsulation is larger than the one in the original search space. For the farther distances,

d = 2 and d = 3, the probability density becomes smaller when encapsulating a good module.

104

For d = 2, the probability density of a good module encapsulation is i2GM
= .250 and is

smaller than the probability density of no module encapsulation, i2O
= .375. Similarly, For

d = 3 the probability density of a good module encapsulation is i3GM
= .083̄ and is smaller

than the probability density of no module encapsulation, i3O
= .125. Thus, the ratio of the

strings which are closer to the solution string increases after the encapsulation of a good

module. The ratio of the strings that are farther away from the solution, on the other hand,

becomes smaller as a result of a good module encapsulation.

We can calculate the average Hamming distance of each case for this example.

∆avgO
=

l∑

d=0

didO
= 1.5

and

∆avgGM
=

l∑

d=0

didGM
= 1.084

Hence, ∆avgGM
< ∆avgO

. In other words, the average Hamming distance of the search space

with a good module is smaller than that of the search space with no modules.

Let us define the probability density function id for SGM .

id =
1

|L(SGM)|

b l
lm
c∑

n=0

(
l − lmn

d

)(
l − (lm − 1)n

n

)
(9.3)

where
(

l−(lm−1)n
n

)
gives all possible ways to place n modules in a string and

(
l−lmn

d

)
gives

the number of ways to choose d bits that differ from the solution string of length l. The

n modules of length lm occupies lmn number of bits and this part of the string does not

contain any of the d unmatched bits. Therefore, these d unmatched bits are located in the

105

remaining l − lmn length of the string. Summing the multiplication of these two terms over

all n gives all possible strings with Hamming distance d to the solution string. If we divide

this value by the search space size, we obtain the probability density function of d which we

denote with id in this thesis.

We can plug id we derive into Equation 9.1 to obtain ∆avgGM
:

∆avgGM
=

l∑

d=0

d
1

|L(SGM)|

b l
lm
c∑

n=0

(
l − lmn

d

)(
l − (lm − 1)n

n

)
(9.4)

where |L(SGM)| is given in Equation 7.3. We compare ∆avgGM
with ∆avgO

in Section 9.1.4.

9.1.3 Encapsulation of a Module Fully Excluded From the Solu-
tion

We expect that encapsulating a bad module will have the opposite effect, increasing average

Hamming distance to the solution. Bad modules increase the average Hamming distance

by adding new strings that are at least bad module length away from the solution into the

search space. For instance, assume l = 3, lm = 2, the solution string is 111 and the module is

M = 00. The sets of the elements of the genotype space before and after the encapsulation

are shown in Figure 8.1(C). Note that of the four new strings added to the genotype space,

none of them is solution.

Table 9.1 shows that the probability density of each distance value d in each search

space. We compare the values from row 1 (no module encapsulation) and row 3 (bad module

encapsulation). The ratio of the elements that are d = 0 distance away from the solution

106

to the search space size clearly decreases after a bad module encapsulation: i0BM
= .083̄

is smaller than i0O
= .125. When we compare row 1 and row 3 for d = 1, we observe

that probability density after a bad module encapsulation, i1BM
= .250, is smaller than the

probability density of no module encapsulation, i1O
= .375. In other words, the ratio of the

number of strings that are one step away from a solution in a search space after module

encapsulation is smaller than the one in the original search space. For the farther distances,

d = 2 and d = 3, the probability density becomes larger when encapsulating a bad module.

For d = 2, the probability density of a bad module encapsulation is i2BM
= .417 and is larger

than the probability density of no module encapsulation, i2O
= .375. Similarly, for d = 3

the probability density of a bad module encapsulation is i3BM
= .250 and is larger than the

probability density of no module encapsulation, i3O
= .125. Thus, the ratio of the strings

which are closer to the solution string decreases after the encapsulation of a bad module.

The ratio of the strings that are farther away from the solution, on the other hand, becomes

larger as a result of a bad module encapsulation.

We can calculate the average Hamming distance of each case for this example.

∆avgO
=

l∑

d=0

didO
= 1.5

and

∆avgBM
=

l∑

d=0

didBM
= 1.83

Hence, ∆avgBM
> ∆avgO

. In other words, the average Hamming distance of the search space

with a bad module is larger than that of the search space with no modules.

107

Let us define the probability density function for the search space that has a bad module

in its alphabet.

id =
1

|L(SBM)|(
(

l

d

)
+

b l
lm
c∑

n=1

f(n)

(
l − (lm − 1)n

n

)
) (9.5)

where f(n) is

f(n) =





(
l−lmn
d−lmn

)
if d > lm

0 otherwise

(9.6)

where
(

l−(lm−1)n
n

)
gives all possible ways to place n modules in a string of length l. If d < lm,

which is true only when there are no modules in the string (since a module introduces lm

number of unmatched bits into the string),
(

l
d

)
gives all possible strings that do not include

any module, and d is the distance away from the solution. The rest of the expression is

zero because it enumerates the strings that have at least one module. If d ≥ lm, we can

include strings that have modules as well as the ones that do not have any modules. The

term
(

l
d

)
enumerates the strings that have no modules and are d distance away from the

solution. The second term,
∑b l

lm
c

n=1 f(n)
(

l−(lm−1)n
n

)
gives all possible strings that include at

least one module and are d distance away from the solution. lm ∗ n of d unmatched bits

come from the n modules. The rest of the d unmatched bits, d − lmn, are enumerated by

(
l−lmn
d−lmn

)
. Multiplying

(
l−lmn
d−lmn

)
with

(
l−(lm−1)n

n

)
gives all possible strings that are d bits away

from the solution and have n modules. Summing up the number of strings for all n ≥ 1,

∑b l
lm
c

n=1 f(n)
(

l−(lm−1)n
n

)
gives all possible strings that are d distance away from the solution

and include at least one module.

108

By inserting the above equation for id into Equation 9.1, we obtain the average Hamming

distance to the solution:

∆avgBM
=

l∑

d=0

(
d

|L(SBM)|(
(

l

d

)
+

b l
lm
c∑

n=1

f(n)

(
l − (lm − 1)n

n

)
)) (9.7)

where f(n) is given in Equation 9.6. If we replace |L(SBM)| with its equivalence given in

Equation 7.3, we obtain the following:

∆avgBM
=

l∑

d=0

d
1

∑b l
lm
c

n=0 2l−lmn
(

l−(lm−1)n
n

)

(

(
l

d

)
+

b l
lm
c∑

n=1

(
l − lmn

d− lmn

)(
l − (lm − 1)n

n

)
)

We compare ∆avgBM
with ∆avgO

in Section 9.1.4.

9.1.4 Comparison of Average Hamming Distances

We can now compare Equations 9.2, 9.4 and 9.7 given in Section 9.1 to observe the changes

in the average Hamming distance in a search space when encapsulating a good module and a

bad module. The equations are restated below for convenience of exposition in the following

order: average Hamming distance with no modules, average Hamming distance with a good

module and average Hamming distance with a bad module.

∆avgO
=

l∑

d=0

d

(
l
d

)

2l
(9.2)

109

∆avgGM
=

l∑

d=0

d
1

|L(SGM)|

b l
lm
c∑

n=0

(
l − lmn

d

)(
l − (lm − 1)n

n

)
(9.4)

∆avgBM
=

l∑

d=0

(
d

|L(SBM)|(
(

l

d

)
+

b l
lm
c∑

n=1

f(n)

(
l − (lm − 1)n

n

)
)) (9.7)

There are two variables in these equations: the solution length, l, and the module length,

lm. First, we keep lm constant and compare these three equations for l ≥ lm. We exclude

values for l < lm, because a string of length l cannot include a module that is larger than

the length of the string. Second, we keep l constant and compare them for lm ≥ 2.

