
University of Central Florida

Electronic Theses and Dissertations Doctoral Dissertation (Open Access)

A Theory Of Complex Adaptive Inquiring
Organizations: Application To Continuous
Assurance Of Corporate Financial Information
2009

John Kuhn
University of Central Florida

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

Part of the Management Information Systems Commons

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses
and Dissertations by an authorized administrator of STARS. For more information, please contact lee.dotson@ucf.edu.

STARS Citation

Kuhn, John, "A Theory Of Complex Adaptive Inquiring Organizations: Application To Continuous Assurance Of Corporate Financial
Information" (2009). Electronic Theses and Dissertations. 3916.
https://stars.library.ucf.edu/etd/3916

https://stars.library.ucf.edu?utm_source=stars.library.ucf.edu%2Fetd%2F3916&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu?utm_source=stars.library.ucf.edu%2Fetd%2F3916&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd?utm_source=stars.library.ucf.edu%2Fetd%2F3916&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu
http://network.bepress.com/hgg/discipline/636?utm_source=stars.library.ucf.edu%2Fetd%2F3916&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd/3916?utm_source=stars.library.ucf.edu%2Fetd%2F3916&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lee.dotson@ucf.edu
https://stars.library.ucf.edu?utm_source=stars.library.ucf.edu%2Fetd%2F3916&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu?utm_source=stars.library.ucf.edu%2Fetd%2F3916&utm_medium=PDF&utm_campaign=PDFCoverPages

A THEORY OF COMPLEX ADAPTIVE INQUIRING ORGANIZATIONS:
APPLICATION TO CONTINUOUS ASSURANCE
OF CORPORATE FINANCIAL INFORMATION

by

JOHN R. KUHN, JR.
B.S. University of Central Florida, 1994
M.B.A. University of Pittsburgh, 1997

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in the Department of Management Information Systems
in the College of Business

at the University of Central Florida
Orlando, Florida

Summer Term
2009

Major Professors: James F. Courtney, Paul Cheney

ii

© 2009 John R. Kuhn, Jr.

iii

ABSTRACT

Drawing upon the theories of complexity and complex adaptive systems and the

Singerian Inquiring System from C. West Churchman’s seminal work The Design of Inquiring

Systems the dissertation herein develops a systems design theory for continuous auditing

systems. The dissertation consists of discussion of the two foundational theories, development of

the Theory of Complex Adaptive Inquiring Organizations (CAIO) and associated design

principles for a continuous auditing system supporting a CAIO, and instantiation of the CAIO

theory. The instantiation consists of an agent-based model depicting the marketplace for Frontier

Airlines that generates an anticipated market share used as an integral component in a mock

auditor going concern opinion for the airline. As a whole, the dissertation addresses the lack of

an underlying system design theory and comprehensive view needed to build upon and advance

the continuous assurance movement and addresses the question of how continuous auditing

systems should be designed to produce knowledge – knowledge that benefits auditors, clients,

and society as a whole.

iv

ACKNOWLEDGMENTS

First and foremost, I dedicate this dissertation to my loving and supportive wife, Tracey,

two beautiful daughters, Alyssa and Jillian, and of course, my parents. Without their positive

attitudes and unwavering support I never would have reached this point. I feel the deepest

gratitude and have the greatest regard for my dissertation co-chairs, Drs. Paul Cheney and James

Courtney. The two of them helped me through a potentially disastrous situation that would have

nipped my academic career in the bud. With their encouragement and support, I persevered. My

PhD endeavor has been one of the most challenging yet rewarding experiences of my life, one

that I would choose again over and over. I would be remiss without expressing my thanks to Dr.

Robin Roberts who, in conjunction with Drs. Cheney and Courtney, convinced me to leave

public accounting and pursue a career in academia. Finally, I wish to thank the other members of

my dissertation committee (Dr. Bonnie Morris, Dr. Mihir Parikh, and Dr. Ross Hightower) for

providing me with insightful comments to constantly improve this dissertation.

v

TABLE OF CONTENTS

LIST OF FIGURES ... viii

LIST OF TABLES ... ix

CHAPTER ONE: INTRODUCTION ... 1

CHAPTER TWO: LITERATURE REVIEW ... 5

Continuous Assurance and Continuous Auditing ... 5

Background ... 5

Continuous Auditing Movement: Yesterday, Today, and the Future 7

Complexity .. 10

Views and Theories of Complexity .. 10

Complex Adaptive Systems .. 13

Internal Mechanisms ... 15

Agents and schema ... 15

Self-organization and emergence .. 17

Connectivity .. 18

Dimensionality .. 19

Environment .. 21

Dynamism ... 21

Rugged landscape ... 23

Co-evolution ... 24

Quasi-equilibrium and state change .. 25

Non-linear changes ... 27

Non-random future.. 28

Related Research in Accounting ... 30

Related Research in IS .. 32

vi

Simulation and Agent-Based Modeling .. 34

Summary ... 37

CHAPTER THREE: A COMPLEX ADAPTIVE INQUIRING ORGANIZATION 38

Introduction ... 38

Complex Adaptive Systems .. 40

Churchman’s Singerian Inquiring System .. 41

Design Principles for a Continuous Auditing System to Support a CAIO 45

Nature and purpose of the system ... 47

Environment and Measures of Performance ... 48

Client, Designer, and Decision Maker .. 49

Operating Mode, Process and Control, and Nature of Change ... 50

Discussion ... 51

CHAPTER FOUR: AN INSTANTIATION OF THE CAIO THEORY 53

Introduction ... 53

Design Science .. 53

Simulation and Agent-Based Modeling .. 54

The Research Problem .. 55

Construction of the Model .. 57

The Company .. 57

Design Specifications .. 58

Overall Modeling Philosophy ... 60

Realism versus Simplicity... 60

Agent Design .. 61

Verification and Validation ... 62

vii

Types of Agents and Agent Behavior ... 63

Consumer Agent Properties .. 63

Consumer Agent Behavior .. 68

Airline Agents ... 69

Environmental Factors .. 72

Design Specifications and Model Functionality ... 74

Simulation Results and Financial Statement Analysis.. 78

Test Design ... 78

Simulation Results .. 79

Financial Statement Analysis .. 82

Revenue Estimates .. 84

Cost and Expense Estimates ... 86

Analysis of Projected Operating Income and Cash Flow ... 87

Discussion and Summary .. 88

CHAPTER FIVE: CONCLUSION... 90

APPENDIX A: ACCOUNTING JOURNALS ... 94

APPENDIX B: INFORMATION SYSTEMS JOURNALS... 97

APPENDIX C: GOING CONCERN GUIDANCE .. 99

APPENDIX D: A TAXONOMY OF INFERENCE .. 102

APPENDIX E: LIST OF MODEL ASSUMPTIONS ... 104

APPENDIX F: LAST AIRLINE AND LAST EXPERIENCE ASSIGNMENT........................ 107

APPENDIX G: JAVA CODE ... 109

APPENDIX H: PROSPECTIVE OPERATING INCOME STATEMENT AND CASH FLOW
... 197

APPENDIX I: COMPARISON OF PROSPECTIVE FINANCIAL INFORMATION TO 2007
ACTUAL DATA .. 199

viii

LIST OF REFERENCES .. 201

LIST OF FIGURES

Figure 1: Underlying principles of complex adaptive systems. .. 15

ix

LIST OF TABLES

Table 1: Characteristics of the Complex Adaptive Inquiring Organization 46

Table 2: Design Principles for a Continuous Auditing System to Support a CAIO 51

Table 3: Design Specifications ... 59

Table 4: Consumer Travel Frequencies .. 66

Table 5: Model Functionality .. 76

Table 6: Comparison of Model Simulation Results .. 82

Table 7: Pro forma Operating Income and Cash Flow Items ... 84

1

CHAPTER ONE: INTRODUCTION

The massive corporate frauds and the related bankruptcies of the late 1990’s and early

2000’s such as Enron, WorldCom, Adelphia, and others sent shock waves through the financial

markets resulting in wide-spread concern over stronger corporate governance, improved internal

controls, more transparent and timelier corporate reporting, and expansion of assurance activities

– particularly in the area of information technology (IT) controls over financial reporting. The

federal government intervened by passing the “Public Company Accounting Reform and

Investor Protection Act” (commonly referred to as the “Sarbanes-Oxley Act” or “SOX” after the

congressmen sponsoring the legislation). Many consider SOX the most significant corporate

governance legislation since the securities laws passed in the 1930’s (Hoffman and Rowe 2007).

The Act highlights many of the inherent flaws of the corporate financial reporting process and

the associated attestation framework. However, the Act does not address one major issue: the

attestation timeframe. The traditional once a year audit of corporate financial statements hinders

timely and relevant assurance reporting (Vasarhelyi and Halper 1991). The Securities and

Exchange Commission (SEC) is currently working towards a mandate that all registrants

(primarily public companies) report in the eXtensible Business Reporting Language (XBRL)

format (Cox 2008) that will, along with many other advantages, set the stage for continuous

reporting and continuous assurance.

Continuous assurance of corporate financial information will require unique information

systems (IS), referred to as continuous auditing applications/systems, to meet the needs of the

assurers (public accounting firms) as well as other involved parties such as executive

management of the organizations producing the financial statements, owners of these

2

organizations, consumers, regulatory authorities, financial market participants, creditors, etc.

These individuals and organizations in essence create a dynamic, connected network of actors

that act/react to the behaviors of each other and the influences of external forces. For instance,

environmental factors may affect the availability of key resources. The combination of drought

in Australia, flooding in Europe, and the increased production of biofuels (farmers more

interested in growing corn and soybeans rather than hops) have resulted in a shrinking supply of

hops forcing beer breweries in Minnesota to find alternative and more expensive sources;

experts predict some varieties of hops will increase in price by 400 percent and local beer prices

may rise as much as 15 – 20 percent (Dyslin 2007). Continuous auditing systems therefore must

be designed to support constantly changing environments, generate new knowledge, and provide

decision support in an increasingly complex and connected world.

As a relatively new field, only minimal research has touched on the design of continuous

auditing systems and the interaction of the various parties involved in and affected by the

attestation process. Diverse views of and approaches to system design exist but, in general, many

IS researchers consider system design as the central focus of the IS discipline (Markus,

Majchrzak, and Gasser 2002). C. West Churchman (1971) considered design as a thinking

process that involved the selection of an alternative from several possible alternatives in order to

attain some goal and that design was an activity used to better the human condition (Parrish

2008). As noted in the American Institute of Certified Public Accountants (AICPA) Code of

Professional Conduct, the audit profession shares Churchman’s view of serving humanity:

3

“Members should accept the obligation to act in a way that will serve the public

interest, honor the public trust, and demonstrate commitment to professionalism.”

(American Institute of Public Accountants 2008)

This research study strives to address the lack of an underlying system design theory and

comprehensive view in order to build upon and advance the continuous assurance movement.

Broadly, can information systems help auditors gain a better understanding of the complex

environment in which their audit clients operate in order to properly opine on reported financial

statements in a timely manner? More specifically (and the research question of this study), “How

should continuous auditing systems be designed to produce knowledge – knowledge that benefits

auditors, clients, and society as a whole”? To answer this question, I developed a comprehensive,

system design theory specifically for continuous auditing systems based on the theoretical

underpinnings of complexity theory and the system requirements for Churchman’s (1971)

Singerian Inquiring System (SIS). Subsequently, I instantiated this general model by creating an

agent-based simulation model of the airline industry that includes agents representing a specific

airline (the audit client), key competitors, consumers, the general economic environment, etc.

Simulation results of the specific model facilitated analysis of the selected organization’s ability

to continue operations and can act as a decision aid for the auditor’s assessment of this

organization’s ongoing viability – a requirement of generally accepted auditing standards

(GAAS).

The remainder of this research study consists of three distinct essays (i.e. chapters 2 - 4)

with a final chapter tying everything together and continues as follows. First, I present

supporting background information and a review of related literature on continuous

4

assurance/auditing, complexity theory, complex adaptive systems, and simulation and agent-

based modeling. The next essay examines the key tenets of Churchman’s (1971) SIS, discusses

how complex adaptive systems theory and SIS can inform one another, and presents a set of

design principles for knowledge management (KMS) and decision support systems (DSS) that

support a Complex Adaptive Inquiring Organization (CAIO). The final essay offers background

information on the auditor’s going concern opinion, details the design of an agent-based

simulation model of the airline industry based on the CAIO organizational learning theory that

can be developed into a CA application, and presents simulation results that are intended to

support an auditor’s going concern assessment of a particular client in the airline industry.

5

CHAPTER TWO: LITERATURE REVIEW

Continuous Assurance and Continuous Auditing

Background

The existing approach to auditing corporate financial statements contains two inherent

flaws that have raised concerns in both academia and practice. First, fraud, by nature, is meant to

deceive and extant research highlights the inability of auditors to consistently detect financial

fraud through existing manual procedures (Kuhn and Sutton 2006). Pincus (1989) utilized a

checklist of fraud indicators, similar to ones used in practice developed from the SAS No. 82 risk

categories. Surprisingly, participants not using the checklist identified more fraud situations than

those with access to the list. Hackenbrack (1993) also incorporated a checklist of potential fraud

indicators in an experimental setting and noted differing perceptions of the level of fraud risk for

each indicator across the participants.

Continuing the research stream of auditor risk assessment, Asare and Wright (2004)

examined the impact of alternative risk assessment approaches. The study found that auditors

relying on the standard risk checklist generated lower risk assessments than those without a list

suggesting use of a pre-defined checklist results in a less effective diagnosis of fraud. Second,

the nature of the traditional attestation framework hinders timely and relevant assurance

reporting (Vasarhelyi and Halper 1991). Performing an audit only once a year may result in

fraudulent activity going undetected for up to a year or more and key stakeholders must wait an

entire audit cycle to determine if the financial numbers released by an organization are correct in

all material respects and that appropriate internal controls are in place to detect financial fraud.

Critical decisions by investors, creditors, management, and others therefore may be determined

6

from out-of-date information and conjecture rather than current, audited facts. This situation

raises the risk of making less than optimal decisions.

Concerns over these weaknesses, in combination with the corporate frauds of the early

part of this millennium, fostered the continuous assurance and auditing movement that many

consider a viable approach to help identify potential audit concerns earlier in the process. In a

joint study performed by the Canadian Institute of Chartered Accountants and American Institute

of Certified Public Accountants, continuous auditing is defined as ‘‘a methodology for issuing

audit reports simultaneously with, or a short period of time after, the occurrence of the relevant

events’’(CICA/AICPA 1999). Over time, continuous assurance proponents have refined the

related terminology and now recognize two distinct types: ‘‘continuous auditing’’ and

‘‘continuous assurance.’’ Alles et al. (2002) presented the distinction as follows:

“[Continuous auditing] is best described as the application of modern information

technologies to the standard audit products ... Continuous auditing is another step

in the path of the evolution of the financial audit from manual to systems-based

methods ... By contrast, continuous assurance sees continuous auditing as only a

subset of a much wider range of new, nonstatutory products and services that will

be made possible by these technologies.”

Consistent with this description, the remainder of this research study focuses on the technique of

continuous auditing as a tool in an overall continuous assurance framework. Going forward in

this manuscript, ‘CA’ will mutually represent the terms ‘continuous auditing’ and ‘continuous

assurance”.

7

Continuous Auditing Movement: Yesterday, Today, and the Future

Many in the continuous auditing field consider the work of Vasarhelyi and Halper (1991)

to be the groundbreaking study that initiated the movement. The authors developed a framework

for a CA approach called the Continuous Process Auditing Methodology (CPAM). CPAM

consists of three primary phases: measurement, monitoring, and analysis that together represent

the foundation for the CA process. The measurement phase involves the identification of key

metrics that will be compared to a set of standards; examples include account balances from

financial statements, cost center expenses, and system configuration settings. Once metrics have

been derived, the underlying data need to be examined in the second (monitoring) phase where

the continuous audit system compares the metric data to the standards programmed into the

system (referred to as “analytics”) on a real or near real-time basis, hence the term “continuous.”

Any significant differences between the metrics and analytics automatically trigger alarms to

notify auditors of any potential issues. In the final analysis phase, auditors review the nature of

the alarms and investigate as they deem appropriate.

Vasarhelyi et al. (2004) referred to this process of auditing transactions nearer to the

event on an exception basis as “analytic monitoring” and described new assurance technologies

that can facilitate the CA tasks of observing events as they happen, triggering alarms on

exceptions, drilling down to transactional detail, integrating data across multiple and distinct

processes, and performing repeated tests at minimal cost. Some of the tools the authors discussed

include continuity equations, tagging data accuracy, time series analysis, and data taps.

Additional studies examined various advanced information technologies that may be applied to

CA such as data warehouses (Rezaee et al. 2002), public cryptography (Ricart 2007), and text

8

mining (Gray and Debreceney 2006). Kuhn and Sutton (2008) issued a call for more

sophisticated analytics that apply artificial intelligence techniques or mathematical algorithms to

improve the detection capabilities and effectiveness of continuous monitoring systems.

Over the past 20 years, two methodologies of CA emerged: embedded audit modules

(EAM) and the monitoring control layer (MCL). EAM are software components built directly

into an IS to monitor activities (Groomer and Murthy 1989). In contrast, the MCL approach

consists of an external software application that interfaces with the system under audit in order to

perform monitoring functions (Vasarhelyi and Halper 1991). EAM has received the greatest

initial attention with a focus on building audit functionality into existing enterprise resource

planning systems (Debreceny et al. 2003; Debreceny et al. 2005). Inherent limitations exist,

however, that prevent broad implementation of EAM, particularly for external audit firms (Kuhn

and Sutton 2008). For instance, implementing foreign code into an existing system may result in

adverse affects to overall system performance, maintaining EAM code in all the connected

systems of a large organization can be an arduous task, and legal issues may arise if the EAM

code an external auditor operates and maintains in a client’s IS causes problems to operability of

the system. For these and numerous other reasons, the MCL approach has gained traction. Two

recent studies analyzed the design of CA systems for specific organizations, one for the

monitoring of system configuration settings and controls (Alles et al. 2006) and another for the

monitoring of transaction level data (Kuhn and Sutton 2006). Both studies argued that MCL

rather than EAM is the most efficient and effective approach to CA.

 Very few actual, full-scale CA systems have been developed to date. The majority have

been small implementations for very specific business functions or basic internal controls and

9

none by any external auditor firms. Vasarhelyi and Halper (1991) implemented an auditing

procedure to examine the accounts payable function at Bell Labs as did Coderre (2006) for the

Royal Canadian Mounted Police. Vasarhelyi (2005) and Kuhn and Sutton (2006) examined the

Enron and WorldCom frauds, respectively, and demonstrate hypothetically how continuous

assurance would have helped detect the fraudulent behavior. In both studies, the CA system

proposed incorporates information external (i.e. from the environment) and internal (e.g.

historical time series data) to the organization in order to develop and revise the standards to

which the metrics are compared. For example, Kuhn and Sutton (2006) illustrated how

“sweeping in” key financial ratio data from the telecommunications industry (e.g. operating

expenses as a percentage of total revenue) and comparing to WorldCom ratios would have

highlighted a significant deviation from both industry trends and WorldCom’s own historical

averages. Neither study provided a supporting theoretical foundation for the proposed system

design. Alles et al. (2006) offered one of the most widespread implementations in their pilot

project to monitor business process controls for the United States (U.S.) IT internal audit

function of Siemens Corp. Of the approximately 200 audit action sheets (i.e. audit steps) for an

audit of a Siemens SAP system, the project team determined about 25% could be automated with

CA, saving significant time and money (Haardoefer 2005). Although Alles et al. (2006) detailed

the architecture designed and rules implemented, once again the underlying theoretical design

principles are not discussed.

The current SEC initiative for mandated continuous reporting of financial information

and the focus of SOX on tighter internal controls over financial reporting and more transparency

create an even stronger impetus to develop and implement CA functionality. CA can provide the

10

external auditor a method of providing a more comprehensive, efficient, and effective audit by

automating the testing of the full population of transactions for specific audit areas rather than

evaluating only smaller samples due to the time constraints of manual processing. Boundless

opportunities exist for researchers and practitioners alike to determine the optimal design,

implementation approaches, and aftereffects of CA system use.

The environment in which organizations operate has become increasingly complex.

Internal and external parties interact with one another creating a dynamic, connected network

where the actions of one individual or organization can significantly affect the livelihood and

behavior of others regardless of time and space dimensions. Auditors must be cognizant of this

fact and consider the implications of external forces on their clients’ operations. The remainder

of this essay introduces the theories of complexity and complex adaptive systems (CAS) then

discusses the techniques of simulation and agent-based modeling designed to analyze complex,

organizational phenomena.

Complexity

Views and Theories of Complexity

Complexity, what does it truly mean? Depends who you ask. The Merriam-Webster

Online Dictionary defines the word as “a whole made up of complicated or interrelated parts”

(Merriam-Webster 2008). This understanding held true until about 15 years ago (Laurent and

Koch 1999) when a new, deeper interpretation emerged distinguishing complexity from

complicated (Reitsma 2003; Mikulecky 1999). A complicated system (and the original view of

complexity) can be completely and accurately described regardless of the number of individual

components (Reitsma 2003); “complication is a quantitative escalation of that which is

11

theoretically reducible” (Chapman 1985). A complex system, on the other hand, cannot be fully

understood by analyzing the components (Cilliers 1998); the whole is greater than the sum of its

parts where the dynamics of real systems arise from traits of the individuals and their

environment (Siebers and Aickelin 2007). The core of complexity science lies in understanding

the indirect effects that arise from the interactions of system components.

Collectively, complexity science and research have taken the “anti-reductionist” approach

to analyzing phenomena. Chapman (1985) argued that if the world can be explained in a

reductionist manner then complexity is not qualitatively different from simplicity but merely

quantitatively different. The main task for complexity science is to explain how relatively stable,

aggregated, macroscopic patterns emerge from local interactions of numerous lower level entities

(Srbljinovic and Skunca 2003). Over time, the anti-reductionist view of complexity has become

the dominant approach but as Edmonds (1999) stated, many techniques under the banner of

complexity inappropriately apply the concept of complexity when describing complicated or

difficult systems.

Within the ever-expanding circle of anti-reductionist complexity advocates, a wide

variety of opinions exist as to the particulars of complexity science. Complexity theories

originated with the mathematical models of weather systems built by meteorologists (Lorenz

1993) and quickly spread to other natural science disciplines such as biology, chemistry, physics,

etc. (Styhre 2002) and eventually to the social sciences. Due to the breadth of the disciplines

employing complexity, many competing, contradictory, and confusing definitions of complexity

arose and still exist today (Horgan 1995; Corning 1997; Richardson and Cilliers 2001; Parellada

2002; Manson 2003; Burnes 2005). Overviews of complexity research identify a myriad of

12

complexity sciences (Matthews et al. 1999), a whole series of fields of study (Thrift 1999), and

acknowledgement that no over-arching theory of complexity exists (Cilliers 1998).

Manson (2001) attempted to introduce some order by classifying the body of research

(theories and models) into three, not mutually exclusive, groups of complexity research:

algorithmic, deterministic, and aggregate. Algorithmic complexity theory consists of two aspects.

The first relates to the calculation of the effort to solve a mathematical problem that is considered

so complex that it is unsolvable; examples include spatial statistics and geographic information

science (Manson 2003). The second views complexity as the simplest computational algorithm

that can reproduce system behavior and facilitates condensing system component interactions

into simple measures. This approach has been used to understand the limits on the

thermodynamic cost of computations (Zurek 1989) and computing the minimum distance of a

linear code (Vardy 1997).

Similar to algorithmic complexity, deterministic complexity relies on the use of

mathematics but incorporates key aspects of both catastrophe and chaos theory. Catastrophe

theory attends to systems that experience large, sudden changes in the state of the system as a

result of a small change in an element and/or attribute. The system can go from stable to total

disequilibrium very quickly. A commonly cited example is the threatened dog that either

suddenly moves to attack or panics and flees (Simon 1996).

Chaos theory addresses dynamic systems that constantly transform themselves in an

irreversible, evolutionary manner (Bechtold 1997; Haigh 2002), are sensitive to initial

configuration conditions, yet possess an underlying order allowing short-term understanding and

forecasting. However, the complex patterns of behavior (i.e. non-linearity) of these systems

13

prevent long-term prediction as behavior is not proportional to the multiples (Fitzgerald and van

Eijnatten 2002); chaotic systems are not subject to the laws of cause and effect (Burnes 2005;

Pascale 1999). Aggregate complexity, the most commonly employed view popularized by the

Santa Fe Institute (a private research organization focusing on complexity), takes the core

principles of catastrophe and chaos theory even further than deterministic complexity by

focusing on the interaction of system components rather than constructing models at the macro

level. Note, a significant difference between complexity theories, particularly the aggregate

view, and catastrophe and chaos theories, lies in the nature of the system with the latter

concerned only with closed, isolated systems while the former on open ones. The aggregate view

of complex systems truly epitomizes the anti-reductionist adage “the whole is greater than the

sum of its parts.” The varied and intertwined network of relationships among the system

components extend beyond simple feedback into higher order, non-linear processes not amenable

to modeling with traditional techniques (Constanza et al. 1993). This notion of aggregate

complexity underlies the theory of complex adaptive systems that lies at the heart of this

particular study. The next section delves further into CAS.

Complex Adaptive Systems

The theory of complex adaptive systems arose from the complexity theories spawned in

the natural sciences to develop mathematical models of systems in nature. Although considered

one stream of complexity research, many variations of the definition and key premises of CAS

exist. A quote from John H. Holland, one of the original researchers in the area, best depicts the

general principles underlying CAS:

14

“A Complex Adaptive System is a dynamic network of many agents (which may

represent cells, species, individuals, firms, nations) acting in parallel, constantly

acting and reacting to what the other agents are doing. The control of a CAS tends

to be highly dispersed and decentralized. If there is to be any coherent behavior in

the system, it has to arise from competition and cooperation among the agents

themselves. The overall behavior of the system is the result of a huge number of

decisions made every moment by many individual agents” (Waldrop 1993).

CAS examples include economies, social systems, ecologies, cultures, politics,

technologies, traffic, weather, etc. (Dooley 1997). In order to adequately comprehend and utilize

a theory that spans such a wide array of disciplines with varied interpretations, Choi et al. (2001)

developed a comprehensive framework of CAS elements and attributes depicted in Figure 1. The

framework consists of three interacting and intertwined main foci each with a subset of

additional components: 1) internal mechanisms, 2) co-evolution, and 3) environment. The

remainder of this section reviews these foundational concepts and principles in more depth along

with examples of related research from social science domains (predominately business) as they

represent the supporting lens in which this study examines CAS.

15

Figure 1: Underlying principles of complex adaptive systems.
Adapted from Choi et al. (2001).

Internal Mechanisms

Agents and schema

Agents represent the building blocks of CAS and are semi-autonomous units that seek to

maximize some measure of goodness, or fitness, by evolving over time where fitness

corresponds to the general well-being of the system. Giddens defined agency as the ability to

intervene meaningfully in the course of events. The term ‘agent’, to an extent, can be viewed

synonymously with the term ‘actor’ commonly used in IS theories and research (see Actor

Network Theory in Johnston and Gregor (2000). Therefore, by definition, a system must include

agents that can impact the state of the system by their actions in order to be considered a CAS – a

definitive characteristic differentiating CAS from complicated systems. Examples of agents in a

social CAS include individuals inside organizations, organizations comprising a profession, or

• Agents
• Self Organization
 and Emergence

• Connectivity
• Dimensionality

Internal Mechanisms

• Quasi-Equilibrium
 and State Change

• Non-Linear Changes
• Non-Random Future

Co-Evolution

• Dynamism

• Rugged Landscape

Environment

16

even a profession operating in a global marketplace. The latter two illustrate a network of

multiple CASs functioning in concert. Defining agents and CASs thus depends entirely upon the

perspective of the onlooker.

CAS agents interact with other agents, both within their own system as well as with the

environment which may include other CASs and their respective agents, commonly referred to as

meta-agents (Benbya and McKelvey 2006). The exchange of information and resources between

agents facilitate the generation of schema (Schein 1992) defined as the norms, values, beliefs,

and assumptions shared among the collective that dictate the manner in which agents interpret

information and perform actions. Organizational leaders often declare formalized mission

statements, create codes of conduct, ethics statements, etc. that represent core values and guide

the behavior of agents, in particular, the interaction between employees and other stakeholders

(e.g. customers, vendors, and other related parties). Uhl-Bien et al. (2007) developed Complexity

Leadership Theory as a leadership paradigm that focuses on enabling the learning, creative, and

adaptive capacity for knowledge-producing organizations.

Within the bounds of these “rules of behavior” and shared values, agents strive to

increase the fitness of their system, both locally and globally. The actions of agents can result in

non-linear impacts to the local system and network of systems depending on the connectedness

of the system(s); a more connected system will generally experience larger ripple effects

throughout as agents interact in a dynamic fashion. Complex system behavior, therefore, can

occur when multiple non-linear processes interact (Choi et al. 2001).

17

Self-organization and emergence

Self-organization refers to the emergence of a pattern of order from a simple set of rules

governing agent behavior in a connected network without the intervention of a central controller

(Anderson 1999; Luoma 2006; Mason 2007) that allows limited chaos (Frederick 1998). The

self-organization process occurs from the bottom up through the interactions and inter-

relationships of agents at the lowest level creating new structures or behaviors unintentionally.

These emergent phenomena seem to have a life of their own with their own rules, laws, and

possibilities (Goldstein 1994; Zimmerman et al.1998) and can be observed holistically as ordered

patterns that emerge from aggregate individual behavior (Fuller and Moran 2001) that generate

infinite variety and unpredictability.

“One consequence of emergent complexity is that you cannot see the end from the

beginning … it is less comforting to put oneself at the mercy of this process with

the foreknowledge that we cannot predict the shape that the future will take.

Emergent complexity creates not one future but many ... Design for emergence

never assumes that a particular input will produce a particular output [but the]

design creates probabilistic occurrences that take place within the domain of

focus. Period. Greater precision is neither sought nor possible.” (Pascale 1999)

Reynolds (1987) presented the phenomenon of flocking birds as an illustration of the

self-organization process. The flocking pattern (i.e. the new structure) occurs not because of a

predetermined plan or unilateral control by the lead bird. The pattern emerges from the actions of

individual birds (agents) acting upon three simple rules based on local information: each bird 1)

keeps a minimum distance from the other birds, 2) flies at the same speed as other birds, and 3)

18

moves towards the center of the flock. The individual birds behave according to their own local

rules of interaction and a self-organized, coherent pattern emerges for the system as a whole.

From an organizational perspective, Burnes (2005) offered insight into the usefulness of

CAS theory:

“By reducing the workings of the natural world to mathematical models and

simple order-generating rules, complexity theories have an attractive elegance,

especially for those of us who seek to understand the complexity of the

organizational world.”

Individual managers cannot predict or plan long-term outcomes (Wilkinson and Young

1998; Frederick 1998; Kelly and Allison 1999; Mason 2007), but can adapt simple rules to

manage movement of the aggregate (i.e. the system) between stability and chaos (Lewin 1993;

Mason 2007). The aforementioned examples of mission statements, codes of conduct, and ethics

statements embody the underlying principles of simple rules that guide agent behavior, rather

than directly controlling the agent interaction. Examples of self-organization and emergence in

the business setting include development of new strategies (Conner 1998) and marketing tactics

(Forrest and Mizerski 1996), self-directed teams (Gault and Jaccaci 1996), growth of strategic

alliances (Wilkinson and Young 1998), and investor herd behavior that frequently is attributed to

irrationality but in actuality results from rational, local interactions and their non-linear

consequences (Andreoni and Miller 1995).

Connectivity

A key premise of CAS theory involves the concept of connectivity – the linkages of

agents inside a system with each other and to neighboring systems. Different elements (agents,

19

meta-agents, other CASs) continuously interact producing intertwined reactions nearly

impossible to anticipate or trace afterwards (Luoma 2006). As the number of agents increase, the

volume and layers of relationships, both direct and indirect, grow exponentially to such a

complex state that differentiating between cause and effect becomes too onerous.

The theory of reductionism asserts that complex data and phenomena can be explained by

a process of reducing to simpler terms and analyzing the components independently to gain

insight into the whole. Bettis and Prahalad (1995) and Dent (1999) argued the reductionist

approach fails to effectively provide knowledge of the whole when studying organizations due to

their complex nature. Viewing an organization as a CAS requires a holistic focus on the system

in aggregate, not individual agents or pockets of agents. The performance of the whole cannot be

enhanced by optimizing the performance of each individual agent nor should the problem with

one agent be examined in isolation from the system (Luoma 2006). A wider context must always

be at the forefront promoting examination of the unit in the broader perspective of agent

relationships, dependencies, and downstream effects. Analysis of these connected relationships

in a CAS offers a distinct opportunity to make the most of the agent diversity inherent in a

system thus facilitating richer interpretations of the environment and fostering creative solutions.

Dimensionality

Dooley & Van de Ven (1999) defined the dimensionality of a CAS as the degrees of

freedom that individual agents within the system have to enact behavior in a somewhat

autonomous fashion. Controls such as rules and regulations, budgets, limits of authority, etc.

constrain agent behavior and thus reduce dimensionality and change the complexity of the

system’s aggregate behavior (Stacey 1995; Thietart and Forgues 1995; Glass 1996). The system

20

becomes predictable, stable, and less flexible. CAS researchers refer to these constraints as

negative feedback in the sense the system works to maintain some stable condition where

deviations lead to corrective action. When agents are allowed more autonomy to make decisions

locally, outcomes then have the ability to emerge and cascade throughout the system possibly

leading to the innovation and competitive advantage. This emergence reflects the concept of

positive feedback where the system works to reinforce the phenomena increasing the overall

effect. Increased dimensionality thrives on positive feedback. As an example, two scientists

working together potentially can advance more rapidly than if in isolation due to the opportunity

to leverage the unique perspectives, background, and knowledge each individual offers.

