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ABSTRACT 

 
 

Glioblastoma multiforme (GBM) is one of the extremely fatal brain tumors. The main reason 

that makes it so lethal is its capability to invade and spread to other parts of CNS producing 

secondary tumors. Among other factors hypoxia, reduced oxygen availability, is linked to higher 

metastatic potential of cancers. Hypoxia causes numerous changes in genome and proteome of 

the cell. These changes help a normal cell to adapt to nutritional deficiency, but the same 

changes can increase the malignancy and metastasis in tumor cells. Extensive research by a 

number of curious scientists reveal that various pathways involving numerous proteins cross-talk 

and interact with each other and execute a response to hypoxia. We are trying to establish the 

link between two such pathways – HIF1-alpha pathway and Notch pathway. Both, HIF1-alpha, 

which is a transcription factor that becomes active in hypoxic conditions and Notch, which is an 

evolutionarily conserved cell-fate determinant, are implicated in hypoxia-induced metastasis of 

cancer. In this given project, we confirm the cross talk between Notch and HIF1-alpha pathway 

and further continue our study to show that TrpC6 is the downstream mediator of this pathway, 

leading to metastasis of GBM. Expression analysis of hypoxia-induced U373 cells (Grade 3 

glioblastoma cells), using Real-time PCR, western blot and immunocytochemistry, revealed 

elevated levels of Notch, Hif1 and TrpC6 indicating that these proteins might be important for 

the cellular response to hypoxia. Blocking Notch and/or HIF1-alpha, either by DAPT or HIF1-

inhibitor, confirmed the communication between these two pathways. Role of TrpC6 in 
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metastasis was demonstrated by knocking down this gene using siRNA against TrpC6. Inhibition 

of TrpC6 markedly decreased cell proliferation, migration, angiogenesis and tumorigenesis in 

these hypoxia-induced Glioblastoma cells. In summary, all these results reveal that TrpC6 is 

indeed an important member of the Notch-mediated metastasis of Glioblastoma under hypoxic 

conditions. This role of TrpC6 can therefore be utilized for pharmacological intervention to 

prevent hypoxia-induced metastasis in GBM.  
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CHAPTER 1: INTRODUCTION  
 

Nervous system is a complex, intricate system of neuronal and non-neuronal supporting cells that 

defines what we are. It is a communication system that can receive and send out a lot of 

information simultaneously, thus orchestrating all the bodily functions. Human nervous system is 

divided into Central nervous system and peripheral nervous system
1
. Central nervous system 

again consists of two main components namely the Brain and the Spinal cord. Peripheral nervous 

system is composed of nerves that connect CNS to peripheral structures such as muscles, glands, 

etc. Structurally, brain is comprised of 
1
 

1. Brainstem: Medulla oblongata, Pons, Midbrain – Contains ascending and descending 

tracts which convey information to and from forebrain or cerebellum.  

2. Hindbrain: Cerebellum – Controls fine motor activities and involuntary movements. 

3. Forebrain: Diencephalon and the Cerebral hemispheres – Diencephalon contains 

Thalamus, hypothalamus, epithalamus and other associated structures. Thalamus acts as a 

relay station for all the sensations except olfaction. It receives these inputs and relays it to 

specific part of the cerebral hemisphere. Each cerebral hemisphere contains three major 

subdivisions including cerebral cortex, subcortical white matter and basal ganglia.    

Lying in the core of the forebrain and brainstem are a series of fluid-filled spaces known as 

ventricles
1
. These ventricles are lined by ependymal cells which secrete the Cerebrospinal Fluid 

(CSF) that is seen circulating within these cavities. Adjoining these ventricles we can see the 

presence of multi potent Stem Cells which help in the partial replacement of dead brain cells. 

Owing to the fact that brain in very soft and fragile, it is covered by three protective tissue layers, 

collectively called Meninges
1
. Brain is also surrounded by a protective bony covering known as 



2 

 

the Skull. From outside to inside, the three meninges are - Dura mater, Arachnoid mater and Pia 

mater. These meninges also extend to cover the spinal cord and part of cranial nerves. 

Cranial nerves originate from nuclei present the brain. These nerves could be sensory, motor or 

both. 12 pairs of cranial nerves arise from the brain
1
. The first cranial nerve (Olfactory nerve) 

originates from the basal surface of the brain. Others can be seen arising from the brainstem.         

 

                  

                 

Figure 1: Brain – General features 

A – Components of central nervous system 

B – Ventricles of the brain 

C – Meninges of the brain 

D – Cranial nerves 

 

A B 

C D 
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Endocrine glands including Pituitary and Pineal can be seen closely associated with the brain. 

Pituitary is the master of all endocrine glands because it controls their activity. Its activity in turn 

is closely controlled by hypothalamus
1
. Pineal gland, which promotes sleep by producing 

melatonin, is also controlled by hypothalamus.  

Normal functioning of the brain is vital for the maintenance of a healthy lifestyle. However, the 

nervous system is also invariably vulnerable to diseases and injuries. One such condition is 

neoplasm of the brain, also known as tumor. A tumor is a mass of abnormally growing cells. 

Tumors of the central nervous system, brain tumors, can occur in the brain or any structure 

associated with the brain, including cranial nerves, meninges, skull, pituitary and pineal gland.  

Brain tumor death accounts for almost a quarter of deaths resulting from cancer in children (19 

years of age)
2
. The incidence of all primary tumors (over 120 different types) in the USA is 14 

per 100,000 people
3
.  

Brain tumors can be classified as  

 Primary or Secondary:  Primary tumors originate in the brain itself while the secondary 

tumors spread from cancers primarily located in other organs (metastatic tumors)
4
.  

 Benign or Malignant: Benign tumors do not spread while malignant tumors can invade 

and spread to other parts of the CNS or sometimes even to the adjoining lymph nodes
4
.  

  Gliomas or Non-gliomas: A glioma arises from glial cells. Non-gliomas could arise from 

optic nerve, pituitary gland, pineal gland, ependymal cells or primitive cells left over 

from early development of CNS
4, 5

.    

 

 

http://en.wikipedia.org/wiki/Brain
http://en.wikipedia.org/wiki/Cranial_nerve
http://en.wikipedia.org/wiki/Skull
http://en.wikipedia.org/wiki/Pituitary
http://en.wikipedia.org/wiki/Pineal_gland
http://en.wikipedia.org/wiki/Cancer
http://en.wikipedia.org/wiki/Metastasis
http://en.wikipedia.org/wiki/Glial_cell
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The main types of gliomas are
4, 5

: 

 Ependymomas — Arise from ependymal cells  

 Astrocytomas — Arise from astrocytes  

 Oligodendrogliomas — Arise from oligodendrocytes  

 Mixed gliomas, such as oligoastrocytomas, contain cells from different types of glia.  

Gliomas are further categorized according to their grade, Low-grade or High-grade. The criteria 

for grading include microscopic appearances, malignancy level, growth rate, vascularity and 

similarity to normal cells. The most commonly used grading system is the World Health 

Organization (WHO) grading system
6
 (Table 1). 

Table 1 : Different grades of brain tumors based on WHO grading system 

 

 

Criteria GRADE 1 GRADE 2 GRADE 3 GRADE 4 

Microscopic 

appearance 

Normal Slightly 

abnormal 

Abnormal Very abnormal 

and have necrotic 

tissue. 

Malignancy Least May invade 

surrounding 

tissue 

Invade 

surrounding 

tissue.  

Invade wide 

areas of 

surrounding 

tissue. 

Growth rate Slow Faster that 

Grade1 

Fast Rapid 

proliferation 

Recurrence None May recur as 

grade 2 or higher 

Frequently recur 

as grade 4. 

Frequently recur 

as grade 4. 