In the first case, lm is kept constant at a small value, lm = 2. Figure 9.1 illustrates the

comparison of calculated values of ∆avgO
, ∆avgGM

and ∆avgBM
. This figure shows that ∆avgGM

is smaller than ∆avgO
. In other words, encapsulating a good module decreases the average

Hamming distance in a search space. On the other hand, ∆avgBM
is larger than ∆avgO

, which

means that encapsulating a bad module increases the average Hamming distance in a search

space. We also observe that for all cases the average Hamming distance increases with the

problem size l. Thus, the larger the phenotype length, the more prominent the effect of

module encapsulation is on the average Hamming distance to solution.

In the second case, we keep the problem size constant at l = 256. Figure 9.2 plots the cal-

culated values of ∆avgO
, ∆avgGM

and ∆avgBM
for various module lengths lm ∈ {2, 4, 6, 8, 16, 32, 64}.

When a bad module is encapsulated, the average Hamming distance is 167 for lm = 2 and

decreases as the module length increases. At lm = 16, the average Hamming distance is

slightly larger than 128 and while it continues to decrease as the module length increases,

it remains larger than 128. When no modules are encapsulated, the average Hamming dis-

110

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 50 100 150 200 250 300A
v
e
r
a
g
e

H
a
m
m
i
n
g

D
i
s
t
a
n
c
e
,

∆ a
v
g

Phenotype Length,l

Comparison of Theoretical Results, lm=2

Bad Module,∆avgBMNo Module,∆avg0 Good Module,∆avgGM

Figure 9.1: Comparison of theoretical results of average Hamming distance to solution in
three structurally different search spaces: a search space with a good module of size two,
with no modules and with a bad module of size two. The plot shows Equations 9.2, 9.4 and
9.7 with fixed lm = 2 and various values of l, l-bits OneMax. The x-axis shows the phenotype
length, l, and the y-axis shows the average Hamming distance to the solution for the three
cases. The Hamming distance is smaller when a good module is encapsulated and larger
when a bad module is encapsulated. The larger the phenotype length, the more prominent
the effect of module encapsulation is on the average Hamming distance to solution.

111

 90

 100

 110

 120

 130

 140

 150

 160

 170

 0 10 20 30 40 50 60 70A
v
e
r
a
g
e

H
a
m
m
i
n
g

D
i
s
t
a
n
c
e
,

∆ a
v
g

Encapsulated Module Length,lm

Comparison of Theoretical Results, l=256

Bad Module,∆avgBMNo Module,∆avg0 Good Module,∆avgGM

Figure 9.2: Comparison of theoretical results of average Hamming distance to solution in
three structurally different search spaces: a search space with a good module of various sizes,
with no modules, and with a bad module of various sizes. The plot shows Equations 9.2,
9.4 and 9.7 with various values of lm and fixed l = 256, 256-bit OneMax. The x-axis shows
the encapsulated module length lm = {2, 4, 8, 16, 32, 64} and the y-axis shows the average
Hamming distance to solution for the three cases. The Hamming distance is smaller when
a good module is encapsulated and larger when a bad module is encapsulated. The larger
the module length, the less prominent the effect of module encapsulation is on the average
Hamming distance to solution.

112

tance is 128 and remains the same as the module length increases. This result is obvious

because, in this case, there is no modules in the alphabet. Therefore, the module length

has no effect in a search space with no modules. When a good module is encapsulated,

the average Hamming distance is 90 for lm = 2 and increases with the module length. At

lm = 16, the average Hamming distance is slightly smaller than 128. It continues to increase

with the module length, but remains smaller than 128. Thus, we can conclude that in this

example, ∆avgGM
is smaller than ∆avgO

and ∆avgBM
is larger than ∆avgO

. In other words,

encapsulating a good module decreases the average Hamming distance in a search space and

encapsulating a bad module increases the average Hamming distance. This observation is

obvious from looking at the figure for small values of lm, but not for larger lm values. As lm

increases, the impact of module encapsulation decreases. In the example given in Figure 9.2,

the average Hamming distance converges around lm = 16 and after this point, in practice, we

can consider that there is no impact or that the impact is minimal. The larger the module

length, the less prominent the effect of module encapsulation is on the average Hamming

distance to solution.

The question of why the average Hamming distance is affected by module encapsulation

in a significant way only for small modules is not so obvious. Encapsulating a small module

results in a larger number of new elements introduced into a search space. The phenotypes

of these new elements duplicates some of the existing elements in a search space. Thus,

modularity creates redundancy in a search space. By definition, all of the new elements must

include at least one module. If the encapsulated module is a good module, encapsulation

113

will increase the redundancy of the elements that are closer to the solution in Hamming

distance. If the encapsulated module is a bad module it will increase the redundancy of the

elements that are farther away from the solution. Increasing the encapsulated module length

reduces the number of new elements introduced into the search space therefore it reduces

redundancy.

For example, let us assume that the phenotype length is 3. The search space without

any module has the following elements {000, 001,

010, 011, 100, 101, 110, 111}. Encapsulating a module of length 2 adds the following new

elements into this search space: {0M,M0, 1M,M1}. Each of these new elements is a copy

of an element in the original search space. The new search space that includes these new

elements has the redundant copies of four of its existing elements. Assume that M is 11.

The new search space contains the two copies of elements 011 and 110 and three copies of

the element 111. If we encapsulate a module length of 3, the new search space will have one

new element: {M}. Assuming that M is 111, the new search space contains the two copies

of elements 111. As we see in this example, the redundancy in a search space decreases with

the module length. Lower the redundancy, lower the effect of a module encapsulation is on

the average Hamming distance.

In summary, the theory shows that encapsulating a good module always produces a de-

crease in the average Hamming distance to the solution and encapsulating a bad module

always produces an increase. This effect, however, is noticeable only for small modules. En-

capsulating a small module results in a higher level of redundancy and, therefore, increases

114

the impact of module encapsulation on the average Hamming distance to solution. Encap-

sulating a larger module results in a lower level of redundancy and, therefore, decreases the

impact of module encapsulation. This impact decreases rapidly with the increase of module

size lm and for large values of lm, the impact is, in practice, negligible.

9.2 Experimental Analysis

In order to show validity of our theoretical study presented in Section 9.1, we perform a

complementary experimental analysis to be compared with our theoretical results.

9.2.1 Methodology

We use a standard Genetic Algorithm with mutation as the only variation operator and

measure the average fitness value of the randomly generated initial population and of the

final population. The fitness value we measure in our experiments falls in the range [0 : 1].

Our test problem is the OneMax which maximizes the number of 1’s in a solution string. In

order to be parallel with our theoretical study, we define a good module as a subsequence

of all ones and a bad module as a subsequence of all zeros. The OneMax problem has the

property of having a positive correlation between the form and quality of candidate solutions.

In other words, higher fitness indicates lower Hamming distance to solution which means

elements of a search space in average move closer to the solution. Reciprocally, lower fitness

indicates higher Hamming distance. Therefore, we expect correlated behavior between the

115

Hamming distance calculated theoretically and the fitness value obtained experimentally.

In fact, for the OneMax problem, we can directly compare theoretical and experimental

Hamming distance simply by noticing that for our experiments:

Normalized Average Hamming Distance = 1− Average F itness

In our theoretical study, we calculate average hamming distance of a search space by

taking into account every element of the search space. In other words, we analyze the whole

search space. A GA, however, operates on a population which is a, typically very small,

subset of the search space. As a result, and in contrast with our theoretical work, our

experimental study takes into account only the elements in that small subset of the entire

search space. The elements of the initial population are randomly sampled elements from

the search space due the initialization process. Because we analyze the whole search space

in our theoretical analysis, we expect these results to be comparable to the experimental

results obtained from the randomly sampled initial population. After the first population

is initialized, the GA creates new populations by applying genetic operators and selection

to the current population. These evolved populations no longer resemble the search space

structure.

