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Adaptive liquid lens actuated by liquid crystal 
pistons 

Su Xu,1 Hongwen Ren,2 and Shin-Tson Wu1,* 
1CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, USA 

2Department of Polymer Nano-Science and Engineering, Chonbuk National University, Chonju, Chonbuk 561-756, 
South Korea 

*swu@mail.ucf.edu 

Abstract: An adaptive liquid lens actuated by liquid crystal (LC) pistons is 
demonstrated. It adopts fluid pressure introduced by the reciprocating 
movement of LC droplets to regulate the liquid-air interface which, in turn, 
changes the optical power of the resultant liquid lens. The competitive 
features are compact size, simple fabrication, good optical performance, 
reasonably fast response time and low power consumption. Since the 
actuation power can be enhanced by increasing the number of LC pistons 
rather than the operating voltages, it is possible to significantly actuate a 
large-aperture lens or lens array at a relatively low operating voltage. 

©2012 Optical Society of America 

OCIS codes: (010.1080) Active or adaptive optics; (220.3620) Lens system design; (160.3710) 
Liquid crystals; (230.2090) Electro-optical devices. 
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1. Introduction 

Adaptive liquid lenses, which are based on physical adjustment of the lens shape, have the 
advantages of intrinsic smooth interface, adaptively tuned or reconfigured output, polarization 
insensitive, broadband, and vibration resistance if two density-matched liquids are employed. 
Promising applications include cellphone cameras, image processing, optical communication, 
sensors and vision devices. Various operating principles have been proposed: fluidic pressure 
[1–13], electrochemistry [14], thermal effect [15], environmentally adaptive hydrogel [16], 
electro-wetting [17], and dielectrophoresis [18]. Among them, fluidic pressure is the most 
straightforward way to dynamically manipulate the optical interface formed by liquids. The 
fluidic pressure can be provided by external pumps [1], mechanical systems (e.g. piezoelectric 
actuator [2], servo motor [3], voice coil motor [4] and shape memory alloy [5], electrostatic 
actuator [6], thermal actuator [7], electromagnetic actuator [8], ferrofluids [9, 10], electro-
conjugate fluids [11], artificial muscle [12], and photo-polymer [13], etc. Compared to other 
operating principles, it is possible to actuate a large-aperture lens and significantly tune the 
liquid-air (or liquid-liquid) interface by fluidic pressure [1–5]. However, there are some 
technical challenges: bulky size [1–5], performance degradation [1–5], limited stable working 
range [6], slow response time [7], large power consumption [8–10], high operating voltage 
[11, 12] and weak actuation power [11–13]. 

In this paper, we demonstrate an adaptive liquid lens actuated by LC pistons. The lens cell 
consists of a top acrylic slab drilled with an aperture hole and several reservoir holes, and a 
bottom glass slab with interdigitated indium tin oxide (ITO) electrodes. In each reservoir hole, 
a small volume of LC forms a pillar-like droplet and touches the bottom slab. The 
surrounding liquid forms a lens shape at the aperture hole. As the voltage increases, the LC in 
contact with the bottom substrate is stretched by the dielectric force and an extra volume of 
LC is pulled into the lens chamber through the reservoir holes. The exerted fluidic pressure 
leads to a change in the lens profile and the corresponding optical power. Upon removing the 
voltage, the LC droplet returns to the original state and the lens also recovers. The LC droplet 
with such a reciprocating movement functions like a piston and can effectively tune the 
optical power of the liquid lens. This actuation method works for lens and lens array with 
aperture size varying from micrometers to centimeters. Compared with other fluidic pressure-
actuated liquid lenses [1–13], our lens has the competitive advantages in compact size, simple 
structure, reasonably fast response time and low power consumption. Furthermore, since the 
actuation power can be enhanced by increasing the number of LC pistons rather than the 
operating voltages, it is possible to significantly actuate a large-aperture lens or lens array at a 
relatively low operating voltage. 
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2. Device structure and operation principles 

 

Fig. 1. (a) The layout of lens hole and reservoir holes on the top acrylic slab, (b) the layout of 
the interdigitated ITO electrode and Teflon layer on the bottom glass slab (the aperture and 
width of ITO stripes are not drawn by scale.), (c) liquid lens and LC pistons are at rest state, 
and (d) liquid lens is actuated by LC pistons. 