Example Pilocytic 

astrocytoma 

Diffuse or low-

grade 

astrocytoma 

Anaplastic 

astrocytoma 

Glioblastoma 

Multiforme. 

http://en.wikipedia.org/wiki/Ependymoma
http://en.wikipedia.org/wiki/Ependymal_cell
http://en.wikipedia.org/wiki/Astrocytoma
http://en.wikipedia.org/wiki/Astrocyte
http://en.wikipedia.org/wiki/Oligodendroglioma
http://en.wikipedia.org/wiki/Oligodendrocyte
http://en.wikipedia.org/wiki/Oligoastrocytomas
http://en.wikipedia.org/wiki/Grade
http://en.wikipedia.org/wiki/World_Health_Organization
http://en.wikipedia.org/wiki/World_Health_Organization
http://en.wikipedia.org/wiki/World_Health_Organization
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1.1 Glioblastoma Multiforme – Background and pathophysiology 

 

Glioblastoma multiforme (GBM) is a Grade 4 astrocytoma. It is therefore most malignant type of 

primary brain tumor. It accounts for 52% of all primary brain tumor cases and 20% of all 

intracranial tumors. GBM occurs in 2-3 cases per 100,000 people in Europe and North America
3, 

7
. GBM may manifest at any age, but it is most common between 45-70 years of age. It is 

prevalent in males than females. As implied by its name GBM is multiforme
8
. 

 In gross anatomy, GBM presents small areas of necrotizing tissue and hemorrhage. 

 Under a microscope, GBM presents necrosis, surrounded by highly anaplastic cells and 

also microvascular proliferation. 

 Genetically, it has many deletions, amplifications and point mutations in numerous genes.  

Location of GBMs is also highly variable
8
. Most common site is gray or white mater of cerebral 

hemispheres. The tumor may also extend to the meningeal or ventricular wall and reach CSF. 

Travelling in CSF, malignant cells may spread to the spinal cord or cause meningeal gliomatosis. 

However, metastasis of GBM beyond the central nervous system is extremely rare
8
.  

 

 

Figure 2: Glioblastoma Multiforme 

http://en.wikipedia.org/wiki/Metastasis
http://en.wikipedia.org/wiki/GBM
http://en.wikipedia.org/wiki/Central_nervous_system
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1.2. Signs and Symptoms of the disease 

 

In general, the symptoms may include headaches, personality changes, nausea and vomit. Based 

on the site of the tumor, symptoms such as sensory loss, visual loss, hemi paresis, etc can occur. 

Seizures can also occur in some patients
9
. Glioblastomas can be classified as primary or 

secondary. Primary or de novo type of GBM affects older adults, especially older than 50 years 

of age. The cells are small, undifferentiated and highly proliferative. Secondary GBMs usually 

affect younger population (<45 y). It develops from a pre-existing low-grade astrocytoma or 

anaplastic astrocytoma
10

. 

1.3. Treatment 

 

The complex character of the cancer makes it non-responsive to treatments. Diminished self-

repairing capacity, increased susceptibility to damage and protection by blood-brain barrier 

makes brain a tough target for therapy. Treatment for GBM is therefore very difficult. Standard 

treatments for brain tumors include surgery, radiation therapy and chemotherapy used either 

individually or in combination.GBM, in most cases is not completely curable. Therefore, the 

goals of treatment are to
9
:  

 Eradicate as many tumor cells as possible by surgically removing the tumor. 

 Use radiation and chemotherapy to destroy as many as possible of the cells still 

remaining. 

 Use radiation and chemotherapy to put remaining tumor cells in a dormant state for as 

long as possible. 
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Treatments of primary brain tumors focuses on improving neurologic function (Symptomatic 

therapy) and also improve quality of life (Palliative therapy)
4
. Harsh reality of GBM is that it is 

well-known to re-grow
8
. Thus, being disease-free for long is very unlikely. Usually, the tumor 

again develops at the same site or within 2 cm of the original site. Recommended treatment for 

such recurrence is extensive surgery and intense local treatment
8
.   

1.4 Molecular Genetics of GBM 

 

There are various reasons which are responsible for transformation of normal cell to cancerous 

state. Genetically speaking, there are three groups of genes that exhibit this potential of inducing 

cancerous nature to cells
10, 11

. They include oncogenes, tumor suppressor genes, and mutator 

genes. Oncogenes promote cell proliferation, tumor-suppressor genes inhibit cell proliferation 

and mutator genes promote mutations of genes because under normal conditions, these genes 

ensure DNA replication and genome integrity
10

.  Oncogenes and tumor-suppressor genes, whose 

abnormal functioning are implicated in glioblastoma multiforme and shown in Table-2
10

. 

Table 2: Oncogenes and Tumor-suppressor genes implicated in Glioblastoma multiforme 

 
# Gene Protein Normal Function Gene type 
1 EGFR EGFR Tyrosine kinase receptor Oncogene 

2 N-ras Ras Affects cyclin D/E complex Oncogene 

3 c-myc c-myc Regulates Cdk4/6 complex Oncogene 

4 CDK4 Cdk4 Active in proliferation cells Oncogene 

5 PDGFR-α PDGFR Tyrosine kinase receptor Oncogene 

6 MDM2 Mdm2 Inhibits p53 transcriptional 

activity 

Oncogene 

7 H-ras Ras Stimulates signal transduction Oncogene 

8 TSC-22 TGF-β Modulates p15, fibroblast 

mitogen 

Oncogene 

9 TP53 p53 Induces transcription of 
MDM2 

Tumor suppressor gene 

10 CDKN2A/p16 p16 Cdk4 inhibitor Tumor suppressor gene 

11 PTEN PTEN Dephosphorylates PIP3 Tumor suppressor gene 

12 RB1 PRBl Binds to E2F/DP1 
transcription factors 

Tumor suppressor gene 
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Figure 3: Genes responsible for development of primary and secondary glioblastoma
10

 
                

Less frequent but more malignant mutations include the following
12

: 

• MMAC1-E1, MAGE-E1, NRP/B 

• Additional genetic alterations in primary glioblastomas include p16 deletions, p16INK4A 

and retinoblastoma (RB) gene protein alterations. 

 

 

 

Neural Progenitor cell 

Astrocyte 

Oligodendrocyte 

PRIMARY 
        OR  

    DE-NOVO 

Glioblastoma 

LG Astrocytoma 

Anaplastic 

Astrocytoma 

LG Oligodendroglioma 

Anaplastic 

Oligodendroglioma 

EGFR, MDM2, 
PTEN, P16, RB  

 

TP53, PDGFR, 

LOH 

RB, LOH, CDK4, 

P16 

PTEN, PDGFR 

LOH 

P16 

LOH, 

EGFR 
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1.5 Metastasis   

 

Metastasis is a complex process causing the spread of a disease from one part of the body to 

another. The important steps involved in the metastatic cascade are
11, 13

 –   

1. Detachment
13

 – As the tumor enlarges, it presses the surrounding structures and blood 

vessels. As a result, the space for the tumor regresses and the cells begin to detach. This 

process involves down-regulation of E-Cadherin and its switch to N-Cadherin, thereby 

reducing cell-cell contact.  

2. Invasion
13

– The cells that detach from the primary tumor, try to enter the surrounding 

lymphatic vessel or vessel. In order to do this, the cells have to penetrate the basement 

membrane. The basement membrane is a specialized layer of extracellular matrix that 

acts as a barrier for movement of cells from away from their sites of origin. This barrier 

is however broken by the cancer cells by secreting several different types of enzymes. 

Once inside the vessel, the cells can either colonize there itself or migrate to other places 

via blood or lymph. 

3. Survival in transport
13

 – The cells now have to face the challenge of surviving the travel 

in the vessels. The main factor posing challenge is the immune system. In order to evade 

the body’s immune system, the cancer cells take up many routes. Some of them 

include
13

 

o Decreased expression of MHC, which prevents detection by APC. 

o Secretion of immunosuppressive factors such as TGF-β that can suppress T-cell 

proliferation. 

http://www.answers.com/topic/extracellular-matrix
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o Release of intracellular adhesion molecules, thereby preventing association of T-

cell with APC. 

o Developing variants with no recognizable structures. 