In the first part of our experimental study, Experiment 1, we compare our theoretical

results with the experimental results where we obtain average fitness of the initial population.

As expected, we observe that these two results correlate.

116

In the second part of our experimental study, Experiment 2, we compare our theoretical

results with the experimental results where we run a GA and obtain the average fitness of the

final generation. We, however, did not observe correlation between the results of this second

experiment and our theoretical results because the genetic operators alter the population

structure.

9.2.2 Initialization Issues

Let us begin with a discussion on the bias in the initial population introduced by the canonical

GA initialization. Because, the phenotypes in our mathematical model are of fixed size,

the size of the genotype can vary. Genotypes that include modules are smaller because

a module expands into a sequence of two or more primitives. We implement the same

genotype to phenotype mapping model in our empirical study. If we use a simple “coin

toss” random sampling of the space, we observe a uniformly distributed population when we

have a binary alphabet only and we observe a bias when we have a module in the alphabet.

Elements containing modules have greater probability to have the modules located toward

the beginning of the string. We explain the reason with an example. Assume that the

phenotype length is 3 and the module length is 2. The alphabet contains 0, 1 and module

M . We randomly select an element from the alphabet where each element has the same

probability of being selected as long as the length of the symbol is permissible in the location

it is selected for. In our example, * represents 0 or 1. The probabilities of having string of

117

M*, *M and *** are 1
3
, 2

9
and 4

9
respectively. Ratios of strings of M*, *M and *** in a search

space1 in our theoretical analysis are 1
6
, 1

6
and 8

12
respectively. Clearly, the probabilities of

strings in a population differs from their corresponding ratios in a search space.

In order to avoid introducing a bias, we initialize GA using an exhaustive method. We

first enumerate all the elements of the search space and randomly sample this enumeration

to produce the initial population in an unbiased fashion. No doubt faster initialization

methods can be developed but that is not the focus of this thesis. This exhaustive method

ensures that the initial population is unbiased but limits the size of the problem due to the

computational power required for this exhaustive initialization approach.

9.2.3 Experimental Setting

Because enumerating all the elements of a search space is computationally costly, we limit the

test problem used in our experiments to the same instance of the OneMax problem presented

in previously but with length of 20. Our fitness function is the ratio of the number of ones

over the individual length. All experiments use the following parameter values: the mutation

rate is 0.01 and the selection type is tournament with size 4. We run the GA using the same

module lengths as the theoretical data in Figure 9.2: lm = {2, 4, 8, 16}; but we include the

experimental limit length of 20 and exclude module sizes larger than this limit. We report

the normalized average Hamming distance calculated directly from the average fitness values

1The set of elements of the search space of phenotype length 3 and alphabet {0, 1,M}:
{000, 001, 010, 011, 100, 101, 110, 111,M0,M1, 0M, 1M}

118

collected. We perform 100 trials for all experiments and report average values with their

95% confidence intervals. For Experiment 1, the population size is 100. For Experiment 2,

the population size 2 and the number of generations are both 20.

9.2.4 Results

Figure 9.3 compares our theoretical analysis with our experimental results from Experiment

1 and Experiment 2. In all three plots, the x-axis shows increasing module length and the y-

axis gives the normalized Hamming distance. In our theoretical analysis, average Hamming

distance falls in the range [0 : l]. In order to make the comparison between the fitness value

and the average Hamming distance clearer, we normalize the average Hamming distance

by dividing it by the phenotype length, l. As a result, the normalized average Hamming

distance and the average fitness now both range between 0 and 1 with 1 representing the

farthest distance or highest fitness respectively.

Figure 9.3(A) plots the theoretical average Hamming distance calculated from Equa-

tions 9.2, 9.4 and 9.7. As we saw in Figure 9.2, for the no module case, the average Hamming

distance remains constant with the module length, because the alphabet does not contain

modules. For bad module case, the normalized average Hamming distance is 0.65 for module

length 2 and decreases down to nearly 0.5 around module length 16. For the good module

case, the normalized average Hamming distance is 0.35 for module size 2 and increases up

2We use a larger population for Experiment 1 because all data is collected from the initial population.

119

(B)

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 5 10 15 20

N
o
r
m
.

A
v
g
.

H
a
m
m
i
n
g

D
i
s
t
a
n
c
e Bad Module,∆avgBMNo Module,∆avg0 Good Module,∆avgGMRandom Module,∆avgRM

(A)
 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 5 10 15 20

N
o
r
m
.

A
v
g
.

H
a
m
m
i
n
g

D
i
s
t
a
n
c
e Bad Module,∆avgBMNo Module,∆avg0 Good Module,∆avgGM

(C)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 5 10 15 20

N
o
r
m
.

A
v
g
.

H
a
m
m
i
n
g

D
i
s
t
a
n
c
e

Encapsulated Module Length, Lm

Bad Module,∆avgBMNo Module,∆avgO Good Module,∆avgGMRandom Module,∆avgRM

Figure 9.3: Comparison of the normalized average Hamming distance to solution in four
structurally different search spaces: a search space with a good module, a search space with
no modules, a search space with a bad module, and a search space with random modules.
The modules are of various lengths. The target problem is 20-bit OneMax. The x-axis
shows the encapsulated module length lm = {2, 4, 8, 16, 20} and the y-axis shows the average
Hamming distance. (A) Theoretical results from Equations 9.2, 9.4 and 9.7. (B) Exper-
imental results for a GA initial generation. The average Hamming distance is calculated
as (1− average best fitness) and reported with 95% confidence intervals. (C) Experimental
results for a GA final generation.

120

to nearly 0.5 around module length 16. It remains nearly constant after module size 16 for

both good and bad module cases. Thus, average Hamming distance when encapsulating a

bad module is significantly higher than the average Hamming distance when encapsulating

a good module when the module length is smaller than 16 and the difference is marginal for

larger module length.

Figure 9.3(B) shows the results from Experiment 1 which examines the average Hamming

distance of the initial population where we sample a uniformly distributed search space. For

the no module case, the average Hamming distance remains constant with the module length.

For bad module case, the normalized average Hamming distance is 0.65 where the module

length is 2 and decreases down to approximately 0.5 around module length 16. For good

module case, the normalized average Hamming distance is 0.35 where module size is 2 and

increases up to approximately 0.5 around module length 16. It remains nearly unchanged

after module size 16 for both good and bad module cases. Thus, similar to our theoretical

results given in Figure 9.3(A), results of Experiment 1 given in Figure 9.3(B) shows that

average Hamming distance when encapsulating a bad module is significantly higher than the

average Hamming distance when encapsulating a good module when the module length is

smaller than 16 and the difference is marginal for larger module lengths. The theoretical

results in which we analyze the normalized average Hamming distance in a whole search space

correlate with our experimental results where we analyze the normalized average Hamming

distance of the randomly generated initial population. The GA with a random module case

is included in Experiment 1 as a baseline for the comparison. As expected, the results from

121

Experiment 1 show that the normalized average Hamming distance of the random module

case is larger than the normalized average Hamming distance of the good module case and

smaller than the normalized average Hamming distance of the bad module case.

Figure 9.3(C) shows the results from Experiment 2 which examines the average Hamming

distance of the final population. For the no module case, similar to the results in Figure

9.3(A) and (B), the average Hamming distance remains constant with the module length.