A fine balance must exist between negative and positive feedback to maintain system

functionality. Pascale (1999) identified instances in the business world where either negative or

positive feedback systems went awry. Both IT&T and Sunbeam implemented strict cost cutting

measures that ultimately stifled imagination and creative energy leaving the companies in a state

of stagnation and unable to cope with changes to the business environment. ValuJet, on the other

hand, focused on expansive growth with little to no attention on appropriate controls –

operational, safety, reliability, and service standards. The company achieved profitability faster

than any other airline in history, apparently at the expense of implementing controls. The fatal

crash on May 11, 1996 that killed all 110 people aboard culminated a chain of incidents and

accidents that eventually led to grounding by the Federal Aviation Administration and a

subsequent reverse merger with the significantly smaller Airways Corporation, parent of AirTran

Airways. The successes of ValuJet amplified one another to the point where the company could

not maintain an adequate supporting infrastructure, resulting in total system failure.

21

Environment

A complex system owes its existence to relationships with its environment, defined as

anything outside of the system (Manson 2001). The system passes information and energy

throughout itself and the resulting actions/interactions of agents subsequently produces an

outflow to the environment that cycles back to the system; this process continues endlessly as

long as the system exists. The environment, in relation to a CAS, depends entirely upon the scale

of analysis chosen. For a CAS defined as the supply chain function of a manufacturing

organization, internal agents may consist of the employees in the production planning, inventory

management, and warehouse departments that interact with other potential internal CASs such as

the purchasing and accounting departments and even executive management. Externally, meta-

agents may include customers, suppliers, and transportation vendors. An expanded scale might

consider the manufacturing organization, in aggregate, as the system which interacts with

numerous other meta-agents in addition to the ones that interface with the supply function such

as regulatory agencies, corporate shareholders, taxing authorities, etc. Regardless of scale

chosen, (Choi et al.2001) characterize environments as dynamic and rugged.

Dynamism

The Merriam-Webster Online Dictionary defines dynamism as “a theory that all

phenomena can be explained as manifestations of force” (Merriam-Webster 2008). Complex

systems experience many sources of force, internally and externally. While a CAS attempts to

emerge through agent interaction and proactively influence other neighboring systems, the

external environment simultaneously exerts pressure on the CAS causing a reaction that, in turn,

22

affects the environment. CAS theory posits that a system both reacts to and creates its

environment through experiences of positive and negative feedback (Choi et al. 2001).

The constantly changing relationships among agents, between systems, and with the

environment result in changes to the schema organizations incorporate into their day-to-day

interpretations of reality and thus their behavior. The emergence of the Internet offers an

excellent example of a dynamic change in the environment. The Internet delivered broad-based

changes to the organization of economic activity so profound to warrant the title of a revolution;

the declining cost of information led to increased business traffic, greater information access,

personal autonomy in local decisions, and ultimately, greater dispersion of economic activity

(Feldman 2002). A number of simultaneous developments resulted in positive feedback that

reinforced and strengthened the Internet movement: expanding personal computer use,

technological advances in hardware and software, increased awareness by users, improvements

in telecommunications, falling technology prices, etc. (Luoma 2006).

As the Internet fever began to take hold, new competitors emerged to challenge

traditional brick and mortar organizations. Barnes and Noble operated the largest chain of

bookstores in the U.S. In 1997, the company surpassed the $2 billion revenue mark yet

encountered a new competitive threat in Amazon.com, a two-year old online bookseller with

1997 revenues of $148 million, an increase of 840% over the previous year, and which

subsequently reported 1998 revenues of $610 million. Barnes and Noble saw the writing on the

wall: the Internet would upend the traditional bookselling business model. In response to the

changing environment, Barnes and Noble launched an online platform to sell books and

eventually developed an in-stock inventory of over 750,000 titles ready for immediate delivery

23

and eight million new, out-of-print, and rare books – both of which the company claimed were

the largest in the industry (Answers.com 2007). The experiences of Barnes and Noble and many

others during the early years of the Internet demonstrate the interaction of numerous CASs and

the broader effects of agent actions in a dynamic environment.

Rugged landscape

By nature, the eventual outcome of agent interaction is unknown and unpredictable. CAS

researchers represent the potential states that a system can attain in a dynamic environment as a

rugged landscape with many hills and valleys (Kauffman 1997; Ethiraj and Levinthal 2004) and

is commonly referred to as a “fitness landscape.” The highest point in the landscape symbolizes

the optimal state of the system where the well-being of the system reaches its greatest level.

However, many system components (agents) operate in a tightly, coupled manner each

contributing to the overall direction of the system. The optimal state becomes difficult to locate

as many local optima exist for the individual components; choices at the local level do not

always result in performance gains at the organization level. Further exasperating the complexity

of a CAS, environmental pressures force the landscape to change eliciting agents to exploit

existing knowledge and explore new knowledge (March and Heath 1994) necessary to overcome

the uncertainty imposed by the environment and ensure survivability (Choi et al.2001).

Choi et al. (2001) discussed the inter-dependencies of agents and the overall state of a

CAS in the context of a supply chain network. The authors explained that incorporating modular

design in the automotive supply chain process reduced the number of peaks in the rugged

landscape creating a condition more conducive to overall system optimization. For example, as

opposed to the manufacture of individual parts, the automotive industry reorganized the entire

24

supply chain process to a point where first-tier suppliers produce entire modules or subsystems

(e.g. complete engines, steering systems, etc.) minimizing the cost of coordination across the

entire supply network.

Co-evolution

Co-evolution directly relates to the concept of connectivity in that multiple systems

and/or sub-systems emerge together because “there is feedback among the systems in terms of

competition or co-operation and utilization of the same limited resources” (Zimmerman et

al.1998). Symbiotic relationships exist as different parties (agents and neighboring systems)

depend upon and interact with each other. The environment imposes changes on its members

who react thus changing themselves and consequently changing the environment. Therefore, co-

evolution occurs when system members are forced to adapt continually to the changing context

wrought by others’ strategies in order to remain relatively fit (Van Valen 1973; Kim and Kaplan

2006).

In a business context, the increasing prevalence of partnerships and alliances in a

traditionally competitive environment indicates a general shift of practice and strategy towards

co-evolution (Luoma 2006). Many organizations seek to expand operations into foreign markets

not through acquisitions and mergers but through mutual agreements in order to leverage the

knowledge and resources of each party. Grant and Baden-Fuller (2004) presented a theory of

strategic alliances that focuses on alliances as a strategic tool to access knowledge resources of

other organizations rather than through acquisition of the organization possessing the knowledge.

Alliances contribute to the efficiency in the application of knowledge by improving the

integration of knowledge into the production of complex goods and services and increasing the

25

efficiency of knowledge utilization. The efficiency advantages of alliances are enhanced when

uncertainty exists in the environment.

Quasi-equilibrium and state change

Unlike chaos theory that focuses on the discovery of unpredictable behavior, complexity

science and CAS theory strives to explain how order emerges from self-organizing agent

interaction (Kauffman 1993; Holland 1995). Within the apparent randomness of a CAS, order

can be unmasked to predict broad behavior in the short-term, not at the individual agent level but

in the aggregate. Mainzer (1997) and McKelvey (2004) referred to complexity as an order-

creation science.

Systems under complexity science can exist or vacillate between any of three states–

stable, chaotic, and one in between (Lewin 1992). Many complexity researchers label the middle

state as the “edge of chaos” (Lewin 1992; Kauffman 1995) where creativity, growth, and useful

self-organization are at their optimal (Frederick 1998). A CAS maintains this quasi-equilibrium

state, constantly balancing between complete order and incomplete disorder (Goldstein 1994).

Highly ordered systems exhibit too much rigidity to effectively respond to environmental

changes while highly chaotic systems cannot maintain any semblance of consistency and

eventually collapse from excessive disruption. The “poised” systems that lie in the middle “may

have special relevance to evolution because they seem to have the optimal capacity for evolving”

(Kauffman 1991). These systems adhere to the principle of maximum entropy production where

the system moves towards the brink of complete disorder (entropy) but never quite falls over the

edge as new energy flows into the system forcing redirection back to a quasi-equilibrium state.

26

The Luoma (2006) discussion of complexity and management development presented the

view that disequilibrium and disorder should not be seen as negative organizational attributes.

Attempts to entirely eliminate disorder suppress a system’s ability to self-organize (Stumpf

1995). Management should exert some control but allow an organization to exploit the innate

ability to spontaneously develop behavior that most effectively moves the whole in a given

direction. Weick (1979) supported this view by noting managers tend to get in the way of

activities that have their own self-regulation, form, and self-correcting tendencies.

As another example of quasi-equilibrium and state change, an organization may reach a

peak on the fitness landscape that represents a “Golden Age” of high prominence and

profitability that will eventually fade away, forcing the organization to traverse down the peak

into a “valley of darkness” before emerging on to another, potentially higher peak on the fitness

landscape. Apple Inc. offers a prime instance of an organization negotiating the fitness

landscape, teetering on the edge of chaos only to work its way to higher peak. Originally created

as Apple Computer (a.k.a. “Apple”) in 1976, a designer of personal computers, Apple entered a

stage of its corporate life during the period of 1989-1991 earning record profits and obtaining a

reputation as a quality manufacturer of desktop and portable computers. The trade magazine

MacAddict referred to this time period as “the first golden age” of the Macintosh (iPodGames

2008). However, the good times could not and would not last. Microsoft’s Windows operating

system continued to develop and established a stranglehold on the personal computer market.

Apple languished for nearly a decade until the return of Steve Jobs, one of the co-founders and

generally regarded as the catalyst behind the early successes of Apple. Introduction of the iMac

in 1998 and successful ventures into other consumer electronic products such as the iPod and

27

iPhone, represent the beginning of what is now being called “The New Golden Age of Apple”

(Brannan 2007) that will likely continue, for a time, before Apple must brave the valley once

again.

Non-linear changes

The level of sensitive dependence on initial conditions delineates a CAS from a stable

system (Briggs and Peat 1999; Phillips and Kim 1996). Generally, small changes in a stable

system result in small effects, while large changes produce large effects. Changes in a CAS

generate unpredictable effects; small changes can grow exponentially with each interaction

through the system and large changes may languish or disintegrate altogether through agent

inattention. Gibson (1997) and Wheatley (1996) advocated management application of small

“nudges” to guide an event or process rather than dramatic actions intended to control. As in

many instances in business, timing is everything. The right kind of nudge at the correct time can

lead, through positive feedback, to major change (Nilson 1995).

Mason (2007) presented the first-mover advantage as an illustration of non-linear change

in a business context. Sensitive dependence on initial conditions and positive feedback create a

“flywheel affect” that reinforces early success, providing a significant advantage over the long

term. A number of studies discounted first-mover advantage as a myth (Suarez and Lanzolla

2005; Pfeffer and Sutton 2006) yet others contended the opposite:

“To gain advantage, first movers must capitalize on the opportunities that come

with being a pioneer while at the same time manage the threats that arise. The

bottom line: Being first in a market is only an advantage when you do something

with it” (Finkelstein 2007).

28

Opinions supporting the validity of first-mover advantage epitomize core concepts of

CAS theory. First-mover advantage occurs as a result of non-linear relationships and positive

feedback yet the interaction between agents (pioneers, competitors, and the environment) results

in unpredictable outcomes – whether or not a pioneer can maintain the advantage through

proactive and reactive action.

Non-random future

Although the nature of a CAS prevents exact prediction of future actions and outcomes,

distinct patterns of behavior exist underneath apparent randomness allowing examination and

general predictive ability. Small changes may lead to drastically different future paths; however,

the same characteristic pattern of behavior emerges despite the change (Choi et al.2001).

Recent work in financial economics highlighted patterns of non-random behavior that

result in varied outcomes. Baker et al. (Baker et al.2002) attempted to solve the “dividend

puzzle” by examining how managers determine dividend policy. Calling upon earlier work on

habitual behavior (Waller Jr. 1989; Frankfurter and Lane 1984), the authors concluded that

various market imperfections and frictions affect organizations differently; therefore, dividend

policy differs from organization to organization and models should consider competing frictions

on an organization-specific basis. Underlying this work, Waller (1989) suggested the concept of

habit (non-reflective behavior) may be a useful tool for institutional policy analysis and can “be a

fatal blow to work that is based on rational behavior” (Baker et al.2002). Habits reflect cultural

and societal norms/standards that may contradict rational economic behavior. Further,

Frankfurter and Lane (1984) asserted habitual behavior causes problems for models attempting

to explain dividend policy assuming rational behavior and claimed socioeconomic consequences

29

of modern corporate evolution best explain dividend behavior. This stream of research, although

not explicitly stated, exhibits core CAS principles.

This section presented the elements of the CAS theoretical foundation presented by Choi

et al. (2001) and provided examples from academic research, the business environment, and

natural systems in order to explain the fundamentals underlying complex adaptive systems

theory. Concluding this section, a quote from Steve Miller, a member of Royal Dutch/Shell’s

committee of managing directors, epitomizes the impact of CAS theory on business strategy in

today’s knowledge-based, information-oriented economy in contrast to the traditional

management views of the past:

“Today, if you’re going to have a successful company, you have to recognize that

the top can’t possibly have all the answers. The leaders provide the vision and are

the context setters. But the actual solutions about how best to meet the challenges

of the moment, those thousands of strategic challenges encountered every day,

have to be made by the people closest to the action.” (Pascale 1999)

The goal of this dissertation to develop an organizational theory with complexity theory

at the core will be applied to the continuous assurance of corporate financial information

utilizing computer simulation. As such, the use of CAS in both accounting and IS research

warrants consideration. The remainder of the discussion on CAS examines related research in

each the accounting and IS disciplines then discusses opportunities for future research.

30

Related Research in Accounting

Ballas and Theoharakis (2003) explored the diversity in accounting research by

conducting a survey of accounting faculty on their perceptions of the most prominent journals

that publish accounting-related research. An extensive review of the 58 journals listed in that

study (see Appendix A) revealed only three articles that specifically discussed and incorporated

complexity and CAS theory into the core of the study. Mouck (1998) and (2000) explored the

challenges that chaos theory and complexity theory pose to the methodological views of capital

markets research in accounting, the dominant paradigm in North America. The assumptions of

neoclassical economics such as rational behavior, linearity, and predictability frankly fall short of

accurately depicting reality and thus, leading economics researchers at the Santa Fe Institute

have turned to CAS theory (Mouck 2000). More recently, Thrane (2007) examined the role and

practice of accounting in dynamic and complex business networks, specifically how management

accounting affects and effects change on complex inter-organizational systems. The author

concluded management accounting in complex evolving inter-organizational systems acts as a

source of instability rather than stability and as a source of emergent, unintended order rather

than planned or institutional change. This view represents a stark contrast to the commonly-held

belief that accounting rules and principles provide structure, consistency, and predictability.

The literature review also identified a few studies ancillary to CAS and/or published in

journals other than the original 52 examined. Continuing the theme of unpredictability, Gouws

and Lucow (2000) claimed traditional financial analysis approaches are no longer valid in a

constantly changing business environment and presented a dynamic balance model to establish

whether entities are able to adapt, survive, and prosper. Clarke (2005) drew a corollary between

31

the key concepts of CAS theory and corporate governance and reviewed details of the Enron

fraud under this lens. In the author’s opinion, corporate governance “must no longer confine its

analysis to the relationship between managers, boards, and shareholders” as the dynamic

complexity of corporate governance in a connected world requires new, fresh theoretical

perspectives. In the final related article identified during the literature review for this study,

Painter-Morland (2006) analyzed the central assumptions of the current view of accountability in

business ethics and offered a re-conceptualized version based on CAS theory. Under this

approach, accountability can be viewed as a relational responsiveness towards stakeholders. The

shared norms and values that organize and guide business behavior develop and emerge on a

contingent basis as colleagues, clients, and competitors interact. As the author states, “the

orderliness of business life is a reflection of the fluid internal logic of business as a system of

dynamic functional relationships.”

Although few in number, the aforementioned articles indicate CAS theory is slowly

making inroads into accounting research and literature. Traditionally, the accounting discipline

has borrowed theories from other areas such as management, economics, psychology, sociology,

etc. Management science has been examining large-scale complex systems for over two decades

as evidenced by early works based on complexity science published in Management Science

(Florian et al.1980; Tilanus 1981; Bitran and Yanasse 1982) and the inclusion of CAS theory in

the Astley and Van de Ven (1983) discussion of central perspectives and debates in organization

theory. The movement has persevered (see 1999 special issue on complexity in Organization

Science) and continues today (see 2007 special issue on complexity in Management Science). As

par for the course, I suspect accounting researchers will begin to see the merits of examining

32

accounting phenomena holistically as a part of and affected by dynamic, open systems that

constantly ebb and flow as a result of the localized behavior of connected agents.

Related Research in IS

The IS discipline has embraced the key tenets of complexity theory to a far greater extent

than accounting. As IS permeate all scientific disciplines, natural and social alike, IS researchers

possess a diverse background and varied worldview. For many, complexity research is not a new

approach but a staple in their research methodology repertoire. To determine the extent of usage

of complexity and CAS in IS research, I first examined the publications from the 30 highest

ranking journals for the IS research community as denoted by the Association for Information

Systems (AIS) on their website (see Appendix B). Per the website, the association is “a

professional organization whose purpose is to serve as the premier global organization for

academics specializing in Information Systems” (AIS 2008) and sponsors the two most

prominent IS conferences – The International Conference on Information Systems (ICIS) and

The Americas Conference on Information Systems (AMCIS). As such, the AIS journal rankings

hold sufficient credibility as a source of reference to identify leading journals for the discipline.

Review of the 30 journals identified 10 articles specifically incorporating complexity and

CAS theory into the structure of the study. In this group of studies, two broad themes emerge

linking two sets of articles with a remainder that addressed unique aspects of complexity and IS.

First, four of the articles examined how complexity can aid in understanding the dynamic,

unpredictable business environment organizations face today. In the earliest work found,

Fulkerson (1997) discussed the change in the nature of the business environment from one where

organizations could capture market share and achieve greater levels of profits by merely

33

producing larger volumes of products for mass market consumption to an environment where

success requires adopting methods to manage both anticipated and unanticipated change.

Drawing upon core principles of complexity theory, the study described how technologies such

as genetic algorithms and autonomous agents can enable mass customization strategy to respond

to changes in the market. Later studies continued the call for organizations to alter their views on

business and technology to think holistically, dynamically, and in a networked/connected manner

(Atwater and Pittman 2006; Denning 2007) in order to survive and prosper in an ever-changing

environment (Merali 2002). The second group of associated studies investigated enterprise

system integration and evolution in general (Kishore et al.2006) in healthcare systems

(Sutherland and van den Heuvel 2002; Tan et al.2005), and in the insurance industry (Sutherland

and van den Heuvel 2002). As a whole, the research concluded the semi-autonomous, networked

agent view of CAS can help organizations integrate enterprise systems in order to achieve the

levels of agility and responsiveness necessary to compete in today’s dynamic environment.

Finally, the remaining articles relied on complexity and CAS to explore the problem of

information overload in face-to-face electronic meetings using group support systems (Grisé and

Gallupe 1999); demonstrate the socio-technical complexity of IS standardization (Hanseth et al.

2006); and analyze pricing decisions, piracy, and protective technologies in the software industry

(Khouja et al. 2007).

Outside the group of journals above, one can also see the IS discipline starting to embrace

complexity and CAS through publications and calls for research. In 2006, Information

Technology & People dedicated a special issue to complexity research in IS with the introduction

titled “Taking complexity seriously in IS research” written by Jacucci et al. (2006). The authors

34

asserted that complexity is an important topic for IS research and practice for at least three

reasons. First, the growing number of systems and inter-connectivity pose challenges to current

software development methods and practices as they are no longer able to “scale to manage these

increasingly complex, globally distributed systems at reasonable cost or project risk” (British

Computer Society 2004). Second, changing market demands and increased workforce diversity

force organizations to improve their ability to respond quickly and adapt to competitive markets.

Third, the ever-flattening of the business world due to globalization results in an environment

where local actions proliferate to the macro level with undeterminable and unexpected side

effects. Courtney et al. (2008) concurred. In the inaugural issue of the International Journal of

Information Technologies and the Systems Approach (IJITSA), the authors outlined their

thoughts on how complexity can be used to inform IS research. They unequivocally stated the

need for a complex view of organizations and their IS as well as noting the stage is set for such a

paradigm shift:

“… the science is there; the systems are there; the computational capacity is there. All

that is lacking is the consciousness to apply them.”

Simulation and Agent-Based Modeling

As discussed in the previous sections of this chapter, certain phenomena in nature and

society are complex, dynamic, and impossible to break down into deterministic cause and effect

relationships; no definable end point or optimal solution exists. Gaining insight, understanding,

and knowledge of these events or happenings requires robust tools and technologies. Analytical

models fail to adequately account for the indirect effects of CAS agent interactions. Computer-

based simulation, on the other hand, offers the capacity and power to mimic real-world system

35

behavior and observe changes in system states at any time rather than merely predicting the

output of a system based on a set of inputs (Siebers and Aickelin 2007). The purpose of

simulation is to better understand the inner workings of a system and/or to predict performance.

Siebers and Aickelin (2007) compared simulation to an artificial white-room that allows one to

gain insight but also to test new theories and practices without disrupting the actual system’s

operation. Troitzsch (2000) stated that if the theory framed for a particular system holds and the

theory has been adequately translated into a computer model, then the simulation can assist in

determining 1) what kind of behavior a target system will display in the future and 2) which state

the target system will reach in the future. Such predictions involve analyzing trends rather than

generating precise and absolute predictions of system performance (Siebers and Aickelin 2007);

Keen and Sol (2007) referred to this as “rehearsing the future.” Simulation, therefore, should be

viewed as a decision support tool that requires consideration of the context of the real system

before moving forward to implement steps intended to alter the system’s direction and influence

future state changes.

Agent-based modeling (ABM) represents one type of simulation modeling and provides

the capability to explore the non-linear, adaptive interactions inherent to a CAS (Siebers and

Aickelin 2007; Srbljinovic and Skunca 2003). The researcher specifies the rules of behavior at

the micro-level for the individual agents and the interactions between agents. Structures then

emerge at the macro-level due to the actions of these agents and their interactions with each other

and the environment. The consequences at the macro-level that result from ABM many times are

not obvious or expected. This discovered knowledge allows the interested party to identify

potential system states that may not have been considered otherwise, thus enhancing the

36

effectiveness of the decision making process. Cederman (1997) noted the following as some

advantages of ABM: 1) the possibility of modeling fluid or turbulent social conditions when

modeled agents and their identities are not fixed or given, but susceptible to changes that may

include birth or death of individual agents, as well as adaptation of their behavior; 2) the

possibility of modeling boundedly rational agents, making decisions and acting in conditions of

incomplete knowledge and information; and 3) the possibility of modeling processes out of

equilibrium.

Complexity researchers began using ABM in earnest in the 1990’s (Epstein and Axtell

1996) and the approach has become a well-established simulation modeling tool in academia

(Siebers and Aickelin 2007). As an example, an entire specialty in economics called Agent-

Based Computational Economics (ACE) developed from the CAS movement to computationally

study economies modeled as evolving systems of autonomous interacting agents (Tesfatsion

2001). ACE attempts to understand why certain global regularities evolved and continue on in

decentralized market economies despite the absence of a central controller (e.g. trade networks,

currencies, and market protocols) and to examine the effects of alternative socio-economic

structures on individual behavior and social welfare. ABM is also quickly becoming more

commonplace in practice to solve real business problems such as examining customer behavior

in a supermarket based on differing configurations of products in the store layout (Casti 1997)

and stakeholder (investors, market makers, and issuers) reactions to proposed changes to the tick

size on the NASDAQ stock exchange (Bonabeau 2002).

The underlying concepts of complexity science, CAS, and ABM hold true for ABM itself

as a scientific tool. As current ABM researchers model complex phenomena, present their

37

findings, and solve real world problems, more individuals will be convinced of the merits of

ABM and begin to incorporate the approach in their own work which will increase exposure

exponentially through a myriad of academic and professional networks. I fully expect ABM to

continue a pattern of emergent behavior and growth for the foreseeable future.

Summary

In Chapter 2, I present the supporting base for this dissertation study. First, the discussion

on continuous assurance and CA sets the stage for the practical setting of the study by detailing

the origins and progression of the continuous audit movement. Next, the explanation of

complexity science and complex adaptive systems provides the theoretical foundation upon

which the study relies and examines related research in accounting and information systems.

Finally, the section on simulation and agent-based modeling introduces the technical approach

that will be applied. I utilize ABM in the validation of the theory developed in Chapter 3 and as

an illustrative decision support tool for the auditor’s going concern opinion in Chapter 4.

38

CHAPTER THREE: A COMPLEX ADAPTIVE INQUIRING

ORGANIZATION

Introduction

Today, organizations face a completely new business environment than generations past

– one that is complex, service-oriented, connected, global, in a constant state of flux, and built on

individual and organizational knowledge. The knowledge-based view of the firm (Kogut and

Zander 1992) contends that a valuable, rare, and inimitable resource (i.e. knowledge) can

contribute to the competitive advantage of the individual/organization possessing it and

performance will be reflective of that knowledge (Rodgers et al. 2008). In this new knowledge-

based economy, interactions with customers and clients impact long-term success more so than

ever and survival depends on the ability to explore new knowledge and maintain existing

knowledge (Hall and Paradice 2005). However, decision makers’ traditional knowledge sources

and endowments may not be sufficient (Rodgers et al. 2008) to address problems that are more

socially-oriented and are thus considered semi- or unstructured. Commonly referred to as

“wicked” problems (Rittel and Webber 1973) or ill-structured (Mason and Mitroff 1973), these

decision-making scenarios are highly uncertain, difficult to define, inextricably connected to

their environment, and possess irreversible solutions. Such environments not only require

organizations to be able to make decisions effectively and rapidly, but also be able to create

knowledge and learn (Hall and Paradice 2005).

Courtney (2001) called for a new decision-making paradigm for DSS to adequately

address wicked problems in complex contexts. Drawing upon unbounded systems thinking

(Mitroff and Linstone 1993), Singerian inquiring systems (Churchman 1971), and the notion of

39

“inquiring organizations” (Courtney et al.1998) the author introduced an alternative approach to

the technical perspective in DSS research. The new paradigm brings in the perspectives of many

stakeholders in order to provide greater insight into the nature of the problem, relationships

among the connected elements in the wicked system, possible solutions, and downstream effects

of implementing various solutions. Knowledge from any discipline or profession may be

included as needed to assist in understanding the problem. Courtney (2001) illustrated the

proposed DSS paradigm with an analysis of the decision-making process for planning and

constructing a city’s infrastructure. As noted, the process almost defies analysis with the

countless internal departments and external parties involved, yet is ongoing and vital to every

city in the world. These types of problems require and need DSS research that truly reflects the

nature of the decision-making environment.

Recently, a stream of research has materialized examining information systems

development (ISD) from a social constructivist lens where information systems and their

requirements emerge from the interaction of multiple stakeholders’ views and knowledge is

created (Carugati 2008; Richardson and Courtney 2004; Markus, Majchrzak, and Gasser 2002;

Avison et al. 1998). Carugati (2008) extends previous ISD literature by integrating Churchman’s

(1971) inquiring systems into a framework that maps various ISD activities on systems for the

creation of knowledge. Applying the framework, the author examines ISD activity and

knowledge creation at the micro-level where actors (i.e. agents) are involved in a continuous

back-and-forth exercise between long-term planning (i.e. interacting with external networks) and

day-to-day work activities (i.e. acting at the local level) concluding that adding an

epistemological view of micro-level ISD activities allows for a better understanding of the

40

situation, better prediction of success or failure, and ultimately better management of the ISD

process.

This chapter answers Courtney’s (2001) call for DSS research that considers the

complexity and connectedness of the real business environment that organizations face in a

knowledge-based economy by examining the micro-level (local) activities of network agents.

The next section briefly revisits the basic concepts of complex adaptive systems followed by a

discussion of Churchman’s (1971) SIS that, together, provide the theoretical foundation for the

notion of a Complex Adaptive Inquiring Organization that underlies the system design principles

developed for knowledge management and decision support. I then conclude with a discussion of

the theory’s implications for KMS and DSS research.

Complex Adaptive Systems

Life on planet Earth, in general, is becoming ever more connected and complex. For

instance, Wal-Mart Stores, Fortune’s 2008 largest U.S. corporation, operates more than 4,000

facilities in the U.S. and over 2,800 in Argentina, Brazil, Canada, China, Costa Rica, El

Salvador, Guatemala, Honduras, Japan, Mexico, Nicaragua, Puerto Rico, and the United

Kingdom. Their famed global distribution network works with more than 61,000 suppliers in

over 55 countries around the world through a global procurement office and the company

demands that their business partners meet specific environmental, social, and quality standards.

Wal-Mart’s corporate beliefs and values filter down throughout their massive business chain to

the point of impacting the day-to-day lives of field workers picking cocoa beans in Nicaragua.

Since 1998, Wal-Mart Centroamerica has supported the region’s social and economic growth by

partnering with local farmers to learn new agriculture techniques through the Tierra Fertil

41

program so they can produce high quality products for retail markets. Currently, the program

helps 2,045 Costa Rican, 2,850 Nicaraguan, 155 Honduran, 16 Salvadoran, and 109 Guatemalan

producers. The Wal-Mart global connection illustrates how advances in technology have and will

continue to facilitate a flattening of the world, reducing time and space constraints. A true global

community is emerging where the actions of individuals and organizations in one corner of the

world affect many others residing in different location around the globe.

In order to make sense of such a connected world, researchers and organizational

decision makers are increasingly turning towards complexity theory and complex adaptive

systems theory. As discussed at great length in the previous chapter, the essence of CAS theory

lies in the behavior of a dynamic network of many agents each following a simple set of rules to

anticipate and respond to the actions of other agents and the environment. The actions of these

agents at the micro level impact overall system performance at the macro level, but the non-

linear relationships of agents to each other, with agents from other systems, and with the

environment prevent long-term prediction of a system’s state. However, distinct patterns of

behavior exist underneath the apparent randomness that allow examination and general, short-

term predictive ability. CAS theory offers the ability to view social phenomena in a more holistic

manner that is more reflective of reality than traditional, linear models.

Churchman’s Singerian Inquiring System

Organizations must learn, adapt, and manage knowledge in order to succeed in today’s

dynamic environment (Richardson et al.2001). To accomplish that, organizations must be

inquisitive. Churchman (1971) defined inquiry as an activity that produces knowledge and stated

one must have the capacity and ability to adjust behavior to changing circumstances in order to

42

be considered knowledgeable. In his seminal text The Design of Inquiring Systems, Churchman

examined the epistemologies of five schools of philosophy from a general systems theory

perspective to determine their suitability as the foundation for the design of inquiring computer

systems. These inquiring systems have been proposed as theoretical models for the creation of

learning or inquiring organizations (Courtney et al.1998; Courtney 2001; Linden et al.2007). As

such, Linden et al. (2007) in their review of Churchman’s inquiring systems believed that the

inquirers can form the basis for the design of organizational KMS and encouraged their use to

further develop IS as a discipline. This dissertation study answers that call.

Churchman named one of the inquiring systems after the philosophical beliefs of his

mentor, Edgar Singer. The Singerian Inquiring System is above all teleological, a grand

teleology with an ethical base (Churchman 1971). The SIS aspires to reach a highly idealistic

purpose, the creation of exoteric knowledge for everyone as opposed to scientific knowledge

relevant to a smaller audience. The system seeks this knowledge in such a way as to take human

and environmental considerations into account by choosing the right means for a broad spectrum

of society. The SIS views the world as a holistic system in which everything is connected to

everything else. Complex social and managerial problems must be analyzed as wholes (Mitroff

and Linstone 1993) and may require knowledge from any domain, discipline, or profession to

solve; reductionism inhibits the solution to such problems.

The SIS is based upon metrology, the science of measurement. Measuring in the system

requires cooperation concerning the rules for measuring and agreement on units and standards in

order to ensure the ability to replicate – the results agree within an acceptable level of

refinement. The refinement process continues by partitioning the measurement process until the

43

readings disagree (i.e. pushing back the decimal places), at which point progress can be made.

Variables are “swept in” to explain the discrepancy. By bringing in information from any source

to improve its image of the world including varied perspectives or worldviews of a problem, this

process represents one of the most holistic aspects of the SIS (Richardson et al.2001). Mitroff

and Linstone (1993) stated these perspectives bring to the forefront human beings collectively

and individually in all their complexity. Because of the need for cooperation and a holistic view,

the SIS has no primary authority built into the system. Every participant possesses authority, no

single executive exists.

Refinement alone does not necessarily induce change and adaptation. The most dramatic

changes occur when the need arises to revise assumptions. Churchman referred to this as the

“heroic mood” necessary to slay the “status quo dragon.” To achieve such a state, the SIS uses a

Hegelian dialectic process where the thesis and antithesis work simultaneously to determine the

truth. The thesis defends the status quo of an existing paradigm while the antithesis proposes

radical change questioning the quality of the status quo. Members of the community are both the

observers of the debate as well as the participants. Ultimately, the community reaches a synthesis

and the process of seeking new knowledge then continues on. Analyzing this process,

Richardson et al. (2001) stated revolutionary change cannot be measured quantitatively and some

of the most important measures in the SIS (exoteric knowledge, cooperation, diffusion of

authority, and ethical purpose) may only be measurable qualitatively. Overall progress of an SIS

should be measured by the extent to which the client, decision maker and designer become the

same, that is, involves all of humanity, perhaps even those humans who are no longer living or

are yet to be born (Linden et al.2007)

44

Linden et al. (2007) summarized the nine characteristics of an SIS which correspond to

the nine conditions Churchman (1971) deemed necessary for something to be called a system:

1. The system has the purpose of creating knowledge, which means creating the

capability of choosing the right means for one’s desired ends.