4. Arrest in distant-organ capillary bed
13

 – Now that the cells have successfully travelled in 

the blood stream, its next intention is to adhere to the microcirculation of a target organ. 

In order to do this, the cells secrete some chemicals which attract platelets, thus 

surrounding the cancer cells. This produces a sticky mass that can attach to the blood 

vessel wall. The site of secondary attachment is dependent on the chemo-attraction 

between the cancer cells and the site of interest. 

5. Angiogenesis
11

 – The cells that attach to the endothelial wall of blood vessels break 

through this wall and enter the secondary site. Here the cells need extra blood supply to 

establish well. This process of formation of new blood vessels is known as 

Angiogenesis. The tumor cells secrete many growth factors that enable angiogenesis. 

Vascular endothelial growth factor (VEGF) is one such growth factor that attracts 

vascular cells that begin to migrate toward the tumor. The vascular cells eventually form 

new blood vessels within the tumor, providing ample supply required for growth and 

survival of cancer cells. 

6. Tumerogenesis
13

 – The cells are now fully equipped. They have a new site and new 

blood vessels with amble blood supply. Therefore, the cells start proliferating and 

produce secondary tumors. This process is known as tumorigenesis. 

 

http://www.answers.com/topic/vascular-endothelial-growth-factor
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1.6 Hypoxia and Metastasis 

 

GBM is highly metastatic. Hypoxia, among others, is an important factor that can enhance 

metastasis. Tissue hypoxia may result from many mechanisms. Some of them include
14

 – 

 The oxygen tension in the arteries may reduce due to diseases of the lung or even high 

altitude (hypoxemic hypoxia).  

  The oxygen-carrying capability of the blood cells may reduce due to anemia or carbon 

monoxide poisoning (anemic hypoxia).  

 Blockage of the circulatory system components may result in reduced tissue
 
perfusion.

 
 

 The cells may be unable to utilize the available oxygen due to intoxication, as in cyanide 

poisoning.  

 Some of the reasons for hypoxia in tumor cells include
15

 –  

 Increased demand for oxygen due to rapid and uncontrolled proliferation of tumor cells.
 

 Reduced interstitial pressure which is caused due to poor lymphatic drainage in tumor 

cells leads to collapse of blood vessels and also reduced pH.
 

 Severe structural abnormalities of tumor microvessels and disturbed microcirculation. 
 

The fact that the regulatory processes are compensated in tumor cells, the changes caused in 

these cells due to hypoxia are profound. Hypoxia affects two venues, proteome and genome
14

, 

and enables the normal cells to adapt to nutritional deficiency but at the same time, it can also 

render the tumor cells malignant. Hypoxia stimulates the transcription of many genes including 

glycolytic enzymes, glucose transporters,
 
angiogenic molecules, survival and growth factors, 
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enzymes, proteins involved in tumor invasiveness, chaperones, and
 
other resistance-related 

proteins.
 
At the same time, hypoxia can inhibit genes like for cell-surface integrins facilitating

 

tumor cell detachment
14

. Sustained hypoxia could result in a more clinically aggressive 

phenotype
16-20

, increased invasive potential
21, 22

, and also augmented
 
regional and distant tumor 

cell spreading
17, 18, 23-25

.
  
 At the same time, the cancer can grow resistant to radiation or other 

treatments
26-34

.
 
 

1.7 Research in our lab 

 

Many curious scientists have explored the effect of hypoxia in normal as well as tumor cells. 

These explorations have revealed involvement of many important genes and proteins
14

. The 

research in our lab and this project in particular focuses on the three such proteins involved in the 

hypoxia-induced metastasis of Glioblastoma multiforme, namely HIF1, Notch and TrpC6. 

1.8 Hypoxia Induced Factor 1 

 

Hypoxia-induced factor 1 (HIF1) is a highly conserved transcriptional complex that is expressed 

in almost all oxygen-breathing organisms. It is an important component of the multi-level 

regulatory system that is devoted to oxygen homeostasis in local as well as a systemic level in a 

variety of physiological, developmental and pathological conditions.  

1.8.1 HIF-1 – Structure and Function  

1.8.1A Structure of HIF1: 

 

HIF-1 is a heterodimer
14

. It has two subunits – alpha and beta (Fig-3). The beta subunit is 

constitutively expressed, while the expression of the alpha subunit is oxygen-regulated. HIF-1 

http://en.wikipedia.org/wiki/Heterodimer
http://en.wikipedia.org/wiki/Heterodimer
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belongs to the PER-ARNT-SIM (PAS) subfamily of the basic-helix-loop-helix (bHLH) family of 

transcription factors. The alpha-subunit contains an oxygen-dependent degradation (ODD) 

domain. This domain allows hydroxylation by proline-hydroxylase-2 (PHD-2)
35

. In addition, 

HIF-1 alpha subunit contains two transactivation domains (TAD) which regulate HIF-1 target 

genes. Two known transcription co-activators, CREB binding protein (CBP) and p300, interact 

with the transactivation domain at the C-terminal (C-TAD) of HIF-1 alpha. Both activators are 

essential for HIF-1 transcription
14, 35

. The beta subunit is identical to aryl hydrocarbon receptor 

nuclear translocator (ARNT). 

1.8.1B Regulation of alpha subunit: 

 

When the oxygen level in the cell is normal (normoxia), the alpha subunit is prone to 

degradation. Under normoxia, prolyl hydroxylase can hydrolyse the prolyl residues in the ODD 

domain of the alpha subunit of Hif1
35

. This targets HIF1 to the E3 ubiquitin ligase leading to 

degradation by the proteosome machinery.  In hypoxic condition, the enzyme HIF1 prolyl 

hydroxylase is inhibited by two ways
35

–  

 In hypoxic conditions, Oxygen, which is a co substrate for this enzymatic reaction, is 

depleted. This causes inhibition of the enzyme. 

 During hypoxia the electron transport chain in the mitochondria is affected. This leads to 

accumulation of succinate which is also an end product of the HIF1 hydroxylation 

reaction. Thus buildup of succinate in the cell inhibits the enzyme.  

 

 

http://en.wikipedia.org/wiki/Basic-helix-loop-helix
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1.8.1C Function of HIF1: 

 

Upon stabilization HIF-1 protein acts as a transcription factor. It binds to HIF - responsive 

elements (HREs) in promoters that contain the sequence NCGTG and upregulates expression of 

several genes thereby allowing the cell to survive in hypoxic conditions. The genes upregulated 

by HIF-1 include glycolytic enzymes, growth factors and angiogenic molecules like vascular 

endothelial growth factor (VEGF), angiotensin that help in angiogenesis
14

. 

 

Figure 4: Schematic representation of structure if HIF1 

 

1.8.2 Role of HIF-1 in Cancer 

One of the main reasons why cancer cells become malignant and intend to migrate to other areas 

is the lack of nutrients and oxygen. Thus hypoxia is a driving force for malignancy and 

tumorigenesis. HIF-1 acts as a sensor and responds to changes in levels of cellular oxygen. HIF1 

promotes tumor invasion in two ways. It facilitates angiogenesis by inducing VEGF-A and 

http://en.wikipedia.org/wiki/Promoters
http://en.wikipedia.org/wiki/Vascular_endothelial_growth_factor
http://en.wikipedia.org/wiki/Vascular_endothelial_growth_factor
http://en.wikipedia.org/wiki/Vascular_endothelial_growth_factor
http://en.wikipedia.org/wiki/Angiogenesis
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angiotensin-2. It also induces loss of E-cadherin expression via the lysyl oxidase – Snail 

activation pathway, thereby allowing epithelium-mesenchyme transition (EMT)
14, 35

. 

1.9 Notch  

 

Notch is an evolutionarily conserved cell surface receptor
36

. The Notch gene was discovered in 

1917 by Thomas Hunt Morgan. Knockdown of these gene resulted in a fruit fly with notches 

apparent in their wing blades, thus the name. It is involved in a variety of cellular processes such 

as cell fate specification, differentiation, proliferation, apoptosis, adhesion, etc
36

. 

