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An apparatus for studying scintillator properties at high isostatic pressures
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(Received 1 September 2012; accepted 13 December 2012; published online 9 January 2013)

We describe the design and operation of a unique hydraulic press for the study of scintillator ma-
terials under isostatic pressure. This press, capable of developing a pressure of a gigapascal, con-
sists of a large sample chamber pressurized by a two-stage hydraulic amplifier. The optical detection
of the scintillation light emitted by the sample is performed, through a large aperture optical port,
by a photodetector located outside the pressure vessel. In addition to providing essential pressure-
dependent studies on the emission characteristics of radioluminescent materials, this apparatus is
being developed to elucidate the mechanisms behind the recently observed dependency of light-yield
nonproportionality on electronic band structure. The variation of the light output of a Tl:CsI crystal
under 511-keV gamma excitation and hydrostatic pressure is given as an example. © 2013 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4773563]

I. INTRODUCTION

Scintillator materials have long been used in the detec-
tion of ionizing radiation and remain to this day at the core
of a variety of detectors for medical diagnostics, geological
prospecting, particle physics, and homeland security. The per-
formance of these materials, which luminesce when exposed
to high-energy radiation, depends on application-specific pa-
rameters including the light output, emission wavelength,
and decay time. For example, applications requiring the dis-
crimination of incoming γ -rays at different energies neces-
sitate high light yields for improving photon-counting statis-
tics and a good linearity between the deposited energy and
the number of light-photons produced per event.1 In response
to specific needs posed by nuclear surveillance applications,
the quest for understanding and finding scintillator materi-
als with superior γ -ray energy resolution and light-yield pro-
portionality that would approach the performance of costly
semiconductor-based detectors has been intensified during the
last decade.2–8, 20

In this context, recent computational modeling by
Setyawan et al.8 identified a relationship between the effec-
tive mass ratio of the charge carriers produced in the ion-
ization track and the scintillator’s light-yield proportionality.
This study also suggested that the application of large iso-
static pressures could affect scintillator electronic band struc-
ture and lead to important insight into this relationship. It
is known that pressure affects the migration and recombina-
tion properties of free charge carriers and excitons (through
self-trapping, change in exciton binding energies,9, 10 hop-
ping and stability of states11–18) and, as a result, impacts
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Materials Science and Engineering, Stanford University, Stanford, Califor-
nia 94305, USA. Author to whom correspondence should be addressed.
Electronic mail: gaume@ucf.edu.

the deposited energy to photon-yield ratio as confirmed by a
few high isostatic pressure scintillation studies. For example,
30 MPa of isostatic pressure induces a change in the light
yield and energy response of Tl:NaI excited by γ rays.19

Gamma-ray scintillation measurements in the keV–MeV en-
ergy range require scintillator sample sizes on the order of the
material’s stopping power (from a few millimeters to a couple
of centimeters) to provide sufficient interaction volume.20 For
this reason, the specific study motivated here cannot make use
of small volume diamond anvil cells and necessitates a high
pressure system capable of handling centimeter-size samples
in a vessel equipped with an optically-transmissive port for
the collection of scintillation light. To minimize the risk as-
sociated with the handling of compressed gases, the system
is designed to utilize pressure-transmitting liquids. The press
described in this paper was built by Harwood Engineering,
Inc. (Walpole, MA) and Secs. II–IV describe the various com-
ponents and characteristics of the completed apparatus, as
well as some preliminary scintillation measurements.

II. SYSTEM COMPONENTS AND OPERATION

A. Pressure vessel

The pressure vessel at the core of this instrument con-
sists of a 21-cm diameter cylinder made of 4340-stainless
steel with a sample chamber accessible by a top-loading
threaded steel plug. The plug is equipped with an electrical
feed-through for monitoring temperature changes inside the
chamber with a type K thermocouple. The sample chamber
contains both the centimeter-sized scintillator and a hollow
cylindrical spacer holding the solid-state radioactive source
(e.g., electro-deposited γ -ray radionuclide standard source)
at a fixed distance from the sample. The sample sits di-
rectly on the optical window located at the base of the ves-
sel and the remaining volume is filled with a high-pressure
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FIG. 1. The pressure vessel (a) and control panel (b).