For the bad module case, the normalized average Hamming distance is 0.37 and decreases

down to 0.22 at module length 16 and the change in the average Hamming distance slows

down as the module length increases. For the good module case, the normalized average

Hamming distance is 0.1 and decreases down to 0.02 at module length 16 and the change

in the average Hamming distance slows down as the module length increases. Also, the

normalized average Hamming distance obtained when we encapsulate a good module is

smaller than the normalized average Hamming distance obtained when we encapsulate a

bad module.

As our theoretical analysis focuses only on the search space and does not take into ac-

count the dynamics and the characteristics of any specific search algorithm, we expect only

qualitative verification of our results. For the no module and the bad module cases, the re-

sults from Experiment 2 given in Figure 9.3(C) correlate with our theoretical results given in

Figure 9.3(A). For the good module case, however, the results in Figure 9.3(C) do not corre-

late with our theoretical results. While the normalized average Hamming distance increases

in our theoretical results, the experimental results indicate a decrease in the normalized av-

122

erage Hamming distance. One possible reason for this difference from the theoretical results

is the selection pressure acting among the available elements in the population. Although,

longer modules result in less redundancy, the new elements in the search space include at

least one module and the longer the good module is the higher the fitness of an individual

containing this module and smaller the Hamming distance of that individual to the solution.

Hence, the new elements added to a search space as a result of a good module encapsulation

are smaller in number but higher in fitness. The GA selects for higher fitness. Therefore

the average fitness increases and the average Hamming distance decreases with the longer

modules. Similar to Experiment 1, we also include a GA with a random module. The results

are also similar to the results that we obtain in Experiment 1 where the normalized average

Hamming distance of the random module case is larger than the normalized average Ham-

ming distance of the good module case and smaller than the normalized average Hamming

distance of the bad module case.

9.3 Summary

We analyze the effects of encapsulating a module on search space connectivity where connec-

tivity is measured in terms of the average Hamming distance to the solution. Our analysis

indicates the following results:

• The average Hamming distance is unchanged when encapsulating a complete module

set.

123

• The average Hamming distance decreases when encapsulating a good module. A de-

crease in average Hamming distance indicates that, on average, the elements of the

search space are closer to the solution string in mutation steps.

• The average Hamming distance increases when encapsulating a bad module. An in-

crease in the average Hamming distance to solution indicates that, on average, the

elements of the search space are further away from the solution string in mutation

steps.

We provide an experimental validation of our theoretical results. Our analysis indicates

that the results obtained from the uniformly distributed sampling of a search space correlate

with our theoretical results for all three cases: a search space with no modules, a search

space with a good module and a search space with a bad module. In the empirical studies,

when we look at the population after the search algorithm, in this case a GA, has had a

chance to run, we find that: our results correlate with the theoretical results for the search

spaces with no modules and with bad modules. Our results, however, do not correlate for

the good module case. We speculate that this is due to the selection pressure introduced

by the GA dynamics. Our theoretical analysis is a static analysis based on search space

structure and general in the sense that it does not take the dynamics of a particular search

algorithm into account. We also note that, as module length increases linearly, the relative

change in the normalized average Hamming distance slows down in both our experimental

and theoretical results. In other words, larger modules have a smaller impact on the average

Hamming distance to solution than smaller modules.

124

The correlation between our experimental and theoretical results suggest that although

additional methods might be needed and our results limited to the problems with positive

correlation between form and quality of candidate solutions and to the mutation based search

algorithms, our theoretical analysis predicts the effect of an encapsulation on the performance

of a search in general. It also accurately predicts the random sampling changes in the search

space structure due to modularity.

125

CHAPTER 10
DISCUSSION

Our study focuses on two metrics: search space composition and search space connectivity.

We have analyzed the composition and connectivity for search spaces before and after module

encapsulation. In our analysis, we consider two classes of modules: good and bad. We call a

module good when it is included in the solution string and bad otherwise. As a baseline, we

also analyze the case in which we encapsulate a complete module set. A complete module set

is a set containing one module for each possible genomic string of a given length. Throughout

our study we have made following assumptions: the genomes are linear; Hamming distance is

an appropriate metric for search space connectivity; there is a correlation between the form

and quality of candidate solutions; and the target problem is OneMax. Module encapsulation

is defined as assigning a new alphabet symbol to a string of interest. Therefore, for all

cases, the search space after module encapsulation is larger than the original search space.

The introduction of new elements into the search space changes the composition and the

connectivity of the search space. We use these two metrics to study whether encapsulation

is advantageous or detrimental for the search algorithm.

For the complete module set case, our results indicate that there is no change in the

composition or connectivity of the search space. These results were expected by the way

we defined complete module set and underline the fact that, simply increasing the degree

126

of modularity of search space does not necessarily affect the performance of the search as

measured by our two metrics. For the good module case, our results indicate that in terms

of composition, there is an improvement in the search space after module encapsulation: the

number of solutions to search space size increases. In terms of connectivity, there is also

an improvement: average Hamming distance between the solution and every other element

in the search space decreases, which means that the elements in the new search space on

average are closer to a solution as measured by mutation steps. For the bad module case,

our results indicate the complete opposite. Composition and connectivity metrics show a

detrimental effect in the search space after encapsulation. The ratio of solutions to all search

space elements decreases and the average Hamming distance to the solution increases.

Even though our theoretical results are valid for any module length smaller than the phe-

notype length, in practice, we observe that the impact of the module encapsulation decreases

exponentially with the module length and increases linearly with phenotype length. From

these observations, we can conclude that, for module encapsulation to have a meaningful

detrimental or advantageous effect, the module length should be significantly smaller than

the phenotype length. We provide equations to help determine under what conditions we

can expect module encapsulation to have a significant effect. These equations can be used to

guide module encapsulation in a search algorithm. In general, we can think of these results

as analyzing the extreme cases of good and bad modules with the perspective of expanding

the analysis into a complete spectrum of module qualities from good to bad based on how

much of the module string is contained in the solution and how many modules there are. In

127

this sense, our results hint at the possibility that the more modular a solution is, the more

advantageous the encapsulation of good quality modules is.

In summary, we have answered our question of whether a module encapsulation is ad-

vantageous or detrimental as follows, good modules are always advantageous, bad modules

are always detrimental, but their effect is marginal unless the module length is sufficiently

smaller than the phenotype length.

128

Part IV

CONCLUSIONS

129

CHAPTER 11
FUTURE WORK

There are not many theoretical studies of modularity effects on search. Understanding

hierarchically modular search spaces better, can help us understanding systems with this

underlying property better. These systems include biological systems, their development

and evolution, as well as complex systems in general.

Modularity in search is a new area of research with many promising directions for future

work:

• Our analysis can be expanded to not only account for the two extreme cases of com-

pletely good and completely bad quality modules, but for all the spectrum of modules

in between.

• Out framework can be expanded to account for tree structures at the genotype and

phenotype level. Currently, our framework account only for linear structures for geno-

types and phenotypes. We believe that this extension will not fundamentally change

our results. While linear structures are by far the most widely used structures for

evolutionary computation, three structures are the second most common structures.

We should also note that while our genotypes and phenotypes are linear structures, the

130

mapping between them is a derivation three produced by the module creation rewriting

rules.

• Our analysis can be extended to account for module quality when there is only partial

problem domain knowledge. The second part of our analysis uses full information

about the problem domain. This is the case because the focus is on better understand

the phenomena of modularity in search and its implications. We can shift the focus to

better design algorithms that automatically identify and create promising modules in

order to speed up the search. With no or little problem domain information, we can

use our metrics and analysis to guide module encapsulation, but only if a method to

estimate module quality can be defined.