1.9.1. Structure and Function 

1.9.1A Structure of notch protein: 

 

Notch is present in all metazoans. Four different isoforms, Notch1 to Notch4, are present in 

vertebrates. These are type-1 receptors located in membranes (Fig.4)
36

. They possess 2 domains 

–a large extracellular domain (NECD) and a cytoplasmic domain (NICD). ECD takes part in 

ligand binding while NICD is involved in signal transduction. ECD in turn presents numerous 

EGF repeats for ligand binding interaction and an inhibitory LNR region. This region prevents 

signal transduction in the absence of ligand. NICD possess protein interaction regions in the 

form of RAM3 domain and 6 ankyrin repeats. It also has 2 nuclear localization signals, a 

transcriptional activation domain (TAD) and a PEST sequence that negatively regulates protein 

stability
36

(Fig.4). The 4 isoforms of notch differ in the nature of TAD. 

 

 

http://en.wikipedia.org/wiki/Thomas_Hunt_Morgan
http://en.wikipedia.org/wiki/Metazoan
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1.9.1B processing of notch protein: 

 

Notch is synthesized in the endoplasmic reticulum as a 300 kD precursor. It undergoes 3 main 

proteolytic steps before it becomes fully functional. The first cleavage S1 takes place during its 

transport and processing in Golgi apparatus
36, 37

. This step is catalyzed by the enzyme furin-

convertase. It cleaves Notch adjacent to the amino acid sequence RQRR in the extracellular 

domain. After S1 cleavage the matured notch protein reaches the membrane. Delta, Serrate and 

Lag-2 are some of the known ligands of notch
37

. These are found in the membranes of the 

adjoining cells. Binding of these ligands induce two subsequent cleavages of the notch protein. 

The second, S2, cleavage occurs in the extracellular domain and is facilitated by TACE, also 

known as ADAM17. Ligand binding also induces a third, S3, cleavage at the transmembrane 

region. This cleavage is catalyzed by gamma -secretase enzyme complex whose activity is 

dependent on presenilin-1. S3 cleavage results in release of notch intracellular domain(NICD) 

which is the functional part of notch. NICD then migrates to the nucleus where it associates with 

CSL transcription factors and acts as a transcriptional co-activator
36, 37

 (Fig.5).  

1.9.1C Functions of Notch Protein:  

 

Notch is functional during development and also adult life. During CNS development, Notch 

determines the fate of progenitor stem cells by its interaction with fate determining proteins such 

as numb and dab. Notch activity maintains a progenitor state in these stem cells and prevents 

differentiation. However, in gliogenesis, notch has an instructive role
36

.  

Role of notch during somatogenesis, development of CVS and also during development of 

endocrine glands such as pancreas is well established by various experimental evidences. Effect 
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of altered notch signaling on the behaviors of cultured vascular endothelial cells, proved the role 

of notch signaling in wound healing, tissue repair, and angiogenesis
36

. 

 

 

Figure 5: Structure of Notch 

 

1.9.2. Role of Notch in Cancer: 

Abnormal Notch signaling is known to be involved in different types of cancers including 

neoplasms of breast, skin, cervical, gut, blood, etc. Dual role of notch in CNS development 

facilitates Notch to act as either an oncogene or a tumor suppressor. Thus, the outcome of notch 

signaling activity depends on signal strength, timing, cell type and context. Role of Notch in 

cancer has been extensively studied
36

. A brief summary of some of these results are as follows -    
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 Expression of Notch and its ligand increases in gliomas and are required for cell 

proliferation and survival
38

. 

 Notch promotes cell proliferation and formation of neural stem cell-like colonies in 

glioma via its interaction with wnt pathway
39

. 

 Inhibition of notch signaling markedly reduced epithelial-mesenchymal transition (EMT) 

and invasion in glioma, while over expression of NICD increased these processes. This 

effect of notch was through its direct or indirect control on expression of Snail-1
40

. 

 Notch was seen clustering with and also inducing expression of HIF1-alpha in MCF7 

cells treated with estrogen. Therefore, Notch possibly induces HIF1 expression and 

promotes angiogenesis
41

.  

 Analysis with Notch-promoter specific reporter gene proved that HIF1-alpha, which is 

stabilized in hypoxic conditions, induced expression of Notch and its downstream genes 

in embryonic carcinoma cell line P19
42

.  

 Factor Inhibiting HIF1-alpha (FIH-1) negatively regulates NICD by hydroxylating it at 

residues N1945 and N2012. This interaction sequesters FIH-1, thereby promoting the 

stabilization of HIF-1 in hypoxic conditions. In summary, under hypoxic conditions, 

increased expression of notch increases HIF1-alpha functioning
43

. 
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Figure 6: Animation depicting Notch processing 

 

1. Notch precursor undergoes first cleavage, catalyzed by furin-convertase, during its 

processing in the Golgi complex.  

2. Mature Notch is transported to the membrane where it comes in contact with the ligands 

such as Delta, Serrate or Lag-2. 

3. Ligand binding induces the second cleavage catalyzed by TACE releasing the Notch 

extra-cellular domain (NECD) which is engulfed by the adjoining cell for further 

processing. 

4. This is followed by a third cleavage catalyzed by gamma-secretase enzyme complex. The 

result of the last two cleavages is the release of Notch intra-cellular domain (NICD). 

5. NICD translocates to the nucleus where it binds to transcription factors like CSL and acts 

as a co-activator resulting in the transcription of a number of genes.  
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1.10 TrpC6 

 

Transient Receptor Potential channels are membrane bound ion channels. The TRP genes were 

first identified in Drosophila, deficiency of which resulted in blindness by intense light. Trp 

channels are divided into three broad groups
44

. They are – 

a) Transient Receptor Potential Canonical family (TrpC) 

b) Transient Receptor Potential Vanilloid Receptor family (TrpV) 

c) Transient Receptor Potential Melastatin family (TrpM) 

TrpC channels are non-selectively permeable to cat ions, with a selectivity of calcium. Stimulus 

for the channel is via phospholipase C and also diacylglycerol activation. TRPC channels 

underlie the store-operated channels (SOC) observed in many cell types. These channels open 

due to the depletion of intracellular calcium stores
45

. TrpC family contains 7 members, TrpC1 to 

TrpC7, which are further classified into 4 sub families based on structural and functional 

similarities
44

. These sub families are  

 TrpC1 

  TrpC2 

  TrpC3, TrpC6 and TrpC7 

  TrpC4 and TrpC5 

TrpC6 is highly expressed in lung, placenta, ovary, spleen, brain, kidneys
45

.  

1.10.1 Structure and function of TrpC6 channels 

1.10.1A Structure of TrpC6: 

The gene for TrpC6 protein is localized on chromosome 11Q21-Q22 and has 13 exons
45

. The 

human TrpC6 protein has 931 amino acids. TrpC6 resembles its family members in structure. It 
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has intracellular N and C-terminals and six trans-membrane helices. The pore is predicted to be 

formed between the 5
th

 and 6
th

 helices. It also presents two glycosylation sites (Asn
473

; Asn 
561

) 

to ensure tightly receptor-operated activity of TrpC6. It has TRP box motif near the C-terminus 

and 3 to 4 ankyrin repeats near the N-terminus. Many of the TrpC channel subunits are able to 

co-assemble
45

. 

 

 

Figure 7: Structure of TrpC6 channels 

 

1.10.1B Function of TrpC6: 

 

Just like all TrpC channels, TrpC6 is also an ion channel, specific especially to calcium. TrpC6 

plays an important role in regulation of vascular and pulmonary smooth muscle contraction. 

They are also important in kidney podocytes. Functions of TrpC6 in other cell types still remain 

elusive
45

. 

 1.10.2 Role of TrpC6 in Cancer 

 

TrpC6 expression increases in cancerous state, including glioma, breast cancer and human 

hepatoma, compared to normal cells
46, 47

. 