2. The system’s measure of performance is the “level” of scientific and educational

excellence of all society.

3. The client is humankind, i.e., all human teleological beings.

4. The components of the system have traditionally been disciplines unless the goal is

exoteric knowledge that is relevant to everyone in every society.

5. The system has a cooperative environment with fuzzy boundaries necessary for

cooperation.

6. The decision makers are ideally everyone, the most important of which are the

heroes.

7. The designers are ideally everyone. Progress can be measured in terms of the degree

to which the client, decision maker, and designer are the same.

8. The designer’s intention is to change the system so as to maximize its value to the

client (everyone).

9. There is a built-in guarantor that gives a sense of optimism.

A smattering of knowledge management and decision support research has incorporated

Churchman’s inquiring systems into system design and decision-making frameworks. Hall et al.

(2003) and Hall and Paradice (2005) described the architecture of a learning-oriented KMS

developed through the integration of the inquiring systems with Simon’s decision-making model.

45

Richardson, et al. (2006) presented design principles for KMS based on an integration of SIS

with Habermas’s theory of communicative action. From a decision-making standpoint, Hall and

Davis (2007) extended Mitroff and Linstone’s (1993) technical, organizational, and personal

perspective (TOP) model and Courtney’s (2001) DSS paradigm in the development of a value-

based decision-making model that encourages multiple value-based perspectives and mediates

value conflicts. As Linden et al. (2007) propose, these efforts show the beginnings or, more

appropriately, a revitalization of Churchman’s inquirers as kernel theories for the design of

organizational KMS. The next section of this essay continues Churchman’s legacy by integrating

the core concepts of SIS and complex adaptive systems theory to present the design principles

for a Complex Adaptive Inquiring Organization.

Design Principles for a Continuous Auditing System to Support a CAIO

As can be seen in the previous discussions, CAS theory and Churchman’s (1971) SIS

share many characteristics. This section delves further by comparing and contrasting the two

types of systems (summarized in Table 1) then discusses how they can inform one another to

offer a new, enlightened theoretical approach to the design of organizational KMS and DSS. The

design principles developed and presented in Table 2 adhere to Churchman’s (1971) conditions

for a system and are intended to support decision-making in a complex, connected organization

facing complex, wicked problems.

46

Table 1: Characteristics of the Complex Adaptive Inquiring Organization

Characteristic Complex Adaptive
System

Singerian Inquiring
System

Complex Adaptive
Inquiring

Organization

Nature of system Teleological Teleological, ethical Teleological, ethical

Purpose To evolve and survive To create exoteric
knowledge

To evolve and survive
by creating and sharing
exoteric organizational
knowledge

Measure of performance Ability to adapt to
dynamic environments
(co-evolution)

Level of scientific and
educational excellence
of all society

Ability to adapt to
dynamic environments
by applying exoteric
organizational
knowledge

Client Networked agents All humankind The organization and its
stakeholders

Environment Self-motivated, self-
organized

Cooperative Self-motivated and self-
organized, but
cooperative

Process & Control Non-linear; no
controller or executive;
agents interact to
spontaneously generate
new internal structures
and forms of behavior

Non-linear; no
controller or executive;
variables “swept-in” as
necessary for revisions
to adjust readings

Non-linear; no
controller or executive;
agents interact to
spontaneously generate
new internal structures
and forms of behavior;
variables “swept-in” as
necessary for revisions
to adjust readings

Decision makers Internal agents;
decisions based on
local, simple rules

Everyone, most
importantly “heroes”;
focus on ethical
behavior

Organizational members
and stakeholders

47

Characteristic Complex Adaptive
System

Singerian Inquiring
System

Complex Adaptive
Inquiring

Organization

Designers Internal agents Everyone Organizational members
and stakeholders

Designer intention Maximize system value
to agents

Maximize system value
to everyone

Maximize system value
to organizational
members and
stakeholders

Operating mode Stable or chaotic Normal or heroic Normal or heroic

Nature of change Emergence Emergence Emergence

Nature and purpose of the system

Churchman’s (1971) first system requirement relates to the nature of a system. In order to

be considered a system, something must be teleological (i.e. goal seeking) and consist of

interrelated components that work together towards a common goal. Both a CAS and SIS exhibit

teleological properties. A CAS seeks some overall goodness of fit for the networked system

members (i.e. agents); survival is essential. An SIS strives to create exoteric knowledge for all

humankind and implies the ability to know how to act in a specific situation, both from a

procedural standpoint and an ethical manner. As Richardson et al. (2001) noted, ethical concerns

are receiving increasing attention in information systems and knowledge management research.

All parties involved in the design, development, and use of systems in a CAIO must be cognizant

of and respond appropriately to the ethical issues facing an organization and its members. The

first two system design principles are based on these presumptions:

48

Design Principle 1: The system must consist of knowledge-seeking, learning, cooperate

agents who advance the relative position and fitness of the organization in an ethical

manner.

Environment and Measures of Performance

The state of a CAS represents the compilation and interaction of system agents with one

another and external environmental elements. Unlike in an SIS where system members are

cooperative and wish to align their individual goals to complement each other, CAS agents are

generally self-motivated and self-organized working from a simple set of local rules. A CAS

succeeds merely by staying in existence – co-evolving with a dynamic environment by adapting

to changes forced upon it by the environment and subsequently exacting change back on to the

environment. The measure of performance for an SIS, on the other hand, is the level of scientific

and educational excellence achieved for all society (Churchman 1971) which Richardson et al.

(2001) aptly noted does not yet exist. The next system design principle originates from these

concepts:

Design Principle 2: A system agent must be able to adapt to changes in the state of the

external environment while, at the same time, increasing the overall knowledge level of

an organization, its members, and connected systems.

49

Client, Designer, and Decision Maker

An SIS strives to integrate the perspectives of the system client, designer, and decision

maker ultimately to a state where they become one: all humankind. Such a worldview implores

ethical considerations in the design, development, and use of IS as the IS affects the level of

knowledge for all humans. Although a lofty goal, this idealistic view defies practicality. To some

extent, however, the like-mindedness of the three roles can be an achievable goal within a

limited sphere of influence throughout a system. The bounds of the problem must be set to

include only the most salient stakeholders (Mitchell et al.1997; Richardson et al.2001) which, for

a CAS, includes internal agents and certain tightly-coupled environmental elements and

connecting CASs.

Ignoring the connectedness of systems runs the risk of system rejection and/or

deleterious, unintended effects. For example, the modernization efforts of the Greek social

security organization IKA in the 1980’s and 90’s to develop and implement IS innovations failed

miserably, not because of the technical capabilities of the systems (which were far superior) but

rather due to the user community reflecting upon the way their actions impacted themselves and

others in their social context (Avgerou and McGrath 2007). IKA employees reflected upon the

ethical repercussions of their actions at both the local level and within the immediate sphere of

networks and determined they could not, in good conscience, proceed using the systems. The

users (i.e. the client), designers, and decision makers failed to work as one towards a common

goal. The notions of a converged perspective, ethicality, and tightly-coupled systems lead to the

following system design principle:

50

Design Principle 3: Design of the system must include input from and consideration of

the goals for all salient stakeholders.

Operating Mode, Process and Control, and Nature of Change

As previously noted, both a CAS and SIS consist of many system agents interacting with

one another and the state of these systems emerges over time through non-linear agent

interaction and cannot be undone; no single controller or executive exists that determines overall

system direction. The primary difference in system operations between CAS and SIS stems from

agent intention. CAS agents focus on maximizing their local goodness of fit that, together,

spontaneously (i.e. chaotically) generates new structures and forms of behavior. The system

vacillates between a stable and chaotic state. SIS agents, on the other hand, work together

towards common goals by “sweeping in” the perspectives of everyone to generate a consensus.

The system resides in either a normal state or one referred to as “heroic” where the hero wanders

around lost, not knowing what to do but somehow finally finds his way – in essence, chaotic.

Churchman (1971) likens this state to a hero in mythology who goes on a quest but is constantly

blown off course by storms or battles. Finally, the hero finds his way and successfully

accomplishes the goal of saving society. The nature of system operations for CAS and SIS

generate the final set of system design principles:

Design Principle 4: The system must allow agents to interact with one another.

51

Design Principle 5: The system must have the ability to support agents with many

different perspectives.

Design Principle 6: The system must have the ability to project future system states in

order to facilitate decision-making of wicked problems. The behavior of the CAIO

emerges from the interaction of its many and varied agents.

Table 2: Design Principles for a Continuous Auditing System to Support a CAIO

1. The system must consist of knowledge-seeking, learning, cooperative agents who advance the relative
position and fitness of the organization in an ethical manner.

2. A system agent must be able to adapt to changes in the state of the external environment while, at the
same time, increasing the overall knowledge level of an organization, its members, and connected
systems.

3. Design of the system must include input from and consideration of the goals for all salient
stakeholders.

4. The system must allow agents to interact with one another.

5. The system must have the ability to support agents with many different perspectives.

6. The system must have the ability to project future system states in order to facilitate decision-making
of complex problems. The behavior of the application system emerges from the interactions of its
many and varied agents.

Discussion

The Complex Adaptive Inquiring Organization represents the next theoretical model of

knowledge management systems for decision-making in learning organizations, an answer to

Courtney’s (2001) call for a new DSS paradigm to address wicked problems in complex

contexts. The design principles presented in this chapter for CAIO systems are grounded in

52

Complex Adaptive Systems theory and Churchman’s (1971) Singerian Inquiring System to offer

guidance on the approach to creating holistic, ethical KMS that support decision-making in a

complex, connected environment. I apply these principles in the subsequent chapter to develop

an illustrative simulation for the external auditor’s going concern opinion that can be potentially

developed as a CA application and discuss current methods and procedures for evaluating the

effectiveness and appropriateness of agent-based simulation models.

53

CHAPTER FOUR: AN INSTANTIATION OF THE CAIO THEORY

Introduction

The fourth chapter of this study presents the approach for an illustration of the Complex

Adaptive Inquiring Organization Theory. I created an instantiation of the theory through an

agent-based simulation model that assists with the auditor’s going concern opinion for a low-fare

airline, clearly a complex problem. The remainder of the chapter continues as follows. First, a

brief discussion of the nature of design science and the techniques of simulation and agent-based

modeling is warranted followed by a description of the research problem. The second section

provides background information on the industry and company selected, details the design

specifications for the model based on CAIO design principles, explains the overall modeling

philosophy, and presents the types of agents and agent behavior. The third section explains the

execution of the simulation model, analysis of prospective financial information, comparison of

the ABM and prospective information to actual company results. The chapter concludes with a

summary and lead-in to the final chapter of the study.

Design Science

The CAIO system design principles developed in this study fall under the design science

paradigm. Design science research is intended to both further the academic field and be relevant

to practitioners through the rigorous creation of IS artifacts in the form of theories, constructs,

methods, frameworks, or instantiations (Parrish 2008) and is fundamentally a problem-solving

paradigm (Hevner et al. 2004). Benbasat and Zmud (1999) argue that the relevance of IS

research directly ties to the ability of practice to implement theories. This study adheres to the

design science requirements of rigorousness and relevance by testing the CAIO organizational

54

learning and knowledge management theory through the creation of an agent-based simulation

model in the context of the auditor’s going concern opinion. The simulation model represents an

instantiation of the theory.

Simulation and Agent-Based Modeling

Organizational simulations depict the behaviors, processes, and outcomes that occur in

real organizations and are essentially “automated theories” or sets of assumptions about

organizational behavior that are acted out (Cameron and Whetten 1981). The model of a

simulation describes the real system and is a theory of behavior representing the way in which

some part of the real system works (Forrester 1994). Simulations allow one to draw conclusions

and derive implications based on the potential state of an organization should the assumptions

and simulation results actually transpire in real life. The overall purpose of simulation is to better

understand the inner workings of a system, predict performance, and minimize risks (Wahlstrom

1994) – a general purpose of the auditor going-concern opinion.

Two fundamental types of models exist, deterministic and stochastic (North and Macal

2007). Deterministic models always produce the same output given the same input (i.e. linear

relationships). Stochastic models, on the other hand, produce different output when repeatedly

run with the same input due to agent and environmental behaviors that possess a range of

possible values, means, variances, and other statistical measures (i.e. non-linear). Such models

must be executed numerous times in order to produce valid general results. Agent-based

modeling represents one type of stochastic simulation modeling that facilitates exploration of the

non-linear, adaptive interactions inherent to a CAS. Agent rules of behavior define the actions of

55

individual agents and the interactions between agents. Agent interaction leads to the emergence

of structures at the macro-level for the system, any connected systems, and the environment.

The Research Problem

Accounting regulation mandates that auditors assess the ongoing viability of every

client’s business operations and report any substantial doubt about a company’s ability to

continue as a going concern for a reasonable period of time in the issued audit report that

accompanies the financial statements. The Statement on Auditing Standards No. 59 The

Auditor’s Consideration of An Entity’s Ability to Continue As a Going Concern (SAS 59)

requires auditors to gain an understanding and assess existing conditions that affect an

organization, including those of others in the industry and the economy in general. With the push

by the SEC for continuous reporting, associated need for CA, and the quickness by which the

state of an organization can change in today’s environment, auditors will need to assess

continuing operations on a more frequent basis than once a year.

Although not explicitly expected to predict future conditions or events, auditors

historically have relied upon bankruptcy prediction models, most commonly the Altman (1968)

Z-score model (Dugan and Zavgren 1988; Grice and Dugan 2001; Grice and Ingram 2001;

McKee 2003). Bankruptcy prediction poses a challenge to auditors as the identification of cause

and effect relationships between factors that may cause or be related to bankruptcy and the actual

occurrence of bankruptcy can be difficult (McKee 2003), if not impossible in a complex and

connected business environment. McKee (2003) examined 146 U.S. public companies that filed

bankruptcy during 1991-1997. Of those, the auditors only reported a going concern problem in

54% of the cases. Further confounding the situation, the models auditors employ contain inherent

56

faults and rely on restrictive assumptions such as linearity, normality, and independence among

predictor variables (Zhang et al. 1999). Grice and Ingram (2001) examined the accuracy of the

Altman Z-score and Grice and Dugan (2001) reviewed the same for the Zmijewski (1984) and

Ohlson (1980) models. Both studies determined all three models failed to transcend

generalizability to industries and time periods outside those of the original samples when

manufacturing firms dominated the landscape. The environment most definitely has changed and

now consists of knowledge-based organizations and economies that require more holistic

research approaches.

Not all auditors employ statistical modeling techniques to the going concern assessment.

Some perform analytical procedures such as historical trend analyses on operating losses,

working capital deficiencies, negative operating cash flow, and adverse key financial ratios.

They augment these financial reviews with examination of operational factors (e.g. labor work

stoppages and dependence on the success of particular projects) and external circumstances

(legal proceedings, changes in legislation, loss of a principal customer or supplier, or a natural

disaster). Through discussions with partners from an international public accounting firm, I

obtained a copy of the going concern guidance issued for auditors in their Central Florida

practice that reflects a non-statistical modeling approach. See Appendix C for detailed language

of the guidance but note that the removal of all references to the firm to ensure confidentiality.

Each of the three partners elaborated on the guidance by stating that every client is unique and

therefore factors may be weighted differently in their assessments from client to client. However,

all three agreed the primary indicator of potential business distress relates to the ability to pay

57

short-term debt so the level of working capital (current assets – current liabilities), operating

losses, and cash from operations receive the most attention.

The next section applies the CAIO theory to develop an agent-based simulation model for

the auditor’s going concern opinion that takes into account external conditions and can be

executed on a regular basis to obtain a more timely sense of the direction an organization may

head (i.e. a CA application). The model is based on the operations and financial condition for

Frontier Airlines, a low-fare airline that recently filed for bankruptcy protection.

Construction of the Model

The Company

Frontier Airlines, a low-cost and affordable airline established in 1994, operates primarily

in a hub and spoke fashion connecting 49 U.S. cities coast to coast, eight cities in Mexico, and

two in Canada through their hub at Denver International Airport (DIA). They currently are the

second largest jet service carrier behind United Airlines. In January 2007, the Department of

Transportation officially designated the company as a major carrier (at least $1 billion in annual

revenue). During the years 2007 and 2006, Frontier increased its year-over-year capacity by

14.4% and 8.4%, respectively, and also increased the volume of passengers by 14.7% and

12.9%, respectively, outpacing their increase in capacity during both periods. This is no small

feat given the recent turmoil in the airline industry due to rising fuel costs, tightening of access to

credit, declining consumer demand, and bankruptcies and mergers of industry competitors. The

company intends to continue its growth strategy by expanding to new markets and adding

frequency to existing markets it believes are currently underserved. However, due to the

company’s lack of borrowing capacity under current lines of credit and lack of other borrowing

58

facilities, Frontier must rely on existing cash and operating cash flows for current operations and

future growth.

The nature of the airline industry (i.e. customer service orientation, responsibility to

society, heavy regulation, and sensitivity to external forces) and business situation of Frontier

offer an interesting subject area for complexity-oriented research that will be pursued through the

design and execution of an agent-based simulation model. The design specifications, modeling

approach, and details of the simulation model will now be presented.

Design Specifications

Hevner et al. (2004) asserted that IS design theory should guide both researchers and

practitioners. These “kernel theories” are applied, tested, modified, and extended through

experience, creativity, intuition, and problem solving capabilities of the researcher (Walls et

al.1992; Markus et al.2002). As such, this study proceeds from the theory building stage to

theory testing and refinement through construction of a simulation model, the IS artifact. The

CAIO theory informs the design specifications for the model as summarized in Table 3.

59

Table 3: Design Specifications

 Design Principle Specification

1. The system must consist of knowledge-
seeking, learning, cooperative agents who
advance the relative position and fitness of the
organization in an ethical manner.

The simulation will consist of consumers
seeking services that meet their individual
preferences and multiple airlines that attempt
to gain market share through advertising
towards those preferences.

The users of the simulation (auditors and
organizational management) work together to
understand the potential impacts of
interactions between the airline, consumers,
and external elements on future states of the
airline. The knowledge gained allows users to
manage uncertainty and provide more
accurate information about the ongoing
viability of the organization – all in the best
interests of organizational stakeholders.

2. A system agent must be able to adapt to
changes in the state of the external
environment while, at the same time,
increasing the overall knowledge level of an
organization, its members, and connected
systems.

Consumers’ purchasing behavior will be
dependent upon past purchasing behavior and
past experiences. Airlines will adjust
advertising based on consumer behavior as
well as changes in general economic and other
external factors. Both groups of agents will
retain knowledge of past transactions in
memory that will affect future behavior.

The resulting number of passengers served on
an annual basis as provided by the simulation
will assist the auditors in their going concern
opinion as well as offer insight into the inner
workings of the economic system, creating
knowledge for all salient stakeholders.

3. Design of the system must include input from
and consideration of the goals for all salient
stakeholders.

Salient stakeholders in the airline include
shareholders, organizational management,
consumers, employees, trading partners, and
auditors. Ongoing viability of the organization
is critical to the future of all these groups. The
simulation is designed to support the going
concern assessment by the auditors in order to
understand conditions that may have an
imminent impact on the organization.

60

 Design Principle Specification

4. The system must allow agents to interact with
one another.

Consumers, airlines, and external
environmental elements interact in a mock
economy.

5. The system must have the ability to support
agents with many different perspectives.

The individual agents in each group
(consumer, airline, environmental) possess
local decision-making rules and preferences.

6. The system must have the ability to project
future system states in order to facilitate
decision-making of wicked problems. The
behavior of the system emerges from the
interactions of its many and varied agents.

The simulated economy will provide an
estimate of the number of passengers the
airline will serve over the course of one year.
This information will be vital to the
determination of whether the organization
faces the risk of business failure.

Overall Modeling Philosophy

Realism versus Simplicity

The design and analysis of simulation models can range from the very specific to the very

general and can be grounded in different combinations of theory and empirical data (Brenner and

Werker 2007). Brenner and Werker (2007) presented an informative taxonomy of the various

methods of building and analyzing simulation models as noted in Appendix D. Complexity

researchers hotly debate and discuss the merits of these approaches, particularly on the

dimension of realism (i.e. conventional, microsimulation, and history-friendly approaches)

versus simplicity (Bayesian and abductive approaches). A number of researchers advocate the

abductive approach that keeps the model as empirical as possible and as general as necessary yet

allows the identification of underlying structural elements to explain observations and helps

develop theory for the phenomena investigated; abduction enables connection of theory and data

in a creative way (Sánchez 2006; Brenner and Werker 2007; Midgley et al.2007; North and

Macal 2007). Sánchez (2006) stated:

61

“Only a replica of the original system, complete in every detail, would have the

ability to answer any and every unanticipated question about the system. This is

the very antithesis of modeling, since the purpose of modeling is to simplify and

abstract to gain insights.”

The experiences of the Midley et al. (2007) supermarket ABM led the research team to

believe the emphasis of simulation modeling should be on minimalism: “What are the one or two

key aspects of consumer behavior that will explain 80% of the variance in purchases?” In their

opinion, the overriding goal should be the development of the simplest model that captures a

substantial part of the actual phenomena. This study adopts the minimalist ABM design approach

put forth by these researchers and supported by many others.

Agent Design

The basic philosophy for agent design in the airline simulation model in this study

consists of the notions of memory and decision rules, both necessary functionality for ABM. The

consumer and airline agents possess the capacity to remember past experiences (i.e. knowledge

management) and apply simple, local rules for considering and evaluating future opportunities.

Consumers focus on personal consumption satisfaction while airlines concentrate on attracting

the most passengers possible to increase operating profit and cash. Similar to the Midgley et al.

(2007) supermarket retailer, airline agents exhibit larger memory capacity and more systematic

decision-making capacities than consumer agents. Consumer decision timeframes vary from one

week to a year based on the probability of travel derived from extant research of airline

62

consumer traveling frequencies. After deciding to travel, consumers base purchase decisions on

past purchasing behavior and related experiences. However, advertising by airlines may persuade

some consumers to switch airlines (i.e. attract new customers) or solidify existing consumer

loyalty. Airline agents conduct marketing decisions on a regular basis by analyzing current

market share and environmental factors that affect the availability of capital.

Verification and Validation

Simulation models, in essence, act as a surrogate for experimentation with the actual

system (existing or proposed) that may be too costly or impractical (Law 2005). Models that do

not represent a “close” approximation to the actual system naturally raise concerns about the

appropriateness of any conclusions derived from model results. Therefore, model verification

and validation are essential parts of the model development process (North and Macal 2007).

O’Keefe et al. (1987) define verification as “substantiating that a system correctly implements its

specifications” and validation as “substantiating that the system performs with an acceptable

level of accuracy”.

For this particular study, I elected to verify and validate the airline simulation model

based on some of the techniques advocated by North and Macal (2007). In order to verify the

design of my model agents and their interactions/relationships, I discussed my initial set of

assumptions about the airline industry with the Director of Financial Analysis Operations at a

national airline and revised the assumptions accordingly. Appendix E lists the assumptions

included in the final model. The director attended ABM training at the Argonne National

Laboratory and therefore possessed both specific domain expertise as well as an understanding

of the nature of ABM and simulation modeling.

63

I programmed the ABM in the visual editor of the Recursive Porous Agent Simulation

Toolkit, commonly referred to as Repast Symphony. The visual editor allows the modeler to

build decision trees similar to flowcharting that automatically creates underlying Java program

code. To validate the Repast programming, I performed three distinct steps. First, I conducted a

structured code walk-through of the ABM programming that consisted of the designer (me)

presenting the code to a “fresh pair of eyes” (an independent coder) and manually tracing

through examples of execution sequences. I performed this process with one of the ABM

instructors at the Argonne National Laboratory in order to gain the necessary expertise level to

adequately review the model’s code. Second, I varied a number of the key parameters to extreme

values in order to “stress test” the model ensuring that the model did not produce unattainable

results even under extreme circumstances. Finally, I executed the simulation on previous years’

information for Frontier and compared the model’s results to that of the actual performance by

the company. This case approach addresses both the goals of verification and validation. In

combination, these steps provide comfort that the model works as designed and produces

accurate results within an acceptable range of values. The following section describes each type

of agent in more detail.

Types of Agents and Agent Behavior

Consumer Agent Properties

Harris and Uncles (2007) empirically examine a myriad of potential factors that affect

airline consumer patronage – including behavioral, performance, promotional, and structural.

The results indicate that past purchasing behavior (i.e. frequency of travel with a specific airline)

and perception of airline performance (i.e. view of last experience) ranked highest in predictive

64

ability for future purchases. Suzuki (2000) examines the relationship of airline on-time

performance to market share noting that the level of satisfaction with the most recent experience

can significantly affect future purchases, even for frequent flyers. Adhering to the minimalist

abductive approach, the consumer agents in my model represent airline passengers that base their

future purchases on past purchasing behavior and related experiences. For example, a consumer

who has traveled Frontier Airlines seven times over the past three months is more likely to

choose Frontier on the next purchase than a consumer who flew Frontier only once during that

same timeframe. Furthermore, customers who encounter a low quality experience on their last

Frontier flight will be more likely to switch airlines, particularly if the last prior experience with

another airline was positive. Thus, frequent travel and high quality experiences act as anchors in

consumer memory for future purchases. Consumer choice behavior in the model is therefore a

function of four consumer agent properties that must be populated prior to executing the market

simulation (i.e. Time 0):

1) Strength of Memory (1-9 rating)

2) Frequency of Travel (% chance to travel)

3) Last Airline Chosen (Frontier, United, Other, None)

4) Last Trip Experience (Good, Bad, None) for each airline (Frontier, United, and Other)

The incorporation of Strength of Memory (SOM) and Frequency of Travel was facilitated

by access to data from a recent study on airline consumer travel frequency conducted by the

Cornell University School of Hotel Administration. I classified the strength of memory for

consumer agents (as a percentage of total agents) as a 1-9 rating where 1 represents consumers

65

who traveled only once in the past three months and 9 for those that traveled 9 times or more

over the same period. So, for example, in a model run consisting of 1,000 consumer agents, the

strength of memory property for 717 agents contained a value of 1, 165 with a value of 2, and so

forth. These ratings will affect consumer behavior as discussed in the next section. As for the

frequency property, consumers in the simulation determine whether or not to travel each week in

the 52 week simulation (note: a single ‘tick’ in the model represents time passage of one week).

The chance for each consumer to travel is also derived from the data in the Cornell study. For

instance, consumers with a Strength of Memory rating of 1 only traveled once during the past

three months (i.e. 12 weeks); therefore, the chance to travel in any individual week is 8% (1/12).

Table 4 presents the nine Strength of Memory ratings and the associated chance to travel each

week.

66

Table 4: Consumer Travel Frequencies

Strength of
Memory
Rating

No. of Times
Traveled Past 3

Months

Survey
Responses

Proportion of
Respondents

Proportion of
Travelers

Chance to
Travel Each

Week

 None 61,207 67.39% 0% 0%

1 One time 21,238 23.38% 71.7% 8%

2 Two time 4,887 5.38% 16.5% 17%

3 Three times 1,688 1.86% 5.7% 25%

4 Four times 770 0.85% 2.6% 33%

5 Five times 385 0.42% 1.3% 42%

6 Six times 267 0.29% 0.9% 50%

7 Seven times 148 0.16% 0.5% 58%

8 Eight times 118 0.13% 0.4% 67%

9 Nine times 118 0.13% 0.4% 75%

To determine the value of the last airline chosen property for each consumer agent, the

model first calculates a random number from 0-100 then a random number for new travelers (i.e.

no last airline), Frontier, and United to “divvy up” the chances that the consumer agent will have

flown a specific airline or not flown at all; the Other Airline category receives the remainder. In

order to infuse some variability to avoid a deterministic model, the second calculation consists of

a 10 point range around the 2006 market share percentage for the two airlines [obtained from the

collection of online databases administered by the Bureau of Transportation Statistics (BTS) with

a -2% adjustment to accommodate for the consideration of new travelers. For example, Frontier

earned the business of 18% of the travelers during 2006 for routes the airline serviced (Bureau of

67

Transportation Statistics 2008); therefore, the range for the chance that a specific consumer will

have flown Frontier on the last trip randomly falls between 11-21% (16% +5/-5). For new

travelers, the random number calculation falls between 0-10%. As an illustration of the process,

assume the following occurs for the first consumer in the model: Last Airline random number =

75, New Traveler = 5, Frontier = 15, and United Airline = 25. The if/then logic of the model to

assign an airline (or none) as the last airline flown occurs in a sequence ending once a value has

been assigned. The pseudo-code for this scenario would look like the following:

 If Last Airline rand num < 5 Then Last Airline = 0 else

 If Last Airline rand num < 20 Then Last Airline = 1 else

 If Last Airline rand num < 45 Then Last Airline = 2 else

 Last Airline = 3

 End If

In this particular instance, the random number 75 causes an assignment of 3 for the last airline

flown by this consumer agent.

Following assignment of the Last Airline property, the model determines whether the

consumer agent experienced a good (value 0) or bad trip (value 1) by calculating a random

number from 0-100 then comparing to the bad trip likelihood percentage (also a random number

from 70-100). For instance, assume the model determines 75% of all travelers will experience a

bad trip and then calculates a 60 as the random number used to determine the value for the Last

Experience property. In this scenario, the consumer will have experienced a good trip with the

last airline and thus, the value for Last Experience will be 0. Subsequently, the identical process

occurs in order to set an experience value for the remaining two airlines. This holds true even if

68

the consumer has not actually flown one or both of the airlines as the person may have

predetermined opinions based on interaction with others in their personal network (i.e. friends,

family, etc.). Appendix F displays the decision tree from the Repast visual editor for the coding

that determines the initial Last Airline and Last Experience for each airline. Now, on to

consumer agent behavior.

Consumer Agent Behavior

Once consumers (and other agent types: airlines, environmental factors) receive the

property assignments discussed in the previous section, the model simulation can commence. At

Time 1 and each subsequent “tick” representing the next week, the consumer “decides” whether

or not to travel based on the probabilities assigned to each consumer’s Frequency of Travel

property. Since new travelers have no previous flight experience they follow the same procedure

for the assignment of Last Airline and Last Experience that existing travelers (i.e. they have

flown before) encountered at Time 0; this occurs only when a new traveler chooses to travel for

the first time. Existing travelers, after deciding to fly, the model reads whether Last Experience

was good or bad. If good, then the traveler flies with the same airline and the Last Experience is

updated for the current trip based on a random number compared against the bad trip likelihood

percentage. On the other hand, if the Last Experience was bad, the model first identifies the

Strength of Memory property value then continues on one of three distinct paths depending upon

that value and will now be discussed.

I divided consumers into three groups based on the SOM: 1) 7, 8, 9 (very frequent

travelers), 2) 4, 5, 6 (fly fairly often), and 3) 1, 2, 3 (fly less often). Consumers who fly very

frequently typically are most likely to be enrolled in frequent flyer programs and have a stronger

69

commitment to that specific airline; thus, they are not likely to switch airlines. The second group

flies, on average, 1.3 – 2 times per month. Therefore, they too are very likely to be enrolled in

frequent flyer programs and have a strong commitment to that specific airline but may be

persuaded to switch airlines if the last trip was bad and/or they are exposed to airline promotional

efforts (more detail provided in discussion of airline agents). For the final group, the model first

looks at whether or not the Last Airline for the consumer advertised high during this week. If so,

there is a greater likelihood that the consumer will have been exposed and persuaded to stay with

the airline. If not, then the model examines the Last Experience for the other two airlines. If the

consumer experienced positive trips for both other airlines, then the model randomly assigns one

of the two as the airline the consumer now chooses to fly. If both past experiences on the other

two airlines were not good, then the model will check to see if one was and the consumer will

choose to fly that airline if true. If the consumer experienced bad trips for all three airlines, then

the model will randomly choose to stay with the current airline or switch to one of the other two.

The following discussion details airline agent properties and behavior.

Airline Agents

The Airport Council International ranked DIA as the fifth busiest airport in the U.S. and

10th in the world serving 47 million passengers annually through 29 airline carriers, as obtained

from the 2006 report provided by the Denver International Business Center (City and County of

Denver 2006). United dominates the regional market with a 56.4% share of 2006 passengers and

Frontier, as a distant second, services 20.7%. Twenty-seven airlines attract the remaining 22.9%

with no single carrier serving more than 4.1%. In this simulation, the airline agents consist of

United, Frontier, and Others.