131

CHAPTER 12
CONCLUSIONS

Most complex systems observed in nature happen to be modular from the point of view

of near-decomposability. These systems also happen to be the product of evolution, in the

broader sense, and for the case of biological complex systems, in the Darwinian sense. From

the evolutionary computation perspective, we are interested in the evolution of complex

systems as solutions to challenging problems. From the near-decomposability point of view,

evolutionary search seeking to produce complex systems may not need to target arbitrary

search spaces but only those search spaces that enable modular structures. As a result, we

study search spaces with built-in features to represent modular solutions.

In this thesis, we define module creation as a type of search space transformation and

study some of its effects on search. The underlying assumption is that when a module is

created, its components are isolated from interactions and, in effect, creates a structure

that enables the representation of nearly decomposable subsystems. In order to do this,

we define a formal languages based framework for the study of modularity in the context

of genotype to phenotype mapping and development in evolutionary search. Using this

framework, we present theoretical results. These results are validated and complemented

by an experimental study using the Modular Genetic Algorithm (MGA). The MGA is a

traditional genetic algorithm augmented with the ability to create modules in accordance

132

with our theoretical framework. These theoretical and experimental results allow us to

answer the questions posted at the beginning of this thesis as follows:

• Does module creation, by itself, always result in a change in reachability and redundancy

of elements in the search space? Or do reachability and redundancy of the search

space remain invariant after the creation of some types of module sets? Theorem 1

shows that not all module creation transformations change the structure of the search

space (Section 4.3). There are sets of modules, that when created together, neutralize

the effects of each other and keep the search space invariant in terms of reachability

and redundancy. We call these sets complete module sets, and their module creation

transformation strict encapsulation. Furthermore, we experimentally show that for a

genetic algorithm, when the search space fundamental properties of reachability and

redundancy are kept constant, this particular type of module creation does not affect

search performance either (Section 5.2). In contrast, we experimentally show that

arbitrary module creation affects search space structure and performance (Section 5.3).

• Are reachability and redundancy relevant structural aspects of search spaces in terms

of search performance? If so, can changes in search space structure be targeted in

order to improve performance? Based on our experimental analysis, reachability and

redundancy are relevant aspects of search space structures. In fact, in our experiments,

they seem to be the overriding factors driving performance. In general, reachability

or redundancy changes in random parts of a search space is detrimental to search

performance (Section 5.3). If we introduce information about the target problem and

133

use it to decrease reachability of unfavorable areas or increase redundancy of favorable

areas, the result is a performance boost (Section 5.4).

• Does module creation, by itself, always results in a change in composition and connec-

tivity of elements in the search space, or does the composition and the connectivity of

the search space remain invariant? The search space structure is also invariant under

the strict-encapsulation transformation when using composition and connectivity as

the metric of change (Sections 8.1, 9.1.1 and 9.2.4). These results expand Theorem 1

for the case where the problem domain information is available.

• Can module creation be targeted using problem domain knowledge in order to achieve

predictable increase or decrease in search performance due to changes in composition

and/or connectivity of the search space? Module creation can be targeted to pre-

dictably impact search performance using composition and connectivity as the predic-

tion metrics. Composition and connectivity are refined versions of redundancy and

reachability using domain knowledge for the OneMax problem. We assume that the

quality of a module depends on its contribution towards building the solution. We

theoretically show that encapsulating good quality modules improve search space com-

position (Section 8.2) and connectivity (Section 9.1.2). Based on these results, for the

good module case, we predict an improvement in search performance. We theoretically

show also that encapsulating bad quality modules is detrimental for search space com-

position (Section 8.3) and connectivity (Section 9.1.3). Based on these results, for the

bad module case, we predict a detrimental result on search performance. We present

134

experimental evidence that confirms our expected theoretical results (Section 9.2.4).

Experimentally, good modules are beneficial and bad modules are detrimental for per-

formance. In addition, theoretical and experimental results indicate that the search

performance impact is more prominent for module sizes that are significantly smaller

in comparison with the problem size.

On the light of these answers, we now go back to address our original motivation: How

and why does modularity help improve evolutionary search performance? First, not all types

of modularity have an effect on search. We can have highly modular spaces that in essence are

equivalent to simpler non-modular spaces, because they achieve higher degree of modularity

without changing the fundamental structure of the search space. Second, for the cases when

modularity actually has an effect on the fundamental structure of the search space, if left

without guidance, it would only crowd and complicate the space structure resulting in a

harder space for most search algorithms. Last and in our view the most relevant case, is

when modularity not only has an effect on search, but also module creation can be guided

by problem domain knowledge. When this knowledge can be used to estimate the value

of a module in terms of its contribution toward building the solution, then modularity is

extremely effective. It is in this last case that creating high value modules or low value

modules has a direct and decisive impact on performance.

We see the answering of these basic questions about the nature of modular search spaces

as steps contributing toward the better understanding of evolutionary search in complex

systems.

135

12.1 Limitations

Our approach is limited to linear structures. When translating linear genotypes into a linear

phenotypes, the derivation itself can be a tree structure but we do not consider the case when

phenotypes are tree structures themselves. We believe that an extension of a framework to

accommodate phenotypic tree structures does not change our fundamental results such as

invariance under strict module encapsulation, and the performance effects of the good and

bad quality modules . The first part of this thesis focuses on the search space structure

regardless of search strategy and regardless of problem domain. Because of its generality, it

has limited prediction abilities. We focus only on the fundamental structural changes that

can override the algorithm and problem domain factors. The second part of this thesis focuses

on the OneMax problem. In this part, the theoretical and experimental results provided are

subject to this domain. In order to extend this study to any other problem domain, two

things must be considered: first the equations for composition and connectivity need to be

adjusted. Second, a way to measure the quality of a module needs to be redefined.

12.2 Contributions

This thesis contributes to the field of machine learning and evolutionary computation in the

following ways:

136

• It provides a theoretical framework to study modularity in search. This framework

defines the representation space (genotype space), the search space (phenotype space),

module defining production rules, and module creation transformations. This frame-

work allow an explicit analysis of the effects of module encapsulation in evolutionary

computation. It is based on the search space structure and is independent of the

search algorithm used. Module creations and deletions are viewed as a search space

transformations that in effect create nearly decomposable subsystems.

• Using this framework, it provides the following metrics to analyze changes in search

space structure: reachability, redundancy, composition and connectivity. It provides a

theoretical analysis that shows how these metrics change with module encapsulation

transformations and provides experimental analysis to show that these metrics are

strongly correlated with the search performance in genetic algorithms.

• It provides a No Free Lunch theorem for module creation at the representation level.

This theorem states that systematically encapsulating lower level modules into higher

level counterparts, by itself, does not benefit any search strategy, and provides proof

of search space structure invariance under a particular class of module creation trans-

formations. In other words, there are some module sets, the creation of which, do not

change reachability, redundancy, composition or connectivity of the resulting search

space. It provides an experimental analysis that validates this theoretical result.

137

• It provides experimental evidence of the existence of module creation transformations

that do change search space reachability and redundancy, which result in a predictable

increase or decrease in search performance. In addition, it provides experimental evi-

dence that, at the general level, reachability and redundancy changes in random areas

of the search space produce a detrimental effect in performance. At the particular prob-

lem level, reachability decrease of unfavorable areas of a search space or redundancy

increase of favorable areas results in an improvement in performance.

• It provides a theoretical and experimental study describing the effects of the module

creation transformation for three types of modules: good quality modules, bad quality

modules and complete module sets. The quality of a module depends on its contri-

bution towards building the solution. Under a set of assumptions, the following is

established. Encapsulating a complete module set has a neutral effect on our metrics

and on search performance. Encapsulating a good module is always advantageous and

encapsulating a bad module is always detrimental in terms of our metrics and search

performance.