Figure 1 shows the structure of the proposed adaptive liquid lens. The lens cell consists of a 
top acrylic slab and a bottom glass slab with a certain cell gap, and the periphery of the cell is 
sealed by glue. One aperture hole and two reservoir holes are drilled on the top slab, both 
surfaces of the top slab are coated with polydimethylsiloxane (PDMS, Dow Corning, γPDMS 
~20 mN/m, thickness ~1 µm), as Fig. 1(a) shows. The detailed layout of bottom substrate is 
shown in Fig. 1(b). The inner surface of the bottom slab is coated with interdigitated ITO 
electrodes (marked as red) and a Teflon layer (400S1-100-1, DuPont, γT ~19 mN/m, ~1 µm 
thickness, marked as gray) in sequence. It helps to provide a suitable contact angle for the LC 
droplet on the bottom slab and prevent the carrier injection [19]. A small amount of LC forms 
a pillar-like droplet in each reservoir hole, which is in contact with the bottom slab. To lower 
the operating voltage, here we chose Merck nematic LC mixture ZLI-4389 (ε// = 56, Δε = 
45.6, γ~38mN/m, <n>~1.58, ρ~0.98 g/cm3) because it has a large dielectric constant and a low 
surface tension [19]. The surrounding is filled with immiscible liquid (Ls) silicone oil (ε~2.9, 
γ~21 mN/m, n~1.4, ρ~0.97 g/cm3), which forms a lens shape on the aperture hole [Fig. 1(c)]. 
In the voltage-off state, the LC segment exhibits a near-spherical shape on the top slab due to 
the hydrophobic property of PDMS, and the LC droplet in the chamber has a minimal surface-
to-volume ratio. When a voltage is applied to the bottom electrodes, a nonuniform lateral 
electric field is generated across the ITO stripes and a dielectric force is exerted on the LC-Ls 
interface [20]. As the voltage increases, the LC molecules at the droplet border near the 
bottom slab (within the penetration depth of the electric fields) are reoriented by fringing 
field, leading to a much larger dielectric constant (close to ε// = 56) than that of the silicone 
oil. Therefore, the LC near the bottom slab bears the strongest dielectric force. The force is 
pointed outwards, but only the horizontal component will deform the LC droplet. If the 
voltage is sufficiently high, the LC will be stretched outward along the electrodes (x-
direction) in order to reach a new balance between the interfacial tension and dielectric force 
[21]. As a result, an extra volume of LC is pulled into the chamber, which in turn pushes the 
silicone oil to overflow towards the aperture hole. Because the volumes of liquids (LC and Ls) 
are not constringent, the redistribution of liquids changes the liquid-air interface at the 
aperture hole and the optical power of the resultant liquid lens [Fig. 1(d)]. The pressure 
exerted on silicone oil (at the lens aperture area) and the dielectric forces exerted on LC 
pistons are illustrated by pink and black arrows, respectively, as shown in Fig. 1(d). Since the 
LC droplets are stretched along x-direction, there is no crosstalk between the LC pistons and 
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liquid lens. Upon removing the voltage, the LC droplet will return to its original state because 
of the interfacial tension, and so does the liquid lens. 

3. Experimental results and discussion 

To prove concept, we fabricated a liquid lens actuated by four LC pistons, as shown in Fig. 
2(a). The diameters of the four reservoir holes and the aperture hole are 1.5 mm and 2 mm, 
respectively. The thickness of the top slab is 1 mm, and the cell gap is 0.5 mm. The total 
thickness of the cell is ~2.5 mm. The width and gap of the interdigitated ITO electrodes are 
both 10 µm. The image performance of the LC-piston-actuated lens was evaluated through an 
optical microscope. The cell was horizontally placed on the microscope stage, and a small 
number “3” was placed under the cell as an object. Figure 2(b) is the image observed through 
the microscope without the liquid lens. After inserting the liquid lens in the optical path and 
refocusing the microscope, a virtual erect and diminished image is observed [Fig. 2(c)], which 
indicates the liquid lens has a negative optical power at V = 0. Then the image begins to grow 
at ~40 Vrms, and keeps growing when the voltage is further increased. It is because more LC is 
pulled into the lens chamber with the increased voltage, the surface of the liquid lens becomes 
flatter and the optical power goes less negative (Figs. 2(e)-(g)). Some image aberration is 
observed at the border, because the aperture hole drilled on the top acrylic slab is not perfectly 
circular, and the defects in the circumference introduce the image aberration. Here the fluid 
lens presents a parabolic shape, spherical aberration is reduced, but coma occurs when the 
object lies off axis and it increases with the object’s offset from optical axis. 