70

Due to the dependence on the DIA market as the sole hub and intense competition at that

airport (and others) with United and other carriers, Frontier cannot raise prices to any significant

degree to increase profit levels or offset unexpected and/or rising costs. Frontier management

state in the 2006 annual report, “Business and leisure travelers continue to reevaluate their travel

budgets and remain highly price sensitive” (Frontier Airlines Holdings 2006). For the four year

period 2004 – 2007, the average fare ranged from a low of $102.31 in 2005 to a high of $103.54

in 2004, only a maximum swing of 1.2% over four years. Therefore, Frontier and other airline

agents must entice consumers primarily through advertising efforts. The following excerpt from

the 2006 annual report emphasizes the importance Frontier management places on advertising

and brand awareness:

“Our sales efforts target value conscious leisure and business travelers. Value conscious

customers are price-sensitive; however, we believe their travel decisions are also

balanced with other aspects of our product offering such as our frequent flyer program,

non-stop service, advanced seat assignments, service level and live television

entertainment. In the leisure market, we offer discounted fares marketed through the

Internet, newspaper, radio and television advertising along with special promotions and

travel packages. In May 2003, we launched a new brand strategy and advertising

campaign designed to identify Frontier as “A Whole Different Animal” and to set us

apart from our competition. The campaign includes television, print and radio

components that began running in the Denver market and have since expanded to

additional markets along our routes. We have gathered extensive customer and employee

feedback that has allowed us to identify elements of service that are important to our

71

customers who have the potential to fly with us more often.” (Frontier Airlines Holdings

2006)

In addition to the new branding campaign, Frontier also engaged in various sponsorship

agreements including, but not limited to: the Colorado Avalanche hockey team, the Denver

Nuggets basketball team, Colorado Rockies baseball team, etc. Advertising and promotions

constituted 9% of total operating expenses in 2006. Clearly, advertising plays a large role in the

success or failure of Frontier Airlines.

United Airlines entered bankruptcy proceedings on December 9, 2002 and eventually

emerged on February 1, 2006. As expected, companies operating under the court’s oversight

must focus on managing costs. As a component of overall 2006 operating costs, advertising and

promotion only comprised 6% (United Air Lines 2006). The report contained no specific income

statement line item for these costs or any discussion of related expenses. Based on this lack of

information, I assume United focuses their primary efforts on other areas and relies on their size,

extensive flight availability, networks within the industry (e.g. partnership agreements with other

airlines and travel agencies), and brand name to attract and retain customers. Therefore, the

model places less of an emphasis on advertising for United.

As for the Other airlines category, the model contains no specific agent per se with. This

category of airlines places a modicum of value on advertising levels in the consumer purchasing

process and remains static. Only the Frontier and United agents evaluate environmental

conditions (discussed later) and market share in order to adjust advertising levels.

72

The Frontier and United agents determine overall advertising levels initially at Time 0

then re-evaluate every two weeks (prior to the start of consumer purchases). Both agents first

identify the environmental agent values: Fuel Cost (high/low), Regulation (high/low), and Credit

Availability (high/low). As these conditions affect the availability to fund advertising efforts,

high Fuel Cost, high Regulation, and low Credit Availability represents the worst case scenario.

The agents next determine the advertising level to set based on the values of the environmental

agents. Frontier relies heavily on advertising so the model allows them to set the property

Advertising to high if two out of the three values are favorable. United, on the other hand,

requires all three values to be favorable in order to set Advertising to high.

Starting at beginning of Week 12 of the simulation (i.e. end of the first quarter) and

reoccurring every 12 weeks thereafter, the Frontier and United agents calculate the current

market share to date in the simulation and compare to a predetermined minimum desired level

(Frontier = 16%, United = 21%). I arbitrarily selected these amounts based on historic market

share percentages. Should the current market share fall below the threshold, the airline agent re-

evaluates the advertising level based on the environmental agent values at that time (same

procedure as at Time 0). No action happens if the market share remains above threshold. The

environmental factors affecting the airline advertising decisions will now be examined.

Environmental Factors

Several critical economic and environmental factors severely impact the ongoing

operations and financial stability of Frontier as well as all carriers in the airline industry and

therefore, will be included in the model. First, fuel costs represent the single largest individual

operating expense item for Frontier (29.0% in 2007 and 27.9% in 2006) (Frontier Airlines

73

Holdings 2007, 2006). Over the four year period 2004 – 2007, fuel costs rose 103.8% and the

trend is expected to continue with little ability to pass on to consumers. Second, subjection to

heavy federal regulation has resulted in operating cost increases in the past and may do so in the

future. For example, President Bush signed the Stabilization Act in to law in 2001 that

federalizes most civil aviation security and requires the implementation of certain security

measures by airlines and airports such as screening all passenger baggage by the Transportation

Security Administration (TSA). Funding for these security activities comes from a $2.50 per

enplanement ticket tax and the TSA can impose additional fees on air carriers as the agency

deems necessary (Frontier Airlines Holdings 2006). In the “Risk Factors” section of their

respective 2006 annual reports, both airlines acknowledge extensive government regulation

could increase operating costs and affect the ability to conduct business. To the extent costs of

measures such as the Stabilization Act cannot be passed on to consumers, airlines face

significant financial challenges. Finally, availability of credit in the broader economic market or

lack thereof poses a great risk to airlines in several respects. When credit is scarce and the

economy suffers, consumers tend to tighten their purse strings and travel less. Creditors also

become more stringent and wary of extending additional credit. As noted in their 2006 annual

reports, both Frontier and United suffer from very little available credit and must rely on existing

cash and generation of operating cash flows to support operating activities. Another potential

consequence of tighter credit markets, commonly referred to as the “credit-card holdback”,

affects the airline industry specifically. Airlines contract with one or more (usually no more than

three) credit card companies to process their customers’ credit purchases. Typically, credit card

processors immediately pass along the majority of proceeds to airlines with the remainder held

74

back until the passenger completes the flight. However, processors have the right at any time to

raise the amount held until completion of service should they feel at risk of an airline

discontinuing service thus transferring responsibility to them for the money (Atlanta Journal-

Constitution 2008). This sort of event could adversely affect the cash flow position of an airline,

particularly those dependent on operating cash to survive.

Accordingly, the simulation model contains external agents that represent fuel costs,

federal regulation, and credit availability. In actuality, the agents are proto-agents rather than

full-fledge agents. The behavior of proto-agents affect other agents but do not act and react to

changes to or made by other agents. The environmental agents in this study randomly start with

either a high or low value then have the potential to adjust (randomly) on a predetermined

schedule: Fuel Cost has a 60% chance of being set to high at Time 0 and every 4 weeks,

Regulation 60% chance at Time 0 and every 12 weeks, and Credit Availability 50% at Time 0

and every 4 weeks.

Design Specifications and Model Functionality

Using the design principles derived from the CAIO theory presented in the previous

chapter, I developed an agent-based model of the Frontier Airlines market as an illustration of

the type of continuous auditing application an auditor can realistically develop as a tool in the

analysis of a client’s ongoing financial viability. I strived to maintain simplicity in the model by

focusing on the factors that provide the greatest impact. The model contains agents representing

consumers, airlines, and environmental factors that act and react to the behaviors of each other in

a simulated economy.

75

Midgley et al. (2007) recommend 1) publishing detailed specifications and programming

code, 2) enlisting the assistance of programming experts to inspect and correct code

implementation of the specifications, 3) subjecting the model to destructive testing, and 4)

empirically validating the model against real data. In this vein, Table 3 proposes a set of design

specifications for the ABM and Table 5 compares the functionality built into the model to these

specifications. Appendix G provides the Java coding for entire agent-based model. As previously

noted, I enlisted the assistance of an ABM programming expert to evaluate the correctness of the

coding as well as the implementation of design specifications and intended functionality. During

initial model testing both I and the external expert executed the model numerous times to assess

the robustness of the model to extreme parameter values. The next section of this chapter

presents the results of the model simulation and subsequent financial statement analysis of

projected 2007 operating results for Frontier Airlines to the actual 2007 results.

76

Table 5: Model Functionality

 Design Specification Model Functionality

1. The simulation will consist of consumers
seeking services that meet their individual
preferences and multiple airlines that attempt
to gain market share through advertising
towards those preferences.

The users of the simulation (auditors and
organizational management) work together to
understand the potential impacts of
interactions between the airline, consumers,
and external elements on future states of the
airline. The knowledge gained allows users to
manage uncertainty and provide more
accurate information about the ongoing
viability of the organization – all in the best
interests of organizational stakeholders.

The agent-based model consists of consumer
agents that decide to travel (or not) on a
weekly basis. Airline choices are dependent
upon past experience with each of the airlines
as well as exposure to advertising and
promotion efforts by the airlines. Airline
agents try to retain existing customers and
gain additional market share through
advertising.

Users of the model can alter consumer
preferences, advertising levels, and
environmental factors in order to evaluate the
effects of differing scenarios. The knowledge
gained can assist in judging the ongoing
viability of the organization.

2. Consumers’ purchasing behavior will be
dependent upon past purchasing behavior and
past experiences. Airlines will adjust
advertising based on consumer behavior as
well as changes in general economic and other
external factors. Both groups of agents will
retain knowledge of past transactions in
memory that will affect future behavior.

The resulting number of passengers served on
an annual basis as provided by the simulation
will assist the auditors in their going concern
opinion as well as offer insight into the inner
workings of the economic system, creating
knowledge for all salient stakeholders.

The agent-based model consists of consumer
agents that decide to travel (or not) on a
weekly basis. Airline choices are dependent
upon past experience with each of the airlines
as well as exposure to advertising and
promotion efforts by the airlines. After each
trip, consumer agents update memory with the
most recent airline choice and trip experience.
Airline agents try to retain existing customers
and gain additional market share through
advertising provided the current state of
environmental factors does not restrict cash
available for advertising expenditures.

The model tracks each consumer purchase
over 52 ‘ticks’ or weeks and provides market
share data for each airline over the course of
the simulated year. Auditors can detect a
general trend in market share and use the data
to calculate revenue for the prospective
financial statements to be used in the going
concern opinion.

77

 Design Specification Model Functionality

3. Salient stakeholders in the airline include
shareholders, organizational management,
consumers, employees, trading partners, and
auditors. Ongoing viability of the organization
is critical to the future of all these groups. The
simulation is designed to support the going
concern assessment by the auditors in order to
understand conditions that may have an
imminent impact on the organization.

Market share data calculated in the model
simulation can be used to derive annual
passenger revenue, the key driver to airline
financial performance. Auditors can develop
multiple prospective income statements using
model data that depict the impact of different
market conditions on the airline’s financial
performance. These prospective statements
will help determine whether the airline’s
operating income is sufficient to maintain
ongoing operations for the upcoming year
given key market factors.

4. Consumers, airlines, and external
environmental elements interact in a mock
economy.

The agent-based model consists of consumer
agents; agents for Frontier Airlines and
United Airlines; and agents that represent fuel
costs, federal regulation, and credit
availability. The agents interact in a 52 week
simulation of the airline market that Frontier
Airlines services.

5. The individual agents in each group
(consumer, airline, environmental) possess
local decision-making rules and preferences.

Each consumer agent possesses memory that
contains information about the last airline
flown and the related experience (good/bad)
as well as the last experience on the other two
airlines, if the consumer had ever flown on
them. The agent also has a strength of
memory factor that dictates both how loyal
the agent is (if at all) to the most recent airline
as well as how susceptible the agent is to
airline advertising.

The Frontier and United airline agents
evaluate current environmental market
conditions to periodically set their levels of
advertising. In addition, the agents regularly
calculate their current market share and
compare to a desired amount. If the airline’s
market share falls below this threshold, the
airline examines current environmental
factors to determine if they can raise
advertising levels to raise market share.

The three environmental factors randomly
determine their levels on a scheduled basis.

78

 Design Specification Model Functionality

6. The simulated economy will provide an
estimate of the number of passengers the
airline will serve over the course of one year.
This information will be vital to the
determination of whether the organization
faces the risk of business failure.

The model tracks each consumer purchase
over 52 ‘ticks’ or weeks and provides market
share data for each airline over the course of
the simulated year. This data can be used to
determine projected passenger revenue for the
prospective income statement which will be
used to evaluate the airline’s ongoing
viability.

Simulation Results and Financial Statement Analysis

Test Design

The ABM represents a simulation of the 2007 airline market in which Frontier Airlines

operates. The goal of the model entails generating a market share percentage for Frontier that can

be incorporated into an overall financial analysis of the company. Determination of market share

percentage helps derive passenger revenue (an airline’s primary source of income) that is

included in the prospective income statement developed by the auditor to determine operating

income and associated operating cash flow. As previously noted, auditors generally view

operating income and operating cash flow as the foremost indicators of a company’s near-term

financial viability.

As the auditor’s going concern opinion occurs once a year in conjunction with the annual

audit report, the model simulates one year of Frontier’s airline market. Each ‘tick’ represents a

single week (52 total ticks) where consumers decide to travel (or not) and airline agents monitor

consumer and environmental agent activity to determine their levels of advertising expenditures.

Each ‘run’ of an ABM simulation (i.e. 52 week simulation) can generate wildly different results

from any other run as local agent interactions occur and unpredictably influence the collective

79

state of the system. A modeler must therefore not rely on a single run but examine the general

trend of multiple runs (North and Macal 2007). I chose to execute 30 runs in succession as a

‘batch’ and nine batches in total differing on number of total consumers (one thousand, ten

thousand, and one hundred thousand) and states of the environmental factors (unconstrained, all

set to bad, all set to good). Unfortunately, computing power of my laptop restricted analysis of a

consumer market greater than 100,000. Auditors developing a similar ABM would have

extensive resources to draw upon. Regarding the environmental factor settings, auditors typically

wish to analyze multiple scenarios before issuing a going concern opinion. Forcing the factors to

remain at certain levels facilitates examination of worst case and best case scenarios while

allowing the factors to be ‘free’ provides a most likely scenario.

Simulation Results

Across the three consumer levels (i.e. one thousand, ten thousand, and one hundred

thousand) with 30 runs each, Frontier’s anticipated 2007 market share in the unconstrained

model averaged 17.64% (range 15.74% - 19.33%) with United at 24.99% and Other at 57.37%.

Consumers switched airlines 39.69% of the time. Frontier gained 29.38% of these ‘switchers’

and lost 28.95%, a slight net gain. Of the total Frontier trips, consumers switching to Frontier

comprised 66.10%, repeat passengers 33.14% (i.e. non-switchers), and new flyers 0.74%.

Under the worst case scenario with both Fuel Cost and Regulation set at high and Credit

Availability set at low, Frontier earned 16.03% (range 14.57% - 17.51%) of the market with

United at 24.84% and Other at 59.13%. Consumers switched airlines 41.22% of the time.

Frontier gained 27.36% of these ‘switchers’ and lost 27.76%, a slight net loss. Of the total

Frontier trips, consumers switching to Frontier comprised 70.35%, repeat passengers 28.81%

80

(i.e. non-switchers), and new flyers 0.84%. Further analysis shows Frontier attracted 2.02% less

switchers and retained 20.93% fewer repeat passengers in the ‘bad’ environment. To determine if

the difference in Frontier’s market share is different between the unconstrained model and the

bad model, I performed an independent-samples t-test comparison of mean values for the two

sets (3 batches each with 30 records for a total n=90 per model). The test revealed the two

sample means are statistically different (t = 14.782, p < .01) indicating the inability to advertise

due to poor environmental factors severely affected Frontier’s ability to attract and retain

consumers.

Under the best case scenario with both Fuel Cost and Regulation set at low and Credit

Availability set at high, Frontier earned 21.25% (range 20.35% - 22.63%) of the market with

United at 20.91% and Other at 57.84%. Consumers switched airlines 39.74% of the time.

Frontier gained 32.43% of these ‘switchers’ and lost 30.81%, a weighty net gain. Of the total

Frontier trips, consumers switching to Frontier comprised 60.66%, repeat passengers 38.68%

(i.e. non-switchers), and new flyers 0.66%. Further analysis shows Frontier attracted 3.06% more

switchers and retained 40.88% more repeat passengers in the ‘good’ environment. To determine

if the difference in Frontier’s market share is different between the unconstrained model and the

good model, I performed an independent-samples t-test comparison of mean values for the two

sets (3 batches each with 30 records for a total n=90 per model). The test revealed the two

sample means are statistically different (t = -35.388, p < .01) indicating the ability to advertise

due to better environmental factors positively affected Frontier’s ability to attract and retain

consumers.

81

The Bureau of Transportation Statistics reported that Frontier earned 17.46% of the

market share for the routes the company serviced during 2007 with United at 32.20% and Other

at 50.34% (Bureau of Transportation Statistics 2008). After three batches and 90 runs, the model

estimated only 0.18% higher than Frontier’s actual but underestimated United by 7.21% and

overestimated Other by 7.03%. United’s activity on these routes fluctuates significantly rising

from a 23% market share in 2006 to 32% in 2007 then falling again to 25% in 2008 as the

company acquires/sells gates and adds/subtracts flights. Given the focus of the model is to

estimate Frontier’s status in the marketplace, these results seem reasonable.

Table 6 highlights the results of the three models. Using the estimated market share from

the unconstrained model, I will now create a prospective income statement to estimate operating

income and operating cash flow in order to conduct a mock going concern analysis.

82

Table 6: Comparison of Model Simulation Results

Unconstrained
Model

Bad
Environment

Good
Environment

Frontier Market Share 17.64% 16.03% 21.25%

United Market Share 24.99% 24.84% 20.91%

Other Market Share 57.37% 59.13% 57.84%

Consumer Switching % 39.69% 41.22% 39.74%

Repeat Passengers

(of total Frontier)

33.14% 28.81% 38.68%

Passengers Switching to Frontier

(of total Frontier)

66.10% 70.35% 60.66%

New Flyers

(of total Frontier)

0.76% 0.84% 0.66%

Change in Retention N/A -20.93% +40.88%

Change in Attracting Switchers to Frontier N/A -2.02% +3.06%

Financial Statement Analysis

As discussed previously, some auditors use statistical models (e.g. Altman Z-score) while

others perform analytical procedures of key financial numbers to assess the ongoing viability of

audit clients per SAS 59 requirements (i.e. the going concern opinion). Inherent problems arise

with the structure and use of the more common statistical models hence the application of the

alternative method that allows greater auditor judgment and reliance on expertise. Analytical

procedures are comparisons of unaudited financial data with expected results (Glover et al.2000).

These procedures occur primarily at the beginning of an audit to plan the nature, timing, and

extent of testing (American Institute of Public Accountants 1998). Significant fluctuations

83

between client data and auditor expectations signal increased risk of material error for a

particular accounting area (e.g. valuation of accounts receivable and estimated bad debts).

Auditors perform essentially the same process at the end of the audit to develop expectations of

the financial statements for the upcoming year, also known as prospective financial statement

forecasts. The prospective information (most notably the estimated operating income and

operating cash flow) form the basis for the auditor’s going concern opinion. Drawing on results

from the ABM developed in this study and historical trend analyses, the remainder of this

chapter details the creation of 2007 prospective statements for Frontier Airlines and comparison

to audited 2007 financial results.

The process to create prospective financial statements consists of first identifying the key

account balances and financial statement line items that comprise the majority of each statement.

Once determined, the auditor develops expectations of each item then assembles them together in

the appropriate financial statement format. Expectations result from analysis of historical

financial data, anticipated actions by management, industry factors that may affect the major

financial statement line items. For this exercise, I chose to analyze the following income

statement line items to project Frontier’s 2007 operating income and operating cash flow:

Passenger Revenue, Cargo Revenue, Other Revenue, Fuel Costs, Promotion & Sales Expenses,

and Other Expenses. Table 7 lists the line items and rationale for each estimate while Appendix

H presents the prospective operating income statement and expected operating cash flow with

historical actuals. Development of each expectation will now be explained.

84

Table 7: Prospective Operating Income and Cash Flow Items

Financial Line Item Rationale for Expectation

Passenger Revenue Combination of market share from ABM, industry
outlook, Frontier expansion, historical revenue
generated per passenger

Cargo Revenue Percentage increase from two years prior to previous
year carried forward

Other Revenue Average three year change in year-to-year growth %

Fuel Costs Average three year change in year-to-year growth %
and adjustment for increase in use of free capacity

Promotion & Sales Expenses Three year average percentage of revenue

Other Expenses Previous year’s expense structure carried forward

Operating Income Projected revenues – projected expenses

Operating Cash Flow Three year average percentage of operating income

Revenue Estimates

Passenger revenue constitutes the majority of overall Frontier revenue (e.g. 97% in 2006)

and requires the estimation of two components: number of passengers and the revenue generated

per passenger. To develop the estimate of 2007 passenger revenue, I first calculated a total

market for routes Frontier services. BTS reported 40,784,999 passengers traveling the routes in

2006. In addition to this figure I analyzed potential adjustments related to industry projections

and management’s expansion efforts. In a 2007 economic outlook report sponsored by the Air

Transport Association of America (ATA), the ATA Vice President and Chief Economist predicts

a $4 billion industry net profit on operating revenues but also foresees a deceleration in

passenger and cargo revenue growth due to declining global economic growth (Heimlich 2007).

85

The industry net profit is primarily a result of continued cost-cutting efforts. For the sake of

conservatism, I included a 0% impact on the growth of passengers related to overall industry

growth. Regarding management’s expansion of the Frontier market, the company increased the

number of passengers flown each of the last five years by an average of 24.42% which I continue

forward as a proportionate increase to the total Frontier market. This process culminates in a

projected market for Frontier of 50.75 million travelers.

After estimating a total market I determined a proportion to assign to Frontier. The

unconstrained model of the ABM generated a 17.64% Frontier market share. Multiplying the

simulated market share percentage times the projected total market results in an estimated 8.95

million passengers for Frontier. However, a discrepancy exists between the amount of passengers

BTS reports for Frontier in 2006 and the amount reported in the financial statements. Of the

40.78 million passengers traveling Frontier routes in 2006, Frontier earned the business of 7.47

million (18.32%) according to BTS. The 2006 financial statements reported 8.68 million revenue

passengers carried. The discrepancy lies in the various agreements with other airlines such as

code-sharing and outsourcing of certain routes. BTS reports these passengers under the airline

actually operating the flight, not the company whose financial statements include these

passengers. To reflect the difference, I adjust the 8.95 million passengers estimated using BTS

figures by +16% (the amount BTS differed from the financial statements in 2006) resulting in a

projection of 10.38 million Frontier passengers.

To estimate the second component necessary to project passenger revenue, I calculated

the revenue per passenger for the years 2003-2006. Using the average change from year-to-year

86

for the period (-0.35%), I calculated $111.58 of revenue to be generated by each of the 10.38

million passengers. Projected passenger revenue for 2007 is $1.16 billion.

Cargo revenue represents a much smaller portion of total revenue, only 0.57% in 2006.

Therefore, I merely carried forward the 15% increase from 2005 to 2006 to generate a projected

$6.53 million. The other revenue category comprised 2.43% of total 2006 revenue. Applying a

continuation of the three year average change in year-to-year growth of +31.12% to 2007 results

in a projected $31.91 million of other revenue. Estimated operating revenues total $1.197 billion.

Cost and Expense Estimates
Auditors often estimate operating expenses in direct proportion to operating revenues. As

$1 is earned a certain percentage of expenses are incurred. I prescribed to this approach to

estimate Frontier operating expenses. As discussed in the construction of the ABM, fuel costs

represent the single largest expense for Frontier Airlines, 27.93% in 2006. At the end of 2006 the

average three year change in year-to-year growth of fuel costs relative to operating revenue was

29.73%. Frontier continually displays an increase of passengers over and beyond capacity

meaning the company continues to be more efficient each year. The extra fuel cost of operating a

flight with additional passengers in lieu of empty seats is negligible. Therefore, I adjusted the

estimated fuel cost in relation to revenue by -0.25% to represent continued increased efficiency

in 2007. As a percentage of revenue, I estimated fuel costs at $352.91 million. Similarly, I

estimated promotion and sales expenses as $117.78 million based on a three year average

relative to operating revenue (9.84%). For other expenses, I carried forward the cost structure

(63.68% of revenue) to estimate $738.39 million. Estimated operating expenses total $1.209

billion.

87

Analysis of Projected Operating Income and Cash Flow

Operating income equals the net of operating revenues and operating expenses. The

prospective statements for Frontier’s 2007 operations shows a loss of $11.936 million (see

Appendix H for additional detail). Although Frontier generated a net operating loss in two of the

past three years since 2004, the company managed to generate positive operating cash flow each

year with a factor of -205.15% of operating revenue. In fact, the company earned positive

operating cash every year since 1999. Applying this percentage to the projected loss for 2007

provides estimated operating cash inflow of $24.49 million. Obviously, non-cash expenses drove

operating income down to a loss level. For example, adding back the $28.37 million depreciation

on fixed assets in 2006 (the vast majority being aircraft) would have resulted in a $20.48 million

operating profit. As the auditor examining the 2007 prospective financial statements and issuing

the going concern opinion, I would state Frontier faces very little risk of not being able pay

short-term obligations the next year. However, the company cannot continue to experience net

losses year after year before shareholders become impatient and creditors more leery.

So, how well did the prospective financial statements developed using the ABM

simulation compare to Frontier’s actual, audited financial data for 2007? As previously noted,

the ABM derived a 17.64% market share for Frontier whereas the actual was 17.46%. Frontier

reported 10.04 million passengers carried (3.33% less than prospective) and $1.17 billion

revenue (2.19% less). However, the revenue generated per passenger of $112.71 exceeded that in

the prospective financial statements by 1.01%. Furthermore, actual operating expenses were

$1.18 billion (2.27% less) providing a higher actual operating income (a net loss of $9.83

million). Frontier appears to have further streamlined expenses to become even more efficient.

88

Frontier generated positive operating cash flow of $23.23 million which is 5.14% less than

prospective and a higher percentage relative to operating revenues (-236.19%) meaning the

company squeezed out more cash per revenue dollar than previous years. Based on actual

operating income and the three year average factor of -205.15% included in the prospective

financial statements, the expectation would be the generation of $20.18 million of free cash. On

the key figures of operating income and operating cash flow, Frontier slightly outperformed the

prospective financial statements. Overall, the ABM helped produce prospective financial

statements fairly close to actual 2007 operations. Appendix I provides a comparison of

prospective financial information to actuals.

Discussion and Summary

The fourth chapter of this study presented an instantiation of the Complex Adaptive

Inquiring Organization Theory through an agent-based simulation model to assist with the

auditor’s going concern opinion for Frontier Airlines. The design of the model adhered to

prescribed guidelines and best practices for design science, simulation, and agent-based

modeling. The design specifications presented were based on CAIO design principles and acted

as the guide for developing the types of agents, their behavior, and interaction with other agents.

Multiple executions of the simulation model produced an expected market share for Frontier

Airlines used to develop prospective financial information for 2007 necessary to issue a going

concern opinion for the viability of Frontier during the next year. The ABM built from the

underlying theories of complexity science and Singerian inquiring systems helped develop

prospective financial information that estimated actual results fairly well and showed Frontier

consistently produces positive operating cash in spite of continued net operating losses. The final

89

chapter of this study summarizes the study as a whole and discusses the implications of

continuous auditing in a complex business environment.

90

CHAPTER FIVE: CONCLUSION

Starting June 15, 2009, the mandatory XBRL reporting requirements for SEC registrant

companies will begin the phase-in process based on company type and size. All registrants will

be required to file interactive financial statements for fiscal year ends on or after June 15, 2011.

All filings that contain financial information (e.g. annual 10-K, quarterly 10-Q, and 8-K

revisions that can occur at any time) are subject to the XBRL requirements. The progression to

more available and readable financial information helps fuel the fire for continuous auditing and

assurance of said information. Continuous auditing applications and systems will need to be

developed to meet the diverse needs of the assurers (public accounting firms), company

management producing the financial statements, shareholders, consumers, regulatory authorities,

financial market participants, creditors, etc. This network of stakeholders interacts with each

other as well as members in other extended networks. Continuous auditing systems therefore

must be designed to support constantly changing environments, generate new knowledge, and

provide decision support in an increasingly complex and connected world.

Little research has focused on the design of continuous auditing systems and the

interaction of the various stakeholders involved in and affected by the attestation process. This

research study addressed the lack of an underlying system design theory and comprehensive

view with the goal to determine how continuous auditing systems should be designed to produce

knowledge that benefits auditors, clients, and society as a whole. To accomplish this, I first

developed a comprehensive, system design theory called the Complex Adaptive Inquiring

Organization Theory based on the fundamentals of complexity theory and Churchman’s (1971)

Singerian Inquiring Systems. Next, I established a set of associated design principles for

91

continuous auditing systems. Applying these design principles, I then illustrated the general

model by creating an agent-based simulation model of the Frontier Airlines market that includes

agents representing Frontier, key competitors, consumers, and the general economic

environment.

Using the Frontier agent-based model as a decision support system, I conducted a mock

going concern analysis of the ongoing viability of Frontier by incorporating the airline’s share of

the market (per the ABM) as an input into the construction of 2007 prospective financial

statements – much the same as the company’s auditors perform each year. Comparison of the

simulation results and prospective financial statements to actual operating results indicated the

ABM developed from the CAIO theory performed well as a potential tool for continuous

auditing of a company’s financial health. The 17.64% market share generated by the

unconstrained version of the ABM produced a projected 10.38 million Frontier passengers in

2007 and related passenger revenue of $1.15 billion. After developing estimates for other key

line items of the income statement based on historical company trends, the prospective financial

statements forecasted an $11.94 million operating loss and $24.49 million operating cash inflow.

For 2007, Frontier earned 17.46% of the market, serviced 10.04 million passengers, earned $1.13

billion in passenger revenue, and reported a $9.83 million operating loss and $23.23 million

operating cash inflow. With the assistance of the ABM based on the CAIO theory, the

prospective financial statements offered a conservative estimate of the future financial

performance of Frontier Airlines. An actual going concern opinion based on this model would

have been slightly guarded and adhered to one of the core tenets accounting and auditing that of

92

conservatism. An adverse going concern opinion can be a self-fulfilling prophecy that may ruin a

company’s future. Auditors must be extraordinarily cautious.

In practice, auditors can develop similar models to the ABM developed in this study

based on their intimate knowledge of their clients and respective industries that can assist in the

going concern opinion. Note, however, the going concern opinion represents the final stage of

the audit. The opinion looks forward using the most recent audited financial statement

information that depicts the current state of the company (i.e. the balance sheet) and the most

recent performance (i.e. income statement). Should the financial information contain material

errors or are fraudulent, the auditor’s going concern opinion will be built on a faulty foundation

and thus less likely to provide an accurate assessment of the future state of the client. The use of

independent data such as oil prices, industry trends, etc. in an ABM can reduce the reliance on

internal client information that may be biased or incorrect and help produce a higher quality

opinion. Furthermore, as the movement of continuous reporting progresses the market will

demand continuous assurance of reported financial information. Auditors can develop their

models to “sweep in” current/updated information to provide more frequent and accurate

opinions of the ongoing viability of their clients, create more elaborate models that build

expectations for all the key financial statement line items rather than just the single one in

illustrated in this study (i.e. passenger revenue), and ultimately meet the knowledge needs of

associated stakeholders.

 As continuous reporting becomes more commonplace academics and practitioners will

need to address the functionality and ramifications of a continuous assurance environment in a

business world that appears to be “flattening” and becoming more interconnected as evidenced

93

by the Great Credit Crisis of 2008 currently affecting the entire global economic system.

Systems will inevitably be created. How will they be designed? Will they serve needs of

humanity, the ultimate stakeholder? Only time will tell. I humbly offer a starting point. For now,

the complexity movement in the accounting and IS disciplines is under way and, as CASs

infamously do, the movement will feed upon the energy of itself and the environment to evolve

exponentially in a non-linear manner. The future is unknown, but I am confident an underlying

pattern exists suggesting a bright future lies ahead for complexity research in accounting and IS,

starting with continuous assurance.

94

APPENDIX A: ACCOUNTING JOURNALS

95

Acronym Journal Name

AAAJ Accounting, Auditing, and Accountability Journal

AAF Accounting and Finance

AAR Australian Accounting Review

ABA Abacus

ABF Accounting, Business and Financial History

ABR Accounting and Business Research

AE Accounting Education

AEJ Accounting Educators’ Journal

AEN Accounting Enquiries

AFO Accounting Forum

AHI Accounting Historians Journal

AHJ Accounting Historians Journal

AHO Accounting Horizons

AIA Advances in Accounting

AIN Advances in International Accounting

AIS Advances in Accounting Information Systems

AIT Advances in Taxation

AMA Advances in Management Accounting

AOS Accounting, Organizations and Society

API Advances in Public Interest Accounting

AUD Auditing: A Journal of Practice & Theory

BAR British Accounting Review

BRA Behavioral Research in Accounting

CAR Contemporary Accounting Research

CPA Critical Perspectives on Accounting

EAR European Accounting Review

ECA Economie Applique

ESP Espace Europe

FAM Financial Accountability and Management

HBR Harvard Business Review

IAE Issues in Accounting Education

IAU International Journal of Auditing

IJA International Journal of Accounting

JAA Journal of Accounting, Auditing, and Finance

96

JAC Journal of Accountancy

JAE Journal of Accounting and Economics

JAL Journal of Accounting Literature

JAP Journal of Accounting and Public Policy

JAR Journal of Accounting Research

JATA Journal of American Taxation Association

JBFA Journal of Business Finance and Accounting

JCA Journal of Cost Analysis

JCM Journal of Cost Management

JED Journal of Accounting Education

JIA Journal of International Accounting, Auditing, & Taxation

JIF Journal of International Financial Management and Accounting

JMA Journal of Management Accounting Research

JTA Journal of Taxation

MAR Management Accounting Research

NTJ National Tax Journal

RAE Research on Accounting Ethics

RAR Research in Accounting Regulation

RGN Research in Government & Non-Profit Accounting

SBR Schmalenbach Business Review

TAD Tax Adviser

TAR The Accounting Review

TLR Tax Law Review

97

APPENDIX B: INFORMATION SYSTEMS JOURNALS

98

Acronym Journal Name

ACMTDS ACM Transactions on Database Systems

ACMTrans ACM Transactions (various)

ACS ACM Computing Surveys

AI Artificial Intelligence

AIMag AI Magazine

AMJ Academy of Management Journal

CACM Communications of the ACM

CAIS Communications of the AIS

DSI Decision Sciences

DSS Decision Support Systems

EJIS European Journal of Information Systems

HBR Harvard Business Review

I&M Information & Management

IEEESw IEEE Software

IEEETC IEEE Transactions on Computers

IEEETrans IEEE Transactions (various)

IEEETSE IEEE Transactions on Software Engineering

IEEETSMC IEEE Transactions on Systems, Man, and Cybernetics

ISF Information Systems Frontiers

ISR Information Systems Research

JAIS Journal of the AIS

JCOMP Journal on Computing

JCSS Journal of Computer and System Sciences

JMIS Journal of Management Information Systems

JMS Journal of Management Science

MISQ MIS Quarterly

MS Management Science

OS Organization Science

SMR Sloan Management Review

99

APPENDIX C: GOING CONCERN GUIDANCE

100

This memo is to document the process to evaluate an organizations ability to continue as a going
concern and the key factors considered in such evaluation.