138

LIST OF REFERENCES

[Alt05] Lee Altenberg. “Modularity in Evolution: Some Low-Level Questions.” In Calle-
baut and Rasskin-Gutman [CR05]. foreword by Herbert A. Simon.

[QH366.2 .M63 2005.]

[AP92] P. J. Angeline and J. B. Pollack. “The evolutionary induction of subroutines.”
In Proceedings of the Fourteenth Annual Conference of the Cognitive Science
Society, Bloomington, Indiana, USA, 1992. Lawrence Erlbaum.

[AP93] P. J. Angeline and J. B. Pollack. “Evolutionary Module Acquisition.” In D. Fo-
gel and W. Atmar, editors, Proceedings of the Second Annual Conference on
Evolutionary Programming, pp. 154–163, La Jolla, CA, USA, February 25-26
1993.

[AP94] P. J. Angeline and J. B. Pollack. “Coevolving high-level representations.” In
Christopher G. Langton, editor, Artificial Life III, volume XVII of SFI Studies
in the Sciences of Complexity, pp. 55–71, Santa Fe, New Mexico, June 15-19
1994. Addison-Wesley.

[Bol00] Jessica A. Bolker. “Modularity in Development and Why It Matters to Evo-
Devo.” Integr. Comp. Biol., 40(5):770–776, 2000.

[Bon88] John T. Bonner. The Evolution of Complexity by Means of Natural Selection.
Princeton University Press, Princeton, NJ, 1988.

[Bon02] J. C. Bongard. “Evolving modular genetic regulatory networks.” In Proceedings
of the 2002 IEEE Conference on Evolutionary Computation (CEC2002), pp.
1872–1877, Piscataway, NJ, USA, 2002. IEEE Press.

[Bra99] Robert N. Brandon. “The Units of Selection Revisited: The Modules of Selec-
tion.” Biology and Philosophy, 14:167–180, 1999.

[Bra05] Robert N. Brandon. “Evolutionary Modules: Conceptual Analysis and Em-
pirical Hypotheses.” In Callebaut and Rasskin-Gutman [CR05]. foreword by
Herbert A. Simon.

[QH366.2 .M63 2005.]

139

[CR05] Werner Callebaut and Diego Rasskin-Gutman, editors. Modularity : under-
standing the development and evolution of natural complex systems. The Vienna
series in theoretical biology. MIT Press, Cambridge, Mass, 2005. foreword by
Herbert A. Simon.

[QH366.2 .M63 2005.]

[Dar59] Charles Darwin. The Origin of Species. J.M. Dent and Sons Ltd, 1859.

[De 75] Kenneth De Jong. Analysis of Behevior of a Class of Genetic Adaptive Systems.
PhD thesis, Technical University of Berlin, Germany, 1975.

[DO02] Edwin D. De Jong and T. Oates. “A coevolutionary approach to representation
development.” In Proc. of the ICML-2002 WS on development of rep., p. 1,
2002.

[DTW04] E. D. De Jong, D. Thierens, and R. A. Watson. “Defining Modularity, Hierarchy,
and Repetition.” In GECCO 2004 Workshop Proceedings, Seattle, Washington,
USA, July 26-30 2004.

[DU05] Peter Dauscher and Thomas Uthmann. “Self-Organized Modularization in Evo-
lutionary Algorithms.” Evolutionary Computation, 13(3):303–328, 2005.

[ESS01] Marc Ebner, Mark Shackleton, and Rob Shipman. “How neutral networks in-
fluence evolvability.” Complex., 7(2):19–33, 2001.

[FMV99] Koen Frenken, Luigi Marengo, and Marco Valente. “Interdependencies, nearly-
decomposability and adaption.” In Thomas Brenner, editor, Computational
Techniques for Modelling Learning in Economics, Advances in computational
economics ; v. 11, pp. 145–165. Kluwer Academic Publishers, 1999. ISBN
0792385039.

[http://www-ceel.gelso.unitn.it/papers/papero99 03.pdf.]

[Fog62] L.J. Fogel. “Autonomous Automata.” Industrial Research, 4:14–19, 1962.

[Fog64] L.J. Fogel. On the Organization of Intellect. PhD thesis, University of California
at Los Angeles, 1964.

[GB02] Timothy G. W. Gordon and Peter J. Bentley. “Towards Development in Evolv-
able Hardware.” In EH ’02: Proceedings of the 2002 NASA/DoD Conference
on Evolvable Hardware (EH’02), p. 241, Washington, DC, USA, 2002. IEEE
Computer Society.

[http://portal.acm.org/citation.cfm?id=787884&jmp=cit&coll=Portal&dl=GUIDE&CFID=69137087&CFTOKEN=68907852#.]

140

[GGW03] O. O. Garibay, I. I. Garibay, and A. S. Wu. “The modular genetic algorithm:
exploiting regularities in the problem space.” In Proc. of ISCIS 2003, pp. 578–
585, 2003.

[GGW04a] Ivan I. Garibay, Ozlem O. Garibay, and Annie S. Wu. “Effects of Module Encap-
sulation in Repetitively Modular Genotypes on the Search Space.” In GECCO
’04: Proceedings of the Genetic and Evolutionary Computation Conference, pp.
1125–1137, 2004.

[GGW04b] Ozlem O. Garibay, Ivan I. Garibay, and Annie S. Wu. “No Free Lunch for Module
Encapsulation.” In GECCO 2004 Workshop Proceedings, Seattle, Washington,
USA, July 26-30 2004.

[Gil06] Scott F. Gilbert. Developmental Biology. Sinauer Associates, Inc., 2006.

[GK01] John S. Gero and Vladimir Kazakov. “A Genetic Engineering Approach to
Genetic Algorithms.” Evolutionary Computation, 9(1):71–92, 2001.

[GKD89] D.E. Golberg, B. Korb, and K. Deb. “Messy genetic algorithms: Motivation,
analysis, and first results.” Complex Systems, 3(5):493–530, 1989.

[GNC01] D. G. Green, D. Newth, D. Cornforth, and M. Kirley. “On evolutionary pro-
cesses in natural and artificial systems.” In P. Whigham et al., editors, Proceed-
ings of the 5th Australia-Japan Joint Workshop on Intelligent and Evolutionary
Systems, pp. 1–10, 2001.

[http://www.csse.monash.edu.au/ dgreen/dggpubs05.htm.]

[Gol89] David E. Goldberg. Genetic algorithms in search, optimization, and machine
learning. Addison Wesley, 1989.

[GW07] Ozlem O. Garibay and Annie S. Wu. “Analyzing the effects of module encap-
sulation on search space bias.” In GECCO ’07: Proceedings of the 9th annual
conference on Genetic and evolutionary computation, pp. 1234–1241, New York,
NY, USA, 2007. ACM Press.

[GW08] Ozlem O. Garibay and Annie S. Wu. “On the Effects of Modularity in Mutation
Based Search.” Manuscript submitted to Genetic Programming and Evolvable
Machines Journal, 2008.

[GWG06] Ivan Garibay, Annie S. Wu, and Ozlem Garibay. “Emergence of genomic self-
similarity in location independent representations: favoring positive correlations
between the form and quality of candidate solutions.” Genetic Programming and
Evolvable Machines, 7:55–80, 2006.

141

[Har97] Georges R. Harik. Learning gene linkage to efficiently solve problems of bounded
difficulty using genetic algorithms. PhD thesis, University of Michigan, Ann
Arbor, MI, 1997.

[HG96] Georges R. Harik and David E. Goldberg. “Learning Linkage.” In FOGA, pp.
247–262, 1996.

[HLP01] Gregory S. Hornby, Hod Lipson, and Jordan B. Pollack. “Evolution of Gen-
erative Design Systems for Modular Physical Robots.” In IEEE International
Conference on Robotics and Automation, 2001.