PM 

NH3
+ COO

-
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TrpC channels are required for cellular growth because blocking these channels hindered cell 

cycle with defects in cytokinesis. Histopathological hallmarks of GBM such as Nuclear atypia 

and cell enlargement were seen upon TrpC6 block
46

.  

TrpC6 is also shown to play an important role in angiogenesis and cell proliferation in cancer 

cells. Angiogenesis depends on proliferation and migration of endothelial cells and endothelial 

cell permeability. Angiogenic factors, such as VEGF, basic fibroblast growth factor,
 
and platelet-

derived growth factor (PDGF) and calcium are involved in these steps of angiogenesis. TRPC6 

being a calcium channel is involved in control of endothelial
 
cell permeability. VEGF increases 

intracellular calcium level and also vascular permeability by acting via TrpC6 channels
46, 48

. 

HIF1-alpha induces elevated expression of TrpC6 channels in hypoxic conditions. Loss-of-

function and gain-of-function studies with HIF1-alpha gene in pulmonary smooth muscle cells 

proved that increased expression of TrpC6 observed in hypoxic conditions is controlled by HIF1 

transcription complex
49

. 

TrpC6 channels facilitated calcium influx via store operated calcium entry in human hepatoma 

cell lines causing increased cell proliferation. This was proved by overexpression and then by 

siRNA knockdown of TrpC6 gene
50

.     

1.11 Hypothesis 

 

In summary, the facts that linked these three proteins (HIF1, Notch and TrpC6) and lead us 

towards our hypothesis are as follows – 

HIF1 is expressed under hypoxic conditions which is prevalent in gliomas. HIF1   interacts with 

Notch, thus reducing neuronal and muscular differentiation
35, 51

.  
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Notch is highly expressed in cancer cells, including glioblastoma. Notch maintains stem cell 

characteristics in cancer cells. Notch expression increases during hypoxia. Notch is required for 

angiogenesis, cell proliferation and invasion
40-42, 52, 53

.  

 TrpC channels are essential for angiogenesis and the growth of gliomas
46, 47, 54

. 

Based on these facts, we hypothesize that Notch promotes metastasis of Glioblastoma 

multiforme under hypoxic conditions by acting through the TrpC6 channel. 

1.12 Aims of the project 

1. Expression of Notch, TrpC6 and HIF-1 increases during hypoxia. 

2. HIF1 and Notch pathways crosstalk under hypoxia. 

3. TrpC6 acts as the downstream mediator of Notch and HIF1 and is responsible for the 

effect of these proteins on metastasis of Glioblastoma. 

1.13 Experimental design 

Lack of food and oxygen is very prevalent in cancer. Thus if we could study the function of the 

proteins of our interest under hypoxic conditions, we could correlate that to their physiological 

roles. Cobalt chloride is a chemical that mimics hypoxia in the cells. Thus we can use CoCl2 as 

the stimulus during cell culture. 

1.13.1 Aim 1:  Expression of Notch, TrpC6 and Hif-1 increases during hypoxia 

Our first aim is to determine whether there is any difference in the activity of Notch, HIF1 and 

TrpC6 between normoxic and hypoxic conditions. The changes can be monitored at mRNA level 

and also protein level. We will determine the expression levels of all the TrpC channels just to 
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ensure whether the downstream target is only TrpC6 or is it any of the TrpC channels. We will 

also compare the expression changes in cancerous cells with non-cancerous cells to determine 

the effect of hypoxia on metastasis.  

Exp#1 – Induce hypoxia by treating the cells with Cobalt chloride and check the mRNA levels 

of Notch and TrpC6 by doing quantitative real-time PCR. 

Exp#2 – Do quantitative real-time PCR to check the mRNA expression levels of all the TrpC 

channels under hypoxic conditions. 

Exp#3 – Analyze the expression levels of Notch and TrpC6 in non-cancerous stem cells after 

inducing them with Cobalt chloride by real-time PCR.  

Exp#4 – Induce hypoxia by treating the cells with Cobalt chloride and check the changes in the 

protein levels of Hif1, Notch and TrpC6 by western blotting and Immunocytochemistry. 

1.13.2 Aim 2: HIF1 and Notch pathways crosstalk under hypoxia 

Cross-talk between Notch and HIF pathway can be determined by activating/blocking one of 

these pathways and checking for expression changes of the other pathway. NICD and Hif-1 can 

be activated by inducing hypoxia by treating the cells with Cobalt chloride which mimics 

hypoxia. Hif-1 can be inhibited by using the commercially available Hif1-inhibitors. NICD can 

be inhibited by treating the cells with the gamma-secretase inhibitor DAPT. Effect of these 

treatments on expression of TrpC6 would determine whether TrpC6 is indeed downstream of 

Notch or HIF1.  
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Exp#1 – Treat the cells with DAPT and do western blot to detect the changes in expression of 

NICD, HIF1 and TrpC6. 

Exp#2 – Use the commercially available HIF1-Inhibitor on the cells to block the Hif1 pathway 

and determine its effect on NICD and TrpC6 expression.  

1.13.3 Aim 3: TrpC6 acts as the downstream effector of Notch and HIF1 and is responsible 

for the effect of these proteins on metastasis of Glioblastoma. 

Metastasis, which is the movement of the cancerous cells to a new location, involves many steps. 

Four important steps involved in this process are – Invasion/Migration, Angiogenesis, Cell 

proliferation and Tumorigenesis. Experimental evidences have already proved the importance of 

Notch in the metastasis of cancer. In order to confirm our hypothesis that TrpC6 is indeed a 

downstream effector of Notch, we will use the gene knockdown technique. We will suppress the 

expression of TrpC6 under hypoxic conditions using the siRNA specific for TrpC6. Effect of 

such a silencing on migration, angiogenesis and cell proliferation would prove the role of TrpC6 

as the downstream effector.  

Exp#1 – Determine the efficiency of siRNA transfection by checking the expression of TrpC6 at 

the mRNA as well as protein levels. 

Exp#2 – Transfect the cells with TrpC6 siRNA, induce hypoxia and then determine the effect on 

cellular migration by doing invasion/migration assay.  

Exp#3 – Do in vitro vessel formation assay to establish the effect of TrpC6 silencing under 

hypoxic condition.  
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Exp#4 – Transfect cells with siRNA, induce hypoxia and do MTT assay and also Brdu 

incorporation assay to study its effect on cell proliferation. 

Exp#5 – Determine the effect of TrpC6 siRNA on the tumorigenicity of the cancer cells under 

hypoxic conditions by doing the soft agar colony formation assay.  

CHAPTER 2: MATERIALS AND METHODS 

2.1 Cell Culture –  

U373-MG (obtained from ATCC) and GBM primary (obtained from a patient) were used for our 

study. The cells were maintained in plain DMEM medium (Invitrogen cat# 11965159) 

supplemented with 10% Fetal Bovine Serum (Atlanta biologicals cat#S11550), and 1.0% 

antibiotic and antimycotic (Invitrogen cat#15240-062).  

2.2 Inducing Hypoxia –  

Hypoxia, which is the main stimulus for metastasis in our studies, was induced by treating the 

cells with 100 µM CoCl2 (Sigma Aldrich, Cat# 232696) dissolved in serum-free, glucose-free 

Locke’s medium. The cells were exposed to this treatment for 2, 4, 6, 8 or 16 hrs before the cells 

were used for the rest of the experiments.  

2.3 Treatment with DAPT/HIF1-Inhibitor –  

In order to see the effect of DAPT (Sigma Aldrich Cat# D5942), which is a gamma-secretase 

inhibitor, and also HIF1-Inhibitor (Calbiochem Cat# 400083) on the expression levels of TrpC6, 

we treated the cells with either of these inhibitors overnight in Opti-MEM. Then the cells were 

treated with CoCl2 as mentioned above.  
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2.4 siRNA transfection –  

Custom-made siRNA against TrpC6 was obtained from Invitrogen. Scrambled RNA (Invitrogen 

cat#12935) was used as transfection control. 20 pmoles of siRNA was used to do the 

transfection. The transfection was carried out using Lipofectamine 2000 reagent (Invitrogen 

cat#11668-027) according to the manufacturer’s protocol. The cells were then incubated at 37ºC 

for 24 hrs. After that, the transfection medium was removed and the cells were treated with 

CoCl2 to induce hypoxia, as explained above.  