 

Fig. 2. (a) Lens cell, (b) the images observed through the microscope without the liquid lens at 
V = 0, and (d)-(k) with the liquid lens at the specified voltages (Media 1). 

A dynamic switch of the liquid lens between V = 0 (in-focus state) and V = 50 Vrms (out-
of-focus state) is shown in Fig. 2(e) (Media 1). At V = 80Vrms, the erected image is magnified, 
implying the liquid lens exhibits a positive optical power [Fig. 2(h)]. Here the image is a little 
bit blurry, because it is out of the microscope’s working range. Further increase in the positive 
optical power is quite limited even when the voltage keeps increasing. A possible explanation 
is given as follows. Due to our facility limitation, we can only drill holes on the acrylic slab 
and coat PDMS material as the hydrophobic layers, because acrylic cannot withstand the high 
baking temperature of Teflon (~360þC). The relative low surface tension of silicone oil (γ ~21 
mN/m) and PDMS (γ~20 mN/m) cannot effectively confine the liquid-air interface at the 
aperture hole, and the silicone oil droplet begins to spread on the top substrate when the 
voltage is further increased. Therefore, to improve the lens’ performance and widen the 
dynamic range, the top slab is preferred to be a thin glass substrate (or silicon wafer) coated 
with high quality Teflon layer. The aperture holes should be fabricated in high precision [2] 
and the inner wall of the hole coated with a hydrophilic layer [22]. 

Figures 3(a)-(b) show the image properties of the lens and the deformation of LC pistons 
under white light illumination. For easy observation, we doped ~0.3 wt% blue dye (M-137) 
into the LC mixture. A small bunch of flower was picked as an object. At V = 0, the four LC 
droplets were at rest state, and the object distance was intentionally adjusted to obtain an out-
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of-focus (blurred) image [Fig. 3(a)]. At V = 80Vrms, the LC droplets were stretched along the 
electrodes, and the optical power adjustment brought the object into focus, leading to a sharp 
and clear image [Fig. 3(b)]. The two sub-images in blue circles show the magnified detail of 
the images taken through the aperture hole, and those in pink squares show a side-view of the 
LC segments on the top substrate. A top-view deformation of the LC pistons as well as a 
dynamic transition of the lens (between 0 and V = 80Vrms) are recorded as Media 2 and Media 
3, respectively, as Fig. 3(b) shows. At the rest state, the lens’ resolution is ~13 lp/mm [23]. 

 

Fig. 3. The images taken through the aperture under white light illumination and the 
deformation of LC pistons. Single liquid lens actuated by four LC pistons at (a) V = 0 and (b) 
V = 80Vrms (Media 2 and Media 3), and two liquid lenses actuated by four LC pistons at (c) V 
= 0 and (d) V = 80 Vrms (Media 4). 

The back focal distance (BFD) of the liquid lens at various voltages was measured at λ = 
633 nm. The collimated and expanded He-Ne laser beam was normally incident on the lens. 
Here we intentionally set the exterior surface of the top slab as the last surface of the lens, 
because it was very difficult to measure the distance (δ1 and δ2) between the apex of the 
liquid-air interface and that exterior surface accurately, as shown in Figs. 1(c)-(d). For the 
positive lens, the focal point was determined by the smallest focused point of the input beam 
along the optic axis, while for the negative lens, BFD was determined by a geometrical 
imaging method [24]. At V = 0, the BFD was calculated to be about −5.5 mm. As the voltage 
increases to 40 Vrms the BFD firstly goes to negative infinity, and then comes in from positive 
infinity to ~66.5 mm at V = 80 Vrms, as Fig. 4(a) depicts. Response time was measured by 
monitoring the time-dependent transmittance change. Here we used a positive solid lens to 
converge the divergent beam coming from the liquid lens. At V = 0, the photodiode detector 
placed close to the focal point of the two lens system receives the highest intensity. At 70V 
(500Hz) square voltage bursts, the liquid lens becomes less negative and the detected light 
intensity decreases. From Fig. 4(b), the fall and rise time are ~15.2 ms and 19.6 ms, 
respectively. 

 

Fig. 4. The measured (a) BFD and (b) response time under 70V square pulses. 