[Hol62] John H. Holland. “Ouline for a logical theory of adaptive systems.” ACM,
9:297–314, 1962.

[Hol75] John H. Holland. Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor, MI, 1975.

[Hor05] Gregory S. Hornby. “Measuring, enabling and comparing modularity, regularity
and hierarchy in evolutionary design.” In Hans-George Beyer and Una-May
O’Reilly, editors, GECCO ’05: Proceedings of the 2005 genetic and evolutionary
computation conference, pp. 1729–1736, New York, NY, USA, 2005. ACM Press.

[HP01a] G. S. Hornby and J. B. Pollack. “The Advantages of Generative Grammatical
Encodings for Physical Design.” In Jong-Hwan Kim et al., editors, Proceedings
of the 2001 Congress on Evolutionary Computation: CEC2001, pp. 600–607.
IEEE Press, 2001. Digital Object Identifier 10.1109/CEC.2001.934446.

[HP01b] G. S. Hornby and J. B. Pollack. “Body-Brain Co-evolution Using L-systems as a
Generative Encoding.” In Lee Spector et al., editors, GECCO ’01: Proceedings
of the 2001 genetic and evolutionary computation conference. Morgan Kaufmann,
2001.

[HP02] G. S. Hornby and J. B. Pollack. “Creating High-Level Components with a Gen-
erative Representation for Body-Brain Evolution.” In Artificial Life 8, pp. 223–
246. MIT, 2002.

[HP03] G. S. Hornby and J. B. Pollack. “Generative Representations for the Automated
Design of Modular Physical Robots.” IEEE Transactions on Robotics and Au-
tomation, 19(4):703–719, 2003.

[JJ06] Rieffel John and Pollack Jordan. “An Endosymbiotic Model for Modular Ac-
quisition in Stochastic Developmental Systems.” In Proceedings of the Tenth
International Conference on the Simulation and Synthesis of Living Systems
(ALIFE X), 2006.

[http://www.demo.cs.brandeis.edu/papers/rieffel-alife-06.pdf.]

142

[Koz92] John R. Koza. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, MA, 1992.

[Koz94] John R. Koza. Genetic Programming II: Automatic Discovery of Reusable Pro-
grams. MIT Press, Cambridge, MA, 1994.

[Koz99] John R. Koza. Genetic Programming III: darwinian invention and problem solv-
ing. Morgan Kaufmann, San Francisco, CA, 1999.

[Koz03] John R. Koza. Genetic Programming IV: routine human-competitive machine
intelligence. Kluwer Academic Publishers, Boston, 2003.

[KP03] Vladimı́r Kvasnicka and Jiŕı Posṕıchal. “Emergence of Modularity in Genotype-
Phenotype Mappings.” Artificial Life, 8:295–310, 2003.

[KSK03] John R. Koza, Matthew Streeter, and Martin Keane. “Automated synthesis by
means of Genetic Programming.” In 2003 AAAI Spring Symposium Series, pp.
138–145, 2003.

[Lew78] R C. Lewontin. “Adaptation.” Scientific America, 239(3):156–169, 1978.

[Lip04] H. Lipson. “Principles of Modularity, Regularity, and Hierarchy for Scalable
Systems.” In GECCO 2004 Workshop Proceedings, Seattle, Washington, USA,
July 26-30 2004.

[LPS01] Hod Lipson, Jordan B. Pollack, and Nam P. Suh. “Promoting Modularity in
Evolutionary Design.” In Proceedings of DETC’01: 2001 ASME Design and
Engineering Technical Conferences, Pittsburg, Pennsylvania, USA, September
9-12 2001.

[LW66] A. Owens Lawrence J. Fogel and M. Walsh. Artificial Intelligence through Sim-
ulated Evolution. John Wiley & Sons., New York, NY, 1966.

[Mei04] Hans Meinhardt. “Pathways and building blocks.” Nature, 430:970–970, 2004.

[http://www.nature.com/nature/journal/v430/n7003/pdf/430970a.pdf.]

[Mit98] Melanie Mitchell. An Introduction to Genetic Algorithms. The MIT Press, 1998.

[NM04] Aurora M. Nedelcu and Richard E. Michod. “Evolvability, Modularity, and
Individuality During the Transition to Multicellularity in Volvocalean Green
Algae.” In Schlosser and Wagner [SW04]. QH 491.M59 2004.

[http://eebweb.arizona.edu/michod/Downloads/Evolvability%20modularity%20final.pdf.]

143

[OR96] Una-May O’Reilly. “Investigating the Generality of Automatically Defined Func-
tions.” In John R. Koza, David E. Goldberg, David B. Fogel, and Rick L. Riolo,
editors, Genetic Programming 1996: Proceedings of the First Annual Conference,
pp. 351–356, Stanford University, CA, USA, July 28-31 1996. MIT Press.

[OYR04] Una-May O’Reilly, Tina Yu, Rick Riolo, and Bill Worzel. Genetic Programming
Theory and Practice II. Springer, Cambridge, Massachusetts, 2004.

[PD94] Mitchell A. Potter and Kenneth A. De Jong. “A Cooperative Coevolutionary
Approach to Function Optimization.” In PPSN III: Proceedings of the Inter-
national Conference on Evolutionary Computation. The Third Conference on
Parallel Problem Solving from Nature, pp. 249–257, London, UK, 1994. Springer-
Verlag.

[http://cs.gmu.edu/ mpotter/pubs/.]

[PD00] Mitchell A. Potter and Kenneth A. De Jong. “Cooperative Coevolution: An
Architecture for Evolving Coadapted Subcomponents.” Evolutionary Computa-
tion, 8(1):1–29, 2000.

[PD05] Elena Popovici and Kenneth De Jong. “Understanding cooperative co-
evolutionary dynamics via simple fitness landscapes.” In GECCO ’05: Proceed-
ings of the 2005 genetic and evolutionary computation conference, pp. 507–514,
New York, NY, USA, 2005. ACM Press.

[PG01] Martin Pelikan and David E. Goldberg. “Escaping Hierarchical Traps with Com-
petent Genetic Algorithms.” In Lee Spector et al., editors, GECCO ’01: Proceed-
ings of the 2001 workshops on Genetic and evolutionary computation conference,
pp. 511–518, 2001.

[http://www.cs.umsl.edu/ pelikan/publications.html#2001003.]

[Raf96] Rudolf A. Raff, editor. The Shape of Life. The University of Chicago Press,
1996.

[RB94] J. P. Rosca and D. H. Ballard. “Learning by adapting representations in genetic
programming.” In Proceedings of the 1994 IEEE World Congress on Computa-
tional Intelligence, Orlando, Florida, USA, 27-29 June 1994. IEEE Press.

[Rec65] I. Rechenberg, editor. Cybernetic Solution Path of an Experimental Problem.
Translation 1122, Royal Aircraft Establishment Library, 1965.

[RG03] Franz Rothlauf and David E. Goldberg. “Redundant representations in evolu-
tionary computation.” Evolutionary Computation, 11(4):381–415, 2003.

[Rot02] Franz Rothlauf, editor. Representations for Genetic and Evolutionary Algo-
rithms. Physica-Verlag Heidelberg, Germany, 2002.

144

[SA61] Herbert A. Simon and Albert Ando. “Aggregation of Variables in Dynamic
Systems.” Econometrica, 29(2):111–138, October 1961.

[Sch02] Hans-Paul Schwefel. Evolutionsstrategie und numerishe Optimierung. PhD the-
sis, University of Michigan, Ann Arbor, 2002.

[Sch04] Gerhard Schlosser. “The Role of Modules in development and Evolution.” In
Schlosser and Wagner [SW04], chapter 23. QH 491.M59 2004.