To assess whether there is substantial doubt about an entity’s ability to continue as a going
concern for a reasonable period of time the auditor first considers whether the results of the
procedures performed throughout the engagement identify conditions or events that could
indicate, in the aggregate, a potential going concern assessment. If the auditor believes there is
substantial doubt about the entity’s ability to continue as a going concern for a reasonable period
of time he should obtain information about management’s plans that are intended to mitigate the
effect of such conditions or events and assess the likelihood that such plans can be effectively
implemented.

Through the audit procedures performed the auditor should consider the analytical procedures,
subsequent events, compliance with terms of debt and loan agreements, minutes of stockholder
meetings, legal counsel’s response regarding litigation, claims, and assessments, as well as
confirmation with related and third parties of arrangements to provide or maintain financial
support in order to appropriately determine if there is substantial doubt regarding the entity’s
ability to continue as a going concern for a reasonable period of time. The following are a list of
conditions or events that should be considered from the review of the above sources:

• Negative trends – recurring operating losses, working capital deficiencies, negative cash
flows from operating activities, adverse key financial ratios

• Other indicators of financial difficulties – default on loan or similar agreements,
arrearages in dividends, denial of usual trade credit from suppliers, restructuring of debt,
non compliance with statutory capital requirements, potential disposal of substantial
assets, or the entity needs to seek new sources or methods of financing

• Internal matters – work stoppages or other labor difficulties, substantial dependence on
the success of a particular project, need to significantly revise operations

• External matters – legal proceedings, changes in legislation that may adversely affect the
entity, loss of a key franchise, license or patent, loss of a principal customer or supplier,
or uninsured or under insured catastrophe or natural disaster

If it is believed that there is substantial doubt about the entity’s ability to continue as a going
concern for a reasonable period of time after considering the above, the auditor should obtain
information about management’s plans for dealing with the adverse effects of the conditions and
events. The major considerations are the likelihood that such plans can be effectively
implemented over a reasonable period of time to mitigate the adverse effects. In particular the
auditor should consider the adequacy of support regarding the ability to obtain additional
financing or the planned disposal of assets.

101

If the auditor concludes there is substantial doubt, he should consider the adequacy of disclosure
about the entity’s possible inability to continue as a going concern for a reasonable period of
time and include an explanatory paragraph (following the opinion paragraph) in his audit report
to reflect his conclusion. If the auditor concludes that substantial doubt does not exist, he should
consider the need for disclosure.

102

APPENDIX D: A TAXONOMY OF INFERENCE

103

(Brenner and Werker 2007)

104

APPENDIX E: LIST OF MODEL ASSUMPTIONS

105

1. Consumers travel only once per week and experiences (good or bad) reflect a single trip

(one-way or round).

2. New travelers comprise 0-10% of all travelers.

3. A large majority of travelers encounter a bad experience (randomized range = 70-100%).

4. Once assigned a last airline and associated experience (good = 0 or bad = 1) at Time 0,

travelers will be assigned an experience for the other airlines regardless if they have flown

that airline. A value of 1 represents either an actual bad experience or no experience at all.

5. Travelers with a good last experience stay loyal to the airline for the next trip.

6. Less frequent travelers have a higher chance to switch airlines after experiencing a bad trip

than travelers who travel more frequently.

7. Advertising levels for Frontier Airlines are more crucial and have a larger effect on

consumers than that for United and the collective Other airlines group.

8. Airlines evaluate advertising levels for adjustment every two weeks and once a quarter

(every 12 weeks) after identifying current market share.

9. Airlines review their current market share each quarter and adjust advertising levels based on

a predetermined desired market share.

10. Due to inflation, fuel costs have a higher likelihood of rising and thus a greater chance to be

set at high in the model.

11. Due to the volatility in the world today (i.e. terrorism), the cost to adhere to federal

regulation has a higher likelihood of rising and thus a greater chance to be set at high in the

model.

106

12. An even chance exists (50-50%) that credit availability will be lowered when creditors

evaluate the creditworthiness of airlines.

13. Environmental agents potentially can change values on a scheduled basis: Fuel Cost every

four weeks, Regulation every 12 weeks, and Credit Availability every four weeks.

14. A simulated market with 1,000; 10,000; and 100,000 consumer agents accurately represents

the broader Frontier airline market (~$41 million passengers in 2006).

107

APPENDIX F: LAST AIRLINE AND LAST EXPERIENCE ASSIGNMENT

108

109

APPENDIX G: JAVA CODE

110

I. Model Initializer

/**
 *
 * This file was automatically generated by the Repast Simphony Agent Editor.
 * Please see http://repast.sourceforge.net/ for details.
 *
 */

/**
 *
 * Set the package name.
 *
 */
package frontierairlines

/**
 *
 * Import the needed packages.
 *
 */
import java.io.*
import java.math.*
import java.util.*
import javax.measure.unit.*
import org.jscience.mathematics.number.*
import org.jscience.mathematics.vector.*
import org.jscience.physics.amount.*
import repast.simphony.adaptation.neural.*
import repast.simphony.adaptation.regression.*
import repast.simphony.context.*
import repast.simphony.context.space.continuous.*
import repast.simphony.context.space.gis.*
import repast.simphony.context.space.graph.*
import repast.simphony.context.space.grid.*
import repast.simphony.engine.environment.*
import repast.simphony.engine.schedule.*
import repast.simphony.engine.watcher.*
import repast.simphony.groovy.math.*
import repast.simphony.integration.*
import repast.simphony.matlab.link.*
import repast.simphony.query.*
import repast.simphony.query.space.continuous.*
import repast.simphony.query.space.gis.*
import repast.simphony.query.space.graph.*
import repast.simphony.query.space.grid.*
import repast.simphony.query.space.projection.*
import repast.simphony.parameter.*
import repast.simphony.random.*
import repast.simphony.space.continuous.*
import repast.simphony.space.gis.*
import repast.simphony.space.graph.*
import repast.simphony.space.grid.*

111

import repast.simphony.space.projection.*
import repast.simphony.ui.probe.*
import repast.simphony.util.*
import simphony.util.messages.*
import static java.lang.Math.*
import static repast.simphony.essentials.RepastEssentials.*

/**
 *
 * This is an agent.
 *
 */
public class ModelInitializer {

 /**
 *
 * This is an agent property.
 * @field TotalConsumers
 *
 */
 @Parameter (displayName = "Total # of Consumers", usageName = "TotalConsumers")
 public def getTotalConsumers() {
 return TotalConsumers
 }
 public void setTotalConsumers(def newValue) {
 TotalConsumers = newValue
 }
 public def TotalConsumers = 1000

 /**
 *
 * This is an agent property.
 * @field C1
 *
 */
 @Parameter (displayName = "Consumer 1's", usageName = "C1")
 public def getC1() {
 return C1
 }
 public void setC1(def newValue) {
 C1 = newValue
 }
 public def C1 = TotalConsumers * 0.645

 /**
 *
 * This is an agent property.
 * @field C2
 *
 */
 @Parameter (displayName = "Consumer 2's", usageName = "C2")
 public def getC2() {
 return C2

112

 }
 public void setC2(def newValue) {
 C2 = newValue
 }
 public def C2 = TotalConsumers * 0.149

 /**
 *
 * This is an agent property.
 * @field C3
 *
 */
 @Parameter (displayName = "Consumer 3's", usageName = "C3")
 public def getC3() {
 return C3
 }
 public void setC3(def newValue) {
 C3 = newValue
 }
 public def C3 = TotalConsumers * 0.051

 /**
 *
 * This is an agent property.
 * @field C4
 *
 */
 @Parameter (displayName = "Consumer 4's", usageName = "C4")
 public def getC4() {
 return C4
 }
 public void setC4(def newValue) {
 C4 = newValue
 }
 public def C4 = TotalConsumers * 0.023

 /**
 *
 * This is an agent property.
 * @field C5
 *
 */
 @Parameter (displayName = "Consumer 5's", usageName = "C5")
 public def getC5() {
 return C5
 }
 public void setC5(def newValue) {
 C5 = newValue
 }
 public def C5 = TotalConsumers * 0.012

 /**
 *

113

 * This is an agent property.
 * @field C6
 *
 */
 @Parameter (displayName = "Consumer 6's", usageName = "C6")
 public def getC6() {
 return C6
 }
 public void setC6(def newValue) {
 C6 = newValue
 }
 public def C6 = TotalConsumers * 0.008

 /**
 *
 * This is an agent property.
 * @field C7
 *
 */
 @Parameter (displayName = "Consumer 7's", usageName = "C7")
 public def getC7() {
 return C7
 }
 public void setC7(def newValue) {
 C7 = newValue
 }
 public def C7 = TotalConsumers * 0.005

 /**
 *
 * This is an agent property.
 * @field C8
 *
 */
 @Parameter (displayName = "Consumer 8's", usageName = "C8")
 public def getC8() {
 return C8
 }
 public void setC8(def newValue) {
 C8 = newValue
 }
 public def C8 = TotalConsumers * 0.004

 /**
 *
 * This is an agent property.
 * @field C9
 *
 */
 @Parameter (displayName = "Consumer 9's", usageName = "C9")
 public def getC9() {
 return C9
 }

114

 public void setC9(def newValue) {
 C9 = newValue
 }
 public def C9 = TotalConsumers * 0.004

 /**
 *
 * This is an agent property.
 * @field C0
 *
 */
 @Parameter (displayName = "Consumer 0's", usageName = "C0")
 public def getC0() {
 return C0
 }
 public void setC0(def newValue) {
 C0 = newValue
 }
 public def C0 = TotalConsumers * 0.10

 /**
 *
 * This value is used to automatically generate agent identifiers.
 * @field serialVersionUID
 *
 */
 private static final long serialVersionUID = 1L

 /**
 *
 * This value is used to automatically generate agent identifiers.
 * @field agentIDCounter
 *
 */
 protected static long agentIDCounter = 1

 /**
 *
 * This value is the agent's identifier.
 * @field agentID
 *
 */
 protected String agentID = "ModelInitializer " + (agentIDCounter++)

 /**
 *
 * This is the user model builder
 * @method initializeModel
 *
 */
 @ScheduledMethod(
 start = 0d,
 priority = 1.7976931348623157E308d,

115

 shuffle = true
)
 public static def initializeModel() {

 // Define the return value variable.
 def returnValue

 // Note the simulation time.
 def time = GetTickCountInTimeUnits()

 // This is a loop.
 for (i in 1..7170) {

 // This is a task.
 Consumer C = new Consumer()
 AddAgentToContext("FrontierAirlines", C)
 // This is a task.
 C.Frequency = 0.08
 // This is a task.
 C.MemStrength = 1

 }

 // This is a loop.
 for (i in 1..1650) {

 // This is a task.
 Consumer C = new Consumer()
 AddAgentToContext("FrontierAirlines", C)
 // This is a task.
 C.Frequency = 0.17
 // This is a task.
 C.MemStrength = 2

 }

 // This is a loop.
 for (i in 1..570) {

 // This is a task.
 Consumer C = new Consumer()
 AddAgentToContext("FrontierAirlines", C)
 // This is a task.
 C.Frequency = 0.25
 // This is a task.
 C.MemStrength = 3

 }

116

 // This is a loop.
 for (i in 1..260) {

 // This is a task.
 Consumer C = new Consumer()
 AddAgentToContext("FrontierAirlines", C)
 // This is a task.
 C.Frequency = 0.33
 // This is a task.
 C.MemStrength = 4

 }

 // This is a loop.
 for (i in 1..130) {

 // This is a task.
 Consumer C = new Consumer()
 AddAgentToContext("FrontierAirlines", C)
 // This is a task.
 C.Frequency = 0.42
 // This is a task.
 C.MemStrength = 5

 }

 // This is a loop.
 for (i in 1..90) {

 // This is a task.
 Consumer C = new Consumer()
 AddAgentToContext("FrontierAirlines", C)
 // This is a task.
 C.Frequency = 0.50
 // This is a task.
 C.MemStrength = 6

 }

 // This is a loop.
 for (i in 1..50) {

 // This is a task.
 Consumer C = new Consumer()
 AddAgentToContext("FrontierAirlines", C)
 // This is a task.
 C.Frequency = 0.58
 // This is a task.
 C.MemStrength = 7

117

 }

 // This is a loop.
 for (i in 1..40) {

 // This is a task.
 Consumer C = new Consumer()
 AddAgentToContext("FrontierAirlines", C)
 // This is a task.
 C.Frequency = 0.67
 // This is a task.
 C.MemStrength = 8

 }

 // This is a loop.
 for (i in 1..40) {

 // This is a task.
 Consumer C = new Consumer()
 AddAgentToContext("FrontierAirlines", C)
 // This is a task.
 C.Frequency = 0.75
 // This is a task.
 C.MemStrength = 9

 }

 // This is a task.
 Fuel F = new Fuel()
 AddAgentToContext("FrontierAirlines", F)
 // This is a task.
 Regulation R = new Regulation()
 AddAgentToContext("FrontierAirlines", R)
 // This is a task.
 Credit CR = new Credit()
 AddAgentToContext("FrontierAirlines", CR)
 // This is a task.
 United U = new United()
 AddAgentToContext("FrontierAirlines", U)
 // This is a task.
 Frontier FR = new Frontier()
 AddAgentToContext("FrontierAirlines", FR)
 println "Initializer Done"
 // This is a task.
 EndSimulationRunAt(52)
 Object agent = CreateAgent("FrontierAirlines", "frontierairlines.MKT")
 // Return the results.
 return returnValue

 }

118

 /**
 *
 * This method provides a human-readable name for the agent.
 * @method toString
 *
 */
 @ProbeID()
 public String toString() {

 // Define the return value variable.
 def returnValue

 // Note the simulation time.
 def time = GetTickCountInTimeUnits()

 // Set the default agent identifier.
 returnValue = this.agentID
 // Return the results.
 return returnValue

 }
}

II. Consumer

/**
 *
 * This file was automatically generated by the Repast Simphony Agent Editor.
 * Please see http://repast.sourceforge.net/ for details.
 *
 */

/**
 *
 * Set the package name.
 *
 */
package frontierairlines

/**
 *
 * Import the needed packages.
 *
 */
import java.io.*
import java.math.*
import java.util.*
import javax.measure.unit.*
import org.jscience.mathematics.number.*
import org.jscience.mathematics.vector.*
import org.jscience.physics.amount.*
import repast.simphony.adaptation.neural.*

119

import repast.simphony.adaptation.regression.*
import repast.simphony.context.*
import repast.simphony.context.space.continuous.*
import repast.simphony.context.space.gis.*
import repast.simphony.context.space.graph.*
import repast.simphony.context.space.grid.*
import repast.simphony.engine.environment.*
import repast.simphony.engine.schedule.*
import repast.simphony.engine.watcher.*
import repast.simphony.groovy.math.*
import repast.simphony.integration.*
import repast.simphony.matlab.link.*
import repast.simphony.query.*
import repast.simphony.query.space.continuous.*
import repast.simphony.query.space.gis.*
import repast.simphony.query.space.graph.*
import repast.simphony.query.space.grid.*
import repast.simphony.query.space.projection.*
import repast.simphony.parameter.*
import repast.simphony.random.*
import repast.simphony.space.continuous.*
import repast.simphony.space.gis.*
import repast.simphony.space.graph.*
import repast.simphony.space.grid.*
import repast.simphony.space.projection.*
import repast.simphony.ui.probe.*
import repast.simphony.util.*
import simphony.util.messages.*
import static java.lang.Math.*
import static repast.simphony.essentials.RepastEssentials.*

/**
 *
 * This is an agent.
 *
 */
public class Consumer {

 /**
 *
 * This is an agent property.
 * @field LastAirline
 *
 */
 @Parameter (displayName = "Last Airline Chosen", usageName = "LastAirline")
 public def getLastAirline() {
 return LastAirline
 }
 public void setLastAirline(def newValue) {
 LastAirline = newValue
 }
 public def LastAirline = 0

120

 /**
 *
 * This is an agent property.
 * @field LastExperience
 *
 */
 @Parameter (displayName = "Last Experience", usageName = "LastExperience")
 public def getLastExperience() {
 return LastExperience
 }
 public void setLastExperience(def newValue) {
 LastExperience = newValue
 }
 public def LastExperience = 0

 /**
 *
 * This is an agent property.
 * @field Frequency
 *
 */
 @Parameter (displayName = "Frequency Factor", usageName = "Frequency")
 public def getFrequency() {
 return Frequency
 }
 public void setFrequency(def newValue) {
 Frequency = newValue
 }
 public def Frequency = 0

 /**
 *
 * This is an agent property.
 * @field MemStrength
 *
 */
 @Parameter (displayName = "Strength of Memory", usageName = "MemStrength")
 public def getMemStrength() {
 return MemStrength
 }
 public void setMemStrength(def newValue) {
 MemStrength = newValue
 }
 public def MemStrength = 0

 /**
 *
 * This is an agent property.
 * @field LastUnited
 *
 */
 @Parameter (displayName = "Last United Experience", usageName = "LastUnited")
 public def getLastUnited() {

121

 return LastUnited
 }
 public void setLastUnited(def newValue) {
 LastUnited = newValue
 }
 public def LastUnited = 0

 /**
 *
 * This is an agent property.
 * @field LastFrontier
 *
 */
 @Parameter (displayName = "Last Frontier Experience", usageName = "LastFrontier")
 public def getLastFrontier() {
 return LastFrontier
 }
 public void setLastFrontier(def newValue) {
 LastFrontier = newValue
 }
 public def LastFrontier = 0

 /**
 *
 * This is an agent property.
 * @field LastOther
 *
 */
 @Parameter (displayName = "Last Other Experience", usageName = "LastOther")
 public def getLastOther() {
 return LastOther
 }
 public void setLastOther(def newValue) {
 LastOther = newValue
 }
 public def LastOther = 0

 /**
 *
 * This is an agent property.
 * @field DrawToFly
 *
 */
 @Parameter (displayName = "Random Draw To Fly", usageName = "DrawToFly")
 public def getDrawToFly() {
 return DrawToFly
 }
 public void setDrawToFly(def newValue) {
 DrawToFly = newValue
 }
 public def DrawToFly = 0

 /**

122

 *
 * This is an agent property.
 * @field ToFly
 *
 */
 @Parameter (displayName = "To Fly", usageName = "ToFly")
 public def getToFly() {
 return ToFly
 }
 public void setToFly(def newValue) {
 ToFly = newValue
 }
 public def ToFly = 0

 /**
 *
 * This is an agent property.
 * @field DrawLastAirline
 *
 */
 @Parameter (displayName = "Random Draw Last Airline", usageName = "DrawLastAirline")
 public def getDrawLastAirline() {
 return DrawLastAirline
 }
 public void setDrawLastAirline(def newValue) {
 DrawLastAirline = newValue
 }
 public def DrawLastAirline = 0

 /**
 *
 * This is an agent property.
 * @field DrawLastExperience
 *
 */
 @Parameter (displayName = "Random Draw Last Experience", usageName = "DrawLastExperience")
 public def getDrawLastExperience() {
 return DrawLastExperience
 }
 public void setDrawLastExperience(def newValue) {
 DrawLastExperience = newValue
 }
 public def DrawLastExperience = 0

 /**
 *
 * This is an agent property.
 * @field DrawLastUnited
 *
 */
 @Parameter (displayName = "Random Draw Last United", usageName = "DrawLastUnited")
 public def getDrawLastUnited() {
 return DrawLastUnited

123

 }
 public void setDrawLastUnited(def newValue) {
 DrawLastUnited = newValue
 }
 public def DrawLastUnited = 0

 /**
 *
 * This is an agent property.
 * @field DrawLastFrontier
 *
 */
 @Parameter (displayName = "Random Draw Last Frontier", usageName = "DrawLastFrontier")
 public def getDrawLastFrontier() {
 return DrawLastFrontier
 }
 public void setDrawLastFrontier(def newValue) {
 DrawLastFrontier = newValue
 }
 public def DrawLastFrontier = 0

 /**
 *
 * This is an agent property.
 * @field DrawLastOther
 *
 */
 @Parameter (displayName = "Random Draw Last Other", usageName = "DrawLastOther")
 public def getDrawLastOther() {
 return DrawLastOther
 }
 public void setDrawLastOther(def newValue) {
 DrawLastOther = newValue
 }
 public def DrawLastOther = 0

 /**
 *
 * This is an agent property.
 * @field DrawMedSwitch
 *
 */
 @Parameter (displayName = "Med Memory Switch", usageName = "DrawMedSwitch")
 public def getDrawMedSwitch() {
 return DrawMedSwitch
 }
 public void setDrawMedSwitch(def newValue) {
 DrawMedSwitch = newValue
 }
 public def DrawMedSwitch = 0

 /**
 *

124

 * This is an agent property.
 * @field DrawOtherAd1
 *
 */
 @Parameter (displayName = "Random Draw Other Ad #1", usageName = "DrawOtherAd1")
 public def getDrawOtherAd1() {
 return DrawOtherAd1
 }
 public void setDrawOtherAd1(def newValue) {
 DrawOtherAd1 = newValue
 }
 public def DrawOtherAd1 = 0

 /**
 *
 * This is an agent property.
 * @field DrawNewFly
 *
 */
 @Parameter (displayName = "Random Draw New Flyer", usageName = "DrawNewFly")
 public def getDrawNewFly() {
 return DrawNewFly
 }
 public void setDrawNewFly(def newValue) {
 DrawNewFly = newValue
 }
 public def DrawNewFly = 0

 /**
 *
 * This is an agent property.
 * @field Switch
 *
 */
 @Parameter (displayName = "Switch", usageName = "Switch")
 public def getSwitch() {
 return Switch
 }
 public void setSwitch(def newValue) {
 Switch = newValue
 }
 public def Switch = 0

 /**
 *
 * This is an agent property.
 * @field DrawAdHigh
 *
 */
 @Parameter (displayName = "Random Draw High Ads", usageName = "DrawAdHigh")
 public def getDrawAdHigh() {
 return DrawAdHigh
 }

125

 public void setDrawAdHigh(def newValue) {
 DrawAdHigh = newValue
 }
 public def DrawAdHigh = 0

 /**
 *
 * This is an agent property.
 * @field DrawHighSwitch
 *
 */
 @Parameter (displayName = "Random Draw High Mem Switches", usageName = "DrawHighSwitch")
 public def getDrawHighSwitch() {
 return DrawHighSwitch
 }
 public void setDrawHighSwitch(def newValue) {
 DrawHighSwitch = newValue
 }
 public def DrawHighSwitch = 0

 /**
 *
 * This is an agent property.
 * @field DrawOtherStart
 *
 */
 @Parameter (displayName = "Random Draw Other Start", usageName = "DrawOtherStart")
 public def getDrawOtherStart() {
 return DrawOtherStart
 }
 public void setDrawOtherStart(def newValue) {
 DrawOtherStart = newValue
 }
 public def DrawOtherStart = 0

 /**
 *
 * This is an agent property.
 * @field AdPer
 *
 */
 @Parameter (displayName = "Advertising Percentage", usageName = "AdPer")
 public def getAdPer() {
 return AdPer
 }
 public void setAdPer(def newValue) {
 AdPer = newValue
 }
 public def AdPer = 0

 /**
 *
 * This is an agent property.

126

 * @field DrawOtherAd2
 *
 */
 @Parameter (displayName = "Random Draw Other Ad #2", usageName = "DrawOtherAd2")
 public def getDrawOtherAd2() {
 return DrawOtherAd2
 }
 public void setDrawOtherAd2(def newValue) {
 DrawOtherAd2 = newValue
 }
 public def DrawOtherAd2 = 0

 /**
 *
 * This is an agent property.
 * @field DrawNewStart
 *
 */
 @Parameter (displayName = "Random Draw New Start", usageName = "DrawNewStart")
 public def getDrawNewStart() {
 return DrawNewStart
 }
 public void setDrawNewStart(def newValue) {
 DrawNewStart = newValue
 }
 public def DrawNewStart = 0

 /**
 *
 * This is an agent property.
 * @field DrawFrontierStart
 *
 */
 @Parameter (displayName = "Random Draw Frontier Start", usageName = "DrawFrontierStart")
 public def getDrawFrontierStart() {
 return DrawFrontierStart
 }
 public void setDrawFrontierStart(def newValue) {
 DrawFrontierStart = newValue
 }
 public def DrawFrontierStart = 0

 /**
 *
 * This is an agent property.
 * @field DrawUnitedStart
 *
 */
 @Parameter (displayName = "Random Draw United Start", usageName = "DrawUnitedStart")
 public def getDrawUnitedStart() {
 return DrawUnitedStart
 }
 public void setDrawUnitedStart(def newValue) {

127

 DrawUnitedStart = newValue
 }
 public def DrawUnitedStart = 0

 /**
 *
 * This is an agent property.
 * @field DrawLastGoodSwitch
 *
 */
 @Parameter (displayName = "Random Draw Last Good Switches", usageName = "DrawLastGoodSwitch")
 public def getDrawLastGoodSwitch() {
 return DrawLastGoodSwitch
 }
 public void setDrawLastGoodSwitch(def newValue) {
 DrawLastGoodSwitch = newValue
 }
 public def DrawLastGoodSwitch = 0

 /**
 *
 * This is an agent property.
 * @field Switch2
 *
 */
 @Parameter (displayName = "Switch2", usageName = "Switch2")
 public def getSwitch2() {
 return Switch2
 }
 public void setSwitch2(def newValue) {
 Switch2 = newValue
 }
 public def Switch2 = 0

 /**
 *
 * This value is used to automatically generate agent identifiers.
 * @field serialVersionUID
 *
 */
 private static final long serialVersionUID = 1L

 /**
 *
 * This value is used to automatically generate agent identifiers.
 * @field agentIDCounter
 *
 */
 protected static long agentIDCounter = 1

 /**
 *
 * This value is the agent's identifier.

128

 * @field agentID
 *
 */
 protected String agentID = "Consumer " + (agentIDCounter++)

 /**
 *
 * This is the step behavior.
 * @method step1
 *
 */
 @ScheduledMethod(
 start = 1d,
 interval = 1d,
 priority = -1.7976931348623157E308d,
 shuffle = true
)
 public def step1() {

 // Define the return value variable.
 def returnValue

 // Note the simulation time.
 def time = GetTickCountInTimeUnits()

 // This is an agent decision.
 if (LastAirline == 0) {

 // This is a task.
 setDrawToFly(RandomDraw())

 // This is an agent decision.
 if (DrawToFly < Frequency) {

 // This is a task.
 setToFly(1)
 MKT.NewFlyer += 1
 // This is a task.
 setDrawNewFly(RandomDraw())

 // This is an agent decision.
 if (DrawNewFly <= (DrawFrontierStart + DrawUnitedStart) + ((DrawNewStart/3)*2) && DrawNewFly >
(DrawFrontierStart + (DrawNewStart /3))) {

 // This is a task.
 setLastAirline(2)
 MKT.unitedMKT += 1
 MKT.totalMKT += 1
 setDrawLastExperience(RandomDraw())
 MKT.NewFlyerUnited += 1

 // This is an agent decision.

129

 if (DrawLastExperience > MKT.BadTrip) {

 // This is a task.
 setLastExperience(0)
 setLastUnited(0)

 } else {

 // This is a task.
 setLastExperience(1)
 setLastUnited(1)

 }

 } else {

 // This is an agent decision.
 if (DrawNewFly <= DrawFrontierStart + (DrawNewStart/3)) {

 // This is a task.
 setLastAirline(1)
 MKT.frontierMKT += 1
 MKT.totalMKT += 1
 setDrawLastExperience(RandomDraw())
 MKT.NewFlyerFrontier += 1

 // This is an agent decision.
 if (DrawLastExperience > MKT.BadTrip) {

 // This is a task.
 setLastExperience(0)
 setLastFrontier(0)

 } else {

 // This is a task.
 setLastExperience(1)
 setLastFrontier(1)

 }

 } else {

 // This is a task.
 setLastAirline(3)
 MKT.otherMKT += 1
 MKT.totalMKT += 1
 setDrawLastExperience(RandomDraw())
 MKT.NewFlyerOther += 1

 // This is an agent decision.
 if (DrawLastExperience > MKT.BadTrip) {

130

 // This is a task.
 setLastExperience(0)
 setLastOther(0)

 } else {

 // This is a task.
 setLastExperience(1)
 setLastOther(1)

 }

 }

 }

 } else {

 // This is a task.
 setToFly(0)

 }

 } else {

 // This is a task.
 setDrawToFly(RandomDraw())

 // This is an agent decision.
 if (DrawToFly < Frequency) {

 // This is a task.
 setToFly(1)
 MKT.PastFlyer += 1
 setDrawLastGoodSwitch(RandomDraw())

 // This is an agent decision.
 if (LastExperience == 0 && DrawLastGoodSwitch <= 0.75) {

 // This is an agent decision.
 if (LastAirline == 1) {

 // This is a task.
 setLastAirline(1)
 MKT.frontierMKT += 1
 MKT.totalMKT += 1
 setDrawLastExperience(RandomDraw())
 MKT.StayFrontier += 1

 // This is an agent decision.
 if (DrawLastExperience > MKT.BadTrip) {

131

 // This is a task.
 setLastExperience(0)
 setLastFrontier(0)

 } else {

 // This is a task.
 setLastExperience(1)
 setLastFrontier(1)

 }

 } else {

 // This is an agent decision.
 if (LastAirline == 2) {

 // This is a task.
 setLastAirline(2)
 MKT.unitedMKT += 1
 MKT.totalMKT += 1
 setDrawLastExperience(RandomDraw())
 MKT.StayUnited += 1

 // This is an agent decision.
 if (DrawLastExperience > MKT.BadTrip) {

 // This is a task.
 setLastExperience(0)
 setLastUnited(0)

 } else {

 // This is a task.
 setLastExperience(1)
 setLastUnited(1)

 }

 } else {

 // This is a task.
 setLastAirline(3)
 MKT.otherMKT += 1
 MKT.totalMKT += 1
 setDrawLastExperience(RandomDraw())
 MKT.StayOther += 1

 // This is an agent decision.
 if (DrawLastExperience > MKT.BadTrip) {

132

 // This is a task.
 setLastExperience(0)
 setLastOther(0)

 } else {

 // This is a task.
 setLastExperience(1)
 setLastOther(1)

 }

 }

 }

 } else {

 // This is a task.
 setDrawHighSwitch(RandomHelper.nextIntFromTo(0,1))
 setDrawMedSwitch(RandomDraw())

 // This is an agent decision.
 if ((MemStrength >= 7) && (DrawHighSwitch = 0)) {

 // This is an agent decision.
 if (LastAirline == 1) {

 // This is a task.
 setLastAirline(1)
 MKT.frontierMKT += 1
 MKT.totalMKT += 1
 setDrawLastExperience(RandomDraw())
 MKT.StayFrontier += 1

 // This is an agent decision.
 if (DrawLastExperience > MKT.BadTrip) {

 // This is a task.
 setLastExperience(0)
 setLastFrontier(0)

 } else {

 // This is a task.
 setLastExperience(1)
 setLastFrontier(1)

 }

 } else {

133

 // This is an agent decision.
 if (LastAirline == 2) {

 // This is a task.
 setLastAirline(2)
 MKT.unitedMKT += 1
 MKT.totalMKT += 1
 setDrawLastExperience(RandomDraw())
 MKT.StayUnited += 1

 // This is an agent decision.
 if (DrawLastExperience > MKT.BadTrip) {

 // This is a task.
 setLastExperience(0)
 setLastUnited(0)

 } else {

 // This is a task.
 setLastExperience(1)
 setLastUnited(1)

 }

 } else {

 // This is a task.
 setLastAirline(3)
 MKT.otherMKT += 1
 MKT.totalMKT += 1
 setDrawLastExperience(RandomDraw())
 MKT.StayOther += 1

 // This is an agent decision.
 if (DrawLastExperience > MKT.BadTrip) {

 // This is a task.
 setLastExperience(0)
 setLastOther(0)

 } else {

 // This is a task.
 setLastExperience(1)
 setLastOther(1)

 }

 }

 }

134

 } else {

 // This is an agent decision.
 if ((MemStrength >= 4) && (DrawMedSwitch > 0.75)) {

 // This is an agent decision.
 if (LastAirline == 1) {

 // This is a task.
 setLastAirline(1)
 MKT.frontierMKT += 1
 MKT.totalMKT += 1
 setDrawLastExperience(RandomDraw())
 MKT.StayFrontier += 1

 // This is an agent decision.
 if (DrawLastExperience > MKT.BadTrip) {

 // This is a task.
 setLastExperience(0)
 setLastFrontier(0)

 } else {

 // This is a task.
 setLastExperience(1)
 setLastFrontier(1)

 }

 } else {

 // This is an agent decision.
 if (LastAirline == 2) {

 // This is a task.
 setLastAirline(2)
 MKT.unitedMKT += 1
 MKT.totalMKT += 1
 setDrawLastExperience(RandomDraw())
 MKT.StayUnited += 1

 // This is an agent decision.
 if (DrawLastExperience > MKT.BadTrip) {

 // This is a task.
 setLastExperience(0)
 setLastUnited(0)

135

 } else {

 // This is a task.
 setLastExperience(1)
 setLastUnited(1)

 }

 } else {

 // This is a task.
 setLastAirline(3)
 MKT.otherMKT += 1
 MKT.totalMKT += 1
 setDrawLastExperience(RandomDraw())
 MKT.StayOther += 1

 // This is an agent decision.
 if (DrawLastExperience > MKT.BadTrip) {

 // This is a task.
 setLastExperience(0)
 setLastOther(0)

 } else {

 // This is a task.
 setLastExperience(1)
 setLastOther(1)

 }

 }

 }

 } else {

 // This is an agent decision.
 if (Frontier.FrontierAd == 1) {

 // This is a task.
 setAdPer(0.05)

 } else {

 // This is a task.
 setAdPer(0.00)

 }

 // This is an agent decision.