2.5 RNA extraction and Reverse Transcription –  

Total RNA from the cell was isolated using Trizol reagent (Invitrogen Cat#15596018), in 

accordance with the standard protocol. Briefly, proteins, DNA and RNA in the cells were 

separated into 3 distinct layers by adding Chloroform and subsequent centrifugation
5555

. Only the 

mRNA layer was collected and transferred to a clean microfuge tube. RNA was precipitated by 

using isopropanol followed by centrifugation. RNA was seen as a pallet after centrifugation. The 

supernatant was carefully discarded and the pallet was washed twice with 75% ethanol. The 

RNA was resuspended in 50µl of deionized water. The concentration of RNA was determined by 

UV absorbance using a Nanodrop spectrophotometer. The RNA was reverse-transcribed using 

iScript cDNA synthesis kit (Bio-Rad Labs., Cat#170-8891). Reaction was performed in a final 

volume of 20 µl, containing 1µg of RNA, 4 µl of reaction mix, 1 µl of reverse transcriptase 

enzyme and D.water. The cDNA synthesis cycle comprised of 3 steps. The cDNA concentration 

was again measured by UV absorbance using a Nanodrop spectrophotometer.  
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2.6 Quantitative Real-Time Polymerase Chain Reaction –  

Real time quantitative PCR was performed in a Sequence Detector System (ABI Prism 7900 

Sequence Detection System and software; PerkinElmer Life Sciences). Amplification was 

performed in a final volume of 30 µl, containing 2 µg of cDNA, primer mixture (0.6 µl each of 

sense and antisense primers), 11.3 µl of DI water and 12.5 µl 2x SYBR Green Master Mix (Bio-

Rad Laboratories Cat# 170-8882). The standard amplification program included 40 cycles of two 

steps, each comprising heating to 95 °C and heating to 60 °C. Fluorescent product was detected 

at the last step of each cycle. In order to verify the purity of the products, a melting curve was 

produced after each run. The relative quantitation of gene expression was determined by Delta-

Delta CT METHOD using the following calculation
56, 57

– 

• ΔCT = target – reference (control) 

• ΔCT = target – reference (experiment) 

• Difference = ΔCT – ΔCT = ΔΔCT 

• Fold change = 2 ΔΔCT 
 

Table 3: Primers used for real-time PCR   

 
GENE SEQUENCE PRODUCT (bp) 

hTRPC1 GATGCATTCCATCCTACACT 

TACACAGTCCTTCTGCTCCT 

249 

hTRPC3 CAAGAATGACTATCGGAAGC 

GCCACAAACTTTTTGACTTC 

201 

hTRPC4 GGACTTCAGGACTACATCCA 

ACGCAGAGAACTGAAGATGT 

201 

hTRPC5 CCACCAGCTATCAGATAAGG 

CGAAACAAGCCACTTATACC 

159 

hTRPC6 TGAAGTGAAATCAGTGGTCA 

AAATTTCCACTCCACATCAG 

175 

hTRPC7 CATAGCCTATTGGATTGCTC 

GGTAGTCTGTGAAGGTTTCG 

176 

Hes1 CGGACATTCTGGAAATGACA 

CATTGATCTGGGTCATGCAG 
155 

Hes5 CTCAGCCCCAAAGAGAAAAAA 

TAGTCCTGGTGCAGGCTCTT 
183 

GAPDH AGCCACATCGCTCAGACACC  

GTACTCAGCGGCCAGCATCG   
169 
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2.7 Western Blots –  

Western blotting was carried on as previously described
39

. Cells were lyzed in the lysis buffer 

(50 mM Tris–HCl, pH 7.4, 150 mM NaCl, 1% NP-40, 1x protease inhibitor cocktail). Cell 

extracts were collected by centrifugation. The protein concentration in the cell extracts was 

determined using the Bio-Rad Protein Assay reagents (Bio-Rad), according to the manufacturer’s 

instructions. Samples were then analyzed by SDS-4-12% polyacrylmide gel electrophoresis 

(PAGE) and blotted to PVDF membrane. Nonspecific sites were saturated with 5% milk+PBS-T 

before exposure overnight to an anti-HIF-1 (mouse monoclonal Abcam # ab463), NICD (Rabbit 

polyclonal activated Notch1 antibody, Abcam # ab8925), TrpC6 (Rabbit polyclonal,  Prosci Inc 

# 3899) and GAPDH (mouse monoclonal Sigma# 4967) antibodies. This was followed by 3 

washes with PBS-T, each lasting 10 min. The membrane was then probed using horseradish 

peroxidase (HRP)-conjugated donkey anti-rabbit IgG (Amersham Life Science Cat# NA934) 

antibodies and horseradish peroxidase (HRP)-conjugated donkey anti-mouse IgG (Amersham 

Life Science Cat# NXA931) antibodies, followed by 3 more washes with PBS-T, each lasting 15 

min. The membrane was developed using the ECL reagents (Amersham Biosciences Corp Cat# 

RPN2132). 

2.8 Immunocytochemistry –  

U373 MG cells were seeded at a density of 4 x 10
4
/ml of experimental medium in an eight-well 

Lab-Tek II chamber slide. The cells were then incubated for 3,6 and 12 h under 100µm CoCl2. 

Cells were washed with PBS, fixed with cold methanol for 5 min, and permeabilized for 5 min in 

0.1% Triton-PBS followed by three PBS washes. Nonspecific sites were saturated with 5% goat 

serum before exposure overnight to an anti-HIF-1 (mouse monoclonal Abcam # ab463), NICD 
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(Rabbit polyclonal activated Notch1 antibody, Abcam # ab8925) and TrpC6 (Rabbit polyclonal, 

 Prosci Inc # 3899) antibodies.  Negative controls were obtained by omitting the primary 

antibody. The cells were washed twice in PBS and incubated for 45 minutes with suitable 

secondary IgG Alexa 488 (1:500 in PBS; Molecular Probes, Invitrogen). Cell nuclei were 

counterstained with 4',6-diamidino-2-phenylindole (DAPI). Images were acquired by using 

Nikon Eclipse E600 fluorescence microscope. Images were processed by using SPOT advance 

software, Diagnostic Instruments, Sterling Heights, MI and Photoshop 7.0 (Adobe Systems, San 

Jose, CA), with the input levels adjusted to span the range of acquired signal intensities exactly.  