transmitting fluid. Contrary to typical conditions used for the
characterization of scintillators under ambient pressure in air,
the presence of the pressure-transmitting fluid and the appli-
cation of pressure are not compatible with the use of optical
coupling silicone grease (index of typical silicone grease nD

= 1.465). We have found that the crystallization of the grease
under pressure deteriorates the light collection. As a result,
the scintillator is simply wrapped in an enhanced specular re-
flective (ESR) film (such as Vikuiti by 3MTM) leaving only
one face free for coupling to the optical window. The free
area of the window’s face and the sides are also covered with

FIG. 2. Schematic of the pressure vessel with the scintillator, radioactive
source and photomultiplier tube (PMT).

ESR to maximize light collection by the photodetector. The
reflective properties of the ESR film vary reversibly with the
application of pressure, up to at least 800 MPa, and for a few
pressurization cycles. It was noted however, that, after half
a dozen cycles, the film develops visible striations and irre-
versible damage, likely due to excessive differential stresses
in this laminated film.

On the outside, the optical window can be coupled to a
photomultiplier tube (PMT), an avalanche photodiode or a
bundle of optical fibers. Pulse-height γ -ray spectra and decay
curves are collected by directing the photodetector signal out-
put to a chain of standard pulse-processing electronics (i.e.,
amplifier and multichannel analyzer)21 or to an oscilloscope,
respectively. The optical fiber is used with a spectrometer to
obtain emission spectra. The pressure vessel and the control
panel as well as a schematic of the vessel are shown in Figs. 1
and 2. A summary of the specifications for the vessel is given
in Table I.

TABLE I. Pressure vessel specifications.

Component Specification

Pressure range 0–1 GPa
Working temperature (20 ± 10) ◦C
Pressurizing fluid Heptane
Vessel material E-4340 AQ steel (heat-treated and

auto-frettagged)
Vessel dimensions Ø 21.0 cm × 29.0 cm
Sample chamber Ø 3.5 cm × 4.1 cm long
Optical window Ø 3.0 cm × 3.2 cm long, c-oriented

sapphire crystal
Electrical lead-throughs Zirconium-brass alloy
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TABLE II. Mechanical properties of high-strength window materials.

Flexural strength (MPa) Bulk modulus (GPa) Young modulus (GPa) Shear modulus (GPa)

Sapphire 500–1000 250 345 145
Spinel 170 197 276 109
YAG 280–530 221 290 115
AlON 379 210 323 125

B. Sapphire window

The optical window material selection and design were
guided by the stringent requirements on this apparatus: (1)
the window must be capable of withstanding a GPa of flexu-
ral stress, (2) it should have a large aperture to permit the light
collection from centimeter-sized scintillators, and (3) it must
be transparent over the visible spectral range (300–600 nm)
to accommodate a variety of scintillator emissions. Despite
the potential optical losses due to the birefringent nature (no

= 1.768, ne = 1.760) and the photo-elastic properties of sap-
phire, this material was preferred over cubic spinel MgAl2O4,
YAG, or AlON because of its superior flexural strength22–24

(Table II), availability and lower cost.
Cylindrical sapphire windows, 3.0 cm in diameter,

3.2 cm thick, and oriented along the c-axis, were obtained
from GTAT Crystal Systems, LLC (Salem, MA). Initially, the
windows were given an optical polish on both ends and a
rough polish on the outer periphery.25 The windows showed
no measurable built-in stress under crossed-polarizers. How-
ever, tests performed by Harwood Engineering, Inc. showed
that these windows were unable to withstand the shearing
forces that developed near the bottom seat of the window
and critical failure occurred at about 0.8 GPa. The failure
modes ranged from diagonally-oriented holes “drilled” in
the bulk of the window to catastrophic fragmentation into
sapphire “sand.” Fracture in c-oriented, uniaxially-loaded,
single-crystalline sapphire proceeds along the c-axis and oc-
curs when crystal twins on differently-oriented rhombohedral
crystal planes (r-planes) intersect with each other.26 Compres-
sion on the c-axis produces equally-resolved shear stresses
on all the r-planes,26 and the stress required to form twins
on one r-plane induces twins on the two other intersecting
planes. Atoms at these intersections are then sheared in one
direction by one twin and in a different direction by the other
twin, leading to crack initiation. The brittle behavior observed
in the early version of the sapphire windows was induced by
crack propagation from the ground surfaces and sharp edges.
Sapphire windows with 20–10 polish of the flat surfaces, fine
grind on the outer diameter and appropriate chamfering of the
edges to ∼0.015 in. × 45◦ showed significant strength im-
provement and were capable of withstanding a GPa for more
than 50 loading cycles.