136

 if (LastAirline == 1) {

 // This is a task.
 setDrawAdHigh(RandomDraw())

 // This is an agent decision.
 if (Frontier.FrontierAd == 1 && DrawAdHigh <= 0.10) {

 // This is a task.
 setLastAirline(1)
 MKT.frontierMKT += 1
 MKT.totalMKT += 1
 setDrawLastExperience(RandomDraw())
 MKT.StayFrontier += 1

 // This is an agent decision.
 if (DrawLastExperience > MKT.BadTrip) {

 // This is a task.
 setLastExperience(0)
 setLastFrontier(0)

 } else {

 // This is a task.
 setLastExperience(1)
 setLastFrontier(1)

 }

 } else {

 // This is an agent decision.
 if (LastUnited == 0 && LastOther == 0) {

 // This is a task.
 setSwitch(RandomDraw())

 // This is an agent decision.
 if (Switch <= (DrawUnitedStart) / (DrawOtherStart + DrawUnitedStart)) {

 // This is a task.
 setLastAirline(2)
 MKT.unitedMKT += 1
 MKT.totalMKT += 1
 setDrawLastExperience(RandomDraw())
 MKT.SwitchToUnited += 1

 // This is an agent decision.
 if (DrawLastExperience > MKT.BadTrip) {

 // This is a task.

137

 setLastExperience(0)
 setLastUnited(0)
 MKT.SwitchFromFrontier += 1

 } else {

 // This is a task.
 setLastExperience(1)
 setLastUnited(1)
 MKT.SwitchFromFrontier += 1

 }

 } else {

 // This is a task.
 setLastAirline(3)
 MKT.otherMKT += 1
 MKT.totalMKT += 1
 setDrawLastExperience(RandomDraw())
 MKT.SwitchToOther += 1

 // This is an agent decision.
 if (DrawLastExperience > MKT.BadTrip) {

 // This is a task.
 setLastExperience(0)
 setLastOther(0)
 MKT.SwitchFromFrontier += 1

 } else {

 // This is a task.
 setLastExperience(1)
 setLastOther(1)
 MKT.SwitchFromFrontier += 1

 }

 }

 } else {

 // This is a task.
 setSwitch2(RandomDraw())

 // This is an agent decision.
 if (LastUnited == 0 && Switch2 <= 0.75) {

 // This is a task.
 setLastAirline(2)
 MKT.unitedMKT += 1
 MKT.totalMKT += 1

138

 setDrawLastExperience(RandomDraw())
 MKT.SwitchToUnited += 1

 // This is an agent decision.
 if (DrawLastExperience > MKT.BadTrip) {

 // This is a task.
 setLastExperience(0)
 setLastUnited(0)
 MKT.SwitchFromFrontier += 1

 } else {

 // This is a task.
 setLastExperience(1)
 setLastUnited(1)
 MKT.SwitchFromFrontier += 1

 }

 } else {

 // This is an agent decision.
 if (LastOther == 0 && Switch2 <= 0.75) {

 // This is a task.
 setLastAirline(3)
 MKT.otherMKT += 1
 MKT.totalMKT += 1
 setDrawLastExperience(RandomDraw())
 MKT.SwitchToOther += 1

 // This is an agent decision.
 if (DrawLastExperience > MKT.BadTrip) {

 // This is a task.
 setLastExperience(0)
 setLastOther(0)
 MKT.SwitchFromFrontier += 1

 } else {

 // This is a task.
 setLastExperience(1)
 setLastOther(1)
 MKT.SwitchFromFrontier += 1

 }

 } else {

139

 // This is an agent decision.
 if (Switch2 <= DrawFrontierStart + (DrawNewStart/3) + AdPer) {

 // This is a task.
 setLastAirline(1)
 MKT.frontierMKT += 1
 MKT.totalMKT += 1
 setDrawLastExperience(RandomDraw())
 MKT.StayFrontier += 1

 // This is an agent decision.
 if (DrawLastExperience > MKT.BadTrip) {

 // This is a task.
 setLastExperience(0)
 setLastFrontier(0)

 } else {

 // This is a task.
 setLastExperience(1)
 setLastFrontier(1)

 }

 } else {

 // This is an agent decision.
 if (Switch2 <= (DrawFrontierStart + DrawUnitedStart) + ((DrawNewStart/3)*2)) {

 // This is a task.
 setLastAirline(2)
 MKT.unitedMKT += 1
 MKT.totalMKT += 1
 setDrawLastExperience(RandomDraw())
 MKT.SwitchToUnited += 1

 // This is an agent decision.
 if (DrawLastExperience > MKT.BadTrip) {

 // This is a task.
 setLastExperience(0)
 setLastUnited(0)
 MKT.SwitchFromFrontier += 1

 } else {

 // This is a task.
 setLastExperience(1)
 setLastUnited(1)
 MKT.SwitchFromFrontier += 1

140

 }

 } else {

 // This is a task.
 setLastAirline(3)
 MKT.otherMKT += 1
 MKT.totalMKT += 1
 setDrawLastExperience(RandomDraw())
 MKT.SwitchToOther += 1

 // This is an agent decision.
 if (DrawLastExperience > MKT.BadTrip) {

 // This is a task.
 setLastExperience(0)
 setLastOther(0)
 MKT.SwitchFromFrontier += 1

 } else {

 // This is a task.
 setLastExperience(1)
 setLastOther(1)
 MKT.SwitchFromFrontier += 1

 }

 }

 }

 }

 }

 }

 }

 } else {

 // This is an agent decision.
 if (LastAirline == 2) {

 // This is a task.
 setDrawAdHigh(RandomDraw())

 // This is an agent decision.
 if (United.UnitedAd == 1 || DrawAdHigh <= 0.25) {

 // This is a task.

141

 setLastAirline(2)
 MKT.unitedMKT += 1
 MKT.totalMKT += 1
 setDrawLastExperience(RandomDraw())
 MKT.StayUnited += 1

 // This is an agent decision.
 if (DrawLastExperience > MKT.BadTrip) {

 // This is a task.
 setLastExperience(0)
 setLastUnited(0)

 } else {

 // This is a task.
 setLastExperience(1)
 setLastUnited(1)

 }

 } else {

 // This is an agent decision.
 if (LastFrontier == 0 && LastOther == 0) {

 // This is a task.
 setSwitch(RandomDraw())

 // This is an agent decision.
 if (Switch <= (DrawFrontierStart + AdPer) / (DrawOtherStart + DrawFrontierStart)) {

 // This is a task.
 setLastAirline(1)
 MKT.frontierMKT += 1
 MKT.totalMKT += 1
 setDrawLastExperience(RandomDraw())
 MKT.SwitchToFrontier += 1

 // This is an agent decision.
 if (DrawLastExperience > MKT.BadTrip) {

 // This is a task.
 setLastExperience(0)
 setLastFrontier(0)
 MKT.SwitchFromUnited += 1

 } else {

 // This is a task.
 setLastExperience(1)
 setLastFrontier(1)

142

 MKT.SwitchFromUnited += 1

 }

 } else {

 // This is a task.
 setLastAirline(3)
 MKT.otherMKT += 1
 MKT.totalMKT += 1
 setDrawLastExperience(RandomDraw())
 MKT.SwitchToOther += 1

 // This is an agent decision.
 if (DrawLastExperience > MKT.BadTrip) {

 // This is a task.
 setLastExperience(0)
 setLastOther(0)
 MKT.SwitchFromUnited += 1

 } else {

 // This is a task.
 setLastExperience(1)
 setLastOther(1)
 MKT.SwitchFromUnited += 1

 }

 }

 } else {

 // This is a task.
 setSwitch2(RandomDraw())

 // This is an agent decision.
 if (LastFrontier == 0 && Switch2 <= 0.75) {

 // This is a task.
 setLastAirline(1)
 MKT.frontierMKT += 1
 MKT.totalMKT += 1
 setDrawLastExperience(RandomDraw())
 MKT.SwitchToFrontier += 1

 // This is an agent decision.
 if (DrawLastExperience > MKT.BadTrip) {

 // This is a task.
 setLastExperience(0)
 setLastFrontier(0)

143

 MKT.SwitchFromUnited += 1

 } else {

 // This is a task.
 setLastExperience(1)
 setLastFrontier(1)
 MKT.SwitchFromUnited += 1

 }

 } else {

 // This is an agent decision.
 if (LastOther == 0 && Switch2 <= 0.75) {

 // This is a task.
 setLastAirline(3)
 MKT.otherMKT += 1
 MKT.totalMKT += 1
 setDrawLastExperience(RandomDraw())
 MKT.SwitchToOther += 1

 // This is an agent decision.
 if (DrawLastExperience > MKT.BadTrip) {

 // This is a task.
 setLastExperience(0)
 setLastOther(0)
 MKT.SwitchFromUnited += 1

 } else {

 // This is a task.
 setLastExperience(1)
 setLastOther(1)
 MKT.SwitchFromUnited += 1

 }

 } else {

 // This is an agent decision.
 if (Switch2 <= DrawUnitedStart + (DrawNewStart/3)) {

 // This is a task.
 setLastAirline(2)
 MKT.unitedMKT += 1
 MKT.totalMKT += 1
 setDrawLastExperience(RandomDraw())
 MKT.StayUnited += 1

144

 // This is an agent decision.
 if (DrawLastExperience > MKT.BadTrip) {

 // This is a task.
 setLastExperience(0)
 setLastUnited(0)

 } else {

 // This is a task.
 setLastExperience(1)
 setLastUnited(1)

 }

 } else {

 // This is an agent decision.
 if (Switch2 <= (DrawFrontierStart + DrawUnitedStart + AdPer) +
((DrawNewStart/3)*2)) {

 // This is a task.
 setLastAirline(1)
 MKT.frontierMKT += 1
 MKT.totalMKT += 1
 setDrawLastExperience(RandomDraw())
 MKT.SwitchToFrontier += 1

 // This is an agent decision.
 if (DrawLastExperience > MKT.BadTrip) {

 // This is a task.
 setLastExperience(0)
 setLastFrontier(0)
 MKT.SwitchFromUnited += 1

 } else {

 // This is a task.
 setLastExperience(1)
 setLastFrontier(1)
 MKT.SwitchFromUnited += 1

 }

 } else {

 // This is a task.
 setLastAirline(3)
 MKT.otherMKT += 1
 MKT.totalMKT += 1

145

 setDrawLastExperience(RandomDraw())
 MKT.SwitchToOther += 1

 // This is an agent decision.
 if (DrawLastExperience > MKT.BadTrip) {

 // This is a task.
 setLastExperience(0)
 setLastFrontier(0)
 MKT.SwitchFromUnited += 1

 } else {

 // This is a task.
 setLastExperience(1)
 setLastFrontier(1)
 MKT.SwitchFromUnited += 1

 }

 }

 }

 }

 }

 }

 }

 } else {

 // This is a task.
 setDrawOtherAd1(RandomDraw(0.70,0.85))
 setDrawOtherAd2(RandomDraw())

 // This is an agent decision.
 if (DrawOtherAd2 >= DrawOtherAd1) {

 // This is a task.
 setLastAirline(3)
 MKT.otherMKT += 1
 MKT.totalMKT += 1
 setDrawLastExperience(RandomDraw())
 MKT.StayOther += 1

 // This is an agent decision.
 if (DrawLastExperience > MKT.BadTrip) {

 // This is a task.
 setLastExperience(0)

146

 setLastOther(0)

 } else {

 // This is a task.
 setLastExperience(1)
 setLastOther(1)

 }

 } else {

 // This is an agent decision.
 if (LastFrontier == 0 && LastUnited == 0) {

 // This is a task.
 setSwitch(RandomDraw())

 // This is an agent decision.
 if (Switch <= (DrawFrontierStart + AdPer) / (DrawUnitedStart + DrawFrontierStart)) {

 // This is a task.
 setLastAirline(1)
 MKT.frontierMKT += 1
 MKT.totalMKT += 1
 setDrawLastExperience(RandomDraw())
 MKT.SwitchToFrontier += 1

 // This is an agent decision.
 if (DrawLastExperience > MKT.BadTrip) {

 // This is a task.
 setLastExperience(0)
 setLastFrontier(0)
 MKT.SwitchFromOther += 1

 } else {

 // This is a task.
 setLastExperience(1)
 setLastFrontier(1)
 MKT.SwitchFromOther += 1

 }

 } else {

 // This is a task.
 setLastAirline(2)
 MKT.unitedMKT += 1
 MKT.totalMKT += 1
 setDrawLastExperience(RandomDraw())

147

 MKT.SwitchToUnited += 1

 // This is an agent decision.
 if (DrawLastExperience > MKT.BadTrip) {

 // This is a task.
 setLastExperience(0)
 setLastUnited(0)
 MKT.SwitchFromOther += 1

 } else {

 // This is a task.
 setLastExperience(1)
 setLastUnited(1)
 MKT.SwitchFromOther += 1

 }

 }

 } else {

 // This is a task.
 setSwitch2(RandomDraw())

 // This is an agent decision.
 if (LastFrontier == 0 && Switch2 <= 0.75) {

 // This is a task.
 setLastAirline(1)
 MKT.frontierMKT += 1
 MKT.totalMKT += 1
 setDrawLastExperience(RandomDraw())
 MKT.SwitchToFrontier += 1

 // This is an agent decision.
 if (DrawLastExperience > MKT.BadTrip) {

 // This is a task.
 setLastExperience(0)
 setLastFrontier(0)
 MKT.SwitchFromOther += 1

 } else {

 // This is a task.
 setLastExperience(1)
 setLastFrontier(1)
 MKT.SwitchFromOther += 1

 }

148

 } else {

 // This is an agent decision.
 if (LastUnited == 0 && Switch2 <= 0.75) {

 // This is a task.
 setLastAirline(2)
 MKT.unitedMKT += 1
 MKT.totalMKT += 1
 setDrawLastExperience(RandomDraw())
 MKT.SwitchToUnited+= 1

 // This is an agent decision.
 if (DrawLastExperience > MKT.BadTrip) {

 // This is a task.
 setLastExperience(0)
 setLastUnited(0)
 MKT.SwitchFromOther += 1

 } else {

 // This is a task.
 setLastExperience(1)
 setLastUnited(1)
 MKT.SwitchFromOther += 1

 }

 } else {

 // This is an agent decision.
 if (Switch2 > (DrawFrontierStart + DrawUnitedStart) + ((DrawNewStart/3)*2)) {

 // This is a task.
 setLastAirline(3)
 MKT.otherMKT += 1
 MKT.totalMKT += 1
 setDrawLastExperience(RandomDraw())
 MKT.StayOther += 1

 // This is an agent decision.
 if (DrawLastExperience > MKT.BadTrip) {

 // This is a task.
 setLastExperience(0)
 setLastOther(0)

 } else {

 // This is a task.

149

 setLastExperience(1)
 setLastOther(1)

 }

 } else {

 // This is an agent decision.
 if (Switch2 <= DrawFrontierStart + (DrawNewStart/3) + AdPer) {

 // This is a task.
 setLastAirline(1)
 MKT.frontierMKT += 1
 MKT.totalMKT += 1
 setDrawLastExperience(RandomDraw())
 MKT.SwitchToFrontier += 1

 // This is an agent decision.
 if (DrawLastExperience > MKT.BadTrip) {

 // This is a task.
 setLastExperience(0)
 setLastFrontier(0)
 MKT.SwitchFromOther += 1

 } else {

 // This is a task.
 setLastExperience(1)
 setLastFrontier(1)
 MKT.SwitchFromOther += 1

 }

 } else {

 // This is a task.
 setLastAirline(2)
 MKT.unitedMKT += 1
 MKT.totalMKT += 1
 setDrawLastExperience(RandomDraw())
 MKT.SwitchToUnited += 1

 // This is an agent decision.
 if (DrawLastExperience > MKT.BadTrip) {

 // This is a task.
 setLastExperience(0)
 setLastUnited(0)
 MKT.SwitchFromOther += 1

 } else {

150

 // This is a task.
 setLastExperience(1)
 setLastUnited(1)
 MKT.SwitchFromOther += 1

 }

 }

 }

 }

 }

 }

 }

 }

 }

 }

 }

 }

 } else {

 // This is a task.
 setToFly(0)

 }

 }
 // Return the results.
 return returnValue

 }

 /**
 *
 * This is the step behavior.
 * @method step0
 *
 */
 @ScheduledMethod(
 start = 0d,
 priority = -1.7976931348623157E308d,
 shuffle = false

151

)
 public def step0() {

 // Define the return value variable.
 def returnValue

 // Note the simulation time.
 def time = GetTickCountInTimeUnits()

 // This is a task.
 setDrawLastAirline(RandomDraw())
 setDrawNewStart(RandomDraw(0.00, 0.10))
 setDrawFrontierStart(RandomDraw(0.11, 0.21))
 setDrawUnitedStart(RandomDraw(0.16, 0.26))
 MKT.BadTrip = RandomDraw(0.70,1.0)
 // This is a task.
 setDrawOtherStart((1 - DrawNewStart - DrawFrontierStart - DrawUnitedStart))

 // This is an agent decision.
 if (DrawLastAirline <= DrawNewStart) {

 // This is a task.
 setLastAirline(0)
 MKT.StartNone += 1
 // This is a task.
 setLastExperience(0)
 setLastUnited(0)
 setLastFrontier(0)
 setLastOther(0)

 } else {

 // This is an agent decision.
 if (DrawLastAirline <= (DrawNewStart + DrawFrontierStart)) {

 // This is a task.
 setLastAirline(1)
 MKT.StartFrontier += 1
 // This is a task.
 setDrawLastExperience(RandomDraw())

 // This is an agent decision.
 if (DrawLastExperience > MKT.BadTrip) {

 // This is a task.
 setLastExperience(0)
 setLastFrontier(0)

 } else {

 // This is a task.
 setLastExperience(1)

152

 setLastFrontier(1)

 }
 // This is a task.
 setDrawLastUnited(RandomDraw())

 // This is an agent decision.
 if (DrawLastUnited > MKT.BadTrip) {

 // This is a task.
 setLastUnited(0)

 } else {

 // This is a task.
 setLastUnited(1)

 }
 // This is a task.
 setDrawLastOther(RandomDraw())

 // This is an agent decision.
 if (DrawLastOther > MKT.BadTrip) {

 // This is a task.
 setLastOther(0)

 } else {

 // This is a task.
 setLastOther(1)

 }

 } else {

 // This is an agent decision.
 if (DrawLastAirline <= (DrawNewStart + DrawFrontierStart + DrawUnitedStart)) {

 // This is a task.
 setLastAirline(2)
 MKT.StartUnited += 1
 // This is a task.
 setDrawLastExperience(RandomDraw())

 // This is an agent decision.
 if (DrawLastExperience > MKT.BadTrip) {

 // This is a task.
 setLastExperience(0)
 setLastUnited(0)

153

 } else {

 // This is a task.
 setLastExperience(1)
 setLastUnited(1)

 }
 // This is a task.
 setDrawLastFrontier(RandomDraw())

 // This is an agent decision.
 if (DrawLastFrontier > MKT.BadTrip) {

 // This is a task.
 setLastFrontier(0)

 } else {

 // This is a task.
 setLastFrontier(1)

 }
 // This is a task.
 setDrawLastOther(RandomDraw())

 // This is an agent decision.
 if (DrawLastFrontier > MKT.BadTrip) {

 // This is a task.
 setLastOther(0)

 } else {

 // This is a task.
 setLastOther(1)

 }

 } else {

 // This is a task.
 setLastAirline(3)
 MKT.StartOther += 1
 // This is a task.
 setDrawLastExperience(RandomDraw())

 // This is an agent decision.
 if (DrawLastExperience > MKT.BadTrip) {

 // This is a task.
 setLastExperience(0)
 setLastOther(0)

154

 } else {

 // This is a task.
 setLastExperience(1)
 setLastOther(1)

 }
 // This is a task.
 setDrawLastUnited(RandomDraw())

 // This is an agent decision.
 if (DrawLastUnited > MKT.BadTrip) {

 // This is a task.
 setLastUnited(0)

 } else {

 // This is a task.
 setLastUnited(1)

 }
 // This is a task.
 setDrawLastFrontier(RandomDraw())

 // This is an agent decision.
 if (DrawLastFrontier > MKT.BadTrip) {

 // This is a task.
 setLastFrontier(0)

 } else {

 // This is a task.
 setLastFrontier(1)

 }

 }

 }

 }
 // Return the results.
 return returnValue

 }

 /**
 *
 * This method provides a human-readable name for the agent.
 * @method toString
 *

155

 */
 @ProbeID()
 public String toString() {

 // Define the return value variable.
 def returnValue

 // Note the simulation time.
 def time = GetTickCountInTimeUnits()

 // Set the default agent identifier.
 returnValue = this.agentID
 // Return the results.
 return returnValue

 }

}

III. Frontier Airlines

/**
 *
 * This file was automatically generated by the Repast Simphony Agent Editor.
 * Please see http://repast.sourceforge.net/ for details.
 *
 */

/**
 *
 * Set the package name.
 *
 */
package frontierairlines

/**
 *
 * Import the needed packages.
 *
 */
import java.io.*
import java.math.*
import java.util.*
import javax.measure.unit.*
import org.jscience.mathematics.number.*
import org.jscience.mathematics.vector.*
import org.jscience.physics.amount.*
import repast.simphony.adaptation.neural.*
import repast.simphony.adaptation.regression.*
import repast.simphony.context.*
import repast.simphony.context.space.continuous.*
import repast.simphony.context.space.gis.*

156

import repast.simphony.context.space.graph.*
import repast.simphony.context.space.grid.*
import repast.simphony.engine.environment.*
import repast.simphony.engine.schedule.*
import repast.simphony.engine.watcher.*
import repast.simphony.groovy.math.*
import repast.simphony.integration.*
import repast.simphony.matlab.link.*
import repast.simphony.query.*
import repast.simphony.query.space.continuous.*
import repast.simphony.query.space.gis.*
import repast.simphony.query.space.graph.*
import repast.simphony.query.space.grid.*
import repast.simphony.query.space.projection.*
import repast.simphony.parameter.*
import repast.simphony.random.*
import repast.simphony.space.continuous.*
import repast.simphony.space.gis.*
import repast.simphony.space.graph.*
import repast.simphony.space.grid.*
import repast.simphony.space.projection.*
import repast.simphony.ui.probe.*
import repast.simphony.util.*
import simphony.util.messages.*
import static java.lang.Math.*
import static repast.simphony.essentials.RepastEssentials.*

/**
 *
 * This is an agent.
 *
 */
public class Frontier {

 /**
 *
 * This is an agent property.
 * @field FrontierAd
 *
 */
 @Parameter (displayName = "Advertising", usageName = "FrontierAd")
 public static def getFrontierAd() {
 return FrontierAd
 }
 public static void setFrontierAd(def newValue) {
 FrontierAd = newValue
 }
 public static def FrontierAd = 0

 /**
 *
 * This is an agent property.
 * @field FrontierMarketShare

157

 *
 */
 @Parameter (displayName = "Frontier Market Share", usageName = "FrontierMarketShare")
 public def getFrontierMarketShare() {
 return FrontierMarketShare
 }
 public void setFrontierMarketShare(def newValue) {
 FrontierMarketShare = newValue
 }
 public def FrontierMarketShare = 0

 /**
 *
 * This value is used to automatically generate agent identifiers.
 * @field serialVersionUID
 *
 */
 private static final long serialVersionUID = 1L

 /**
 *
 * This value is used to automatically generate agent identifiers.
 * @field agentIDCounter
 *
 */
 protected static long agentIDCounter = 1

 /**
 *
 * This value is the agent's identifier.
 * @field agentID
 *
 */
 protected String agentID = "Frontier " + (agentIDCounter++)

 /**
 *
 * This is the step behavior.
 * @method step0
 *
 */
 @ScheduledMethod(
 start = 0d,
 interval = 2d,
 priority = 1d,
 shuffle = false
)
 public def step0() {

 // Define the return value variable.
 def returnValue

 // Note the simulation time.

158

 def time = GetTickCountInTimeUnits()

 // This is an agent decision.
 if (Fuel.fuel == 1) {

 // This is an agent decision.
 if (Regulation.regulation == 1) {

 // This is an agent decision.
 if (Credit.credit == 1) {

 // This is a task.
 setFrontierAd(0)

 } else {

 // This is a task.
 setFrontierAd(0)

 }

 } else {

 // This is an agent decision.
 if (Credit.credit == 1) {

 // This is a task.
 setFrontierAd(0)

 } else {

 // This is a task.
 setFrontierAd(1)

 }

 }

 } else {

 // This is an agent decision.
 if (Regulation.regulation == 1) {

 // This is an agent decision.
 if (Credit.credit == 1) {

 // This is a task.

159

 setFrontierAd(0)

 } else {

 // This is a task.
 setFrontierAd(1)

 }

 } else {

 // This is an agent decision.
 if (Credit.credit == 1) {

 // This is a task.
 setFrontierAd(1)

 } else {

 // This is a task.
 setFrontierAd(1)

 }

 }

 }
 // Return the results.
 return returnValue

 }

 /**
 *
 * This is the step behavior.
 * @method step1
 *
 */
 @ScheduledMethod(
 start = 12d,
 interval = 12d,
 priority = 1d,
 shuffle = false
)
 public def step1() {

 // Define the return value variable.
 def returnValue

 // Note the simulation time.
 def time = GetTickCountInTimeUnits()

160

 // This is a task.
 MKT.FrontierShare = MKT.frontierMKT / MKT.totalMKT

 // This is an agent decision.
 if (MKT.FrontierShare <= 0.16) {

 // This is a task.
 MKT.FrontierMktShrBad += 1

 // This is an agent decision.
 if (Fuel.fuel == 1) {

 // This is an agent decision.
 if (Regulation.regulation == 1) {

 // This is an agent decision.
 if (Credit.credit == 1) {

 // This is a task.
 setFrontierAd(0)

 } else {

 // This is a task.
 setFrontierAd(0)

 }

 } else {

 // This is an agent decision.
 if (Credit.credit == 1) {

 // This is a task.
 setFrontierAd(0)

 } else {

 // This is a task.
 setFrontierAd(1)

 }

 }

 } else {

 // This is an agent decision.
 if (Regulation.regulation == 1) {

161

 // This is an agent decision.
 if (Credit.credit == 1) {

 // This is a task.
 setFrontierAd(0)

 } else {

 // This is a task.
 setFrontierAd(1)

 }

 } else {

 // This is an agent decision.
 if (Credit.credit == 1) {

 // This is a task.
 setFrontierAd(1)

 } else {

 // This is a task.
 setFrontierAd(1)

 }

 }

 }

 } else {

 // This is a task.
 MKT.FrontierMktShrGood += 1

 }
 // Return the results.
 return returnValue

 }

 /**
 *
 * This is the step behavior.
 * @method step2
 *
 */
 @ScheduledMethod(

162

 start = 1d,
 interval = 1d,
 priority = -1.7976931348623157E308d,
 shuffle = false
)
 public def step2() {

 // Define the return value variable.
 def returnValue

 // Note the simulation time.
 def time = GetTickCountInTimeUnits()

 // This is an agent decision.
 if (FrontierAd == 1) {

 // This is a task.
 MKT.FrontierAdHigh += 1

 } else {

 // This is a task.
 MKT.FrontierAdLow += 1

 }
 // Return the results.
 return returnValue

 }

 /**
 *
 * This method provides a human-readable name for the agent.
 * @method toString
 *
 */
 @ProbeID()
 public String toString() {

 // Define the return value variable.
 def returnValue

 // Note the simulation time.
 def time = GetTickCountInTimeUnits()

 // Set the default agent identifier.
 returnValue = this.agentID
 // Return the results.
 return returnValue

 }
}

163

IV. United Airlines

/**
 *
 * This file was automatically generated by the Repast Simphony Agent Editor.
 * Please see http://repast.sourceforge.net/ for details.
 *
 */

/**
 *
 * Set the package name.
 *
 */
package frontierairlines

/**
 *
 * Import the needed packages.
 *
 */
import java.io.*
import java.math.*
import java.util.*
import javax.measure.unit.*
import org.jscience.mathematics.number.*
import org.jscience.mathematics.vector.*
import org.jscience.physics.amount.*
import repast.simphony.adaptation.neural.*
import repast.simphony.adaptation.regression.*
import repast.simphony.context.*
import repast.simphony.context.space.continuous.*
import repast.simphony.context.space.gis.*
import repast.simphony.context.space.graph.*
import repast.simphony.context.space.grid.*
import repast.simphony.engine.environment.*
import repast.simphony.engine.schedule.*
import repast.simphony.engine.watcher.*
import repast.simphony.groovy.math.*
import repast.simphony.integration.*
import repast.simphony.matlab.link.*
import repast.simphony.query.*
import repast.simphony.query.space.continuous.*
import repast.simphony.query.space.gis.*
import repast.simphony.query.space.graph.*
import repast.simphony.query.space.grid.*
import repast.simphony.query.space.projection.*
import repast.simphony.parameter.*
import repast.simphony.random.*
import repast.simphony.space.continuous.*
import repast.simphony.space.gis.*
import repast.simphony.space.graph.*
import repast.simphony.space.grid.*

164

import repast.simphony.space.projection.*
import repast.simphony.ui.probe.*
import repast.simphony.util.*
import simphony.util.messages.*
import static java.lang.Math.*
import static repast.simphony.essentials.RepastEssentials.*

/**
 *
 * This is an agent.
 *
 */
public class United {

 /**
 *
 * This is an agent property.
 * @field UnitedAd
 *
 */
 @Parameter (displayName = "Advertising", usageName = "UnitedAd")
 public static def getUnitedAd() {
 return UnitedAd
 }
 public static void setUnitedAd(def newValue) {
 UnitedAd = newValue
 }
 public static def UnitedAd = 0

 /**
 *
 * This is an agent property.
 * @field UnitedMarketShare
 *
 */
 @Parameter (displayName = "United Market Share", usageName = "UnitedMarketShare")
 public def getUnitedMarketShare() {
 return UnitedMarketShare
 }
 public void setUnitedMarketShare(def newValue) {
 UnitedMarketShare = newValue
 }
 public def UnitedMarketShare = 0

 /**
 *
 * This value is used to automatically generate agent identifiers.
 * @field serialVersionUID
 *
 */
 private static final long serialVersionUID = 1L

 /**

165

 *
 * This value is used to automatically generate agent identifiers.
 * @field agentIDCounter
 *
 */
 protected static long agentIDCounter = 1

 /**
 *
 * This value is the agent's identifier.
 * @field agentID
 *
 */
 protected String agentID = "United " + (agentIDCounter++)

 /**
 *
 * This is the step behavior.
 * @method step0
 *
 */
 @ScheduledMethod(
 start = 0d,
 interval = 2d,
 priority = 1d,
 shuffle = false
)
 public def step0() {

 // Define the return value variable.
 def returnValue

 // Note the simulation time.
 def time = GetTickCountInTimeUnits()

 // This is an agent decision.
 if (Fuel.fuel == 1) {

 // This is an agent decision.
 if (Regulation.regulation == 1) {

 // This is an agent decision.
 if (Credit.credit == 1) {

 // This is a task.
 setUnitedAd(0)

 } else {

 // This is a task.