[ISBN:0-226-73855-8.]

[SFH03] Kisung Seo, Zhun Fan, Jianjun Hu, Erik D. Goodman, and Ronald C. Rosenberg.
“Dense and Switched Modular Primitives for Bond Graph Model Design.” In
Erick Cant-Paz et al., editors, GECCO ’03: Proceedings of the 2003 genetic
and evolutionary computation conference, LNCS series, pp. 1764–1775. Springer-
Verlag, 2003.

[Sim69] Herbert Simon. “The Architecture of Complexity.” In The Sciences of the
Artificial. MIT Press, 1969.

[Sim05] Herbert Simon. “The structure of Complexity in an Evolveing World: The role
of Near Decomposability.” In Callebaut and Rasskin-Gutman [CR05]. foreword
by Herbert A. Simon.

[QH366.2 .M63 2005.]

[Spe02] Dan Sperber. “In Defense of massive modularity.” In Emmanuel Dupoux, edi-
tor, Language, Brain, and Cognitive Development: Essays in Honor of Jacques
Mehle, pp. 47–57. The MIT Press, 2002.

[http://www.dan.sperber.com/modularity.htm.]

[Ste95] Kim Sterelny. “The Adapted Mind.” Biology and Philosophy, 10(3):365–380,
1995.

[SW04] Gerhard Schlosser and Günter P. Wagner, editors. Modularity in Development
and Evolution. The University of Chicago Press, 2004. QH 491.M59 2004.

[ISBN:0-226-73855-8.]

[Tob05] Lehrstuhl Fur Mikroelektronik Tobias Blickle, Lothar Thiele. “Genetic Pro-
gramming and Redundancy.” In Jörn Hopf, editor, Genetic Algorithms within
the Framework of Evolutionary Computation (Workshop at KI-94), pp. 33–38,
Max-Planck-Institut für Informatik (MPI-I-94-241), 2005.

[Tur48] Alan M. Turing. “Intelligent Machinery.” National Physical Laboratory, 5:3–23,
1948.

145

[VML04] Evan A. Variano, Jonathan H. McCoy, and Hod Lipson. “Networks, Dynamics,
and Modularity.” Physical Review Letters, 92(18):188701, 2004.

[WA96] Günter P. Wagner and Lee Altenberg. “Complex Adaptations and
the Evolution of Evolvability.” Evolution, 50(3):967–976, 1996.
http://dynamics.org/Altenberg/FILES/GunterLeeCAEE.pdf.

[Wag95] Günter P. Wagner. “Adaptation and the Modular Design of Organisms.” In
F. Morán, A. Morán, JJ. Merelo, and P. Chacón, editors, Advances in Arti-
ficial Life, volume 929, pp. 317–328. Springer Verlag, 1995. Third European
Conference on Artificial Life, Granada, Spain, June 4 - 6, 1995 Proceedings
http://pantheon.yale.edu/

[ISBN: 3-540-59496-5.]

[Wag96] Günter P. Wagner. “Homologues, natural kinds and the evolu-
tion of modularity.” American Zoologist, 36:36–43, 1996. cite-
seer.ist.psu.edu/wagner96homologues.html.

[Wag04] Günter P. Wagner. “The Role of Genetic Architecture Constraints in the origin
of Variational Modularity.” In Gerhard Schlosser and Günter P. Wagner, edi-
tors, MOdularity in Development and Evolution, pp. 338–358. The University of
Chicago Press, 2004.

[ISBN: 0-226-73853-1.]

[Wat03] R. A. Watson. “Hierarchical Module Discovery.” In 2003 AAAI Spring Sympo-
sium Series, pp. 262–267, 2003.

[WG02] Annie S. Wu and Ivan Garibay. “The Proportional Genetic Algorithm: Gene
Expression in a Genetic Algorithm.” Genetic Programming and Evolvable Ma-
chines, 3:157–192, 2002.

[WL95] Annie S. Wu and Robert K. Lindsay. “Empirical studies of the genetic algorithm
with non-coding segments.” Evolutionary Computation, 3(2):121–147, 1995.

[WP05] Richard Watson and Jordan B. Pollack. “Modular Interdependency in Complex
Dynamical Systems.” Artificial Life, 11:445–457, 2005.

[WP06] R. Paul Wiegand and Mitchell A. Potter. “Robustness in cooperative coevolu-
tion.” In GECCO ’06: Proceedings of the 8th annual conference on Genetic and
evolutionary computation, pp. 369–376, New York, NY, USA, 2006. ACM.

146

	Alayzing The Effects Of Modularity On Search Spaces
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	I PRELIMINARIES
	CHAPTER 1 INTRODUCTION
	1.1 Complex Systems, Evolution and Modularity
	1.2 Framework to Study Modularity
	1.3 Strategy and Methodology
	1.4 Contributions
	1.5 Overview

	CHAPTER 2 BACKGROUND
	2.1 Evolutionary Computation Overview
	2.2 Related Work
	2.2.1 Modularity Overview
	2.2.2 Modularity in Evolutionary Computation

	2.3 Modularity in Biology

	CHAPTER 3 FRAMEWORK
	3.1 Search Spaces
	3.2 Search Space Size, Reachability and Redundancy
	3.3 Module Encapsulation

	II GENERAL EFFECTS OF MODULARITY IN THE SEARCH SPACE STRUCTURE
	CHAPTER 4 INVARIANCE OF SEARCH SPACE UNDER A CLASS OF MODULE CREATION TRANSFORMATIONS
	4.1 Search Space Reachability
	4.2 Search Space Redundancy
	4.3 Search Space Invariance Under the Strict-Encapsulation Transformation
	4.4 Summary

	CHAPTER 5 EXPERIMENTAL ANALYSIS: MODULE ENCAPSULATION EFFECTS ON SEARCH SPACE REACHABILITY, REDUNDANCY AND PERFORMANCE
	5.1 Experimental Settings
	5.2 Part 1: Qualitative Validation of Search Space Invariance
	5.3 Part 2: Relevance of Reachability and Redundancy
	5.4 Part 3: Biasing Search Space by Changing Reachability and Redundancy
	5.5 Summary

	III PARTICULAR EFFECTS OF MODULARITY IN MUTATION BASED SEARCH
	CHAPTER 6 FRAMEWORK REVISITED
	6.1 Assumptions
	6.2 Definitions
	6.3 Module Encapsulation Instances

	CHAPTER 7 ANALYSIS OF SEARCH SPACE SIZE
	CHAPTER 8 EFFECTS OF MODULE ENCAPSULATION ON SEARCH SPACE COMPOSITON
	8.1 Complete Module Set Encapsulation
	8.2 Encapsulation of a Module Fully Included in the Solution
	8.3 Encapsulation of a Module Fully Excluded From the Solution
	8.4 Summary

	CHAPTER 9 EFFECTS OF MODULE ENCAPSULATION ON SEARCH SPACE CONNECTIVITY
	9.1 Analyzing Average Hamming Distance After Module Encapsulation
	9.1.1 Complete Module Set Encapsulation
	9.1.2 Encapsulation of a Module Fully Included in the Solution
	9.1.3 Encapsulation of a Module Fully Excluded From the Solution
	9.1.4 Comparison of Average Hamming Distances

	9.2 Experimental Analysis
	9.2.1 Methodology
	9.2.2 Initialization Issues
	9.2.3 Experimental Setting
	9.2.4 Results

	9.3 Summary

	CHAPTER 10 DISCUSSION

	IV CONCLUSIONS
	CHAPTER 11 FUTURE WORK
	CHAPTER 12 CONCLUSIONS
	12.1 Limitations
	12.2 Contributions

	LIST OF REFERENCES