2.9 Cell migration assay –  

U373 cells were plated in a 24-well dish at a density of 0.8x10
6
 cells. The cells were transfected 

with 20 pmoles of siRNA and exposed to hypoxia for 6 hrs. The cells were then trypsinized and 

then used for cell migration analysis. Cell migration analysis was performed using Transwell 

membrane filters (Corning Costar) containing a polycarbonate filter with 8 µm pores as 

previously reported
58

. Briefly, the bottom chambers of transwells were filled with complete 

growth medium containing chemoattractant growth factors. 1x10
4
 transfected cells in a total 

volume of 0.2 ml were seeded into the top well of the inserts in serum free medium along with 

CoCl2 (100 µM). and allowed to migrate for 6 hours. At the end of the incubation, non-migrated 

cells remaining in the transwell insert were removed. The migrated cells (on the outer bottom of 

the transwell) were fixed with methanol and stained with hematoxylin and eosin, and the stained 

cells were counted in 5 or more random 100X fields. Each experiment was performed in 

triplicate, and the experiment was repeated twice. Growth correction was not applied because no 

increase in the cell number was observed during the incubation period of 6 hours.                                                                                                                                                                                                                       
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Figure 8: Transwell insert for migration assay 

 

2.10 In-vitro tube morphogenesis on Matrigel –  

U373 cells were plated in a 24-well dish at a density of 0.8x10
6
 cells. The cells were transfected 

with 20 pmoles of siRNA and exposed to hypoxia for 6 hrs. The conditioned media from these 

plates were collected and used for angiogenesis. The vessel morphogenesis assay was done as 

previously described
58, 59

. HMEC-1 cells were adjusted to a density of 3 x 10
4
 cells in 200 µL of 

10% conditioned medium, collected from U373 cells treated with either control (empty vector), 

CoCl2 or TRPC6 siRNA with 0.5% FBS and conditioned added to the wells of eight-well 

chamber slides precoated with growth factor–depleted Matrigel (7 µg/mL; BD BioSciences, 

Bedford, MA). The slides were incubated at 37°C for 18 to 20 hours. The medium was then 

removed gently without disturbing newly formed tubules. The images were captured at a 40x 

magnification on Nikon Optiphot II microscope. Total tube length of each well was measured 

using IP Lab Image Analysis Program (Scanalytics, Inc., Arlington, VA).  
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2.11 MTT assay for cell proliferation –  

U373 cells were plated in a 24-well dish at a density of 0.8x10
6
 cells. The cells were transfected 

with 20 pmoles of siRNA and exposed to hypoxia for 6 hrs. The cells were then trypsinized and 

then used for MTT assay. The cells were replated in 96-well plates and allowed to grow in 

serum-free media containing CoCl2 for 1, 2 or 3 days. Then MTT assay was carried on in 

accordance with the manufacturer’s protocol (ATCC Cat# 30-1010K). Briefly, following 

incubation with CoCl2 for designated time, 10 µL of MTT reagent was added to each well and 

further maintained @ 37°C for another 2 hrs until purple precipitate could be seen. This was 

followed by addition of 100 µL of detergent reagent and incubation in the dark for 2 hrs. After 

that, the absorbance was recorded at 570nm using a spectrophotometer. The number of viable 

proliferating cells was determined based on the OD reading.  

2.12 Soft Agar Colony formation assay –  

Soft agar assays were performed as described previously
60

.
 
An underlay of 0.5% agar in DMEM 

containing 5% fetal calf
 
serum was prepared by mixing equal volumes of 1% agarose and

 
2x 

DMEM 10% fetal calf serum. Two milliliters of this
 
mixture were pipetted into the wells of six-

well plates and
 
allowed to set. Cells (5 x10

3
) were seeded in each well of a

 
six-well culture dish 

containing 0.3% top low-melt agarose.
 
The agarose was allowed to set, and the plates were 

incubated
 
in a humidified chamber at 37 C for 14 d. Colonies were counted

 
in a blinded manner 

using an x10 objective on a Nikon inverted
 
microscope. Colonies with a diameter

 
larger than 20 

µm were scored. Data are expressed as average
 
number of colonies formed as well as the average 

diameter of
 
colonies. 
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2.13 Brdu-Incorporation assay -    

U373-MG cells were seeded in an 8-well chamber slide at a density of 2.5x104 cells/well. Then 

the cells were transfected with 20 pmoles of siRNA, incubated in transfection media for 24 hrs 

and then maintained in serum-free Locke’s media with 100 µM CoCl2 for 6 hrs. The cells were 

also exposed to 10 µM Brdu for 3 hrs before overnight fixing with 4% PFA. The DNA of the 

cells was degraded by treatment with 2N HCL for 30min, then the acidity was neutralized by 

incubating with borate buffer for 15 min followed by 3 washes with PBS. Non-specific sites 

were blocked with PBS+0.1% Triton x+3% donkey serum followed by overnight incubation with 

anti-Brdu primary antibody. The cells were then washed thrice with PBS and incubated with 

anti-rat, TRITC-conjugated secondary antibody for 1 hr. Nuclei were counterstained with DAPI.  

Images were acquired by using Nikon Eclipse E600 fluorescence microscope. Images were 

processed by using SPOT advance software, Diagnostic Instruments, Sterling Heights, MI and 

Photoshop 7.0 (Adobe Systems, San Jose, CA), with the input levels adjusted to span the range 

of acquired signal intensities exactly. 
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CHAPTER 3: RESULTS AND DISCUSSION  

 

3.1 Expression of Notch, HIF1-alpha and TrpC6 increases in U373-MG and GBM primary 

culture cells under hypoxic conditions:  

In order to see the effect of hypoxia on Glioblastoma cells, we carried on expression analysis of 

Hes1 and Hes5 (downstream mediators of Notch) and all the TrpC isoforms mRNA. Quantitative 

PCR analysis revealed that expression of Hes5, but not Hes1 increases under hypoxic conditions 

and the expression of only two of the six TrpC channels expressed in brain change significantly. 

These two are TrpC3 and TrpC6. The change in TrpC6 was however more pronounced and 

prolonged than TrpC3 (Fig 9A and 9C). Therefore our focus from hereon will be on TrpC6. This 

data was supplemented by the results of mRNA expression analysis in GBM primary culture 

obtained from a patient (Fig 9B and 9D). Changes were detected at protein level also. Increased 

levels of NICD, HIF1-alpha and TrpC6 were detected by western blotting (Fig 10A) and 

immunocytochemistry (Fig 9E). This result concurs with the observations made by several other 

workers in glioblastoma and also in other type of cancer cells.  
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Figure 9: Expression analysis of Notch, HIF1 and TrpC channels 

 

A – Quantitative Real-Time PCR showing expression of TrpC6 channels and Hes5 in U373 cells 

under hypoxia. The cells were treated with CoCl2-containing serum-free media to induce 

hypoxia. The cells were exposed to hypoxia for 3 hrs, 6 hrs and 12 hrs before being harvested. 

 

B – Quantitative Real-Time PCR showing expression of TrpC6 channels and Hes5 in GBM 

primary culture under hypoxia. The cells were treated with CoCl2-containing serum-free media 

to induce hypoxia. The cells were exposed to hypoxia for 3 hrs, 6 hrs and 12 hrs before being 

harvested. 

 

C – Quantitative Real-Time PCR showing expression of all TrpC channels, Hes1 and Hes5 in 

U373 cells under hypoxia. The cells were treated with CoCl2-containing serum-free media to 

induce hypoxia. The cells were exposed to hypoxia for 3 hrs, 6 hrs and 12 hrs before being 

harvested. 

 

D – Quantitative Real-Time PCR showing expression of all TrpC channels, Hes1 and Hes5 in 

GBM cells under hypoxia. The cells were treated with CoCl2-containing serum-free media to 

induce hypoxia. The cells were exposed to hypoxia for 3 hrs, 6 hrs and 12 hrs before being 

harvested 
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E – Immunocytochemistry showing the effect of hypoxia on expression of NICD, TrpC6 and 

HIF1 in U373 cells. Three time-points, 3 hrs, 6 hrs and 12 hrs, were chosen for analysis.   

  

3.2 Hypoxia-induced response of Notch involves cross talk with the HIF1 pathway: 

Since Notch is a very important response element in hypoxic conditions, we want to check 

whether it acted via HIF1-alpha. Therefore, we blocked Notch and HIF1 one at a time and 

checked the expression of the other. Notch activity was blocked by treating the cells with DAPT, 

which blocks the enzyme gamma-secretase, which is involved in the last trans-membrane 

cleavage of Notch, resulting in reduced NICD production. Immunoblotting with anti-HIF1 

antibody revealed decreased HIF1 levels, confirming the fact that Notch interacts positively with 

E 
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HIF1-alpha (Fig 10B). Our next step was to check which of these proteins was upstream. 