166

 setUnitedAd(0)

 }

 } else {

 // This is an agent decision.
 if (Credit.credit == 1) {

 // This is a task.
 setUnitedAd(0)

 } else {

 // This is a task.
 setUnitedAd(0)

 }

 }

 } else {

 // This is an agent decision.
 if (Regulation.regulation == 1) {

 // This is an agent decision.
 if (Credit.credit == 1) {

 // This is a task.
 setUnitedAd(0)

 } else {

 // This is a task.
 setUnitedAd(0)

 }

 } else {

 // This is an agent decision.
 if (Credit.credit == 1) {

 // This is a task.
 setUnitedAd(0)

 } else {

167

 // This is a task.
 setUnitedAd(1)

 }

 }

 }
 // Return the results.
 return returnValue

 }

 /**
 *
 * This is the step behavior.
 * @method step1
 *
 */
 @ScheduledMethod(
 start = 12d,
 interval = 12d,
 priority = 1d,
 shuffle = false
)
 public def step1() {

 // Define the return value variable.
 def returnValue

 // Note the simulation time.
 def time = GetTickCountInTimeUnits()

 // This is a task.
 MKT.UnitedShare = MKT.unitedMKT / MKT.totalMKT

 // This is an agent decision.
 if (MKT.UnitedShare <= 0.21) {

 // This is a task.
 MKT.UnitedMktShrBad += 1

 // This is an agent decision.
 if (Fuel.fuel == 1) {

 // This is an agent decision.
 if (Regulation.regulation == 1) {

 // This is an agent decision.
 if (Credit.credit == 1) {

168

 // This is a task.
 setUnitedAd(0)

 } else {

 // This is a task.
 setUnitedAd(0)

 }

 } else {

 // This is an agent decision.
 if (Credit.credit == 1) {

 // This is a task.
 setUnitedAd(0)

 } else {

 // This is a task.
 setUnitedAd(0)

 }

 }

 } else {

 // This is an agent decision.
 if (Regulation.regulation == 1) {

 // This is an agent decision.
 if (Credit.credit == 1) {

 // This is a task.
 setUnitedAd(0)

 } else {

 // This is a task.
 setUnitedAd(0)

 }

 } else {

 // This is an agent decision.
 if (Credit.credit == 1) {

169

 // This is a task.
 setUnitedAd(0)

 } else {

 // This is a task.
 setUnitedAd(1)

 }

 }

 }

 } else {

 // This is a task.
 MKT.UnitedMktShrGood += 1

 }
 // Return the results.
 return returnValue

 }

 /**
 *
 * This is the step behavior.
 * @method step2
 *
 */
 @ScheduledMethod(
 start = 1d,
 interval = 1d,
 priority = -1.7976931348623157E308d,
 shuffle = false
)
 public def step2() {

 // Define the return value variable.
 def returnValue

 // Note the simulation time.
 def time = GetTickCountInTimeUnits()

 // This is an agent decision.
 if (UnitedAd == 1) {

 // This is a task.
 MKT.UnitedAdHigh += 1

170

 } else {

 // This is a task.
 MKT.UnitedAdLow += 1

 }
 // Return the results.
 return returnValue

 }

 /**
 *
 * This method provides a human-readable name for the agent.
 * @method toString
 *
 */
 @ProbeID()
 public String toString() {

 // Define the return value variable.
 def returnValue

 // Note the simulation time.
 def time = GetTickCountInTimeUnits()

 // Set the default agent identifier.
 returnValue = this.agentID
 // Return the results.
 return returnValue

 }
}

V. Credit Level

/**
 *
 * This file was automatically generated by the Repast Simphony Agent Editor.
 * Please see http://repast.sourceforge.net/ for details.
 *
 */

/**
 *
 * Set the package name.
 *
 */
package frontierairlines

/**
 *
 * Import the needed packages.

171

 *
 */
import java.io.*
import java.math.*
import java.util.*
import javax.measure.unit.*
import org.jscience.mathematics.number.*
import org.jscience.mathematics.vector.*
import org.jscience.physics.amount.*
import repast.simphony.adaptation.neural.*
import repast.simphony.adaptation.regression.*
import repast.simphony.context.*
import repast.simphony.context.space.continuous.*
import repast.simphony.context.space.gis.*
import repast.simphony.context.space.graph.*
import repast.simphony.context.space.grid.*
import repast.simphony.engine.environment.*
import repast.simphony.engine.schedule.*
import repast.simphony.engine.watcher.*
import repast.simphony.groovy.math.*
import repast.simphony.integration.*
import repast.simphony.matlab.link.*
import repast.simphony.query.*
import repast.simphony.query.space.continuous.*
import repast.simphony.query.space.gis.*
import repast.simphony.query.space.graph.*
import repast.simphony.query.space.grid.*
import repast.simphony.query.space.projection.*
import repast.simphony.parameter.*
import repast.simphony.random.*
import repast.simphony.space.continuous.*
import repast.simphony.space.gis.*
import repast.simphony.space.graph.*
import repast.simphony.space.grid.*
import repast.simphony.space.projection.*
import repast.simphony.ui.probe.*
import repast.simphony.util.*
import simphony.util.messages.*
import static java.lang.Math.*
import static repast.simphony.essentials.RepastEssentials.*

/**
 *
 * This is an agent.
 *
 */
public class Credit {

 /**
 *
 * This is an agent property.
 * @field Credit
 *

172

 */
 @Parameter (displayName = "Credit Availability", usageName = "Credit")
 public static def getCredit() {
 return Credit
 }
 public static void setCredit(def newValue) {
 Credit = newValue
 }
 public static def Credit = 0

 /**
 *
 * This is an agent property.
 * @field DrawCredit
 *
 */
 @Parameter (displayName = "Random Draw Credit", usageName = "DrawCredit")
 public def getDrawCredit() {
 return DrawCredit
 }
 public void setDrawCredit(def newValue) {
 DrawCredit = newValue
 }
 public def DrawCredit = 0

 /**
 *
 * This value is used to automatically generate agent identifiers.
 * @field serialVersionUID
 *
 */
 private static final long serialVersionUID = 1L

 /**
 *
 * This value is used to automatically generate agent identifiers.
 * @field agentIDCounter
 *
 */
 protected static long agentIDCounter = 1

 /**
 *
 * This value is the agent's identifier.
 * @field agentID
 *
 */
 protected String agentID = "Credit " + (agentIDCounter++)

 /**
 *
 * This is the step behavior.
 * @method step

173

 *
 */
 @ScheduledMethod(
 start = 0d,
 interval = 4d,
 priority = 2d,
 shuffle = false
)
 public def step() {

 // Define the return value variable.
 def returnValue

 // Note the simulation time.
 def time = GetTickCountInTimeUnits()

 // This is a task.
 setDrawCredit(RandomDraw())

 // This is an agent decision.
 if (DrawCredit > 0.50) {

 // This is a task.
 setCredit(1)

 } else {

 // This is a task.
 setCredit(0)

 }
 // Return the results.
 return returnValue

 }

 /**
 *
 * This is the step behavior.
 * @method step1
 *
 */
 @ScheduledMethod(
 start = 1d,
 interval = 1d,
 priority = -1.7976931348623157E308d,
 shuffle = false
)
 public def step1() {

 // Define the return value variable.
 def returnValue

174

 // Note the simulation time.
 def time = GetTickCountInTimeUnits()

 // This is an agent decision.
 if (Credit == 1) {

 // This is a task.
 MKT.CreditHigh += 1

 } else {

 // This is a task.
 MKT.CreditLow += 1

 }
 // Return the results.
 return returnValue

 }

 /**
 *
 * This method provides a human-readable name for the agent.
 * @method toString
 *
 */
 @ProbeID()
 public String toString() {

 // Define the return value variable.
 def returnValue

 // Note the simulation time.
 def time = GetTickCountInTimeUnits()

 // Set the default agent identifier.
 returnValue = this.agentID
 // Return the results.
 return returnValue

 }
}

VI. Fuel Costs

/**
 *
 * This file was automatically generated by the Repast Simphony Agent Editor.
 * Please see http://repast.sourceforge.net/ for details.
 *
 */

175

/**
 *
 * Set the package name.
 *
 */
package frontierairlines

/**
 *
 * Import the needed packages.
 *
 */
import java.io.*
import java.math.*
import java.util.*
import javax.measure.unit.*
import org.jscience.mathematics.number.*
import org.jscience.mathematics.vector.*
import org.jscience.physics.amount.*
import repast.simphony.adaptation.neural.*
import repast.simphony.adaptation.regression.*
import repast.simphony.context.*
import repast.simphony.context.space.continuous.*
import repast.simphony.context.space.gis.*
import repast.simphony.context.space.graph.*
import repast.simphony.context.space.grid.*
import repast.simphony.engine.environment.*
import repast.simphony.engine.schedule.*
import repast.simphony.engine.watcher.*
import repast.simphony.groovy.math.*
import repast.simphony.integration.*
import repast.simphony.matlab.link.*
import repast.simphony.query.*
import repast.simphony.query.space.continuous.*
import repast.simphony.query.space.gis.*
import repast.simphony.query.space.graph.*
import repast.simphony.query.space.grid.*
import repast.simphony.query.space.projection.*
import repast.simphony.parameter.*
import repast.simphony.random.*
import repast.simphony.space.continuous.*
import repast.simphony.space.gis.*
import repast.simphony.space.graph.*
import repast.simphony.space.grid.*
import repast.simphony.space.projection.*
import repast.simphony.ui.probe.*
import repast.simphony.util.*
import simphony.util.messages.*
import static java.lang.Math.*
import static repast.simphony.essentials.RepastEssentials.*

/**
 *

176

 * This is an agent.
 *
 */
public class Fuel {

 /**
 *
 * This is an agent property.
 * @field Fuel
 *
 */
 @Parameter (displayName = "Fuel Cost", usageName = "Fuel")
 public static def getFuel() {
 return Fuel
 }
 public static void setFuel(def newValue) {
 Fuel = newValue
 }
 public static def Fuel = 0

 /**
 *
 * This is an agent property.
 * @field DrawFuelCost
 *
 */
 @Parameter (displayName = "Random Draw Fuel Cost", usageName = "DrawFuelCost")
 public def getDrawFuelCost() {
 return DrawFuelCost
 }
 public void setDrawFuelCost(def newValue) {
 DrawFuelCost = newValue
 }
 public def DrawFuelCost = 0

 /**
 *
 * This value is used to automatically generate agent identifiers.
 * @field serialVersionUID
 *
 */
 private static final long serialVersionUID = 1L

 /**
 *
 * This value is used to automatically generate agent identifiers.
 * @field agentIDCounter
 *
 */
 protected static long agentIDCounter = 1

 /**
 *

177

 * This value is the agent's identifier.
 * @field agentID
 *
 */
 protected String agentID = "Fuel " + (agentIDCounter++)

 /**
 *
 * This is the step behavior.
 * @method step0
 *
 */
 @ScheduledMethod(
 start = 0d,
 interval = 4d,
 priority = 2d,
 shuffle = false
)
 public def step0() {

 // Define the return value variable.
 def returnValue

 // Note the simulation time.
 def time = GetTickCountInTimeUnits()

 // This is a task.
 setDrawFuelCost(RandomDraw())

 // This is an agent decision.
 if (DrawFuelCost > 0.40) {

 // This is a task.
 setFuel(1)

 } else {

 // This is a task.
 setFuel(0)

 }
 // Return the results.
 return returnValue

 }

 /**
 *
 * This is the step behavior.
 * @method step1
 *
 */
 @ScheduledMethod(

178

 start = 1d,
 interval = 1d,
 priority = -1.7976931348623157E308d,
 shuffle = false
)
 public def step1() {

 // Define the return value variable.
 def returnValue

 // Note the simulation time.
 def time = GetTickCountInTimeUnits()

 // This is an agent decision.
 if (Fuel == 1) {

 // This is a task.
 MKT.FuelHigh += 1

 } else {

 // This is a task.
 MKT.FuelLow += 1

 }
 // Return the results.
 return returnValue

 }

 /**
 *
 * This method provides a human-readable name for the agent.
 * @method toString
 *
 */
 @ProbeID()
 public String toString() {

 // Define the return value variable.
 def returnValue

 // Note the simulation time.
 def time = GetTickCountInTimeUnits()

 // Set the default agent identifier.
 returnValue = this.agentID
 // Return the results.
 return returnValue

 }
}

179

VII. Regulation Level

/**
 *
 * This file was automatically generated by the Repast Simphony Agent Editor.
 * Please see http://repast.sourceforge.net/ for details.
 *
 */

/**
 *
 * Set the package name.
 *
 */
package frontierairlines

/**
 *
 * Import the needed packages.
 *
 */
import java.io.*
import java.math.*
import java.util.*
import javax.measure.unit.*
import org.jscience.mathematics.number.*
import org.jscience.mathematics.vector.*
import org.jscience.physics.amount.*
import repast.simphony.adaptation.neural.*
import repast.simphony.adaptation.regression.*
import repast.simphony.context.*
import repast.simphony.context.space.continuous.*
import repast.simphony.context.space.gis.*
import repast.simphony.context.space.graph.*
import repast.simphony.context.space.grid.*
import repast.simphony.engine.environment.*
import repast.simphony.engine.schedule.*
import repast.simphony.engine.watcher.*
import repast.simphony.groovy.math.*
import repast.simphony.integration.*
import repast.simphony.matlab.link.*
import repast.simphony.query.*
import repast.simphony.query.space.continuous.*
import repast.simphony.query.space.gis.*
import repast.simphony.query.space.graph.*
import repast.simphony.query.space.grid.*
import repast.simphony.query.space.projection.*
import repast.simphony.parameter.*
import repast.simphony.random.*
import repast.simphony.space.continuous.*
import repast.simphony.space.gis.*
import repast.simphony.space.graph.*
import repast.simphony.space.grid.*

180

import repast.simphony.space.projection.*
import repast.simphony.ui.probe.*
import repast.simphony.util.*
import simphony.util.messages.*
import static java.lang.Math.*
import static repast.simphony.essentials.RepastEssentials.*

/**
 *
 * This is an agent.
 *
 */
public class Regulation {

 /**
 *
 * This is an agent property.
 * @field Regulation
 *
 */
 @Parameter (displayName = "Federal Regulation", usageName = "Regulation")
 public static def getRegulation() {
 return Regulation
 }
 public static void setRegulation(def newValue) {
 Regulation = newValue
 }
 public static def Regulation = 0

 /**
 *
 * This is an agent property.
 * @field DrawRegulation
 *
 */
 @Parameter (displayName = "Random Draw Regulation", usageName = "DrawRegulation")
 public def getDrawRegulation() {
 return DrawRegulation
 }
 public void setDrawRegulation(def newValue) {
 DrawRegulation = newValue
 }
 public def DrawRegulation = 0

 /**
 *
 * This value is used to automatically generate agent identifiers.
 * @field serialVersionUID
 *
 */
 private static final long serialVersionUID = 1L

 /**

181

 *
 * This value is used to automatically generate agent identifiers.
 * @field agentIDCounter
 *
 */
 protected static long agentIDCounter = 1

 /**
 *
 * This value is the agent's identifier.
 * @field agentID
 *
 */
 protected String agentID = "Regulation " + (agentIDCounter++)

 /**
 *
 * This is the step behavior.
 * @method step
 *
 */
 @ScheduledMethod(
 start = 0d,
 interval = 12d,
 priority = 2d,
 shuffle = false
)
 public def step() {

 // Define the return value variable.
 def returnValue

 // Note the simulation time.
 def time = GetTickCountInTimeUnits()

 // This is a task.
 setDrawRegulation(RandomDraw())

 // This is an agent decision.
 if (DrawRegulation > 0.40) {

 // This is a task.
 setRegulation(1)

 } else {

 // This is a task.
 setRegulation(0)

 }
 // Return the results.
 return returnValue

182

 }

 /**
 *
 * This is the step behavior.
 * @method step1
 *
 */
 @ScheduledMethod(
 start = 1d,
 interval = 1d,
 priority = -1.7976931348623157E308d,
 shuffle = false
)
 public def step1() {

 // Define the return value variable.
 def returnValue

 // Note the simulation time.
 def time = GetTickCountInTimeUnits()

 // This is an agent decision.
 if (Regulation == 1) {

 // This is a task.
 MKT.RegHigh += 1

 } else {

 // This is a task.
 MKT.RegLow += 1

 }
 // Return the results.
 return returnValue

 }

 /**
 *
 * This method provides a human-readable name for the agent.
 * @method toString
 *
 */
 @ProbeID()
 public String toString() {

 // Define the return value variable.
 def returnValue

 // Note the simulation time.

183

 def time = GetTickCountInTimeUnits()

 // Set the default agent identifier.
 returnValue = this.agentID
 // Return the results.
 return returnValue

 }
}

VIII. MKT (used to perform market share calculations)

/**
 *
 * This file was automatically generated by the Repast Simphony Agent Editor.
 * Please see http://repast.sourceforge.net/ for details.
 *
 */

/**
 *
 * Set the package name.
 *
 */
package frontierairlines

/**
 *
 * Import the needed packages.
 *
 */
import java.io.*
import java.math.*
import java.util.*
import javax.measure.unit.*
import org.jscience.mathematics.number.*
import org.jscience.mathematics.vector.*
import org.jscience.physics.amount.*
import repast.simphony.adaptation.neural.*
import repast.simphony.adaptation.regression.*
import repast.simphony.context.*
import repast.simphony.context.space.continuous.*
import repast.simphony.context.space.gis.*
import repast.simphony.context.space.graph.*
import repast.simphony.context.space.grid.*
import repast.simphony.engine.environment.*
import repast.simphony.engine.schedule.*
import repast.simphony.engine.watcher.*
import repast.simphony.groovy.math.*
import repast.simphony.integration.*
import repast.simphony.matlab.link.*
import repast.simphony.query.*
import repast.simphony.query.space.continuous.*

184

import repast.simphony.query.space.gis.*
import repast.simphony.query.space.graph.*
import repast.simphony.query.space.grid.*
import repast.simphony.query.space.projection.*
import repast.simphony.parameter.*
import repast.simphony.random.*
import repast.simphony.space.continuous.*
import repast.simphony.space.gis.*
import repast.simphony.space.graph.*
import repast.simphony.space.grid.*
import repast.simphony.space.projection.*
import repast.simphony.ui.probe.*
import repast.simphony.util.*
import simphony.util.messages.*
import static java.lang.Math.*
import static repast.simphony.essentials.RepastEssentials.*

/**
 *
 * This is an agent.
 *
 */
public class MKT {

 /**
 *
 * This is an agent property.
 * @field unitedMKT
 *
 */
 @Parameter (displayName = "United Market Tally", usageName = "unitedMKT")
 public static double getUnitedMKT() {
 return unitedMKT
 }
 public static void setUnitedMKT(double newValue) {
 unitedMKT = newValue
 }
 public static double unitedMKT = 0

 /**
 *
 * This is an agent property.
 * @field frontierMKT
 *
 */
 @Parameter (displayName = "Frontier Market Tally", usageName = "frontierMKT")
 public static double getFrontierMKT() {
 return frontierMKT
 }
 public static void setFrontierMKT(double newValue) {
 frontierMKT = newValue
 }
 public static double frontierMKT = 0

185

 /**
 *
 * This is an agent property.
 * @field otherMKT
 *
 */
 @Parameter (displayName = "Other Market Tally", usageName = "otherMKT")
 public static double getOtherMKT() {
 return otherMKT
 }
 public static void setOtherMKT(double newValue) {
 otherMKT = newValue
 }
 public static double otherMKT = 0

 /**
 *
 * This is an agent property.
 * @field totalMKT
 *
 */
 @Parameter (displayName = "Total Market Tally", usageName = "totalMKT")
 public static double getTotalMKT() {
 return totalMKT
 }
 public static void setTotalMKT(double newValue) {
 totalMKT = newValue
 }
 public static double totalMKT = 0

 /**
 *
 * This is an agent property.
 * @field UnitedShare
 *
 */
 @Parameter (displayName = "United Market Share", usageName = "UnitedShare")
 public static double getUnitedShare() {
 return UnitedShare
 }
 public static void setUnitedShare(double newValue) {
 UnitedShare = newValue
 }
 public static double UnitedShare = 0

 /**
 *
 * This is an agent property.
 * @field FrontierShare
 *
 */
 @Parameter (displayName = "Frontier Market Share", usageName = "FrontierShare")

186

 public static double getFrontierShare() {
 return FrontierShare
 }
 public static void setFrontierShare(double newValue) {
 FrontierShare = newValue
 }
 public static double FrontierShare = 0

 /**
 *
 * This is an agent property.
 * @field OtherShare
 *
 */
 @Parameter (displayName = "Other Market Share", usageName = "OtherShare")
 public static double getOtherShare() {
 return OtherShare
 }
 public static void setOtherShare(double newValue) {
 OtherShare = newValue
 }
 public static double OtherShare = 0

 /**
 *
 * This is an agent property.
 * @field NewFlyer
 *
 */
 @Parameter (displayName = "New Flyers", usageName = "NewFlyer")
 public static double getNewFlyer() {
 return NewFlyer
 }
 public static void setNewFlyer(double newValue) {
 NewFlyer = newValue
 }
 public static double NewFlyer = 0

 /**
 *
 * This is an agent property.
 * @field NewFlyerUnited
 *
 */
 @Parameter (displayName = "New Flyer United", usageName = "NewFlyerUnited")
 public static double getNewFlyerUnited() {
 return NewFlyerUnited
 }
 public static void setNewFlyerUnited(double newValue) {
 NewFlyerUnited = newValue
 }
 public static double NewFlyerUnited = 0

187

 /**
 *
 * This is an agent property.
 * @field NewFlyerFrontier
 *
 */
 @Parameter (displayName = "New Flyer Frontier", usageName = "NewFlyerFrontier")
 public static double getNewFlyerFrontier() {
 return NewFlyerFrontier
 }
 public static void setNewFlyerFrontier(double newValue) {
 NewFlyerFrontier = newValue
 }
 public static double NewFlyerFrontier = 0

 /**
 *
 * This is an agent property.
 * @field NewFlyerOther
 *
 */
 @Parameter (displayName = "New Flyer Other", usageName = "NewFlyerOther")
 public static double getNewFlyerOther() {
 return NewFlyerOther
 }
 public static void setNewFlyerOther(double newValue) {
 NewFlyerOther = newValue
 }
 public static double NewFlyerOther = 0

 /**
 *
 * This is an agent property.
 * @field PastFlyer
 *
 */
 @Parameter (displayName = "Past Flyers", usageName = "PastFlyer")
 public static double getPastFlyer() {
 return PastFlyer
 }
 public static void setPastFlyer(double newValue) {
 PastFlyer = newValue
 }
 public static double PastFlyer = 0

 /**
 *
 * This is an agent property.
 * @field StartFrontier
 *
 */
 @Parameter (displayName = "StartFrontier", usageName = "StartFrontier")
 public static double getStartFrontier() {

188

 return StartFrontier
 }
 public static void setStartFrontier(double newValue) {
 StartFrontier = newValue
 }
 public static double StartFrontier = 0

 /**
 *
 * This is an agent property.
 * @field StartUnited
 *
 */
 @Parameter (displayName = "StartUnited", usageName = "StartUnited")
 public static double getStartUnited() {
 return StartUnited
 }
 public static void setStartUnited(double newValue) {
 StartUnited = newValue
 }
 public static double StartUnited = 0

 /**
 *
 * This is an agent property.
 * @field StartOther
 *
 */
 @Parameter (displayName = "StartOther", usageName = "StartOther")
 public static double getStartOther() {
 return StartOther
 }
 public static void setStartOther(double newValue) {
 StartOther = newValue
 }
 public static double StartOther = 0

 /**
 *
 * This is an agent property.
 * @field StartNone
 *
 */
 @Parameter (displayName = "StartNone", usageName = "StartNone")
 public static double getStartNone() {
 return StartNone
 }
 public static void setStartNone(double newValue) {
 StartNone = newValue
 }
 public static double StartNone = 0

 /**

189

 *
 * This is an agent property.
 * @field SwitchToOther
 *
 */
 @Parameter (displayName = "Switch to Other", usageName = "SwitchToOther")
 public static double getSwitchToOther() {
 return SwitchToOther
 }
 public static void setSwitchToOther(double newValue) {
 SwitchToOther = newValue
 }
 public static double SwitchToOther = 0

 /**
 *
 * This is an agent property.
 * @field SwitchFromUnited
 *
 */
 @Parameter (displayName = "Switch from United", usageName = "SwitchFromUnited")
 public static double getSwitchFromUnited() {
 return SwitchFromUnited
 }
 public static void setSwitchFromUnited(double newValue) {
 SwitchFromUnited = newValue
 }
 public static double SwitchFromUnited = 0

 /**
 *
 * This is an agent property.
 * @field SwitchToFrontier
 *
 */
 @Parameter (displayName = "Switch to Frontier", usageName = "SwitchToFrontier")
 public static double getSwitchToFrontier() {
 return SwitchToFrontier
 }
 public static void setSwitchToFrontier(double newValue) {
 SwitchToFrontier = newValue
 }
 public static double SwitchToFrontier = 0

 /**
 *
 * This is an agent property.
 * @field SwitchToUnited
 *
 */
 @Parameter (displayName = "Switch to United", usageName = "SwitchToUnited")
 public static double getSwitchToUnited() {
 return SwitchToUnited

190

 }
 public static void setSwitchToUnited(double newValue) {
 SwitchToUnited = newValue
 }
 public static double SwitchToUnited = 0

 /**
 *
 * This is an agent property.
 * @field SwitchFromOther
 *
 */
 @Parameter (displayName = "Switch from Other", usageName = "SwitchFromOther")
 public static double getSwitchFromOther() {
 return SwitchFromOther
 }
 public static void setSwitchFromOther(double newValue) {
 SwitchFromOther = newValue
 }
 public static double SwitchFromOther = 0

 /**
 *
 * This is an agent property.
 * @field SwitchFromFrontier
 *
 */
 @Parameter (displayName = "Switch from Frontier", usageName = "SwitchFromFrontier")
 public static double getSwitchFromFrontier() {
 return SwitchFromFrontier
 }
 public static void setSwitchFromFrontier(double newValue) {
 SwitchFromFrontier = newValue
 }
 public static double SwitchFromFrontier = 0

 /**
 *
 * This is an agent property.
 * @field StayFrontier
 *
 */
 @Parameter (displayName = "Stay with Frontier", usageName = "StayFrontier")
 public static double getStayFrontier() {
 return StayFrontier
 }
 public static void setStayFrontier(double newValue) {
 StayFrontier = newValue
 }
 public static double StayFrontier = 0

 /**
 *

191

 * This is an agent property.
 * @field StayUnited
 *
 */
 @Parameter (displayName = "Stay with United", usageName = "StayUnited")
 public static double getStayUnited() {
 return StayUnited
 }
 public static void setStayUnited(double newValue) {
 StayUnited = newValue
 }
 public static double StayUnited = 0

 /**
 *
 * This is an agent property.
 * @field StayOther
 *
 */
 @Parameter (displayName = "Stay with Other", usageName = "StayOther")
 public static double getStayOther() {
 return StayOther
 }
 public static void setStayOther(double newValue) {
 StayOther = newValue
 }
 public static double StayOther = 0

 /**
 *
 * This is an agent property.
 * @field CreditLow
 *
 */
 @Parameter (displayName = "Credit Low", usageName = "CreditLow")
 public static double getCreditLow() {
 return CreditLow
 }
 public static void setCreditLow(double newValue) {
 CreditLow = newValue
 }
 public static double CreditLow = 0

 /**
 *
 * This is an agent property.
 * @field CreditHigh
 *
 */
 @Parameter (displayName = "Credit High", usageName = "CreditHigh")
 public static double getCreditHigh() {
 return CreditHigh
 }

192

 public static void setCreditHigh(double newValue) {
 CreditHigh = newValue
 }
 public static double CreditHigh = 0

 /**
 *
 * This is an agent property.
 * @field FuelHigh
 *
 */
 @Parameter (displayName = "Fuel High", usageName = "FuelHigh")
 public static double getFuelHigh() {
 return FuelHigh
 }
 public static void setFuelHigh(double newValue) {
 FuelHigh = newValue
 }
 public static double FuelHigh = 0

 /**
 *
 * This is an agent property.
 * @field FuelLow
 *
 */
 @Parameter (displayName = "Fuel Low", usageName = "FuelLow")
 public static double getFuelLow() {
 return FuelLow
 }
 public static void setFuelLow(double newValue) {
 FuelLow = newValue
 }
 public static double FuelLow = 0

 /**
 *
 * This is an agent property.
 * @field RegHigh
 *
 */
 @Parameter (displayName = "Regulation High", usageName = "RegHigh")
 public static double getRegHigh() {
 return RegHigh
 }
 public static void setRegHigh(double newValue) {
 RegHigh = newValue
 }
 public static double RegHigh = 0

 /**
 *
 * This is an agent property.

193

 * @field RegLow
 *
 */
 @Parameter (displayName = "Regulation Low", usageName = "RegLow")
 public static double getRegLow() {
 return RegLow
 }
 public static void setRegLow(double newValue) {
 RegLow = newValue
 }
 public static double RegLow = 0

 /**
 *
 * This is an agent property.
 * @field FrontierAdHigh
 *
 */
 @Parameter (displayName = "Frontier Ad High", usageName = "FrontierAdHigh")
 public static double getFrontierAdHigh() {
 return FrontierAdHigh
 }
 public static void setFrontierAdHigh(double newValue) {
 FrontierAdHigh = newValue
 }
 public static double FrontierAdHigh = 0

 /**
 *
 * This is an agent property.
 * @field FrontierAdLow
 *
 */
 @Parameter (displayName = "Frontier Ad Low", usageName = "FrontierAdLow")
 public static double getFrontierAdLow() {
 return FrontierAdLow
 }
 public static void setFrontierAdLow(double newValue) {
 FrontierAdLow = newValue
 }
 public static double FrontierAdLow = 0

 /**
 *
 * This is an agent property.
 * @field FrontierMktShrGood
 *
 */
 @Parameter (displayName = "Frontier Market Share Good", usageName = "FrontierMktShrGood")
 public static double getFrontierMktShrGood() {
 return FrontierMktShrGood
 }
 public static void setFrontierMktShrGood(double newValue) {

194

 FrontierMktShrGood = newValue
 }
 public static double FrontierMktShrGood = 0

 /**
 *
 * This is an agent property.
 * @field FrontierMktShrBad
 *
 */
 @Parameter (displayName = "Frontier Market Share Bad", usageName = "FrontierMktShrBad")
 public static double getFrontierMktShrBad() {
 return FrontierMktShrBad
 }
 public static void setFrontierMktShrBad(double newValue) {
 FrontierMktShrBad = newValue
 }
 public static double FrontierMktShrBad = 0

 /**
 *
 * This is an agent property.
 * @field UnitedAdHigh
 *
 */
 @Parameter (displayName = "United Ad High", usageName = "UnitedAdHigh")
 public static double getUnitedAdHigh() {
 return UnitedAdHigh
 }
 public static void setUnitedAdHigh(double newValue) {
 UnitedAdHigh = newValue
 }
 public static double UnitedAdHigh = 0

 /**
 *
 * This is an agent property.
 * @field UnitedAdLow
 *
 */
 @Parameter (displayName = "United Ad Low", usageName = "UnitedAdLow")
 public static double getUnitedAdLow() {
 return UnitedAdLow
 }
 public static void setUnitedAdLow(double newValue) {
 UnitedAdLow = newValue
 }
 public static double UnitedAdLow = 0

 /**
 *
 * This is an agent property.
 * @field UnitedMktShrGood

195

 *
 */
 @Parameter (displayName = "United Market Share Good", usageName = "UnitedMktShrGood")
 public static double getUnitedMktShrGood() {
 return UnitedMktShrGood
 }
 public static void setUnitedMktShrGood(double newValue) {
 UnitedMktShrGood = newValue
 }
 public static double UnitedMktShrGood = 0

 /**
 *
 * This is an agent property.
 * @field UnitedMktShrBad
 *
 */
 @Parameter (displayName = "United Market Share Bad", usageName = "UnitedMktShrBad")
 public static double getUnitedMktShrBad() {
 return UnitedMktShrBad
 }
 public static void setUnitedMktShrBad(double newValue) {
 UnitedMktShrBad = newValue
 }
 public static double UnitedMktShrBad = 0

 /**
 *
 * This is an agent property.
 * @field BadTrip
 *
 */
 @Parameter (displayName = "Bad Trip %", usageName = "BadTrip")
 public static def getBadTrip() {
 return BadTrip
 }
 public static void setBadTrip(def newValue) {
 BadTrip = newValue
 }
 public static def BadTrip = 0

 /**
 *
 * This value is used to automatically generate agent identifiers.
 * @field serialVersionUID
 *
 */
 private static final long serialVersionUID = 1L

 /**
 *
 * This value is used to automatically generate agent identifiers.
 * @field agentIDCounter

196

 *
 */
 protected static long agentIDCounter = 1

 /**
 *
 * This value is the agent's identifier.
 * @field agentID
 *
 */
 protected String agentID = "MKT " + (agentIDCounter++)

 /**
 *
 * This method provides a human-readable name for the agent.
 * @method toString
 *
 */
 @ProbeID()
 public String toString() {

 // Define the return value variable.
 def returnValue

 // Note the simulation time.
 def time = GetTickCountInTimeUnits()

 // Set the default agent identifier.
 returnValue = this.agentID
 // Return the results.
 return returnValue

 }
}

197

APPENDIX H: PROSPECTIVE OPERATING INCOME STATEMENT

AND CASH FLOW

198

Financial Statement Item

(in $ thousands)

2007

(Projected)

2006

(Actual)

2005

(Actual)

2004

(Actual)

2003

(Actual)

Passengers 10,384 8,676 7,525 5,684 3,926

Revenues

 Passenger 1,158,697 971,507 816,091 626,581 460,188

 Cargo 6,529 5,677 4,958 8,077 5,557

 Other 31,913 24,338 16,536 9,021 4,191

Total Revenue 1,197,139 1,001,522 837,585 643,679 469,936

Expenses

 Fuel costs 352,905 281,906 185,821 108,862 86,063

 Promotion & Sales 117,783 89,751 80,407 65,322 53,031

 Other 738,387 637,762 597,804 442,012 361,632

Total Expenses 1,209,075 1,009,419 864,032 616,196 500,726

Operating Income (11,936) (7,897) (26,447) 27,483 (30,790)

Operating Cash Flow 24,486 79,642 19,240 128,017 873

199

APPENDIX I: COMPARISON OF PROSPECTIVE FINANCIAL
INFORMATION TO 2007 ACTUAL DATA

200

Financial Statement Item

(in $ thousands)

2007

(Projected)

2007

(Actual)

Difference

Passengers 10,384 10,039 -3.33%

Revenues

 Passenger 1,158,697 1,131,466

 Cargo 6,529 6,880

 Other 31,913 32,603

Total Revenue 1,197,139 1,170,949 -2.19%

Expenses

 Fuel costs 352,905 343,082

 Promotion & Sales 117,783 115,536

 Other 738,387 723,033

Total Expenses 1,209,075 1,181,651 -2.27%

Operating Income (11,936) (9,834) -21.37%

Operating Cash Flow 24,486 23,227 -5.14%

201

LIST OF REFERENCES

AIS. Association for Information Systems: Purpose. Association for Information Systems 2008
[cited. Available from http://home.aisnet.org/displaycommon.cfm?an=3.