C. Hydraulic components and operation

The pressurization system (see schematic in Fig. 3) con-
sists of a dual-stage hydraulic compressor. The circuit rep-
resented in the upper portion of Fig. 3 first pressurizes the
sample chamber to the maximum pressure that the air-driven

pump (P1) can develop (0.15 GPa for a 100-psi compressed
air input) by forcing the high-pressure transmitting fluid from
a storage tank (T1) to the pressure vessel. In this first stage
of compression, the pressure intensifier’s piston rests at the
bottom of its chamber. Next, the activation of the second
hydraulic circuit (lower part of Fig. 3) pressurizes the low-
pressure hydraulic fluid from its tank (T2) to the pressure-
intensifier with the aid of the air-driven pump (P2). As a
result, the piston of the pressure intensifier moves upward
and increases the pressure in the vessel further. The system
is equipped with three pressure gauges (G1, G2, and G3) to
monitor the driving pressures as well as the pressure in the
vessel. High-pressure needle valves (V1–V5), air regulators
(RG1 and RG2), and air gauges (AG1 and AG2) assist the
flow control of air entering the pumps and pressurizing fluids
while filters (F, F1, and F2) ensure that small debris or partic-
ulates do not circulate in the system. A rupture disk prevents
any unintended over-pressurization of the pressure vessel.

D. Pressure-transmitting fluids

As mentioned in Sec. II C, two pressure-transmitting flu-
ids circulate in two independent circuits. A clean, filtered, and
well-refined synthetic hydraulic oil (e.g., antiwear oil AW-
32) is used as the low-pressure transmitting fluid (reservoir
T2). The selection of the high-pressure transmitting fluid (lo-
cated in T1) presents more challenges since this fluid should
be relatively incompressible in order to transmit pressure to
the sample chamber and should not undergo crystallization
under compression up to a GPa at ambient temperature. Fur-
thermore, it has to be optically transparent, not fluorescent
or radioluminescent under γ -excitation, and perfectly anhy-
drous since it is in direct contact with samples that may be
hygroscopic (such as NaI, SrI2, or LaBr3). Other considera-
tions include low toxicity, good lubricating qualities, and a
low flash-point. Heptane (Sigma-Aldrich, spectrophotomet-
ric grade, 99%) was found to be a suitable fluid for this
purpose. When immersed in the pressure transmitting fluid,
the coupling between the ESR film and the sample improves
slightly since heptane has a higher refraction index than air
(nD = 1.387 at 1 atm).

III. SYSTEM PERFORMANCE

A. Pressure and temperature stability

All scintillation measurements must be conducted at
constant pressure as well as constant temperature, partic-
ularly since temperature is known to affect scintillation
properties.27–33 The temperature of the fluid in the sample
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FIG. 3. Schematic of the hydraulic components driving the press.

chamber increases and decreases significantly due to adiabatic
heating and cooling during the compression and decompres-
sion phases, respectively. This effect leads to temperature and
density gradients in the fluid, which can induce non-uniform
stresses on the scintillator sample and the window, and result
in their fracture. Reducing the compression and decompres-
sion rates to about a GPa per 15 min can minimize such risks.
Thermal stability must also be achieved before sample mea-
surements can be made. Figure 4 illustrates the typical evolu-
tion of temperature inside the pressure vessel after compress-
ing and isolating the vessel by closing valve V3. The heat
generated by adiabatic compression is slowly dissipated
through the bulk of the vessel and the temperature equilibrates
to the ambient value. During normal operation, temperature
stability is achieved within 5 min.