In our proposed liquid lens, the actuation power can be enhanced by increasing the 
number of LC pistons rather than the operating voltage, therefore, this actuation method is 
also favorable for large-aperture lens and lens array [23]. Because of the limited electrodes 
area on the bottom substrate, here we just demonstrate a lens cell in which two liquid lenses 
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are actuated by four LC pistons. All the dimensions are the same as that of the lens cell shown 
in Fig. 2(a). As the voltage increases, the optical power of the two lenses is tuned from 
negative to positive, since the initial diminished images become magnified at 80 Vrms as 
shown in Figs. 3(c)-(d). For easy observation, the aperture holes are circled by red curves. A 
dynamic switch between the two states is shown in Fig. 3(d) (Media 4). The image changed 
continuously and uniformly in the transition and no obvious aberration was observed. 

Figure 4(a) indicates that there is a threshold of ~40 Vrms in the lens actuation. Since the 
actuation power can be enhanced by increasing the number of LC pistons rather than the 
operating voltage, it is critically important to reduce the threshold for low-voltage operation. 
For a single LC piston, the threshold depends on the exerted dielectric force and the 
interfacial tension along the three-phase contact line (Teflon-LC-Ls), which can be reduced by 
using narrower-gap stripe electrodes, surrounding liquid with smaller dielectric constant, 
smaller LC droplet and thinner Teflon layer. If the voltage is too high, crosstalk between two 
stretched LC droplets (e.g. LC1 and LC2, or LC3 and LC4 in Fig. 2(a)) will appear and the 
actuation power will be severally degraded. In practical applications, the LC droplets should 
be separated by a black matrix in the chamber. The switching time is affected by the liquid 
interfacial tension and flow viscosity, and it can be improved by using a surrounding liquid 
with lower viscosity. Overall speaking, to optimize the device performance, parameters of the 
lens cell, e.g. the hole size, layout of the holes, cell gap, top slab thickness and electrodes 
pattern, need to be further studied. To achieve good mechanical stability, a third liquid which 
is immiscible and has good density match with both ZLI-4389 and silicone oil could be 
adopted in the lens cell. Its refractive index and surface tension should also be different from 
that of the silicone oil. Such a liquid helps to minimize the gravity effect and strengthen the 
liquid-liquid interface confinement at the aperture hole [24]. In our experiments, we use a 
liquid-air interface as the refractive surface, because it is difficult to find a third liquid which 
satisfies the above-mentioned criteria in our lab. Since the droplets in the demonstrated lens 
cell are in millimeter-scale, the lens works well in horizontal placement but gravity effect 
appears in vertical placement. For the micron-sized droplets, the surface tension dominates 
over the gravity, thus the microlens should be free from gravity effect even without the third 
liquid [25]. Meanwhile, lower operating voltage and faster response time are also expected 
[21]. Microlens array based on this actuation method is promising for parallel processing and 
sample analysis in lab-on-chip systems. 

4. Conclusion 

We demonstrate an adaptive liquid lens actuated by LC pistons. The LC droplet with a 
reciprocating movement functions like a piston, which can effectively tune the lens surface 
and corresponding optical power. For a 2-mm-aperture lens actuated by four LC pistons, BFD 
is changed from −5.5 mm to infinity to ~66.5 mm as the voltage increases from zero to 
80Vrms. The competitive features are compact size, simple fabrication, good optical 
performance, lower power consumption (~mW) and reasonably fast switching time (~17 ms). 
Surface treatment and fine processing will help to improve the lens performance and widen 
the dynamic range. Since the actuation power can be enhanced by increasing the number of 
LC pistons rather than the operating voltages, it is possible to significantly actuate a large-
aperture lens or lens array at a relatively low operating voltage. 

Acknowledgments 

This work is partially supported by AFOSR under contract No. FA95550-09-1-0170. 

#178441 - $15.00 USD Received 22 Oct 2012; revised 26 Nov 2012; accepted 29 Nov 2012; published 7 Dec 2012
(C) 2012 OSA 17 December 2012 / Vol. 20,  No. 27 / OPTICS EXPRESS  28523

http://www.opticsinfobase.org/oe/viewmedia.cfm?uri=oe-20-27-28518-4

	Adaptive liquid lens actuated by liquid crystal pistons
	Recommended Citation

	tmp.1549386773.pdf.pea_1