Alles, M., G. Brennan, A. Kogan, and M. A. Vasarhelyi. 2006. Continuous monitoring of
business process controls: A pilot implementation of a continuous auditing system at
Siemens. International Journal of Accounting Information Systems 7 (2):137-161.

Alles, M. G., A. Kogan, and M. A. Vasarhelyi. 2002. Feasibility and Economics of Continuous
Assurance. Auditing.

Altman, E. I. 1968. Financial Ratios, Discriminant Analysis and the Prediction of Corporate
Bankruptcy. Journal of Finance 23 (4):589-609.

American Institute of Public Accountants. 1998. Analytical Procedures, Statement on Auditing
Standards No. 56: New York, NY: AICPA.

———. AICPA Code of Professional Conduct: Article II - The Public Interest. AICPA 2008
[cited. Available from
http://www.aicpa.org/about/code/et_section_53__article_ii_the_public_interest.html.

Anderson, P. 1999. Complexity theory and organization science. Organization Science 10
(3):216-232.

Andreoni, J., and J. H. Miller. 1995. Auctions with Artificial Adaptive Agents. Games and
Economic Behavior 10 (1):39-64.

Answers.com. Barnes and Noble. Answers Corp. 2007 [cited. Available from
http://www.answers.com/topic/barnes-noble-inc.

Asare, S. K., and A. M. Wright. 2004. The Effectiveness of Alternative Risk Assessment and
Program Planning Tools in a Fraud Setting. Contemporary Accounting Research 21
(2):325-352.

Astley, W. G., and A. H. V. de Ven. 1983. Central Perspectives and Debates in Organization
Theory. Administrative Science Quarterly 28 (2):245-273.

Atlanta Journal-Constitution. Credit card processors can clip airlines' wings. DallasNews.com
2008 [cited. Available from
http://www.dallasnews.com/sharedcontent/dws/bus/industries/airlines/stories/DN-
airlines_14bus.State.Edition1.96500a.html.

Atwater, J. B., and P. H. Pittman. 2006. Facilitating Systemic Thinking in Business Classes.
Decision Sciences The Journal of Innovative Education 4 (2):273-292.

Avgerou, C., and K. McGrath. 2007. Power, rationality, and the art of living through socio-
technical change. MIS Quarterly 31 (2):293-315.

Avison, D. E., A. T. Wood-Harper, R. T. Vidgen, and J. R. G. Wood. 1998. A further exploration
into information systems development: the evolution of Multiview 2. Information
Technology & People 11 (2):124-139.

Baker, H. K., G. E. Powell, and E. T. Veit. 2002. Revisiting the dividend puzzle: Do all of the
pieces now fit? Review of Financial Economics 11 (4):241-261.

Ballas, A., and V. Theoharakis. 2003. Exploring Diversity in Accounting through Faculty
Journal Perceptions. Contemporary Accounting Research 20 (4):619-644.

http://home.aisnet.org/displaycommon.cfm?an=3�
http://www.aicpa.org/about/code/et_section_53__article_ii_the_public_interest.html�
http://www.answers.com/topic/barnes-noble-inc�
http://www.dallasnews.com/sharedcontent/dws/bus/industries/airlines/stories/DN-airlines_14bus.State.Edition1.96500a.html�
http://www.dallasnews.com/sharedcontent/dws/bus/industries/airlines/stories/DN-airlines_14bus.State.Edition1.96500a.html�

202

Bechtold, B. L. 1997. Chaos theory as a model for strategy development. Empowerment in
Organizations 5 (4):193-201.

Benbasat, I., and R. W. Zmud. 1999. Empirical Research in Information Systems: The Practice
of Relevance. MIS Quarterly 23 (1):3-16.

Benbya, H., and B. McKelvey. 2006. Toward a complexity theory of information systems
development. Information Technology and People 19 (1):12-34.

Bettis, R. A., and C. K. Prahalad. 1995. The Dominant Logic: Retrospective and Extension.
Strategic Management Journal 16 (1):5-14.

Bitran, G. R., and H. H. Yanasse. 1982. Computational Complexity of the Capacitated Lot Size
Problem. Management Science 28 (10):1174-1186.

Bonabeau, E. 2002. Predicting the Unpredictable. Harvard Business Review 80 (3):109-116.
Brannan, B. Thoughts On The New Golden Age Of Apple, The Mac. PanGeo Media 2007 [cited.

Available from
http://mac360.com/index.php/mac360/comments/thoughts_on_the_new_golden_age_of_
apple_the_mac/.

Brenner, T., and C. Werker. 2007. A Taxonomy of Inference in Simulation Models.
Computational Economics 30 (3):227-244.

Briggs, J., and F. D. Peat. 1999. Seven Life Lessons of Chaos: Timeless Wisdom from the Science
of Change: New York, NY: HarperCollins.

Bureau of Transportation Statistics. 2008. T-100 Domestic Market (All Carriers).
Burnes, B. 2005. Complexity theories and organizational change. International Journal of

Management Reviews 7 (2):73-90.
Cameron, K. S., and D. A. Whetten. 1981. Perceptions of organizational effectiveness over

organizational life cycles. Administrative Science Quarterly 26 (4):525-544.
Carugati, A. 2008. Information systems development activities and inquiring systems: an

integrating framework. European Journal of Information Systems 17:143-155.
Casti, J. L. 1997. Would-be Worlds: How Simulation is Changing the Frontiers of Science: New

York, NY: Wiley.
Cederman, L. E. 1997. Emergent Actors in World Politics: How States and Nations Develop and

Dissolve: Princeton Univ Pr.
Chapman, G. P. 1985. The Epistemology of Complexity and Some Reflections on the

Symposium: The Science and Praxis of Complexity, Montpellier, The United Nations
University.

Choi, T. Y., K. J. Dooley, and M. Rungtusanatham. 2001. Supply networks and complex
adaptive systems: control versus emergence. Journal of Operations Management 19
(3):351-366.

Churchman, C. W. 1971. The design of inquiring systems: basic concepts of systems and
organization. New York, NY: Basic Books.

CICA/AICPA. 1999. Continuous Auditing. Canadian Institute of Chartered Accountants and
American Institute of Certified Public Accountants. Research Report. Toronto, Canada:
CICA.

Cilliers, P. 1998. Complexity and Postmodernism: Understanding Complex Systems: New York,
NY: Routledge.

http://mac360.com/index.php/mac360/comments/thoughts_on_the_new_golden_age_of_apple_the_mac/�
http://mac360.com/index.php/mac360/comments/thoughts_on_the_new_golden_age_of_apple_the_mac/�

203

City and County of Denver, Colorado Municpal Airport System. Annual Financial Report 2006
[cited. Available from
http://www.flydenver.com/diabiz/stats/financials/reports/2006_finrpt.pdf.

Clarke, T. 2005. Accounting for Enron: shareholder value and stakeholder interests. Corporate
Governance 13 (5):598-612.

Coderre, D. 2006. A continuous view of accounts. Internal Auditor 63 (2):25-31.
Conner, D. R. 1998. Leading at the Edge of Chaos: How to Create the Nimble Organization:

New York, NY: John Wiley and Sons.
Constanza, R., L. Wainger, C. Folke, and K. G. Mäler. 1993. Modeling Complex Ecological

Economic Systems. BioScience 43 (8):545-555.
Corning, P. A. 1997. The Emergence of “Emergence”: Now What? EMERGENCE 4 (3):54-71.
Courtney, J. F. 2001. Decision making and knowledge management in inquiring organizations:

toward a new decision-making paradigm for DSS. Decision Support Systems 31 (1):17-
38.

Courtney, J. F., D. T. Croasdell, and D. B. Paradice. 1998. Inquiring Organizations. Australian
Journal of Information Systems 6 (1):3-15.

Cox, C. Speech by SEC Chairman:
'The SEC Agenda for 2008'. U.S. Securities and Exchange Commission 2008 [cited. Available

from http://www.sec.gov/news/speech/2008/spch020808cc.htm.
Debreceny, R., G. L. Gray, W. L. Tham, K. Y. Goh, and P. L. Tang. 2003. The Development of

Embedded Audit Modules to Support Continuous Monitoring in the Electronic
Commerce Environment. International Journal of Auditing 7 (2):169-185.

Debreceny, R., G. Gray, J. Ng, K. Lee, and W. Yau. 2005. Embedded Audit Modules in
Enterprise Resource Planning Systems: Implementation and Functionality. Journal of
Information Systems 19 (2):7-27.

Denning, P. 2007. Computing is a Natural Science. Communications of the ACM 50 (7):13.
Dent, C. B. 1999. Complexity, the new World View. EMERGENCE 1 (3):5-20.
Dooley, K. J. 1997. A Complex Adaptive Systems Model of Organization Change. Nonlinear

Dynamics, Psychology, and Life Sciences 1 (1):69-97.
Dooley, K. J., and A. H. Van de Ven. 1999. Explaining complex organizational dynamics.

Organization Science 10 (3):358-372.
Dugan, M. T., and C. V. Zavgren. 1988. Bankruptcy Prediction Research: A Valuable

Instructional Tool. Issues in Accounting Education 1:48-65.
Dyslin, A. A hops crisis looms: Cost of beer could rise. The Free Press 2007 [cited. Available

from http://www.mankato-freepress.com/local/local_story_319225135.html.
Edmonds, B. 1999. What is Complexity?-The philosophy of complexity per se with application

to some examples in evolution. In The Evolution of Complexity, edited by F. Heylighen
and D. Aerts: Dordrecht: Kluwer.

Epstein, J. M., and R. Axtell. 1996. Growing Artificial Societies: Social Science from the Bottom
Up: Washington, DC: Brookings Institution Press.

Ethiraj, S. K., and D. Levinthal. 2004. Modularity and Innovation in Complex Systems.
Management Science 50 (2):159-173.

Feldman, M. P. 2002. The Internet revolution and the geography of innovation. International
Social Science Journal 54 (171):47-56.

http://www.flydenver.com/diabiz/stats/financials/reports/2006_finrpt.pdf�
http://www.sec.gov/news/speech/2008/spch020808cc.htm�
http://www.mankato-freepress.com/local/local_story_319225135.html�

204

Finkelstein, S. 2007. First Mover Advantage for Internet Startups: Myth or Reality? In 2002
Handbook of Business Strategy New York, NY: ED Media Group.

Fitzgerald, L. A., and F. M. van Eijnatten. 2002. Chaos speak: a glossary of chaordic terms and
phrases. Journal of Organizational Change Management 15 (4):412-423.

Florian, M., J. K. Lenstra, and Ahgr Kan. 1980. Deterministic Production Planning: Algorithms
and Complexity. Management Science 26 (7):669-679.

Forrest, E., and R. Mizerski. 1996. Interactive Marketing: The Future Present: American
Marketing Association.

Forrester, J. W. 1994. System Dynamics, Systems Thinking, and Soft OR. System Dynamics
Review 10 (2):245-256.

Frankfurter, G. M., and R. W. Lane. 1984. The rationality of dividends. International Review of
Financial Analysis 1:115-130.

Frederick, W. C. 1998. Creatures, Corporations, Communities, Chaos, Complexity: A
Naturological View of the Corporate Social Role. Business & Society 37 (4):358.

Frontier Airlines Holdings, Inc. 2006. Annual Report.
———. 2007. Annual Report.
Fulkerson, B. 1997. A response to dynamic change in the market place. Decision Support

Systems 21 (3):199-214.
Fuller, T., and P. Moran. 2001. Small enterprises as complex adaptive systems: a methodological

question? Entrepreneurship & Regional Development 13 (1):47-63.
Gault, S. B., and A. T. Jaccaci. 1996. Complexity meets periodicity. The Learning Organization

3 (2):33-9.
Gibson, R. 1997. Rethinking the Future: Rethinking Business, Principles, Competition, Control

& Complexity, Leadership, Markets and the World: London, England: Nicholas Brealey.
Glass, N. 1996. Chaos, non-linear systems and day-to-day management. European Management

Journal 14 (1):98-106.
Glover, S.M., J. Jiambalvo, and J. Kennedy. 2000. Analytical procedures and audit-planning

decisions. Auditing: A Journal of Practice & Theory 19 (2):27-46.
Goldstein, J. 1994. The Unshackled Organization: Facing the Challenge of Unpredictability

Through Spontaneous Reorganization: Portland, OR: Productivity Press.
Gouws, D. G., and P. Lucouw. 2000. A dynamic balance model for analysts and managers:

School of Accounting Sciences, UP.
Grant, R. M., and C. Baden-Fuller. 2004. A Knowledge Accessing Theory of Strategic Alliances.

Journal of Management Studies 41 (1):61-84.
Gray, G. L., and R. Debreceney. 2006. Continuous Assurance Using Text Mining. In 12th World

Continuous Auditing Symposium. Newark, N.J.
Grice, J. S., and M. T. Dugan. 2001. The Limitations of Bankruptcy Prediction Models: Some

Cautions for the Researcher. Review of Quantitative Finance and Accounting 17 (2):151-
166.

Grice, J. S., and R. W. Ingram. 2001. Tests of the generalizability of Altman's bankruptcy
prediction model. Journal of Business Research 54 (1):53-61.

Grisé, M. L., and R. B. Gallupe. 1999. Information overload: addressing the productivity
paradox in face-to-face electronic meetings. Journal of Management Information Systems
16 (3):157-185.

205

Groomer, S. M., and U. S. Murthy. 1989. Continuous Auditing of Database Applications: An
Embedded Audit Module Approach. Journal of Information Systems 3 (2):53-69.

Haardoefer, R. 2005. Evolution of the Siemens Experience in its Effort to Test IT Controls on a
Continuous Basis. In 10th World Continuous Auditing Symposium. Newark, N.J.

Hackenbrack, K. 1993. The effect of experience with different sized clients on auditor
evaluations of fraudulent financial reporting indicators. Auditing: A Journal of Practice
and Theory 12 (1):99-110.

Haigh, C. 2002. Using chaos theory: the implications for nursing. Journal of Advanced Nursing
37 (5):462-469.

Hall, D. J., and R. A. Davis. 2007. Engaging multiple perspectives: A value-based decision-
making model. Decision Support Systems 43 (4):1588-1604.

Hall, D. J., and D. Paradice. 2005. Philosophical foundations for a learning-oriented knowledge
management system for decision support. Decision Support Systems 39 (3):445-461.

Hall, D. J., D. B. Paradice, and J. F. Courtney. 2003. Building a theoretical foundation for a
learning-oriented knowledge management system. Journal of Information Technology
Theory and Application 5 (2):63-84.

Hanseth, O., E. Jacucci, M. Grisot, and M. Aanestad. 2006. Reflexive standardization. Side-
effects and complexity in standard-making. MIS Quarterly 30:563–581.

Harris, J., and M. Uncles. 2007. Modeling the Repatronage Behavior of Business Airline
Travelers. Journal of Service Research 9 (4):297.

Heimlich, J. 2007 Outlook: "Reaching for the Skies?" Air Transport Association of America, Inc.
2007 [cited 3/12/2009. Available from
http://www.airlines.org/economics/review_and_outlook/ATA2007EconOutlookOpEd.ht
m.

Hevner, A. R., S. T. March, J. Park, and S. Ram. 2004. Design Science in Information Systems
Research. MIS Quarterly 28 (1):75-105.

Hoffman, W. M., and M. Rowe. 2007. The Ethics Officer as Agent of the Board: Leveraging
Ethical Governance Capability in the Post-Enron Corporation. Business and Society
Review 112 (4):553-572.

Holland, J. H. 1995. Hidden Order: How Adaptation Builds Complexity: Reading, MA: Addison-
Wesley.

Horgan, J. 1995. From complexity to perplexity. Scientific American 272 (6):104–109.
iPodGames. History of Apple. iDev Entertainment 2008 [cited. Available from

http://www.ipodgames.com/history/apple.php5.
Johnston, R. B., and S. Gregor. 2000. A theory of industry-level activity for understanding the

adoption of interorganizational systems. European Journal of Information Systems 9
(4):243-252.

Kauffman, S. A. 1991. Antichaos and adaptation. Scientific American 265 (2):64-70.
———. 1993. The Origins of Order: Self-organization and Selection in Evolution (1993): New

York, NY: Oxford University Press.
———. 1995. At Home in the Universe: The Search for Laws of Self-organization and

Complexity: New York, NY: Oxford University Press.
———. 1997. At Home in the Universe. Mathematical Social Sciences 33 (1):94-95.

http://www.airlines.org/economics/review_and_outlook/ATA2007EconOutlookOpEd.htm�
http://www.airlines.org/economics/review_and_outlook/ATA2007EconOutlookOpEd.htm�
http://www.ipodgames.com/history/apple.php5�

206

Keen, P. G. W., and H. G. Sol. 2007. Rehearsing the Future: Building Decision Agility through
Decision Enhancement Services: press.

Kelly, S., and M. A. Allison. 1999. The complexity advantage: how the science of complexity can
help your business achieve peak performance: New York, NY: McGraw-Hill.

Khouja, M., M. Hadzikadic, H. K. Rajagopalan, and L. S. Tsay. 2007. Application of complex
adaptive systems to pricing of reproducible information goods. Decision Support
Systems.

Kim, R. M., and S. M. Kaplan. 2006. Interpreting socio-technical co-evolution: Applying
complex adaptive systems to IS engagement. Information Technology and People 19
(1):35.

Kishore, R., H. Zhang, and R. Ramesh. 2006. Enterprise integration using the agent paradigm:
foundations of multi-agent-based integrative business information systems. Decision
Support Systems 42 (1):48-78.

Kogut, B., and U. Zander. 1992. Knowledge of the firm, combinative capabilities, and the
replication of technology. Organization Science 3 (3):383-397.

Kuhn, J. R., and S. G. Sutton. 2006. Learning from WorldCom: Implications for Fraud Detection
Through Continuous Assurance. Journal of Emerging Technologies in Accounting 3
(1):61-80.

———. 2008. Commentary on "Embedded Audit Modules in Enterprise Resource Planning
Systems: Implementation and Functionality": Working paper, University of Central
Florida.

Laurent, G., and C. Koch. 1999. Complexity and the nervous system. Science 284:96–98.
Law, A. M. 2005. How to build valid and credible simulation models. Proceedings of the 37th

conference on Winter simulation:58-66.
Lewin, R. 1992. Complexity: Life at the edge of chaos. 307. Chicago, IL: The University of

Chicago Press.
———. 1993. Order for free. New Scientist:10-1.
Linden, L. P., Kuhn, J. R., Parrish, J., Richardson, S. M., Adams L. A., Elgarah W., Courtney J.

F. 2007. Churchman's Inquiring Systems: Kernel Theories for Knowledge Management.
Communications of the Association for Information Systems 20:836-871.

Lorenz, E. N. 1993. The Essence of Chaos: Seattle, WA: University of Washington Press.
Luoma, M. 2006. A Play of Four Arenas: How Complexity Can Serve Management

Development. Management Learning 37 (1):101.
Mainzer, K. 1997. Thinking in Complexity: The Complex Dynamics of Matter, Mind, and

Mankind: New York, NY: Springer.
Manson, S. M. 2001. Simplifying complexity: a review of complexity theory. Geoforum 32

(3):405-414.
———. 2003. Epistemological possibilities and imperatives of complexity research: a reply to

Reitsma. Geoforum 34 (1):17-20.
March, J. G., and C. Heath. 1994. A Primer on Decision Making: How Decisions Happen: New

York, NY: Free Press.
Markus, M. L., A. Majchrzak, and L. Gasser. 2002. A design theory for systems that support

emergent knowledge processes. MIS Quarterly 26 (3):179-212.

207

Mason, R. B. 2007. The external environment’s effect on management and strategy: A
complexity theory approach. Management Decision 45 (1):10-28.

Mason, R. O., and I. I. Mitroff. 1973. A Program for Research on Management Information
Systems. Management Science 19 (5):475-488.

Mathews, K. M., M. C. White, and R. G. Long. 1999. Why Study the Complexity Sciences in the
Social Sciences? Human Relations 52 (4):439-462.

McKee, T. E. 2003. Rough sets bankruptcy prediction models versus auditor signalling rates.
Journal of Forecasting 22 (8):569-586.

McKelvey, B. 2004. Toward a 0 thLaw of Thermodynamics: Order-Creation Complexity
Dynamics from Physics and Biology to Bioeconomics. Journal of Bioeconomics 6 (1):65-
96.

Merali, Y. 2002. The role of boundaries in knowledge processes. European Journal of
Information Systems 11 (1):47-60.

Merriam-Webster. Merriam-Webster's Online Dictionary. Merriam-Webster, Inc. 2008 [cited.
Available from http://www.merriam-webster.com/dictionary/complex.

Midgley, D., R. Marks, and D. Kunchamwar. 2007. Building and assurance of agent-based
models: An example and challenge to the field. Journal of Business Research 60 (8):884-
893.

Mikulecky, D. C. Definition of Complexity (and linked pages) 1999 [cited. Available from
http://views.vcu.edu/~mikuleck/ONCOMPLEXITY.html.

Mitchell, R. K., B. R. Agle, and D. J. Wood. 1997. Toward a theory of stakeholder identification
and salience: defining the principle of who and what really counts. Academy of
Management Review 22 (4):853-886.

Mitroff, II, and H. A. Linstone. 1993. The Unbounded Mind: Breaking the Chains of Traditional
Business Thinking. New York, NY: Oxford University Press.

Mouck, T. 1998. Capital markets research and real world complexity: the emerging challenge of
chaos theory. Accounting, Organizations and Society 23 (2):189-215.

———. 2000. Beyond Panglossian theory: strategic capital investing in a complex adaptive
world. Accounting, Organizations and Society 25 (3):261-283.

Nilson, T. H. 1995. Chaos marketing: how to win in a turbulent world: Maidenhead, Berks:
McGraw-Hill.

North, M. J., and C. M. Macal. 2007. Managing Business Complexity: Discovering Strategic
Solutions With Agent-Based Modeling And Simulation: Oxford, UK: Oxford University
Press.

O'Keefe, R. M., O. Balci, and E. P. Smith. 1987. Validating expert system performance. IEEE
Expert 2 (4):81-90.

Ohlson, J. A. 1980. Financial ratios and the probabilistic prediction of bankruptcy. Journal of
Accounting Research 18 (1):109-131.

Painter-Morland, M. 2006. Redefining Accountability As Relational Responsiveness. Journal of
Business Ethics 66 (1):89-98.

Parellada, R. J. F. 2002. Modeling of Social Organizations. Emergence 4 (1/2):131-46.
Parrish, Jr., J. L. 2008. Sensemaking and Inquiring Systems: Towards a Weickian Inquiring

System, PhD diss., University of Central Florida.
Pascale, R. T. 1999. Surfing the edge of chaos. Sloan Management Review 40 (3):83-94.

http://www.merriam-webster.com/dictionary/complex�
http://views.vcu.edu/~mikuleck/ONCOMPLEXITY.html�

208

Pfeffer, J., and R. I. Sutton. 2006. Three Myths of Management. HBS Working Knowledge
March 27.

Phillips, F., and N. Kim. 1996. Implications of Chaos Research for New Product Forecasting.
Technological Forecasting and Social Change 53 (3):239-261.

Pincus, K. V. 1989. The efficacy of a red flags questionnaire for assessing the possibility of
fraud. Accounting, Organizations and Society 14 (1/2):153–163.

Reitsma, F. 2003. A response to simplifying complexity. Geoforum 34 (1):13-16.
Reynolds, C. W. 1987. Flocks, herds and schools: A distributed behavioral model. ACM

SIGGRAPH Computer Graphics 21 (4):25-34.
Rezaee, Z., A. Sharbatoghlie, R. Elam, and P. L. McMickle. 2002. Continuous Auditing:

Building Automated Auditing Capability. Auditing.
Ricart, G. 2007. Continuous Auditing and Reporting. The Role of Public Cryptography. In 14th

World Continuous Auditing and Reporting Symposium. Newark, N.J.
Richardson, K.A., and P. Cilliers. 2001. What is complexity science? A view from different

directions. Emergence 3 (1):5-23.
Richardson, S. M., and J. F. Courtney. 2004. A Churchmanian theory of knowledge management

system design. Paper read at Proceedings of the 37th Hawaii International Conference on
System Sciences, January 5-8, at Big Island, HI: U.S.

Richardson, S. M., J. F. Courtney, and J. D. Haynes. 2006. Theoretical principles for knowledge
management system design: Application to pediatric bipolar disorder. Decision Support
Systems 42 (3):1321-1337.

Richardson, S. M., J. F. Courtney, and D. B. Paradice. 2001. An assessment of the Singerian
approach to organizational learning: Cases from academia and the utility industry.
Information Systems Frontiers 3 (1):49-62.

Rittel, H. W. J., and M. M. Webber. 1973. Dilemmas in a general theory of planning. Policy
Sciences 4 (2):155-169.

Rodgers, W., L. Hedelin, T. Housel, and J. R. Kuhn. 2008. Exploratory and Exploitative
Knowledge Learning by Investment Analysts. Working paper, University of California -
Riverside.

Sánchez, P. J. 2006. As simple as possible, but no simpler: a gentle introduction to simulation
modeling. Proceedings of the 37th conference on Winter simulation:2-10.

Schein, E. 1992. Organizational Culture and Leadership. San Francisco, CA: Jossey-Bass.
Siebers, P. O., and U. Aickelin. 2007. Introduction to Multi-Agent Simulation. In Encyclopedia

of Decision Making and Decision Support Technologies: IDEAS Group (In press).
Simon, H. A. 1996. The Sciences of the Artificial: Cambridge, MA: MIT Press.
Srbljinovic, A., and O. Skunca. 2003. Agent Based Modelling and Simulation of Social

Processes. Interdisciplinary Description of Complex Systems 1 (1-2):1-8.
Stacey, R. D. 1995. The Science of Complexity: An Alternative Perspective for Strategic Change

Processes. Strategic Management Journal 16 (6):477-495.
Stumpf, S. A. 1995. Applying new science theories in leadership development activities.

Development 14 (5):39-49.
Styhre, A. 2002. Non-linear change in organizations: organization change management informed

by complexity theory. Leadership & Organization Development Journal 23 (6):343-51.

209

Suarez, F. F., and G. Lanzolla. 2005. The Half-Truth of First-Mover Advantage. Harvard
Business Review 83 (4):121-129.

Sutherland, J., and W. J. van den Heuvel. 2002. Enterprise application integration and complex
adaptive systems. COMMUNICATIONS OF THE ACM 45 (10):59-64.

Suzuki, Y. 2000. The relationship between on-time performance and airline market share: a new
approach. Transportation Research Part E 36 (2):139-154.

Tan, J., H. J. Wen, and N. Awad. 2005. Health care and services delivery systems as complex
adaptive systems. COMMUNICATIONS OF THE ACM 48 (5):36-44.

Thietart, R. A., and B. Forgues. 1995. Chaos Theory and Organization. Organization Science 6
(1):19-31.

Thrane, S. 2007. The complexity of management accounting change: Bifurcation and oscillation
in schizophrenic inter-organisational systems. Management Accounting Research 18
(2):248-272.

Thrift, N. 1999. The Place of Complexity. Theory, Culture & Society 16 (3):31.
Tilanus, C. B. 1981. Management Science in the 1980s. Management Science 27 (9):1088-1090.
Troitzsch, K. G. Approaching Agent-Based Simulation 2000 [cited. Available from

http://www.uni-koblenz.de/%7Emoeh/publik/ABM.pdf.
Uhl-Bien, M., R. Marion, and B. McKelvey. 2007. Complexity Leadership Theory: Shifting

leadership from the industrial age to the knowledge era. The Leadership Quarterly 18
(4):298-318.

United Air Lines, Inc. 2006. Annual Report.
Van Valen, L. 1973. A new evolutionary law. Evolutionary Theory 1 (1):1-30.
Vardy, A. 1997. Algorithmic complexity in coding theory and the minimum distance problem.

Paper read at Twenty-ninth Annual ACM Symposium on Theory of Computing.
Vasarhelyi, M. A. 2005. Would continuous audit have stopped the Enron mess? Working paper,

Rutgers University.
Vasarhelyi, M. A., M. G. Alles, and A. Kogan. 2004. Principles of Analytic Monitoring for

Continuous Assurance. Journal of Emerging Technologies in Accounting 1 (1):1-21.
Vasarhelyi, M. A., and F. B. Halper. 1991. The continuous audit of online systems. Auditing: A

Journal of Practice and Theory 10 (1):110-125.
Wahlstrom, B. 1994. Models, modelling and modellers; an application to risk analysis. European

Journal of Operations Research 75:477-487.
Waldrop, M. M. 1993. Complexity: The Emerging Science at the Edge of Order and Chaos: New

York, NY: Simon & Schuster.
Waller Jr., W. T. 1989. The concept of habit in economic analysis. Journal of Economic Issues

22:113-126.
Walls, J. G., G. R. Widmeyer, and O. A. El Sawy. 1992. Building an Information System Design

Theory for Vigilant EIS. Information Systems Research 3 (1):36-59.
Weick, K. E. 1979. The social psychology of organizing: Reading, MA: Addison-Wesley.
Wheatley, M. 1996. The unplanned organization: Learning from nature’s emergent creativity.

Noetic Sciences Review:20-21.
Wilkinson, I., and L. Young. 1998. On Competing: Firms, Relations and Networks. Paper read at

Research Conference Proceedings: Relationship Marketing: Theory, Methods and
Applications, at Goizueta Business School, Emory University.

http://www.uni-koblenz.de/~moeh/publik/ABM.pdf�

210

Zhang, G., M. Y. Hu, B. E. Patuwo, and D. C. Indro. 1999. Artificial neural networks in
bankruptcy prediction: General framework and cross-validation analysis, Europ. J. Op.
Research 116:16.

Zimmerman, B., C. Lindberg, and P. Plsek. 1998. Edgeware: Insights from Complexity Science
for Health Care Leaders: Irving, TX: VHA.

Zmijewski, M. E. 1984. Methodological issues related to the estimation of financial distress
prediction models. Journal of Accounting Research 22 (1):59-82.

Zurek, W. H. 1989. Thermodynamic cost of computation, algorithmic complexity and the
information metric. Nature 341:119-124.

	University of Central Florida
	
	A Theory Of Complex Adaptive Inquiring Organizations: Application To Continuous Assurance Of Corporate Financial Information
	2009
	John Kuhn
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER ONE: INTRODUCTION
	CHAPTER TWO: LITERATURE REVIEW
	Continuous Assurance and Continuous Auditing
	Background
	Continuous Auditing Movement: Yesterday, Today, and the Future

	Complexity
	Views and Theories of Complexity

	Complex Adaptive Systems
	Internal Mechanisms
	Agents and schema
	Self-organization and emergence
	Connectivity
	Dimensionality

	Environment
	Dynamism
	Rugged landscape

	Co-evolution
	Quasi-equilibrium and state change
	Non-linear changes
	Non-random future

	Related Research in Accounting
	Related Research in IS

	Simulation and Agent-Based Modeling
	Summary

	CHAPTER THREE: A COMPLEX ADAPTIVE INQUIRING ORGANIZATION
	Introduction
	Complex Adaptive Systems
	Churchman’s Singerian Inquiring System
	Design Principles for a Continuous Auditing System to Support a CAIO
	Nature and purpose of the system
	Environment and Measures of Performance
	Client, Designer, and Decision Maker
	Operating Mode, Process and Control, and Nature of Change

	Discussion

	CHAPTER FOUR: AN INSTANTIATION OF THE CAIO THEORY
	Introduction
	Design Science
	Simulation and Agent-Based Modeling
	The Research Problem

	Construction of the Model
	The Company
	Design Specifications
	Overall Modeling Philosophy
	Realism versus Simplicity
	Agent Design
	Verification and Validation

	Types of Agents and Agent Behavior
	Consumer Agent Properties
	Consumer Agent Behavior
	Airline Agents
	Environmental Factors
	Design Specifications and Model Functionality

	Simulation Results and Financial Statement Analysis
	Test Design
	Simulation Results
	Financial Statement Analysis
	Revenue Estimates
	Cost and Expense Estimates
	Analysis of Projected Operating Income and Cash Flow

	Discussion and Summary

	CHAPTER FIVE: CONCLUSION
	APPENDIX A: ACCOUNTING JOURNALS
	APPENDIX B: INFORMATION SYSTEMS JOURNALS
	APPENDIX C: GOING CONCERN GUIDANCE
	APPENDIX D: A TAXONOMY OF INFERENCE
	APPENDIX E: LIST OF MODEL ASSUMPTIONS
	APPENDIX F: LAST AIRLINE AND LAST EXPERIENCE ASSIGNMENT
	APPENDIX G: JAVA CODE
	APPENDIX H: PROSPECTIVE OPERATING INCOME STATEMENT AND CASH FLOW
	APPENDIX I: COMPARISON OF PROSPECTIVE FINANCIAL INFORMATION TO 2007 ACTUAL DATA
	LIST OF REFERENCES