The pressure stability of the system can be determined
once thermal stability is achieved. Figure 5 shows the
time evolution of pressure after an initial compression of
0.517 GPa. Over a period of 1 h, the relative pressure drop
was less than 1%. Since a typical scintillation or emission
measurement requires an acquisition time on the order of 10
min, the stability of the pressure system was determined to be
satisfactory for our purposes.

B. Pressure-dependent transmission

The refractive indices of the scintillator, heptane, and, to
a lesser extent, the sapphire optical window are each expected
to change with pressure. Accordingly, the coupling and trans-

mission behavior for these media are also expected to vary,
which will affect the measured light output of the scintillator.
To determine the nature of this dependency, the changes in the
light transmission from the scintillator through the heptane
and the sapphire window were characterized as a function of
applied pressure up to 0.75 GPa for a 1-cm3 Tl:CsI scintil-
lator. A 35-W high-pressure xenon light source (Ocean Op-
tics HPX 2000) was coupled to a reflection probe (Ocean Op-
tics Reflection/Backscattering Probe, R600-7-UV/125F) and

FIG. 4. Temperature equilibration inside the pressure chamber after
compression.
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FIG. 5. Loss of pressure inside the vessel over time. After initial compres-
sion to 0.517 GPa the vessel was isolated for 1 h.

to the outer end of the sapphire window. The Tl:CsI sample
was illuminated below bandgap at 550 nm, a wavelength at
which no luminescence is produced in the crystal, and the re-
flected light was collected by the reflection probe and ana-
lyzed by a spectrophotometer (Ocean Optics, QE65000). The
pressure-dependent transmission behavior (normalized to its
value at ambient pressure) varied up to 3.5% (Fig. 6). Note
that a different transmission curve would be generated for
each scintillator studied. These transmission curves allow for
appropriate corrections to be made when determining the light
output of a material.

IV. APPLICATION EXAMPLE: SCINTILLATION STUDY
OF Tl:CsI UNDER PRESSURE

The pressure system was used to test a 1-cm3 sample of
Tl:CsI obtained from Hilger Crystals. The sample was pol-
ished on one face and wrapped in ESR film as described in
the operation procedure. Pulse-height spectra (Fig. 7(a)) were
recorded up to 0.7 GPa for a 511-keV solid excitation source,
22Na (Eckert and Ziegler Isotopes). Despite the less than opti-

FIG. 6. Pressure-induced changes in the transmission of the optical arrange-
ment with a 1-cm3 Tl:CsI crystal.

FIG. 7. (a) Pulse-height gamma-ray spectra of a 1-cm3 Tl:CsI under 511-
keV (22Na) excitation as a function of pressure, and (b) shift of the photopeak
to higher channels, indicating that light output increased at higher pressures.
Error bars originates from the fitting procedure.

mal light coupling through the thick sapphire window, it was
observed that the location of the photopeak, which is propor-
tional to the light output, increases reversibly with increasing
isostatic pressure (Fig. 7(b)). The photopeak centroid was de-
termined by fitting the full-energy peaks in the pulse-height
spectra using a Gaussian function and an exponential back-
ground. Reasons for the observed trend are currently under
investigation.

V. SUMMARY

A high isostatic pressure system consisting of a pressure
vessel fitted with an optical port and pressurized by a two-
stage hydraulic compressor was designed and constructed
for the study of centimeter-sized inorganic scintillators up to
1 GPa. The system performance was found suitable for typ-
ical scintillation measurements. Tests on a Tl:CsI scintilla-
tor under 511-keV excitation up to 0.7 GPa were success-
fully performed and a dependency between the light yield
and the applied isostatic stress was observed. We antici-
pate that this press will be extremely useful in investigat-
ing a variety of scintillation properties (light yield, decay
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time, energy resolution, and light yield nonproportionality)
under high isostatic pressure and allow a better understanding
of how those properties relate to the crystalline structure of
scintillators.
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