Immunoblotting with anti-notch after blocking HIF1 with HIF1-Inhibitor did not change the 

expression of NICD (Fig 10C). Thus NICD is probably upstream of HIF1.  
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Figure 10: Effect of CoCl2, DAPT and HIF1-Inhibitor on the expression of Hif1, NICD and TrpC6: 

A – U373 cells were grown in serum-free media containing CoCl2 for 2, 4, 8 and 16 hrs to 

induce hypoxia. The lysates were run in SDS-PAGE, transferred to PVDF membrane and then 

probed with GAPDH, HIF1-alpha, NICD and TrpC6 
B – U373 cells were pre-treated with DAPT in Opti-MEM for 2 hrs and then grown in serum-

free media containing CoCl2 for 2, 4, 8 and 16 hrs to induce hypoxia. The lysates were run in 

SDS-PAGE, transferred to PVDF membrane and then probed with GAPDH, HIF1-alpha, NICD 

and TrpC6 

C – U373 cells were pre-treated with HIF1-inhibitor in Opti-MEM for 2 hrs and then grown in 

serum-free media containing CoCl2 for 2, 4, 8 and 16 hrs to induce hypoxia. The lysates were 

run in SDS-PAGE, transferred to PVDF membrane and then probed with GAPDH, HIF1-alpha, 

NICD and TrpC6 

D,E,F – Densitometry analysis of HIF1-alpha, NICD and TrpC6 expression based on the 

intensity of band in the western blots.  

B A C 

D E F 
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3.3 TrpC6 is the downstream mediator of Notch-mediated pathway: 

Expression of TrpC6 was affected by blocking Notch and HIF1 (Fig 9B and 9C). Thus it is the 

downstream mediator of both these proteins. Role of TrpC6 in the pathway was further 

confirmed by knocking down TrpC6 using specific siRNA. Abrogation of TrpC6 after 

transfection with siRNA confirmed the specificity and efficiency of the siRNA (Fig 10A and Fig 

10B).    
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Figure 11: Test for siRNA transfection efficiency: 

 

A – Quantitative Real-Time PCR to check of efficiency of TrpC6 siRNA transfection. U373 

cells were either transfected with TrpC6 siRNA (S2, S4, S6, S8, S16) or not transfected with 

siRNA (C2, C4, C6, C8, C16), exposed to hypoxia for 2, 4, 6, 8 and 16 hrs and then harvested 

for PCR.  

B – Western blots showing the expression levels of TrpC6 to check for the efficiency of TrpC6 

siRNA. U373 cells were either transfected with TrpC6 siRNA (S2, S4, S8, S16) or not 

transfected with siRNA (C2, C4, C8, C16), exposed to hypoxia for 2, 4, 8 and 16 hrs and then 

harvested for western blot analysis. GAPDH was used as loading control.  

 

B 
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The next step was to see the effect of TrpC6 siRNA on the different stages of tumor metastasis. 

Therefore we conducted a series of experiments. These include – 

 Migration assay to check the invasive property of the cells (Fig 11) 

 In-vitro tube morphogenesis on matigel assay to check for the role of TrpC6 in the 

angiogenesis process (Fig 12) 

 MTT assay for cell proliferation (Fig13)  

 Brdu-incorporation assay for cell proliferation (Fig14) 

 Soft agar colony formation assay to check for the tumorigenic ability of the cells (Fig 15)  

For all these experiments, U373 cells were used and four experimental conditions were chosen, 

– Group 1: Control cells that were not exposed to any treatment 

– Group 2: Cells treated with CoCl2 but not transfected with anything 

– Group 3: Cells transfected with scrambled RNA and also treated with CoCl2 

– Group 4: Cells transfected with siRNA and also treated with CoCl2 

Scrambled+CoCl2 acted as control for transfection efficiency.  

For all the experiments, the metastatic activity being tested was significantly increased in Group2 

(CoCl2-only) and Group 3 (Scrambled+CoCl2). Group 1 (Control) cells showed normal activity. 

However in Group 4 (siRNA+CoCl2) the metastatic activity was significantly reduced. These 

results prove beyond doubt that TrpC6 is indeed required for the metastasis of these cells.  
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Figure 12: Invasion/Migration assay:  

 

The transfected cells were incubated in transfection media for 24 hrs. Cells treated with CoCl2 

were exposed to hypoxia for 6 hrs. The cells were then trypsinized and used for migration assay.  

A – Picture of the tube-formation showing the number of new blood vessels formed. 

B – Graphical representation of percentage of branching points. 

A 

B 
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Figure 13: In-Vitro tube morphogenesis on matrigel: 

 

The transfected cells were incubated in transfection media for 24 hrs. Cells treated with CoCl2 

were exposed to hypoxia for 6 hrs. The conditioned media from these cells were collected and 

used for angiogenesis assay.  

A – Picture of the tube-formation showing the number of new blood vessels formed. 

B – Graphical representation of percentage of branching points. 

A 
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Figure 14: MTT assay 

 

The transfected cells were incubated in transfection media for 24 hrs. Cells treated with CoCl2 

were exposed to hypoxia for 6 hrs. The cells were then trypsinized and used for MTT assay. For 

MTT assay the cells were incubated for 1, 2, or 3 days. 

A – Graphical representation of OD readings from MTT assay which corresponds to the number 

of live, proliferating cells.  

A 



43 

 

 

C
ontr

ol

C
oC

l2

S
cr

am
ble

d+C
oC

l2

si
R
N
A
+C

oC
l2

0

25

50

75

100
* *

*%
  

B
rd

u
 p

o
s

it
iv

e
 c

e
ll

s

 

Figure 15: Brdu-incorporation assay 

 

U373 cells were transfected with siRNA and maintained in transfection media for 24 hrs. Then 

they were exposed to hypoxia for 6 hrs by treating with CoCl2. During the last 3 hrs of 

incubation with CoCl2, the cells were treated with Brdu. Then the cells were fixed with 4% 

paraformaldehyde and stained. 

A – Immunocytochemistry for Brdu-incorporation assay. Blue represents the nucleus of Brdu-

negative cells and pink represents Brdu-positive cells. 

B – Graphical representation of average percentage of Brdu-positive cells which corresponds to 

the number of proliferating cells.  

  

A 
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Figure 16: Soft agar colony formation assay 

The transfected cells were incubated in transfection media for 24 hrs. Cells treated with CoCl2 

were exposed to hypoxia for 6 hrs. The cells were then trypsinized and used for soft agar 

colonogenic assay. 

A – Picture of the colony growth. 

B – Graphical representation of the number of colonies formed. 

C – Graphical representation of the average diameter of the colonies formed. 

 

 

A 
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CONCLUSIONS 

A schematic representation of the projected pathway based on our findings is shown in Fig 16. 

The main hypothesis and aim of our project is to establish and provide evidence for the role of 

TrpC6 channels in metastasis of glioblastoma. Increased expression of NICD, HIF1-alpha and 

TrpC6 and also the knowledge that we have from the literature lead us to deduce that Notch, 

HIF1 and TRPC6 are required for cellular response to hypoxia and these can induce malignancy 

in tumor cells. Therefore we set out to establish a link between these three proteins.  Dependence 

of HIF1-alpha expression on Notch activity explains how Notch and HIF1 pathways are 

integrated as a response to hypoxia. Reduced expression of TrpC6 upon inhibition with either 

DAPT or HIF1-inhibitor proved that both NICD and HIF1-alpha cooperate and act via TrpC6. 

Knocking down of TrpC6 resulted in considerable reduction in various steps of metastasis 

including migration, angiogenesis, cell proliferation and tumorigenesis, This perfectly fits in our 

puzzle proving that it is indeed the downstream mediator of hypoxia-induced metastasis of 

Glioblastoma. This role of TrpC6 in metastasis of cancer cells opens up new horizons in cancer 

research and can act as a target for pharmacological intervention. We are further extending our 

study by looking at the downstream of TrpC6. Evidences show the involvement of NFAT in 

TrpC6-mediated pathways. Thus we are trying to confirm if NFAT is involved in this role of 

TrpC6 in metastasis of Glioblastoma as well.  
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Figure 17: Schematic representation of projected pathway for notch response to hypoxia in cancer cells 
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